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1.1 problem 2(a)

1.1.1 Solving as quadratureode . . . . . .. ... ... ... ..... 4
1.1.2 Maple step by step solution . . . . ... ... ... .......

Internal problem ID [869)
Internal file name [OUTPUT/869_Sunday_June_05_2022_01_52_52_AM_84289303/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 1, Introduction. Section 1.2 Page 14

Problem number: 2(a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

Yy —2y=0

1.1.1 Solving as quadrature ode

Integrating both sides gives

1

Zdy = /da:
In
_éy) =+

Raising both side to exponential gives

\/@ — em—i—cl
Which simplifies to

VY = cpe”

Summary
The solution(s) found are the following

y = c3e™ (1)
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Figure 1: Slope field plot

Verification of solutions

y = cye™

Verified OK.

Let’s solve
Yy —2y=0
Highest derivative means the order of the ODE is 1

1.1.2 Maple step by step solution
[ ]

Integrate both sides with respect to x

Separate variables
y/
v

Evaluate integral



In(y)=2z+ ¢,
° Solve for y

Y= e2z+c1

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

tdsolve(diff(y(x),x) = 2*y(x),y(x), singsol=all)

y(z) = e?® ¢,

v/ Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 16

LDSolve[y'[x]== y[x],y[x],x,IncludeSingularSolutions -> True]

y(x) = cr1€”
y(z) =0



1.2 problem 2(b)

1.2.1 Solving aslinearode . . . . . .. ... .. ... ... [
1.2.2 Solving as differentialTypeode . . . . ... ... ... ... .. )
1.2.3 Solving as first order ode lie symmetry lookup ode . . . .. .. [Tl
1.24 Solvingasexactode . . ... ... ... ... ... ..... 151
1.2.5 Maple step by step solution . . . . . .. ... ... .. ... .. 19]

Internal problem ID [870]
Internal file name [OUTPUT/870_Sunday_June_05_2022_01_52_53_AM_25961841/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 1, Introduction. Section 1.2 Page 14

Problem number: 2(b).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "differential Type",
"first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

yz+y =1’

1.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
1
p(z) = .
q(z) ==
Hence the ode is
y+2=u
T



The integrating factor u is

The ode becomes

Integrating gives

yxz/a:2dx

1.3

yx=§+cl

Dividing both sides by the integrating factor u = z results in

2?2

=3

Summary
The solution(s) found are the following

_x2+cl
y—3 T
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Figure 2: Slope field plot

Verification of solutions

1

.’152

y:

Verified OK.

1.2.2 Solving as differentialType ode

Writing the ode as

(1)

Which becomes

(2)

But the RHS is complete differential because

(—z)dy + (2" —y) dz = d(%x?’ — ym)

Hence (2) becomes



(1)
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Integrating both sides gives gives these solutions

The solution(s) found are the following

Summary

T T T T T T T
o N — o — N on

—

=

~—

~

Verification of solutions

Verified OK.



1.2.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

,_ T +y

X
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + W(ﬂy - 51:)

— Wy —wf —wyn =0

(A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,

Table 2: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode vy = f()y(z) + g(z) 0 el fd=
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode Yy =9(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | ¥’ = (a + bz + cy)% 1 —g
Class C

homogeneous class D | y = £ + g(z) F(¥) z? zy
First order special | ¥ = g(z)e"®+% 4 f(z) E_IW;E# f@)e” f;g?dz_h(z)
form ID 1

polynomial type ode

/ _ a1zthiyta
Yy a2z+b2y—+ca

ai1boz—agbiz—bica+bacy

a1bay—agbiy—aica—ascs

a1ba—aszb;

a1bs—aszb;

Bernoulli ode

y = f(x)y+g(z)y"

e (n=Df(@)dryn

Reduced Riccati

Y = fi(z)y + folz) y?

e~ J frdz

11




The above table shows that

£(z,y) =
1

M%w=5 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _

F=y =48 1)

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z

S is found from

I
<

)
I
—

8l =S| =

dy

I
—

Which results in
S =yx

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ S;+w(z,y)Sy @)
dR R, +uw(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—z’ 4y
T

W(iL', y) =

12



Evaluating all the partial derivatives gives

R,=1
R,=0
Se =1y
Sy==z

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

R2

3

am:%+q (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

x3 N
rT=—+c¢
Y 3 1
Which simplifies to
T = 2 +c
yxr = 3 1
Which gives
B z2 + 3¢,
y= 3x

13



The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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The solution(s) found are the following

Summary

1)

x2 + 3¢,

3z

14
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Figure 4: Slope field plot

Verification of solutions

x2 + 3¢,

3z

Verified OK.

1.2.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(fv,y)£=0

o
o
I y___x
> =S
i Il
Sy +
]
TS

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. z gives

Hence

15



Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z)dy = (2> —y)dz
(—2*+y)dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —2° +y
N(z,y) =z

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0 9
o~y Y
And
ON 0
o~ 2™

16



Since %i; = ‘%, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
o
— =M 1
p (1)
09
2 =N 2
o 2)

Integrating (1) w.r.t. = gives

@dx=/de
or

@dx=/—x2+ydz
0x

b=—32" +yz + f(y) ©

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

0¢ /
a—y=$+f(?/) (4)

But equation (2) says that 22 = z. Therefore equation (4) becomes
Y y

z=z+ f'(y) (5)
Solving equation (5) for f'(y) gives
f'y)=0
Therefore
fly)=a

Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢

1
¢=—§x3+yw+cl

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢, constants into new constant c; gives the solution as

—__3+
C X Hh
1 3 y

17
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The solution(s) found are the following

The solution becomes

Summary

T T T T T T T
on N — () — N on

Verification of solutions

Verified OK.



1.2.5 Maple step by step solution

Let’s solve
yz+y=a’
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
y=—1+z

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y+i=z

° The ODE is linear; multiply by an integrating factor u(x)
w(z) (v +¥) = p(z)

o Assume the lhs of the ODE is the total derivative - (u(z)y)
w) (v +2) = p(@)y+ p@)y

o  Isolate p/(x)

p(z) =42

° Solve to find the integrating factor
p(z) =z

° Integrate both sides with respect to x

[ (E(u(z)y)) de = [ p(z)zds +

° Evaluate the integral on the lhs

we)y = [ (@) wdz + o

° Solve for y
_ | p(@)zdz+-c1
V="
) Substitute u(z) = x
y = fmzc‘l:—{—cl
° Evaluate the integrals on the rhs
y=§§l
° Simplify

19



— z34+3c1

Y 3z

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

‘dsolve(x*diff(y(x),x) +y(x)= x72,y(x), singsol=all)

(z) = 2 + 3¢
y o 3z

v Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 19

LDSolve[x*y'[x] +y[x]== x72,y[x],x,IncludeSingularSolutions -> Truel

20



1.3 problem 2(c)

1.3.1 Solving as separableode . . . . . . .. .. ... ... ... ... 21]
1.3.2 Solving aslinearode . . . . . .. . ... ... ... ... .. 23]
1.3.3 Solving as first order ode lie symmetry lookup ode . .. .. .. 27
1.34 Solvingasexactode . .. ... .. ... ... .......... 28]
1.3.5 Maple step by step solution . . . . . ... ... ... ... ...

Internal problem ID [871]
Internal file name [OUTPUT/871_Sunday_June_05_2022_01_52_55_AM_24961597/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 1, Introduction. Section 1.2 Page 14

Problem number: 2(c).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

yz+y ==

1.3.1 Solving as separable ode
In canonical form the ODE is
y = F(z,y)

= f(=)9(y)
= (1 —2y)

Where f(z) = = and g(y) = 1 — 2y. Integrating both sides gives

21
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Raising both side to exponential gives
The solution(s) found are the following

Which simplifies to

Summary
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Figure 6: Slope field plot
(c%ezz-l—ch _ 1) e—m2—201

Y

Verification of solutions

Verified OK.



1.3.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here

p(z) =2z

q(z) ==z
Hence the ode is

yz+y =1

The integrating factor u is

p=e [ 2zdx

1.2
=€

The ode becomes

Integrating gives

2
y—7+01

T

@

Dividing both sides by the integrating factor u = e® results in

2
€

—z 2

2

T

€ 22

y= +ce

which simplifies to

23
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The solution(s) found are the following

Summary

————————— N 4/ T - = ==
—————— N = = =~
——————— N\ e == = = =
~———————— L P S SN
T T T
o N — o — N on
—~
N—

0

X
.2
+ ce z
Y =—-2yr+x
Y = w(z,y)
24

Figure 7: Slope field plot
Y= 2

1.3.3 Solving as first order ode lie symmetry lookup ode
Nz + w(ny - goc) - w2§y - wx§ — Wyl

The condition of Lie symmetry is the linearized PDE given by

Verification of solutions
Verified OK.
Writing the ode as



The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7

Table 5: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class

Form & n
linear ode vy = f(@)y(z) + g(z) 0 el fdz
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =9g(y) 1 0
homogeneous ODEs of | 3y = f (%) x Y
Class A
homogeneous ODEs of | ¥’ = (a + bz + cy)% 1 —l—c’
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) z? zy

First order
form ID 1

special

y/ — g(x) eh(z)+by + f(ac)

e Jof (z)dz—h(z)

g(z)

f(.’l?)67 Jbf(z)dz—h(z)
9(@)

polynomial type ode

/ — sztbhiyta
Yy az2z+bay+ca

a1basr—aobix—bica+bacy

a1bey—agbiy—aice—azcy

ai1ba—azb;

ai1ba—azby

Bernoulli ode

y = f(x)y+g(z)y"

e f(n—l)f(:z:)dwyn

Reduced Riccati

Y = fil@)y+ folz)y?

e~ J frdz

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
13 n

25
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The above comes from the requirements that (5 a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==z

1
S=/—dy

n
=/ _12dy

ez

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating
as _ St w(z,y)S, @)
dR R, +uw(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = =2y + =

Evaluating all the partial derivatives gives

R, =1
R,=0
Sy =2xe"y
Sy:e"”2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s .

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

@ _ R
iR e' R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = 7 +c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

2

ey = < ta
2
Which simplifies to
2 22
e’y = - +c

Which gives

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
.. : ) i ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’

d 2

Y= yzr+zx 45 = e R
SRR AR R YN~ A
trtetrt AN LR YNt
ISR AREEEEEEER, Y NoAge
I A T et
RERRRE ORI NS R R A0S SRS )
frrt /2l VN
frtttrrr NNV Vb YN~/
DR EEI I YIS SR R=— N
AANANNNN NN er r f 2 f S = LA N~r st t
P TY VAN 77 BF T T ETT 5 B SNl AT
I N A S::emy Y Nl st
L R T | ol A A O O O Y el
L R 0 . A O A A A O A
R N1 o O o G O VNS
Vbbbl VN2t tt Y et
L T T Y /. O O O O A Y el st
bbb bbbttt et Y N 2
N R Y N
I T VAN AN R A O A O A i~/ 11
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Summary

(1)

(e”2 + 2cl> e

The solution(s) found are the following
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Figure 8: Slope field plot

Verification of solutions

(e”62 + 2cl> e’

Verified OK.

1.3.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(m,y)£=0

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

28



ode. Taking derivative of ¢ w.r.t.  gives

d

Hence 06 06 d
o9 o9ady _
Or Oydx 0 (B)

Comparing (A,B) shows that

0
Y _Mm
or
0
YN
Ay
8%¢ __ 82%¢
Ozxdy ~ Oyoz

But since then for the above to be valid, we require that

OM ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = Zf: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz +N(z,y)dy =0 (1A)

Therefore

(1_12y>dy=(z')dm

1
Comparing (1A) and (2A) shows that
M(z,y) = —=z
1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
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Using result found above gives

And

N _ 0 ( 1
0xr O0r\1-—2y
=0

Since %M = 55 N then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

99
=M (1)

¢
oy =V 2)

Integrating (1) w.r.t. z gives
— dx = / M dx

¢
9z dz = / —xdzx

2

o= 5 + 1) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

o9
= 4
P -0+ 1) @
But equation (2) says that ‘9¢ = ﬁ Therefore equation (4) becomes
=0+ () )
1-2y y
Solving equation (5) for f'(y) gives
1
/ — —
F)=-—7 %

30



Integrating the above w.r.t y gives

[rwa= [ (-—ig)

fo) = 2

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
2 In(—-1+2y)

p=-7 -2

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

2?2 In(=1+2y)
0 =—-——-——""

The solution becomes

Summary
The solution(s) found are the following

—p2_
ex 2c1 1

5 T3 (1)

y:
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Figure 9: Slope field plot

Verification of solutions

Verified OK.

Highest derivative means the order of the ODE is 1

g
e}
= g
% 5 5
(<]
s 2] o T
o o ™ =
o~ o]
..Wu 2 8 o, |7
Q = ~ O IS
3
]
b [ ] [ ]
=}
s
R
o
L]

8

@)

+~

+~

Q

(<b]

[oN

wn

[}

—
hl
E J
B4
wn

O 8
© 3 =
a B
2 = 2
S ) A
exe
TS OB
r.l.u
Y
O V> &
52 O 2
= 3

32



In(2y—1) __ 2
—2  =—3ta
° Solve for y
2
e ® +2c1 l
Yy=" 2

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 14

Ldsolve(diff(y(x),x) +2xx*y (x)= x,y(x), singsol=all)

y(z)=-+e "

v/ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 26

tDSolve[y'[x] +2*x*y [x]== x,y[x],x,IncludeSingularSolutions -> True]
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1.4 problem 2(d)

1.4.1 Solving as separableode . . . . . .. ... ... ... ..., 34
1.4.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 361
1.43 Solvingasexactode . ... ... ... ... ... ..., 40
1.4.4 Solving asriccatiode. . . . . . . ... ... ... ... 44
1.4.5 Maple step by step solution . . . . ... ... ... ... ... a1

Internal problem ID [872]
Internal file name [OUTPUT/872_Sunday_June_05_2022_01_52_56_AM_18164994/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 1, Introduction. Section 1.2 Page 14

Problem number: 2(d).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

2y +z(-1+¢*) =0

1.4.1 Solving as separable ode
In canonical form the ODE is

y/ = F(.’Ii,y)
= f(2)9(v)

2
(YL
-+(-5+3)

Where f(z) =z and g(y) = —% + 3. Integrating both sides gives

1
———dy =xdx
Yy

N
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Which results in

Summary

/ 21 1dy=/xdw
_?J__|_§

2

2

2 arctanh (y) = % +c

The solution(s) found are the following

Verification of solutions

Verified OK.
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Figure 10: Slope field plot
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1.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

l—_
y= 2

Y =w(z,y)

z(y> — 1)

The condition of Lie symmetry is the linearized PDE given by

Ne + W(ﬂy - 51:)

— Wy —wf —wyn =0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find &,

Table 8: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode vy = f()y(z) + g(z) 0 el fd=
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode Yy =9(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | ¥’ = (a + bz + cy)% 1 —g
Class C

homogeneous class D | y = £ + g(z) F(¥) z? zy
First order special | ¥ = g(z)e"®+% 4 f(z) E_IW;E# f@)e” f;g?dz_h(z)
form ID 1

polynomial type ode

/ _ a1zthiyta
Yy a2z+b2y—+ca

ai1boz—agbiz—bica+bacy

a1bay—agbiy—aica—ascs

a1ba—aszb;

a1bs—aszb;

Bernoulli ode

y = f(x)y+g(z)y"

e (n=Df(@)dryn

Reduced Riccati

Y = fi(z)y + folz) y?

e~ J frdz
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The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _ dy _

F=y =48 1)

The above comes from the requirements that (E a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

S is found from

o)
|
.
8

|
——

8= = | =
ISH
8

Which results in

.’152

S=%

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

z(y* - 1)

w(w,y) = - 9
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Evaluating all the partial derivatives gives

R, =0
R,=1
Sy =1
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 2

dR ~ y2—1

(24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 2

dR~ R?—1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = 2 arctanh (R) + ¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

2

% = 2 arctanh (y) + ¢

Which simplifies to
2

ac2 = 2 arctanh (y) + ¢;

Which gives
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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The solution(s) found are the following

Summary

1)
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Verification of solutions

Verified OK.
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Figure 11: Slope field plot

22
— —tanh (-2 +
Yy an ( 1 + 2)

1.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(r,y)£=0

(A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

Hence

d

09 0pdy _

dr ' Oydzx =0
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Comparing (A,B) shows that

09
- M
ox
9 _ n
Oy
But since aa;;’y = ;’; ;’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
gj gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

1
5 dy = (z)dzx
(=)

(—z)dz + ( ) dy=0 (2A)

Therefore

41
7 T2

Comparing (1A) and (2A) shows that

M (IL‘ ) y) =—T
o
=

N(z,y) =

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied
oM _ 0N
oy Oz
Using result found above gives
oM 0
)
oy Oy
=0
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And
ON _ o[ 1
oz oz _%4_%
=0

Since %}Vf = %, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

96
g—x—M (1)
¢ _

Integrating (1) w.r.t. z gives

oo .
%dx—/de

op .
%dx— /—wdz

2

b=-5 +fW) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9¢
—=0+f 4
S =0+ 1) @
But equation (2) says that g—ﬁ = y2’1+1' Therefore equation (4) becomes
—Fts
=0+ W) (5)
2 T2
Solving equation (5) for f’(y) gives
2
4 g
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Integrating the above w.r.t y gives

/f’(y)dy=/<—y22_1) dy

f(y) = 2 arctanh (y) + ¢;

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
72
¢ = 5 + 2 arctanh (y) + ¢;

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢y constants into new constant c; gives the solution as

.’L'2
a=—= + 2 arctanh (y)

The solution becomes

2
y = tanh (xz + ﬂ)

Summary
The solution(s) found are the following

2?2 o
—tanh (2 + & 1
y=tant (% +5) )
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Verification of solutions

Verified OK.
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Figure 12: Slope field plot

22
—tanh (Z + &
Yy an (4+2)

1.4.4 Solving as riccati ode

In canonical form the ODE is

_ =@ -1)
2

This is a Riccati ODE. Comparing the ODE to solve

-1 2+1x
¥y=73% 75

With Riccati ODE standard form

y' = fo(z) + fi(z)y + fo(z)y®
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Shows that fo(z) = 3, fi(z) =0 and fo(z) = —F. Let

_u,

- fzu
== (1)
2

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou" () = (f3 + frfo) u'(@) + £} fou(z) = 0 (2)
But
fi=—3
fif2=0
3
Bh=%

Substituting the above terms back in equation (2) gives

_wu'(z) | Ww(z) | 7Pu(z) _ 0

2 2 8

Solving the above ODE (this ode solved using Maple, not this program), gives

) x? x?
u(z) = ¢ sinh (Z) + co cosh (Z)

x(cl cosh (%) + ¢ sinh (%))
2

The above shows that

u'(z) =
Using the above in (1) gives the solution

¢y cosh ( 2) + ¢9 sinh <"”T2)

Dividing both numerator and denominator by c; gives, after renaming the constant

2 = c3 the following solution
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»N

c3 cosh (%) + sinh (%)
cs sinh (%) + cosh (%)

Summary
The solution(s) found are the following

c3 cosh (w22 + sinh (%) O
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Figure 13: Slope field plot

Verification of solutions

c3 cosh (%) + sinh (%)
c3 sinh (%) + cosh (%)

Verified OK.
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1.4.5 Maple step by step solution

Let’s solve
2y +z(-1+9y?) =0
° Highest derivative means the order of the ODE is 1

/

Yy

° Separate variables
==

. Integrate both sides with respect to x
| Fade = [ —%dz + o

° Evaluate integral

—arctanh(y) = —sz +c

° Solve for y

y = —tanh (—’i—z + cl)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

Ldsolve(2*diff(y(x),x) +x* (y(x)"2-1)= 0,y(x), singsol=all)

2
y(z) = tanh <a:z + %)
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v/ Solution by Mathematica
Time used: 0.242 (sec). Leaf size: 52

-

kDSolve [2%y' [x] +x*(y[x]~2-1)== 0,y[x],x,IncludeSingularSolutions -> Truel

—

6% _ 6201
y() —

ez + e
y(z) —» -1
y(z) — 1
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1.5 problem 2(e)

1.5.1 Solving as separableode . . . . . . ... ... ... ... ... 49|
1.5.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 531
1.5.3 Solvingasexactode . . ... ... ... ... .......... %)
1.5.4 Solving asriccatiode. . . . .. .. ... ... ... ....... HOl
1.5.5 Maple step by step solution . . . . ... ... ... .. ... .. 611

Internal problem ID [873]
Internal file name [QUTPUT/873_Sunday_June_05_2022_01_52_57_AM_8955787/index. tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 1, Introduction. Section 1.2 Page 14

Problem number: 2(e).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type
[_separablel

Y — (1+y?)a? =0

1.5.1 Solving as separable ode

In canonical form the ODE is

y/ = F(CL‘, y)
= f(z)g(y)
_ (y2 + 1) 72

Where f(z) = z? and g(y) = y* + 1. Integrating both sides gives

1
y*+1
1

2
/y2+1dy=/w dx

49
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(1)

= § +c
+Cl>
+Cl)

tan (
tan (

arctan (y)

Y
Y

————_— S ———— —— ~—

—————— T T T e e T e —— ——— |

The solution(s) found are the following

Which results in
Summary
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Figure 14: Slope field plot
)

Verification of solutions

Verified OK.



1.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y=(y+1)z

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - fz) - w2€y —wg€ — Wy = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 11: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(z) 0 el fd=
separable ode Yy = f(z)g(y) % 0
quadrature ode y = f(x) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢/ = f (%) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | 3/ = Zé +g(x) F (%) z? Ty
first IDoider special | i = g(z) eh@)+by f(z) e_f”f:z# flz)e” fgbga)c)dz—h(w)
orm

polynomial type ode

/ — a1ztbhiyta
Yy az2z+bay+c2

a1baz—aobix—bico+bacy

a1b2y—a2b1 Yy—ai1c2—azCy

a1ba—asgby

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

¢= /(=Df (@)dzyn

Reduced Riccati

Y = fiz)y + folz) y?

e J frdz
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The above table shows that

£(z,y) = %
n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _ dy _

F=y =48 1)

The above comes from the requirements that (E a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

Sz/édx

1

2

S is found from

Which results in

S=%

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = (y2 + 1) z?
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Evaluating all the partial derivatives gives

R, =0
R,=1
S, = z2
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1

= - 2A
dR y*+1 (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s 1
dR R2+1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = arctan (R) + ¢; (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

23
5= arctan (y) + ¢;

Which simplifies to

e
5= arctan (y) + ¢

3
y = —tan (—% +cl)

Which gives
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates

(R,5)

transformation
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Summary
The solution(s) found are the following

y = —tan (-%3 + cl) 1)
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Figure 15: Slope field plot

Verification of solutions

+ Cl)

_r
3

y=—tan<

Verified OK.

1.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(r,y)£=0

)
(e
o
| y___z
= =S
i I
Sy +
]
TS

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. z gives

Hence
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Comparing (A,B) shows that

But since % = 86—2194’— then for the above to be valid, we require that
0y yOx

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = (96: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz +N(z,y)dy =0 (1A)

Therefore

(—=z?) dx+<y2 - 1) dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —z?
1
N =
(1:7y) y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy  Ox
Using result found above gives
oM 0 9
oy =y
=0
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And

ON _96( 1
oxr Or\y2+1

=0
Since %Vf = %, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
o¢
—=M 1
e (1)
o
- N 2
o )

Integrating (1) w.r.t. z gives

@dxz/de
or

06 . [ o
%dx—/ z“dx

3

b=-%+1W) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢

—=0+7f 4

=0+ (@)
But equation (2) says that g—‘;’ = y21+1. Therefore equation (4) becomes

=041 ©)

P2+1 Y
Solving equation (5) for f'(y) gives
1
/ —

Integrating the above w.r.t y gives

/f’(y)dy=/(y211) dy

f(y) = arctan (y) + 1
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
73
¢ = -5t arctan (y) + ¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

23
a=-—7 + arctan (y)

y = tan + C
3 !
Summary

The solution(s) found are the following

The solution becomes

3
y = tan (z_+61) (1)
3
3 RN R
RN AR EER
ERRRN 2SS 2R R
2 11111 7—==711111
RS AR
RSSO
y {1117 mers 1111
RN PSR R R
BN At AR R RN Y
P
Yx) V1 s
(111117 7mer 7 111111
N1 7e—rrt1
- (1111771111
(11117 =7 1111
RN AR RRE
I f7==7 11111
1177111111
1177111111
RN AR R R R
-3 -2 —1 0 1 2 3
X

Figure 16: Slope field plot
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Verification of solutions

3
y = tan x_+01
3

Verified OK.

1.5.4 Solving as riccati ode
In canonical form the ODE is
y =F(z,y)
= (y2 + 1) x>
This is a Riccati ODE. Comparing the ODE to solve
y = 2%y +2°
With Riccati ODE standard form

y' = fo(z) + fi(z)y + fo(x)y®

Shows that fo(z) = 2%, fi(z) = 0 and fao(z) = z%. Let

y =
fou
_u/

- M)

z2u

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou"(x) = (fo + fufo) W' (z) + f3 fou(z) = 0 (2)
But
fo=2x
fifa=0
f3fo=1°

Substituting the above terms back in equation (2) gives
" (z) — 2zu'(z) + 28u(z) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives
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o) avsin () s evos (2
o) = {eres (2) - enin ()

Using the above in (1) gives the solution

3 . 3
C1 COS (”” ) — ¢o8in (%)
3

3
)+ ercos (%)

The above shows that

Dividing both numerator and denominator by c; gives, after renaming the constant
2 = c3 the following solution

Summary
The solution(s) found are the following
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Figure 17: Slope field plot

2

x
dr = [zdz +c;

y/
1+y2

!

Highest derivative means the order of the ODE is 1
Integrate both sides with respect to x

Let’s solve
y—(1+y")2*=0
Separate variables

Yy
1+y2

/

Y

1.5.5 Maple step by step solution
[ J

Verification of solutions

Verified OK.



° Evaluate integral
arctan (y) = % +c

° Solve for y

Yy = tan (% +cl>

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

Ldsolve(diff(y(x),x) = x"2%(1+y(x)"2),y(x), singsol=all)

y(z) = tan (%3 + cl)

v Solution by Mathematica
Time used: 0.171 (sec). Leaf size: 30

LDSolve[y'[x] == x~2*%(1+y[x]1~2),y[x],x,IncludeSingularSolutions -> True]

3
y(x) — tan (% + cl)
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1.6 problem 3(a)
1.6.1 Solving as quadratureode . . . . . ... ... ... ... ... 631
1.6.2 Maple step by step solution . . . . . ... ... ... ... ... 64

Internal problem ID [874]
Internal file name [OUTPUT/874_Sunday_June_05_2022_01_52_58_AM_79689306/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 1, Introduction. Section 1.2 Page 14

Problem number: 3(a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

1.6.1 Solving as quadrature ode

y=/—xdx

Integrating both sides gives

22
= _E +c
Summary
The solution(s) found are the following
2
x
y=—% +a (1)
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Figure 18: Slope field plot

Verification of solutions

y=——7=+ac
Verified OK.

