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1.1 problem 2(a)
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Internal problem ID [869]
Internal file name [OUTPUT/869_Sunday_June_05_2022_01_52_52_AM_84289303/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 1, Introduction. Section 1.2 Page 14
Problem number: 2(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ − 2y = 0

1.1.1 Solving as quadrature ode

Integrating both sides gives ∫ 1
2ydy =

∫
dx

ln (y)
2 = x+ c1

Raising both side to exponential gives
√
y = ex+c1

Which simplifies to
√
y = c2ex

Summary
The solution(s) found are the following

(1)y = c22e2x
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Figure 1: Slope field plot

Verification of solutions

y = c22e2x

Verified OK.

1.1.2 Maple step by step solution

Let’s solve
y′ − 2y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 2

• Integrate both sides with respect to x∫
y′

y
dx =

∫
2dx+ c1

• Evaluate integral
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ln (y) = 2x+ c1

• Solve for y
y = e2x+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 10� �
dsolve(diff(y(x),x) = 2*y(x),y(x), singsol=all)� �

y(x) = e2xc1

3 Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 16� �
DSolve[y'[x]== y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x

y(x) → 0
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1.2 problem 2(b)
1.2.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 9
1.2.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 11
1.2.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 19

Internal problem ID [870]
Internal file name [OUTPUT/870_Sunday_June_05_2022_01_52_53_AM_25961841/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 1, Introduction. Section 1.2 Page 14
Problem number: 2(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "differentialType",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′x+ y = x2

1.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x

q(x) = x

Hence the ode is

y′ + y

x
= x
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The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes

d
dx(µy) = (µ) (x)
d
dx(yx) = (x) (x)

d(yx) = x2 dx

Integrating gives

yx =
∫

x2 dx

yx = x3

3 + c1

Dividing both sides by the integrating factor µ = x results in

y = x2

3 + c1
x

Summary
The solution(s) found are the following

(1)y = x2

3 + c1
x
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Figure 2: Slope field plot

Verification of solutions

y = x2

3 + c1
x

Verified OK.

1.2.2 Solving as differentialType ode

Writing the ode as

y′ = x2 − y

x
(1)

Which becomes

0 = (−x) dy +
(
x2 − y

)
dx (2)

But the RHS is complete differential because

(−x) dy +
(
x2 − y

)
dx = d

(
1
3x

3 − yx

)
Hence (2) becomes

0 = d

(
1
3x

3 − yx

)
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Integrating both sides gives gives these solutions

y = x3 + 3c1
3x + c1

Summary
The solution(s) found are the following

(1)y = x3 + 3c1
3x + c1

Figure 3: Slope field plot

Verification of solutions

y = x3 + 3c1
3x + c1

Verified OK.
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1.2.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−x2 + y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 2: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x

dy

Which results in

S = yx

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−x2 + y

x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y

Sy = x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R3

3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx = x3

3 + c1

Which simplifies to

yx = x3

3 + c1

Which gives

y = x3 + 3c1
3x

13



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−x2+y
x

dS
dR

= R2

R = x

S = yx

Summary
The solution(s) found are the following

(1)y = x3 + 3c1
3x
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Figure 4: Slope field plot

Verification of solutions

y = x3 + 3c1
3x

Verified OK.

1.2.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
x2 − y

)
dx(

−x2 + y
)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 + y

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x2 + y

)
= 1

And
∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 + y dx

(3)φ = −1
3x

3 + yx+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x. Therefore equation (4) becomes

(5)x = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −1
3x

3 + yx+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −1
3x

3 + yx
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The solution becomes

y = x3 + 3c1
3x

Summary
The solution(s) found are the following

(1)y = x3 + 3c1
3x

Figure 5: Slope field plot

Verification of solutions

y = x3 + 3c1
3x

Verified OK.
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1.2.5 Maple step by step solution

Let’s solve
y′x+ y = x2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

x
+ x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

x
= x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + y

x

)
= µ(x)x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

x

• Solve to find the integrating factor
µ(x) = x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)xdx+ c1

• Solve for y

y =
∫
µ(x)xdx+c1

µ(x)

• Substitute µ(x) = x

y =
∫
x2dx+c1

x

• Evaluate the integrals on the rhs

y =
x3
3 +c1
x

• Simplify
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y = x3+3c1
3x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(x*diff(y(x),x) +y(x)= x^2,y(x), singsol=all)� �

y(x) = x3 + 3c1
3x

3 Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 19� �
DSolve[x*y'[x] +y[x]== x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

3 + c1
x
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1.3 problem 2(c)
1.3.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 21
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Internal problem ID [871]
Internal file name [OUTPUT/871_Sunday_June_05_2022_01_52_55_AM_24961597/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 1, Introduction. Section 1.2 Page 14
Problem number: 2(c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

2yx+ y′ = x

1.3.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= x(1− 2y)

Where f(x) = x and g(y) = 1− 2y. Integrating both sides gives

1
1− 2y dy = x dx∫ 1
1− 2y dy =

∫
x dx

21



− ln (1− 2y)
2 = x2

2 + c1

Raising both side to exponential gives
1√

1− 2y
= ex2

2 +c1

Which simplifies to
1√

1− 2y
= c2e

x2
2

Summary
The solution(s) found are the following

(1)y =

(
c22ex

2+2c1 − 1
)
e−x2−2c1

2c22

Figure 6: Slope field plot

Verification of solutions

y =

(
c22ex

2+2c1 − 1
)
e−x2−2c1

2c22

Verified OK.
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1.3.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2x
q(x) = x

Hence the ode is

2yx+ y′ = x

The integrating factor µ is

µ = e
∫
2xdx

= ex2

The ode becomes

d
dx(µy) = (µ) (x)

d
dx

(
ex2

y
)
=
(
ex2
)
(x)

d
(
ex2

y
)
=
(
ex2

x
)
dx

Integrating gives

ex2
y =

∫
ex2

x dx

ex2
y = ex2

2 + c1

Dividing both sides by the integrating factor µ = ex2 results in

y = e−x2ex2

2 + c1e−x2

which simplifies to

y = 1
2 + c1e−x2
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Summary
The solution(s) found are the following

(1)y = 1
2 + c1e−x2

Figure 7: Slope field plot

Verification of solutions

y = 1
2 + c1e−x2

Verified OK.

1.3.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2yx+ x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 5: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x2 dy

Which results in

S = ex2
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2yx+ x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2x ex2

y

Sy = ex2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ex2

x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= eR2

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = eR2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ex2
y = ex2

2 + c1

Which simplifies to

ex2
y = ex2

2 + c1

Which gives

y =

(
ex2 + 2c1

)
e−x2

2
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2yx+ x dS
dR

= eR2
R

R = x

S = ex2
y
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Summary
The solution(s) found are the following

(1)y =

(
ex2 + 2c1

)
e−x2

2

Figure 8: Slope field plot

Verification of solutions

y =

(
ex2 + 2c1

)
e−x2

2

Verified OK.

1.3.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

1− 2y

)
dy = (x) dx

(−x) dx+
(

1
1− 2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
1− 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives
∂M

∂y
= ∂

∂y
(−x)

= 0

And
∂N

∂x
= ∂

∂x

(
1

1− 2y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
1−2y . Therefore equation (4) becomes

(5)1
1− 2y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
−1 + 2y
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
−1 + 2y

)
dy

f(y) = − ln (−1 + 2y)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 − ln (−1 + 2y)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 − ln (−1 + 2y)
2

The solution becomes

y = e−x2−2c1

2 + 1
2

Summary
The solution(s) found are the following

(1)y = e−x2−2c1

2 + 1
2
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Figure 9: Slope field plot

Verification of solutions

y = e−x2−2c1

2 + 1
2

Verified OK.

1.3.5 Maple step by step solution

Let’s solve
2yx+ y′ = x

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

2y−1 = −x

• Integrate both sides with respect to x∫
y′

2y−1dx =
∫
−xdx+ c1

• Evaluate integral
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ln(2y−1)
2 = −x2

2 + c1

• Solve for y

y = e−x2+2c1
2 + 1

2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 14� �
dsolve(diff(y(x),x) +2*x*y(x)= x,y(x), singsol=all)� �

y(x) = 1
2 + e−x2

c1

3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 26� �
DSolve[y'[x] +2*x*y[x]== x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2 + c1e

−x2

y(x) → 1
2
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1.4 problem 2(d)
1.4.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 34
1.4.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 36
1.4.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 40
1.4.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 44
1.4.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 47

Internal problem ID [872]
Internal file name [OUTPUT/872_Sunday_June_05_2022_01_52_56_AM_18164994/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 1, Introduction. Section 1.2 Page 14
Problem number: 2(d).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

2y′ + x
(
−1 + y2

)
= 0

1.4.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x

(
−y2

2 + 1
2

)
Where f(x) = x and g(y) = −y2

2 + 1
2 . Integrating both sides gives

1
−y2

2 + 1
2

dy = x dx

34



∫ 1
−y2

2 + 1
2

dy =
∫

x dx

2 arctanh (y) = x2

2 + c1

Which results in

y = tanh
(
x2

4 + c1
2

)
Summary
The solution(s) found are the following

(1)y = tanh
(
x2

4 + c1
2

)

Figure 10: Slope field plot

Verification of solutions

y = tanh
(
x2

4 + c1
2

)
Verified OK.
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1.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x(y2 − 1)
2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 8: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x

dx

Which results in

S = x2

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x(y2 − 1)
2
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 2

y2 − 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

R2 − 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2 arctanh (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2

2 = 2 arctanh (y) + c1

Which simplifies to

x2

2 = 2 arctanh (y) + c1

Which gives

y = − tanh
(
−x2

4 + c1
2

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x
(
y2−1

)
2

dS
dR

= − 2
R2−1

R = y

S = x2

2

Summary
The solution(s) found are the following

(1)y = − tanh
(
−x2

4 + c1
2

)
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Figure 11: Slope field plot

Verification of solutions

y = − tanh
(
−x2

4 + c1
2

)
Verified OK.

1.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

−y2

2 + 1
2

)
dy = (x) dx

(−x) dx+
(

1
−y2

2 + 1
2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
−y2

2 + 1
2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−x)

= 0
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And

∂N

∂x
= ∂

∂x

(
1

−y2

2 + 1
2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
− y2

2 + 1
2
. Therefore equation (4) becomes

(5)1
−y2

2 + 1
2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 2
y2 − 1

42



Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 2
y2 − 1

)
dy

f(y) = 2 arctanh (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + 2 arctanh (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + 2 arctanh (y)

The solution becomes

y = tanh
(
x2

4 + c1
2

)

Summary
The solution(s) found are the following

(1)y = tanh
(
x2

4 + c1
2

)
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Figure 12: Slope field plot

Verification of solutions

y = tanh
(
x2

4 + c1
2

)
Verified OK.

1.4.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −x(y2 − 1)
2

This is a Riccati ODE. Comparing the ODE to solve

y′ = −1
2x y

2 + 1
2x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = x
2 , f1(x) = 0 and f2(x) = −x

2 . Let

y = −u′

f2u

= −u′

−xu
2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = −1

2
f1f2 = 0

f 2
2 f0 =

x3

8

Substituting the above terms back in equation (2) gives

−xu′′(x)
2 + u′(x)

2 + x3u(x)
8 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sinh
(
x2

4

)
+ c2 cosh

(
x2

4

)

The above shows that

u′(x) =
x
(
c1 cosh

(
x2

4

)
+ c2 sinh

(
x2

4

))
2

Using the above in (1) gives the solution

y =
c1 cosh

(
x2

4

)
+ c2 sinh

(
x2

4

)
c1 sinh

(
x2

4

)
+ c2 cosh

(
x2

4

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y =
c3 cosh

(
x2

4

)
+ sinh

(
x2

4

)
c3 sinh

(
x2

4

)
+ cosh

(
x2

4

)
Summary
The solution(s) found are the following

(1)y =
c3 cosh

(
x2

4

)
+ sinh

(
x2

4

)
c3 sinh

(
x2

4

)
+ cosh

(
x2

4

)

Figure 13: Slope field plot

Verification of solutions

y =
c3 cosh

(
x2

4

)
+ sinh

(
x2

4

)
c3 sinh

(
x2

4

)
+ cosh

(
x2

4

)
Verified OK.
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1.4.5 Maple step by step solution

Let’s solve
2y′ + x(−1 + y2) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

−1+y2
= −x

2

• Integrate both sides with respect to x∫
y′

−1+y2
dx =

∫
−x

2dx+ c1

• Evaluate integral
−arctanh(y) = −x2

4 + c1

• Solve for y

y = − tanh
(
−x2

4 + c1
)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(2*diff(y(x),x) +x*(y(x)^2-1)= 0,y(x), singsol=all)� �

y(x) = tanh
(
x2

4 + c1
2

)
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3 Solution by Mathematica
Time used: 0.242 (sec). Leaf size: 52� �
DSolve[2*y'[x] +x*(y[x]^2-1)== 0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e
x2
2 − e2c1

e
x2
2 + e2c1

y(x) → −1
y(x) → 1
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1.5 problem 2(e)
1.5.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 49
1.5.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 51
1.5.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 55
1.5.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 59
1.5.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 61

Internal problem ID [873]
Internal file name [OUTPUT/873_Sunday_June_05_2022_01_52_57_AM_8955787/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 1, Introduction. Section 1.2 Page 14
Problem number: 2(e).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ −
(
1 + y2

)
x2 = 0

1.5.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
=
(
y2 + 1

)
x2

Where f(x) = x2 and g(y) = y2 + 1. Integrating both sides gives

1
y2 + 1 dy = x2 dx∫ 1
y2 + 1 dy =

∫
x2 dx
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arctan (y) = x3

3 + c1

Which results in

y = tan
(
x3

3 + c1

)
Summary
The solution(s) found are the following

(1)y = tan
(
x3

3 + c1

)

Figure 14: Slope field plot

Verification of solutions

y = tan
(
x3

3 + c1

)
Verified OK.
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1.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
(
y2 + 1

)
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 11: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
x2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x2

dx

Which results in

S = x3

3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
y2 + 1

)
x2
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = arctan (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x3

3 = arctan (y) + c1

Which simplifies to

x3

3 = arctan (y) + c1

Which gives

y = − tan
(
−x3

3 + c1

)

53



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (y2 + 1)x2 dS
dR

= 1
R2+1

R = y

S = x3

3

Summary
The solution(s) found are the following

(1)y = − tan
(
−x3

3 + c1

)
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Figure 15: Slope field plot

Verification of solutions

y = − tan
(
−x3

3 + c1

)
Verified OK.

1.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y2 + 1

)
dy =

(
x2) dx

(
−x2) dx+( 1

y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2

N(x, y) = 1
y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2)

= 0
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And
∂N

∂x
= ∂

∂x

(
1

y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 dx

(3)φ = −x3

3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2+1 . Therefore equation (4) becomes

(5)1
y2 + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2 + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y2 + 1

)
dy

f(y) = arctan (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x3

3 + arctan (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x3

3 + arctan (y)

The solution becomes

y = tan
(
x3

3 + c1

)

Summary
The solution(s) found are the following

(1)y = tan
(
x3

3 + c1

)

Figure 16: Slope field plot
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Verification of solutions

y = tan
(
x3

3 + c1

)
Verified OK.

1.5.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
=
(
y2 + 1

)
x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = x2y2 + x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x2, f1(x) = 0 and f2(x) = x2. Let

y = −u′

f2u

= −u′

x2u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 2x

f1f2 = 0
f 2
2 f0 = x6

Substituting the above terms back in equation (2) gives

x2u′′(x)− 2xu′(x) + x6u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives
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u(x) = c1 sin
(
x3

3

)
+ c2 cos

(
x3

3

)

The above shows that

u′(x) = x2
(
c1 cos

(
x3

3

)
− c2 sin

(
x3

3

))

Using the above in (1) gives the solution

y = −
c1 cos

(
x3

3

)
− c2 sin

(
x3

3

)
c1 sin

(
x3

3

)
+ c2 cos

(
x3

3

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
−c3 cos

(
x3

3

)
+ sin

(
x3

3

)
c3 sin

(
x3

3

)
+ cos

(
x3

3

)
Summary
The solution(s) found are the following

(1)y =
−c3 cos

(
x3

3

)
+ sin

(
x3

3

)
c3 sin

(
x3

3

)
+ cos

(
x3

3

)
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Figure 17: Slope field plot

Verification of solutions

y =
−c3 cos

(
x3

3

)
+ sin

(
x3

3

)
c3 sin

(
x3

3

)
+ cos

(
x3

3

)
Verified OK.

1.5.5 Maple step by step solution

Let’s solve
y′ − (1 + y2)x2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

1+y2
= x2

• Integrate both sides with respect to x∫
y′

1+y2
dx =

∫
x2dx+ c1
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• Evaluate integral
arctan (y) = x3

3 + c1

• Solve for y

y = tan
(

x3

3 + c1
)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(diff(y(x),x) = x^2*(1+y(x)^2),y(x), singsol=all)� �

y(x) = tan
(
x3

3 + c1

)
3 Solution by Mathematica
Time used: 0.171 (sec). Leaf size: 30� �
DSolve[y'[x] == x^2*(1+y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → tan
(
x3

3 + c1

)
y(x) → −i
y(x) → i
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1.6 problem 3(a)
1.6.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 63
1.6.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 64

Internal problem ID [874]
Internal file name [OUTPUT/874_Sunday_June_05_2022_01_52_58_AM_79689306/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 1, Introduction. Section 1.2 Page 14
Problem number: 3(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = −x

1.6.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

−x dx

= −x2

2 + c1

Summary
The solution(s) found are the following

(1)y = −x2

2 + c1
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Figure 18: Slope field plot

Verification of solutions

y = −x2

2 + c1

Verified OK.

1.6.2 Maple step by step solution

Let’s solve
y′ = −x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′dx =

∫
−xdx+ c1

• Evaluate integral
y = −x2

2 + c1

• Solve for y
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y = −x2

2 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve(diff(y(x),x) = -x,y(x), singsol=all)� �

y(x) = −x2

2 + c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 15� �
DSolve[y'[x] == -x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x2

2 + c1
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1.7 problem 3(b)
1.7.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 66
1.7.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 67

Internal problem ID [875]
Internal file name [OUTPUT/875_Sunday_June_05_2022_01_52_59_AM_1317647/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 1, Introduction. Section 1.2 Page 14
Problem number: 3(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = − sin (x)x

1.7.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

− sin (x)x dx

= x cos (x)− sin (x) + c1

Summary
The solution(s) found are the following

(1)y = x cos (x)− sin (x) + c1
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Figure 19: Slope field plot

Verification of solutions

y = x cos (x)− sin (x) + c1

Verified OK.

1.7.2 Maple step by step solution

Let’s solve
y′ = − sin (x)x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′dx =

∫
− sin (x)xdx+ c1

• Evaluate integral
y = x cos (x)− sin (x) + c1

• Solve for y
y = x cos (x)− sin (x) + c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x) = -x*sin(x),y(x), singsol=all)� �

y(x) = − sin (x) + cos (x)x+ c1

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 16� �
DSolve[y'[x] == -x*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − sin(x) + x cos(x) + c1

68



1.8 problem 3(c)
1.8.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 69
1.8.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 70

Internal problem ID [876]
Internal file name [OUTPUT/876_Sunday_June_05_2022_01_53_00_AM_12724638/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 1, Introduction. Section 1.2 Page 14
Problem number: 3(c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = x ln (x)

1.8.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

x ln (x) dx

= ln (x)x2

2 − x2

4 + c1

Summary
The solution(s) found are the following

(1)y = ln (x)x2

2 − x2

4 + c1
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Figure 20: Slope field plot

Verification of solutions

y = ln (x)x2

2 − x2

4 + c1

Verified OK.

1.8.2 Maple step by step solution

Let’s solve
y′ = x ln (x)

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′dx =

∫
x ln (x) dx+ c1

• Evaluate integral

y = ln(x)x2

2 − x2

4 + c1

• Solve for y
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y = ln(x)x2

2 − x2

4 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(diff(y(x),x) = x*ln(x),y(x), singsol=all)� �

y(x) = ln (x)x2

2 − x2

4 + c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 24� �
DSolve[y'[x] == x*Log[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x2

4 + 1
2x

2 log(x) + c1
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1.9 problem 4(a)
1.9.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 72
1.9.2 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 73
1.9.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 74

Internal problem ID [877]
Internal file name [OUTPUT/877_Sunday_June_05_2022_01_53_01_AM_12765659/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 1, Introduction. Section 1.2 Page 14
Problem number: 4(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = −x ex

With initial conditions

[y(0) = 1]

1.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 0
q(x) = −x ex

Hence the ode is

y′ = −x ex
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The domain of p(x) = 0 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = −x ex is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

1.9.2 Solving as quadrature ode

Integrating both sides gives

y =
∫

−x ex dx

= −(x− 1) ex + c1

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = 1 + c1

c1 = 0

Substituting c1 found above in the general solution gives

y = −x ex + ex

Summary
The solution(s) found are the following

(1)y = −x ex + ex
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −x ex + ex

Verified OK.

1.9.3 Maple step by step solution

Let’s solve
[y′ = −x ex, y(0) = 1]

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′dx =

∫
−x exdx+ c1

• Evaluate integral
y = −(x− 1) ex + c1

• Solve for y
y = −x ex + ex + c1

• Use initial condition y(0) = 1
1 = 1 + c1
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• Solve for c1
c1 = 0

• Substitute c1 = 0 into general solution and simplify
y = ex(1− x)

• Solution to the IVP
y = ex(1− x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 11� �
dsolve([diff(y(x),x) = -x*exp(x),y(0) = 1],y(x), singsol=all)� �

y(x) = −(x− 1) ex

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 13� �
DSolve[{y'[x] == -x*Exp[x],y[0]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −ex(x− 1)
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1.10 problem 4(b)
1.10.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 76
1.10.2 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 77
1.10.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 78

Internal problem ID [878]
Internal file name [OUTPUT/878_Sunday_June_05_2022_01_53_02_AM_44411204/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 1, Introduction. Section 1.2 Page 14
Problem number: 4(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = x sin
(
x2)

With initial conditions [
y

(√
2
√
π

2

)
= 1
]

1.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 0
q(x) = x sin

(
x2)

Hence the ode is

y′ = x sin
(
x2)
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The domain of p(x) = 0 is
{−∞ < x < ∞}

And the point x0 =
√
2
√
π

2 is inside this domain. The domain of q(x) = x sin (x2) is

{−∞ < x < ∞}

And the point x0 =
√
2
√
π

2 is also inside this domain. Hence solution exists and is unique.

1.10.2 Solving as quadrature ode

Integrating both sides gives

y =
∫

x sin
(
x2) dx

= −cos (x2)
2 + c1

Initial conditions are used to solve for c1. Substituting x =
√
2
√
π

2 and y = 1 in the
above solution gives an equation to solve for the constant of integration.

1 = c1

c1 = 1

Substituting c1 found above in the general solution gives

y = −cos (x2)
2 + 1

Summary
The solution(s) found are the following

(1)y = −cos (x2)
2 + 1
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −cos (x2)
2 + 1

Verified OK.

1.10.3 Maple step by step solution

Let’s solve[
y′ = x sin (x2) , y

(√
2
√
π

2

)
= 1
]

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′dx =

∫
x sin (x2) dx+ c1

• Evaluate integral

y = − cos
(
x2)
2 + c1

• Solve for y

y = − cos
(
x2)
2 + c1

• Use initial condition y
(√

2
√
π

2

)
= 1
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1 = c1

• Solve for c1
c1 = 1

• Substitute c1 = 1 into general solution and simplify

y = − cos
(
x2)
2 + 1

• Solution to the IVP

y = − cos
(
x2)
2 + 1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 12� �
dsolve([diff(y(x),x) = x*sin(x^2),y(sqrt(1/2*Pi)) = 1],y(x), singsol=all)� �

y(x) = −cos (x2)
2 + 1

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 15� �
DSolve[{y'[x] == x*Sin[x^2],y[Sqrt[Pi/2]]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1− cos (x2)
2
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1.11 problem 4(c)
1.11.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 80
1.11.2 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 81
1.11.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 82

Internal problem ID [879]
Internal file name [OUTPUT/879_Sunday_June_05_2022_01_53_03_AM_93000578/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 1, Introduction. Section 1.2 Page 14
Problem number: 4(c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = tan (x)

With initial conditions [
y
(π
4

)
= 3
]

1.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 0
q(x) = tan (x)

Hence the ode is

y′ = tan (x)
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The domain of p(x) = 0 is
{−∞ < x < ∞}

And the point x0 = π
4 is inside this domain. The domain of q(x) = tan (x) is

{
x <

1
2π + π_Z50∨ 1

2π + π_Z50 < x

}

And the point x0 = π
4 is also inside this domain. Hence solution exists and is unique.

1.11.2 Solving as quadrature ode

Integrating both sides gives

y =
∫

tan (x) dx

= − ln (cos (x)) + c1

Initial conditions are used to solve for c1. Substituting x = π
4 and y = 3 in the above

solution gives an equation to solve for the constant of integration.

3 = ln (2)
2 + c1

c1 = − ln (2)
2 + 3

Substituting c1 found above in the general solution gives

y = − ln (cos (x))− ln (2)
2 + 3

Summary
The solution(s) found are the following

(1)y = − ln (cos (x))− ln (2)
2 + 3
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = − ln (cos (x))− ln (2)
2 + 3

Verified OK.