1.6.2 Maple step by step solution

Let’s solve
y=-z

° Highest derivative means the order of the ODE is 1

/

Yy
° Integrate both sides with respect to x
[ydz = [—zdr+c
° Evaluate integral
.’1)2
y=—3+a
° Solve for y
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y:='—%;‘FC1

Maple trace

-

“Methods for first order ODEs:
‘——— Trying classification methods ---

‘trying a quadrature
‘<— quadrature successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

Ldsolve(diff(y(x),x) = -x,y(x), singsol=all)

£L'2

y(z) = —5 +a
v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 15
LDSolve[y'[x] == -x,y[x],x,IncludeSingularSolutions -> Truel
72
y(z) — -5 ta
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1.7 problem 3(b)

1.7.1 Solving as quadratureode . . . . . .. ... ... ... ..., 66!
1.7.2 Maple step by step solution . . . . .. ... ... ... ... .. 671

Internal problem ID [875]
Internal file name [OUTPUT/875_Sunday_June_05_2022_01_52_59_AM_1317647/index.tex|

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 1, Introduction. Section 1.2 Page 14

Problem number: 3(b).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

Yy = —sin(x)x

1.7.1 Solving as quadrature ode

Integrating both sides gives
y= /—sin(r)m dz
= zcos(z) —sin (z) + ¢

Summary
The solution(s) found are the following

y==xcos(z) —sin(z) + 1 (1)
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Figure 19: Slope field plot

Verification of solutions

y=zcos(z)—sin(z)+ ¢
Verified OK.

1.7.2 Maple step by step solution

Let’s solve
Yy = —sin(z)z

° Highest derivative means the order of the ODE is 1

/

Y

° Integrate both sides with respect to x
[y'dz = [ —sin(z) zdz + ¢

° Evaluate integral
y==xcos(z) —sin(z) + 1

° Solve for y

y=xcos(z)—sin(z) +

67



Maple trace

“Methods for first order ODEs:
‘——— Trying classification methods ---

‘trying a quadrature
‘<— quadrature successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

Ldsolve(diff(y(x),x) = -xxsin(x),y(x), singsol=all)

y(x) = —sin (z) + cos (z) x + ¢;

v/ Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 16

LDSolve[y'[x] == -x*Sin[x],y[x],x,IncludeSingularSolutions -> True]

y(x) = —sin(x) + zcos(z) + 1
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1.8 problem 3(c)

1.8.1 Solving as quadratureode . . . . . . ... ... ... ... ... 6]
1.8.2 Maple step by step solution . . . . . ... ... ... ... ... 701

Internal problem ID [876]
Internal file name [OUTPUT/876_Sunday_June_05_2022_01_53_00_AM_12724638/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 1, Introduction. Section 1.2 Page 14

Problem number: 3(c).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

Yy =zln(z)

1.8.1 Solving as quadrature ode

Integrating both sides gives

y= /zln(m) dz

D) 4

Summary
The solution(s) found are the following

In(z)z? 2
f- LA A )
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Figure 20: Slope field plot

Verification of solutions

_In(z)z® a? te
T2 4

Verified OK.

1.8.2 Maple step by step solution

Let’s solve
Y =zln(x)
° Highest derivative means the order of the ODE is 1

/

Yy

° Integrate both sides with respect to x
[ydx = [zln(z)dz+ ¢

° Evaluate integral
y="20 2y

° Solve for y
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__ In(z)2? 2

Y= —77—‘—'%[‘F01

Maple trace

“Methods for first order ODEs:

‘——- Trying classification methods ---
‘trying a quadrature

‘<— quadrature successful

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

Ldsolve(diff(y(x),x) = x*1n(x),y(x), singsol=all)

In(z)z®> 2°
y(z) = % 4 +ca
v/ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 24

tDSolve[y'[x] == x*Log[x],y[x],x,IncludeSingularSolutions -> True]

x2

1
1 + §m2 log(z) + &1

y(z) = —
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1.9 problem 4(a)

1.9.1 Existence and uniqueness analysis. . . . . .. ... ... .... [72]
1.9.2 Solving as quadratureode . . . . . .. ... ... ... ... 73]
1.9.3 Maple step by step solution . . . . . ... ... ... .. ... . [74l

Internal problem ID [877]
Internal file name [OUTPUT/877_Sunday_June_05_2022_01_53_01_AM_12765659/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 1, Introduction. Section 1.2 Page 14

Problem number: 4(a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

With initial conditions

1.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(@)y = q(z)

Where here
p(z) =0
q(z) = —z€”
Hence the ode is
y =—ze”
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The domain of p(z) = 0 is
{—00 <z < o0}

And the point zo = 0 is inside this domain. The domain of g(z) = —z e” is

{—00 <z < o0}

And the point zy = 0 is also inside this domain. Hence solution exists and is unique.

1.9.2 Solving as quadrature ode

y:/—xe’” dx

=—(z—-1)e+¢

Integrating both sides gives

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1:1+Cl

C1 = 0
Substituting ¢; found above in the general solution gives
y=—-xe*+¢e°

Summary
The solution(s) found are the following

y=—ze’ +e” (1)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y=—xe°+¢e"
Verified OK.

1.9.3 Maple step by step solution

Let’s solve

[y = —ze”,y(0) =1]
° Highest derivative means the order of the ODE is 1

/

Yy

° Integrate both sides with respect to x
[ydz = [ —ze"dz +

° Evaluate integral

y=—(x—-1)e"+¢

° Solve for y
y=-—-ze"+e" 4+

o Use initial condition y(0) =1
1=14¢
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° Solve for ¢;

cg=0

° Substitute c; = 0 into general solution and simplify
y=e’(1-2z)

° Solution to the IVP
y=e"(1—x)

Maple trace

“Methods for first order ODEs:

‘——- Trying classification methods ---

‘trying a quadrature ‘
‘<— quadrature successful’

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 11

Ldsolve([diff(y(x),x) = —x*exp(x),y(0) = 1],y(x), singsol=all) J

y(a) = —(z - 1)¢*

v/ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 13

LDSolve[{y'[x] == -x*Exp[x],y[0]==1},y[x],x,IncludeSingularSolutions -> True] J

y(@) = —e*(z - 1)
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1.10 problem 4(b)

1.10.1 Existence and uniqueness analysis. . . . . . .. ... .. ....
1.10.2 Solving as quadratureode . . . . . . ... ... ... .. ....
1.10.3 Maple step by step solution . . . . . ... .. ... ... ...

Internal problem ID [878§]

Internal file name [OUTPUT/878_Sunday_June_05_2022_01_53_02_AM_44411204/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.

Brooks/Cole 2001

Section: Chapter 1, Introduction. Section 1.2 Page 14
Problem number: 4(b).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

y' = zsin (z*)

(%)

1.10.1 Existence and uniqueness analysis

With initial conditions

This is a linear ODE. In canonical form it is written as

Y +p(z)y = q(z)
Where here

Hence the ode is
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The domain of p(z) = 0 is
{—00 <z < o0}

V2T

And the point zo = *5¥* is inside this domain. The domain of ¢(z) = zsin (¢?) is

{—o0 <z < o0}

And the point o = ﬁT‘/’? is also inside this domain. Hence solution exists and is unique.

1.10.2 Solving as quadrature ode

Integrating both sides gives

Y= /msin (332) dx

2
COS \T

Initial conditions are used to solve for c¢;. Substituting z = ﬂT‘/E and y = 1 in the

above solution gives an equation to solve for the constant of integration.

1=Cl

Cl=].

Substituting c¢; found above in the general solution gives

cos (z?)
=)
Yy 5 T
Summary
The solution(s) found are the following
2
y = _COSQﬂ +1 1)
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(a) Solution plot (b) Slope field plot
Verification of solutions
cos (z?)
=—+1
2
Verified OK.
1.10.3 Maple step by step solution
Let’s solve
Y = zsin (z?) ,y(—ﬁ;ﬁ) = 1]

° Highest derivative means the order of the ODE is 1

/

Y

° Integrate both sides with respect to x

[y'dz = [zsin(z?)dz +

° Evaluate integral
_ _cos(ar:2) s
Yy 2 1
° Solve for y
2 1
. Use initial condition y<ﬁ2ﬁ> =1
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1=Cl

° Solve for ¢;
=1

° Substitute c; = 1 into general solution and simplify
y=—20 1

° Solution to the IVP
_ _cos(z2) 1
Y — +

Maple trace

“Methods for first order ODEs:

‘——— Trying classification methods ---

‘trying a quadrature ‘
‘<- quadrature successful’

v Solution by Maple
Time used: 0.032 (sec). Leaf size: 12

Ldsolve([diff(y(x),x) = x*sin(x~2),y(sqrt(1/2*Pi)) = 1],y(x), singsol=all) J

v/ Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 15

LDSolve[{y'[x] == x*Sin[x“2],y[Sqrt[Pi/Q]]==1},y[x],x,IncludeSingularSolutiongJ—> Truel

y(x)ﬁl—&éﬁ)
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1.11 problem 4(c)

1.11.1 Existence and uniqueness analysis. . . . . . . . ... ... ...
1.11.2 Solving as quadratureode . . . . . . ... ... ... .. ....
1.11.3 Maple step by step solution . . . . . ... .. ... .. ... ..

Internal problem ID [879)

Internal file name [OUTPUT/879_Sunday_June_05_2022_01_53_03_AM_93000578/index . tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.

Brooks/Cole 2001

Section: Chapter 1, Introduction. Section 1.2 Page 14
Problem number: 4(c).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

With initial conditions

1.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as
Y +p(x)y = q(x)
Where here

p(z)=0
q(x) = tan (z)

Hence the ode is

y' = tan (x)
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The domain of p(z) = 0 is
{—00 <z < o0}

And the point 2y = 7 is inside this domain. The domain of ¢(z) = tan (x) is
1 1
{m < §7r +7_ Z50V §7r +m Z50 < m}

And the point zo = 7 is also inside this domain. Hence solution exists and is unique.

1.11.2 Solving as quadrature ode

Integrating both sides gives
y= / tan (z) dx
= —In(cos (z)) + a1

Initial conditions are used to solve for c;. Substituting z = 7 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

In (2
3= 2()+C1
Clz—¥+3

Substituting c¢; found above in the general solution gives

y = —In(cos(z)) — ln2(2) +3
Summary
The solution(s) found are the following
y = —1In(cos (z)) — 1n2(2) +3 (1)
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Soluti lot b) Sl field plot

Verification of solutions

W)

y = —In(cos(z)) — 5

Verified OK.

1.11.3 Maple step by step solution

Let’s solve

[y =tan(z),y(%) = 3]
° Highest derivative means the order of the ODE is 1

/

Yy

° Integrate both sides with respect to x
[y'dz = [tan(z)dz + ¢

° Evaluate integral

y=—1In(cos(z)) + 1
° Solve for y
y=—1In(cos(z)) + 1

e  Use initial condition y(%) =3
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3=—In (‘?) +c
° Solve for ¢;
()
cg=In(%)+3
° Substitute ¢; = In (‘/Ti) + 3 into general solution and simplify
y = —In (cos (z)) — 22 4 3
° Solution to the IVP
y = —In (cos (z)) — 22 4 3

Maple trace

“Methods for first order ODEs:

‘--- Trying classification methods ---

‘trying a quadrature ‘
‘<— quadrature successful

v Solution by Maple
Time used: 0.046 (sec). Leaf size: 15

-

tdsolve([diff(y(x),x) = tan(x),y(1/4%Pi) = 3],y(x), singsol=all)

e—

In (2

y(xz) = —In(cos (z)) + 3 — 5

v/ Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 18

LDSolve[{y'[x] == Tan[x],y[Pi/4]1==3},y[x],x,IncludeSingularSolutions -> Truel J

log(2)
2

y(z) = —log(cos(z)) + 3 —
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1.12 problem 5(a)

1.12.1 Existence and uniqueness analysis. . . . . . . . ... ... ...
1.12.2 Solving as linearode . . . . . .. . .. ... ... ... ..
1.12.3 Solving as first order ode lie symmetry lookup ode
1.12.4 Solvingasexactode . . ... ... ... .......
1.12.5 Maple step by step solution . . . . . .. ... .. ... .. ...

Internal problem ID [880)

90}

Internal file name [OUTPUT/880_Sunday_June_05_2022_01_53_05_AM_81107921/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.

Brooks/Cole 2001

Section: Chapter 1, Introduction. Section 1.2 Page 14
Problem number: 5(a).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear",
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

Y + tan (z) y = cos (z)

With initial conditions
T oY
[y(Z>'_ 8 ]

1.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as
Yy +p(z)y = q(z)

Where here

exactWithIntegrationFac-



Hence the ode is
Y + tan (z) y = cos (z)

The domain of p(z) = tan (z) is

{:c < %w+ w_Z50V %w +m7 Z50 < x}

And the point zy = 7 is inside this domain. The domain of g(z) = cos (z) is

{—00 <z < o0}

And the point zo = 7 is also inside this domain. Hence solution exists and is unique.

1.12.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor y is

b= ef tan(z)dz
1
~ cos ()

Which simplifies to
p = sec (z)

The ode becomes

di(sec () y) = (sec(z)) (cos (z))

d(sec(z)y) =dz

Integrating gives

sec(x)y = /dx

sec(x)y=z+c
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Dividing both sides by the integrating factor u = sec () results in
y =z cos (x) + ¢ cos (x)
which simplifies to

y =cos(x)(z+c1)

Initial conditions are used to solve for c;. Substituting z = § and y = % in the above
solution gives an equation to solve for the constant of integration.
\/§7r _ \/§7r + \/ﬁcl
8 8 2
C1 = 0
Substituting ¢; found above in the general solution gives
y = zcos (z)
Summary
The solution(s) found are the following
y =z cos (x) (1)
VI L7 777NV 1T 7NN\
1 ANV 77777\ V T T 7NN\
NV L7777 7NN 7=\
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— L5 TTAVNNSA7 7710V W NN\~
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T UAN~77 11T PV AVANN—7
-2 =050 05 1 152 25 3 35 -2 -1 0 1 2 3 4
X X
(a) Solution plot (b) Slope field plot

Verification of solutions

y = x cos (x)

Verified OK.
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1.12.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y' = cos(z) —tan(z)y

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - fz) - w2€y —wg€ — Wy = 0

(A)

The type of this ode is known. It is of type 1linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7

Table 20: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(z) 0 el fd=
separable ode Yy = f(z)g(y) % 0
quadrature ode y = f(x) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢/ = f (%) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | 3/ = Zé +g(x) F (%) z? Ty
first IDoider special | i = g(z) eh@)+by f(z) e_f”f:z# flz)e” fgbga)c)dz—h(w)
orm

polynomial type ode

/ — a1ztbhiyta
Yy az2z+bay+c2

a1baz—aobix—bico+bacy

a1b2y—a2b1 Yy—ai1c2—azCy

a1ba—asgby

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

¢= /(=Df (@)dzyn

Reduced Riccati

Y = fiz)y + folz) y?

e J frdz
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The above table shows that

{(z,y) =0
n(z,y) = cos () (A1)
The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
dr dy
&

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds 1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

n
1
_/cos(x)dy

_ Y
cos (z)

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating
E _ 5 + w(z,y)S, (2)
dR R, +w(z,y)R,
Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = cos (z) — tan (z)y

Evaluating all the partial derivatives gives

R,=1

R,=0

S = tan (z) sec (z) y
S, = sec (x)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

1 (2A)

1

gives

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

sec(x)y=z+ ¢
Which simplifies to
sec(x)y=z+c

Which gives

T+
sec ()
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

.. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ s _
2 =cos(z) —tan(z)y m=1

U R TR T A A o TR N A R R O R R L R s
L A TR T S A e TR B A A g N I R R L R s
R A TR TR B A ol T T A R R s LR
yEr=NV PPN ANy AAPAPPAAAANAAAAA AL
AN 0 IR IR I AN IR I Y s B s
RN P R AN ARSI ALNAAAASAAASS
VP ZsNAV L 27N P NV L o R R R o L R s
I N N e N N | R R R R R R
N ESNNNY S A NN R— APAPAPAAAANA A AAAAAAS
N TN S AL TN NN N S =T PRI PP AP AP AP L
SN Ny e AN SN LR R Gk T
PANNN= AN = A NN S =sec(z)y s (s s
NS BN TR B NS AAPAPAAAAANAAAATAAAAS
FAYNNSA P ENA/ VNN R R | VN s
PAVN=ZAP AN/ A=/t R R L R R R R
Py ANN=Z P N=/ PN N—=/ 1 APAPAPPAPAAAAAAA SRS S
BRI Ne R AAPAPAAAAANAAAAA AL
PAAYN=F T e/ PP VN 1Y N s L R s
Pybv—=ftlv~2tt N1 1 AAPAPAAPAANAAAAA AL
IRRR IR e A IR IR T T AR I AAPAPPAPAAAAAAS AL

Initial conditions are used to solve for c;. Substituting z = 7 and y = % in the above
solution gives an equation to solve for the constant of integration.

\/577_\/§7r+\/§cl
8 8 2

C1 = 0
Substituting ¢; found above in the general solution gives
y = zcos (z)

Summary
The solution(s) found are the following

y =z cos (x) (1)
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(b) Slope field plot

(a) Solution plot

Verification of solutions

x cos ()

y:

Verified OK.

1.12.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(z,y) + N(z,y) 57 =0

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. z gives

¢(z,y) =0

a
dz

Hence

B) shows that

Comparing (A,
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But since aa g = a a then for the above to be valid, we require that
yox

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
dy = (cos (z) — tan (z) y) dz
(—cos (z) + tan (z) y) dz +dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = —cos(z) +tan(z)y
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM 0
o a_y(_ cos (z) + tan (z) y)
= tan ()
And
8N
. (1)
= 0

Since %i; # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

oM ON
A=y (a—y‘%)
= 1((tan (z)) — (0))

= tan (z)
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

= el Ade
—e J tan(z) dz
The result of integrating gives

j1 = ¢~ In(cos(@)

= sec (z)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
= sec (z) (— cos (z) + tan (z) y)
= —1+ tan (x)sec(x)y
And

= sec (z) (1)
= sec (z)
Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is

_ _dy
M — =0
+ dz

(—1 + tan (z) sec (z) y) + (sec ()) j—i =0

The following equations are now set up to solve for the function ¢(z,y)

0p —
6 _~

Integrating (1) w.r.t. z gives

@dxz /de
or

%dx = /—1 + tan (z) sec (z) y dz

¢ = —z +sec(z)y+ f(y) (3)
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Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
oy 5 (z) + f'(y) (4)

But equation (2) says that g—i = sec (z). Therefore equation (4) becomes

sec (z) = sec (z) + f'(y) (5)
Solving equation (5) for f'(y) gives

f'y) =0
Therefore
fly) =a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
$p=—-c+sec(z)y+a

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢y constants into new constant c; gives the solution as

c1=—x+sec(z)y
The solution becomes
oz +c
 sec ()
Initial conditions are used to solve for c;. Substituting z = 7 and y = % in the above

solution gives an equation to solve for the constant of integration.

\/§7r_\/§7r+\/§cl
8 8 2

C1 = 0
Substituting ¢; found above in the general solution gives

y = x cos (z)
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Summary
The solution(s) found are the following

y = x cos (z)
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y(x) -1 YO =00 AN=7 777 11NN N NN
JIANN~777111V\\V\\~—~
— 157 TTAIVNSA77 77011 W AN~~~
o I TIVNN=Z 7 VN NN~
—2 FTTIVANN=77711 11V VNN~
TITVANN=777111 1V VWN\—=/
—25 TATVANN=7710111VV\V\\—~/
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X X

(a) Solution plot

Verification of solutions

y = zcos (z)
Verified OK.

1.12.5 Maple step by step solution

Let’s solve

y +tan (z)y = cos (z),y(%) = %]

(b) Slope field plot

1)

° Highest derivative means the order of the ODE is 1
Y

° Isolate the derivative
y' =cos(z) — tan (z)y

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y' + tan (z) y = cos (z)

° The ODE is linear; multiply by an integrating factor u(x)
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u(z) (y' + tan (z) y) = p(z) cos (z)

Assume the lhs of the ODE is the total derivative - (u(z) y)
u(z) (' + tan (z) y) = p'(z) y + p(z) y'

Isolate y'(x)

' (z) = p(z) tan (z)

Solve to find the integrating factor

/,L(JJ) = cosl(x)

Integrate both sides with respect to x

J (& u(@)y)) dz = [ p(z) cos (z) dz +
Evaluate the integral on the lhs

w@)y = [ p(z)cos (a) da + e
Solve for y

— [p@)cos(@)dater
y= (@)

Substitute u(x) 1

= Cos(z)
y=cos(z) ([ 1ldz +c)
Evaluate the integrals on the rhs
y =cos(x)(z+ c1)
Use initial condition y(F) = %

Ve _ V2 (F+e1)

8 2

Solve for ¢;

c=0

Substitute c; = 0 into general solution and simplify
y = z cos (z)

Solution to the IVP

y = x cos (z)
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 8

Ldsolve([diff(y(x),x) = cos(x)-y(x)*tan(x),y(1/4*Pi) = 1/4*Pi/sqrt(2)],y(x), gﬁngsol=all)

y(x) = cos (z) x

v/ Solution by Mathematica
Time used: 0.07 (sec). Leaf size: 9

LDSolve[{y'[x] ==Cos [x] -y [x]*Tan[x] ,y[Pi/4]==Pi/(4%Sqrt[2])},y[x],x,IncludeSingularSolutions

y(x) — z cos(z)
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1.13

problem 5(b)

1.13.1 Existence and uniqueness analysis . . . . . .. ... ... .... O8]
1.13.2 Solving as linearode . . . . . . . . .. ... ... ... ... 99]
1.13.3 Solving as first order ode lie symmetry lookup ode . . ... .. 101l
1.13.4 Solvingasexactode . . ... ... ... ... ... ..... 1051
1.13.5 Maple step by step solution . . . . . ... .. ... ... ... 110

Internal problem ID [881]
Internal file name [OUTPUT/881_Sunday_June_05_2022_01_53_06_AM_62361073/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 1, Introduction. Section 1.2 Page 14

Problem number: 5(b).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

With initial conditions

1.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(x)y = q(z)

Where here
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Hence the ode is

2 z? 42
y+ 2=
X xXr

2

The domain of p(z) = £ is

{r<0Vvo0<uz}

And the point zo = 1 is inside this domain. The domain of ¢(z) = % is
{r<0VvO0<uz}

And the point o = 1 is also inside this domain. Hence solution exists and is unique.

1.13.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor y is

M:ef%dm

The ode becomes

Integrating gives

242
yw2=/x+ dx
x
2

yz? = %+21n(x)+cl

Dividing both sides by the integrating factor u = z? results in

w;+21n(x)+cl

y= =
T2 T2
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which simplifies to

’”—22+21n(x)+cl
72

Initial conditions are used to solve for c¢;. Substituting x = 1 and y = % in the above

solution gives an equation to solve for the constant of integration.

3_1,
2 214

01=1
Substituting ¢; found above in the general solution gives

_ 2’ +4In(z)+2
N 222

Summary
The solution(s) found are the following

72 +41n (x) + 2
N 222
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(a) Solution plot

Verification of solutions

Verified OK.
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(b) Slope field plot
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1.13.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

,_ 2y’ —2® -2

x3
!

Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + W(ﬂy - 51:)

— Wy —wf —wyn =0

(A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,

Table 23: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode vy = f()y(z) + g(z) 0 el fd=
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode Yy =9(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | ¥’ = (a + bz + cy)% 1 —g
Class C

homogeneous class D | y = £ + g(z) F(¥) z? zy
First order special | ¥ = g(z)e"®+% 4 f(z) E_IW;E# f@)e” f;g?dz_h(z)
form ID 1

polynomial type ode

/ _ a1zthiyta
Yy a2z+b2y—+ca

ai1boz—agbiz—bica+bacy

a1bay—agbiy—aica—ascs

a1ba—aszb;

a1bs—aszb;

Bernoulli ode

y = f(x)y+g(z)y"

e (n=Df(@)dryn

Reduced Riccati

Y = fi(z)y + folz) y?

e~ J frdz
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The above table shows that

£(z,y) =0
n(z,y) = % (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _

F=y =48 1)

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z

n

1

S is found from

2

Which results in
S =yux?

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ S;+w(z,y)Sy @)
dR R, +uw(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2yz? — 2% —2

U)(I,y) = - 3
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Evaluating all the partial derivatives gives

R, =1
R,=0
Sy = 2yzx
S, = z?

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ﬁ_w2+2
dR =z

(24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds _R*+2
dR~ R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

R2
S(R)=?+2111(R)+01 (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

2

T’y = %+2ln(x)—|—cl

Which simplifies to

3,/.2

iy = ?+21n(x)—|—cl

Which gives

22 +41n () + 2¢;
T
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

P N N N N N NN NN NS
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ored
S

in the above

3
2

Initial conditions are used to solve for c¢;. Substituting x = 1 and y

solution gives an equation to solve for the constant of integration.

Substituting ¢; found above in the general solution gives

2 +41n(z) + 2
222

The solution(s) found are the following

Summary

(1)

z? +41n(z) + 2
222

y:
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1.27 7SN N N NN NN
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P2 S S S SN
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y(x) y(x) 117 7 e
0.6 0.6 (1] /77— s
Iy srssenns
1 4 TS m
o4 04 11177777 7rrrrsre—m—
0.2 11’///////////////
2] : (1117777777
1111777777777,
o 0 1111171777777 77777
111111 7777777,7,777
05 1 15 2 25 3 35 4 1 2 3 4
X X
(a) Solution plot (b) Slope field plot
Verification of solutions
2 +4In(x)+2
¥y= 212
Verified OK.
1.13.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
dy

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
E;¢@%y)_'0
Hence 06 06 d
Yy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
0p
P M
0p
3y N
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But since 22 _ ¢

Bay = Byds then for the above to be valid, we require that

oM _ ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
(96;: g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

_2 2 2 2
dy:=< yr et )dx
x

—2yz?+ 1242
_ >

)m+@=o (2A)

Comparing (1A) and (2A) shows that

-2y’ 4+ 2% +2

M(z,y) = 3

N(z,y)=1
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied
oM  ON
oy Oz
Using result found above gives

oM 0 ([ —2yx*+a2*+2
e
2
z

3

And
oy _ 2,
or Oz
=0
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

4] (aM BN)

“ N\dy Oz
((2)-0)
_2

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor yu is

p=e JAdz
—e J %dx
The result of integrating gives
= 62 In(z)
= :L‘z

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

_ 2( —2yx2+a:2+2)
=zl —
x3

(-1 +2y) —2

And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N@=0
dzx
7*(-1+2y) — 2 2y 4y
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The following equations are now set up to solve for the function ¢(z,y)

0p —
—gx =M (1)
¢ ~

Integrating (1) w.r.t. z gives

%dx = /de
ox

2(_ —
%dwz/x( 1+2) de

oz T

z?(—1+ 2y)

S 20 (@) + £() 6

¢ =
Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

a9

o=+ W) @

But equation (2) says that 22 = z2. Therefore equation (4) becomes
q dy

2® =2 + f'(y) (5)

Solving equation (5) for f’(y) gives
fly) =0
Therefore
fly)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢

z2(—1+ 2y)

5 —2In(z) + ¢

o=

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢y constants into new constant ¢; gives the solution as

2(_
clzw_ﬂn(w)
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The solution becomes
2 +4In(z) +2¢
o 212

Initial conditions are used to solve for c¢;. Substituting x =1 and y = % in the above
solution gives an equation to solve for the constant of integration.

3_1,
2 974

C1=1
Substituting c¢; found above in the general solution gives

_ 2’ +4In(z)+2

212

Summary
The solution(s) found are the following

72+ 41n (z) + 2
- 2$2 (D

0.8

0.6 0.6

0.8

=

0.4

0.4

0.2- 0.21

(a) Solution plot

Verification of solutions

_2?4+4In(z)+2

g
TS
ST
777777
J77777777

—_———————— e e e e e e e T

7
7
7
/

212

Verified OK.
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(b) Slope field plot



1.13.5 Maple step by step solution

Let’s solve
972— QJZ
y — T = 0,y(1) = §

° Highest derivative means the order of the ODE is 1

/

Y
° Isolate the derivative
2
y =-2+52

. Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

/2y _ z242
y+o="

° The ODE is linear; multiply by an integrating factor u(x)
x :E2
uo) (v +2) = 2
o Assume the lhs of the ODE is the total derivative - (u(z)y)

w(@) (¥ +2) =y (z)y + plx) ¥’
. Isolate 1/ ()

2p()

Wiz) ==
° Solve to find the integrating factor

p(z) = 2

° Integrate both sides with respect to x

[ (E(u(z)y)) doe = [ W(kc +c
° Evaluate the integral on the lhs

x3
° Solve for y

2
u(w)(: +2) doter

J
Y= u(@)

e  Substitute p(z) = 2

J #dw+cl

Y= 22

° Evaluate the integrals on the rhs

%—1—2 In(z)+c1
Yy=——p
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e  Use initial condition y(1) = 2

1-1+a
° Solve for ¢;

cp=1
° Substitute c; = 1 into general solution and simplify

2
_ S +2In(z)+1
=2t

° Solution to the IVP

_ %+2ln(m)+1
Yy=-——"7m=

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 19

Ldsolve([diff(y(x),x) = (x72-2%x"2%y(x)+2)/x"3,y(1) = 3/2],y(x), singsol=all) J

J() = 2 4 2In(z) + 1

xr2

v/ Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 19

LDSolve [{y' [x] ==(x"2-2%x"2*y[x]+2)/x73,y[1]1==3/2},y[x],x, IncludeSingularSolutJﬁons -> Truel

1 2log(z) 1
y(x) — = + Q2 + 2
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1.14 problem 5(c)

1.14.1 Existence and uniqueness analysis. . . . . . . .. ... .. ... 112
1.14.2 Solving as separableode . . . . . . ... ... ... ... ..., 113l
1.14.3 Solving as first order ode lie symmetry lookup ode . . . .. .. 1T5]
1.14.4 Solvingasexactode . . ... ... ... ... ... ..... 119l
1.14.5 Solving asriccatiode . . . . . . . .. .. ... 123
1.14.6 Maple step by step solution . . . . . ... ... ... ...... 126

Internal problem ID [882]
Internal file name [OUTPUT/882_Sunday_June_05_2022_01_53_07_AM_16214606/index. tex|

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 1, Introduction. Section 1.2 Page 14

Problem number: 5(c).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type
[_separable]

With initial conditions

1.14.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

yl = f(:v,y)
=z(y*+1)

The = domain of f(z,y) when y =0 is

{—c0 <z < o0}
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And the point zo = 0 is inside this domain. The y domain of f(z,y) when x =0 is

{—o0 <y < o0}

And the point yy = 0 is inside this domain. Now we will look at the continuity of

0 0
o = 5+ )
= 2yzx

The z domain of % when y =0 is
{—00 <z < o0}

And the point zy = 0 is inside this domain. The y domain of % when z = 0 is
{—o0 <y < 0}

And the point yy = 0 is inside this domain. Therefore solution exists and is unique.

1.14.2 Solving as separable ode
In canonical form the ODE is
y = F(z,y)

= f(z)g(y)
= x(y2 + 1)

Where f(z) = z and g(y) = y* + 1. Integrating both sides gives

1
y2+1dy=zda:
1
/y2+1dy=/mdx
72

arctan (y) = 5 +c

2
y = tan (% +cl>
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(1)

s~~~ NN NN

0 = tan (¢1)
C = 0

Initial conditions are used to solve for c¢;. Substituting = 0 and y = 0 in the above

solution gives an equation to solve for the constant of integration.
Substituting c¢; found above in the general solution gives

The solution(s) found are the following

Summary

e e o
e
) <+ & S ) <+

|
—_
=
N
-~
" < e IS — =) — ) o
| | |
—_
=
=
-~

(b) Slope field plot
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(a) Solution plot

Verification of solutions

Verified OK.



1.14.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y =z(y’ +1)

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - fz) - w2€y —wg€ — Wy = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 26: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(z) 0 el fd=
separable ode Yy = f(z)g(y) % 0
quadrature ode y = f(x) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢/ = f (%) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | 3/ = Zé +g(x) F (%) z? Ty
first IDoider special | i = g(z) eh@)+by f(z) e_f”f:z# flz)e” fgbga)c)dz—h(w)
orm

polynomial type ode

/ — a1ztbhiyta
Yy az2z+bay+c2

a1baz—aobix—bico+bacy

a1b2y—a2b1 Yy—ai1c2—azCy

a1ba—asgby

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

¢= /(=Df (@)dzyn

Reduced Riccati

Y = fiz)y + folz) y?

e J frdz
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The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _ dy _

F=y =48 1)

The above comes from the requirements that (E a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

S is found from

o)
|
.
8

|
——

8= = | =
ISH
8

Which results in

.’152

S=%

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) =z(y* +1)
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Evaluating all the partial derivatives gives

R, =0
R,=1
Sy =1
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1

= - 2A
dR y*+1 (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s 1
dR R2+1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = arctan (R) + ¢; (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

72
5 = arctan (y) + ¢;

Which simplifies to

fL‘2
5 = arctan (y) +a

2
y = —tan (—% +cl)

Which gives
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical
Original ode in z,y coordinates coordinates

transformation

(R,

ODE in canonical coordinates

5)

S e e e

—>—>

R

—>—>

—>—>

R

—>—>

b G o o amabraar
e S N T T
——s—s——a—saa N [\ A

)
———b—b—b—b—b—b A ~a| A A~ —B—b—>—>—>—>

=

bbb bbb B A A A b —b—B—B—B—>—b—>

»n =
|
t\>|amQe

D e . e e P
B e P e S
ettt i e GGG
B e e P et s

4—4—47676—6—«4—4—&4/4—«4—6—6—674747%
Gttt s |a et —G—G—a—
Gttt a—ap o L a— e

RPN [P » S
A e P AP e e e e
——s—s—p—p—p—b—aa [\ s>
———b—b—b—p—b—n~aa A ~a—b—b—B—b—>—B—>—b
bbb —al bbb —b—b—b—B—b——b
——b—b bbb —b—bIxA b —b—b—b—>—>—>——>
bbbt bbb —B—b—b—B bbb
B I —

e A

R

—>—>

—>—>

—>—>

Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 0 in the above

solution gives an equation to solve for the constant of integration.

0= —tan(c)

01:0

Substituting ¢; found above in the general solution gives

= tan s
v= 2
Summary

The solution(s) found are the following

x2
= tan [ —
y=tan (%)
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B N N LY

—— 7 ] ]

) <+ &

(b) Slope field plot

(a) Solution plot

Verification of solutions

Verified OK.

1.14.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(z,y)+ N(@,y) 2 = 0

(<D}

< [aa)
+~ —
wn

<D}

=

2

B

wn

®

<

+~

=

&

+~

wn

=

)

5]

2

Q

D)

)

= (@)
B ﬂ [
© >
I = >
—~ $’ nd_n.O
ys ~—~—
g8 . % +
(\.wd_dm <8
o 80 S
o 8

o .

PR

g =

rmw

5 o

® ©

2 g

AR

SR

o 2

er

< 5

e

e 2

Uk

2 & o
s = g
e1% 5]
Wo =

Comparing (A,B) shows that
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But since % = % then for the above to be valid, we require that
Y yox
oM _ ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
(96;: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

—

1) dy = (z)dz

2

<
=+

(—z)dz +( —

<
+
—

(
(

Comparing (1A) and (2A) shows that

)dyzO (2A)

M(z,y) = —z
1
N = —
(.'E, y) y2 + 1
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0

And
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Since %i; = ‘%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

96
g—x—M (1)
¢ _

=N @)

Integrating (1) w.r.t. = gives

%dx:/de
or

op .
%dx—/—xdx

2

6= —5 + 1) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢

Loo+yf 4

=0+ (@)
But equation (2) says that g—‘z = y21+1. Therefore equation (4) becomes

=041 )

P2+1 Y
Solving equation (5) for f’(y) gives
1
/ —_—

Integrating the above w.r.t y gives

/f’(y)dy=/(y2il> dy

f(y) = arctan (y) + 1
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
72
¢ = -5 7T arctan (y) + ¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

.'L'2
a=-= + arctan (y)

2
y = tan (% +cl>

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

The solution becomes

0 = tan (¢)

01=0

Substituting c¢; found above in the general solution gives

= tan m—Q
v= 2
Summary

The solution(s) found are the following

—c o
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S~ NN NN

) <+ &

(b) Slope field plot

(a) Solution plot

Verification of solutions

Verified OK.

1.14.5 Solving as riccati ode

In canonical form the ODE is

This is a Riccati ODE. Comparing the ODE to solve

xy2+w

y/

With Riccati ODE standard form

y' = fo(z) + fi(z)y + fa(x)y?

=z. Let

0 and fo(x)

)

Shows that fo(x) =z, fi(z

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(z) which is

fu"(z) = (fo + ffo) W' (@) + f3 fou(z) = 0 (2)

But
fi=1
fifa=0
f22f0 =z’

Substituting the above terms back in equation (2) gives

zu” () — v/ (z) + 2Pu(z) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

z? z?
u(z) = ¢ sin (5) + ¢y cos (?)

The above shows that

o) =5 () v ()

Using the above in (1) gives the solution

2 . 2
€1 COS (m ) — c9 8in (%)
Yy=-—- 2

2
¢1 sin (%) + cocos (%)

Dividing both numerator and denominator by c; gives, after renaming the constant
2 = c3 the following solution

Initial conditions are used to solve for cs. Substituting = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

O=—63
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(1)

Sy~ NN

6320

Substituting cs found above in the general solution gives

The solution(s) found are the following

Summary

(b) Slope field plot
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(a) Solution plot

Verification of solutions

Verified OK.



1.14.6 Maple step by step solution

Let’s solve

[y’ —z(1+y*) = 0,94(0) = 0]
° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
l-lziy2 =
. Integrate both sides with respect to x

f#dzzfxdx+cl

° Evaluate integral
arctan (y) = % +c
° Solve for y

Yy = tan <§ +cl>

o Use initial condition y(0) =0

0 =tan(¢;)
° Solve for ¢;
=0
° Substitute c; = 0 into general solution and simplify

2
y = tan (%)

° Solution to the IVP

$2
y = tan <7>
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v/ Solution by Maple
Time used: 0.063 (sec). Leaf size: 10

tdsolve([diff(y(x),x) = xx(1+y(x)~2),y(0) = 0],y(x), singsol=all) J

72
y(z) = tan <E>
v/ Solution by Mathematica
Time used: 0.161 (sec). Leaf size: 13

LDSolve[{y'[x] ==x*(1+y [x]~2) ,y[0]==0},y[x] ,x,IncludeSingularSolutions -> Trug?

y(x) — tan <%2>
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1.15 problem 5(d)

1.15.1 Existence and uniqueness analysis . . . . . ... ... .. .... 129
1.15.2 Solving as separableode . . . . . . .. ... ... ... ..... 129
1.15.3 Solving as first order ode lie symmetry lookup ode . . .. . .. 131
1.15.4 Solving as bernoulliode . . ... ... ... .. ......... 135
1.15.5 Solving asexactode . . ... . ... ... ... ... . ..., . 139
1.15.6 Solving asriccatiode. . . . . . . ... ... ... ... ... 142]
1.15.7 Maple step by step solution . . . . .. ... ... ... . .... 145]

Internal problem ID [883]
Internal file name [OUTPUT/883_Sunday_June_05_2022_01_53_09_AM_92903899/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 1, Introduction. Section 1.2 Page 14

Problem number: 5(d).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli",
"separable", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

yd+y) _,

With initial conditions
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1.15.1 Existence and uniqueness analysis
This is non linear first order ODE. In canonical form it is written as

v = f(z,y)

y(y+1)

The = domain of f(z,y) when y = —2 is

{r<0Vvo0<az}

And the point zo = 1 is inside this domain. The y domain of f(z,y) when x =1 is

{—o0 <y < o0}

And the point yy = —2 is inside this domain. Now we will look at the continuity of
of _ 9 ( yly+1)
Jdy Oy x
_y+l_y
N x x
The z domain of g—f when y = —2 is
Y

{r<0VvO0<uz}
And the point zy = 1 is inside this domain. The y domain of g—i when z =1 is
{—o00 <y < oo}
And the point yy = —2 is inside this domain. Therefore solution exists and is unique.

1.15.2 Solving as separable ode

In canonical form the ODE is

Yy = F(z,y)
= f(z)g(y)

y(y+1)
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Where f(z) = —1 and g(y) = y(y + 1). Integrating both sides gives

1 1
— _dy=-—-dz
y+1) " T

1 1
[/
In(y) —ln(y+1)=—In(z) +¢

Raising both side to exponential gives

eln(@®)—In(y+1) _ o—In(z)+ec1

Which simplifies to

Yy _a
y+1 =z
Initial conditions are used to solve for c;. Substituting z = 1 and y = —2 in the above

solution gives an equation to solve for the constant of integration.

Ca
-1 + Co

—9 =

02=2

Substituting c, found above in the general solution gives

2
V= 24z
Summary
The solution(s) found are the following
2
= 1
y 24z (1)
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———

(b) Slope field plot

(a) Solution plot

Verification of solutions

Verified OK.

1.15.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

The condition of Lie symmetry is the linearized PDE given by

0

Nz + W(ny - &) — Wny — wz€ —wyn

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £,
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Table 29: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

Sz/%dm
=/_Lxdx

S=—In(x)

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

@ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

yly+1
wla,y) =~
x
Evaluating all the partial derivatives gives
R,=0
R, =1
1
Sp = ——
x
Sy, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates
ds 1
-~ = 2A
dR y(y+1) (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s 1
dR~ R(R+1)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R)=In(R)—In(R+1)+ ¢

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

—In(z) =
Which simplifies to

—In(z) =
Which gives

Y

In(y) —In(l4+y)+c

In(y) —In(1+y)+c

1
—1l+zen

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical . . .

.. ) ) : ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R,S)

transformation ’
dy _ _ y(y+1) as _ 1
dr — x dR = R(R+1)
A A A O O B T T T T [ B e et g A
N0 A A A O L T A e A f L A ——
A A A A . I T T e AV
perbbbbbbR ey | = B | aaaaaaa:
o> > > P
R R R RS R R N R e SSRGS
AZZZAEEE ALY VAN ettt N eeaaaae
AAAZZZ2 P VN NN NN N e e IR ] U atatnen s
wrrm w2 2 AN N e e | e A I
e A N R= Y _...7,4,»/‘/; i t ; Sy
B e O T R e e S o>
ﬂﬂﬂﬂﬂﬂﬂﬂ —-\4| s> [ s> o v 7 f ; \] f/‘?/v/r o>
444444 B e A S ln (x) ——> > v 7] ; \, e
B O /‘_%Ax YO N N e e aa B s ;_%Af G5 S
/v/v////fff L\:\\\\\\\\ »»»»» /v/f; f//v 4444444
AZZZZFAEEHEEVVNNNNNNY ] e Cl A R Uttt
AR R I R R RN e R
prerrrrredibbi vy L e L
AR SR IR R R R N e e P s
AR EEE R RIS SR EREEEE RN
Initial conditions are used to solve for c;. Substituting z = 1 and y = —2 in the above
solution gives an equation to solve for the constant of integration.
1
)
—1+4ex
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g =—1In(2)

Substituting c¢; found above in the general solution gives

The solution(s) found are the following

Summary

(1)

~—————

——————

AN N~ ————

AN NS ————

&~ < ©

(b) Slope field plot

(a) Solution plot

1.15.4 Solving as bernoulli ode

In canonical form, the ODE is

Verification of solutions

Verified OK.

F(z,y)

y =

y(y +1)
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This is a Bernoulli ODE. 1 1

Yy =——y——y (1)
T T
The standard Bernoulli ODE has the form
y = folz)y + fr(2)y" (2)

The first step is to divide the above equation by y™ which gives

y n

g = @y "+ (@) (3)
The next step is use the substitution w = y'~" in equation (3) which generates a new
ODE in w(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

fo(z) = —i

1

fi(z) = 2
n=2

Dividing both sides of ODE (1) by y™ = y? gives
1 1 1

!
- _ = 4
Vs o o (4)
Let
w:yl—n

1
= - 5
y (5)

Taking derivative of equation (5) w.r.t  gives

1
w' = —Ey' (6)

Substituting equations (5) and (6) into equation (4) gives

=24 (")
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The above now is a linear ODE in w(z) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w'(z) + p(z)w(z) = q(z)

Where here
1
p(z) = Tz
1
q(z) = z
Hence the ode is
) w(z) 1
w'(z) e
The integrating factor u is
b= ef—;dx
1
oz

The ode becomes

1

d(2) =5 do

x x

Integrating gives

w 1

~— | =4

x / x2 o

w 1

x x

Dividing both sides by the integrating factor u = % results in

w(z) =czx—1
Replacing w in the above by é using equation (5) gives the final solution.

—=cz-—-1
Y
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Or

1
cr—1

y:

Initial conditions are used to solve for ¢;. Substituting x = 1 and y = —2 in the above

solution gives an equation to solve for the constant of integration.
Substituting ¢; found above in the general solution gives

The solution(s) found are the following

Summary

1)

——————

————————

~—————

——————

(b) Slope field plot

(a) Solution plot

Verification of solutions

Verified OK.

138



1.15.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%QS("E, y) =0

Hence 96 0d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

0p
or
0¢

3_3/_

8%¢ _ 8%¢
dz0y ~ OyOx

But since then for the above to be valid, we require that

OM  ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = aa: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
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Comparing (1A) and (2A) shows that

M("I"ay) z_%
N _ 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM  ON
oy Oz
Using result found above gives
oM _ 9 ( 1
oy Oy\ =z
=0
And
oN_o( 1
or Oz \ y(y+1)
=0
Since %—A; = ‘:’9%{, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
09
L =M 1
5 (1)
09
— =N 2
o ©)

Integrating (1) w.r.t. z gives

op .
£dx—/de
) 1
¢ =—In(z)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ 1'(y) (4)
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But equation (2) says that g—‘z = —m. Therefore equation (4) becomes
L =04 ) )
y(y+1)
Solving equation (5) for f'(y) gives
1
flly)=-
W=+

Integrating the above w.r.t y gives

[rodw=[ (-5 5)w

f@)=-In(y)+n(y+1)+a

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

dp=—In(z)—In(y)+In(y+1)+ac

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

cc=—In(z)—In(y) +In(y+1)

The solution becomes

. 1
L + z e
Initial conditions are used to solve for c;. Substituting z = 1 and y = —2 in the above

solution gives an equation to solve for the constant of integration.

1
Q=
—1+4ex
C1 = —111(2)
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Substituting c¢; found above in the general solution gives

The solution(s) found are the following

Summary

(1)

——————

————————

~—————

——————

(b) Slope field plot

Solution plot

(a)

1.15.6 Solving as riccati ode
In canonical form the ODE is

Verification of solutions

Verified OK.

F(z,y)

y =

y(y +1)

This is a Riccati ODE. Comparing the ODE to solve
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With Riccati ODE standard form

Y = fo(z) + fi(z)y + fo(z)y®

Shows that fo(z) =0, fi(z) = —1 and fo(z) = —1. Let

y =
fou
_ul

= (1)

8|

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou" () = (fy + fufa) v/ (z) + f3 fou(z) =0 (2)
But
, 1
f2 = ﬁ
1
fifa= =
f3fo=0

Substituting the above terms back in equation (2) gives

_u'(z)  2u(z)

=0

Solving the above ODE (this ode solved using Maple, not this program), gives

— G
u(z) =c1 + .

The above shows that

/ _ G
u'(z) T2
Using the above in (1) gives the solution
SEEICED)

Dividing both numerator and denominator by c; gives, after renaming the constant

2 = c3 the following solution
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Initial conditions are used to solve for c3. Substituting z = 1 and y = —2 in the above
solution gives an equation to solve for the constant of integration.
Substituting c3 found above in the general solution gives

The solution(s) found are the following

Summary

(1)

———— 7

~—————

——————

NN\

AN N~ ————

AN NS~ ————

(b) Slope field plot

(a) Solution plot

Verification of solutions

Verified OK.

144



1.15.7 Maple step by step solution

Let’s solve
y + U = (1) = —2]

° Highest derivative means the order of the ODE is 1

/

Y

° Separate variables

Yy 1
y(1+y) z

° Integrate both sides with respect to x

fy(ly—;y)dx=f—%dz+cl

° Evaluate integral
In(y) —ln(l4+y)=—In(x)+c

° Solve for y

— et
Y= "1

° Use initial condition y(1) = —2

ERR—
° Solve for ¢;
¢ =1n(2)
. Substitute ¢; = In (2) into general solution and simplify
y= —22+9:

. Solution to the IVP

_ _ 2
Y= 5

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful’
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v/ Solution by Maple
Time used: 0.063 (sec). Leaf size: 11

Ldsolve([diff(y(x),)c) = (- y@)*(yx)+1)) /x,y(1) = -2],y(x), singsol=all) J

v/ Solution by Mathematica
Time used: 0.224 (sec). Leaf size: 12

LDSolve [{y' [x] ==(- yxI*(y[x]1+1))/x,y[1]1==-2},y[x] ,x,IncludeSingularSolutionsJ -> True]

2
r—2

y(z) —
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1.16 problem 8(a)
1.16.1 Solving as quadratureode . . . . . . ... ... ... ... ... (147
1.16.2 Maple step by step solution . . . . .. ... .. ... .. .... 148

Internal problem ID [884]
Internal file name [OUTPUT/884_Sunday_June_05_2022_01_53_10_AM_42109854/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 1, Introduction. Section 1.2 Page 14

Problem number: 8(a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

’ a=1
y—ay = =0

1.16.1 Solving as quadrature ode

/y_adyz/dx
a

yy <« =zx+c

Integrating both sides gives

Summary
The solution(s) found are the following

a—1

yy e =z+a (1)

Verification of solutions

Yy ¢« =r+C

Verified OK.
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1.16.2 Maple step by step solution

Let’s solve
y —ay*s =0
. Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
i{1 =a
y a
° Integrate both sides with respect to x
[ Lrde = [adz + ¢
y a
° Evaluate integral
_ a;l +1
—Tl-l-l = ar + C1
° Solve for y
y = eln(”jcl)a

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bermoulli successful’

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 9

Ldsolve(diff(y(x),x) = axy(x)~( (a-1)/a),y(x), singsol=all)

y(@) = (e +2)"
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v/ Solution by Mathematica
Time used: 0.843 (sec). Leaf size: 28

-

kDSolve [y' [x] ==axyl[x]~( (a-1)/a),y[x],x,IncludeSingularSolutions -> Truel

—

y(z) — <x+ %) ¢

y(z) = 0

149



1.17 problem 9

1.17.1 Existence and uniqueness analysis. . . . . .. ... ... .... 1501
1.17.2 Solving as quadratureode . . . . . . .. ... ... ... .... 151
1.17.3 Maple step by step solution . . . . . ... .. .. ... ... .. 153]

Internal problem ID [885]
Internal file name [OUTPUT/885_Sunday_June_05_2022_01_53_12_AM_32529587/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 1, Introduction. Section 1.2 Page 14

Problem number: 9.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

With initial conditions

1.17.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

Y = f(z,y)
=yl +1

The y domain of f(z,y) when z =0 is

{—o0 <y < oo}

And the point yo = 0 is inside this domain. Now we will look at the continuity of

of 8
P 8_y(|y| +1)
=abs (1,y)
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The y domain of g—z when z = 0 is
{y<0Vvo<y}

But the point yo = 0 is not inside this domain. Hence existence and uniqueness theorem
does not apply. Solution exists but no guarantee that unique solution exists.

1.17.2 Solving as quadrature ode

Integrating both sides gives

/ L y—ov
Yy=ra
ly| +1

—In(-y+1) y<0
In(y+1) O0<y

=T+

Solving for y gives these solutions

yp=-—e """ +1
—e 4+
C1
Y2 = e’”+cl -1
=ce" -1
Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0201—1

C1 = 1
Substituting ¢; found above in the general solution gives
y=e"—1

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0=01—1

C1
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6121
e’ -1

y=—e"+1

Y
Y

Substituting c¢; found above in the general solution gives

The solution(s) found are the following

Summary

18
16
14
12
101
8
6
4
2
O—

(b) Slope field plot

=e’ -1
152

y=—e"+1
)

(a) Solution plot

Verification of solutions

Verified OK.
Verified OK.