1.11.3 Maple step by step solution

Let’s solve[
y′ = tan (x) , y

(
π
4

)
= 3
]

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′dx =

∫
tan (x) dx+ c1

• Evaluate integral
y = − ln (cos (x)) + c1

• Solve for y
y = − ln (cos (x)) + c1

• Use initial condition y
(
π
4

)
= 3
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3 = − ln
(√

2
2

)
+ c1

• Solve for c1

c1 = ln
(√

2
2

)
+ 3

• Substitute c1 = ln
(√

2
2

)
+ 3 into general solution and simplify

y = − ln (cos (x))− ln(2)
2 + 3

• Solution to the IVP
y = − ln (cos (x))− ln(2)

2 + 3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.046 (sec). Leaf size: 15� �
dsolve([diff(y(x),x) = tan(x),y(1/4*Pi) = 3],y(x), singsol=all)� �

y(x) = − ln (cos (x)) + 3− ln (2)
2

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 18� �
DSolve[{y'[x] == Tan[x],y[Pi/4]==3},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − log(cos(x)) + 3− log(2)
2
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1.12 problem 5(a)
1.12.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 84
1.12.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 85
1.12.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 87
1.12.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 91
1.12.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 95

Internal problem ID [880]
Internal file name [OUTPUT/880_Sunday_June_05_2022_01_53_05_AM_81107921/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 1, Introduction. Section 1.2 Page 14
Problem number: 5(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + tan (x) y = cos (x)

With initial conditions [
y
(π
4

)
=

√
2π
8

]

1.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = tan (x)
q(x) = cos (x)
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Hence the ode is

y′ + tan (x) y = cos (x)

The domain of p(x) = tan (x) is

{
x <

1
2π + π_Z50∨ 1

2π + π_Z50 < x

}

And the point x0 = π
4 is inside this domain. The domain of q(x) = cos (x) is

{−∞ < x < ∞}

And the point x0 = π
4 is also inside this domain. Hence solution exists and is unique.

1.12.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
tan(x)dx

= 1
cos (x)

Which simplifies to
µ = sec (x)

The ode becomes

d
dx(µy) = (µ) (cos (x))

d
dx(sec (x) y) = (sec (x)) (cos (x))

d(sec (x) y) = dx

Integrating gives

sec (x) y =
∫

dx

sec (x) y = x+ c1
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Dividing both sides by the integrating factor µ = sec (x) results in

y = x cos (x) + c1 cos (x)

which simplifies to

y = cos (x) (x+ c1)

Initial conditions are used to solve for c1. Substituting x = π
4 and y =

√
2π
8 in the above

solution gives an equation to solve for the constant of integration.
√
2π
8 =

√
2π
8 +

√
2 c1
2

c1 = 0

Substituting c1 found above in the general solution gives

y = x cos (x)

Summary
The solution(s) found are the following

(1)y = x cos (x)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = x cos (x)

Verified OK.
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1.12.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = cos (x)− tan (x) y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 20: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = cos (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

cos (x)dy

Which results in

S = y

cos (x)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = cos (x)− tan (x) y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = tan (x) sec (x) y
Sy = sec (x)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

sec (x) y = x+ c1

Which simplifies to

sec (x) y = x+ c1

Which gives

y = x+ c1
sec (x)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= cos (x)− tan (x) y dS
dR

= 1

R = x

S = sec (x) y

Initial conditions are used to solve for c1. Substituting x = π
4 and y =

√
2π
8 in the above

solution gives an equation to solve for the constant of integration.
√
2π
8 =

√
2π
8 +

√
2 c1
2

c1 = 0

Substituting c1 found above in the general solution gives

y = x cos (x)

Summary
The solution(s) found are the following

(1)y = x cos (x)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = x cos (x)

Verified OK.

1.12.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy = (cos (x)− tan (x) y) dx
(− cos (x) + tan (x) y) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − cos (x) + tan (x) y
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− cos (x) + tan (x) y)

= tan (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((tan (x))− (0))
= tan (x)
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
tan(x) dx

The result of integrating gives

µ = e− ln(cos(x))

= sec (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sec (x) (− cos (x) + tan (x) y)
= −1 + tan (x) sec (x) y

And

N = µN

= sec (x) (1)
= sec (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(−1 + tan (x) sec (x) y) + (sec (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1 + tan (x) sec (x) y dx

(3)φ = −x+ sec (x) y + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sec (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= sec (x). Therefore equation (4) becomes

(5)sec (x) = sec (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x+ sec (x) y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x+ sec (x) y

The solution becomes

y = x+ c1
sec (x)

Initial conditions are used to solve for c1. Substituting x = π
4 and y =

√
2π
8 in the above

solution gives an equation to solve for the constant of integration.
√
2π
8 =

√
2π
8 +

√
2 c1
2

c1 = 0

Substituting c1 found above in the general solution gives

y = x cos (x)
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Summary
The solution(s) found are the following

(1)y = x cos (x)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = x cos (x)

Verified OK.

1.12.5 Maple step by step solution

Let’s solve[
y′ + tan (x) y = cos (x) , y

(
π
4

)
=

√
2π
8

]
• Highest derivative means the order of the ODE is 1

y′

• Isolate the derivative
y′ = cos (x)− tan (x) y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + tan (x) y = cos (x)

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x) (y′ + tan (x) y) = µ(x) cos (x)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ + tan (x) y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) tan (x)

• Solve to find the integrating factor
µ(x) = 1

cos(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) cos (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) cos (x) dx+ c1

• Solve for y

y =
∫
µ(x) cos(x)dx+c1

µ(x)

• Substitute µ(x) = 1
cos(x)

y = cos (x)
(∫

1dx+ c1
)

• Evaluate the integrals on the rhs
y = cos (x) (x+ c1)

• Use initial condition y
(
π
4

)
=

√
2π
8

√
2π
8 =

√
2
(
π
4+c1

)
2

• Solve for c1
c1 = 0

• Substitute c1 = 0 into general solution and simplify
y = x cos (x)

• Solution to the IVP
y = x cos (x)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 8� �
dsolve([diff(y(x),x) = cos(x)-y(x)*tan(x),y(1/4*Pi) = 1/4*Pi/sqrt(2)],y(x), singsol=all)� �

y(x) = cos (x)x

3 Solution by Mathematica
Time used: 0.07 (sec). Leaf size: 9� �
DSolve[{y'[x] ==Cos[x]-y[x]*Tan[x],y[Pi/4]==Pi/(4*Sqrt[2])},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x cos(x)
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1.13 problem 5(b)
1.13.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 98
1.13.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 99
1.13.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 101
1.13.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 105
1.13.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 110

Internal problem ID [881]
Internal file name [OUTPUT/881_Sunday_June_05_2022_01_53_06_AM_62361073/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 1, Introduction. Section 1.2 Page 14
Problem number: 5(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − x2 − 2x2y + 2
x3 = 0

With initial conditions [
y(1) = 3

2

]
1.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 2
x

q(x) = x2 + 2
x3

98



Hence the ode is

y′ + 2y
x

= x2 + 2
x3

The domain of p(x) = 2
x
is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The domain of q(x) = x2+2
x3 is

{x < 0∨ 0 < x}

And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

1.13.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫ 2

x
dx

= x2

The ode becomes

d
dx(µy) = (µ)

(
x2 + 2
x3

)
d
dx
(
y x2) = (x2)(x2 + 2

x3

)
d
(
y x2) = (x2 + 2

x

)
dx

Integrating gives

y x2 =
∫

x2 + 2
x

dx

y x2 = x2

2 + 2 ln (x) + c1

Dividing both sides by the integrating factor µ = x2 results in

y =
x2

2 + 2 ln (x)
x2 + c1

x2
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which simplifies to

y =
x2

2 + 2 ln (x) + c1
x2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 3
2 in the above

solution gives an equation to solve for the constant of integration.
3
2 = 1

2 + c1

c1 = 1

Substituting c1 found above in the general solution gives

y = x2 + 4 ln (x) + 2
2x2

Summary
The solution(s) found are the following

(1)y = x2 + 4 ln (x) + 2
2x2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = x2 + 4 ln (x) + 2
2x2

Verified OK.
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1.13.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2y x2 − x2 − 2
x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 23: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x2

dy

Which results in

S = y x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2y x2 − x2 − 2
x3
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2yx
Sy = x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x2 + 2

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2 + 2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 + 2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2y = x2

2 + 2 ln (x) + c1

Which simplifies to

x2y = x2

2 + 2 ln (x) + c1

Which gives

y = x2 + 4 ln (x) + 2c1
2x2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2y x2−x2−2
x3

dS
dR

= R2+2
R

R = x

S = y x2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 3
2 in the above

solution gives an equation to solve for the constant of integration.

3
2 = 1

2 + c1

c1 = 1

Substituting c1 found above in the general solution gives

y = x2 + 4 ln (x) + 2
2x2

Summary
The solution(s) found are the following

(1)y = x2 + 4 ln (x) + 2
2x2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = x2 + 4 ln (x) + 2
2x2

Verified OK.

1.13.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
−2y x2 + x2 + 2

x3

)
dx(

−−2y x2 + x2 + 2
x3

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −−2y x2 + x2 + 2
x3

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−−2y x2 + x2 + 2

x3

)
= 2

x

And

∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

2
x

)
− (0)

)
= 2

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 2

x
dx

The result of integrating gives

µ = e2 ln(x)

= x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x2
(
−−2y x2 + x2 + 2

x3

)
= x2(−1 + 2y)− 2

x

And

N = µN

= x2(1)
= x2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x2(−1 + 2y)− 2
x

)
+
(
x2) dy

dx = 0

107



The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x2(−1 + 2y)− 2

x
dx

(3)φ = x2(−1 + 2y)
2 − 2 ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2. Therefore equation (4) becomes

(5)x2 = x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x2(−1 + 2y)
2 − 2 ln (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x2(−1 + 2y)

2 − 2 ln (x)
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The solution becomes

y = x2 + 4 ln (x) + 2c1
2x2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 3
2 in the above

solution gives an equation to solve for the constant of integration.
3
2 = 1

2 + c1

c1 = 1

Substituting c1 found above in the general solution gives

y = x2 + 4 ln (x) + 2
2x2

Summary
The solution(s) found are the following

(1)y = x2 + 4 ln (x) + 2
2x2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = x2 + 4 ln (x) + 2
2x2

Verified OK.
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1.13.5 Maple step by step solution

Let’s solve[
y′ − x2−2x2y+2

x3 = 0, y(1) = 3
2

]
• Highest derivative means the order of the ODE is 1

y′

• Isolate the derivative
y′ = −2y

x
+ x2+2

x3

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2y

x
= x2+2

x3

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + 2y

x

)
= µ(x)

(
x2+2

)
x3

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)

x

• Solve to find the integrating factor
µ(x) = x2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
(
x2+2

)
x3 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ µ(x)

(
x2+2

)
x3 dx+ c1

• Solve for y

y =
∫ µ(x)

(
x2+2

)
x3 dx+c1

µ(x)

• Substitute µ(x) = x2

y =
∫

x2+2
x

dx+c1
x2

• Evaluate the integrals on the rhs

y =
x2
2 +2 ln(x)+c1

x2
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• Use initial condition y(1) = 3
2

3
2 = 1

2 + c1

• Solve for c1
c1 = 1

• Substitute c1 = 1 into general solution and simplify

y =
x2
2 +2 ln(x)+1

x2

• Solution to the IVP

y =
x2
2 +2 ln(x)+1

x2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 19� �
dsolve([diff(y(x),x) = (x^2-2*x^2*y(x)+2)/x^3,y(1) = 3/2],y(x), singsol=all)� �

y(x) =
x2

2 + 2 ln (x) + 1
x2

3 Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 19� �
DSolve[{y'[x] ==(x^2-2*x^2*y[x]+2)/x^3,y[1]==3/2},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
x2 + 2 log(x)

x2 + 1
2
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1.14 problem 5(c)
1.14.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 112
1.14.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 113
1.14.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 115
1.14.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 119
1.14.5 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 123
1.14.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 126

Internal problem ID [882]
Internal file name [OUTPUT/882_Sunday_June_05_2022_01_53_07_AM_16214606/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 1, Introduction. Section 1.2 Page 14
Problem number: 5(c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − x
(
1 + y2

)
= 0

With initial conditions

[y(0) = 0]

1.14.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)
= x

(
y2 + 1

)
The x domain of f(x, y) when y = 0 is

{−∞ < x < ∞}
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And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}

And the point y0 = 0 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
x
(
y2 + 1

))
= 2yx

The x domain of ∂f
∂y

when y = 0 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of ∂f
∂y

when x = 0 is

{−∞ < y < ∞}

And the point y0 = 0 is inside this domain. Therefore solution exists and is unique.

1.14.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= x

(
y2 + 1

)
Where f(x) = x and g(y) = y2 + 1. Integrating both sides gives

1
y2 + 1 dy = x dx∫ 1
y2 + 1 dy =

∫
x dx

arctan (y) = x2

2 + c1

Which results in

y = tan
(
x2

2 + c1

)
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = tan (c1)

c1 = 0

Substituting c1 found above in the general solution gives

y = tan
(
x2

2

)
Summary
The solution(s) found are the following

(1)y = tan
(
x2

2

)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = tan
(
x2

2

)
Verified OK.
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1.14.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x
(
y2 + 1

)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 26: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x

dx

Which results in

S = x2

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x
(
y2 + 1

)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = arctan (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2

2 = arctan (y) + c1

Which simplifies to

x2

2 = arctan (y) + c1

Which gives

y = − tan
(
−x2

2 + c1

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x(y2 + 1) dS
dR

= 1
R2+1

R = y

S = x2

2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = − tan (c1)

c1 = 0

Substituting c1 found above in the general solution gives

y = tan
(
x2

2

)
Summary
The solution(s) found are the following

(1)y = tan
(
x2

2

)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = tan
(
x2

2

)
Verified OK.

1.14.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y2 + 1

)
dy = (x) dx

(−x) dx+
(

1
y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−x)

= 0

And

∂N

∂x
= ∂

∂x

(
1

y2 + 1

)
= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2+1 . Therefore equation (4) becomes

(5)1
y2 + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2 + 1

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
y2 + 1

)
dy

f(y) = arctan (y) + c1

121



Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + arctan (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + arctan (y)

The solution becomes

y = tan
(
x2

2 + c1

)

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = tan (c1)

c1 = 0

Substituting c1 found above in the general solution gives

y = tan
(
x2

2

)
Summary
The solution(s) found are the following

(1)y = tan
(
x2

2

)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = tan
(
x2

2

)
Verified OK.

1.14.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= x

(
y2 + 1

)
This is a Riccati ODE. Comparing the ODE to solve

y′ = x y2 + x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x, f1(x) = 0 and f2(x) = x. Let

y = −u′

f2u

= −u′

xu
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 1

f1f2 = 0
f 2
2 f0 = x3

Substituting the above terms back in equation (2) gives

xu′′(x)− u′(x) + x3u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sin
(
x2

2

)
+ c2 cos

(
x2

2

)
The above shows that

u′(x) = x

(
c1 cos

(
x2

2

)
− c2 sin

(
x2

2

))
Using the above in (1) gives the solution

y = −
c1 cos

(
x2

2

)
− c2 sin

(
x2

2

)
c1 sin

(
x2

2

)
+ c2 cos

(
x2

2

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
−c3 cos

(
x2

2

)
+ sin

(
x2

2

)
c3 sin

(
x2

2

)
+ cos

(
x2

2

)
Initial conditions are used to solve for c3. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = −c3
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c3 = 0

Substituting c3 found above in the general solution gives

y =
sin
(

x2

2

)
cos
(
x2

2

)
Summary
The solution(s) found are the following

(1)y =
sin
(

x2

2

)
cos
(
x2

2

)

(a) Solution plot (b) Slope field plot

Verification of solutions

y =
sin
(

x2

2

)
cos
(
x2

2

)
Verified OK.
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1.14.6 Maple step by step solution

Let’s solve
[y′ − x(1 + y2) = 0, y(0) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

1+y2
= x

• Integrate both sides with respect to x∫
y′

1+y2
dx =

∫
xdx+ c1

• Evaluate integral
arctan (y) = x2

2 + c1

• Solve for y

y = tan
(

x2

2 + c1
)

• Use initial condition y(0) = 0
0 = tan (c1)

• Solve for c1
c1 = 0

• Substitute c1 = 0 into general solution and simplify

y = tan
(

x2

2

)
• Solution to the IVP

y = tan
(

x2

2

)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 10� �
dsolve([diff(y(x),x) = x*(1+y(x)^2),y(0) = 0],y(x), singsol=all)� �

y(x) = tan
(
x2

2

)
3 Solution by Mathematica
Time used: 0.161 (sec). Leaf size: 13� �
DSolve[{y'[x] ==x*(1+y[x]^2),y[0]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → tan
(
x2

2

)
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1.15 problem 5(d)
1.15.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 129
1.15.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 129
1.15.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 131
1.15.4 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 135
1.15.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 139
1.15.6 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 142
1.15.7 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 145

Internal problem ID [883]
Internal file name [OUTPUT/883_Sunday_June_05_2022_01_53_09_AM_92903899/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 1, Introduction. Section 1.2 Page 14
Problem number: 5(d).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli",
"separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + y(1 + y)
x

= 0

With initial conditions

[y(1) = −2]
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1.15.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= −y(y + 1)
x

The x domain of f(x, y) when y = −2 is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{−∞ < y < ∞}

And the point y0 = −2 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
−y(y + 1)

x

)
= −y + 1

x
− y

x

The x domain of ∂f
∂y

when y = −2 is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{−∞ < y < ∞}

And the point y0 = −2 is inside this domain. Therefore solution exists and is unique.

1.15.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y(y + 1)
x
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Where f(x) = − 1
x
and g(y) = y(y + 1). Integrating both sides gives

1
y (y + 1) dy = −1

x
dx∫ 1

y (y + 1) dy =
∫

−1
x
dx

ln (y)− ln (y + 1) = − ln (x) + c1

Raising both side to exponential gives

eln(y)−ln(y+1) = e− ln(x)+c1

Which simplifies to
y

y + 1 = c2
x

Initial conditions are used to solve for c2. Substituting x = 1 and y = −2 in the above
solution gives an equation to solve for the constant of integration.

−2 = − c2
−1 + c2

c2 = 2

Substituting c2 found above in the general solution gives

y = 2
−2 + x

Summary
The solution(s) found are the following

(1)y = 2
−2 + x
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2
−2 + x

Verified OK.

1.15.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y(y + 1)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 29: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−x
dx

Which results in

S = − ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(y + 1)
x

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = −1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y (y + 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R (R + 1)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)− ln (R + 1) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x) = ln (y)− ln (1 + y) + c1

Which simplifies to

− ln (x) = ln (y)− ln (1 + y) + c1

Which gives

y = 1
−1 + x ec1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y(y+1)
x

dS
dR

= 1
R(R+1)

R = y

S = − ln (x)

Initial conditions are used to solve for c1. Substituting x = 1 and y = −2 in the above
solution gives an equation to solve for the constant of integration.

−2 = 1
−1 + ec1
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c1 = − ln (2)

Substituting c1 found above in the general solution gives

y = 2
−2 + x

Summary
The solution(s) found are the following

(1)y = 2
−2 + x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2
−2 + x

Verified OK.

1.15.4 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y(y + 1)
x
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This is a Bernoulli ODE.
y′ = −1

x
y − 1

x
y2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
x

f1(x) = −1
x

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= − 1
yx

− 1
x

(4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = −w(x)
x

− 1
x

w′ = w

x
+ 1

x
(7)
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The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −1
x

q(x) = 1
x

Hence the ode is

w′(x)− w(x)
x

= 1
x

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µw) = (µ)

(
1
x

)
d
dx

(w
x

)
=
(
1
x

)(
1
x

)
d
(w
x

)
= 1

x2 dx

Integrating gives

w

x
=
∫ 1

x2 dx

w

x
= −1

x
+ c1

Dividing both sides by the integrating factor µ = 1
x
results in

w(x) = c1x− 1

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= c1x− 1
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Or

y = 1
c1x− 1

Initial conditions are used to solve for c1. Substituting x = 1 and y = −2 in the above
solution gives an equation to solve for the constant of integration.

−2 = 1
c1 − 1

c1 =
1
2

Substituting c1 found above in the general solution gives

y = 2
−2 + x

Summary
The solution(s) found are the following

(1)y = 2
−2 + x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2
−2 + x

Verified OK.

138



1.15.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
y (y + 1)

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
− 1
y (y + 1)

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = − 1
y (y + 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0

And
∂N

∂x
= ∂

∂x

(
− 1
y (y + 1)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= − 1
y(y+1) . Therefore equation (4) becomes

(5)− 1
y (y + 1) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
y (y + 1)

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
y (y + 1)

)
dy

f(y) = − ln (y) + ln (y + 1) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)− ln (y) + ln (y + 1) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)− ln (y) + ln (y + 1)

The solution becomes

y = 1
−1 + x ec1

Initial conditions are used to solve for c1. Substituting x = 1 and y = −2 in the above
solution gives an equation to solve for the constant of integration.

−2 = 1
−1 + ec1

c1 = − ln (2)
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Substituting c1 found above in the general solution gives

y = 2
−2 + x

Summary
The solution(s) found are the following

(1)y = 2
−2 + x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2
−2 + x

Verified OK.

1.15.6 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −y(y + 1)
x

This is a Riccati ODE. Comparing the ODE to solve

y′ = −y2

x
− y

x
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With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = − 1
x
and f2(x) = − 1

x
. Let

y = −u′

f2u

= −u′

−u
x

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

1
x2

f1f2 =
1
x2

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

−u′′(x)
x

− 2u′(x)
x2 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 +
c2
x

The above shows that
u′(x) = − c2

x2

Using the above in (1) gives the solution

y = − c2
x
(
c1 + c2

x

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y = − 1
c3x+ 1

Initial conditions are used to solve for c3. Substituting x = 1 and y = −2 in the above
solution gives an equation to solve for the constant of integration.

−2 = − 1
c3 + 1

c3 = −1
2

Substituting c3 found above in the general solution gives

y = 2
−2 + x

Summary
The solution(s) found are the following

(1)y = 2
−2 + x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2
−2 + x

Verified OK.
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1.15.7 Maple step by step solution

Let’s solve[
y′ + y(1+y)

x
= 0, y(1) = −2

]
• Highest derivative means the order of the ODE is 1

y′

• Separate variables
y′

y(1+y) = − 1
x

• Integrate both sides with respect to x∫
y′

y(1+y)dx =
∫
− 1

x
dx+ c1

• Evaluate integral
ln (y)− ln (1 + y) = − ln (x) + c1

• Solve for y
y = − ec1

ec1−x

• Use initial condition y(1) = −2
−2 = − ec1

−1+ec1

• Solve for c1
c1 = ln (2)

• Substitute c1 = ln (2) into general solution and simplify
y = 2

−2+x

• Solution to the IVP
y = 2

−2+x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 11� �
dsolve([diff(y(x),x) = (- y(x)*(y(x)+1))/x,y(1) = -2],y(x), singsol=all)� �

y(x) = 2
−2 + x

3 Solution by Mathematica
Time used: 0.224 (sec). Leaf size: 12� �
DSolve[{y'[x] ==(- y[x]*(y[x]+1))/x,y[1]==-2},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2
x− 2
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1.16 problem 8(a)
1.16.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 147
1.16.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 148

Internal problem ID [884]
Internal file name [OUTPUT/884_Sunday_June_05_2022_01_53_10_AM_42109854/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 1, Introduction. Section 1.2 Page 14
Problem number: 8(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ − ay
a−1
a = 0

1.16.1 Solving as quadrature ode

Integrating both sides gives ∫
y−

a−1
a

a
dy =

∫
dx

y y−
a−1
a = x+ c1

Summary
The solution(s) found are the following

(1)y y−
a−1
a = x+ c1

Verification of solutions

y y−
a−1
a = x+ c1

Verified OK.
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1.16.2 Maple step by step solution

Let’s solve
y′ − ay

a−1
a = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
a−1
a

= a

• Integrate both sides with respect to x∫
y′

y
a−1
a
dx =

∫
adx+ c1

• Evaluate integral
y−

a−1
a +1

−a−1
a

+1 = ax+ c1

• Solve for y

y = eln
(

ax+c1
a

)
a

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 9� �
dsolve(diff(y(x),x) = a*y(x)^( (a-1)/a),y(x), singsol=all)� �

y(x) = (c1 + x)a
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3 Solution by Mathematica
Time used: 0.843 (sec). Leaf size: 28� �
DSolve[y'[x] ==a*y[x]^( (a-1)/a),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
x+ c1

a

)
a

y(x) → 0
a

a−1

149



1.17 problem 9
1.17.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 150
1.17.2 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 151
1.17.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 153

Internal problem ID [885]
Internal file name [OUTPUT/885_Sunday_June_05_2022_01_53_12_AM_32529587/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 1, Introduction. Section 1.2 Page 14
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ − |y| = 1

With initial conditions

[y(0) = 0]

1.17.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)
= |y|+ 1

The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}

And the point y0 = 0 is inside this domain. Now we will look at the continuity of
∂f

∂y
= ∂

∂y
(|y|+ 1)

= abs (1, y)
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The y domain of ∂f
∂y

when x = 0 is

{y < 0∨ 0 < y}

But the point y0 = 0 is not inside this domain. Hence existence and uniqueness theorem
does not apply. Solution exists but no guarantee that unique solution exists.