1.17.3 Maple step by step solution

Let’s solve

[y — Iyl = 1,9(0) = 0]
° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
y
i 1
° Integrate both sides with respect to x

fwfﬁdx: [ldz + ¢
° Evaluate integral
—In(l-y) y<0
In(l+y) 0<y
° Solve for y
{y=—-e*"2+1,y=e""1 -1}
o Use initial condition y(0) =0

O=—-e“141

° Solve for ¢;
c=0

° Substitute ¢c; = 0 into general solution and simplify
y=—e"+1

o Use initial condition y(0) =0
0=-1+e~

° Solve for ¢;
=0

° Substitute c; = 0 into general solution and simplify
y=e"—-1

° Solutions to the IVP
{y=e"—-1,y=—-e"+1}
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v/ Solution by Maple
Time used: 0.172 (sec). Leaf size: 19

tdsolve( [diff(y(x),x) = abs(y(x))+1,y(0) = 0],y(x), singsol=all) J
y(z) =e"—1
y()=1-e7"

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

LDSolve[{y'[x] ==Abs [y [x]]+1,{y[0]==0}},y[x] ,x,IncludeSingularSolutions -> Truel

{}
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1.18 problem 10(a)
1.18.1 Solving as first order ode lie symmetry calculated ode . . . . . . 155]

Internal problem ID [886]
Internal file name [OUTPUT/886_Sunday_June_05_2022_01_53_16_AM_27410281/index . tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 1, Introduction. Section 1.2 Page 14

Problem number: 10(a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode_ lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_1st_order, _with_linear_symmetries], _Clairaut]

ViI?+ 4z + 4y x

/

_ - _"_1
Y 2 2

1.18.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

x  rl+4r+ 4y

!
—_1-=
y 5 T 2

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - fm) - w2£y — wg€ — wyn =10 (A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =zaz +yaz +a; (1E)
1 = xbz + ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, bl) b2a b3}

Substituting equations (1E,2E) and w into (A) gives

x Vr?+dr+4dy x  Vxl+d4xr+4y 2
bz+(—1—§+ 2 >(53—az)—<—1—§+ 5 a3 (5E)
1 2z +4 xb2+yb3+61
—|—=z+ Tas +yaz +ay) — =
< 2 4\/x2+4x+4y)( 2+ yas +ar) V2 + 4z + 4y

Putting the above in normal form gives

_dai + 4b; + 4x2ay + 2za; + (2 + 4z + 4y)% a3 — 2v/1% + 4z + dya; — 4vVx? + 4z + 4y ag + das/ 2% +

=0

Setting the numerator to zero gives

N[

—4aq — 4by — 42%ay — 2za; — (a:2 + 4z + 4y) as

+ 222+ 4z +4dya, + 4/ 1% + 4z + dy as — daz\/ 2% + 4z + 4y
+ 4by\/ 22 + 4z + 4y — 4/x2 + 4o + 4y bg + 22303 + 122°%a3 (6E)

— 8yas + 222b3 + 8xbs — 12zay + 12yas — 4xby + 4ybs + 6zyas

— V22 + 4z + 4y 2las + 4\/22 + 4z + dy zas — 4/ 22 + 4z + 4y zas

— 2¢/2? 4+ 4z + 4y xbs + 24/ 2% + 4z + 4y yas + 16zaz = 0

Simplifying the above gives

—(x2+4x+4y)%a3+2(x2+4x+4y)xag—\/Mﬁag

—2(z® + 47+ 4y) a2 + 4(2® + 4z + 4y) a3 + 2(2® + 4z + 4y) bs
+4\/mgva2—4\/m:m3—2 2 + 4x + 4y xbs (6E)
+ 2\/x2 + 4z + 4y yas — 22%as — 2zyas + 2v/2% + 4z + 4y as

+ 422 + 4z + dy ag — daz\/x? + 4z + dy + 4by /72 + 4z + 4y

—4+\/x? + 4z + 4y b3 — 2za; — 4zxay — 4xby — dyaz — 4ybs — 4a, —4by =0
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Since the PDE has radicals, simplifying gives

—4a;, — 4by — 42%ay — 2zaq + 2v/22 + 4z + dya; + 4/ 22 + 4z + dyay
— dagy\/x2? + 4z + 4y + 4by\ /22 + 4z + 4y — 4/ 22 + 4o + 4y bs + 273a3

+ 122%a3 — 8yay + 22%bs + 8xbs — 12zas + 12yas — 4xby + 4ybs + 6zyas
— 222 + 4z + 4y 2%a3 + 4\/22 + 4z + 4y zas — 8+\/22 + 4z + 4y zas
— 2¢/2? 4+ 4z + 4y xbs — 2/ 2% + 4z + 4y yas + 16zaz =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{x,y, Vax?+4x + 4y}

The following substitution is now made to be able to collect on all terms with {z,y}

in them
{x =,y =V, V22 +4r +4y = v3}

The above PDE (6E) now becomes

22}?(13 — 22)31)%&3 — 41)%&2 + 4vzviae + 12v%a3 + 6viv2a3 — 8usviasz — 2U3v2a3 (7E)
+ QUfbg — 20301 b3 — 2v1a1 + 2v3a1 — 12v1a9 — vgag + 4vsas + 16v;1a3
+ 12’02&3 — 4(13’1)3 — 4’Ulb2 + 4b2’l}3 + 8’01b3 + 4’[)2b3 - 4’U3b3 - 4a1 - 4b1 =0

Collecting the above on the terms v; introduced, and these are
{,UI’ V2, 'U3}

Equation (7E) now becomes

2v3a;3 — 2usviag + (—4ay + 12a3 + 2bs) v2 + 6viv0a3 (8E)
+ (40;2 - 80,3 — 2b3) v1V3 + (—20,1 — 12&2 + 16&3 — 4b2 + 8b3) V1 — 2’03’020,3
+ (—8a2 + 120,3 + 4b3) Vg + (20,1 + 4(12 - 40,3 + 4b2 - 4b3) V3 — 4(L1 — 4b1 =0
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Setting each coefficients in (8E) to zero gives the following equations to solve

—2a3 =0
2a3 =0
6az =0

—4a; —4b; =0

—8ay + 12a3 +4b5 =0

—4as + 12a3 +2b3 =0

4as — 8az — 2b3 =0

—2a; — 12a9 + 16a3 — 4by + 8b3 =0
2a; + 4ay — 4az + 4by — 4b3 =0

Solving the above equations for the unknowns gives

a1 = 2a9 — 2bs
as = ag

a3 =10

by = —2a9 + 2b,
by = b

bs = 2as

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

£=-2
n=2+z

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(y)é
=24z— (—1—£+ x2+4x+4y) (—2)

2 2
=+x?+4z+ 4y
£€=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

[ 3
n

1
2 dy
Vvt 44z + 4y

S is found from

S

Which results in

V2 + 4z + 4y
2

Now that R, S are found, we need to setup the ode in these coordinates. This is done

S =

by evaluating

aS Sy +w(z,y)Sy
dR R, +w(z,y)R,

2)

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

z Vrt+dx+4y

wlwyy) = —1- 7+ Y

Evaluating all the partial derivatives gives

R,=1
R,=0
S, = 24z
2vx? + 4z + 4y
1

S,
Yo Ve ¥z + dy

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
ds 1
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We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dR 2

s 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R)

R
=_+Cl

2

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

V2+dr+4y x

Which simplifies to

=E§+Cl

vl+4r+4y =z

Which gives

=Ei+01

y=c§—|—clm—x

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

N[ e s

NN e e
NN S e e e e e
NN Na e Sa Satata
NN N N e ta e

NN N NN NN
NN N N N

NN NN NN

—4 NN N N
NN NN
NN NN

|
IS

I
(S}
=

vz +4r + 4y

AT T T T T T A

v 7 7w A 7 7 =

2

v w g w g 7T ]
A AT A
AT T TR T T A
A AT 7T
A A
A AT A
A AT 7T
A A w7 2y
A AT T
A AT AT

EE T EEEP &P
B O PP N PO
o v v w5 w w v
PP PSP
PO PP PSP
PO PP PPS P
PP PSS
PO PP PPS P
PO PP PSP
PP PSS

Canonical . . .

.. . ) : ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’

dy _ 1 _ z  Vritdetdy as _ 1

w= 1—3t 2 dR — 2
PEr LA A A A A A ww ww v v v v v v w g v
A A VA A VAl it PP PP PP PPPY PSP PP
PP PP PP A AR A A AT 7w AT TIPS TI AT AT T AT
A A A A il et g AT AT NI T T
fffff/f AANS TSI o, PP PP PP PSP PP
fff/f/}ﬁ////»)»/»»»» /////}¢§////////////
ff/ff////%»»»»»»»»»» PSS Y. S S S A A
LR A o AT T NI TIITATTAT
rr A ——t bbb —s—b—>—> R::z AT AT TN AT AT AT
rrz
Fr-
/
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Summary
The solution(s) found are the following

2
y=c+tar—zx

NN N NN NN

S/
J7 S s
J] TS
VP PP PO

AR T 5 5 e S N
\ A e Y
NN NN NN N
NN NN
NN
NONNNNN
NONNNNN
NN
NONNNN
NN\

N NN

~1 0 1 2 3

Figure 40: Slope field plot

Verification of solutions

2
y=c+tar—zx

Verified OK.
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Maple trace

“Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
differential order: 1; found: 2 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
-> Calling odsolve with the ODE™, diff(y(x), x) = -1-(1/2)#*x, y(x)"
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
<- 1st order, canonical coordinates successful~

*

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 23

-

N

dsolve(diff (y(x),x) = 1/2x(-(x+2)+sqrt(x~2+4*x+4*xy(x))),y(x), singsol=all)

T —\/r24+4r+4y(x)—c =0

v Solution by Mathematica
Time used: 0.801 (sec). Leaf size: 47

N

¥k Sublevel 2 x*

DSolvel[y' [x] ==1/2*(-(x+2)+Sqrt[x‘2+4*x+4*y[x]]),y[x],x,IncludeSingularSoluti#ns -> True]

y(.’l)) - }1(—2’1} + 2e (:1; + 1) 414+ 6261)
y(
y(z) — }1(1 — 2x)

8

)—1
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2 Chapter 2, First order equations. Linear first
order. Section 2.1 Page 41

2.1 problem 1 . . . . ... 165
2.2 problem 2 . . ... 168
2.3 problem 3 . . . .. .. e 183l
2.4 problem 4 . . . . ... e e 198
25 problem 5 . . . .. 213]
2.6 problem 6 . . . . ... 228
2.7 problem 7 . . . . .. 245
2.8 problem 8 . . . . ... 2611
2.9 problem 9 . . . ... e 276
2.10 problem 10 . . . . . .. e
2.11 problem 11 . . . . . . . L 304
2.12 problem 12 . . . . .. L
2.13 problem 13 . . . . . ... [321]
2.14 problem 14 . . . . . .. e [3341
2.15 problem 15 . . . . ... e 347
2.16 problem 16 . . . . . . ... 359
2.17 problem 17 . . . . .. e
2.18 problem 18 . . . . ...
2.19 problem 19 . . . . ... 399
2.20 problem 20 . . . ... 412
2.21 problem 21 . . . . .. 425
2.22 problem 22 . . . . . . 438l
2.23 problem 23 . . . . .. e 452
2.24 problem 24 . . . . .. e e e e e 465
2.25 problem 25 . . . ... 478
2.26 problem 26 . . . . . ... 492
2.27 problem 27 . . . . .. e e e e BT
2.28 problem 28 . . . ... L e H21]
2.29 problem 29 . . . .. H35]
2.30 problem 30 . . . . ... D48
2.31 problem 31 . . . . ... HoT]
2.32 problem 32 . . . . .. .. e sy
2.33 problem 33 . . . . ... e H&I
2.34 problem 34 . . ... 6041
235 problem 35 . . . ... 617
236 problem 36 . . . . . ... 630
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2.37 problem 44 . . . . .. e e 643

2.38 problem 48(a) . . . . . ... 658
2.39 problem 48(b) . . . . .. 6611
240 problem 48(C) . . . . . ... 666
241 problem 48(d) . . . . . ... 681]
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2.1 problem 1
2.1.1 Solving as quadratureode . . . . . . ... ... ... L. 165]
2.1.2 Maple step by step solution . . . . ... ... ... ... ... 166]

Internal problem ID [887]
Internal file name [OUTPUT/887_Sunday_June_05_2022_01_53_19_AM_9951064/index.tex|

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 1.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

Yy +ay=0

2.1.1 Solving as quadrature ode

J-s- o
_In()

Integrating both sides gives

=+

Raising both side to exponential gives

Which simplifies to

Summary
The solution(s) found are the following

y = (coe”) ™" (1)
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Verification of solutions

Verified OK.

y = (")

2.1.2 Maple step by step solution

Maple trace

Let’s solve
y +ay=0
Highest derivative means the order of the ODE is 1

/

Y
Separate variables

!
Y — g
Yy

Integrate both sides with respect to x
f%dm = [—adz+ ¢

Evaluate integral

In(y) =—azx+

Solve for y

—azx+cy

y=e

"Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature

trying 1st order linear

<- 1st order linear successful"

166




v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

Ldsolve(diff(y(x),x) + a*y(x)=0,y(x), singsol=all)

y(x) = c1e7%

v/ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 19

LDSolve [y'[x] + a*y[x]==0,y[x],x,IncludeSingularSolutions -> Truel

ar

y(z) = cre”
y(z) =0
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2.2 problem 2

221
2.2.2
2.2.3
224
2.2.5
2.2.6

Solving as separableode . . . . . . ... ... oL, 168]
Solving as linearode . . . . . . . .. ... ... ... .. 170]
Solving as homogeneousTypeD2ode . . ... ... ... .... Ival
Solving as first order ode lie symmetry lookup ode . . . . . .. 173]
Solving asexactode . . . . .. .. ... ... .. ... ..., vard
Maple step by step solution . . . . ... .. ... ... ... .. 181

Internal problem ID [888]
Internal file name [OUTPUT/888_Sunday_June_05_2022_01_53_19_AM_56214758/index . tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

y +3z%y =0
2.2.1 Solving as separable ode
In canonical form the ODE is
y' = F(z,y)
= f(z)g(y)
= —3ya?
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(1)

c1€

y. Integrating both sides gives
Yy

—_—— == > —————————~——~—

Where f(z) = —32? and g¢(y)
The solution(s) found are the following

Summary

X

—z3
c1€
169

Y

Figure 41: Slope field plot

Verification of solutions

Verified OK.



2.2.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
p(z) = 32°
q(z) =0
Hence the ode is
y +3z%y =0
The integrating factor u is
p=e [ 3x2dz
.'ES
=e
The ode becomes
d .-
dr'uy
(€)=
dz v) =
Integrating gives
$3
e y=a

Dividing both sides by the integrating factor p = e* results in

_m3
y=ce"”

Summary
The solution(s) found are the following

Jp: }
y=ce"”
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Where f(z) = —%*L and g(u) = u. Integrating both sides gives

3
—du——3x +1dm

/ du—/ 3x +1dx

n(u) = —z* —1n(w)+02

—x3—In(x)+co

u=-e
— cze—xe’—ln(w)
Which simplifies to
—g3
Co€
u(z) = 2
Therefore the solution y is
Yy = TU
_z?
= C9€
Summary
The solution(s) found are the following
Y= coe™™ (1)
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Figure 43: Slope field plot

Verification of solutions

.3
y=coe *

Verified OK.

2.2.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y/ — _3y 1,2
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - gz) - wzéy —wz§ — wyn =0 (A)

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 35: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

dsS
§ 7

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

1
Sz/—dy
n
1
—/e_zsdy

S=e"y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Set+w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = -3y z*

Evaluating all the partial derivatives gives

R, =1
R,=0

Sy = 3x2ex3y
Sy = e”’

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

0 (2A)

0
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

ex3y =
Which simplifies to

ex?’y =
Which gives

y= cre™®

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . .

.. . . . ODE in canonical coordinates

Original ode in x,y coordinates coordinates (R, S)

transformation ’

dy _ _ 2 ds _
= YT ar =0
PV ENINL LY
PR L ANNY L
R A 4
SSENNESS
P S
R REE 2

ERRRRINERESS: I

SSEEEINENNES B8 R=z :

T TR . SESscEs tasmat
I e :
SEREMEREE R
[ A e A
ttttoAmtttt
ttttm sttt #
ttt Attt
ttrt sttt

Summary
The solution(s) found are the following
—g3
y=cre &
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Figure 44: Slope field plot

Verification of solutions

.3
cie ”

y:

Verified OK.

2.2.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(x,y)£=0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

0

gb(.’L', y) =

a
dz

Hence
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Comparing (A,B) shows that

But since % = 86—2194’— then for the above to be valid, we require that
0y yOx

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = (96: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz +N(z,y)dy =0 (1A)

Therefore

(—2?) dz+

(-3
(—%) dy =0 (24)

Comparing (1A) and (2A) shows that

M(xay):_$2

1
N(z,y) = —+
@) =5

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy  Ox
Using result found above gives
oM 0 9
oy =y
=0
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And
oN _o(_ 1
or Oz \ 3y
=0

Since %i; = %%’, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

0p
—gx =M (1)
¢ N

Integrating (1) w.r.t. z gives

@dx=/Mdm
or

o6 . [
%dx—/ z“dx

3

o= -5 + 1) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

=0+ @
But equation (2) says that g—i = —3—1y. Therefore equation (4) becomes
— L —0+ 7y (5)
3y
Solving equation (5) for f'(y) gives
f'ly) = —%
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Integrating the above w.r.t y gives

[rwa=[ (-5 )

f(y)I—Q‘*‘Cl

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

_2* In(y)
3 3

+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

o % Iy
T3 3
The solution becomes
y = —z3-3c1
Summary
The solution(s) found are the following
y=e (1)
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Figure 45: Slope field plot

Verification of solutions

e—x3—3cl

Verified OK.

2.2.6 Maple step by step solution

Let’s solve

Yy +32%y=0

Highest derivative means the order of the ODE is 1

Separate variables

Integrate both sides with respect to x

dz = [ —-3z%dz +

v
y

J

Evaluate integral
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In(y) = —23+ ¢,

° Solve for y

Y= e—z3+01

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

tdsolve(diff(y(x),x) + 3*x"2*y(x)=0,y(x), singsol=all)

z3

y(x) = cre”

v/ Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 20

LDSolve[y'[x] +3%x~2*y [x]==0,y[x] ,x,IncludeSingularSolutions -> True]

z3

y(x) = cre”
y(x) =0
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2.3 problem 3

2.3.1 Solving as separableode . . . . . .. ... ... 183l
2.3.2 Solving aslinearode . . . . ... ... ... ... . 185
2.3.3 Solving as homogeneousTypeD2ode . . . ... ... ... ...
2.3.4 Solving as first order ode lie symmetry lookup ode . . .. ... 188]
235 Solvingasexactode . . ... ... ... ... ... ... .. 192
2.3.6 Maple step by step solution . . . . ... ... ... L. 196

Internal problem ID [889)
Internal file name [OUTPUT/889_Sunday_June_05_2022_01_53_21_AM_54030334/index . tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 3.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

yz+In(z)y=0

2.3.1 Solving as separable ode
In canonical form the ODE is
y =F(z,y)

= f(z)9(y)

_ @)y
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Where f(z) = —@ and g(y) = y. Integrating both sides gives

1dy = _n (z) dz
Yy xr
/ldy = /_ln(ac) dx
Yy x
1 2
In(y) = - n(2m) +a
Yy = e_%"”cl
_ln(x)z
= C]_e 2

Summary
The solution(s) found are the following

Z~=NNNNNN
=N\ N
=NNNNNN
=N\
PSS N W
P N N N N N N
P N N N Y
P i N e e N Y

~—— -~
~N— 7 7
N— 77T T
N— S
N—= ST
N—="77 77
N=S7 7777
N=SS77TT

3 -2 —1 0 1 2 3

Figure 46: Slope field plot

Verification of solutions

_ln(ar:)2
y = Cle 2

Verified OK.
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2.3.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
In (z)
p(z) = —,
q(z) =0
Hence the ode is
1
The integrating factor u is
u . ef ln:(:) dz
ln(z)2
= e 2
The ode becomes
d
aﬂy =
Ly
dzx vy =
Integrating gives
In(x)?

ln(z)2

Dividing both sides by the integrating factor 4 = e 2  results in

_ In(a)?
Y = c1€ 2
Summary
The solution(s) found are the following
_ln(a:)2
Yy =ce 2
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Figure 47: Slope field plot

Verification of solutions

_ln(ar:)2
Yy = ce 2

Verified OK.

2.3.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
(v (z)z+u(z))z+In(z)u(z)z =0
In canonical form the ODE is

u = F(z,u)

= f(z)g(u)
_ _u(ln(z) +1)

T
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Where f(z) = —h@+1 4nqg g(u) = u. Integrating both sides gives

T

1 1 1
1, - @+l

d dz
u x
/ldu= /——1n(x)+1d:c
u x
2
In (u) = _n (;) —In(z) +c
u= e—mTw)—ln(z)-l—cz

_ 1n(.7;)2 _
= coe 5 In(z)

Which simplifies to

_In(z)?
ez
u(z) = -
Therefore the solution y is
y=zu
_ln(ar:)2
= cge 2
Summary
The solution(s) found are the following
n(x 2
y=creF (1)
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Figure 48: Slope field plot

Verification of solutions

_ln(ar:)2
Y = Co€ 2

Verified OK.

2.3.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y:_m@w
a
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - fx) - w2§y —wz€ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 38: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e/ ;’{;’)”d“‘h(”
form ID 1
polynomial type ode y = —2512;312 “162””—;‘12521f;:g102+b201 “11’29_232351‘;;162_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
_ln(a:)2
n(z,y) =€ 7 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _

ds
§ 1

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx
S is found from
1
S= | —dy
n
1
= w2
e 2
Which results in
n(xr 2
S = e#y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

@ — Sx +W(.’E,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

In (z) y
UJ(.’L‘, y) - T
Evaluating all the partial derivatives gives
R, =1
Ry=0
In (@) ¢
2
S5 — n(z)e Y
x
n(xr 2
Sy = el(T)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds
=0 (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

ar ="
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R) =1

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

Which simplifies to

Which gives

_ ln(:L')2
Yy =-ce 2

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Original ode in z,y coordinates

Canonical
coordinates
transformation

ODE in canonical coordinates

(R,S)

y(x) A S S N R NENEN
T 7=
S S 5

| S

[

Ao

x T T _v_ v T v _¥
\ v A v v v
R
I O
V\NAAS SRS

P
NN NN
NN N
~a N NN\
~a NN N\
~a NN\ N\
~a NN N\
SN N N
~a NN\ N\

|
IS
——a—a—

s _
ar =0

IS

S(R]

Summary

The solution(s) found are the following

_ ln(ar:)2
Y =cCe 2
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Verification of solutions

Verified OK.

1 2 3

Figure 49: Slope field plot

Y =ce

2.3.5 Solving as exact ode

ln(ar:)2

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,y) + N(z,y)

dy
=0

(A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

Hence

d

00, 00dy _
oydr

or
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Comparing (A,B) shows that

99

M

ox

9 _ n
Oy

But since ;’? = 88 235 then for the above to be valid, we require that
0y yOx
oM _oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

(2o (2
(—#) dz + (—i) dy = (2A)

Comparing (1A) and (2A) shows that

Therefore

In (z)

M(.’L’,y) = -

1
N(z,y) = ——
(z,9) "
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied
oM _ oN
0y Oz
Using result found above gives
oM _ 0 ( ()
oy Oy x
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And

oN _ 0 ( 1
N A
=0

Since %i: = %’, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

8¢
oM W)
0¢

Integrating (1) w.r.t. z gives

op .
%dx—/de

op . In (x)
a—wdz—/— . dz

In ()

b=+ () 6

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢
— =0 ! 4
2 =0+ 1) (@
But equation (2) says that g—q; = —%. Therefore equation (4) becomes
1 /
—==0+f(y) (5)
Y
Solving equation (5) for f’(y) gives
1
flly)=—=
() y

Integrating the above w.r.t y gives

[ o= (L)

fly)=-In(y) +a
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

—In(y) + ¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

The solution becomes

Summary
The solution(s) found are the following

ln(a:)2

y=e 2 7% (1)
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Figure 50: Slope field plot
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Verification of solutions

_In@)? _
2

Verified OK.

2.3.6 Maple step by step solution

Let’s solve
Yr+In(z)y=0
° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
y _ _In(@)
y x
° Integrate both sides with respect to x
f%dm = f—@dm+cl
. Evaluate integral

2
In(y) = —ln(;) +c
° Solve for y

2
_m@?

y=e

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

dsolve(x*diff (y(x),x) + ln(x)*y(x)=0,y(x), singsol=all)

N\

2
y(x) = cre” g
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v/ Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 23

-

kDSolve [x*y' [x] +Loglx]*y[x]==0,y[x],x,IncludeSingularSolutions -> Truel

—

y(z) = cre 218’ @)
y(zr) =0
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2.4 problem 4

24.1 Solving as separableode . . . . . .. ... .. oL 198]
24.2 Solving aslinearode . . . . . . ... ... ... ... 200
2.4.3 Solving as homogeneousTypeD2ode . . ... ... . ... ... 20T]
2.4.4 Solving as first order ode lie symmetry lookup ode . . .. ... 203]
24.5 Solvingasexactode . .. .. ... ... ... ... .. .. ... 207
2.4.6 Maple step by step solution . . . . . ... ... L. 211

Internal problem ID [890]
Internal file name [OUTPUT/890_Sunday_June_05_2022_01_53_22_AM_23926869/index . tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 4.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type
[_separable]

3y+yz=0
2.4.1 Solving as separable ode
In canonical form the ODE is
y = F(z,y)
= f(z)g(y)
_ %
oz
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(1)

dz

3

X

T

W= |-

In(y) =-3In(z)+a

3

e—3 In(z)+c1
€1

Y

1

1
—dy=—§dx
Y

y. Integrating both sides gives
Yy

/

e
J ST

11111 ~~~\\/ rr—m———————— T
///// ~~~\\/ rr—m—————
————~~~N\\ S
NNV /77—
NNV S

S—a— NN N\
A N N N NN

N R

X

Figure 51: Slope field plot
199

and g(y)

3

T

Where f(z) =

The solution(s) found are the following

Summary

Verification of solutions

Verified OK.



2.4.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
3
p(z) = -
q(z) =0
Hence the ode is
3
v+ =0
T
The integrating factor u is
b= ef %dm
frd x3
The ode becomes
d
@ﬂy =
d 3
@(W )=
Integrating gives
Yy 2’ =c

Dividing both sides by the integrating factor u = z3 results in

V=
Summary
The solution(s) found are the following
V=
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Figure 52: Slope field plot

Verification of solutions

Verified OK.

2.4.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

u(z)z + (v'(z)z+u(z))z=0

In canonical form the ODE is

F(z,u)

u =

f(@)g(u)
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(1)

u. Integrating both sides gives

and g(u) =

4

T

Where f(z) =

xrd

e—4 In(z)+c2
C2

In(u) = —4In(z) + ¢

Therefore the solution y is

Y

Summary
The solution(s) found are the following
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Figure 53: Slope field plot
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Verification of solutions

Verified OK.

2.4.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

)
xr
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne +w(my — &) — w25y —wz —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 41: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

§(z,y) =0
n(z,y) = % (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

ds
§ 1

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

Sz/ldy
n

1

S is found from

23
Which results in

S=yz3
Now that R, S are found, we need to setup the ode in these coordinates. This is done

by evaluating

dS  Se+w(z,y)S,

iR~ Rt alo,y)R, ®

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

3
w(z,y) = —;y
Evaluating all the partial derivatives gives
R, =1
R,=0
S =3y z?
S, =z°

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.

0 (2A)

0

It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R)=a (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

yx3 =G
Which simplifies to

y$3 =G
Which gives

V=5

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) . .
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’

dy _ _ 3y s _

de — T dR ~—
P00 A A A A A A A O A A S A WY
b0 o A A A A I A A S A M W
R EEE R R 4
A Y
ARSI IR AR R RRRNNN S(R]
AA2ZAA APV VNN NN NN 24
AAZ222 PP VN N N Y
A2 VNN N e
B e T e e R =X
RSN 5 5555 5 SR B o
NN L R R At =yz R
\\\\\\ML{HHM;’//’/ ok
NNNNNNNYV VANt r A
NYNNANVV VLMt E RS
R R EEEEER IR
MYYV VYV Rttt bttt 4
R e e e e R
R e N IR RN

Summary
The solution(s) found are the following
&1
= = 1
Y= (1)
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Figure 54: Slope field plot

Verification of solutions

Verified OK.

2.4.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(z,y) + N(z,y) 57 =0
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Comparing (A,B) shows that

99 _
or
9 _ n
9y
But since % = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
86; g’y = [f; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

/\/I\\
(98]
<s|"‘
~
o,
<
Il
VRS
SEE=
~~
o,
&

(B

Comparing (1A) and (2A) shows that

1
—@> dy=0 (2A)

1
M(z,y) =

1
N(.’L’,y) = _3_y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM _ 9 (1
oy Oy\ =z
=0
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And

ON _ 9 ( 1
or Oz \ 3y

=0
Since %—A; = ‘:’%, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
09
— =M 1
e (1)
09
— =N 2
o 2)

Integrating (1) w.r.t. z gives

op .
%dx—/de

0o 1
%dx = /—5 dz
¢=—-In(z)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

o =0+ /W @
But equation (2) says that g—i = —3—1y. Therefore equation (4) becomes
o =0+ 1) )
3y
Solving equation (5) for f'(y) gives
f'y) = —%

Integrating the above w.r.t y gives

/f’(y) dy:/(—%) dy

+Cl
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Where ¢; is constant of integration. Substituting result found above for f(y) into

equation (3) gives ¢

)+Cl

In (y
3

6=—In(z) -

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

combining ¢; and ¢y constants into new constant c¢; gives the solution as

(1)

The solution(s) found are the following

The solution becomes

Summary

I e
P
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11111 — N\ / \ == |
,,,,, ~~~\\// rrm—m——————|
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J 77 s
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X

Figure 55: Slope field plot
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Verification of solutions

Verified OK.

2.4.6 Maple step by step solution

Let’s solve
3y+y'z=0
° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
v _3
Yy xr
. Integrate both sides with respect to x

f%dmzf—%dx—i-cl

° Evaluate integral
In(y) =-3In(z)+c
° Solve for y
y="5%

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

-

dsolve(x*diff (y(x),x) + 3*y(x)=0,y(x), singsol=all)

N\

6]
y(r) = 23
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v/ Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 16

kDSolve [x*xy' [x] +3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

y(z) %
y(x) =0
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2.5 problem 5

2.5.1 Solving as separableode . . . . . .. ... .. L. 213]
2.5.2 Solving aslinearode . . . . .. ... ... .. ... ... 215
2.5.3 Solving as homogeneousTypeD2ode . . . ... ... ... ...
2.5.4 Solving as first order ode lie symmetry lookup ode . . .. ... 218
2.5.5 Solvingasexactode . .. .. ... ... ... ... .. ..., 222
2.5.6 Maple step by step solution . . . . ... ... ... L.

Internal problem ID [891]
Internal file name [OUTPUT/891_Sunday_June_05_2022_01_53_23_AM_1052067/index. tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 5.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

Yz’ +y=0

2.5.1 Solving as separable ode

In canonical form the ODE is

y/ = F(.’L‘,y)
= f(z)g(y)
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Where f(z) = —2 and g(y) = y. Integrating both sides gives

—dy=—-—dzx
Y T
1 1
/—dy= - dz
Y T
In(y)==+4+a
y_e%-i-q
1
:clez

Summary
The solution(s) found are the following

1

y = ciex (1)
3 ~~~NN\A ) LN NN~
RN BARRRE R
RSN AR AR R
\\\\\\\\\ L\\\\\\\\
N AR R
ﬂﬂﬂﬂﬂ \\\\ \\\\Nﬂﬂ—\—\
AAAAAAA —~\\ N —a—s—seaea o
Y(x) 0_ AAAAAA —_— ) }//) AAAAAA
—2'////////1 1///////’/
77 11777 >
77711 117777-—==
—3H 77 V117777~
-3 -2 —1 0 1 2 3

Figure 56: Slope field plot

Verification of solutions

1
y = clew

Verified OK.

214



2.5.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
1
p(z) = 2
q(z) =
Hence the ode is
Y+ 2 =0
T
The integrating factor u is
l‘[’ = ef z12 dx
_1
prd e x
The ode becomes
d =
dz ny

Integrating gives
_1
e wy = cl
Dividing both sides by the integrating factor u = e~» results in
1
y = clez

Summary
The solution(s) found are the following

1
y = clez
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Verification of solutions

Verified OK.
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Figure 57: Slope field plot

1
y = clew

2.5.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

(v'(z)  +u(z)) 2* + u(z) z =0

In canonical form the ODE is

v = F(z,u)

= f(z)g(u)

216

_u(z+1)




Where f(r) = —Z5! and g(u) = u. Integrating both sides gives

x2

rz+1

du = — o dz

1
U
1 1
/—du=/—z_'; dz
U T
1

- 1
—e In(z)+ 2 +c2

u
= coe” ln(m)—}-%
Which simplifies to
1
. Co€x
u(z) = 2
Therefore the solution y is
Y =ux
1
= Czez
Summary
The solution(s) found are the following
y = ce= 1)
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Figure 58: Slope field plot

Verification of solutions

Y= c2e%
Verified OK.

2.5.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

Ly
y=="r
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - gac) - w2€y - wxf — Wy = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 44: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) =e- (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _dy _

ds
§ n

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x
S is found from
5= [ L
n
= ildy
es
Which results in
S frd e_%y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

@ _ Set+w(z,y)S, @)
dR R, + w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

_ ¥
W(J7 ) y) - _P
Evaluating all the partial derivatives gives
R, =1
R,=0
e ey
Sy = p
1
Sy=e=

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

0 (2A)

0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

_1
e zy = Cl
Which simplifies to
_1
e zy = Cl
Which gives
1
y = clew

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ _ Yy a5 _
dx 2 dR
e T L O 4
s~ )Y x j, j, & Y N e
—e—a—a—s~a N N a e —s—a—s
e R AR R R 24
ﬂﬂﬂﬂﬂ —~ N\ i i Y e —s
————b—a—aaa N Sae e —b—b—b—>
ﬂﬂﬂﬂﬂﬂﬂﬂ N L e —— R=z
$$ﬁ$44_;[»; ? ; ;,,.i.._b%grﬁ% ) e S ﬁ s
44444 > 7 P G e e — -
> v 7 [t S //ﬂ&v—»w—v—» S =€ :Cy R
> > > > v 7 A f_%A t 7o >
R et A I I A e
SRS BN 11 B I BN .
et O A B S A S

Summary
The solution(s) found are the following

Y= cle% (1)
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Figure 59: Slope field plot

Verification of solutions

Y= cle%
Verified OK.

2.5.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

M(z,) + N(z,) 2 =0 *)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 06 06 d
o¢ 994y _
Or Oydx 0 (B)
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Comparing (A,B) shows that

99 _
or
9 _ n
9y
But since % = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
86; g’y = [f; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

<—$) dz + (—i) dy =0 (2A)

1
M(xﬁy):_ﬁ
1

N(z,y) = ——
(2.9) =~

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
oy Oz

oM _ o ( 1
oy Oy\ a2

Using result found above gives
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And

‘9_N_£(_1)
ox Or\ vy
=0

Since %—A; = ‘:’9%{, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)
¢ _

or M (1)
0p
3y N (2)
Integrating (1) w.r.t. z gives
op .
3z dx = /de
op ., 1
8_wd = /_ﬁd
1
6=+ 1) Q

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢
20 ! 4
=0+ 1) @
But equation (2) says that g—‘z = —i. Therefore equation (4) becomes
1 /
—==0+f"(y) (5)
Y
Solving equation (5) for f’(y) gives
fily)=—--
W) =—

Integrating the above w.r.t y gives

[ o= (L)

fly)=-In(y) +a
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Where ¢; is constant of integration. Substituting result found above for f(y) into