1.17.2 Solving as quadrature ode

Integrating both sides gives ∫ 1
|y|+ 1dy = x+ c1 − ln (−y + 1) y ≤ 0

ln (y + 1) 0 < y
= x+ c1

Solving for y gives these solutions

y1 = −e−x−c1 + 1

= −e−x + c1
c1

y2 = ex+c1 − 1
= c1ex − 1

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = c1 − 1

c1 = 1

Substituting c1 found above in the general solution gives

y = ex − 1

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = c1 − 1
c1
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c1 = 1

Substituting c1 found above in the general solution gives

y = −e−x + 1

Summary
The solution(s) found are the following

(1)y = −e−x + 1
(2)y = ex − 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −e−x + 1

Verified OK.
y = ex − 1

Verified OK.
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1.17.3 Maple step by step solution

Let’s solve
[y′ − |y| = 1, y(0) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

|y|+1 = 1

• Integrate both sides with respect to x∫
y′

|y|+1dx =
∫
1dx+ c1

• Evaluate integral − ln (1− y) y ≤ 0
ln (1 + y) 0 < y

= x+ c1

• Solve for y
{y = −e−x−c1 + 1, y = ex+c1 − 1}

• Use initial condition y(0) = 0
0 = −e−c1 + 1

• Solve for c1
c1 = 0

• Substitute c1 = 0 into general solution and simplify
y = −e−x + 1

• Use initial condition y(0) = 0
0 = −1 + ec1

• Solve for c1
c1 = 0

• Substitute c1 = 0 into general solution and simplify
y = ex − 1

• Solutions to the IVP
{y = ex − 1, y = −e−x + 1}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.172 (sec). Leaf size: 19� �
dsolve([diff(y(x),x) = abs(y(x))+1,y(0) = 0],y(x), singsol=all)� �

y(x) = ex − 1
y(x) = 1− e−x

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[{y'[x] ==Abs[y[x]]+1,{y[0]==0}},y[x],x,IncludeSingularSolutions -> True]� �
{}
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1.18 problem 10(a)
1.18.1 Solving as first order ode lie symmetry calculated ode . . . . . . 155

Internal problem ID [886]
Internal file name [OUTPUT/886_Sunday_June_05_2022_01_53_16_AM_27410281/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 1, Introduction. Section 1.2 Page 14
Problem number: 10(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

y′ −
√
x2 + 4x+ 4y

2 = −x

2 − 1

1.18.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −1− x

2 +
√
x2 + 4x+ 4y

2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2+
(
−1− x

2 +
√
x2 + 4x+ 4y

2

)
(b3−a2)−

(
−1− x

2 +
√
x2 + 4x+ 4y

2

)2

a3

−
(
−1
2 + 2x+ 4

4
√
x2 + 4x+ 4y

)
(xa2 + ya3 + a1)−

xb2 + yb3 + b1√
x2 + 4x+ 4y

= 0

Putting the above in normal form gives

−4a1 + 4b1 + 4x2a2 + 2xa1 + (x2 + 4x+ 4y)
3
2 a3 − 2

√
x2 + 4x+ 4y a1 − 4

√
x2 + 4x+ 4y a2 + 4a3

√
x2 + 4x+ 4y − 4b2

√
x2 + 4x+ 4y + 4

√
x2 + 4x+ 4y b3 − 2x3a3 − 12x2a3 + 8ya2 − 2x2b3 − 8xb3 + 12xa2 − 12ya3 + 4xb2 − 4yb3 − 6xya3 +

√
x2 + 4x+ 4y x2a3 − 4

√
x2 + 4x+ 4y xa2 + 4

√
x2 + 4x+ 4y xa3 + 2

√
x2 + 4x+ 4y xb3 − 2

√
x2 + 4x+ 4y ya3 − 16xa3

4
√
x2 + 4x+ 4y

= 0

Setting the numerator to zero gives

(6E)

−4a1 − 4b1 − 4x2a2 − 2xa1 −
(
x2 + 4x+ 4y

) 3
2 a3

+ 2
√

x2 + 4x+ 4y a1 + 4
√

x2 + 4x+ 4y a2 − 4a3
√

x2 + 4x+ 4y
+ 4b2

√
x2 + 4x+ 4y − 4

√
x2 + 4x+ 4y b3 + 2x3a3 + 12x2a3

− 8ya2 + 2x2b3 + 8xb3 − 12xa2 + 12ya3 − 4xb2 + 4yb3 + 6xya3
−
√

x2 + 4x+ 4y x2a3 + 4
√
x2 + 4x+ 4y xa2 − 4

√
x2 + 4x+ 4y xa3

− 2
√

x2 + 4x+ 4y xb3 + 2
√

x2 + 4x+ 4y ya3 + 16xa3 = 0

Simplifying the above gives

(6E)

−
(
x2 + 4x+ 4y

) 3
2 a3 + 2

(
x2 + 4x+ 4y

)
xa3 −

√
x2 + 4x+ 4y x2a3

− 2
(
x2 + 4x+ 4y

)
a2 + 4

(
x2 + 4x+ 4y

)
a3 + 2

(
x2 + 4x+ 4y

)
b3

+ 4
√

x2 + 4x+ 4y xa2 − 4
√
x2 + 4x+ 4y xa3 − 2

√
x2 + 4x+ 4y xb3

+ 2
√

x2 + 4x+ 4y ya3 − 2x2a2 − 2xya3 + 2
√

x2 + 4x+ 4y a1
+ 4
√

x2 + 4x+ 4y a2 − 4a3
√

x2 + 4x+ 4y + 4b2
√
x2 + 4x+ 4y

−4
√

x2 + 4x+ 4y b3−2xa1−4xa2−4xb2−4ya3−4yb3−4a1−4b1 = 0
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Since the PDE has radicals, simplifying gives

−4a1 − 4b1 − 4x2a2 − 2xa1 + 2
√

x2 + 4x+ 4y a1 + 4
√

x2 + 4x+ 4y a2
− 4a3

√
x2 + 4x+ 4y + 4b2

√
x2 + 4x+ 4y − 4

√
x2 + 4x+ 4y b3 + 2x3a3

+ 12x2a3 − 8ya2 + 2x2b3 + 8xb3 − 12xa2 + 12ya3 − 4xb2 + 4yb3 + 6xya3
− 2
√

x2 + 4x+ 4y x2a3 + 4
√

x2 + 4x+ 4y xa2 − 8
√

x2 + 4x+ 4y xa3
− 2
√

x2 + 4x+ 4y xb3 − 2
√

x2 + 4x+ 4y ya3 + 16xa3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x2 + 4x+ 4y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x2 + 4x+ 4y = v3

}
The above PDE (6E) now becomes

(7E)2v31a3 − 2v3v21a3 − 4v21a2 + 4v3v1a2 + 12v21a3 + 6v1v2a3 − 8v3v1a3 − 2v3v2a3
+ 2v21b3 − 2v3v1b3 − 2v1a1 + 2v3a1 − 12v1a2 − 8v2a2 + 4v3a2 + 16v1a3
+ 12v2a3 − 4a3v3 − 4v1b2 + 4b2v3 + 8v1b3 + 4v2b3 − 4v3b3 − 4a1 − 4b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)2v31a3 − 2v3v21a3 + (−4a2 + 12a3 + 2b3) v21 + 6v1v2a3
+ (4a2 − 8a3 − 2b3) v1v3 + (−2a1 − 12a2 + 16a3 − 4b2 + 8b3) v1 − 2v3v2a3
+ (−8a2 + 12a3 + 4b3) v2 + (2a1 + 4a2 − 4a3 + 4b2 − 4b3) v3 − 4a1 − 4b1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−2a3 = 0
2a3 = 0
6a3 = 0

−4a1 − 4b1 = 0
−8a2 + 12a3 + 4b3 = 0
−4a2 + 12a3 + 2b3 = 0

4a2 − 8a3 − 2b3 = 0
−2a1 − 12a2 + 16a3 − 4b2 + 8b3 = 0

2a1 + 4a2 − 4a3 + 4b2 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 2a2 − 2b2
a2 = a2

a3 = 0
b1 = −2a2 + 2b2
b2 = b2

b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2
η = 2 + x

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2 + x−
(
−1− x

2 +
√
x2 + 4x+ 4y

2

)
(−2)

=
√

x2 + 4x+ 4y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1√

x2 + 4x+ 4y
dy

Which results in

S =
√
x2 + 4x+ 4y

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −1− x

2 +
√
x2 + 4x+ 4y

2
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2 + x

2
√
x2 + 4x+ 4y

Sy =
1√

x2 + 4x+ 4y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

2 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in √

x2 + 4x+ 4y
2 = x

2 + c1

Which simplifies to
√
x2 + 4x+ 4y

2 = x

2 + c1

Which gives

y = c21 + c1x− x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −1− x
2 +

√
x2+4x+4y

2
dS
dR

= 1
2

R = x

S =
√
x2 + 4x+ 4y

2

160



Summary
The solution(s) found are the following

(1)y = c21 + c1x− x

Figure 40: Slope field plot

Verification of solutions

y = c21 + c1x− x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
differential order: 1; found: 2 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -1-(1/2)*x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful

<- 1st order, canonical coordinates successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 23� �
dsolve(diff(y(x),x) = 1/2*(-(x+2)+sqrt(x^2+4*x+4*y(x))),y(x), singsol=all)� �

x−
√

x2 + 4x+ 4y (x)− c1 = 0

3 Solution by Mathematica
Time used: 0.801 (sec). Leaf size: 47� �
DSolve[y'[x] ==1/2*(-(x+2)+Sqrt[x^2+4*x+4*y[x]]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4
(
−2x+ 2ec1(x+ 1) + 1 + e2c1

)
y(x) → 1

y(x) → 1
4(1− 2x)
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order. Section 2.1 Page 41

2.1 problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
2.2 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
2.3 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
2.4 problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
2.5 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
2.6 problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
2.7 problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
2.8 problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
2.9 problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
2.10 problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
2.11 problem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
2.12 problem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
2.13 problem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
2.14 problem 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
2.15 problem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
2.16 problem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
2.17 problem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
2.18 problem 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
2.19 problem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
2.20 problem 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
2.21 problem 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
2.22 problem 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
2.23 problem 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
2.24 problem 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
2.25 problem 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
2.26 problem 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
2.27 problem 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
2.28 problem 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
2.29 problem 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
2.30 problem 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
2.31 problem 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
2.32 problem 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
2.33 problem 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
2.34 problem 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
2.35 problem 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
2.36 problem 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630

163



2.37 problem 44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
2.38 problem 48(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658
2.39 problem 48(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
2.40 problem 48(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666
2.41 problem 48(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681

164



2.1 problem 1
2.1.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 165
2.1.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 166

Internal problem ID [887]
Internal file name [OUTPUT/887_Sunday_June_05_2022_01_53_19_AM_9951064/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ + ay = 0

2.1.1 Solving as quadrature ode

Integrating both sides gives ∫
− 1
ay

dy =
∫

dx

− ln (y)
a

= x+ c1

Raising both side to exponential gives

e−
ln(y)
a = ex+c1

Which simplifies to

y−
1
a = c2ex

Summary
The solution(s) found are the following

(1)y = (c2ex)−a
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Verification of solutions

y = (c2ex)−a

Verified OK.

2.1.2 Maple step by step solution

Let’s solve
y′ + ay = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= −a

• Integrate both sides with respect to x∫
y′

y
dx =

∫
−adx+ c1

• Evaluate integral
ln (y) = −ax+ c1

• Solve for y
y = e−ax+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve(diff(y(x),x) + a*y(x)=0,y(x), singsol=all)� �

y(x) = c1e−ax

3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 19� �
DSolve[y'[x] + a*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−ax

y(x) → 0
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2.2 problem 2
2.2.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 168
2.2.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 170
2.2.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 171
2.2.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 173
2.2.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 177
2.2.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 181

Internal problem ID [888]
Internal file name [OUTPUT/888_Sunday_June_05_2022_01_53_19_AM_56214758/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + 3x2y = 0

2.2.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= −3y x2
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Where f(x) = −3x2 and g(y) = y. Integrating both sides gives

1
y
dy = −3x2 dx∫ 1

y
dy =

∫
−3x2 dx

ln (y) = −x3 + c1

y = e−x3+c1

= c1e−x3

Summary
The solution(s) found are the following

(1)y = c1e−x3

Figure 41: Slope field plot

Verification of solutions

y = c1e−x3

Verified OK.

169



2.2.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 3x2

q(x) = 0

Hence the ode is

y′ + 3x2y = 0

The integrating factor µ is

µ = e
∫
3x2dx

= ex3

The ode becomes

d
dxµy = 0

d
dx

(
ex3

y
)
= 0

Integrating gives

ex3
y = c1

Dividing both sides by the integrating factor µ = ex3 results in

y = c1e−x3

Summary
The solution(s) found are the following

(1)y = c1e−x3

170



Figure 42: Slope field plot

Verification of solutions

y = c1e−x3

Verified OK.

2.2.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x) + 3x3u(x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(3x3 + 1)
x
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Where f(x) = −3x3+1
x

and g(u) = u. Integrating both sides gives

1
u
du = −3x3 + 1

x
dx∫ 1

u
du =

∫
−3x3 + 1

x
dx

ln (u) = −x3 − ln (x) + c2

u = e−x3−ln(x)+c2

= c2e−x3−ln(x)

Which simplifies to

u(x) = c2e−x3

x

Therefore the solution y is

y = xu

= c2e−x3

Summary
The solution(s) found are the following

(1)y = c2e−x3
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Figure 43: Slope field plot

Verification of solutions

y = c2e−x3

Verified OK.

2.2.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −3y x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 35: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−x3 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x3 dy

Which results in

S = ex3
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3y x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 3x2ex3

y

Sy = ex3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ex3
y = c1

Which simplifies to

ex3
y = c1

Which gives

y = c1e−x3

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −3y x2 dS
dR

= 0

R = x

S = ex3
y

Summary
The solution(s) found are the following

(1)y = c1e−x3
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Figure 44: Slope field plot

Verification of solutions

y = c1e−x3

Verified OK.

2.2.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
3y

)
dy =

(
x2) dx

(
−x2) dx+(− 1

3y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2

N(x, y) = − 1
3y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2)

= 0
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And

∂N

∂x
= ∂

∂x

(
− 1
3y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 dx

(3)φ = −x3

3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
3y . Therefore equation (4) becomes

(5)− 1
3y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
3y
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
3y

)
dy

f(y) = − ln (y)
3 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x3

3 − ln (y)
3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x3

3 − ln (y)
3

The solution becomes
y = e−x3−3c1

Summary
The solution(s) found are the following

(1)y = e−x3−3c1
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Figure 45: Slope field plot

Verification of solutions

y = e−x3−3c1

Verified OK.

2.2.6 Maple step by step solution

Let’s solve
y′ + 3x2y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= −3x2

• Integrate both sides with respect to x∫
y′

y
dx =

∫
−3x2dx+ c1

• Evaluate integral
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ln (y) = −x3 + c1

• Solve for y
y = e−x3+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(diff(y(x),x) + 3*x^2*y(x)=0,y(x), singsol=all)� �

y(x) = c1e−x3

3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 20� �
DSolve[y'[x] +3*x^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−x3

y(x) → 0
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2.3 problem 3
2.3.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 183
2.3.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 185
2.3.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 186
2.3.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 188
2.3.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 192
2.3.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 196

Internal problem ID [889]
Internal file name [OUTPUT/889_Sunday_June_05_2022_01_53_21_AM_54030334/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′x+ ln (x) y = 0

2.3.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − ln (x) y
x
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Where f(x) = − ln(x)
x

and g(y) = y. Integrating both sides gives

1
y
dy = − ln (x)

x
dx∫ 1

y
dy =

∫
− ln (x)

x
dx

ln (y) = − ln (x)2

2 + c1

y = e−
ln(x)2

2 +c1

= c1e−
ln(x)2

2

Summary
The solution(s) found are the following

(1)y = c1e−
ln(x)2

2

Figure 46: Slope field plot

Verification of solutions

y = c1e−
ln(x)2

2

Verified OK.
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2.3.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = ln (x)
x

q(x) = 0

Hence the ode is

y′ + ln (x) y
x

= 0

The integrating factor µ is

µ = e
∫ ln(x)

x
dx

= e
ln(x)2

2

The ode becomes

d
dxµy = 0

d
dx

(
e

ln(x)2
2 y

)
= 0

Integrating gives

e
ln(x)2

2 y = c1

Dividing both sides by the integrating factor µ = e
ln(x)2

2 results in

y = c1e−
ln(x)2

2

Summary
The solution(s) found are the following

(1)y = c1e−
ln(x)2

2
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Figure 47: Slope field plot

Verification of solutions

y = c1e−
ln(x)2

2

Verified OK.

2.3.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x+ ln (x)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(ln (x) + 1)
x
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Where f(x) = − ln(x)+1
x

and g(u) = u. Integrating both sides gives

1
u
du = − ln (x) + 1

x
dx∫ 1

u
du =

∫
− ln (x) + 1

x
dx

ln (u) = − ln (x)2

2 − ln (x) + c2

u = e−
ln(x)2

2 −ln(x)+c2

= c2e−
ln(x)2

2 −ln(x)

Which simplifies to

u(x) = c2e−
ln(x)2

2

x

Therefore the solution y is

y = xu

= c2e−
ln(x)2

2

Summary
The solution(s) found are the following

(1)y = c2e−
ln(x)2

2
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Figure 48: Slope field plot

Verification of solutions

y = c2e−
ln(x)2

2

Verified OK.

2.3.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − ln (x) y
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 38: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e−
ln(x)2

2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−
ln(x)2

2

dy

Which results in

S = e
ln(x)2

2 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − ln (x) y
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = ln (x) e
ln(x)2

2 y

x

Sy = e
ln(x)2

2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e
ln(x)2

2 y = c1

Which simplifies to

e
ln(x)2

2 y = c1

Which gives

y = c1e−
ln(x)2

2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − ln(x)y
x

dS
dR

= 0

R = x

S = e
ln(x)2

2 y

Summary
The solution(s) found are the following

(1)y = c1e−
ln(x)2

2

191



Figure 49: Slope field plot

Verification of solutions

y = c1e−
ln(x)2

2

Verified OK.

2.3.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−1
y

)
dy =

(
ln (x)
x

)
dx(

− ln (x)
x

)
dx+

(
−1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − ln (x)
x

N(x, y) = −1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− ln (x)

x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
−1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− ln (x)

x
dx

(3)φ = − ln (x)2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y
. Therefore equation (4) becomes

(5)−1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)2

2 − ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)2

2 − ln (y)

The solution becomes

y = e−
ln(x)2

2 −c1

Summary
The solution(s) found are the following

(1)y = e−
ln(x)2

2 −c1

Figure 50: Slope field plot
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Verification of solutions

y = e−
ln(x)2

2 −c1

Verified OK.

2.3.6 Maple step by step solution

Let’s solve
y′x+ ln (x) y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= − ln(x)

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
− ln(x)

x
dx+ c1

• Evaluate integral

ln (y) = − ln(x)2
2 + c1

• Solve for y

y = e−
ln(x)2

2 +c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(x*diff(y(x),x) + ln(x)*y(x)=0,y(x), singsol=all)� �

y(x) = c1e−
ln(x)2

2
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3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 23� �
DSolve[x*y'[x] +Log[x]*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
− 1

2 log2(x)

y(x) → 0
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2.4 problem 4
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Internal problem ID [890]
Internal file name [OUTPUT/890_Sunday_June_05_2022_01_53_22_AM_23926869/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

3y + y′x = 0

2.4.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −3y
x
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Where f(x) = − 3
x
and g(y) = y. Integrating both sides gives

1
y
dy = −3

x
dx∫ 1

y
dy =

∫
−3
x
dx

ln (y) = −3 ln (x) + c1

y = e−3 ln(x)+c1

= c1
x3

Summary
The solution(s) found are the following

(1)y = c1
x3

Figure 51: Slope field plot

Verification of solutions

y = c1
x3

Verified OK.
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2.4.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 3
x

q(x) = 0

Hence the ode is

y′ + 3y
x

= 0

The integrating factor µ is

µ = e
∫ 3

x
dx

= x3

The ode becomes

d
dxµy = 0

d
dx
(
y x3) = 0

Integrating gives

y x3 = c1

Dividing both sides by the integrating factor µ = x3 results in

y = c1
x3

Summary
The solution(s) found are the following

(1)y = c1
x3
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Figure 52: Slope field plot

Verification of solutions

y = c1
x3

Verified OK.

2.4.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

3u(x)x+ (u′(x)x+ u(x))x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −4u
x

201



Where f(x) = − 4
x
and g(u) = u. Integrating both sides gives

1
u
du = −4

x
dx∫ 1

u
du =

∫
−4
x
dx

ln (u) = −4 ln (x) + c2

u = e−4 ln(x)+c2

= c2
x4

Therefore the solution y is

y = ux

= c2
x3

Summary
The solution(s) found are the following

(1)y = c2
x3

Figure 53: Slope field plot
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Verification of solutions

y = c2
x3

Verified OK.

2.4.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −3y
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

203



Table 41: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x3 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x3

dy

Which results in

S = y x3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3y
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 3y x2

Sy = x3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx3 = c1

Which simplifies to

yx3 = c1

Which gives

y = c1
x3

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −3y
x

dS
dR

= 0

R = x

S = y x3

Summary
The solution(s) found are the following

(1)y = c1
x3
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Figure 54: Slope field plot

Verification of solutions

y = c1
x3

Verified OK.

2.4.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
3y

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
− 1
3y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = − 1
3y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
− 1
3y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
3y . Therefore equation (4) becomes

(5)− 1
3y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
3y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− 1
3y

)
dy

f(y) = − ln (y)
3 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)− ln (y)
3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)− ln (y)
3

The solution becomes

y = e−3c1

x3

Summary
The solution(s) found are the following

(1)y = e−3c1

x3

Figure 55: Slope field plot
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Verification of solutions

y = e−3c1

x3

Verified OK.

2.4.6 Maple step by step solution

Let’s solve
3y + y′x = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= − 3

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
− 3

x
dx+ c1

• Evaluate integral
ln (y) = −3 ln (x) + c1

• Solve for y
y = ec1

x3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve(x*diff(y(x),x) + 3*y(x)=0,y(x), singsol=all)� �

y(x) = c1
x3
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3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 16� �
DSolve[x*y'[x] +3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
x3

y(x) → 0
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Internal problem ID [891]
Internal file name [OUTPUT/891_Sunday_June_05_2022_01_53_23_AM_1052067/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′x2 + y = 0

2.5.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − y

x2
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Where f(x) = − 1
x2 and g(y) = y. Integrating both sides gives

1
y
dy = − 1

x2 dx∫ 1
y
dy =

∫
− 1
x2 dx

ln (y) = 1
x
+ c1

y = e 1
x
+c1

= c1e
1
x

Summary
The solution(s) found are the following

(1)y = c1e
1
x

Figure 56: Slope field plot

Verification of solutions

y = c1e
1
x

Verified OK.
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2.5.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x2

q(x) = 0

Hence the ode is

y′ + y

x2 = 0

The integrating factor µ is

µ = e
∫ 1

x2 dx

= e− 1
x

The ode becomes

d
dxµy = 0

d
dx

(
e− 1

xy
)
= 0

Integrating gives

e− 1
xy = c1

Dividing both sides by the integrating factor µ = e− 1
x results in

y = c1e
1
x

Summary
The solution(s) found are the following

(1)y = c1e
1
x
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Figure 57: Slope field plot

Verification of solutions

y = c1e
1
x

Verified OK.

2.5.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x2 + u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(x+ 1)
x2
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Where f(x) = −x+1
x2 and g(u) = u. Integrating both sides gives

1
u
du = −x+ 1

x2 dx∫ 1
u
du =

∫
−x+ 1

x2 dx

ln (u) = − ln (x) + 1
x
+ c2

u = e− ln(x)+ 1
x
+c2

= c2e− ln(x)+ 1
x

Which simplifies to

u(x) = c2e
1
x

x

Therefore the solution y is

y = ux

= c2e
1
x

Summary
The solution(s) found are the following

(1)y = c2e
1
x
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Figure 58: Slope field plot

Verification of solutions

y = c2e
1
x

Verified OK.

2.5.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − y

x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 44: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e 1

x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e 1
x

dy

Which results in

S = e− 1
xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y

x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = e− 1
xy

x2

Sy = e− 1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e− 1
xy = c1

Which simplifies to

e− 1
xy = c1

Which gives

y = c1e
1
x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y
x2

dS
dR

= 0

R = x

S = e− 1
xy

Summary
The solution(s) found are the following

(1)y = c1e
1
x
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Figure 59: Slope field plot

Verification of solutions

y = c1e
1
x

Verified OK.