equation (3) gives ¢

1

¢:5—1n(y)+01

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

combining ¢; and ¢y constants into new constant c; gives the solution as

The solution becomes

Summary

The solution(s) found are the following

W
1

1
=——1In
C1 T (y)
_az=1
y=e
_az-1
y=e
SSONNN AR NEON
~~~NNNN LV N NN~~~
=~~~ AR R
ﬂﬂﬂﬂﬂ SN VNS ———e
AAAAAAA —\\ \ x N —s—ssos
AAAAA —_——_ 7 7 1 e
77 1177 77—
-7 1177777 >—
=771 1 1777rr>=
7771 11777 7---~
777711 111777 7---—~
-3 -2 —1 1 2 3

Figure 60: Slope field plot
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Verification of solutions

_cz—1

Verified OK.

2.5.6 Maple step by step solution

Let’s solve
Yz’ +y=0
° Highest derivative means the order of the ODE is 1

Yy
° Separate variables
¥ — 1
y ~ x2
° Integrate both sides with respect to x
f%dz = [—Zdz+c
° Evaluate integral

ln(y)=%+cl

° Solve for y
crz+1
y = e =z

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 10

dsolve(x~2*diff (y(x),x) + y(x)=0,y(x), singsol=all)

N\

y(x) = cle%
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v/ Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 18

kDSolve [x~2*y' [x] +y[x]==0,y[x],x,IncludeSingularSolutions -> True]

y(x) — cle%
y(z) =0
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2.6 problem 6

2.6.1 Existence and uniqueness analysis. . . . . ... ... ... ... 229
2.6.2 Solving as separableode . . . . . ... ... L L. 229
2.6.3 Solvingaslinearode . . . ... ... ... ............ 231
2.6.4 Solving as homogeneousTypeD2ode . . ... ... ... .... 232
2.6.5 Solving as first order ode lie symmetry lookup ode . . ... .. 234
2.6.6 Solvingasexactode . .. ... ... ... ... ... .. ... 239
2.6.7 Maple step by step solution . . . . ... ... 242

Internal problem ID [892]
Internal file name [OUTPUT/892_Sunday_June_05_2022_01_53_24_AM_72879044/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 6.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

T
With initial conditions
[y(1) =1]
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2.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(z)y = q(z)

Where here
—r—1
p(z) = — .
q(z) =0
Hence the ode is
y/ _ (_"I" B 1) Y 0

The domain of p(z) = —

{r<0VvO0<uz}
And the point xzq = 1 is inside this domain. Hence solution exists and is unique.

2.6.2 Solving as separable ode

In canonical form the ODE is

yl:F(xay)
= f(z)g(y)
(x+1)y

Where f(z) = —%t! and g(y) = y. Integrating both sides gives

d _

1
/ dy—/—x—i_ dx
In

(y) =—z—In(z) +a
—z—In(z)+c1

y=e

— cle—ac—ln(x)

Which can be simplified to become
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Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1=el¢

Cci =¢€

Substituting c¢; found above in the general solution gives

el—x
y:
T
Summary
The solution(s) found are the following
1—x
e
= 1
y=— (1)
6 1 TN
. 6 i
, AR
2 2 VAN
0 O ~\ >;::/‘/‘///////
e\
—2 NN SIS
y(x) YOO N1 117777777777
—4 soo=~N\\VI LT T 177777
_d NNty
-6 J7o=NNV Lt rrrrr
_gd /7NNt
_3 J77NNVI it
ol 7NN
—10- J77=NNVHtrrrrr it
T I N N O O A O A A A A A A A
b J77=-NVEt
I 1 2 3 4 -2 21 0 1 2 3 4
X X
(a) Solution plot (b) Slope field plot
Verification of solutions
el—x
y:
T

Verified OK.
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2.6.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor y is

p= ef—_”;_ldx
— ea:+1n(x)
Which simplifies to
pu=xe"
The ode becomes
d
v =0
d
a(x e’y) =0
Integrating gives
re'y =

Dividing both sides by the integrating factor u = x €® results in

cie ”®

y_

T

Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1=e"l¢

Ci =¢€

Substituting c¢; found above in the general solution gives

el—m
y =
x
Summary
The solution(s) found are the following
el—m
= 1
y=— 1)

231



———————

1177777777777
/7
/
/
!
!

\ J s

e

7 7=\
177 7=\
777=\

0
-2

4
—6
— 8
—10
—12

(b) Slope field plot

(a) Solution plot

Verification of solutions

Verified OK.

2.6.4 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

v (z)z +u(z) + (z + 1) u(z) =0

In canonical form the ODE is

u' = F(z,u)

= f(z)g(u)
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Where f(z) = —2% and g(u) = u. Integrating both sides gives

2
+xdw

x
1 2
/—du = /— e dx
U x
In(u) =—z—2In(z) + ¢
—z—21In(z)+c2

1
—du = —
u

u==e

— cze—:c—2 In(z)

Which simplifies to

Coe™
u(z) = =
Therefore the solution y is
Y =ux
e
oz

Initial conditions are used to solve for cy. Substituting z = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1=che!

Co = ¢€

Substituting c, found above in the general solution gives

el—x
y =
x
Summary
The solution(s) found are the following
el—x
= 1
y=— (1)

233



| Wby
. 6 \ i
i L
2
2 RN
N
0 0 \N/ 77z
—2 - N\l 777777
TNV 77777777
y(x) YOO NNV 117717777
—4 s\ 777
_el 77NNV
-6 7NNV rrrrr
_gd 7NNVt
_g J77=NN e
1A 27NNt
ol 77NV
IRV NSRRI
o IT77=NVETH ettt
) 1 2 3 4 -2 -1 0 1 2 3 4
X X
(a) Solution plot (b) Slope field plot
Verification of solutions
el—m
y =
x
Verified OK.
2.6.5 Solving as first order ode lie symmetry lookup ode
Writing the ode as
y = _Z+y
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — W2§y —wy§ —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 47: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g() ehl@)+by 4 f(z) | &= ! bf;z;x_h(z) fele f;(:)cm_h(w)
form ID 1
polynomial type ode y = —2512;312 “162””—;‘12521f;:g102+b201 “11’29_232351‘;;162_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
’I’](.’L‘, y) — e—:z:—ln(x) (Al)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

S = / —dy
n
/ —z—In(z) y

S=xe"y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sz +CU(.’L',y)Sy (2)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = —EF DY
x
Evaluating all the partial derivatives gives
R, =1
R,=0
Sz =e"y(z +1)
Sy =ze”

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dsS
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

dsS
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

—0 (2A)

=0
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=a (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

ye'r = ¢
Which simplifies to
yer = ¢
Which gives
_ cie ®
x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) . .
o . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R,S)
transformation ’

dy _ _ (z+l)y @_0

der — T dR —
A Y I EEE R E R R
R IR
VAV YNYNYNN LDV 4
SRR HISEHI:

A ~
NN S S(R]
N O L NV AN 24
AR A IR R R R AR R
N S AL R R D D R R RN
»»»»»»»» AN NS e e e e e R =T
B B k| (Y P I S —pe? I :
///////»\HMM’;MM =Trey
/‘/‘//’/‘/’/’/\_)i‘?ffff/‘/‘/‘/‘f 52
VAV AN B B A A
PRPAP A AN Y
A N L A A A
fFrrrrrrz ottt ttrttt 4
frrrrr s ANttt
T A A AN £ N S S N A U A

Initial conditions are used to solve for ¢;. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

l=e"l¢

237



(1)
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e

77—\

/7 7=\
17 77=\

77 7=\

Cci =¢

Substituting c¢; found above in the general solution gives

The solution(s) found are the following

Summary

6
4
2
0
2

o
-6
-3
—10
—12

(b) Slope field plot
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(a) Solution plot

Verification of solutions

Verified OK.



2.6.6 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%QS("E, y) =0

Hence 96 0d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

0p
or
0¢

3_3/_

8%¢ _ 8%¢
dz0y ~ OyOx

But since then for the above to be valid, we require that

OM  ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = aa: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
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Comparing (1A) and (2A) shows that

rz+1
z

M(.’E,y) = -
N(z,y) = —i

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz

Using result found above gives

o _o( i)
dy Oy

x
=0
And
ON 0 1
oz @<_§)
=0

Since %—]‘; = %%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)
¢ _

or M (1)
0p
i N (2)

Integrating (1) w.r.t. = gives

oo .
%dx—/de

@dx—/—w+1dx

or = T

¢=—z—In(z)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ 1'(y) (4)
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2 _

But equation (2) says that 3

— . Therefore equation (4) becomes

—i — 0+ f(y) (5)

Solving equation (5) for f'(y) gives

Integrating the above w.r.t y gives

[ o= (L)

fly)=—-In(y) +a

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

p=—c—In(z)—In(y) +a

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

¢ =—z—1In(z) —In(y)

The solution becomes

Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1= e—l—cl

Cl=—1

Substituting ¢; found above in the general solution gives
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The solution(s) found are the following

Summary

(1)

—101
—12%

(b) Slope field plot

(a) Solution plot

2.6.7 Maple step by step solution

Verification of solutions

Verified OK.

Let’s solve

|

0,y(1) = 1}

Highest derivative means the order of the ODE is 1

+1)y
T

y + &

/

Y

Separate variables

Integrate both sides with respect to x
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Jidr = [ —2dz + o
. Evaluate integral

In(y)=—2z—In(z)+c

° Solve for y
y ::e*zjq
o Use initial condition y(1) =1
1=ea7!
° Solve for ¢;
cp=1
° Substitute c; = 1 into general solution and simplify
y=°"
° Solution to the IVP
y=°"

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

dsolve([diff(y(x),x) + ((1+x)/x)*y(x)=0,y(1) = 1],y(x), singsol=all)

N
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v/ Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 16

e B

LDSolve [{y' [x] +((1+x)/x)*y[x]==0,y[1]==1},y[x],x,IncludeSingularSolutions -> jrrue]

11—z

e

y(z) =
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2.7 problem 7

2.7.1 Existence and uniqueness analysis. . . . . ... ... ... ... 246
2.7.2 Solving as separableode . . . . . ... ... 246
2.7.3 Solvingaslinearode . . ... ... ... ... .......... 248]
2.7.4 Solving as homogeneousTypeD2ode . .. ... ... ... ... 249
2.7.5 Solving as first order ode lie symmetry lookup ode . . .. ... 2511
2.76 Solvingasexactode . .. ... ... ... ... .. ... ... 255
2.7.7  Maple step by step solution . . . . . ... ... 259

Internal problem ID [893]
Internal file name [OUTPUT/893_Sunday_June_05_2022_01_53_25_AM_41652620/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 7.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

With initial conditions
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2.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(z)y = q(z)

Where here

Hence the ode is

The domain of p(z) = —_ln(ml—l is
{0<z<1,1<z< o0}

And the point xzg = e is inside this domain. Hence solution exists and is unique.

2.7.2 Solving as separable ode

In canonical form the ODE is

y = F(z,y)
= f(z)g(y)

y(In(z) +1)
zln (x)

Where f(z) = —2@H and g(y) = y. Integrating both sides gives

zIn(z)

_d __de
xln

/ dy = / xm

In (y) = —1In (z) - m@ﬂ»+ﬁ

y=e" In(z)—In(ln(z))+c1

= cie” In(z)—In(In(z))
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Which can be simplified to become

&1

V= zln (x)

Initial conditions are used to solve for c¢;. Substituting £ = e and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1= 6_101

Cci =¢€

Substituting ¢; found above in the general solution gives

B e
y= zln (x)
Summary
The solution(s) found are the following
e
= 1
4 zln (x) (1)
61 WARNTERAREE R R R RN
AW A IR S N RN
5 NI OO ININN N
o NARARRR
AVARRN\RR
2] ~7 VNN
7 1 AN
o ol =N~
y(‘x) =2 y(‘x) :":: \t' ; ;;;/////////)/‘)
4 —5 NVt11177777777rrrrs
\NV1117177777770700
—67 NV 1117777777777
NVt rrr7777777770
— 8 \NV1ttrrrrrrrsss 770
— 104 /\l1’,/////////////
NV 117777777777
~19 IV 1111177777777
005 1 152 253 354 45 5 55 0 1 2 3 4 5
X X
(a) Solution plot (b) Slope field plot
Verification of solutions
_ e
Y= (x)

Verified OK.
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2.7.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor y is

_ ef _ —In(z)-1 dz

l‘l’ z In(x)
— eln(m)—i—ln(ln(z))
Which simplifies to
p=zln(x)
The ode becomes
d
S =0
dz ©y
d

L (win(@)y) =0

Integrating gives
zln(z)y =¢

Dividing both sides by the integrating factor 4 = x In (z) results in

Y= e (x)

Initial conditions are used to solve for c¢;. Substituting £ = e and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1= 6_101

Ci =¢€

Substituting ¢; found above in the general solution gives

I
Y= el (x)
Summary
The solution(s) found are the following
e
= 1
Y= (x) (1)
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7

/
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[
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(a) Solution plot (b) Slope field plot

Verification of solutions

Verified OK.

2.7.4 Solving as homogeneousTypeD2 ode
Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
(W(z)z+ulz)z+ |1+ 1 u(z)x =0
In ()

In canonical form the ODE is

v = F(z,u)
= f(2)g(u)
__uln(z)+1)
B zln (x)
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Where f(z) = 2@+ 5ng g(u) = u. Integrating both sides gives

zIn(z)

2In(z) +1
zln (x)

/%duz/ 21;11(5230) do
)

In(u) =—In(ln(z)) —2In(z) + ¢
e In(In(z))—21n(z)+c2

1
—du = — dx
U

u =

= oo™ In(In(z))—21n(z)

Which simplifies to

Therefore the solution y is

~ zln(2)

Initial conditions are used to solve for cy. Substituting £ = e and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1=coe !

Cy =¢€

Substituting c, found above in the general solution gives

e
Y= (x)
Summary
The solution(s) found are the following
e
= 1
Y= (x) (1)
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61 ARTERRRRAR RN
AARLBRRRRRR RSN NNN
P A R N N
N N2 R SN NN RN,
AYARRNAR
o AR
~ 7 AN
0 0 ——/ N\ ~==
-\ /-
y(x) -2 y(x) :": \\' /fl ?;;//////////))
NVt 177777rrrrrrrm s
4 —5 N1 11r7777 s
NV 1177777770 7rrrs
~4 INVIIT 1777777777777
NV 117777777777
— 81 NV 117777777777
_wod 2NVt s s s
| INVUIL 171777777777
-1 PNV 1117777777777
005 1152253354455 55 o 1 2 3 4 5
X X
(a) Solution plot (b) Slope field plot
Verification of solutions
e
Y= il (z)
Verified OK.
2.7.5 Solving as first order ode lie symmetry lookup ode
Writing the ode as
,__y(n(z)+1)
zln(x)
Yy =uw(z,y)
The condition of Lie symmetry is the linearized PDE given by
Ne + w(ny - §x) - wzé.y - wx§ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 50: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0
n(z,y) =

e In(z)—In(In(x))

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

n

1
/ e~ In(z)—In(In(z)) dy

S is found from

Which results in
S=zln(z)y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Spt+w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

y(In (z) +1)

wiz,y) == zln (z)
Evaluating all the partial derivatives gives
R, =1
R,=0
Sy =y(n(z) + 1)
Sy =z n(z)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as _
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

0 (2A)

0
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

zln(x)y=¢c
Which simplifies to
zln(x)y=¢c

Which gives
C1

V= zln ()

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
Original ode in z,y coordinates coordinates
transformation

ODE in canonical coordinates
(R, 9)

dy _ _y(nz)+1) as _

dx zIn(x) dR —

'S

e
e a

A o s s e

¢
'

U A o o s

4/
//
i

S o e e e

ﬂﬂﬂﬂﬂ R==x

Ratetotated S=zln(z)y R

N
\
%
\

N
N
\
I

PESESEESEZ N

|
IS
|
[
I n =] n 1
— s ~wa NN\ ) Y e
e e N R e e e

—~ e e Sa e N N\
~~a e NN N\
~ e NN N\ N\
NN NN N
NN N NN

Initial conditions are used to solve for c;. Substituting £ = e and y = 1 in the above
solution gives an equation to solve for the constant of integration.

l=e"l¢
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Cci =¢

Substituting c¢; found above in the general solution gives

zln ()
Summary
The solution(s) found are the following
e
Y= (z)
6-
4_
2_
0_
y(x) -2 y(x)
_4-
_6-
_8-
_10.
005 1152253 35445555
X
(a) Solution plot
Verification of solutions
e
Y= e (x)

Verified OK.

2.7.6 Solving as exact ode

BER R RN R R R NN
BEE R RN
AR R RN
A N N O OO
NN\
NN\
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P

A R R
N N s

———

S

VP bt
S
J7 7SS
7SS

o N —————
—_————— e\ ——

| NN NN N Y PP

7
/
/
/
/
/
/

NN

S
—_
[
w

(b) Slope field plot

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,y) + N(z,y)
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We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
el =0
7.0 y)
Hence 06 06 d
Yy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
99
T M
Oz
09
T _N
Ay
But since 5%% = (_,,;9; g; then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
()=o)
(=) )
Comparing (1A) and (2A) shows that
M(z,y) = —%
N(z,y) = —i

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
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Using result found above gives

oM 8 (_ln(m) + 1)

By Oy zln ()
=0
And
oN _ 90 (_1
ox Or\ vy
=0
Since %—A; = %%’, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
0¢
=M 1
o (1)
0¢
— =N 2
o el

Integrating (1) w.r.t. = gives

@dx=/de
ox

o9 . In(z)+1
¢ = —In(z) —In(In () + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢
- — ! 4
=0+ 1) (@
But equation (2) says that g—?‘f = —gl/. Therefore equation (4) becomes
1 :
=, =0+ (5)

Solving equation (5) for f'(y) gives
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Integrating the above w.r.t y gives
, 1
flly)dy= [ (—=|dy
Yy
fly)=—-In(y) +a

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

p=—In(z)—In(ln(z)) —In(y) +c

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

cg=—In(z) —In(In(z)) — In(y)

The solution becomes

V= In(x)z

Initial conditions are used to solve for c;. Substituting z = e and y = 1 in the above
solution gives an equation to solve for the constant of integration.

l=e¢ '@

I
Y= Zhn (x)
Summary
The solution(s) found are the following
e
= 1
Y= Zzhn (x) (1)
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I

005 1 152 253 35 4 45 5 55
X

(a) Solution plot

Verification of solutions

Verified OK.

2.7.7 Maple step by step solution

Let’s solve

[y’x+ (1—!— ﬁ) ]

AR N VN VR N0 N0 VRN
NN
AN NN N
N\

NN NN NN NN

VP Pt
g
g/
7SS
J7 777777
ST

e N\~
—_————ee e\ — —

T s SSNSSNNNNNN L VS Sssrs

7
/7
1777
1777
1777
1777
1177

7
/
/
/
/
/
3

(=}
[\S]

X

(b) Slope field plot

=0,y(e) = 1]

° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
s )
Yy x
. Integrate both sides with respect to x

[Ydo= |
° Evaluate integral
In(y) = —In () -

° Solve for y

1+ ey
——28 g + ¢,
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1
y= lne(z)a:

o Use initial condition y(e) =1
1=

) Solve for ¢;
c=1

° Substitute c; = 1 into general solution and simplify
Y= ohe

° Solution to the IVP

¥y=3z lrf(:c)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 14

Ldsolve([x*diff(y(x),x) + (1+1/1n(x))*y(x)=0,y(exp(1)) = 1],y(x), singsol=a11{

v/ Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 18

‘DSolve[{y'[x] +(1+1/Log[x])*y[x]==0,y[Exp[1]]==1},y[x],x,IncludeSingularSolut#ons -> True]

y ( iL‘) e LoglIntegral(z)+Loglntegral(e)—z+e
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2.8 problem 8

2.8.1 Solving as separableode . . . . . .. ... ... 2611
2.8.2 Solving aslinearode . . . . ... ... ... ... ... 263]
2.8.3 Solving as homogeneousTypeD2ode . . ... ... . ... ... 265]
2.8.4 Solving as first order ode lie symmetry lookup ode . . .. ... 260}
2.8.5 Solvingasexactode . .. .. ... ... ... .. ... ..., 270]
2.8.6 Maple step by step solution . . . . . ... ... L. 271

Internal problem ID [894]
Internal file name [OUTPUT/894_Sunday_June_05_2022_01_53_26_AM_75667082/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 8.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

yrz+ (1+zcot(z)y=0

With initial conditions

2.8.1 Solving as separable ode

In canonical form the ODE is

y = F(z,y)
= f(z)g(y)

(1+zcot(z))y
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Where f(z) = —H%Ot(”) and g(y) = y. Integrating both sides gives

ldy=_1+xcot(x)
Yy

/ldy:/_l—l—xcot(x) i
y T

In(y) = —In(sin(z)) —In(z) + &
y=e" In(sin(z))—In(z)+c1

dz

= cie” In(sin(z))—In(z)
Which can be simplified to become

&1

V= sin (z) z

Initial conditions are used to solve for c;. Substituting z = 7 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

261
2=
™
Ci =T

Substituting ¢; found above in the general solution gives

o
Y= sin (x)x
Summary
The solution(s) found are the following
s
= 1
Y= Sin (z)x (1)
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(b) Slope field plot

(a) Solution plot

Verification of solutions

Verified OK.

2.8.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor y is

—1— t(z)
u _ ef_ zwco ) do

eln(sin(z))-{-ln(m)

Which simplifies to

sin (z) z

u:

The ode becomes

=0

a#y

(sin(z)zy) =0

dz

Integrating gives

sin () zy = &1
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Dividing both sides by the integrating factor u = sin (x) z results in

_ciesc(x)

T

Initial conditions are used to solve for c;. Substituting z = 7 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2Q
2="2
™
Ci =T

Substituting c; found above in the general solution gives

o
 sin(z)z
Summary
The solution(s) found are the following
s
- - 1
Y sin (z) z (1)
2 111 \ TR
ol 11 \ IR
Wity BIRORN
711 Wy TPV
81 111 Y\ TV LV
711 LN T VNN
6 7111 [ A ERRRR
A7 711 AN F VNN
‘ R RR AN/ E RN
N~
y(x) ] yE) AL 71\ NN~
=77 VNN N=—— [\ N
O_
‘ S\ [/ SN\ [ e
Y SNN\N\ N/ s\ [ s
NNNN V77NN 17—
. NNV LT 777~NNV 177
TIANNNVV I 7 oSNV 7
| NNVVET 772NNV 1177
=6 NNVVEET 77NNV 7o
' 050 05 1 15 225 3 35 4 45 -1 0 1 2 3 4
X X
(a) Solution plot (b) Slope field plot
Verification of solutions
T
 sin(z)z

Verified OK.
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2.8.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(z) x on the above ode results in new ode in u(x)
(v (z)x +u(z))z + (1 + zcot (z)) u(z) z =0

In canonical form the ODE is

u = F(z,u)

= f(z)g(v)
u(z cot () + 2)

Where f(z) = % and g(u) = u. Integrating both sides gives

1d __zcot(z )+2dx

/ du—/ xcot(x)+2dx

In(u) = —In(sin(z)) — 2In(z) + ¢
—ln(sm(z)) 21n(z)+c2

u =
= e In(sin(z))—21n(z)
Which simplifies to
uz) sin (z) 2
Therefore the solution y is
Y =2au
zsin (x)

Initial conditions are used to solve for c,. Substituting z = 7 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

202
2="2
™
Cyp =T

Substituting c, found above in the general solution gives

™

sin (z) z

265



Summary
The solution(s) found are the following

s
= 1
Y= sin () z (1)
12 111 \ TN
ol 1111 \ B IEEER
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711 A TV VNN
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y(x) MC T R R 71\ NN~
=77 T VNN === [\ N
0 0
SN\ [ SN [ s
—21 SNNN\WN\ V[ /77NN 7m—
NN\ANNV VI 777N\ 177~
. INNVUL 1777\ 1177~
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—6 NAVVEI 77—\ 1177
" 050 05 1 15 225 3 35 4 45 -1 0 1 2 3 4
X X
(a) Solution plot (b) Slope field plot
Verification of solutions
T
Y= Sin (z)z
Verified OK.
2.8.4 Solving as first order ode lie symmetry lookup ode
Writing the ode as
;L _(1—|—xcot(:1:))y
x
Y =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - gz) - w2€y — wy€ — wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 53: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0
n(z,y)

—e In(sin(z))—In(z)

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case
R==x
S is found from

S = dy

I |~

/e ln(sm(z)) In(z) dy

Which results in
S =sin (z) zy

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sz +CU(.’L',y)Sy
dR R, +w(z,y)R,

(2)
Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

(1+zcot(z))y

W(l’ ) y) = -
Evaluating all the partial derivatives gives

R,=1
R, =0
Sz = y(x cos (z) + sin (z))

Sy =sin(z)z

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dsS
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

s
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.

—0 (2A)

=0

It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

sin (z) zy = ¢4
Which simplifies to
sin (z) zy = 1

Which gives
C1

Y= sin (z)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ _ (I4zcot(x))y ds _ 0
de — T dR —
A RV S I T T N S O S S et
YA R TRV S O S RN S B R SN
VAR T IA AE TR T  B  AN 4
VNS
~a N — ~
»/ML\M?;H\«\/?H\» S(R]
Il B T i R L B B 24
= P AN NN e
e D IR e A =
Sl | s—s Eha Seat
SN AN A (z) 2y R
SRR TR I SR EAN R T o
A R AR R
e R AR E R IR AR
“NVE P ANVVt PP ANV A
ANAVL P ANVt ANt A 4
ANV PP ANVt AN A
AR AR ERIIERVAEREEA

Initial conditions are used to solve for ¢;. Substituting z = 7 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2
o 2a
T

269



Ci =T

Substituting c¢; found above in the general solution gives

™

sin (z) z

y:

Summary

The solution(s) found are the following

(1)

s 7777
]
Ve

———— NN A
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T T
= el

=
=

" 050 05 1 15 2 25 3 35 4 45

(b) Slope field plot

(a) Solution plot

Verification of solutions

Verified OK.

2.8.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(fv,y)£=0
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We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%QS("D ) y) =0
Hence 96 06d
vy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
09
i M
o9
T _N
Oy
But since % = % then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘5: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

() o= (5o

(_Liﬁﬁﬁﬁﬁ)dx+(_l)dy=o (24)

z Y

Therefore

Comparing (1A) and (2A) shows that

1+ xcot(x
M(z,y) = -+ F 2D
1
Nx,y = -
(z,y) y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
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Using result found above gives

oM 8 (_1+xcot(x))

By Oy x
=0
And
oN _ 90 /(_1
ox Or\ vy
=0
Since %i: = ‘96%’, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
09
— =M 1
o (1)
0
— =N 2
o )

Integrating (1) w.r.t. = gives

6—gbdx=/Mdac
ox

@dx:/_l—i—xcot(z)d

z
oz T

¢ = —In(sin(z)) — In (z) + f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9¢
=0 ! 4
2= 0+10) (@
But equation (2) says that g—i = —i. Therefore equation (4) becomes
1 !
——=0+f'(y) (5)
Y
Solving equation (5) for f’'(y) gives
1
/ e —
Fly)=—
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Integrating the above w.r.t y gives

fros=[ (L)

fy)=-In(y) +a

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢p=—In(sin(z)) —In(z) —In(y) +a

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

¢ = —In(sin (z)) — In (z) — In (y)

The solution becomes
e 4

 sin(z)z

Initial conditions are used to solve for c;. Substituting z = 7 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

9 _ 2e” 4
T
¢y =—In(m)

Substituting c¢; found above in the general solution gives

o
Y= sin (z)x
Summary
The solution(s) found are the following
T
= 1
Y= Sin (z)x (1)
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Verification of solutions

2.8.6

Verified OK.

Maple step by step solution

Let’s solve
[Yz+ (1 +zcot(z)y=0,y(3) =2]
Highest derivative means the order of the ODE is 1

/

Y

Separate variables
y _ 14z cot(x)

y x

Integrate both sides with respect to z
/ %dw =/ ——lﬂ';"t(“’) dz + ¢
Evaluate integral

In(y) = —In(sin(z)) —In(z) + ¢;
Solve for y

1
y= ms?n(m)
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e  Use initial condition y(%) = 2

_ 2e
2= 22
° Solve for ¢;
C = In (7'(' )
) Substitute ¢; = In (7) into general solution and simplify
y= csc(z)m
° Solution to the IVP
y = cscfc:v)ﬂ'

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

N J

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 11

Ldsolve([x*diff(y(x),x) + (1+x*cot (x))*y(x)=0,y(1/2%Pi) = 2],y(x), singsol=a11}>

_csc(z)m

y(z) = —

v/ Solution by Mathematica
Time used: 0.099 (sec). Leaf size: 66

LDSolve[{y'[x] +(1+x*Cot[x])*y[x]==O,y[Pi/2]==2},y[x],x,IncludeSingularSoluti?#s -> True]

y(z) = 212 (1 — *®) " exp (—1—122'(—6 PolyLog (2, €**) — 6z(z + 2i) + 7° + 6i7r))
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2.9 problem 9

2.9.1 Existence and uniqueness analysis. . . . . .. .. ... ... ..

2.9.2 Solving as separable ode
2.9.3 Solving as linear ode

2.9.4 Solving as homogeneousTypeD2ode . . ... ... .......
2.9.5 Solving as first order ode lie symmetry lookup ode . . .. ...

2.9.6 Solving as exact ode

2.9.7 Maple step by step solution

Internal problem ID [895]

273
28()
2311
230
2891

Internal file name [OUTPUT/895_Sunday_June_05_2022_01_53_28_AM_47903859/index . tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.

Brooks/Cole 2001

Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41

Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program

"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

With initial conditions
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: "exact", "linear", "separable",



2.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(z)y = q(z)

Where here
2z

p(z) = a2 +1

q(z) =0
Hence the ode is

2zy
/
0

y 241

The domain of p(z) = —zgil is

{—00 <z < o0}
And the point xzq = 0 is inside this domain. Hence solution exists and is unique.

2.9.2 Solving as separable ode

In canonical form the ODE is

y/ = F(.’E,y)
= f(z)g(y)
_ 2xy
a2+

Where f(z) = (y) = y. Integrating both sides gives

1 2z

—dy = d
Y y x2+1 o
1

/ a:2+1

In(y) =ln(z>+1) +¢
eln(:/v +1)+01

)=
y:
=c(2®+1)

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2201
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y = 21" +2

Y

Substituting c¢; found above in the general solution gives

The solution(s) found are the following

Summary

T T T T T T T T
(=3 0 O <t N (=} e o

A = = =~ — =

(b) Slope field plot

1@

_ 2z
x2+
1

o/
2 +1
278

y=22>+2

I

(a) Solution plot

20
18
16
141
12
10
8
6
4

Entering Linear first order ODE solver. The integrating factor y is

2.9.3 Solving as linear ode

Verification of solutions

Verified OK.



The ode becomes

Integrating gives

4=
M

_<x2i1) B

y =
241

&1

Dividing both sides by the integrating factor u = E%H results in

Z/=Cl($2+1)

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 2 in the above

solution gives an equation to solve for the constant of integration.

2261

Cl=2

Substituting c; found above in the general solution gives

Summary

y=2z2+2

The solution(s) found are the following

y =2z% +2 (1)
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(a) Solution plot

(b) Slope field plot
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Verification of solutions

y=22%+2
Verified OK.

2.9.4 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(z) z on the above ode results in new ode in u(z)

v (z) z + u(z) — 252 1:_@1) -

In canonical form the ODE is
' = F(z,u)
= f(z)g(u)
_u(z®—1)
Cz(z2+1)
Where f(z) = wg’mz—jrll) and g(u) = u. Integrating both sides gives

1 2
—du=—x L dx
u z(z2+1)

2 _
/ldu =/x—1dw
u z(x2+1)
In(u)=-In(z)+In(z°+1) +c
u=e" ln(w)+ln(:c2+1)+cz

= e In(z)+1In(z2+1)

w(z) = o3 (z + é)

Y =TU

(=+2)
=zc| T+ —
T

Initial conditions are used to solve for c;. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

Which simplifies to

Therefore the solution y is

2202
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Q==2
Substituting ¢, found above in the general solution gives
y=22>+2

Summary
The solution(s) found are the following

y = 2z% 42 (1)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y=2x*+2
Verified OK.

2.9.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y = 2%
2 +1
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(’?y - gx) - Wny - Wx€ — Wyl = 0 (A)
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The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7

Table 56: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class

Form I3 n
linear ode vy = f(@)y(z) + g(z) 0 el fde
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(x) 0 1
quadrature ode Yy =9(y) 1 0
homogeneous ODEs of | y = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a4 bz + cy)™ 1 —2
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) x? zy

. . z e— J bf(z)dz—h(x) — Jbf(z)de—h(z)

First order special | ' = g(z) M@+ + f(x) e fz)e @)
form ID 1

polynomial type ode

! amzt+bhiyta
Yy az2z+bay—+ca

ai1boz—agbiz—bica+bacy

a1bey—agbiy—aice—azcy

a1ba—aszb1

a1ba—aszb;

Bernoulli ode Yy = f(z)y+ g(x)y™ 0 e~/ (n=Df(@)dzyn
Reduced Riccati v = filz)y + fo(z) ¥ 0 e~ [ frdz
The above table shows that
§(z,y) =0
n(z,y) =2 +1 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
13 n
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The above comes from the requirements that (5 a% + n%) S(z,y) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

n
1
_/x2+1dy

)
S =
2 +1

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS Sy +w(z,y)Sy
dR R, +w(z,y)R,

2)

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

(z,1) 2zy
w(z,y) =
Y 2+ 1
Evaluating all the partial derivatives gives
R, =1
R,=0
___ym
@+’
1
Vo241
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
ds
— =0 2A
iR (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

ar ="
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=c (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
y __ ¢
z2+1
Which simplifies to
y __ &
z2+1
Which gives
Yy=c (z2 + 1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ 2xy ds __ 0
de = z2+1 dR —
NANMAN AL AN s
NYNNNNANNAN AP S
NNNNNNNNNGA PP 4
WS W 1110277
A ~
\\\\\xﬁﬁ\\/ffff///// S(R]
SNNNNNNNNK A A 2
NN NNNNNNN T AT A o
~ NN\ u|F T g g v v v v~ R =
e e | I e y = >3 5 T
Pl O S e — R
om A 22222 NN NN N 2 +1
AAZZZ27 L AN N NN N N Y >
AAAAA A F AN YN N Y NN N N
FAAAAPEE ANV VNN NN NN
AALEFPPE LNV VNN NN
AR NN :
AAAPLAE ANV VNN
JV AV I I I I I AN SRRV NN

Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2=01
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Q==2
Substituting ¢; found above in the general solution gives
y=2x>+2

Summary
The solution(s) found are the following

y = 2z° 42 (1)
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NN NNV NNNNZ T
. VANVVVVNNNZ 7110117
() ZIVYWN NSNS
y(x) y NANNVNNNNNZ 71177
10 A NNNNNNNNNNS 71111 ) 777
NNANNNNNNZ 77171777
8 SINNNNNNNNNNS 7777 ) 1777
NNANNNNNNNNS 717777
p ANNNNNNNNNNS 7777777
SNNNNNNNNN~- 7 A 7777
A HANNANNNNNNNN\~ ] 777
SNNONN\NNN\NN\NN\\N~— g S S S
N 29 NN TS
-2 —1 0 1 2 3 -3 -2 —1 0 1 2 3

a) dolution plo ope field plo
Solut lot b) SI field plot

Verification of solutions

y= 222 + 2
Verified OK.

2.9.6 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Eg¢uhy):()
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Hence

0p O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
09
M
ox
09
T _N
Ay
But since %g; = % then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
2 2
8‘5; gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(—x;i 1) dx+<%) dy = (2A)

Comparing (1A) and (2A) shows that
T
z?2+1

M(xay):_
_ 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

N(z,y)

oM _ 0N
Jy ox
Using result found above gives
om_o( _» )
Jdy Oy\ z?2+1
=0
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And

oN_o(1
ox  O0r\2y

=0
Since %i; = %%’, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
o9
— =M 1
o (1)
o
2 =N 2
5 2

Integrating (1) w.r.t. z gives

op .
de—/de

0¢ z
a—wdxz/—xQ_'_ldx