2.5.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−1
y

)
dy =

(
1
x2

)
dx(

− 1
x2

)
dx+

(
−1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x2

N(x, y) = −1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x2

)
= 0
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And
∂N

∂x
= ∂

∂x

(
−1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x2 dx

(3)φ = 1
x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y
. Therefore equation (4) becomes

(5)−1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 1
x
− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1
x
− ln (y)

The solution becomes
y = e−

c1x−1
x

Summary
The solution(s) found are the following

(1)y = e−
c1x−1

x

Figure 60: Slope field plot
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Verification of solutions

y = e−
c1x−1

x

Verified OK.

2.5.6 Maple step by step solution

Let’s solve
y′x2 + y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= − 1

x2

• Integrate both sides with respect to x∫
y′

y
dx =

∫
− 1

x2dx+ c1

• Evaluate integral
ln (y) = 1

x
+ c1

• Solve for y

y = e
c1x+1

x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 10� �
dsolve(x^2*diff(y(x),x) + y(x)=0,y(x), singsol=all)� �

y(x) = c1e
1
x
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3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 18� �
DSolve[x^2*y'[x] +y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
1
x

y(x) → 0
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Internal problem ID [892]
Internal file name [OUTPUT/892_Sunday_June_05_2022_01_53_24_AM_72879044/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + (x+ 1) y
x

= 0

With initial conditions

[y(1) = 1]
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2.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = −−x− 1
x

q(x) = 0

Hence the ode is

y′ − (−x− 1) y
x

= 0

The domain of p(x) = −−x−1
x

is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. Hence solution exists and is unique.

2.6.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −(x+ 1) y
x

Where f(x) = −x+1
x

and g(y) = y. Integrating both sides gives

1
y
dy = −x+ 1

x
dx∫ 1

y
dy =

∫
−x+ 1

x
dx

ln (y) = −x− ln (x) + c1

y = e−x−ln(x)+c1

= c1e−x−ln(x)

Which can be simplified to become

y = c1e−x

x
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Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = e−1c1

c1 = e

Substituting c1 found above in the general solution gives

y = e1−x

x

Summary
The solution(s) found are the following

(1)y = e1−x

x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = e1−x

x

Verified OK.
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2.6.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
−−x−1

x
dx

= ex+ln(x)

Which simplifies to
µ = x ex

The ode becomes

d
dxµy = 0

d
dx(x e

xy) = 0

Integrating gives

x exy = c1

Dividing both sides by the integrating factor µ = x ex results in

y = c1e−x

x

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = e−1c1

c1 = e

Substituting c1 found above in the general solution gives

y = e1−x

x

Summary
The solution(s) found are the following

(1)y = e1−x

x
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = e1−x

x

Verified OK.

2.6.4 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x) + (x+ 1)u(x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(2 + x)
x
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Where f(x) = −2+x
x

and g(u) = u. Integrating both sides gives

1
u
du = −2 + x

x
dx∫ 1

u
du =

∫
−2 + x

x
dx

ln (u) = −x− 2 ln (x) + c2

u = e−x−2 ln(x)+c2

= c2e−x−2 ln(x)

Which simplifies to

u(x) = c2e−x

x2

Therefore the solution y is

y = ux

= c2e−x

x

Initial conditions are used to solve for c2. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c2e−1

c2 = e

Substituting c2 found above in the general solution gives

y = e1−x

x

Summary
The solution(s) found are the following

(1)y = e1−x

x
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = e1−x

x

Verified OK.

2.6.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −(x+ 1) y
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 47: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−x−ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x−ln(x)dy

Which results in

S = x exy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −(x+ 1) y
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = exy(x+ 1)
Sy = x ex

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y exx = c1

Which simplifies to

y exx = c1

Which gives

y = c1e−x

x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − (x+1)y
x

dS
dR

= 0

R = x

S = x exy

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = e−1c1
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c1 = e

Substituting c1 found above in the general solution gives

y = e1−x

x

Summary
The solution(s) found are the following

(1)y = e1−x

x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = e1−x

x

Verified OK.
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2.6.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−1
y

)
dy =

(
x+ 1
x

)
dx(

−x+ 1
x

)
dx+

(
−1
y

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −x+ 1
x

N(x, y) = −1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x+ 1

x

)
= 0

And
∂N

∂x
= ∂

∂x

(
−1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x+ 1

x
dx

(3)φ = −x− ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= − 1
y
. Therefore equation (4) becomes

(5)−1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x− ln (x)− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x− ln (x)− ln (y)

The solution becomes

y = e−x−c1

x

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = e−1−c1

c1 = −1

Substituting c1 found above in the general solution gives

y = e1−x

x
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Summary
The solution(s) found are the following

(1)y = e1−x

x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = e1−x

x

Verified OK.

2.6.7 Maple step by step solution

Let’s solve[
y′ + (x+1)y

x
= 0, y(1) = 1

]
• Highest derivative means the order of the ODE is 1

y′

• Separate variables
y′

y
= −x+1

x

• Integrate both sides with respect to x
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∫
y′

y
dx =

∫
−x+1

x
dx+ c1

• Evaluate integral
ln (y) = −x− ln (x) + c1

• Solve for y
y = e−x+c1

x

• Use initial condition y(1) = 1
1 = ec1−1

• Solve for c1
c1 = 1

• Substitute c1 = 1 into general solution and simplify
y = e1−x

x

• Solution to the IVP
y = e1−x

x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
dsolve([diff(y(x),x) + ((1+x)/x)*y(x)=0,y(1) = 1],y(x), singsol=all)� �

y(x) = e1−x

x
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3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 16� �
DSolve[{y'[x] +((1+x)/x)*y[x]==0,y[1]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e1−x

x
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Internal problem ID [893]
Internal file name [OUTPUT/893_Sunday_June_05_2022_01_53_25_AM_41652620/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′x+
(
1 + 1

ln (x)

)
y = 0

With initial conditions

[y(e) = 1]
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2.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = −− ln (x)− 1
x ln (x)

q(x) = 0

Hence the ode is

y′ − (− ln (x)− 1) y
x ln (x) = 0

The domain of p(x) = −− ln(x)−1
x ln(x) is

{0 < x < 1, 1 < x ≤ ∞}

And the point x0 = e is inside this domain. Hence solution exists and is unique.

2.7.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y(ln (x) + 1)
x ln (x)

Where f(x) = − ln(x)+1
x ln(x) and g(y) = y. Integrating both sides gives

1
y
dy = − ln (x) + 1

x ln (x) dx∫ 1
y
dy =

∫
− ln (x) + 1

x ln (x) dx

ln (y) = − ln (x)− ln (ln (x)) + c1

y = e− ln(x)−ln(ln(x))+c1

= c1e− ln(x)−ln(ln(x))
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Which can be simplified to become

y = c1
x ln (x)

Initial conditions are used to solve for c1. Substituting x = e and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = e−1c1

c1 = e

Substituting c1 found above in the general solution gives

y = e
x ln (x)

Summary
The solution(s) found are the following

(1)y = e
x ln (x)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = e
x ln (x)

Verified OK.
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2.7.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
−− ln(x)−1

x ln(x) dx

= eln(x)+ln(ln(x))

Which simplifies to
µ = x ln (x)

The ode becomes

d
dxµy = 0

d
dx(x ln (x) y) = 0

Integrating gives

x ln (x) y = c1

Dividing both sides by the integrating factor µ = x ln (x) results in

y = c1
x ln (x)

Initial conditions are used to solve for c1. Substituting x = e and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = e−1c1

c1 = e

Substituting c1 found above in the general solution gives

y = e
x ln (x)

Summary
The solution(s) found are the following

(1)y = e
x ln (x)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = e
x ln (x)

Verified OK.

2.7.4 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x+
(
1 + 1

ln (x)

)
u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(2 ln (x) + 1)
x ln (x)
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Where f(x) = −2 ln(x)+1
x ln(x) and g(u) = u. Integrating both sides gives

1
u
du = −2 ln (x) + 1

x ln (x) dx∫ 1
u
du =

∫
−2 ln (x) + 1

x ln (x) dx

ln (u) = − ln (ln (x))− 2 ln (x) + c2

u = e− ln(ln(x))−2 ln(x)+c2

= c2e− ln(ln(x))−2 ln(x)

Which simplifies to

u(x) = c2
x2 ln (x)

Therefore the solution y is

y = xu

= c2
x ln (x)

Initial conditions are used to solve for c2. Substituting x = e and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c2e−1

c2 = e

Substituting c2 found above in the general solution gives

y = e
x ln (x)

Summary
The solution(s) found are the following

(1)y = e
x ln (x)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = e
x ln (x)

Verified OK.

2.7.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y(ln (x) + 1)
x ln (x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 50: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e− ln(x)−ln(ln(x)) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e− ln(x)−ln(ln(x))dy

Which results in

S = x ln (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(ln (x) + 1)
x ln (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y(ln (x) + 1)
Sy = x ln (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x ln (x) y = c1

Which simplifies to

x ln (x) y = c1

Which gives

y = c1
x ln (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y(ln(x)+1)
x ln(x)

dS
dR

= 0

R = x

S = x ln (x) y

Initial conditions are used to solve for c1. Substituting x = e and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = e−1c1
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c1 = e

Substituting c1 found above in the general solution gives

y = e
x ln (x)

Summary
The solution(s) found are the following

(1)y = e
x ln (x)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = e
x ln (x)

Verified OK.

2.7.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)
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We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−1
y

)
dy =

(
ln (x) + 1
x ln (x)

)
dx(

− ln (x) + 1
x ln (x)

)
dx+

(
−1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − ln (x) + 1
x ln (x)

N(x, y) = −1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
− ln (x) + 1

x ln (x)

)
= 0

And
∂N

∂x
= ∂

∂x

(
−1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− ln (x) + 1

x ln (x) dx

(3)φ = − ln (x)− ln (ln (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y
. Therefore equation (4) becomes

(5)−1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)− ln (ln (x))− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)− ln (ln (x))− ln (y)

The solution becomes

y = e−c1

ln (x)x

Initial conditions are used to solve for c1. Substituting x = e and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = e−1−c1

c1 = −1

Substituting c1 found above in the general solution gives

y = e
x ln (x)

Summary
The solution(s) found are the following

(1)y = e
x ln (x)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = e
x ln (x)

Verified OK.

2.7.7 Maple step by step solution

Let’s solve[
y′x+

(
1 + 1

ln(x)

)
y = 0, y(e) = 1

]
• Highest derivative means the order of the ODE is 1

y′

• Separate variables
y′

y
= −

1+ 1
ln(x)
x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
−

1+ 1
ln(x)
x

dx+ c1

• Evaluate integral
ln (y) = − ln (x)− ln (ln (x)) + c1

• Solve for y
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y = ec1
ln(x)x

• Use initial condition y(e) = 1
1 = ec1

e

• Solve for c1
c1 = 1

• Substitute c1 = 1 into general solution and simplify
y = e

x ln(x)

• Solution to the IVP
y = e

x ln(x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 14� �
dsolve([x*diff(y(x),x) + (1+1/ln(x))*y(x)=0,y(exp(1)) = 1],y(x), singsol=all)� �

y(x) = e
x ln (x)

3 Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 18� �
DSolve[{y'[x] +(1+1/Log[x])*y[x]==0,y[Exp[1]]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−LogIntegral(x)+LogIntegral(e)−x+e
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2.8 problem 8
2.8.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 261
2.8.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 263
2.8.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 265
2.8.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 266
2.8.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 270
2.8.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 274

Internal problem ID [894]
Internal file name [OUTPUT/894_Sunday_June_05_2022_01_53_26_AM_75667082/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′x+ (1 + x cot (x)) y = 0

With initial conditions [
y
(π
2

)
= 2
]

2.8.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −(1 + x cot (x)) y
x
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Where f(x) = −1+x cot(x)
x

and g(y) = y. Integrating both sides gives

1
y
dy = −1 + x cot (x)

x
dx∫ 1

y
dy =

∫
−1 + x cot (x)

x
dx

ln (y) = − ln (sin (x))− ln (x) + c1

y = e− ln(sin(x))−ln(x)+c1

= c1e− ln(sin(x))−ln(x)

Which can be simplified to become

y = c1
sin (x)x

Initial conditions are used to solve for c1. Substituting x = π
2 and y = 2 in the above

solution gives an equation to solve for the constant of integration.

2 = 2c1
π

c1 = π

Substituting c1 found above in the general solution gives

y = π

sin (x)x

Summary
The solution(s) found are the following

(1)y = π

sin (x)x
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = π

sin (x)x

Verified OK.

2.8.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
−−1−x cot(x)

x
dx

= eln(sin(x))+ln(x)

Which simplifies to
µ = sin (x)x

The ode becomes
d
dxµy = 0

d
dx(sin (x)xy) = 0

Integrating gives

sin (x)xy = c1
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Dividing both sides by the integrating factor µ = sin (x)x results in

y = c1 csc (x)
x

Initial conditions are used to solve for c1. Substituting x = π
2 and y = 2 in the above

solution gives an equation to solve for the constant of integration.

2 = 2c1
π

c1 = π

Substituting c1 found above in the general solution gives

y = π

sin (x)x

Summary
The solution(s) found are the following

(1)y = π

sin (x)x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = π

sin (x)x

Verified OK.
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2.8.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x+ (1 + x cot (x))u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(x cot (x) + 2)
x

Where f(x) = −x cot(x)+2
x

and g(u) = u. Integrating both sides gives

1
u
du = −x cot (x) + 2

x
dx∫ 1

u
du =

∫
−x cot (x) + 2

x
dx

ln (u) = − ln (sin (x))− 2 ln (x) + c2

u = e− ln(sin(x))−2 ln(x)+c2

= c2e− ln(sin(x))−2 ln(x)

Which simplifies to

u(x) = c2
sin (x)x2

Therefore the solution y is

y = xu

= c2
x sin (x)

Initial conditions are used to solve for c2. Substituting x = π
2 and y = 2 in the above

solution gives an equation to solve for the constant of integration.

2 = 2c2
π

c2 = π

Substituting c2 found above in the general solution gives

y = π

sin (x)x
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Summary
The solution(s) found are the following

(1)y = π

sin (x)x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = π

sin (x)x

Verified OK.

2.8.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −(1 + x cot (x)) y
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 53: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e− ln(sin(x))−ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e− ln(sin(x))−ln(x)dy

Which results in

S = sin (x)xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −(1 + x cot (x)) y
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y(x cos (x) + sin (x))
Sy = sin (x)x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

sin (x)xy = c1

Which simplifies to

sin (x)xy = c1

Which gives

y = c1
sin (x)x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − (1+x cot(x))y
x

dS
dR

= 0

R = x

S = sin (x)xy

Initial conditions are used to solve for c1. Substituting x = π
2 and y = 2 in the above

solution gives an equation to solve for the constant of integration.

2 = 2c1
π
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c1 = π

Substituting c1 found above in the general solution gives

y = π

sin (x)x

Summary
The solution(s) found are the following

(1)y = π

sin (x)x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = π

sin (x)x

Verified OK.

2.8.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

270



We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−1
y

)
dy =

(
1 + x cot (x)

x

)
dx(

−1 + x cot (x)
x

)
dx+

(
−1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1 + x cot (x)
x

N(x, y) = −1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
−1 + x cot (x)

x

)
= 0

And
∂N

∂x
= ∂

∂x

(
−1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1 + x cot (x)

x
dx

(3)φ = − ln (sin (x))− ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y
. Therefore equation (4) becomes

(5)−1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (sin (x))− ln (x)− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (sin (x))− ln (x)− ln (y)

The solution becomes

y = e−c1

sin (x)x

Initial conditions are used to solve for c1. Substituting x = π
2 and y = 2 in the above

solution gives an equation to solve for the constant of integration.

2 = 2 e−c1

π

c1 = − ln (π)

Substituting c1 found above in the general solution gives

y = π

sin (x)x

Summary
The solution(s) found are the following

(1)y = π

sin (x)x
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = π

sin (x)x

Verified OK.

2.8.6 Maple step by step solution

Let’s solve[
y′x+ (1 + x cot (x)) y = 0, y

(
π
2

)
= 2
]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= −1+x cot(x)

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
−1+x cot(x)

x
dx+ c1

• Evaluate integral
ln (y) = − ln (sin (x))− ln (x) + c1

• Solve for y
y = ec1

x sin(x)
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• Use initial condition y
(
π
2

)
= 2

2 = 2 ec1
π

• Solve for c1
c1 = ln (π)

• Substitute c1 = ln (π) into general solution and simplify
y = csc(x)π

x

• Solution to the IVP
y = csc(x)π

x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 11� �
dsolve([x*diff(y(x),x) + (1+x*cot(x))*y(x)=0,y(1/2*Pi) = 2],y(x), singsol=all)� �

y(x) = csc (x) π
x

3 Solution by Mathematica
Time used: 0.099 (sec). Leaf size: 66� �
DSolve[{y'[x] +(1+x*Cot[x])*y[x]==0,y[Pi/2]==2},y[x],x,IncludeSingularSolutions -> True]� �
y(x) → 21+π

2
(
1− e2ix

)−x exp
(
− 1
12i
(
−6PolyLog

(
2, e2ix

)
− 6x(x+ 2i) + π2 + 6iπ

))
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Internal problem ID [895]
Internal file name [OUTPUT/895_Sunday_June_05_2022_01_53_28_AM_47903859/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − 2xy
x2 + 1 = 0

With initial conditions

[y(0) = 2]
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2.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = − 2x
x2 + 1

q(x) = 0

Hence the ode is

y′ − 2xy
x2 + 1 = 0

The domain of p(x) = − 2x
x2+1 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. Hence solution exists and is unique.

2.9.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 2xy
x2 + 1

Where f(x) = 2x
x2+1 and g(y) = y. Integrating both sides gives

1
y
dy = 2x

x2 + 1 dx∫ 1
y
dy =

∫ 2x
x2 + 1 dx

ln (y) = ln
(
x2 + 1

)
+ c1

y = eln
(
x2+1

)
+c1

= c1
(
x2 + 1

)
Initial conditions are used to solve for c1. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = c1
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c1 = 2

Substituting c1 found above in the general solution gives

y = 2x2 + 2

Summary
The solution(s) found are the following

(1)y = 2x2 + 2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2x2 + 2

Verified OK.

2.9.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
− 2x

x2+1dx

= 1
x2 + 1
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The ode becomes
d
dxµy = 0

d
dx

(
y

x2 + 1

)
= 0

Integrating gives
y

x2 + 1 = c1

Dividing both sides by the integrating factor µ = 1
x2+1 results in

y = c1
(
x2 + 1

)
Initial conditions are used to solve for c1. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = c1

c1 = 2

Substituting c1 found above in the general solution gives

y = 2x2 + 2

Summary
The solution(s) found are the following

(1)y = 2x2 + 2

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = 2x2 + 2

Verified OK.

2.9.4 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− 2x2u(x)
x2 + 1 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(x2 − 1)
x (x2 + 1)

Where f(x) = x2−1
x(x2+1) and g(u) = u. Integrating both sides gives

1
u
du = x2 − 1

x (x2 + 1) dx∫ 1
u
du =

∫
x2 − 1

x (x2 + 1) dx

ln (u) = − ln (x) + ln
(
x2 + 1

)
+ c2

u = e− ln(x)+ln
(
x2+1

)
+c2

= c2e− ln(x)+ln
(
x2+1

)
Which simplifies to

u(x) = c2

(
x+ 1

x

)
Therefore the solution y is

y = xu

= xc2

(
x+ 1

x

)
Initial conditions are used to solve for c2. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = c2
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c2 = 2

Substituting c2 found above in the general solution gives

y = 2x2 + 2

Summary
The solution(s) found are the following

(1)y = 2x2 + 2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2x2 + 2

Verified OK.

2.9.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2xy
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 56: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x2 + 1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2 + 1dy

Which results in

S = y

x2 + 1
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2xy
x2 + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2yx
(x2 + 1)2

Sy =
1

x2 + 1
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x2 + 1 = c1

Which simplifies to
y

x2 + 1 = c1

Which gives

y = c1
(
x2 + 1

)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2xy
x2+1

dS
dR

= 0

R = x

S = y

x2 + 1

Initial conditions are used to solve for c1. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = c1
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c1 = 2

Substituting c1 found above in the general solution gives

y = 2x2 + 2

Summary
The solution(s) found are the following

(1)y = 2x2 + 2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2x2 + 2

Verified OK.

2.9.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

1
2y

)
dy =

(
x

x2 + 1

)
dx(

− x

x2 + 1

)
dx+

(
1
2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x

x2 + 1
N(x, y) = 1

2y
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− x

x2 + 1

)
= 0
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And

∂N

∂x
= ∂

∂x

(
1
2y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

x2 + 1 dx

(3)φ = − ln (x2 + 1)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
2y . Therefore equation (4) becomes

(5)1
2y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
2y

287



Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
2y

)
dy

f(y) = ln (y)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x2 + 1)
2 + ln (y)

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x2 + 1)
2 + ln (y)

2

The solution becomes
y = e2c1

(
x2 + 1

)
Initial conditions are used to solve for c1. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = e2c1

c1 =
ln (2)
2

Substituting c1 found above in the general solution gives

y = 2x2 + 2

Summary
The solution(s) found are the following

(1)y = 2x2 + 2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2x2 + 2

Verified OK.

2.9.7 Maple step by step solution

Let’s solve[
y′ − 2xy

x2+1 = 0, y(0) = 2
]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 2x

x2+1

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 2x
x2+1dx+ c1

• Evaluate integral
ln (y) = ln (x2 + 1) + c1

• Solve for y
y = ec1(x2 + 1)
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• Use initial condition y(0) = 2
2 = ec1

• Solve for c1
c1 = ln (2)

• Substitute c1 = ln (2) into general solution and simplify
y = 2x2 + 2

• Solution to the IVP
y = 2x2 + 2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve([diff(y(x),x) - (2*x)/(1+x^2)*y(x)=0,y(0) = 2],y(x), singsol=all)� �

y(x) = 2x2 + 2

3 Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 12� �
DSolve[{y'[x] -(2*x)/(1+x^2)*y[x]==0,y[0]==2},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2
(
x2 + 1

)
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Internal problem ID [896]
Internal file name [OUTPUT/896_Sunday_June_05_2022_01_53_29_AM_56359127/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + ky

x
= 0

With initial conditions

[y(1) = 3]
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2.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = k

x
q(x) = 0

Hence the ode is

y′ + ky

x
= 0

The domain of p(x) = k
x
is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. Hence solution exists and is unique.

2.10.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −ky

x

Where f(x) = −k
x
and g(y) = y. Integrating both sides gives

1
y
dy = −k

x
dx∫ 1

y
dy =

∫
−k

x
dx

ln (y) = −k ln (x) + c1

y = e−k ln(x)+c1

= c1e−k ln(x)

Which can be simplified to become

y = c1x
−k
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Initial conditions are used to solve for c1. Substituting x = 1 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

3 = c1

c1 = 3

Substituting c1 found above in the general solution gives

y = 3x−k

Summary
The solution(s) found are the following

(1)y = 3x−k

Verification of solutions

y = 3x−k

Verified OK.

2.10.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫

k
x
dx

= ek ln(x)

Which simplifies to
µ = xk

The ode becomes

d
dxµy = 0

d
dx
(
xky
)
= 0

Integrating gives

xky = c1
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Dividing both sides by the integrating factor µ = xk results in

y = c1x
−k

Initial conditions are used to solve for c1. Substituting x = 1 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

3 = c1

c1 = 3

Substituting c1 found above in the general solution gives

y = 3x−k

Summary
The solution(s) found are the following

(1)y = 3x−k

Verification of solutions

y = 3x−k

Verified OK.

2.10.4 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x) + ku(x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= (−1− k)u
x

Where f(x) = −1−k
x

and g(u) = u. Integrating both sides gives
1
u
du = −1− k

x
dx∫ 1

u
du =

∫
−1− k

x
dx

ln (u) = (−1− k) ln (x) + c2

u = e(−1−k) ln(x)+c2

= c2e(−1−k) ln(x)
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Which simplifies to

u(x) = c2x
−k

x

Therefore the solution y is

y = xu

= c2x
−k

Initial conditions are used to solve for c2. Substituting x = 1 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

3 = c2

c2 = 3

Substituting c2 found above in the general solution gives

y = 3x−k

Summary
The solution(s) found are the following

(1)y = 3x−k

Verification of solutions

y = 3x−k

Verified OK.

2.10.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −ky

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 59: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−k ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−k ln(x)dy

Which results in

S = ek ln(x)y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −ky

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = ky xk−1

Sy = xk

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

xky = c1

Which simplifies to

xky = c1

Which gives

y = c1x
−k

Initial conditions are used to solve for c1. Substituting x = 1 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

3 = c1

c1 = 3

Substituting c1 found above in the general solution gives

y = 3x−k

Summary
The solution(s) found are the following

(1)y = 3x−k

Verification of solutions

y = 3x−k

Verified OK.
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2.10.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
ky

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
− 1
ky

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = − 1
ky

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0

And
∂N

∂x
= ∂

∂x

(
− 1
ky

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= − 1
ky
. Therefore equation (4) becomes

(5)− 1
ky

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
ky

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
ky

)
dy

f(y) = − ln (y)
k

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)− ln (y)
k

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)− ln (y)
k

The solution becomes
y = e−k ln(x)−c1k

Initial conditions are used to solve for c1. Substituting x = 1 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

3 = e−c1k

c1 = − ln (3)
k
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Substituting c1 found above in the general solution gives

y = 3x−k

Summary
The solution(s) found are the following

(1)y = 3x−k

Verification of solutions

y = 3x−k

Verified OK.

2.10.7 Maple step by step solution

Let’s solve[
y′ + ky

x
= 0, y(1) = 3

]
• Highest derivative means the order of the ODE is 1

y′

• Separate variables
y′

y
= −k

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
−k

x
dx+ c1

• Evaluate integral
ln (y) = −k ln (x) + c1

• Solve for y
y = e−k ln(x)+c1

• Use initial condition y(1) = 3
3 = ec1

• Solve for c1
c1 = ln (3)

• Substitute c1 = ln (3) into general solution and simplify
y = 3x−k

• Solution to the IVP
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y = 3x−k

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 11� �
dsolve([diff(y(x),x) +k/x*y(x)=0,y(1) = 3],y(x), singsol=all)� �

y(x) = 3x−k

3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 12� �
DSolve[{y'[x] +k/x*y[x]==0,y[1]==3},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3x−k
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Internal problem ID [897]
Internal file name [OUTPUT/897_Sunday_June_05_2022_01_53_30_AM_19393587/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + tan (kx) y = 0

With initial conditions

[y(0) = 2]
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2.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = tan (kx)
q(x) = 0

Hence the ode is

y′ + tan (kx) y = 0

The domain of p(x) = tan (kx) is{
x <

π(1 + 2_Z51)
2k ∨ π(1 + 2_Z51)

2k < x

}
But the point x0 = 0 is not inside this domain. Hence existence and uniqueness theorem
does not apply. There could be infinite number of solutions, or one solution or no solution
at all.

2.11.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= − tan (kx) y

Where f(x) = − tan (kx) and g(y) = y. Integrating both sides gives

1
y
dy = − tan (kx) dx∫ 1

y
dy =

∫
− tan (kx) dx

ln (y) = ln (cos (kx))
k

+ c1

y = e
ln(cos(kx))

k
+c1

= c1e
ln(cos(kx))

k
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Which can be simplified to become

y = c1 cos (kx)
1
k

Initial conditions are used to solve for c1. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = c1

c1 = 2

Substituting c1 found above in the general solution gives

y = 2 cos (kx)
1
k

Summary
The solution(s) found are the following

(1)y = 2 cos (kx)
1
k

Verification of solutions

y = 2 cos (kx)
1
k

Verified OK.

2.11.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
tan(kx)dx

= e−
ln(cos(kx))

k

Which simplifies to

µ = cos (kx)−
1
k

The ode becomes
d
dxµy = 0

d
dx

(
cos (kx)−

1
k y
)
= 0
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Integrating gives

cos (kx)−
1
k y = c1

Dividing both sides by the integrating factor µ = cos (kx)−
1
k results in

y = c1 cos (kx)
1
k

Initial conditions are used to solve for c1. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = c1

c1 = 2

Substituting c1 found above in the general solution gives

y = 2 cos (kx)
1
k

Summary
The solution(s) found are the following

(1)y = 2 cos (kx)
1
k

Verification of solutions

y = 2 cos (kx)
1
k

Verified OK.

2.11.4 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x) + tan (kx)u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(tan (kx)x+ 1)
x
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Where f(x) = − tan(kx)x+1
x

and g(u) = u. Integrating both sides gives

1
u
du = −tan (kx)x+ 1

x
dx∫ 1

u
du =

∫
−tan (kx)x+ 1

x
dx

ln (u) = ln (cos (kx))
k

− ln (kx) + c2

u = e
ln(cos(kx))

k
−ln(kx)+c2

= c2e
ln(cos(kx))

k
−ln(kx)

Which simplifies to

u(x) = c2 cos (kx)
1
k

kx

Therefore the solution y is

y = xu

= c2 cos (kx)
1
k

k

Initial conditions are used to solve for c2. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = c2
k

c2 = 2k

Substituting c2 found above in the general solution gives

y = 2 cos (kx)
1
k

Summary
The solution(s) found are the following

(1)y = 2 cos (kx)
1
k

Verification of solutions

y = 2 cos (kx)
1
k

Verified OK.
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2.11.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − tan (kx) y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 62: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = e−
ln
(
1+tan(kx)2

)
2k (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−
ln
(
1+tan(kx)2

)
2k

dy

Which results in

S = e
ln
(√

1+tan(kx)2
)

k y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − tan (kx) y
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y sec (kx)
1
k tan (kx)

Sy = sec (kx)
1
k

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y sec (kx)
1
k = c1

Which simplifies to

y sec (kx)
1
k = c1

Which gives

y = c1 sec (kx)−
1
k

Initial conditions are used to solve for c1. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = c1

c1 = 2

311



Substituting c1 found above in the general solution gives

y = 2
(

1
cos (kx)

)− 1
k

Summary
The solution(s) found are the following

(1)y = 2
(

1
cos (kx)

)− 1
k

Verification of solutions

y = 2
(

1
cos (kx)

)− 1
k

Verified OK.

2.11.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x
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If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−1
y

)
dy = (tan (kx)) dx

(− tan (kx)) dx+
(
−1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − tan (kx)

N(x, y) = −1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− tan (kx))

= 0

And
∂N

∂x
= ∂

∂x

(
−1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

313



Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− tan (kx) dx

(3)φ = −
ln
(
sec (kx)2

)
2k + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y
. Therefore equation (4) becomes

(5)−1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −
ln
(
sec (kx)2

)
2k − ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −
ln
(
sec (kx)2

)
2k − ln (y)
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The solution becomes

y = e−
2c1k+ln

(
1

cos(kx)2

)
2k

Initial conditions are used to solve for c1. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = e−c1

c1 = − ln (2)

Substituting c1 found above in the general solution gives

y = 2
(

2
1 + cos (2kx)

)− 1
2k

Summary
The solution(s) found are the following

(1)y = 2
(

2
1 + cos (2kx)

)− 1
2k

Verification of solutions

y = 2
(

2
1 + cos (2kx)

)− 1
2k

Verified OK.

2.11.7 Maple step by step solution

Let’s solve
[y′ + tan (kx) y = 0, y(0) = 2]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= − tan (kx)

• Integrate both sides with respect to x∫
y′

y
dx =

∫
− tan (kx) dx+ c1
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• Evaluate integral

ln (y) = −
ln
(
1+tan(kx)2

)
2k + c1

• Solve for y

y = e−
−2c1k+ln

(
1

cos(kx)2

)
2k

• Use initial condition y(0) = 2
2 = ec1

• Solve for c1
c1 = ln (2)

• Substitute c1 = ln (2) into general solution and simplify

y = 2
(
sec (kx)2

)− 1
2k

• Solution to the IVP

y = 2
(
sec (kx)2

)− 1
2k

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 18� �
dsolve([diff(y(x),x) +tan(k*x)*y(x)=0,y(0) = 2],y(x), singsol=all)� �

y(x) = 2
(
sec (kx)2

)− 1
2k
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3 Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 15� �
DSolve[{y'[x] +Tan[k*x]*y[x]==0,y[0]==2},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2 k
√

cos(kx)
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2.12 problem 12
2.12.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 318
2.12.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 319

Internal problem ID [898]
Internal file name [OUTPUT/898_Sunday_June_05_2022_01_53_32_AM_13100521/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

3y + y′ = 1

2.12.1 Solving as quadrature ode

Integrating both sides gives ∫ 1
−3y + 1dy =

∫
dx

− ln (−3y + 1)
3 = x+ c1

Raising both side to exponential gives

1
(−3y + 1)

1
3
= ex+c1

Which simplifies to

1
(−3y + 1)

1
3
= c2ex
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Summary
The solution(s) found are the following

(1)y = −e−3x

3c32
+ 1

3

Figure 81: Slope field plot

Verification of solutions

y = −e−3x

3c32
+ 1

3

Verified OK.

2.12.2 Maple step by step solution

Let’s solve
3y + y′ = 1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
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y′

−3y+1 = 1

• Integrate both sides with respect to x∫
y′

−3y+1dx =
∫
1dx+ c1

• Evaluate integral
− ln(−3y+1)

3 = x+ c1

• Solve for y
y = − e−3x−3c1

3 + 1
3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(diff(y(x),x) +3*y(x)=1,y(x), singsol=all)� �

y(x) = 1
3 + c1e−3x

3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 24� �
DSolve[y'[x] +3*y[x]==1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3 + c1e

−3x

y(x) → 1
3
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2.13 problem 13
2.13.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 321
2.13.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 323
2.13.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 327
2.13.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 332

Internal problem ID [899]
Internal file name [OUTPUT/899_Sunday_June_05_2022_01_53_33_AM_13407723/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ +
(
1
x
− 1
)
y = −2

x

2.13.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −x− 1
x

q(x) = −2
x

Hence the ode is

y′ − (x− 1) y
x

= −2
x
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The integrating factor µ is

µ = e
∫
−x−1

x
dx

= e−x+ln(x)

Which simplifies to
µ = x e−x

The ode becomes

d
dx(µy) = (µ)

(
−2
x

)
d
dx
(
e−xxy

)
=
(
x e−x

)(
−2
x

)
d
(
e−xxy

)
=
(
−2 e−x

)
dx

Integrating gives

e−xxy =
∫

−2 e−x dx

e−xxy = 2 e−x + c1

Dividing both sides by the integrating factor µ = x e−x results in

y = 2 exe−x

x
+ c1ex

x

which simplifies to

y = c1ex + 2
x

Summary
The solution(s) found are the following

(1)y = c1ex + 2
x
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Figure 82: Slope field plot

Verification of solutions

y = c1ex + 2
x

Verified OK.

2.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = yx− y − 2
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 66: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ex−ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ex−ln(x)dy

Which results in

S = e−xxy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = yx− y − 2
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = e−xy(1− x)
Sy = x e−x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −2 e−x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −2 e−R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2 e−R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y e−xx = 2 e−x + c1

Which simplifies to

y e−xx = 2 e−x + c1

Which gives

y = (2 e−x + c1) ex
x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= yx−y−2
x

dS
dR

= −2 e−R

R = x

S = e−xxy

Summary
The solution(s) found are the following

(1)y = (2 e−x + c1) ex
x
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Figure 83: Slope field plot

Verification of solutions

y = (2 e−x + c1) ex
x

Verified OK.

2.13.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
−
(
1
x
− 1
)
y − 2

x

)
dx((

1
x
− 1
)
y + 2

x

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) =
(
1
x
− 1
)
y + 2

x

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

((
1
x
− 1
)
y + 2

x

)
= 1

x
− 1
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And

∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

1
x
− 1
)
− (0)

)
= 1

x
− 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

x
−1 dx

The result of integrating gives

µ = e−x+ln(x)

= x e−x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x e−x

((
1
x
− 1
)
y + 2

x

)
= −((x− 1) y − 2) e−x

And

N = µN

= x e−x(1)
= x e−x
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−((x− 1) y − 2) e−x
)
+
(
x e−x

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−((x− 1) y − 2) e−x dx

(3)φ = e−x(yx− 2) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x e−x + f ′(y)

But equation (2) says that ∂φ
∂y

= x e−x. Therefore equation (4) becomes

(5)x e−x = x e−x + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = e−x(yx− 2) + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = e−x(yx− 2)

The solution becomes

y = (2 e−x + c1) ex
x

Summary
The solution(s) found are the following

(1)y = (2 e−x + c1) ex
x

Figure 84: Slope field plot

Verification of solutions

y = (2 e−x + c1) ex
x

Verified OK.
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2.13.4 Maple step by step solution

Let’s solve
y′ +

( 1
x
− 1
)
y = − 2

x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = (x−1)y

x
− 2

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − (x−1)y

x
= − 2

x

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ − (x−1)y

x

)
= −2µ(x)

x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − (x−1)y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)(x−1)

x

• Solve to find the integrating factor
µ(x) = x e−x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−2µ(x)

x
dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−2µ(x)

x
dx+ c1

• Solve for y

y =
∫
− 2µ(x)

x
dx+c1

µ(x)

• Substitute µ(x) = xe−x

y =
∫
−2 e−xdx+c1

x e−x

• Evaluate the integrals on the rhs
y = 2 e−x+c1

e−xx

• Simplify

332



y = c1ex+2
x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x) +(1/x-1)*y(x)=-2/x,y(x), singsol=all)� �

y(x) = exc1 + 2
x

3 Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 17� �
DSolve[y'[x] +(1/x-1)*y[x]==-2/x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2 + c1e
x

x
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2.14 problem 14
2.14.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 334
2.14.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 336
2.14.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 340
2.14.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 345

Internal problem ID [900]
Internal file name [OUTPUT/900_Sunday_June_05_2022_01_53_34_AM_57306810/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

2yx+ y′ = x e−x2

2.14.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2x
q(x) = x e−x2

Hence the ode is

2yx+ y′ = x e−x2
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The integrating factor µ is

µ = e
∫
2xdx

= ex2

The ode becomes

d
dx(µy) = (µ)

(
x e−x2

)
d
dx

(
ex2

y
)
=
(
ex2
)(

x e−x2
)

d
(
ex2

y
)
= x dx

Integrating gives

ex2
y =

∫
x dx

ex2
y = x2

2 + c1

Dividing both sides by the integrating factor µ = ex2 results in

y = x2e−x2

2 + c1e−x2

which simplifies to

y = e−x2
(
x2

2 + c1

)
Summary
The solution(s) found are the following

(1)y = e−x2
(
x2

2 + c1

)
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Figure 85: Slope field plot

Verification of solutions

y = e−x2
(
x2

2 + c1

)
Verified OK.

2.14.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2yx+ x e−x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 69: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x2 dy

Which results in

S = ex2
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2yx+ x e−x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2x ex2

y

Sy = ex2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ex2
y = x2

2 + c1

Which simplifies to

ex2
y = x2

2 + c1

Which gives

y = e−x2(x2 + 2c1)
2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2yx+ x e−x2 dS
dR

= R

R = x

S = ex2
y

Summary
The solution(s) found are the following

(1)y = e−x2(x2 + 2c1)
2
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Figure 86: Slope field plot

Verification of solutions

y = e−x2(x2 + 2c1)
2

Verified OK.

2.14.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy =
(
−2yx+ x e−x2

)
dx(

2yx− x e−x2
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2yx− x e−x2

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2yx− x e−x2

)
= 2x

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((2x)− (0))
= 2x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
2xdx

The result of integrating gives

µ = ex
2

= ex2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex2
(
2yx− x e−x2

)
= 2x ex2

y − x

And

N = µN

= ex2(1)
= ex2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

2x ex2
y − x

)
+
(
ex2
) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2x ex2

y − x dx

(3)φ = −x2

2 + ex2
y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ex2 + f ′(y)

But equation (2) says that ∂φ
∂y

= ex2 . Therefore equation (4) becomes

(5)ex2 = ex2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x2

2 + ex2
y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + ex2
y
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The solution becomes

y = e−x2(x2 + 2c1)
2

Summary
The solution(s) found are the following

(1)y = e−x2(x2 + 2c1)
2

Figure 87: Slope field plot

Verification of solutions

y = e−x2(x2 + 2c1)
2

Verified OK.

344



2.14.4 Maple step by step solution

Let’s solve
2yx+ y′ = x e−x2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −2yx+ x e−x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
2yx+ y′ = x e−x2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (2yx+ y′) = µ(x)x e−x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (2yx+ y′) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)x

• Solve to find the integrating factor
µ(x) = ex2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)x e−x2

dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)x e−x2

dx+ c1

• Solve for y

y =
∫
µ(x)x e−x2dx+c1

µ(x)

• Substitute µ(x) = ex2

y =
∫
x e−x2ex2dx+c1

ex2

• Evaluate the integrals on the rhs

y =
x2
2 +c1

ex2

• Simplify
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y = e−x2(x2+2c1
)

2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x) +2*x*y(x)=x*exp(-x^2),y(x), singsol=all)� �

y(x) = (x2 + 2c1) e−x2

2

3 Solution by Mathematica
Time used: 0.053 (sec). Leaf size: 24� �
DSolve[y'[x] +2*x*y[x]==x*Exp[-x^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

−x2(
x2 + 2c1

)
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2.15 problem 15
2.15.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 347
2.15.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 349
2.15.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 353
2.15.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 357

Internal problem ID [901]
Internal file name [OUTPUT/901_Sunday_June_05_2022_01_53_35_AM_86813562/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 15.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + 2xy
x2 + 1 = e−x2

x2 + 1

2.15.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2x
x2 + 1

q(x) = e−x2

x2 + 1
Hence the ode is

y′ + 2xy
x2 + 1 = e−x2

x2 + 1
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The integrating factor µ is

µ = e
∫ 2x

x2+1dx

= x2 + 1

The ode becomes

d
dx(µy) = (µ)

(
e−x2

x2 + 1

)
d
dx
((
x2 + 1

)
y
)
=
(
x2 + 1

)( e−x2

x2 + 1

)
d
((
x2 + 1

)
y
)
= e−x2 dx

Integrating gives (
x2 + 1

)
y =

∫
e−x2 dx

(
x2 + 1

)
y =

√
π erf (x)

2 + c1

Dividing both sides by the integrating factor µ = x2 + 1 results in

y =
√
π erf (x)
2x2 + 2 + c1

x2 + 1

which simplifies to

y =
√
π erf (x) + 2c1

2x2 + 2

Summary
The solution(s) found are the following

(1)y =
√
π erf (x) + 2c1

2x2 + 2
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Figure 88: Slope field plot

Verification of solutions

y =
√
π erf (x) + 2c1

2x2 + 2

Verified OK.

2.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2yx+ e−x2

x2 + 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 72: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x2 + 1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x2+1

dy

Which results in

S =
(
x2 + 1

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2yx+ e−x2

x2 + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2yx
Sy = x2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e−x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e−R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
√
π erf (R)

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y
(
x2 + 1

)
=

√
π erf (x)

2 + c1

Which simplifies to

y
(
x2 + 1

)
=

√
π erf (x)

2 + c1

Which gives

y =
√
π erf (x) + 2c1

2x2 + 2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2yx+e−x2

x2+1
dS
dR

= e−R2

R = x

S =
(
x2 + 1

)
y
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Summary
The solution(s) found are the following

(1)y =
√
π erf (x) + 2c1

2x2 + 2

Figure 89: Slope field plot

Verification of solutions

y =
√
π erf (x) + 2c1

2x2 + 2

Verified OK.

2.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 + 1

)
dy =

(
−2yx+ e−x2

)
dx(

2yx− e−x2
)
dx+

(
x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2yx− e−x2

N(x, y) = x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
2yx− e−x2

)
= 2x
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And
∂N

∂x
= ∂

∂x

(
x2 + 1

)
= 2x

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2yx− e−x2 dx

(3)φ = y x2 −
√
π erf (x)

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2 + 1. Therefore equation (4) becomes

(5)x2 + 1 = x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = y x2 −
√
π erf (x)

2 + y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y x2 −
√
π erf (x)

2 + y

The solution becomes

y =
√
π erf (x) + 2c1

2x2 + 2

Summary
The solution(s) found are the following

(1)y =
√
π erf (x) + 2c1

2x2 + 2

Figure 90: Slope field plot
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Verification of solutions

y =
√
π erf (x) + 2c1

2x2 + 2

Verified OK.

2.15.4 Maple step by step solution

Let’s solve

y′ + 2xy
x2+1 = e−x2

x2+1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ = − 2xy
x2+1 +

e−x2

x2+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ + 2xy
x2+1 = e−x2

x2+1

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + 2xy

x2+1

)
= µ(x)e−x2

x2+1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2xy

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)x

x2+1

• Solve to find the integrating factor
µ(x) = x2 + 1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)e−x2

x2+1 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ µ(x)e−x2

x2+1 dx+ c1

• Solve for y

y =
∫ µ(x)e−x2

x2+1 dx+c1

µ(x)
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• Substitute µ(x) = x2 + 1

y =
∫
e−x2dx+c1
x2+1

• Evaluate the integrals on the rhs

y =
√
π erf(x)

2 +c1
x2+1

• Simplify

y =
√
π erf(x)+2c1
2x2+2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 24� �
dsolve(diff(y(x),x) +(2*x)/(1+x^2)*y(x)=exp(-x^2)/(1+x^2),y(x), singsol=all)� �

y(x) =
√
π erf (x) + 2c1

2x2 + 2

3 Solution by Mathematica
Time used: 0.067 (sec). Leaf size: 28� �
DSolve[y'[x] +(2*x)/(1+x^2)*y[x]==Exp[-x^2]/(1+x^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
√
πerf(x) + 2c1
2x2 + 2
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2.16 problem 16
2.16.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 359
2.16.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 361
2.16.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 365
2.16.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 370

Internal problem ID [902]
Internal file name [OUTPUT/902_Sunday_June_05_2022_01_53_36_AM_97350989/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y

x
= 7

x2 + 3

2.16.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x

q(x) = 3x2 + 7
x2

Hence the ode is

y′ + y

x
= 3x2 + 7

x2
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The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes

d
dx(µy) = (µ)

(
3x2 + 7

x2

)
d
dx(yx) = (x)

(
3x2 + 7

x2

)
d(yx) =

(
3x2 + 7

x

)
dx

Integrating gives

yx =
∫ 3x2 + 7

x
dx

yx = 3x2

2 + 7 ln (x) + c1

Dividing both sides by the integrating factor µ = x results in

y =
3x2

2 + 7 ln (x)
x

+ c1
x

which simplifies to

y =
3x2

2 + 7 ln (x) + c1
x

Summary
The solution(s) found are the following

(1)y =
3x2

2 + 7 ln (x) + c1
x
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Figure 91: Slope field plot

Verification of solutions

y =
3x2

2 + 7 ln (x) + c1
x

Verified OK.

2.16.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−3x2 + yx− 7
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 75: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x

dy

Which results in

S = yx

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−3x2 + yx− 7
x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y

Sy = x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 3x2 + 7

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 3R2 + 7

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 3R2

2 + 7 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx = 3x2

2 + 7 ln (x) + c1

Which simplifies to

yx = 3x2

2 + 7 ln (x) + c1

Which gives

y = 3x2 + 14 ln (x) + 2c1
2x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−3x2+yx−7
x2

dS
dR

= 3R2+7
R

R = x

S = yx

Summary
The solution(s) found are the following

(1)y = 3x2 + 14 ln (x) + 2c1
2x
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Figure 92: Slope field plot

Verification of solutions

y = 3x2 + 14 ln (x) + 2c1
2x

Verified OK.

2.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
−y

x
+ 7

x2 + 3
)
dx(

−3 + y

x
− 7

x2

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −3 + y

x
− 7

x2

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−3 + y

x
− 7

x2

)
= 1

x
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And

∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

1
x

)
− (0)

)
= 1

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

x
dx

The result of integrating gives

µ = eln(x)

= x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x

(
−3 + y

x
− 7

x2

)
= −3x2 + yx− 7

x

And

N = µN

= x(1)
= x
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−3x2 + yx− 7
x

)
+ (x) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−3x2 + yx− 7

x
dx

(3)φ = −3x2

2 + yx− 7 ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x. Therefore equation (4) becomes

(5)x = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −3x2

2 + yx− 7 ln (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −3x2

2 + yx− 7 ln (x)

The solution becomes

y = 3x2 + 14 ln (x) + 2c1
2x

Summary
The solution(s) found are the following

(1)y = 3x2 + 14 ln (x) + 2c1
2x

Figure 93: Slope field plot
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Verification of solutions

y = 3x2 + 14 ln (x) + 2c1
2x

Verified OK.

2.16.4 Maple step by step solution

Let’s solve
y′ + y

x
= 7

x2 + 3

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

x
+ 3x2+7

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

x
= 3x2+7

x2

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + y

x

)
= µ(x)

(
3x2+7

)
x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

x

• Solve to find the integrating factor
µ(x) = x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
(
3x2+7

)
x2 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ µ(x)

(
3x2+7

)
x2 dx+ c1

• Solve for y

y =
∫ µ(x)

(
3x2+7

)
x2 dx+c1

µ(x)

• Substitute µ(x) = x
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y =
∫ 3x2+7

x
dx+c1

x

• Evaluate the integrals on the rhs

y =
3x2
2 +7 ln(x)+c1

x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x) +1/x*y(x)=7/x^2+3,y(x), singsol=all)� �

y(x) =
3x2

2 + 7 ln (x) + c1
x

3 Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 24� �
DSolve[y'[x] +1/x*y[x]==7/x^2+3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3x
2 + 7 log(x)

x
+ c1

x
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2.17 problem 17
2.17.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 372
2.17.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 374
2.17.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 378
2.17.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 383

Internal problem ID [903]
Internal file name [OUTPUT/903_Sunday_June_05_2022_01_53_37_AM_47617246/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 17.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + 4y
x− 1 = 1

(x− 1)5
+ sin (x)

(x− 1)4

2.17.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 4
x− 1

q(x) = 1 + sin (x) (x− 1)
(x− 1)5

Hence the ode is

y′ + 4y
x− 1 = 1 + sin (x) (x− 1)

(x− 1)5
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The integrating factor µ is

µ = e
∫ 4

x−1dx

= (x− 1)4

The ode becomes

d
dx(µy) = (µ)

(
1 + sin (x) (x− 1)

(x− 1)5
)

d
dx
(
y(x− 1)4

)
=
(
(x− 1)4

)(1 + sin (x) (x− 1)
(x− 1)5

)
d
(
y(x− 1)4

)
=
(
1 + sin (x) (x− 1)

x− 1

)
dx

Integrating gives

y(x− 1)4 =
∫ 1 + sin (x) (x− 1)

x− 1 dx

y(x− 1)4 = − cos (x) + ln (x− 1) + c1

Dividing both sides by the integrating factor µ = (x− 1)4 results in

y = − cos (x) + ln (x− 1)
(x− 1)4

+ c1

(x− 1)4

which simplifies to

y = − cos (x) + ln (x− 1) + c1

(x− 1)4

Summary
The solution(s) found are the following

(1)y = − cos (x) + ln (x− 1) + c1

(x− 1)4
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Figure 94: Slope field plot

Verification of solutions

y = − cos (x) + ln (x− 1) + c1

(x− 1)4

Verified OK.