o= 3D | g Q@

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ 1'(y) (4)

But equation (2) says that g—i = ﬁ Therefore equation (4) becomes

% — 0+ f(y) (5)

Solving equation (5) for f'(y) gives
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Integrating the above w.r.t y gives

/f'(y) dy = / (%) dy

f(y)=¥+01

Where c¢; is constant of integration. Substituting result found above for f(y) into

equation (3) gives ¢

In(z? +1) N In (y)
2 2

¢=_

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

In(z%+1) N In (y)
2 2

Cl = —

The solution becomes
y=e"(z>+1)

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

Substituting ¢; found above in the general solution gives
y=21"+2

Summary
The solution(s) found are the following

y = 2z° 42 (1)
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24 | .
-2 -1 0 1 2 3
(a) Solution plot
Verification of solutions
0.2
y=22"+2

Verified OK.

2.9.7 Maple step by step solution

Let’s solve

2zy
241

[y, - 0) y(O) = 2}

/

Y

Separate variables

y 2z

y  x2+1

f%dx=fm22—_“hdx+cl
Evaluate integral
In(y)=ln(z?+1)+ ¢
Solve for y

y=e(z’ +1)
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(b) Slope field plot

Highest derivative means the order of the ODE is 1

Integrate both sides with respect to x




° Use initial condition y(0) = 2

2=¢e4
) Solve for ¢;
c1 =In(2)
. Substitute ¢; = In (2) into general solution and simplify
y=2x2+2
° Solution to the IVP
y=2r2+2

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

Ldsolve([diff(y(x),x) - (2%x)/(1+x~2) *y (x)=0,y(0) = 2],y(x), singsol=all) J

y(z) = 22° + 2

v/ Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 12

LDSolve[{y'[x] —(2*x)/(1+x‘2)*y[x]==0,y[0]==2},y[x],x,IncludeSingularSolutionéJ—> True]

y(z) = 2(z* +1)
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2.10.4 Solving as homogeneousTypeD2ode . . . ... ... ... ... 294
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2.10.6 Solvingasexactode . .. ... ... ... ... ... ... 299
2.10.7 Mabple step by step solution . . . . . ... ... 3021

Internal problem ID [896]
Internal file name [OUTPUT/896_Sunday_June_05_2022_01_53_29_AM_56359127/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 10.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

With initial conditions
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2.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(@)y = q(z)

Where here
k
p(z) = T
q(z) =0
Hence the ode is
k
'+ o
T

The domain of p(z) = £ is
{r<0VvO0<uz}

And the point zy = 1 is inside this domain. Hence solution exists and is unique.

2.10.2 Solving as separable ode

In canonical form the ODE is

Where f(z) = —% and g(y) = y. Integrating both sides gives

1dy——ﬁdsc

/ dy—/——dw

) = —kln( )+Cl
y=e —kln(z)+c1

— cle_k In(z)

Which can be simplified to become

Y=cCcr
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Initial conditions are used to solve for c¢;. Substituting = 1 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

3=Cl

C = 3
Substituting c¢; found above in the general solution gives
y=3z"

Summary
The solution(s) found are the following

y=3z7" (1)

Verification of solutions

Verified OK.

2.10.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor y is

p=e I %d:c
— ek: In(z)
Which simplifies to
p=z"
The ode becomes
=0
d  k
@(w y) =
Integrating gives
xk?/ =G
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Dividing both sides by the integrating factor u = z* results in
Y= clx_k

Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

3=Cl

C1 = 3
Substituting ¢; found above in the general solution gives
y=3z""

Summary
The solution(s) found are the following

Verification of solutions

Verified OK.

2.10.4 Solving as homogeneousTypeD2 ode
Using the change of variables y = u(z) « on the above ode results in new ode in u(z)
u'(z) x + u(z) + ku(z) =0
In canonical form the ODE is
v = F(z,u)

= f(2)g(u)
(-1—kK)u

Where f(z) = ==% and g(u) = u. Integrating both sides gives

_1_kdx
x

/ldu=/_1_kdx
U z
In(u) =(—1—k)In(z)+c
u= e(—l—k) In(z)+c2

1
—du =
u

— Cge(_l_k) In(x)
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Which simplifies to

Therefore the solution y is

Y = TU

= CQx_k

Initial conditions are used to solve for c,. Substituting x = 1 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

3202

C2:3

Substituting c, found above in the general solution gives

y=3z"

Summary
The solution(s) found are the following

y=3c"" (1)

Verification of solutions

y=3z"
Verified OK.

2.10.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

,_ _ky
X
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ﬂy - 5:1:) - w2€y - fo — Wyl = 0 (A)

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 59: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g() ehl@)+by 4 f(z) | &= ! bf;z;x_h(z) fele f;(:)cm_h(w)
form ID 1
polynomial type ode y = —2512;312 “162””—;‘12521f;:g102+b201 “11’29_232351‘;;162_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
n(z,y) = e”*® (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

1
S=/—dy
n
1
z/e—kln(w)dy

S = ek ln(x)y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

k
w(z,y) = —f
Evaluating all the partial derivatives gives
R, =1
R,=0
Sy = kyxF?
S, = z*

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

0 (2A)

0
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integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R) =c (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

mky =0
Which simplifies to

$ky =0
Which gives

Y = clx_k

Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

3:(31

01:3

Substituting ¢; found above in the general solution gives

y=3z""
Summary
The solution(s) found are the following
y=3c"" (1)

Verification of solutions

Verified OK.
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2.10.6 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%QS("E, y) =0

Hence 96 0d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

0p
or
0¢

3_3/_

8%¢ _ 8%¢
dz0y ~ OyOx

But since then for the above to be valid, we require that

OM  ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = aa: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y) dz +N(z, y) dy = 0 (1A)
Therefore
(=) = () o=
(—i) dx+(—kiy) dy =0 (24)

299



Comparing (1A) and (2A) shows that

1
M(.’L’,y) = _5

1
N(x,y)=—k—y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM ON
ER
Using result found above gives
oM 0 1
-5
=0
And
ON _ 0 (_i>
or Ox\ ky
=0

Since %—]‘; = %%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)
¢ _

or M (1)
0p
i N (2)

Integrating (1) w.r.t. = gives

op .
a—mdx—/de
0¢ 1

¢ =—In(z)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ 1'(y) (4)
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% _ _

But equation (2) says that L Therefore equation (4) becomes
Y %y

Oy
— =0+ /) )
ky y
Solving equation (5) for f'(y) gives
) = — -

Integrating the above w.r.t y gives

/f’(y) dy=/(—kiy) dy

fly) = —#

+c
Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

b=l - "W ¢,

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and cy constants into new constant c¢; gives the solution as

In (y)
k

g =—In(z) -

The solution becomes

y = e—k: In(z)—c1k

Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

3=eF

In (3)
k

Ci = —
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Substituting c¢; found above in the general solution gives

y=3z"

Summary
The solution(s) found are the following

Verification of solutions

Verified OK.

2.10.7 Maple step by step solution

Let’s solve
[y + % =0,y(1) = 3]
° Highest derivative means the order of the ODE is 1

/

Y
° Separate variables
v — _k
Y z
° Integrate both sides with respect to x

f%da::f—gdx+cl

° Evaluate integral
In(y) = —kln(z) + ¢
° Solve for y
y = e~FIn(@)+er
° Use initial condition y(1) = 3
3 =e4
° Solve for ¢;
c1 =In(3)
. Substitute ¢; = In (3) into general solution and simplify
y=3z7F

° Solution to the IVP
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 11

Ldsolve([diff(y(x),x) +k/x*y(x)=0,y(1) = 3],y(x), singsol=all) J

y(z) = 3z~*

v/ Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 12

LDSolve[{y'[x] +k/x*y [x]==0,y[1]==3},y[x] ,x,IncludeSingularSolutions -> True] J

y(x) — 3z*
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Internal problem ID [897]
Internal file name [OUTPUT/897_Sunday_June_05_2022_01_53_30_AM_19393587/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 11.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

Y +tan(kz)y =0

With initial conditions
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2.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

¥ +p(@)y = q(z)

Where here

Hence the ode is
Y +tan(kz)y =0

The domain of p(z) = tan (kz) is

m(1+2_251) =(1+2_Z51)
{x < ok V 9% <z

But the point £y = 0 is not inside this domain. Hence existence and uniqueness theorem
does not apply. There could be infinite number of solutions, or one solution or no solution
at all.

2.11.2 Solving as separable ode

In canonical form the ODE is

y = F(z,y)
= f(z)g(y)
= —tan (kx)y

Where f(x) = —tan (kx) and g(y) = y. Integrating both sides gives

1dy = —tan (kx) dz

/ dy—/—tan (kz) dz

In (y) = In ( coz(kr)) b

In(cos(kz))
y = o n coZ 2) 4 ey
In(cos(kz))
= C1€
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Which can be simplified to become

=

y = c; cos (kx)

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2201

Cl=2

Substituting c¢; found above in the general solution gives

Bl

y = 2cos (kz)

Summary
The solution(s) found are the following

==
—~~
—
N~—r

y = 2cos (kz)

Verification of solutions

=

y = 2cos (kz)
Verified OK.

2.11.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor y is

— ef tan(kz)dz

1
_ In(cos(kzx))
= e k
Which simplifies to
[ = COS (kx)_%
The ode becomes
d
L =0
dxuy
% (cos (kx)_% y) =0
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Integrating gives
cos (kz)_% y=oc

Dividing both sides by the integrating factor u = cos (kw)_% results in

=

y = c; cos (kx)

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2=Cl

Cl=2

Substituting c¢; found above in the general solution gives

=

y = 2cos (kz)

Summary
The solution(s) found are the following

EI
—~~
—
~

y = 2cos (kz)

Verification of solutions

ks

y = 2cos (kz)
Verified OK.

2.11.4 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(z) z on the above ode results in new ode in u(z)
u'(z) x + u(z) + tan (kx) u(z) z =0

In canonical form the ODE is
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Where f(z) = _tan(kz)etl ond g(u) = u. Integrating both sides gives

T

ldu:_tan(kx)x+1dx

u x
/ldu=/—tan(kx)x+1dx

u x
ln(u)=w—ln(kx)+cz

In kz))
U= eW—ln(kw)-l—CQ

In(cos(kz))
=coe  F In(kzx)

Which simplifies to

1
_ cycos (kx)*
u(z) = .
Therefore the solution y is
Y = zU
_ cyc08 (kz)%
B k

Initial conditions are used to solve for c;. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

(&)
2=

k
02:2k

Substituting c, found above in the general solution gives

Bl

y = 2cos (kz)

Summary
The solution(s) found are the following

=
~~
—
N—r

y = 2cos (kz)

Verification of solutions

Ell

y = 2cos (kz)

Verified OK.
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2.11.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y' = —tan (kx)y

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - fz) - w2€y —wg€ — Wy = 0

(A)

The type of this ode is known. It is of type 1linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7

Table 62: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(z) 0 el fd=
separable ode Yy = f(z)g(y) % 0
quadrature ode y = f(x) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢/ = f (%) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | 3/ = Zé +g(x) F (%) z? Ty
first IDoider special | i = g(z) eh@)+by f(z) e_f”f:z# flz)e” fgbga)c)dz—h(w)
orm

polynomial type ode

/ — a1ztbhiyta
Yy az2z+bay+c2

a1baz—aobix—bico+bacy

a1b2y—a2b1 Yy—ai1c2—azCy

a1ba—asgby

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

¢= /(=Df (@)dzyn

Reduced Riccati

Y = fiz)y + folz) y?

e J frdz
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The above table shows that

§(z,y) =0
In (1+tan(kz)2)

n(z,y) =e = (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

der dy
—=-—==d

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

S is found from

U
|

dy

/ 1+tan(k:a:) dy

I |+

Which results in

ln(\/1+tan(kw)2)
S = ek gy

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = —tan (kz)y
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Evaluating all the partial derivatives gives

R, =1

R,=0

Sz = ysec (kx)% tan (kz)
Sy = sec (kz)%

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

0 (2A)

0

S(R)=c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

ysec (kx F=g
Which simplifies to
ysec (kx)% =q

Which gives

e

y = c; sec (kx)~

Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2=Cl

01=2
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Substituting c¢; found above in the general solution gives

2 —1 E
v= <cos (kz) >
Summary

The solution(s) found are the following

=) »

=)

2.11.6 Solving as exact ode

Bl

Verification of solutions

e

Verified OK.

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

dy
x
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
vy _
oxr  Oydr 0 (B)
Comparing (A,B) shows that
99
M
ox
99
T _N
Oy
But since ;%g; = 8‘9—;% then for the above to be valid, we require that
oM _oN
oy Oz
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If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘?: ;’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
1
<—§) dy = (tan (kz)) dz
(— tan (kx))dz + (—i) dy=0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —tan (kz)
1
N(z,y) = ——
(z,y) y
The next step is to determine if the ODE is is exact or not. The ODE is exact when

the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
— = —(—tan(k
= 5 (—tan (ko))
And
oN _ 90 (_1
oxr Or\ vy
=0
Since %i; = %, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

96
g—x—M (1)
¢ _
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Integrating (1) w.r.t. z gives

@dx:/de
or

% dz = /—tan (kz)dz
_ In(sec(kz)?)
6= ) L gy ®)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
A 4
= 0+1W) (@
But equation (2) says that g—i’ = —%. Therefore equation (4) becomes
1 ’
—==0+f(y) (5)
Y
Solving equation (5) for f’'(y) gives
fy) = ~y

Integrating the above w.r.t y gives

./fﬁwdy=i/(—$)dy
fy)=-In(y) +a

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

In (sec (kx)?)

¢=- 2k

—In(y)+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢y constants into new constant c¢; gives the solution as

In (sec (kz)?)
e Eal) i y)

Cl = —
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The solution becomes

1
2clk+1n<ﬁcos(kz) )
y = e 2k

Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2=

C1 = —In (2)

Substituting ¢; found above in the general solution gives

2 2k
V= 2(1+cos(2kx))

Summary
The solution(s) found are the following

v= 2(1++s<2m>>_;k M

Verification of solutions

9 2 T 2%
v= (1 + cos (2kx)>

Verified OK.

2.11.7 Maple step by step solution

Let’s solve
[y’ + tan (kz) y = 0,y(0) = 2]
° Highest derivative means the order of the ODE is 1

/

Y
° Separate variables
Y = —tan (kz)
° Integrate both sides with respect to x

f%dwz [ —tan (kz)dz + ¢
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° Evaluate integral

In( 1+tan(kx)?
In(y) = —% +c

° Solve for y

1
—2c1 k+1n<ﬁcos(kz) )

y:e_ 2k

° Use initial condition y(0) = 2

2=¢e%
° Solve for ¢;
1 =In(2)
. Substitute ¢; = In (2) into general solution and simplify
~ 3%

y = 2(sec (kz)?)
° Solution to the IVP

y = 2(sec (kav)z)_i

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v Solution by Maple
Time used: 0.032 (sec). Leaf size: 18

-

Ldsolve([diff(y(x),x) +tan (k*x) *y (x)=0,y(0) = 2],y(x), singsol=all)

\ 4

y(z) = 2(sec (kz)?) "%
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v/ Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 15

e B
kDSolve [{y' [x] +Tan[k*x]*y[x]==0,y[0]==2},y[x],x,IncludeSingularSolutions -> T#ue]

y(z) — 2+/cos(kzx)
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2.12 problem 12
2.12.1 Solving as quadratureode . . . . . . ... ... ... ... .. 318
2.12.2 Maple step by step solution . . . . ... ... ... ... ... . 319

Internal problem ID [898]
Internal file name [OUTPUT/898_Sunday_June_05_2022_01_53_32_AM_13100521/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 12.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

y+y =1

2.12.1 Solving as quadrature ode

1
/—_3y+1dy—/dx

Integrating both sides gives

In(—
3
Raising both side to exponential gives
1
- = e*ta
(=3y+1)3
Which simplifies to
1 T
— =o€
(=3y+1)3
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1

3

e—3z N
3
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——— e 7 N NS —— [
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——— -~~~ _~ 7 \ / N T — —
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———e e 7 N NN — r
e =~ _~_~ 7 \ N N ST —— I
——— - _~ 7 \ / | N —
—_—— = = _ 7 \ / N TS —— — L

The solution(s) found are the following

Summary

T T T T T T T
on N — ) — N on

X
B _e—3m N
V=733 T3
319

Figure 81: Slope field plot
1

Highest derivative means the order of the ODE is 1

/

Let’s solve

3y+y

Y

Separate variables

2.12.2 Maple step by step solution
[ J

Verification of solutions

Verified OK.



v
—3y+1 1

. Integrate both sides with respect to x
f#/“dxzfldx-l—cl
° Evaluate integral

In(— 1
_n( '?éy_’_):x_'_cl

° Solve for y
y=—5 43

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

Ldsolve(diff(y(x),x) +3*y(x)=1,y(x), singsol=all)

1
y(x) == +cre™
3
v/ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 24

LDSolve[y'[x] +3*y[x]==1,y[x] ,x,IncludeSingularSolutions -> True]
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2.13 problem 13

2.13.1 Solving as linearode . . . . . . ... ... ... ... ... .. 321
2.13.2 Solving as first order ode lie symmetry lookup ode . . .. . .. 323]
2.13.3 Solvingasexactode . . . ... ... ... ... ... 3271
2.13.4 Maple step by step solution . . . . . ... ... 332

Internal problem ID [899]
Internal file name [OUTPUT/899_Sunday_June_05_2022_01_53_33_AM_13407723/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.

Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41

Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

2.13.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(x)y = q(z)

Where here
rz—1
p(z) =——
2
q(z) = T
Hence the ode is
y/_ (x_]-)y:_z
T T
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The integrating factor u is
p=e J —ET_ld:t

e—z—}-ln(m)

Which simplifies to

The ode becomes

Integrating gives
e xy = / —2e *dx
e fry=2e"+¢

Dividing both sides by the integrating factor u = x e~ results in

T

2eTe™ " + c1€

y =
iy x
which simplifies to
cie” +2
y =
x
Summary
The solution(s) found are the following
cie® +2
= 1
y " 1)
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Figure 82: Slope field plot

Verification of solutions

cie” +2
y:
T

Verified OK.

2.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

,_yx—y—2

y_—
xr

Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — W2§y —wef —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 66: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

n(fL', y) — ex—ln(x) (Al)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dz _dy _

ds
§ n

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

1
S = / —dy
n
1
:/ex—ln(x)dy

S=e"xy

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sp+w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

yr —y — 2
wiz,y) = T

Evaluating all the partial derivatives gives

R, =1

R,=0

S =e"y(l—1x)
Sy=ze”

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

—2e " (2A)

—2¢° R
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=2eF+¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

ye lr=2e"+4¢
Which simplifies to

ye lr=2e"+4¢
Which gives

(27 +¢p)€”
x

y:

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . )
.. . . : ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ yz—y—2 dS _ _o9,.—R
de — T dR — 2e
Prttt ittt ttt Db AN N s
P b bt bttt iAottt LN N —————s
EERERERER NI, Ll Nt
UMY AEhesses
N N T —b—b—b—b>—b
ffffffﬂ;x];)?;u\ﬁ////// SWH\\\.\ ﬂﬂﬂﬂﬂﬂ
FEPPEEEE AN NN Ly 3IN e
PRELPLEE L N N r oy VL AN e
O A A R T I I g R— LN A
AAZ2272 22 PN N N e =T RN .
RS REE U NN S oo RTINS T
N o S — e~
N [ R ey RIS N
R AR L e
NN | MO VNN NENENENN | NS
IR Y N N NN N
N A LN N m————s
A RN N
DR AR R A NS NN LY N ———s
R A NN DL N e Nt
Summary
The solution(s) found are the following
(2e % +cy)e€”
y="—"""1 (1)

T
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Figure 83: Slope field plot

Verification of solutions

(2e™+cy)¢€”

y:
T

Verified OK.

2.13.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

M(z,) + N(z,9) 2 =0 *)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d

Hence 96 06 d
Yy _
or + oydr 0 (B)
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Comparing (A,B) shows that

But since % = % then for the above to be valid, we require that

oM _ ON

9y Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘?: gy = 8{9: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

dy = <—(1—1>y—2> dx
x x
1 2
((——1>y+—)dx+dy=0 (2A)
x x
Comparing (1A) and (2A) shows that

Therefore

M(z,y) = <1—1)y+§

T

N(z,y)=1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
oy Oz

Using result found above gives

D (1 1),42)
oy Oy\\z T s
== -1
z
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And

Since 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

oM ON
A= (a_y_%>

-1
X

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdz
— ef i—l dz
The result of integrating gives
w= e—a:—l—ln(z)
=ze ”

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

And
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+ N _ 0
dx
_ —oy Y
_ -1 ) T z\ 9 _
(~((z-1y—-2)e™) + (ze )dx 0
The following equations are now set up to solve for the function ¢(z,y)
op —
T _-M 1
o (1)
0p —
— =N 2
o )
Integrating (1) w.r.t. z gives
@ dx = / Mdx
ox
0p _
9 dz / (z—1)y—2)e®dz
¢=e"(yz—2)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9 _

5 = e+ 1) @

But equation (2) says that g—z = z e~ . Therefore equation (4) becomes
ze " =ze "+ f'(y) (5)

Solving equation (5) for f'(y) gives
f'y) =0
Therefore
fly) =a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
p=e"(yz—2)+c
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and

combining ¢; and cy; constants into new constant c; gives the solution as

The solution(s) found are the following

The solution becomes

Summary
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Figure 84: Slope field plot
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Verification of solutions

Verified OK.



2.13.4 Maple step by step solution

Let’s solve
y+G-Yy=—2
° Highest derivative means the order of the ODE is 1

/

Yy

° Isolate the derivative
Y = (Z—zl)y _ %

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y — (z=1l)y _ _2

° The ODE is linear; multiply by an integrating factor u(x)

u(z) <y, _ (x—l)y) — _2u(@)

o Assume the lhs of the ODE is the total derivative & (u(z) y)
ww) (v = ) = @)y + ue)y

e  Isolate y/(x)

W () = —Hae=l)

° Solve to find the integrating factor
ulz) =ze™®

° Integrate both sides with respect to x

[ (E(u(z)y)) de= [ —2”7(96)dz +c
° Evaluate the integral on the lhs

p)y=[ —Q“T(x)dx + ¢

° Solve for y
T
¥="u@
o Substitute p(z) = ze™*
—2e%d
y= Lo
° Evaluate the integrals on the rhs
Y= 2ee__°”z-;cl
. Simplify
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c1e®+42

Y=

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

|dsolve(diff(y(x),x) +(1/x-1)*y(x)=-2/x,y(x), singsol=all)

_ e®cy + 2

y(z) .

v/ Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 17

LDSolve[y'[x] +(1/x-1)*y [x]==-2/x,y[x] ,x,IncludeSingularSolutions -> True]

2+ cle‘”

y(z) = —
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2.14 problem 14

2.14.1 Solving as linearode . . . . . . . .. ... ... ... ... 3341
2.14.2 Solving as first order ode lie symmetry lookup ode . . ... .. 336
2.14.3 Solvingasexactode . . . ... .. ... ... ... ... 3401
2.14.4 Maple step by step solution . . . . . ... ... 345

Internal problem ID [900]
Internal file name [OUTPUT/900_Sunday_June_05_2022_01_53_34_AM_57306810/index . tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 14.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

2

yr+vy =xe”

2.14.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
p(z) =2z
q(z) =ze™®
Hence the ode is
yr+y =xze™®
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The integrating factor u is

The ode becomes

Integrating gives

Dividing both sides by the integrating factor p = e results in

)
x2e™® 2

9 + cie

—e z +c
Y= 5 1
Summary

The solution(s) found are the following

y:

which simplifies to
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Verification of solutions

Verified OK.

2.14.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

=-2yr+zx e
w(z,y)

y/
yl

The condition of Lie symmetry is the linearized PDE given by

0

Nz + w(ny - fz) - w2€y - wx€ - Wy77

The type of this ode is known. It is of type linear. Therefore we do not need to solve

the PDE (A), and can just use the lookup table shown below to find £,
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Table 69: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

dsS
§ 7

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

1
Sz/—dy
n
1
=/_2dy
ez

S=e"y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Set+w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by
$2

w(z,y) = —2yx +xe”

Evaluating all the partial derivatives gives

R, =1
R,=0

Sy = 2xe’”2y
Sy =

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
ds
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

ds
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

x (2A)

R
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integration when the ode is in the canonical coordiates R, S. Integrating the above
To complete the solution, we just need to transform (4) back to z,y coordinates. This
The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

gives

results in

Which simplifies to
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¢(z,y) =0

d
M(z,y) + N(z,y) 52 =0
.

Figure 86: Slope field plot

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

Entering Exact first order ODE solver. (Form one type)

2.14.3 Solving as exact ode
ode. Taking derivative of ¢ w.r.t. x gives

To solve an ode of the form

Verification of solutions

Verified OK.
Hence



Comparing (A,B) shows that

99 _
or
9 _ N
9y
But since % = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
dy = (—ny + xe_’”Z) dz
<2yx —z e_””2> dz+dy=0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) =2yz —ze™™
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM 0 g2
=2z

And

ON 0

o~ o
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

4] (aM aN)

~ N\dy Oz

= 1((2z) - (0))

=2z

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

M:efAdm

— ef2zdz

The result of integrating gives

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M =uM

="’ <2yx —x e_wQ)

= 2xe”"2y -

And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is
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The following equations are now set up to solve for the function ¢(z,y)

¢

or M (1)
06

Integrating (1) w.r.t. = gives

0 . [+
%dz—/de

%dx = /2xew2y—xdx
oz

2

b= -5 +e"y+ 1) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9 _

oo =+ 1) @

But equation (2) says that g—i = %, Therefore equation (4) becomes

2

e =e” + f'(y) (5)

Solving equation (5) for f'(y) gives
f'y)=0
Therefore
fly) =a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
2
x
p=-5+tey+a
But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

$2

e = _? +em2y
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e (2% + 2¢))

The solution(s) found are the following

The solution becomes

Summary
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Figure 87: Slope field plot

Verification of solutions
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Verified OK.



2.14.4 Maple step by step solution

Let’s solve
x2

yx+y =ze”
° Highest derivative means the order of the ODE is 1

/

Yy

° Isolate the derivative
Y =—-2yz+ze "

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
r+y =ze ™

° The ODE is linear; multiply by an integrating factor u(x)
wz) 2yz +y) = p(z) ze™™

o Assume the lhs of the ODE is the total derivative £ (u(z) y)
u(z) Cyz +y') = p'(2)y + u@)y'

e  Isolate p/(x)
W(z) =2p(z)z

° Solve to find the integrating factor
wa) = e

° Integrate both sides with respect to x

[ (E(u(=z)y)) dz = [ p(z) redr + ¢
° Evaluate the integral on the lhs

w(z)y = f wu(x) re ' dr + ¢
] Solve for y

_ Ju@)ze = doter
y= u(x)

o Substitute pu(z) = e*”

2 2
Jze e drtcy
y = ——

e$

° Evaluate the integrals on the rhs
12
y= 25"
° Simplify
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

Ldsolve(diff(y(x),x) +2*x*xy (x) =x*exp(-x~2) ,y(x), singsol=all) J

22 + 2¢;) e~
y(@) = ¢ 21)

v/ Solution by Mathematica
Time used: 0.053 (sec). Leaf size: 24

e N
LDSolve[y'[x] +2*x*y [x] ==x*Exp [-x~2] ,y[x] ,x,IncludeSingularSolutions -> True] J

y(x) — %e‘“z (x2 + 201)
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2.15 problem 15

2.15.1 Solving as linearode . . . . .. ... ... ... ... ... ... 3471
2.15.2 Solving as first order ode lie symmetry lookup ode . . ... .. 349
2.15.3 Solvingasexactode . . . ... ... ... ... ... ... 3531
2.15.4 Maple step by step solution . . . . . ... ... 357

Internal problem ID [901]
Internal file name [OUTPUT/901_Sunday_June_05_2022_01_53_35_AM_86813562/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 15.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "exact", "linear", "first__order__ode__lie_ sym-
metry_ lookup"

Maple gives the following as the ode type

[_linear]

, 2zy e

e R

2.15.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
2z
PO =iy
g2
a(x) = z2+1
Hence the ode is
2xy e ”
/ _
y+ 224+1 2241
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The integrating factor u is
I mgifrldz

p=e
=z +1

The ode becomes

%(uy) = (u) (xi_z 1)

d —X

-
L4 = 60 ()

d((z*+1)y) = e dz

Integrating gives

(x2 + 1) y= /e_g”2 dx
/7 erf (z)

(x2+1)y=T+c1

Dividing both sides by the integrating factor u = x2 + 1 results in

_ /7 erf () 1
22242 2241

which simplifies to

_ y/merf (z) +2¢
22242
Summary
The solution(s) found are the following
et (z) +2¢ 1)
22242
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Figure 88: Slope field plot

Verification of solutions

_ y/merf (z) +2¢
22242

Verified OK.

2.15.2 Solving as first order ode lie symmetry lookup ode
Writing the ode as

2

’_ —2yr + e~
24+ 1
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - fz) - w2€y - wx€ — Wy = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 72: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(x)y(z) + g(z) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) x? xy

First order
form ID 1

special

Y = g(z) " + f(z)

o~/ bf(@)de—h(z)
9(z)

f(q;)e_ f bf(z)dz—h(z)
9(z)

polynomial type ode

/a1 z+b1y+c1
Yy a2z+bay+ca

aibosr—aobix—bico+bacy

a1by—agbiy—aica—azcs

a1b2—agby

a1ba—azby

Bernoulli ode v =fx)y+g(z)y" 0 e~ f("—l)f(w)dwyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~ J fds
The above table shows that
§(z,y) =0
W) = e (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

5= [ Lay
U]
1
= / T
z2+1

S=(z"+1)y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sz +CU(.’L',y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = _2y32”—+e_m2
z?+1
Evaluating all the partial derivatives gives
R, =1
R,=0
Sy = 2yx
Sy=z*+1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s .

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS _R2
KR =€
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R) =

/7 erf (R)

2 “

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

/ erf (z)

y(:cz + ].) T + C1
Which simplifies to
7 erf (x
y(:c2+1) \/_2 ()—i-cl
Which gives
_ y/merf (z) +2¢
N 222 4 2

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical ) . .
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ —2yzte® a8 _ o—R?

dz z2+1 drR
FAAPAEAE ANV RV VAN e s et
FAPIEEEEEANL L LA NN NN .
FAZAEELEEANVLL AN NN Ol P
/f;;;;ff;;\ééiié\\\\ NN P . S SN
AN ~a ARV NN A oo
/////fﬂéf/\\\\\\\\\\ ﬁﬁﬁﬁﬁlmg////»»ﬁﬁﬁﬁﬁﬁ
S 4 S R e
///////////»\\q\\\\\\\ —————s > 7 A A T o> o s> >
B e O e R I U Vg
e e R =X AN 5. V. g
‘—b‘—b:a\»\»\s_?\»—b/d/ ///2»»»1—»—-& 2 %%:z%%%_—?»/'/d //»—24447»4
S O O VA e Cad S:: x4+1)y NN T P P ————>
D N T e | v AAFA T ——b—b—b—b—b——b> > 7 NI A > bbbt

PO as
P
PO e
r e
P e
P '
Pt et P 'l

~a e Sa e N N N
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——a s s s a N\
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Summary
The solution(s) found are the following

Voerf (z) + 2¢;
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Figure 89: Slope field plot
Verification of solutions
_ ymerf (z) +2¢
B 222 + 2
Verified OK.
2.15.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
d
M(z,y) + N(z,y) 22 =0 (4)

dz
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
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Hence

0p  O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
09
M
ox
09
T _N
9y
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
¢ _ %9
0zdy ~ Oyox
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for

is satisfied. If this condition is not satisfied then this method will not work

exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
(2 +1)dy = (—2ym - e_””2> dx
(2yz - e"z2) dz+(z>+1)dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) =2yz —e ™™
N(z,y) =z +1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz

Using result found above gives

354



And
oN_ 2
or Oz
=2z

(a*+1)

Since %i; = %—];’, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

9
g—M (1)

96
8_y_N (2)

Integrating (1) w.r.t. z gives

@dx=/Mdz
or

%dx = /2yw —e % dz

0x
V7 erf (x)

¢ =ya* - YT o f(y) ()

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

8(15_ 2 /
a—y—x + f'(y) (4)

But equation (2) says that g—z = 22 + 1. Therefore equation (4) becomes
? +1=12+ f'(y) (5)
Solving equation (5) for f’'(y) gives
flly) =1
Integrating the above w.r.t y gives

/ﬂw@=/m@

fly)=y+a
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

(b:yxz_M_i_y_i_cl

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢y constants into new constant c¢; gives the solution as

s VRei@

Ci =yYyx

2
The solution becomes
_ y/merf(z) +2¢
22242
Summary
The solution(s) found are the following
e (z) +2¢ 1)
22242
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Figure 90: Slope field plot