2.17.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −4x4y + 16y x3 − 24y x2 + sin (x)x+ 16yx− sin (x)− 4y + 1
(x− 1)5

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 78: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
(x− 1)4

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
(x−1)4

dy

Which results in

S = y(x− 1)4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −4x4y + 16y x3 − 24y x2 + sin (x)x+ 16yx− sin (x)− 4y + 1
(x− 1)5

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 4y(x− 1)3

Sy = (x− 1)4

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 + sin (x) (x− 1)

x− 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1 + sin (R) (R− 1)

R− 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − cos (R) + ln (R− 1) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x− 1)4 y = − cos (x) + ln (x− 1) + c1

Which simplifies to

(x− 1)4 y = − cos (x) + ln (x− 1) + c1

Which gives

y = −cos (x)− ln (x− 1)− c1

(x− 1)4

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
−4x4y+16y x3−24y x2+sin(x)x+16yx−sin(x)−4y+1

(x−1)5

dS
dR

= 1+sin(R)(R−1)
R−1

R = x

S = y(x− 1)4
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Summary
The solution(s) found are the following

(1)y = −cos (x)− ln (x− 1)− c1

(x− 1)4

Figure 95: Slope field plot

Verification of solutions

y = −cos (x)− ln (x− 1)− c1

(x− 1)4

Verified OK.

2.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
− 4y
x− 1 + 1

(x− 1)5
+ sin (x)

(x− 1)4
)
dx(

4y
x− 1 − 1

(x− 1)5
− sin (x)

(x− 1)4
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 4y
x− 1 − 1

(x− 1)5
− sin (x)

(x− 1)4

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
4y

x− 1 − 1
(x− 1)5

− sin (x)
(x− 1)4

)
= 4

x− 1

And

∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

4
x− 1

)
− (0)

)
= 4

x− 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ 4

x−1 dx

The result of integrating gives

µ = e4 ln(x−1)

= (x− 1)4

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= (x− 1)4
(

4y
x− 1 − 1

(x− 1)5
− sin (x)

(x− 1)4
)

=
(

4y
x− 1 − 1

(x− 1)5
− sin (x)

(x− 1)4
)
(x− 1)4

380



And

N = µN

= (x− 1)4 (1)
= (x− 1)4

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

4y
x− 1 − 1

(x− 1)5
− sin (x)

(x− 1)4
)
(x− 1)4

)
+
(
(x− 1)4

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ ( 4y
x− 1 − 1

(x− 1)5
− sin (x)

(x− 1)4
)
(x− 1)4 dx

(3)φ = x4y + 6y x2 − 4yx− 4y x3 + cos (x)− ln (x− 1) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x4 − 4x3 + 6x2 − 4x+ f ′(y)

= x(−2 + x)
(
x2 − 2x+ 2

)
+ f ′(y)

But equation (2) says that ∂φ
∂y

= (x− 1)4. Therefore equation (4) becomes

(5)(x− 1)4 = x(−2 + x)
(
x2 − 2x+ 2

)
+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x4y + 6y x2 − 4yx− 4y x3 + cos (x)− ln (x− 1) + y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x4y + 6y x2 − 4yx− 4y x3 + cos (x)− ln (x− 1) + y

The solution becomes

y = − cos (x)− ln (x− 1)− c1
x4 − 4x3 + 6x2 − 4x+ 1

Summary
The solution(s) found are the following

(1)y = − cos (x)− ln (x− 1)− c1
x4 − 4x3 + 6x2 − 4x+ 1
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Figure 96: Slope field plot

Verification of solutions

y = − cos (x)− ln (x− 1)− c1
x4 − 4x3 + 6x2 − 4x+ 1

Verified OK.

2.17.4 Maple step by step solution

Let’s solve
y′ + 4y

x−1 = 1
(x−1)5 +

sin(x)
(x−1)4

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − 4y

x−1 +
sin(x)x−sin(x)+1

(x−1)5

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 4y

x−1 = sin(x)x−sin(x)+1
(x−1)5
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• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 4y

x−1

)
= µ(x)(sin(x)x−sin(x)+1)

(x−1)5

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 4y

x−1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 4µ(x)

x−1

• Solve to find the integrating factor
µ(x) = (x− 1)4

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)(sin(x)x−sin(x)+1)
(x−1)5 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)(sin(x)x−sin(x)+1)
(x−1)5 dx+ c1

• Solve for y

y =
∫ µ(x)(sin(x)x−sin(x)+1)

(x−1)5
dx+c1

µ(x)

• Substitute µ(x) = (x− 1)4

y =
∫ sin(x)x−sin(x)+1

x−1 dx+c1

(x−1)4

• Evaluate the integrals on the rhs
y = − cos(x)+ln(x−1)+c1

(x−1)4

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(diff(y(x),x) +4/(x-1)*y(x)=1/(x-1)^5+sin(x)/(x-1)^4,y(x), singsol=all)� �

y(x) = − cos (x) + ln (x− 1) + c1

(x− 1)4

3 Solution by Mathematica
Time used: 0.07 (sec). Leaf size: 22� �
DSolve[y'[x] +4/(x-1)*y[x]==1/(x-1)^5+Sin[x]/(x-1)^4,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log(x− 1)− cos(x) + c1
(x− 1)4
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2.18 problem 18
2.18.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 386
2.18.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 388
2.18.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 392
2.18.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 397

Internal problem ID [904]
Internal file name [OUTPUT/904_Sunday_June_05_2022_01_53_39_AM_69619743/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 18.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′x+ y
(
2x2 + 1

)
= x3e−x2

2.18.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −−2x2 − 1
x

q(x) = x2e−x2

Hence the ode is

y′ − (−2x2 − 1) y
x

= x2e−x2
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The integrating factor µ is

µ = e
∫
−−2x2−1

x
dx

= ex2+ln(x)

Which simplifies to

µ = ex2
x

The ode becomes

d
dx(µy) = (µ)

(
x2e−x2

)
d
dx

(
x ex2

y
)
=
(
ex2

x
)(

x2e−x2
)

d
(
x ex2

y
)
= x3 dx

Integrating gives

x ex2
y =

∫
x3 dx

x ex2
y = x4

4 + c1

Dividing both sides by the integrating factor µ = ex2
x results in

y = x3e−x2

4 + c1e−x2

x

which simplifies to

y = e−x2(x4 + 4c1)
4x

Summary
The solution(s) found are the following

(1)y = e−x2(x4 + 4c1)
4x
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Figure 97: Slope field plot

Verification of solutions

y = e−x2(x4 + 4c1)
4x

Verified OK.

2.18.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x3e−x2 − 2y x2 − y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 81: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−x2−ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x2−ln(x)dy

Which results in

S = x ex2
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x3e−x2 − 2y x2 − y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = ex2

y
(
2x2 + 1

)
Sy = ex2

x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R4

4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x ex2
y = x4

4 + c1

Which simplifies to

x ex2
y = x4

4 + c1

Which gives

y = e−x2(x4 + 4c1)
4x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x3e−x2−2y x2−y
x

dS
dR

= R3

R = x

S = x ex2
y

Summary
The solution(s) found are the following

(1)y = e−x2(x4 + 4c1)
4x

391



Figure 98: Slope field plot

Verification of solutions

y = e−x2(x4 + 4c1)
4x

Verified OK.

2.18.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(x) dy =
(
−y
(
2x2 + 1

)
+ x3e−x2

)
dx(

y
(
2x2 + 1

)
− x3e−x2

)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y
(
2x2 + 1

)
− x3e−x2

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y
(
2x2 + 1

)
− x3e−x2

)
= 2x2 + 1

And
∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x

((
2x2 + 1

)
− (1)

)
= 2x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
2xdx

The result of integrating gives

µ = ex
2

= ex2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex2
(
y
(
2x2 + 1

)
− x3e−x2

)
= ex2

y
(
2x2 + 1

)
− x3

And

N = µN

= ex2(x)
= ex2

x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

ex2
y
(
2x2 + 1

)
− x3

)
+
(
ex2

x
) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
ex2

y
(
2x2 + 1

)
− x3 dx

(3)φ = x ex2
y − x4

4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ex2

x+ f ′(y)

But equation (2) says that ∂φ
∂y

= ex2
x. Therefore equation (4) becomes

(5)ex2
x = ex2

x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x ex2
y − x4

4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x ex2
y − x4

4
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The solution becomes

y = e−x2(x4 + 4c1)
4x

Summary
The solution(s) found are the following

(1)y = e−x2(x4 + 4c1)
4x

Figure 99: Slope field plot

Verification of solutions

y = e−x2(x4 + 4c1)
4x

Verified OK.
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2.18.4 Maple step by step solution

Let’s solve
y′x+ y(2x2 + 1) = x3e−x2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ = −
(
2x2+1

)
y

x
+ x2e−x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ +
(
2x2+1

)
y

x
= x2e−x2

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ +

(
2x2+1

)
y

x

)
= µ(x)x2e−x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ +

(
2x2+1

)
y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)

µ′(x) = µ(x)
(
2x2+1

)
x

• Solve to find the integrating factor
µ(x) = ex2

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)x2e−x2

dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)x2e−x2

dx+ c1

• Solve for y

y =
∫
µ(x)x2e−x2dx+c1

µ(x)

• Substitute µ(x) = ex2
x

y =
∫
x3e−x2ex2dx+c1

ex2x

• Evaluate the integrals on the rhs

y =
x4
4 +c1

ex2x
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• Simplify

y = e−x2(x4+4c1
)

4x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 22� �
dsolve(x*diff(y(x),x) +(1+2*x^2)*y(x)=x^3*exp(-x^2),y(x), singsol=all)� �

y(x) = (x4 + 4c1) e−x2

4x

3 Solution by Mathematica
Time used: 0.072 (sec). Leaf size: 27� �
DSolve[x*y'[x] +(1+2*x^2)*y[x]==x^3*Exp[-x^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x2(x4 + 4c1)
4x
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2.19 problem 19
2.19.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 399
2.19.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 401
2.19.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 405
2.19.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 410

Internal problem ID [905]
Internal file name [OUTPUT/905_Sunday_June_05_2022_01_53_40_AM_11648253/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

2y + y′x = 2
x2 + 1

2.19.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2
x

q(x) = x2 + 2
x3

Hence the ode is

y′ + 2y
x

= x2 + 2
x3
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The integrating factor µ is

µ = e
∫ 2

x
dx

= x2

The ode becomes

d
dx(µy) = (µ)

(
x2 + 2
x3

)
d
dx
(
y x2) = (x2)(x2 + 2

x3

)
d
(
y x2) = (x2 + 2

x

)
dx

Integrating gives

y x2 =
∫

x2 + 2
x

dx

y x2 = x2

2 + 2 ln (x) + c1

Dividing both sides by the integrating factor µ = x2 results in

y =
x2

2 + 2 ln (x)
x2 + c1

x2

which simplifies to

y =
x2

2 + 2 ln (x) + c1
x2

Summary
The solution(s) found are the following

(1)y =
x2

2 + 2 ln (x) + c1
x2
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Figure 100: Slope field plot

Verification of solutions

y =
x2

2 + 2 ln (x) + c1
x2

Verified OK.

2.19.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2y x2 − x2 − 2
x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 84: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x2

dy

Which results in

S = y x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2y x2 − x2 − 2
x3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2yx
Sy = x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x2 + 2

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2 + 2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 + 2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2y = x2

2 + 2 ln (x) + c1

Which simplifies to

x2y = x2

2 + 2 ln (x) + c1

Which gives

y = x2 + 4 ln (x) + 2c1
2x2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2y x2−x2−2
x3

dS
dR

= R2+2
R

R = x

S = y x2

Summary
The solution(s) found are the following

(1)y = x2 + 4 ln (x) + 2c1
2x2
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Figure 101: Slope field plot

Verification of solutions

y = x2 + 4 ln (x) + 2c1
2x2

Verified OK.

2.19.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
−2y + 2

x2 + 1
)
dx(

2y − 1− 2
x2

)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2y − 1− 2
x2

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
2y − 1− 2

x2

)
= 2
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And

∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((2)− (1))

= 1
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

x
dx

The result of integrating gives

µ = eln(x)

= x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x

(
2y − 1− 2

x2

)
=
(
2y − 1− 2

x2

)
x

And

N = µN

= x(x)
= x2
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

2y − 1− 2
x2

)
x

)
+
(
x2) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (
2y − 1− 2

x2

)
x dx

(3)φ = x2(−1 + 2y)
2 − 2 ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2. Therefore equation (4) becomes

(5)x2 = x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x2(−1 + 2y)
2 − 2 ln (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x2(−1 + 2y)

2 − 2 ln (x)

The solution becomes

y = x2 + 4 ln (x) + 2c1
2x2

Summary
The solution(s) found are the following

(1)y = x2 + 4 ln (x) + 2c1
2x2

Figure 102: Slope field plot
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Verification of solutions

y = x2 + 4 ln (x) + 2c1
2x2

Verified OK.

2.19.4 Maple step by step solution

Let’s solve
2y + y′x = 2

x2 + 1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −2y

x
+ x2+2

x3

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2y

x
= x2+2

x3

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + 2y

x

)
= µ(x)

(
x2+2

)
x3

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)

x

• Solve to find the integrating factor
µ(x) = x2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
(
x2+2

)
x3 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ µ(x)

(
x2+2

)
x3 dx+ c1

• Solve for y

y =
∫ µ(x)

(
x2+2

)
x3 dx+c1

µ(x)

• Substitute µ(x) = x2
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y =
∫

x2+2
x

dx+c1
x2

• Evaluate the integrals on the rhs

y =
x2
2 +2 ln(x)+c1

x2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(x*diff(y(x),x) +2*y(x)=2/x^2+1,y(x), singsol=all)� �

y(x) =
x2

2 + 2 ln (x) + c1
x2

3 Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 22� �
DSolve[x*y'[x] +2*y[x]==2/x^2+1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2 log(x)
x2 + c1

x2 + 1
2
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2.20 problem 20
2.20.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 412
2.20.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 414
2.20.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 418
2.20.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 422

Internal problem ID [906]
Internal file name [OUTPUT/906_Sunday_June_05_2022_01_53_41_AM_75690544/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 20.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + tan (x) y = cos (x)

2.20.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = tan (x)
q(x) = cos (x)

Hence the ode is

y′ + tan (x) y = cos (x)
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The integrating factor µ is

µ = e
∫
tan(x)dx

= 1
cos (x)

Which simplifies to
µ = sec (x)

The ode becomes

d
dx(µy) = (µ) (cos (x))

d
dx(sec (x) y) = (sec (x)) (cos (x))

d(sec (x) y) = dx

Integrating gives

sec (x) y =
∫

dx

sec (x) y = x+ c1

Dividing both sides by the integrating factor µ = sec (x) results in

y = x cos (x) + c1 cos (x)

which simplifies to

y = cos (x) (x+ c1)

Summary
The solution(s) found are the following

(1)y = cos (x) (x+ c1)
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Figure 103: Slope field plot

Verification of solutions

y = cos (x) (x+ c1)

Verified OK.

2.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = cos (x)− tan (x) y
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 87: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = cos (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

cos (x)dy

Which results in

S = y

cos (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = cos (x)− tan (x) y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = tan (x) sec (x) y
Sy = sec (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

sec (x) y = x+ c1

Which simplifies to

sec (x) y = x+ c1

Which gives

y = x+ c1
sec (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= cos (x)− tan (x) y dS
dR

= 1

R = x

S = sec (x) y

Summary
The solution(s) found are the following

(1)y = x+ c1
sec (x)
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Figure 104: Slope field plot

Verification of solutions

y = x+ c1
sec (x)

Verified OK.

2.20.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (cos (x)− tan (x) y) dx
(tan (x) y − cos (x)) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = tan (x) y − cos (x)
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(tan (x) y − cos (x))

= tan (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((tan (x))− (0))
= tan (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
tan(x) dx

The result of integrating gives

µ = e− ln(cos(x))

= sec (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sec (x) (tan (x) y − cos (x))
= −1 + tan (x) sec (x) y

And

N = µN

= sec (x) (1)
= sec (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(−1 + tan (x) sec (x) y) + (sec (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1 + tan (x) sec (x) y dx

(3)φ = −x+ sec (x) y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sec (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= sec (x). Therefore equation (4) becomes

(5)sec (x) = sec (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x+ sec (x) y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x+ sec (x) y

The solution becomes

y = x+ c1
sec (x)
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Summary
The solution(s) found are the following

(1)y = x+ c1
sec (x)

Figure 105: Slope field plot

Verification of solutions

y = x+ c1
sec (x)

Verified OK.

2.20.4 Maple step by step solution

Let’s solve
y′ + tan (x) y = cos (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = cos (x)− tan (x) y
• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ + tan (x) y = cos (x)
• The ODE is linear; multiply by an integrating factor µ(x)

µ(x) (y′ + tan (x) y) = µ(x) cos (x)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ + tan (x) y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) tan (x)

• Solve to find the integrating factor
µ(x) = 1

cos(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) cos (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) cos (x) dx+ c1

• Solve for y

y =
∫
µ(x) cos(x)dx+c1

µ(x)

• Substitute µ(x) = 1
cos(x)

y = cos (x)
(∫

1dx+ c1
)

• Evaluate the integrals on the rhs
y = cos (x) (x+ c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 10� �
dsolve(diff(y(x),x) +tan(x)*y(x)=cos(x),y(x), singsol=all)� �

y(x) = (c1 + x) cos (x)

3 Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 12� �
DSolve[y'[x] +Tan[x]*y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (x+ c1) cos(x)
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2.21 problem 21
2.21.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 425
2.21.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 427
2.21.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 431
2.21.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 435

Internal problem ID [907]
Internal file name [OUTPUT/907_Sunday_June_05_2022_01_53_42_AM_41989435/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 21.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_linear]

(x+ 1) y′ + 2y = sin (x)
x+ 1

2.21.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2
x+ 1

q(x) = sin (x)
(x+ 1)2

Hence the ode is

y′ + 2y
x+ 1 = sin (x)

(x+ 1)2
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The integrating factor µ is

µ = e
∫ 2

x+1dx

= (x+ 1)2

The ode becomes

d
dx(µy) = (µ)

(
sin (x)
(x+ 1)2

)
d
dx
(
(x+ 1)2 y

)
=
(
(x+ 1)2

)( sin (x)
(x+ 1)2

)
d
(
(x+ 1)2 y

)
= sin (x) dx

Integrating gives

(x+ 1)2 y =
∫

sin (x) dx

(x+ 1)2 y = − cos (x) + c1

Dividing both sides by the integrating factor µ = (x+ 1)2 results in

y = − cos (x)
(x+ 1)2

+ c1

(x+ 1)2

which simplifies to

y = − cos (x) + c1

(x+ 1)2

Summary
The solution(s) found are the following

(1)y = − cos (x) + c1

(x+ 1)2
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Figure 106: Slope field plot

Verification of solutions

y = − cos (x) + c1

(x+ 1)2

Verified OK.

2.21.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2yx+ sin (x)− 2y
(x+ 1)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 90: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
(x+ 1)2

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
(x+1)2

dy

Which results in

S = (x+ 1)2 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2yx+ sin (x)− 2y
(x+ 1)2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2(x+ 1) y
Sy = (x+ 1)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sin (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sin (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − cos (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x+ 1)2 y = − cos (x) + c1

Which simplifies to

(x+ 1)2 y = − cos (x) + c1

Which gives

y = −cos (x)− c1

(x+ 1)2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2yx+sin(x)−2y
(x+1)2

dS
dR

= sin (R)

R = x

S = (x+ 1)2 y
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Summary
The solution(s) found are the following

(1)y = −cos (x)− c1

(x+ 1)2

Figure 107: Slope field plot

Verification of solutions

y = −cos (x)− c1

(x+ 1)2

Verified OK.

2.21.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the

431



ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
(x+ 1)2

)
dy = (−2yx+ sin (x)− 2y) dx

(2yx− sin (x) + 2y) dx+
(
(x+ 1)2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2yx− sin (x) + 2y
N(x, y) = (x+ 1)2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y
(2yx− sin (x) + 2y)

= 2 + 2x

And
∂N

∂x
= ∂

∂x

(
(x+ 1)2

)
= 2 + 2x

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2yx− sin (x) + 2y dx

(3)φ = y x2 + 2yx+ cos (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + 2x+ f ′(y)

But equation (2) says that ∂φ
∂y

= (x+ 1)2. Therefore equation (4) becomes

(5)(x+ 1)2 = x2 + 2x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
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Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = y x2 + 2yx+ cos (x) + y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y x2 + 2yx+ cos (x) + y

The solution becomes

y = − cos (x)− c1
x2 + 2x+ 1

Summary
The solution(s) found are the following

(1)y = − cos (x)− c1
x2 + 2x+ 1

434



Figure 108: Slope field plot

Verification of solutions

y = − cos (x)− c1
x2 + 2x+ 1

Verified OK.

2.21.4 Maple step by step solution

Let’s solve
(x+ 1) y′ + 2y = sin(x)

x+1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − 2y

x+1 +
sin(x)
(x+1)2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2y

x+1 = sin(x)
(x+1)2

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ + 2y

x+1

)
= µ(x) sin(x)

(x+1)2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2y

x+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)

x+1

• Solve to find the integrating factor
µ(x) = (x+ 1)2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x) sin(x)
(x+1)2 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x) sin(x)
(x+1)2 dx+ c1

• Solve for y

y =
∫ µ(x) sin(x)

(x+1)2
dx+c1

µ(x)

• Substitute µ(x) = (x+ 1)2

y =
∫
sin(x)dx+c1
(x+1)2

• Evaluate the integrals on the rhs
y = − cos(x)+c1

(x+1)2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve((1+x)*diff(y(x),x) +2*y(x)=sin(x)/(1+x),y(x), singsol=all)� �

y(x) = − cos (x) + c1

(x+ 1)2

3 Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 18� �
DSolve[(1+x)*y'[x] +2*y[x]==Sin[x]/(1+x),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − cos(x) + c1
(x+ 1)2
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2.22 problem 22
2.22.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 438
2.22.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 440
2.22.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 444
2.22.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 449

Internal problem ID [908]
Internal file name [OUTPUT/908_Sunday_June_05_2022_01_53_44_AM_46748277/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 22.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(−2 + x) (x− 1) y′ − (4x− 3) y = (−2 + x)3

2.22.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 4x− 3
(−2 + x) (x− 1)

q(x) = (−2 + x)2

x− 1

Hence the ode is

y′ − (4x− 3) y
(−2 + x) (x− 1) = (−2 + x)2

x− 1
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The integrating factor µ is

µ = e
∫
− 4x−3

(−2+x)(x−1)dx

= eln(x−1)−5 ln(−2+x)

Which simplifies to

µ = x− 1
(−2 + x)5

The ode becomes

d
dx(µy) = (µ)

(
(−2 + x)2

x− 1

)
d
dx

(
(x− 1) y
(−2 + x)5

)
=
(

x− 1
(−2 + x)5

)(
(−2 + x)2

x− 1

)

d
(

(x− 1) y
(−2 + x)5

)
= 1

(−2 + x)3
dx

Integrating gives

(x− 1) y
(−2 + x)5

=
∫ 1

(−2 + x)3
dx

(x− 1) y
(−2 + x)5

= − 1
2 (−2 + x)2

+ c1

Dividing both sides by the integrating factor µ = x−1
(−2+x)5 results in

y = −(−2 + x)3

2 (x− 1) + c1(−2 + x)5

x− 1

which simplifies to

y =
2
(
−1

2 + c1(−2 + x)2
)
(−2 + x)3

2x− 2

Summary
The solution(s) found are the following

(1)y =
2
(
−1

2 + c1(−2 + x)2
)
(−2 + x)3

2x− 2
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Figure 109: Slope field plot

Verification of solutions

y =
2
(
−1

2 + c1(−2 + x)2
)
(−2 + x)3

2x− 2

Verified OK.

2.22.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x3 − 6x2 + 4yx+ 12x− 3y − 8
(−2 + x) (x− 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 93: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e− ln(x−1)+5 ln(−2+x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e− ln(x−1)+5 ln(−2+x)dy

Which results in

S = (x− 1) y
(−2 + x)5

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x3 − 6x2 + 4yx+ 12x− 3y − 8
(−2 + x) (x− 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y(−4x+ 3)
(−2 + x)6

Sy =
x− 1

(−2 + x)5

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

(−2 + x)3
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

(−2 +R)3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
2 (−2 +R)2

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x− 1) y
(−2 + x)5

= − 1
2 (−2 + x)2

+ c1

Which simplifies to

(x− 1) y
(−2 + x)5

= − 1
2 (−2 + x)2

+ c1

Which gives

y = (−2 + x)3 (2c1x2 − 8c1x+ 8c1 − 1)
2x− 2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x3−6x2+4yx+12x−3y−8
(−2+x)(x−1)

dS
dR

= 1
(−2+R)3

R = x

S = (x− 1) y
(−2 + x)5
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Summary
The solution(s) found are the following

(1)y = (−2 + x)3 (2c1x2 − 8c1x+ 8c1 − 1)
2x− 2

Figure 110: Slope field plot

Verification of solutions

y = (−2 + x)3 (2c1x2 − 8c1x+ 8c1 − 1)
2x− 2

Verified OK.

2.22.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

((−2 + x) (x− 1)) dy =
(
(4x− 3) y + (−2 + x)3

)
dx(

−(4x− 3) y − (−2 + x)3
)
dx+((−2 + x) (x− 1)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −(4x− 3) y − (−2 + x)3

N(x, y) = (−2 + x) (x− 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
−(4x− 3) y − (−2 + x)3

)
= −4x+ 3

And

∂N

∂x
= ∂

∂x
((−2 + x) (x− 1))

= −3 + 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

(−2 + x) (x− 1)((−4x+ 3)− (−3 + 2x))

= − 6
−2 + x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
− 6

−2+x
dx

The result of integrating gives

µ = e−6 ln(−2+x)

= 1
(−2 + x)6

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(−2 + x)6

(
−(4x− 3) y − (−2 + x)3

)
= −(4x− 3) y − (−2 + x)3

(−2 + x)6
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And

N = µN

= 1
(−2 + x)6

((−2 + x) (x− 1))

= x− 1
(−2 + x)5

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−(4x− 3) y − (−2 + x)3

(−2 + x)6

)
+
(

x− 1
(−2 + x)5

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫
−(4x− 3) y − (−2 + x)3

(−2 + x)6
dx

(3)φ = y

(−2 + x)5
+ y

(−2 + x)4
+ 1

2 (−2 + x)2
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

(−2 + x)5
+ 1

(−2 + x)4
+ f ′(y)

= x− 1
(−2 + x)5

+ f ′(y)
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But equation (2) says that ∂φ
∂y

= x−1
(−2+x)5 . Therefore equation (4) becomes

(5)x− 1
(−2 + x)5

= x− 1
(−2 + x)5

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y

(−2 + x)5
+ y

(−2 + x)4
+ 1

2 (−2 + x)2
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
y

(−2 + x)5
+ y

(−2 + x)4
+ 1

2 (−2 + x)2

The solution becomes

y = (−2 + x)3 (2c1x2 − 8c1x+ 8c1 − 1)
2x− 2

Summary
The solution(s) found are the following

(1)y = (−2 + x)3 (2c1x2 − 8c1x+ 8c1 − 1)
2x− 2
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Figure 111: Slope field plot

Verification of solutions

y = (−2 + x)3 (2c1x2 − 8c1x+ 8c1 − 1)
2x− 2

Verified OK.

2.22.4 Maple step by step solution

Let’s solve
(−2 + x) (x− 1) y′ − (4x− 3) y = (−2 + x)3

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ = (4x−3)y
(−2+x)(x−1) +

(−2+x)2
x−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ − (4x−3)y
(−2+x)(x−1) =

(−2+x)2
x−1

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ − (4x−3)y

(−2+x)(x−1)

)
= µ(x)(−2+x)2

x−1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − (4x−3)y

(−2+x)(x−1)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = − µ(x)(4x−3)

(−2+x)(x−1)

• Solve to find the integrating factor
µ(x) = x−1

(−2+x)5

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)(−2+x)2
x−1 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ µ(x)(−2+x)2

x−1 dx+ c1

• Solve for y

y =
∫ µ(x)(−2+x)2

x−1 dx+c1

µ(x)

• Substitute µ(x) = x−1
(−2+x)5

y =
(−2+x)5

(∫ 1
(−2+x)3

dx+c1
)

x−1

• Evaluate the integrals on the rhs

y =
(−2+x)5

(
− 1

2(−2+x)2
+c1

)
x−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 27� �
dsolve((x-2)*(x-1)*diff(y(x),x) -(4*x-3)*y(x)=(x-2)^3,y(x), singsol=all)� �

y(x) =
2
(
−1

2 + (−2 + x)2 c1
)
(−2 + x)3

2x− 2

3 Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 30� �
DSolve[(x-2)*(x-1)*y'[x] -(4*x-3)*y[x]==(x-2)^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (x− 2)3 (−1 + 2c1(x− 2)2)
2(x− 1)
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2.23 problem 23
2.23.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 452
2.23.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 454
2.23.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 458
2.23.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 463

Internal problem ID [909]
Internal file name [OUTPUT/909_Sunday_June_05_2022_01_53_45_AM_64182429/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 23.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + 2 cos (x) sin (x) y = e− sin(x)2

2.23.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = sin (2x)

q(x) = e− sin(x)2

Hence the ode is

y′ + y sin (2x) = e− sin(x)2
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The integrating factor µ is

µ = e
∫
sin(2x)dx

= e−
cos(2x)

2

The ode becomes

d
dx(µy) = (µ)

(
e− sin(x)2

)
d
dx

(
e−

cos(2x)
2 y

)
=
(
e−

cos(2x)
2

)(
e− sin(x)2

)
d
(
e−

cos(2x)
2 y

)
= e− sin(x)2− cos(2x)

2 dx

Integrating gives

e−
cos(2x)

2 y =
∫

e− sin(x)2− cos(2x)
2 dx

e−
cos(2x)

2 y = x e− 1
2 + c1

Dividing both sides by the integrating factor µ = e−
cos(2x)

2 results in

y = e
cos(2x)

2 x e− 1
2 + c1e

cos(2x)
2

which simplifies to

y = e
cos(2x)

2

(
x e− 1

2 + c1
)

Summary
The solution(s) found are the following

(1)y = e
cos(2x)

2

(
x e− 1

2 + c1
)
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Figure 112: Slope field plot

Verification of solutions

y = e
cos(2x)

2

(
x e− 1

2 + c1
)

Verified OK.

2.23.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2 cos (x) sin (x) y + e− sin(x)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 96: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e
cos(2x)

2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
cos(2x)

2

dy

Which results in

S = e−
cos(2x)

2 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2 cos (x) sin (x) y + e− sin(x)2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = sin (2x) e−
cos(2x)

2 y

Sy = e−
cos(2x)

2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e− sin(x)2− cos(2x)

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e− sin(R)2− cos(2R)

2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = e− 1
2R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−
cos(2x)

2 y = x e− 1
2 + c1

Which simplifies to

e−
cos(2x)

2 y = x e− 1
2 + c1

Which gives

y = e
cos(2x)

2

(
x e− 1

2 + c1
)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2 cos (x) sin (x) y + e− sin(x)2 dS
dR

= e− sin(R)2− cos(2R)
2

R = x

S = e−
cos(2x)

2 y

Summary
The solution(s) found are the following

(1)y = e
cos(2x)

2

(
x e− 1

2 + c1
)
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Figure 113: Slope field plot

Verification of solutions

y = e
cos(2x)

2

(
x e− 1

2 + c1
)

Verified OK.

2.23.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy =
(
−2 cos (x) sin (x) y + e− sin(x)2

)
dx(

2 cos (x) sin (x) y − e− sin(x)2
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2 cos (x) sin (x) y − e− sin(x)2

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2 cos (x) sin (x) y − e− sin(x)2

)
= sin (2x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((2 cos (x) sin (x))− (0))
= sin (2x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
sin(2x) dx

The result of integrating gives

µ = e−
cos(2x)

2

= e−
cos(2x)

2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−
cos(2x)

2

(
2 cos (x) sin (x) y − e− sin(x)2

)
=
(
y sin (2x)− e− sin(x)2

)
e−

cos(2x)
2

And

N = µN

= e−
cos(2x)

2 (1)

= e−
cos(2x)

2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

y sin (2x)− e− sin(x)2
)
e−

cos(2x)
2

)
+
(
e−

cos(2x)
2

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (
y sin (2x)− e− sin(x)2

)
e−

cos(2x)
2 dx

(3)φ = e−
cos(2x)

2 y − x e− 1
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−

cos(2x)
2 + f ′(y)

But equation (2) says that ∂φ
∂y

= e−
cos(2x)

2 . Therefore equation (4) becomes

(5)e−
cos(2x)

2 = e−
cos(2x)

2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = e−
cos(2x)

2 y − x e− 1
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = e−
cos(2x)

2 y − x e− 1
2
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The solution becomes

y = e
cos(2x)

2

(
x e− 1

2 + c1
)

Summary
The solution(s) found are the following

(1)y = e
cos(2x)

2

(
x e− 1

2 + c1
)

Figure 114: Slope field plot

Verification of solutions

y = e
cos(2x)

2

(
x e− 1

2 + c1
)

Verified OK.
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2.23.4 Maple step by step solution

Let’s solve
y′ + 2 cos (x) sin (x) y = e− sin(x)2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −2 cos (x) sin (x) y + e− sin(x)2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2 cos (x) sin (x) y = e− sin(x)2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + 2 cos (x) sin (x) y) = µ(x) e− sin(x)2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + 2 cos (x) sin (x) y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x) cos (x) sin (x)

• Solve to find the integrating factor
µ(x) = esin(x)2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) e− sin(x)2dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) e− sin(x)2dx+ c1

• Solve for y

y =
∫
µ(x)e− sin(x)2dx+c1

µ(x)

• Substitute µ(x) = esin(x)2

y =
∫
esin(x)2e− sin(x)2dx+c1

esin(x)2

• Evaluate the integrals on the rhs
y = x+c1

esin(x)2

• Simplify
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y = e− sin(x)2(x+ c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(diff(y(x),x) +(2*sin(x)*cos(x))*y(x)=exp(-sin(x)^2),y(x), singsol=all)� �

y(x) = (c1 + x) e− 1
2+

cos(2x)
2

3 Solution by Mathematica
Time used: 0.081 (sec). Leaf size: 24� �
DSolve[y'[x] +(2*Sin[x]*Cos[x])*y[x]==Exp[-Sin[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
x+

√
ec1
)
e− sin2(x)
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2.24 problem 24
2.24.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 465
2.24.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 467
2.24.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 471
2.24.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 476

Internal problem ID [910]
Internal file name [OUTPUT/910_Sunday_June_05_2022_01_53_46_AM_72494338/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 24.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′x2 + 3yx = ex

2.24.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 3
x

q(x) = ex
x2

Hence the ode is

y′ + 3y
x

= ex
x2
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The integrating factor µ is

µ = e
∫ 3

x
dx

= x3

The ode becomes

d
dx(µy) = (µ)

(
ex
x2

)
d
dx
(
y x3) = (x3)( ex

x2

)
d
(
y x3) = (x ex) dx

Integrating gives

y x3 =
∫

x ex dx

y x3 = (x− 1) ex + c1

Dividing both sides by the integrating factor µ = x3 results in

y = (x− 1) ex
x3 + c1

x3

which simplifies to

y = (x− 1) ex + c1
x3

Summary
The solution(s) found are the following

(1)y = (x− 1) ex + c1
x3
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Figure 115: Slope field plot

Verification of solutions

y = (x− 1) ex + c1
x3

Verified OK.

2.24.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −3yx+ ex
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 99: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x3 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x3

dy

Which results in

S = y x3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3yx+ ex
x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 3y x2

Sy = x3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x ex (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R eR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = (R− 1) eR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx3 = (x− 1) ex + c1

Which simplifies to

yx3 = (x− 1) ex + c1

Which gives

y = x ex − ex + c1
x3

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −3yx+ex
x2

dS
dR

= R eR

R = x

S = y x3

Summary
The solution(s) found are the following

(1)y = x ex − ex + c1
x3
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Figure 116: Slope field plot

Verification of solutions

y = x ex − ex + c1
x3

Verified OK.

2.24.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2) dy = (−3yx+ ex) dx

(3yx− ex) dx+
(
x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3yx− ex

N(x, y) = x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(3yx− ex)

= 3x

And
∂N

∂x
= ∂

∂x

(
x2)

= 2x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 ((3x)− (2x))

= 1
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

x
dx

The result of integrating gives

µ = eln(x)

= x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x(3yx− ex)
= 3y x2 − x ex

And

N = µN

= x
(
x2)

= x3

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

3y x2 − x ex
)
+
(
x3) dy

dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
3y x2 − x ex dx

(3)φ = −x ex + ex + y x3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x3 + f ′(y)

But equation (2) says that ∂φ
∂y

= x3. Therefore equation (4) becomes

(5)x3 = x3 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x ex + ex + y x3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x ex + ex + y x3
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The solution becomes

y = x ex − ex + c1
x3

Summary
The solution(s) found are the following

(1)y = x ex − ex + c1
x3

Figure 117: Slope field plot

Verification of solutions

y = x ex − ex + c1
x3

Verified OK.
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2.24.4 Maple step by step solution

Let’s solve
y′x2 + 3yx = ex

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −3y

x
+ ex

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 3y

x
= ex

x2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 3y

x

)
= µ(x)ex

x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 3y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 3µ(x)

x

• Solve to find the integrating factor
µ(x) = x3

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)ex
x2 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)ex
x2 dx+ c1

• Solve for y

y =
∫ µ(x)ex

x2 dx+c1

µ(x)

• Substitute µ(x) = x3

y =
∫
x exdx+c1

x3

• Evaluate the integrals on the rhs
y = (x−1)ex+c1

x3
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 16� �
dsolve(x^2*diff(y(x),x) +3*x*y(x)=exp(x),y(x), singsol=all)� �

y(x) = (x− 1) ex + c1
x3

3 Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 19� �
DSolve[x^2*y'[x] +3*x*y[x]==Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(x− 1) + c1
x3
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2.25 problem 25
2.25.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 478
2.25.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 479
2.25.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 481
2.25.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 485
2.25.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 489

Internal problem ID [911]
Internal file name [OUTPUT/911_Sunday_June_05_2022_01_53_48_AM_5786991/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 25.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ + 7y = e3x

With initial conditions

[y(0) = 0]

2.25.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 7
q(x) = e3x
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Hence the ode is

y′ + 7y = e3x

The domain of p(x) = 7 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = e3x is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

2.25.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
7dx

= e7x

The ode becomes
d
dx(µy) = (µ)

(
e3x
)

d
dx
(
e7xy

)
=
(
e7x
) (

e3x
)

d
(
e7xy

)
= e10x dx

Integrating gives

e7xy =
∫

e10x dx

e7xy = e10x
10 + c1

Dividing both sides by the integrating factor µ = e7x results in

y = e−7xe10x
10 + c1e−7x

which simplifies to

y = (e10x + 10c1) e−7x

10
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = 1
10 + c1

c1 = − 1
10

Substituting c1 found above in the general solution gives

y = (e10x − 1) e−7x

10

Summary
The solution(s) found are the following

(1)y = (e10x − 1) e−7x

10

(a) Solution plot (b) Slope field plot

Verification of solutions

y = (e10x − 1) e−7x

10

Verified OK.
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2.25.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −7y + e3x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 102: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = e−7x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−7xdy

Which results in

S = e7xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −7y + e3x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 7 e7xy
Sy = e7x
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e10x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e10R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = e10R
10 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e7xy = e10x
10 + c1

Which simplifies to

e7xy = e10x
10 + c1

Which gives

y = (e10x + 10c1) e−7x

10
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −7y + e3x dS
dR

= e10R

R = x

S = e7xy

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = 1
10 + c1

c1 = − 1
10

Substituting c1 found above in the general solution gives

y = e3x
10 − e−7x

10

Summary
The solution(s) found are the following

(1)y = e3x
10 − e−7x

10
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = e3x
10 − e−7x

10

Verified OK.

2.25.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy =
(
−7y + e3x

)
dx(

7y − e3x
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 7y − e3x

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
7y − e3x

)
= 7

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((7)− (0))
= 7
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
7 dx

The result of integrating gives

µ = e7x

= e7x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e7x
(
7y − e3x

)
=
(
7y − e3x

)
e7x

And

N = µN

= e7x(1)
= e7x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

7y − e3x
)
e7x
)
+
(
e7x
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (
7y − e3x

)
e7x dx

(3)φ = −e10x
10 + e7xy + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e7x + f ′(y)

But equation (2) says that ∂φ
∂y

= e7x. Therefore equation (4) becomes

(5)e7x = e7x + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −e10x
10 + e7xy + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −e10x
10 + e7xy

The solution becomes

y = (e10x + 10c1) e−7x

10

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = 1
10 + c1

c1 = − 1
10
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Substituting c1 found above in the general solution gives

y = e3x
10 − e−7x

10

Summary
The solution(s) found are the following

(1)y = e3x
10 − e−7x

10

(a) Solution plot (b) Slope field plot

Verification of solutions

y = e3x
10 − e−7x

10

Verified OK.

2.25.5 Maple step by step solution

Let’s solve
[y′ + 7y = e3x, y(0) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = −7y + e3x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 7y = e3x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + 7y) = µ(x) e3x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + 7y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 7µ(x)

• Solve to find the integrating factor
µ(x) = e7x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) e3xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) e3xdx+ c1

• Solve for y

y =
∫
µ(x)e3xdx+c1

µ(x)

• Substitute µ(x) = e7x

y =
∫
e3xe7xdx+c1

e7x

• Evaluate the integrals on the rhs

y =
e10x
10 +c1
e7x

• Simplify

y =
(
e10x+10c1

)
e−7x

10

• Use initial condition y(0) = 0
0 = 1

10 + c1

• Solve for c1
c1 = − 1

10

• Substitute c1 = − 1
10 into general solution and simplify

y =
(
e10x−1

)
e−7x

10
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• Solution to the IVP

y =
(
e10x−1

)
e−7x

10

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 16� �
dsolve([diff(y(x),x) +7*y(x)=exp(3*x),y(0) = 0],y(x), singsol=all)� �

y(x) = (e10x − 1) e−7x

10

3 Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 21� �
DSolve[{y'[x] +7*y[x]==Exp[3*x],y[0]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
10e

−7x(e10x − 1
)
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2.26 problem 26
2.26.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 492
2.26.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 493
2.26.3 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 495
2.26.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 496
2.26.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 501
2.26.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 504

Internal problem ID [912]
Internal file name [OUTPUT/912_Sunday_June_05_2022_01_53_49_AM_49208102/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 26.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "differentialType",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
x2 + 1

)
y′ + 4yx = 2

x2 + 1

With initial conditions

[y(0) = 1]

2.26.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 4x
x2 + 1

q(x) = 2
(x2 + 1)2
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Hence the ode is

y′ + 4xy
x2 + 1 = 2

(x2 + 1)2

The domain of p(x) = 4x
x2+1 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 2
(x2+1)2 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

2.26.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫ 4x

x2+1dx

=
(
x2 + 1

)2
The ode becomes

d
dx(µy) = (µ)

(
2

(x2 + 1)2
)

d
dx

((
x2 + 1

)2
y
)
=
((

x2 + 1
)2)( 2

(x2 + 1)2
)

d
((

x2 + 1
)2

y
)
= 2dx

Integrating gives (
x2 + 1

)2
y =

∫
2 dx(

x2 + 1
)2

y = 2x+ c1

Dividing both sides by the integrating factor µ = (x2 + 1)2 results in

y = 2x
(x2 + 1)2

+ c1

(x2 + 1)2
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which simplifies to

y = 2x+ c1

(x2 + 1)2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c1

c1 = 1

Substituting c1 found above in the general solution gives

y = 1 + 2x
(x2 + 1)2

Summary
The solution(s) found are the following

(1)y = 1 + 2x
(x2 + 1)2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1 + 2x
(x2 + 1)2

Verified OK.
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2.26.3 Solving as differentialType ode

Writing the ode as

y′ =
−4yx+ 2

x2+1
x2 + 1 (1)

Which becomes

0 =
(
−x4 − 2x2 − 1

)
dy +

(
−4y x3 − 4yx+ 2

)
dx (2)

But the RHS is complete differential because(
−x4 − 2x2 − 1

)
dy +

(
−4y x3 − 4yx+ 2

)
dx = d

(
−x4y − 2y x2 + 2x− y

)
Hence (2) becomes

0 = d
(
−x4y − 2y x2 + 2x− y

)
Integrating both sides gives gives these solutions

y = 2x+ c1
x4 + 2x2 + 1 + c1

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = 2c1

c1 =
1
2

Substituting c1 found above in the general solution gives

y = x4 + 2x2 + 4x+ 2
2x4 + 4x2 + 2

Summary
The solution(s) found are the following

(1)y = x4 + 2x2 + 4x+ 2
2x4 + 4x2 + 2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = x4 + 2x2 + 4x+ 2
2x4 + 4x2 + 2

Verified OK.

2.26.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2(2y x3 + 2yx− 1)
(x2 + 1)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

496



Table 105: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
(x2 + 1)2

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
(x2+1)2

dy

Which results in

S =
(
x2 + 1

)2
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2(2y x3 + 2yx− 1)
(x2 + 1)2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 4yx

(
x2 + 1

)
Sy =

(
x2 + 1

)2
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in (

x2 + 1
)2

y = 2x+ c1

Which simplifies to (
x2 + 1

)2
y = 2x+ c1

Which gives

y = 2x+ c1

(x2 + 1)2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2
(
2y x3+2yx−1

)
(x2+1)2

dS
dR

= 2

R = x

S =
(
x2 + 1

)2
y

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c1
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c1 = 1

Substituting c1 found above in the general solution gives

y = 1 + 2x
(x2 + 1)2

Summary
The solution(s) found are the following

(1)y = 1 + 2x
(x2 + 1)2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1 + 2x
(x2 + 1)2

Verified OK.
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2.26.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore ((
x2 + 1

)2) dy =
(
−4y x3 − 4yx+ 2

)
dx(

4y x3 + 4yx− 2
)
dx+

((
x2 + 1

)2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 4y x3 + 4yx− 2

N(x, y) =
(
x2 + 1

)2
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
4y x3 + 4yx− 2

)
= 4x3 + 4x

And
∂N

∂x
= ∂

∂x

((
x2 + 1

)2)
= 4x

(
x2 + 1

)
Since ∂M

∂y
= ∂N

∂x
, then the ODE is exact The following equations are now set up to solve

for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
4y x3 + 4yx− 2 dx

(3)φ = x4y + 2y x2 − 2x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x4 + 2x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= (x2 + 1)2. Therefore equation (4) becomes

(5)
(
x2 + 1

)2 = x4 + 2x2 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x4y + 2y x2 − 2x+ y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x4y + 2y x2 − 2x+ y

The solution becomes

y = 2x+ c1
x4 + 2x2 + 1

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c1

c1 = 1

Substituting c1 found above in the general solution gives

y = 1 + 2x
x4 + 2x2 + 1

Summary
The solution(s) found are the following

(1)y = 1 + 2x
x4 + 2x2 + 1
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1 + 2x
x4 + 2x2 + 1

Verified OK.

2.26.6 Maple step by step solution

Let’s solve[
(x2 + 1) y′ + 4yx = 2

x2+1 , y(0) = 1
]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − 4xy

x2+1 +
2

(x2+1)2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 4xy

x2+1 = 2
(x2+1)2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 4xy

x2+1

)
= 2µ(x)

(x2+1)2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)
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µ(x)
(
y′ + 4xy

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 4µ(x)x

x2+1

• Solve to find the integrating factor
µ(x) = (x2 + 1)2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ 2µ(x)
(x2+1)2dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ 2µ(x)
(x2+1)2dx+ c1

• Solve for y

y =
∫ 2µ(x)(

x2+1
)2 dx+c1

µ(x)

• Substitute µ(x) = (x2 + 1)2

y =
∫
2dx+c1

(x2+1)2

• Evaluate the integrals on the rhs
y = 2x+c1

(x2+1)2

• Use initial condition y(0) = 1
1 = c1

• Solve for c1
c1 = 1

• Substitute c1 = 1 into general solution and simplify
y = 1+2x

(x2+1)2

• Solution to the IVP
y = 1+2x

(x2+1)2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve([(1+x^2)*diff(y(x),x)+4*x*y(x)=2/(1+x^2),y(0) = 1],y(x), singsol=all)� �

y(x) = 1 + 2x
(x2 + 1)2

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 18� �
DSolve[{(1+x^2)*y'[x]+4*x*y[x]==2/(1+x^2),y[0]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x+ 1
(x2 + 1)2
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2.27 problem 27
2.27.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 507
2.27.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 508
2.27.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 510
2.27.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 514
2.27.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 519

Internal problem ID [913]
Internal file name [OUTPUT/913_Sunday_June_05_2022_01_53_50_AM_83433225/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 27.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

3y + y′x = 2
x (x2 + 1)

With initial conditions

[y(−1) = 0]

2.27.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 3
x

q(x) = 2
x2 (x2 + 1)
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Hence the ode is

y′ + 3y
x

= 2
x2 (x2 + 1)

The domain of p(x) = 3
x
is

{x < 0∨ 0 < x}

And the point x0 = −1 is inside this domain. The domain of q(x) = 2
x2(x2+1) is

{x < 0∨ 0 < x}

And the point x0 = −1 is also inside this domain. Hence solution exists and is unique.