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Verification of solutions

_ y/merf (z) +2¢
22242

Verified OK.

2.15.4 Maple step by step solution

Let’s solve

/ 2xy e*“”2
Y T T o

° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
a2
Y =2+ 5

. Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

2

/ 26y _ e %
y+ 2241 T 2241

° The ODE is linear; multiply by an integrating factor u(x)

o2
w) (v + ;1:222-611-/1) = M(;)il

o Assume the lhs of the ODE is the total derivative - (u(z) y)
W) (v + 35) = W (@)y + u@)y

e  Isolate y/(x)

_ 2u(x)z
w(z) = "1

° Solve to find the integrating factor
px)=12*+1

° Integrate both sides with respect to x

J (@) y)) do = [ *9dz +

° Evaluate the integral on the lhs

a2
px)y = [ H(;;z)j_l dz + ¢
° Solve for y

p(@)e=
. J Wdﬂc+c1

Y= u(@)
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e  Substitute u(z) =22 +1

y = fe-::ialml
° Evaluate the integrals on the rhs
/7 erf(x) +a
Y= 21
° Simplify
_ merf(z)+2c1
y= 22242

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 24

Ldsolve(diff(y(x),x) +(2%x) / (1+x72) xy (x) =exp (-x"2) / (1+x72) ,y (%) , singsol=a11)J

_ y/merf (z) +2¢

v/ Solution by Mathematica
Time used: 0.067 (sec). Leaf size: 28

LDSolve[y'[x] +(2*x)/(1+x‘2)*y[x]==Exp[—x‘2]/(1+x‘2),y[x],x,IncludeSingularSol?tions -> True]

Vrerf(z) + 2¢
v@) = s

358



2.16 problem 16

2.16.1 Solving as linearode . . . . . . ... ... ... ... ... ... 359
2.16.2 Solving as first order ode lie symmetry lookup ode . . ... .. 3611
2.16.3 Solvingasexactode . . . ... ... ... ... ... ... 3651
2.16.4 Maple step by step solution . . . . . ... ... 370

Internal problem ID [902]
Internal file name [OUTPUT/902_Sunday_June_05_2022_01_53_36_AM_97350989/index . tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 16.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

2.16.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

¥ +p(@)y = q(z)

Where here
1
p(z) = z
32247
q(z) = p
Hence the ode is
.,y 3x?+7
Yy - = 5
T T

359



The integrating factor u is

The ode becomes

Integrating gives

2
322+ 7
o =@ (P57
2
d(yz) = (3x +7) dz
2
yx:/?’x +7dx
x
2
yz=3%+7ln(m)+cl

Dividing both sides by the integrating factor yu = x results in

which simplifies to

Summary

322
24+ 7ln(x c
2 ( ) 1

The solution(s) found are the following

%-}—ﬂn(x)-l—cl

y=t 1)
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Figure 91: Slope field plot

Verification of solutions

%+71n(x)+cl

X

Verified OK.
2.16.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

,_ =3P 4yr =T

x2
!

y =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — w2€y —wef —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 75: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

§(z,y) =0
wwy) = (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

ds
§ 1

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case
R=x

S is found from

U
<

)
I
—

8l = 3| =
oW
N

Il
—

Which results in
S=yzx

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

3zt +yr -7
m?

w(x,y) =

Evaluating all the partial derivatives gives

R, =1
R,=0
Se=y
Sy==z

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
s _ 3z 47
dR =z

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

dS 3R +7

dR R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

(24)
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integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

(4)

+7In(R) + ¢
To complete the solution, we just need to transform (4) back to z,y coordinates. This

3R?
2

S(R) =

results in

3z

+7ln(x) + ¢

2

Yyxr =

Which simplifies to

3x2

+7ln(x) + ¢

2

yr =

Which gives

3z? + 141n (z) + 2¢;
2z

y:

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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Summary

The solution(s) found are the following

(1)

3z% + 141n (z) + 2¢;
2z

y:
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3z% + 141n (z) + 2¢;
dz

d
M(w,y)+N(fv,y)£=0

Figure 92: Slope field plot
)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

Entering Exact first order ODE solver. (Form one type)
ode. Taking derivative of ¢ w.r.t. z gives

2.16.3 Solving as exact ode
To solve an ode of the form

Verification of solutions

Verified OK.
Hence



Comparing (A,B) shows that

09
M
Oz
9 _ n
Ay
But since %{% = % then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
dy = (—Q+12+3) dz
T
(—3+Q—12)dx+dy=o (24)
T T

Comparing (1A) and (2A) shows that

7
M(z,y) =3+ —

$2
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz

Using result found above gives
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And

Since 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

oM ON
A= (8_3/ - %)

((2)-0

1

X

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdz
—e J i dz
The result of integrating gives
= eln(w)
=z

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = puM
:x<—3+g—12)
T x
—3z2+yz —7
x
And
N =uN
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N3—y:0
x
—3r2 +yz —7 dy

The following equations are now set up to solve for the function ¢(z,y)

0p —
g—x—M (1)
6
=N @)

Integrating (1) w.r.t. = gives

@dx = /Hdw
or

—_2p2 _
/@dmz/ 3z° 4+ yx 7dx
ox x

¢=——-+yr—T7In(z)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

99 _ /
3—y—w+f(y) (4)

But equation (2) says that g—‘g = x. Therefore equation (4) becomes

z=z+ f(y) ()
Solving equation (5) for f’'(y) gives
flly) =0
Therefore
fy)=a
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Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
32
¢ = —T—i—yz—?ln(x)—l—cl
But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and c; constants into new constant c; gives the solution as

2
¢ = —%—i—yw—?ln(z)

The solution becomes

3z% + 141n (z) + 2¢;
T

Summary
The solution(s) found are the following

3z% + 141n (z) + 2¢;
Y= 9
T
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Figure 93: Slope field plot
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Verification of solutions

_ 3z? 4+ 14In(z) +2¢
B 2z

Y

Verified OK.

2.16.4 Maple step by step solution

Let’s solve
y+i=5+3
° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative

'y 3z247
Y =—L 43

2
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

/ 32247
Y+ L=

T

° The ODE is linear; multiply by an integrating factor u(x)
u(z) (y + 1) = 1200

2

o Assume the lhs of the ODE is the total derivative - (u(z) y)

pe) (Y + %) =@y + puz)y
o  Isolate p/(x)

W(z) =2
° Solve to find the integrating factor
uz) ==
° Integrate both sides with respect to x
J (£ (u(e) ) do = [ HDCED gy 4o,
° Evaluate the integral on the lhs
w(z)y = f #(@(2:2"'7) dx + ¢,
° Solve for y
I u(w)(3;2+7) doter
vy= )

) Substitute p(z) = x
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2
J %dw—i—cl

y= -
° Evaluate the integrals on the rhs
_ %—i—ﬂn(w)-l—q

T

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

Ldsolve(diff(y(x),x) +1/x*y (x)=7/x"2+3,y(x), singsol=all)

32
24+ T7ln(x)+c
y(z) = - 1

T

v/ Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 24

tDSolve[y'[x] +1/x*xy[x]==7/x"2+3,y[x] ,x,IncludeSingularSolutions -> True]

3 71
T, og(z) La

_)_—
y(x) 5 . .
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2.17 problem 17

2.17.1 Solving as linearode . . . . . . . .. ... ... .. ...
2.17.2 Solving as first order ode lie symmetry lookup ode . . .. . .. 3741
2.17.3 Solvingasexactode . . . ... ... ... ... ... ... 378}
2.17.4 Maple step by step solution . . . . . . ... ... 383]

Internal problem ID [903]
Internal file name [OUTPUT/903_Sunday_June_05_2022_01_53_37_AM_47617246/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 17.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

2.17.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(x)y = q(2)
Where here

p(z) = :

-1
q(z)

_1 +sin (z) (z — 1)
(z—1)°

Hence the ode is
4y  1+sin(z)(z—1)

/
+
R — (x—l)5
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The integrating factor u is

The ode becomes

%(uy) = (n) (1 *ein (o) (@ - 1))

(@—1)
d 4 4 [(1+sin(z) (z—1)
-1 = (@- ) (D)
d(y(x—1)4) _ (1+31nw(9i)1(x—1)> e

Integrating gives

r—1

y(z_1)4:/1+sin(x)(m—1) dz
yz—1)*=—cos(z)+In(z—1)+¢

Dividing both sides by the integrating factor p = (z — 1)* results in

_ —cos(z) +In(x —1) ¢
@-1 @-1)

which simplifies to

—cos(z)+In(z—1)+¢
(z—1)"

y =
Summary
The solution(s) found are the following

—cos(z)+In(z—1)+¢
(z—1)*
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Figure 94: Slope field plot

Verification of solutions

—cos(z)+In(z—1)+¢
(1)

y:

Verified OK.

2.17.2 Solving as first order ode lie symmetry lookup ode
Writing the ode as

J = —4zty + 16y 2° — 24y 2> + sin (z) £ + 16yx — sin (z) — 4y + 1
(¢ —1)

y =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — W2fy —wy§ —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 78: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
1
n(z,y) = -1 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

5= [ Lay
n

1
= / 1 dy
(@—1)*

S is found from

Which results in
S=yx—-1)°

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—4zty + 16y 2° — 24y 2° + sin (z) £ + 16yx — sin (z) — 4y + 1

w(z,y) =
Evaluating all the partial derivatives gives
R,=1
R,=0
S, = 4y(z —1)°
S, = (z—1)*

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS _ 1l+sin(z)(z—1)
dR z—1

(24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS _ 1+sin(R)(R—1)
dR R-1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R)=—-cos(R)+In(R—1)+ ¢

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

(z—1)'y=—cos(z)+In(x—1)+¢

Which simplifies to

(z—1)'y=—cos(z)+In(x—1)+¢

Which gives

_cos(z)—In(z—1)—a

y:

(@—1)"

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _
dr "~ dS __ 1+sin(R)(R—1)
—4z%y+16y 23 —24y x% +sin(z)z+16yz—sin(z) —4y+1 P A S
(z—1)°
RN NN P RN N I D U
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FAZAAEEEEAEL TRV VNN A7 =NNNNEIN 2 s
AFAASALLEL IRRRARR AT MNNNNNN N A NN
AAAAAIIT LT P NN NN A2 SNNNNNN Y A N
v ¥ 7 o\ e R =T A2 7NN N NN A A
R I S ! W tated 4 PP G N N NN AN A St N
R N e R B 177 S::y@*_l) AA AN NN NN P e
A N A R R tttrrzz A7~ NNN NN f A S e
\\\\\\\z\a\p%l’ tttrrrzy AN NN N Y S a0
R R EEERRREIE ttrrrrs AATNNN NSNS A~
AR EERRR R tttrrtrt A7~ NN NN Y f A e
MAVVL VLR L it SN N I
AR EEER Rt tttrrtrtt AN RN A S
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Summary

The solution(s) found are the following
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Figure 95: Slope field plot

Verification of solutions

Verified OK.

2.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(fv,y)£=0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
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ode. Taking derivative of ¢ w.r.t.  gives

d
Hence 06 06 d
Yy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
o
M
oz
o
T _N
Oy
But since aajgy = 63: Bd)x then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
5’; g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (—f_yl ta _1 7t (Zirl_(‘84> d

)dx—i—dy:() (2A)

( 4y 1 sin(z)
r—1 (z-1° (z—-1)*

Comparing (1A) and (2A) shows that

4y 1 sin (z)

z—1 (z-1° (z—1)°
N(x,y)zl

M(Z)y) =

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
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Using result found above gives

oM 9 ( 4y 1 sin () )

Oy  oy\z—1 (z—17° (z—1)°
_ 4
T r—1
And
ON 8
o = ar
=0

Since %i; # %—]:, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

L] <8M azv)

~ N\oy Oz

(()-0)

4
r—1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

= 6fAda:
—¢ J %dx
The result of integrating gives
= e4ln(a:—1)
= (z—1)*

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

=(z—1)* (x4_yl - (z _1 1)° a (Sxill—(glc;4)

- (%~ e (Zirl—(glc;4) (@-1)
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And

N =uN
= @1 ()
=(x— 1)4

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N%=0
dz

(( 49 1 sin(r))(x—l)‘l)-f-((x_l)‘l)j_zzo

z-1 (z-1° (z-1)°

The following equations are now set up to solve for the function ¢(z,y)

0p  —
g—x =M (1)
6
oy N (2)
Integrating (1) w.r.t. z gives
0 . [
o dz = /de
o9 . vy 1 sin(z) Y
a_mdx_/<m—1 (x —1)° (:1:—1)4) (z=1) de
¢ =z*y+6yz® —4dyr —dyx® +cos(z) —In(z — 1) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

0
£=x4—4x3+6m2—4m+f'(y) (4)

=z(—2+z) (2 —2z+2) + f'(y)
But equation (2) says that g—i = (z — 1)*. Therefore equation (4) becomes

(x—1)*=2(-2+x) (m2 —2z+2) + f'(y) (5)
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Solving equation (5) for f'(y) gives
f'ly) =1

Integrating the above w.r.t y gives

[rway=[way

flyY)=y+a

Where c; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢=z'y+6yz® —4yr — 4y +cos(z) —In(z—1) +y+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

c1 =y +6yr? —4dyr —dyx® +cos(z) —In(z—1)+y
The solution becomes

_ cos(z)—In(z—1)—c
C rt—4r3 4622 —4dx+1

Summary
The solution(s) found are the following

_cos(z)—In(z—1)—a

y= (1)

x4t — 423 + 622 —4x + 1
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Figure 96: Slope field plot

Verification of solutions

cos(z) —In(z—1)—¢
C rt—423 4622 —4dx+1

Verified OK.

2.17.4 Maple step by step solution

Let’s solve
’ Ay 1 sin(z)
Y+ = oopp T ey

° Highest derivative means the order of the ODE is 1

/

Y
o Isolate the derivative
y = — g 4 e

. Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

4y __ sin(z)z—sin(z)+1
y,+zTy1_s x(a;_sl)sx
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° The ODE is linear; multiply by an integrating factor u(x)

) (sin(xz)z—sin(x)+1

o Assume the lhs of the ODE is the total derivative £ (u(z) y)
u(@) (v +32%) = W (@) y + p(z)y
e  Isolate y/(x)

4p(x
W(z) = 23
° Solve to find the integrating factor
wz) = (z - 1)*
° Integrate both sides with respect to x

J (£(uta) ) do = | Hleiee-stesn g

° Evaluate the integral on the lhs
,LL(CL') y = f p(z)(sin(z)z—sin(z)+1) dz + c1

(@-1)°
° Solve for y
_ f u(z)(sin((z)_zl—)zin(m)-kl) dz+c;
¥y= u(@)

o Substitute u(z) = (z — 1)*

f sin(z)z—sin(z)+1 de4cq

z—1

y= (@—1)2
° Evaluate the integrals on the rhs
— cos(z)+In(z— c
y = ( 2:_1()4 1)+ 1

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

Ldsolve(diff(y(x),x) +4/ (x-1)*y () =1/ (x-1)"5+sin(x)/ (x-1)"4,y(x), singsol=all)

—cos(z)+In(z—1)+¢
(z-1)"

y(z) =

v Solution by Mathematica
Time used: 0.07 (sec). Leaf size: 22

LDSolve[y'[x] +4/(x—1)*y[x]==1/(x—1)‘5+Sin[x]/(x—l)“4,y[x],x,IncludeSingulaqu}utions -> True

log(z — 1) — cos(z) + ¢1
y(z) — @1
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2.18 problem 18
2.18.1 Solving as linearode . . . . . . . .. ... ... ... ...
2.18.2 Solving as first order ode lie symmetry lookup ode . . .. . .. 388]
2.18.3 Solvingasexactode . . . ... ... ... ... .. ...
2.18.4 Maple step by step solution . . . . . ... ...

Internal problem ID [904]
Internal file name [OUTPUT/904_Sunday_June_05_2022_01_53_39_AM_69619743/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 18.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

2

yz+y(2°+1) =27

2.18.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

¥ +p(@)y = q(z)

Where here

Hence the ode is
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The integrating factor u is

—2z2-1 de

M:ef_ z

— ex2+ln(ac)

Which simplifies to

The ode becomes

Integrating gives

mex2y=/x3dx

22 CL‘4+
xe'y=—+4c
) 4 1

Dividing both sides by the integrating factor p = e z results in

which simplifies to

Summary
The solution(s) found are the following

e (2% + 4cy)
4z

y:
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Figure 97: Slope field plot

Verification of solutions

e % (x4 4cy)

4z

Verified OK.

2.18.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

The condition of Lie symmetry is the linearized PDE given by

0

Nz + W(ny - &) — W2§y — wz§ —wyn

The type of this ode is known. It is of type linear. Therefore we do not need to solve

the PDE (A), and can just use the lookup table shown below to find £,
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Table 81: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
’I’]($, ) — e—xz—ln(x) (Al)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

dsS
§ 7

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case
R=x

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

3e—ac2 _ 2y .’L'2 —y

x
w(z,y) = .
Evaluating all the partial derivatives gives
R, =1
R,=0
Sy = e“zy(2x2 + 1)
Sy = e’z

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives
ds
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.

R3

It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

(4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

R4
:Z+Cl

S(R)

Which simplifies to

Which gives

4z
The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

n
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= .
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The solution(s) found are the following

Summary

(1)

e % (x* + 4cy)

4z
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Figure 98: Slope field plot

Verification of solutions

e % (x4 4cy)

4z

Verified OK.

2.18.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(z,y) + N(z,y) 52 =0

¢(z,y) =0

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
d
dz
9¢

ode. Taking derivative of ¢ w.r.t. x gives

Hence
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Comparing (A,B) shows that

99 _
or
9 _ N
9y
But since % = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(r)dy = (—y(2x2 +1)+ x3e_””2> dz
<y (22° +1) — x3e_‘”2) dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = y(22? +1) — 2™
N(z,y) ==z
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied
oM ON
Oy oz

Using result found above gives

oM 9 2
a—y:a—y(y<2$2+1) —.’1736 >
=222 +1
And
ON 0
Frara

=1
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

4] (aM 6N)

- N oy Oox
= (27 +1) - (1)
=2z

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

MzefAdx

— ef2zd:1:

The result of integrating gives

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

And
=¢" (z)
— ez

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+_j—z =0
(e“”Qy(2x2 +1) — :c3> - e“zw) j—z =0

394



The following equations are now set up to solve for the function ¢(z,y)

¢

or M (1)
06

Integrating (1) w.r.t. = gives

0p . [+
ﬁdz—/de

% _ z2 2 R
8zdx_/e y(22° +1) — 2’ dz

4
b=y — " +f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

0 2
%:&x+ﬂw (4)

But equation (2) says that g—i = % 1. Therefore equation (4) becomes
z2 z? /
e"z=e"z+ f(y) ()

Solving equation (5) for f'(y) gives

flly) =0
Therefore

fy)=a

Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
4
¢:xe””2y—%—|—cl

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

2 1174

clzxewy—z
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e (z* + 4c))
4z

The solution(s) found are the following

The solution becomes

Summary

1)

4z

e (z* + 4cy)

e (z* + 4cy)

Figure 99: Slope field plot
)

Verification of solutions
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Verified OK.



2.18.4 Maple step by step solution

Let’s solve
Yz +y(22% + 1) = 2%
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
Yy = —@ + 2277
. Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

° The ODE is linear; multiply by an integrating factor u(x)
pla) (v + ) = pla) 2o
o Assume the lhs of the ODE is the total derivative - (u(z) y)
(2w2+1)y

w(a) (v + ) = @)y + p(a)y

o Isolate ()

(@) = p(@) (2;24'1)

° Solve to find the integrating factor
wz) = e’

° Integrate both sides with respect to x

[ (E(u(z)y)) do = [ p(z) z2e % dz + ¢
° Evaluate the integral on the lhs
u(@)y = [ pl@) s de +

° Solve for y

_ fp(m)m2e_w2da:+cl
y= u(@)

) Substitute p(z) = e’z

y = fx3e_m2ex2da:-l—c1

° Evaluate the integrals on the rhs
1:4
y =
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° Simplify

. e_’62 (:134+4C1)
y= 4x

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 22

Ldsolve(x*diff(y(x),x) +(1+2%x72) *y (x)=x"3*exp(-x~2) ,y(x), singsol=all) J

(2t +4e) e

v/ Solution by Mathematica
Time used: 0.072 (sec). Leaf size: 27

LDSolve[x*y'[x] +(1+2*x‘2)*y[x]==x‘3*Exp[—x‘2],y[x],x,IncludeSingularSolutionéJ—> True]

2
e % (z* + 4cy)
y(@) = P
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2.19

problem 19

2.19.1 Solving as linearode . . . . . . ... ... ... ... ... 399
2.19.2 Solving as first order ode lie symmetry lookup ode . . .. . .. 40T
2.19.3 Solvingasexactode . . . ... ... ... ... ... ... 405
2.19.4 Maple step by step solution . . . . . ... ... AT0]

Internal problem ID [905]
Internal file name [OUTPUT/905_Sunday_June_05_2022_01_53_40_AM_11648253/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.

Brooks/Cole 2001

Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 19.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-

tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

2
2y+y’z=ﬁ+1

2.19.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

¥ +p(@)y = q(z)

Where here
2
p(z) = =
x2 42
q(z) = —3
Hence the ode is
'y 2y _ x? %3— 2
T T
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The integrating factor u is

The ode becomes

Integrating gives

2
2
yx2=/x+ dx
x

2 T 21
yz©=5+ n(z)+a

Dividing both sides by the integrating factor u = z? results in

2
Z +2In(x c
;2@ o

Y= -
T2 T2

which simplifies to

Summary
The solution(s) found are the following

_ “'2—2+21n(x)+cl

y= (1)

x2
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Figure 100: Slope field plot

Verification of solutions

_ 2 +2In(z) + ¢

72
Verified OK.

2.19.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

,_ 2y’ —2® -2

CL'3
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + W(ﬂy - €ac) - w2€y - wx€ — Wy = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 84: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

§(z,y) =0
n(z,y) = % (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

ds
§ 1

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

n

1

S is found from

x2

Which results in
S = yux?

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2yz? — 2% —2

UJ(IL‘,y) = - 3

Evaluating all the partial derivatives gives

R, =1
R,=0
Sy = 2yzx
S, =

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS _ 42
dR =z

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

dS R>+2

dR R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

(24)
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integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

S(R) = - +2In(R) 4+ ¢

+2In(z) + ¢

2

T
2

T’y =

Which simplifies to

+2In(z) + ¢

22
2

iy =

Which gives

z2 +41n(z) + 2¢;
222

y:

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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Summary

The solution(s) found are the following

(1)

2+ 41n (z) + 2¢;

212
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Figure 101: Slope field plot

Verification of solutions

2 +41In(z) + 2¢
T

Verified OK.

2.19.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 06 04d
—_— ——y =
Oxr Oydx 0 (B)
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Comparing (A,B) shows that

But since % = 86—2194’— then for the above to be valid, we require that
0y yOx

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = (96: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz +N(z,y)dy =0 (1A)

Therefore
2
(x)dy = —2y+;+1 dz
2
(2y —-1- P) dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM  ON
oy Oz
Using result found above gives
oM 0 2
—=—(2y—1——=
dy 81/( Y )
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And
ON 0
o~ s
=1

Since %A;f # %—1;], then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

Ao L(oM _oN
N\ 9y oz

((2) =)

8| =8|~

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdz
The result of integrating gives
= eln(:c)
=x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

And
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N%:0
dz

((2y—1—%)x)+(w2)j—z:0

The following equations are now set up to solve for the function ¢(z,y)

0p

Integrating (1) w.r.t. = gives

0 . [+
%dz—/de

o . 2
%dx—/(%—l—ﬁ)xdx

(=14 2y)

- —2ln(2) + f(y) 3)

b=

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

8¢ 2 !
oy =" +f' () (4)

But equation (2) says that g—i = z2. Therefore equation (4) becomes
o’ =2 + f'(y) (5)

Solving equation (5) for f'(y) gives
fy)=0

Therefore

fy)=a
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Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢

(—1+ 2y)

72
¢ = 5 —2In(z) + ¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and c; constants into new constant c; gives the solution as

2(_
¢ = M —2In(z)

The solution becomes

2+ 41n (z) + 2¢;
T

Summary
The solution(s) found are the following

)= z2 4+ 41n (z) + 2¢;

2$2 (1)
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Figure 102: Slope field plot
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Verification of solutions

2 +41n(z) + 2¢
T

Verified OK.

2.19.4 Maple step by step solution

Let’s solve
y+yr=3%+1
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

)y 2y z242
Y+ 8=

3

° The ODE is linear; multiply by an integrating factor u(x)
o) (v + ) = e

o Assume the lhs of the ODE is the total derivative - (u(z) y)
W) (v +2) = W(@)y + nlz)y
e  Isolate y/(x)

W(x) = 242

° Solve to find the integrating factor

W) = z*

° Integrate both sides with respect to x

(2 (u(x)y)) do = [ HDED g o)

° Evaluate the integral on the lhs
x x2
u(z)y = [POER) 4o 4 ¢,

° Solve for y

_ i u(w)£22+2)
y= (@)

dz+cy

e  Substitute u(zr) = 2
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2
J ZT"'zdz—i-cl

Y= 2
° Evaluate the integrals on the rhs

%-{-2 In(z)4c1
Yy=-"——71],

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

Ldsolve(x*diff(y(x),x) +2xy (x)=2/x"2+1,y(x), singsol=all)

u(z) = ””—22+21n(x)—|—cl

2

v/ Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 22

tDSolve[x*y'[x] +2*y [x]==2/x"2+1,y[x] ,x,IncludeSingularSolutions -> True]

2log(z) ¢ 1
y(@) = x? + z? + 2
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2.20 problem 20

2.20.1 Solving as linearode . . . . . . ... ... ... ... ... .. 412l
2.20.2 Solving as first order ode lie symmetry lookup ode . . .. . .. 414
2.20.3 Solvingasexactode . . . ... ... ... ... ... AT8]
2.20.4 Maple step by step solution . . . . . ... ..o 4272

Internal problem ID [906]
Internal file name [OUTPUT/906_Sunday_June_05_2022_01_53_41_AM_75690544/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 20.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

Y + tan (z) y = cos (z)

2.20.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(x)y = q(z)

Where here

Hence the ode is

y' + tan (z) y = cos ()
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The integrating factor u is

Which simplifies to

The ode becomes

Integrating gives

o= ef tan(z)dz

cos (z)
p = sec ()

% (uy) = (1) (cos (2)

di(sec (z) y) = (sec (z)) (cos (z))

d(sec (z)y) = dz

sec(z)y = /dz
)y

sec(z)y=z+ac1

Dividing both sides by the integrating factor u = sec (z) results in

which simplifies to

Summary

y = x cos (z) + ¢; cos ()

y=cos(z)(z+c1)

The solution(s) found are the following

y = cos () (z + ¢1) (1)
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Figure 103: Slope field plot

Verification of solutions

y=-cos(z) (z+c1)
Verified OK.

2.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y' = cos(z) —tan(z)y
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - &) — wzfy —we§ —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 87: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) = cos ()

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z
S=/1dy
n
1
_/cos(x)dy

_ Y
cos (z)

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

@ S+ w(z,y)S, @)
dR R, + w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = cos (z) — tan (z) y
Evaluating all the partial derivatives gives

R, =1
R,=0
Sz = tan (z) sec (z)y

S, = sec ()

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

1 (2A)

1
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) =R+ a1 4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

sec(x)y=z+ ¢
Which simplifies to
sec(x)y=z+ ¢

Which gives

T+
Y= sec (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

- . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ s _
Z =cos(z) —tan(z)y 2 =1

U R I TR A A ol TR A A IR I | R R s L R s
AR R RS N R R R R R
A TR A e TR T A A R R R R s R R R
VANV ANt ANy AAPAPAAPAANAAAAA AL
AN ¢ A N I AN IR s R R R R
TN N S R AN AT AANAAAAAAAASS
V2NN 27N P NV L o R R o L R R
VESNNNY P A A NN R R R R R R R R
NENNNN A= PN R= R N R s
TN S AN NN N S =T PRI P LIPS AP AL
NSNS T 7 NN LR R R Lk
FANN NN = 2 NN S==smﬂw)y //////////////QV////
PANNST s 2 AN APPSR RARAANAAAAAAASAS
FANNSAE AN AP NN FAPAPIAPAGNFAAAI RS
POANSAP AN/ AN N=7 1 R R s
Py AN/t N=2 AN/t AAPAPPAPAAAAAAA AL
Py vy N=F Pl =/t VN7 1 A R R R R R R
PydN—=Ff 1l 7ty VN1 1 R | L s
Pybv—=ftl vt t eV N~11] AAPAPPAPAANAAAAA AL
Pydv=ftiv7tt st td AAPAPPAPAAAAAAS AL

Summary

The solution(s) found are the following

T+
sec (x)

y:
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Figure 104: Slope field plot

Verification of solutions

xr—+cC

sec (x)

Verified OK.

2.20.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(x,y)£=0

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

d(z,y) =0

a
dz

Hence
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (cos (z) — tan (z) y) dz
(tan (z)y — cos (z))dz+dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = tan (z) y — cos (z)
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
oy 8—y(tan (x)y — cos (z))
= tan ()
And
oN _ 2
or Oz
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Since %—M # %N , then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let
L L(oM_oN
N\ 0y Oz
= 1((tan (z)) — (0))
= tan (z)

Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor p is

= el Ad
—e J tan(z) dz
The result of integrating gives
1 = ¢~ In(cos(@)
= sec ()

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

= sec (z) (tan (z) y — cos (x))

= —1+ tan (z)sec(z)y

And
= sec (z) (1)
= sec (z)
Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N%=0
dzx

(—1 + tan (z) sec (z) y) + (sec ()) ﬁ =0

The following equations are now set up to solve for the function ¢(z,y)

o¢ 1)

ﬁxzﬁ
06  —
8—y—N (2)
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Integrating (1) w.r.t. z gives

@dxz /de
or

% dr = /—1 + tan (x) sec (z) y dx

¢ = —z +sec(z)y+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

o =sec(2) + ) (@)
But equation (2) says that g—i = sec (). Therefore equation (4) becomes
sec (z) = sec (z) + f'(y) (5)
Solving equation (5) for f’(y) gives

fly)=0

Therefore
fy) =a
Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢p=—x+sec(x)y+c

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

c1=—x+sec(z)y

The solution becomes
x4+
sec (x)
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1)

T+
sec (x)

y:

The solution(s) found are the following

Summary
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Figure 105: Slope field plot

cos ()

Yy +tan (z)y =
Highest derivative means the order of the ODE is 1
Isolate the derivative

2.20.4 Maple step by step solution
Let’s solve

Verification of solutions
Verified OK.



Yy = cos(z) —tan(x)y
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y' + tan (z) y = cos (z)
° The ODE is linear; multiply by an integrating factor u(x)
w(z) (y' + tan (z) y) = p(x) cos (z)
o Assume the lhs of the ODE is the total derivative - (u(z) y)
u(z) (v +tan (2)y) = p'(2)y + u(z) y'
e  Isolate y/(x)
' (z) = p(z) tan (z)

° Solve to find the integrating factor

/,1,(117) = cosl(x)

° Integrate both sides with respect to x

[ (£(u(z)y)) dr = [ p(z) cos (z)dz + 1
° Evaluate the integral on the lhs

u(e)y = [ p(a) cos (z) da +

° Solve for y

[ p(=) cos(z)dz+c1
LT

o Substitute u(z) = Fl(z)
y=cos(z) ([ ldz +c1)
° Evaluate the integrals on the rhs

y=cos(z)(z+c1)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 10

Ldsolve(diff(y(x),x) +tan (x) ¥y (x)=cos(x) ,y(x), singsol=all) J

y(x) = (c1 + ) cos (x)

v/ Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 12

LDSolve [y' [x] +Tan[x]*y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True] J

y(x) = (x + ¢1) cos(x)

424



2.21 problem 21

2.21.1 Solving as linearode . . . . . . ... ... ... ... ... .. 425
2.21.2 Solving as first order ode lie symmetry lookup ode . . .. . .. 427
2.21.3 Solvingasexactode . . . ... ... ... ... ... ... 431
2.21.4 Maple step by step solution . . . . . ... ... 435

Internal problem ID [907]
Internal file name [OUTPUT/907_Sunday_June_05_2022_01_53_42_AM_41989435/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001

Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 21.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "exact", "linear", "first__order__ode__lie_ sym-
metry_ lookup"

Maple gives the following as the ode type

[_linear]

sin (z)

Dy + 2 =
(x+1)y +2y —

2.21.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

¥ +p(@)y = q(z)

Where here
p@%—zil
sin (z
q(z) = ( _'_(1;2
Hence the ode is
J+ 2y sin (z)
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The integrating factor u is

The ode becomes

Integrating gives
(z+1)]°y= /sin (z) dz
(x4+1)%y=—cos(z)+ ¢

Dividing both sides by the integrating factor g = (z 4 1)* results in

_ cos(z) 1
(z +1)° * (z +1)°

y:

which simplifies to

—cos(z)+ ¢
(z +1)°
Summary
The solution(s) found are the following
—cos(z) + ¢
y=—""—""9" 1
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Figure 106: Slope field plot

Verification of solutions

—cos(z)+ ¢
(z+1)°

Verified OK.

2.21.2 Solving as first order ode lie symmetry lookup ode
Writing the ode as

,  —2yx +sin(z) — 2y
(z+1)°
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - é..’ll) - w2£y —we€ — wyn =10 (A)

The type of this ode is known. It is of type 1linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 90: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g() ehl@)+by 4 f(z) | &= ! bf;z;x_h(z) fele f;(:)cm_h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
1
n(z,y) = @1’ (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

5= [ Lay
n

1
= / 1 dy
(ac—l—l)E

S is found from

Which results in
S=(z+1)"y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—2yx +sin (z) — 2y

w(z,y) =
(,9) (z +1)°
Evaluating all the partial derivatives gives
R, =1
R,=0
S:=2(x+1)y
S, = (z+1)°

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

;l—]g = sin (z) (2A)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

Jp = Sin (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R) = —cos(R) + ¢

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

(z+1)%y=—cos(z)+c

Which simplifies to

(z+1)%y=—cos(z)+c

Which gives

cos (z) — ¢

(z+1)*

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical

. . . . ODE in canonical coordinates