2.27.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫ 3

x
dx

= x3

The ode becomes

d
dx(µy) = (µ)

(
2

x2 (x2 + 1)

)
d
dx
(
y x3) = (x3)( 2

x2 (x2 + 1)

)
d
(
y x3) = ( 2x

x2 + 1

)
dx

Integrating gives

y x3 =
∫ 2x

x2 + 1 dx

y x3 = ln
(
x2 + 1

)
+ c1

Dividing both sides by the integrating factor µ = x3 results in

y = ln (x2 + 1)
x3 + c1

x3
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which simplifies to

y = ln (x2 + 1) + c1
x3

Initial conditions are used to solve for c1. Substituting x = −1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = − ln (2)− c1

c1 = − ln (2)

Substituting c1 found above in the general solution gives

y = ln (x2 + 1)− ln (2)
x3

Summary
The solution(s) found are the following

(1)y = ln (x2 + 1)− ln (2)
x3

(a) Solution plot (b) Slope field plot

Verification of solutions

y = ln (x2 + 1)− ln (2)
x3

Verified OK.
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2.27.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −3y x3 + 3yx− 2
x2 (x2 + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 108: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x3 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x3

dy

Which results in

S = y x3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3y x3 + 3yx− 2
x2 (x2 + 1)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 3y x2

Sy = x3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x

x2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R

R2 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln
(
R2 + 1

)
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx3 = ln
(
x2 + 1

)
+ c1

Which simplifies to

yx3 = ln
(
x2 + 1

)
+ c1

Which gives

y = ln (x2 + 1) + c1
x3
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −3y x3+3yx−2
x2(x2+1)

dS
dR

= 2R
R2+1

R = x

S = y x3

Initial conditions are used to solve for c1. Substituting x = −1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = − ln (2)− c1

c1 = − ln (2)

Substituting c1 found above in the general solution gives

y = ln (x2 + 1)− ln (2)
x3

Summary
The solution(s) found are the following

(1)y = ln (x2 + 1)− ln (2)
x3
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = ln (x2 + 1)− ln (2)
x3

Verified OK.

2.27.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
−3y + 2

x (x2 + 1)

)
dx(

3y − 2
x (x2 + 1)

)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3y − 2
x (x2 + 1)

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
3y − 2

x (x2 + 1)

)
= 3

And

∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((3)− (1))

= 2
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 2

x
dx

The result of integrating gives

µ = e2 ln(x)

= x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x2
(
3y − 2

x (x2 + 1)

)
= 3x4y + 3y x2 − 2x

x2 + 1

And

N = µN

= x2(x)
= x3

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

3x4y + 3y x2 − 2x
x2 + 1

)
+
(
x3) dy

dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 3x4y + 3y x2 − 2x
x2 + 1 dx

(3)φ = y x3 − ln
(
x2 + 1

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x3 + f ′(y)

But equation (2) says that ∂φ
∂y

= x3. Therefore equation (4) becomes

(5)x3 = x3 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y x3 − ln
(
x2 + 1

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y x3 − ln
(
x2 + 1

)
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The solution becomes

y = ln (x2 + 1) + c1
x3

Initial conditions are used to solve for c1. Substituting x = −1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = − ln (2)− c1

c1 = − ln (2)

Substituting c1 found above in the general solution gives

y = ln (x2 + 1)− ln (2)
x3

Summary
The solution(s) found are the following

(1)y = ln (x2 + 1)− ln (2)
x3

(a) Solution plot (b) Slope field plot

Verification of solutions

y = ln (x2 + 1)− ln (2)
x3

Verified OK.
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2.27.5 Maple step by step solution

Let’s solve[
3y + y′x = 2

x(x2+1) , y(−1) = 0
]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −3y

x
+ 2

x2(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 3y

x
= 2

x2(x2+1)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 3y

x

)
= 2µ(x)

x2(x2+1)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 3y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 3µ(x)

x

• Solve to find the integrating factor
µ(x) = x3

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ 2µ(x)
x2(x2+1)dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ 2µ(x)
x2(x2+1)dx+ c1

• Solve for y

y =
∫ 2µ(x)

x2
(
x2+1

)dx+c1

µ(x)

• Substitute µ(x) = x3

y =
∫ 2x

x2+1dx+c1

x3

• Evaluate the integrals on the rhs

y = ln
(
x2+1

)
+c1

x3
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• Use initial condition y(−1) = 0
0 = − ln (2)− c1

• Solve for c1
c1 = − ln (2)

• Substitute c1 = − ln (2) into general solution and simplify

y = ln
(
x2+1

)
−ln(2)

x3

• Solution to the IVP

y = ln
(
x2+1

)
−ln(2)

x3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 19� �
dsolve([x*diff(y(x),x)+3*y(x)=2/(x*(1+x^2)),y(-1) = 0],y(x), singsol=all)� �

y(x) = ln (x2 + 1)− ln (2)
x3

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 19� �
DSolve[{x*y'[x]+3*y[x]==2/(x*(1+x^2)),y[-1]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
log
(1
2(x

2 + 1)
)

x3
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2.28 problem 28
2.28.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 521
2.28.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 523
2.28.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 528
2.28.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 532

Internal problem ID [914]
Internal file name [OUTPUT/914_Sunday_June_05_2022_01_53_52_AM_53037594/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 28.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y cot (x) = cos (x)

With initial conditions [
y
(π
2

)
= 1
]

2.28.1 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
cot(x)dx

= sin (x)
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The ode becomes

d
dx(µy) = (µ) (cos (x))

d
dx(sin (x) y) = (sin (x)) (cos (x))

d(sin (x) y) =
(
sin (2x)

2

)
dx

Integrating gives

sin (x) y =
∫ sin (2x)

2 dx

sin (x) y = −cos (2x)
4 + c1

Dividing both sides by the integrating factor µ = sin (x) results in

y = −csc (x) cos (2x)
4 + csc (x) c1

Initial conditions are used to solve for c1. Substituting x = π
2 and y = 1 in the above

solution gives an equation to solve for the constant of integration.

1 = 1
4 + c1

c1 =
3
4

Substituting c1 found above in the general solution gives

y = −csc (x) cos (x)2

2 + csc (x)

Summary
The solution(s) found are the following

(1)y = −csc (x) cos (x)2

2 + csc (x)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −csc (x) cos (x)2

2 + csc (x)

Verified OK.

2.28.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y cot (x) + cos (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 111: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
sin (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
sin(x)

dy

Which results in

S = sin (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y cot (x) + cos (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = cos (x) y
Sy = sin (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sin (2x)

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sin (2R)

2
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −cos (2R)
4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

sin (x) y = −cos (2x)
4 + c1

Which simplifies to

sin (x) y = −cos (2x)
4 + c1

Which gives

y = −cos (2x)− 4c1
4 sin (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y cot (x) + cos (x) dS
dR

= sin(2R)
2

R = x

S = sin (x) y

Initial conditions are used to solve for c1. Substituting x = π
2 and y = 1 in the above

solution gives an equation to solve for the constant of integration.

1 = 1
4 + c1
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c1 =
3
4

Substituting c1 found above in the general solution gives

y = −csc (x) cos (x)2

2 + csc (x)

Summary
The solution(s) found are the following

(1)y = −csc (x) cos (x)2

2 + csc (x)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −csc (x) cos (x)2

2 + csc (x)

Verified OK.
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2.28.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (−y cot (x) + cos (x)) dx
(y cot (x)− cos (x)) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y cot (x)− cos (x)
N(x, y) = 1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(y cot (x)− cos (x))

= cot (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((cot (x))− (0))
= cot (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
cot(x) dx

The result of integrating gives

µ = eln(sin(x))

= sin (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sin (x) (y cot (x)− cos (x))
= cos (x) (− sin (x) + y)
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And

N = µN

= sin (x) (1)
= sin (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(cos (x) (− sin (x) + y)) + (sin (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
cos (x) (− sin (x) + y) dx

(3)φ = −sin (x) (sin (x)− 2y)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sin (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= sin (x). Therefore equation (4) becomes

(5)sin (x) = sin (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −sin (x) (sin (x)− 2y)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −sin (x) (sin (x)− 2y)
2

The solution becomes

y = sin (x)2 + 2c1
2 sin (x)

Initial conditions are used to solve for c1. Substituting x = π
2 and y = 1 in the above

solution gives an equation to solve for the constant of integration.

1 = 1
2 + c1

c1 =
1
2

Substituting c1 found above in the general solution gives

y = −csc (x) cos (x)2

2 + csc (x)

Summary
The solution(s) found are the following

(1)y = −csc (x) cos (x)2

2 + csc (x)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −csc (x) cos (x)2

2 + csc (x)

Verified OK.

2.28.4 Maple step by step solution

Let’s solve[
y′ + y cot (x) = cos (x) , y

(
π
2

)
= 1
]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −y cot (x) + cos (x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y cot (x) = cos (x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + y cot (x)) = µ(x) cos (x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + y cot (x)) = µ′(x) y + µ(x) y′
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• Isolate µ′(x)
µ′(x) = µ(x) cot (x)

• Solve to find the integrating factor
µ(x) = sin (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) cos (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) cos (x) dx+ c1

• Solve for y

y =
∫
µ(x) cos(x)dx+c1

µ(x)

• Substitute µ(x) = sin (x)

y =
∫
cos(x) sin(x)dx+c1

sin(x)

• Evaluate the integrals on the rhs

y =
sin(x)2

2 +c1
sin(x)

• Simplify
y = sin(x)

2 + csc (x) c1
• Use initial condition y

(
π
2

)
= 1

1 = 1
2 + c1

• Solve for c1
c1 = 1

2

• Substitute c1 = 1
2 into general solution and simplify

y = sin(x)
2 + csc(x)

2

• Solution to the IVP
y = sin(x)

2 + csc(x)
2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 13� �
dsolve([diff(y(x),x)+cot(x)*y(x)=cos(x),y(1/2*Pi) = 1],y(x), singsol=all)� �

y(x) = −cos (x) cot (x)
2 + csc (x)

3 Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 16� �
DSolve[{y'[x]+Cot[x]*y[x]==Cos[x],y[Pi/2]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → csc(x)− 1
2 cos(x) cot(x)
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2.29 problem 29
2.29.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 535
2.29.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 536
2.29.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 537
2.29.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 541
2.29.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 545

Internal problem ID [915]
Internal file name [OUTPUT/915_Sunday_June_05_2022_01_53_54_AM_14525349/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 29.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y

x
= 2

x2 + 1

With initial conditions

[y(−1) = 0]

2.29.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 1
x

q(x) = x2 + 2
x2
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Hence the ode is

y′ + y

x
= x2 + 2

x2

The domain of p(x) = 1
x
is

{x < 0∨ 0 < x}

And the point x0 = −1 is inside this domain. The domain of q(x) = x2+2
x2 is

{x < 0∨ 0 < x}

And the point x0 = −1 is also inside this domain. Hence solution exists and is unique.

2.29.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes

d
dx(µy) = (µ)

(
x2 + 2
x2

)
d
dx(yx) = (x)

(
x2 + 2
x2

)
d(yx) =

(
x2 + 2

x

)
dx

Integrating gives

yx =
∫

x2 + 2
x

dx

yx = x2

2 + 2 ln (x) + c1

Dividing both sides by the integrating factor µ = x results in

y =
x2

2 + 2 ln (x)
x

+ c1
x
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which simplifies to

y =
x2

2 + 2 ln (x) + c1
x

Initial conditions are used to solve for c1. Substituting x = −1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = −2iπ − c1 −
1
2

c1 = −2iπ − 1
2

Substituting c1 found above in the general solution gives

y = −4iπ + x2 + 4 ln (x)− 1
2x

Summary
The solution(s) found are the following

(1)y = −4iπ + x2 + 4 ln (x)− 1
2x

Verification of solutions

y = −4iπ + x2 + 4 ln (x)− 1
2x

Verified OK.

2.29.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−x2 + yx− 2
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 114: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x

dy

Which results in

S = yx

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−x2 + yx− 2
x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y

Sy = x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x2 + 2

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2 + 2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 + 2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx = x2

2 + 2 ln (x) + c1

Which simplifies to

yx = x2

2 + 2 ln (x) + c1

Which gives

y = x2 + 4 ln (x) + 2c1
2x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−x2+yx−2
x2

dS
dR

= R2+2
R

R = x

S = yx

Initial conditions are used to solve for c1. Substituting x = −1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = −2iπ − c1 −
1
2
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c1 = −2iπ − 1
2

Substituting c1 found above in the general solution gives

y = −4iπ + x2 + 4 ln (x)− 1
2x

Summary
The solution(s) found are the following

(1)y = −4iπ + x2 + 4 ln (x)− 1
2x

Verification of solutions

y = −4iπ + x2 + 4 ln (x)− 1
2x

Verified OK.

2.29.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x
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If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy =
(
−y

x
+ 2

x2 + 1
)
dx(

−1 + y

x
− 2

x2

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1 + y

x
− 2

x2

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−1 + y

x
− 2

x2

)
= 1

x

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

1
x

)
− (0)

)
= 1

x
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

x
dx

The result of integrating gives

µ = eln(x)

= x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x

(
−1 + y

x
− 2

x2

)
= −x2 + yx− 2

x

And

N = µN

= x(1)
= x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x2 + yx− 2
x

)
+ (x) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 + yx− 2

x
dx

(3)φ = −x2

2 + yx− 2 ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x. Therefore equation (4) becomes

(5)x = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x2

2 + yx− 2 ln (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + yx− 2 ln (x)

The solution becomes

y = x2 + 4 ln (x) + 2c1
2x
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Initial conditions are used to solve for c1. Substituting x = −1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = −2iπ − c1 −
1
2

c1 = −2iπ − 1
2

Substituting c1 found above in the general solution gives

y = −4iπ + x2 + 4 ln (x)− 1
2x

Summary
The solution(s) found are the following

(1)y = −4iπ + x2 + 4 ln (x)− 1
2x

Verification of solutions

y = −4iπ + x2 + 4 ln (x)− 1
2x

Verified OK.

2.29.5 Maple step by step solution

Let’s solve[
y′ + y

x
= 2

x2 + 1, y(−1) = 0
]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

x
+ x2+2

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

x
= x2+2

x2

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + y

x

)
= µ(x)

(
x2+2

)
x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)
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µ(x)
(
y′ + y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

x

• Solve to find the integrating factor
µ(x) = x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
(
x2+2

)
x2 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ µ(x)

(
x2+2

)
x2 dx+ c1

• Solve for y

y =
∫ µ(x)

(
x2+2

)
x2 dx+c1

µ(x)

• Substitute µ(x) = x

y =
∫

x2+2
x

dx+c1
x

• Evaluate the integrals on the rhs

y =
x2
2 +2 ln(x)+c1

x

• Use initial condition y(−1) = 0
0 = −2 Iπ − c1 − 1

2

• Solve for c1
c1 = −2 Iπ − 1

2

• Substitute c1 = −2 Iπ − 1
2 into general solution and simplify

y = −4 Iπ+x2+4 ln(x)−1
2x

• Solution to the IVP

y = −4 Iπ+x2+4 ln(x)−1
2x
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 22� �
dsolve([diff(y(x),x)+y(x)/x=2/x^2+1,y(-1) = 0],y(x), singsol=all)� �

y(x) = −4iπ + x2 + 4 ln (x)− 1
2x

3 Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 26� �
DSolve[{y'[x]+y[x]/x==2/x^2+1,y[-1]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 + 4 log(x)− 4iπ − 1
2x
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2.30 problem 30
2.30.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 548
2.30.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 549
2.30.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 550
2.30.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 554
2.30.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 558

Internal problem ID [916]
Internal file name [OUTPUT/916_Sunday_June_05_2022_01_53_55_AM_42718370/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 30.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(x− 1) y′ + 3y = 1
(x− 1)3

+ sin (x)
(x− 1)2

With initial conditions

[y(0) = 1]

2.30.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 3
x− 1

q(x) = 1 + sin (x) (x− 1)
(x− 1)4
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Hence the ode is

y′ + 3y
x− 1 = 1 + sin (x) (x− 1)

(x− 1)4

The domain of p(x) = 3
x−1 is

{x < 1∨ 1 < x}

And the point x0 = 0 is inside this domain. The domain of q(x) = 1+sin(x)(x−1)
(x−1)4 is

{x < 1∨ 1 < x}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

2.30.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫ 3

x−1dx

= (x− 1)3

The ode becomes

d
dx(µy) = (µ)

(
1 + sin (x) (x− 1)

(x− 1)4
)

d
dx
(
y(x− 1)3

)
=
(
(x− 1)3

)(1 + sin (x) (x− 1)
(x− 1)4

)
d
(
y(x− 1)3

)
=
(
1 + sin (x) (x− 1)

x− 1

)
dx

Integrating gives

y(x− 1)3 =
∫ 1 + sin (x) (x− 1)

x− 1 dx

y(x− 1)3 = − cos (x) + ln (x− 1) + c1

Dividing both sides by the integrating factor µ = (x− 1)3 results in

y = − cos (x) + ln (x− 1)
(x− 1)3

+ c1

(x− 1)3
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which simplifies to

y = − cos (x) + ln (x− 1) + c1

(x− 1)3

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = −iπ − c1 + 1

c1 = −iπ

Substituting c1 found above in the general solution gives

y = − cos (x) + ln (x− 1)− iπ

x3 − 3x2 + 3x− 1

Summary
The solution(s) found are the following

(1)y = − cos (x) + ln (x− 1)− iπ

x3 − 3x2 + 3x− 1
Verification of solutions

y = − cos (x) + ln (x− 1)− iπ

x3 − 3x2 + 3x− 1

Verified OK.

2.30.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −3y x3 + 9y x2 + sin (x)x− 9yx− sin (x) + 3y + 1
(x− 1)4

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 117: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
(x− 1)3

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
(x−1)3

dy

Which results in

S = y(x− 1)3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3y x3 + 9y x2 + sin (x)x− 9yx− sin (x) + 3y + 1
(x− 1)4

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 3y(x− 1)2

Sy = (x− 1)3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 + sin (x) (x− 1)

x− 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1 + sin (R) (R− 1)

R− 1

552



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − cos (R) + ln (R− 1) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x− 1)3 y = − cos (x) + ln (x− 1) + c1

Which simplifies to

(x− 1)3 y = − cos (x) + ln (x− 1) + c1

Which gives

y = −cos (x)− ln (x− 1)− c1

(x− 1)3

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
−3y x3+9y x2+sin(x)x−9yx−sin(x)+3y+1

(x−1)4

dS
dR

= 1+sin(R)(R−1)
R−1

R = x

S = y(x− 1)3
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = −iπ − c1 + 1

c1 = −iπ

Substituting c1 found above in the general solution gives

y = − cos (x) + ln (x− 1)− iπ

x3 − 3x2 + 3x− 1
Summary
The solution(s) found are the following

(1)y = − cos (x) + ln (x− 1)− iπ

x3 − 3x2 + 3x− 1
Verification of solutions

y = − cos (x) + ln (x− 1)− iπ

x3 − 3x2 + 3x− 1

Verified OK.

2.30.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x− 1) dy =
(
−3y + 1

(x− 1)3
+ sin (x)

(x− 1)2
)
dx(

3y − 1
(x− 1)3

− sin (x)
(x− 1)2

)
dx+(x− 1) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3y − 1
(x− 1)3

− sin (x)
(x− 1)2

N(x, y) = x− 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
3y − 1

(x− 1)3
− sin (x)

(x− 1)2
)

= 3

And

∂N

∂x
= ∂

∂x
(x− 1)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x− 1((3)− (1))

= 2
x− 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ 2

x−1 dx

The result of integrating gives

µ = e2 ln(x−1)

= (x− 1)2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= (x− 1)2
(
3y − 1

(x− 1)3
− sin (x)

(x− 1)2
)

=
(
3y − 1

(x− 1)3
− sin (x)

(x− 1)2
)
(x− 1)2

And

N = µN

= (x− 1)2 (x− 1)
= (x− 1)3

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

3y − 1
(x− 1)3

− sin (x)
(x− 1)2

)
(x− 1)2

)
+
(
(x− 1)3

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (
3y − 1

(x− 1)3
− sin (x)

(x− 1)2
)
(x− 1)2 dx

(3)φ = 3yx− 3y x2 + y x3 + cos (x)− ln (x− 1) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x3 − 3x2 + 3x+ f ′(y)

But equation (2) says that ∂φ
∂y

= (x− 1)3. Therefore equation (4) becomes

(5)(x− 1)3 = x3 − 3x2 + 3x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−1) dy

f(y) = −y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 3yx− 3y x2 + y x3 + cos (x)− ln (x− 1)− y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = 3yx− 3y x2 + y x3 + cos (x)− ln (x− 1)− y

The solution becomes

y = −cos (x)− ln (x− 1)− c1
x3 − 3x2 + 3x− 1

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = −iπ − c1 + 1

c1 = −iπ

Substituting c1 found above in the general solution gives

y = − cos (x) + ln (x− 1)− iπ

x3 − 3x2 + 3x− 1

Summary
The solution(s) found are the following

(1)y = − cos (x) + ln (x− 1)− iπ

x3 − 3x2 + 3x− 1
Verification of solutions

y = − cos (x) + ln (x− 1)− iπ

x3 − 3x2 + 3x− 1

Verified OK.

2.30.5 Maple step by step solution

Let’s solve[
(x− 1) y′ + 3y = 1

(x−1)3 +
sin(x)
(x−1)2 , y(0) = 1

]
• Highest derivative means the order of the ODE is 1

y′

• Isolate the derivative
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y′ = − 3y
x−1 +

sin(x)x−sin(x)+1
(x−1)4

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 3y

x−1 = sin(x)x−sin(x)+1
(x−1)4

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 3y

x−1

)
= µ(x)(sin(x)x−sin(x)+1)

(x−1)4

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 3y

x−1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 3µ(x)

x−1

• Solve to find the integrating factor
µ(x) = (x− 1)3

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)(sin(x)x−sin(x)+1)
(x−1)4 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)(sin(x)x−sin(x)+1)
(x−1)4 dx+ c1

• Solve for y

y =
∫ µ(x)(sin(x)x−sin(x)+1)

(x−1)4
dx+c1

µ(x)

• Substitute µ(x) = (x− 1)3

y =
∫ sin(x)x−sin(x)+1

x−1 dx+c1

(x−1)3

• Evaluate the integrals on the rhs
y = − cos(x)+ln(x−1)+c1

(x−1)3

• Use initial condition y(0) = 1
1 = 1− Iπ − c1

• Solve for c1
c1 = −Iπ

• Substitute c1 = −Iπ into general solution and simplify
y = − cos(x)+ln(x−1)−Iπ

(x−1)3
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• Solution to the IVP
y = − cos(x)+ln(x−1)−Iπ

(x−1)3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 23� �
dsolve([(x-1)*diff(y(x),x)+3*y(x)=1/(x-1)^3+sin(x)/(x-1)^2,y(0) = 1],y(x), singsol=all)� �

y(x) = − cos (x) + ln (x− 1)− iπ

(x− 1)3

3 Solution by Mathematica
Time used: 0.069 (sec). Leaf size: 25� �
DSolve[{(x-1)*y'[x]+3*y[x]==1/(x-1)^3+Sin[x]/(x-1)^2,y[0]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log(x− 1)− cos(x)− iπ

(x− 1)3
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2.31 problem 31
2.31.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 561
2.31.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 562
2.31.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 564
2.31.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 568
2.31.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 573

Internal problem ID [917]
Internal file name [OUTPUT/917_Sunday_June_05_2022_01_53_57_AM_26854052/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 31.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

2y + y′x = 8x2

With initial conditions

[y(1) = 3]

2.31.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 2
x

q(x) = 8x

561



Hence the ode is

y′ + 2y
x

= 8x

The domain of p(x) = 2
x
is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The domain of q(x) = 8x is

{−∞ < x < ∞}

And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

2.31.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫ 2

x
dx

= x2

The ode becomes
d
dx(µy) = (µ) (8x)
d
dx
(
y x2) = (x2) (8x)

d
(
y x2) = (8x3) dx

Integrating gives

y x2 =
∫

8x3 dx

y x2 = 2x4 + c1

Dividing both sides by the integrating factor µ = x2 results in

y = 2x2 + c1
x2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

3 = c1 + 2
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c1 = 1

Substituting c1 found above in the general solution gives

y = 2x4 + 1
x2

Summary
The solution(s) found are the following

(1)y = 2x4 + 1
x2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2x4 + 1
x2

Verified OK.
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2.31.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2(−4x2 + y)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 120: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x2

dy

Which results in

S = y x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2(−4x2 + y)
x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2yx
Sy = x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 8x3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 8R3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2R4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2y = 2x4 + c1

Which simplifies to

x2y = 2x4 + c1

Which gives

y = 2x4 + c1
x2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2
(
−4x2+y

)
x

dS
dR

= 8R3

R = x

S = y x2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

3 = c1 + 2

c1 = 1

Substituting c1 found above in the general solution gives

y = 2x4 + 1
x2

Summary
The solution(s) found are the following

(1)y = 2x4 + 1
x2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2x4 + 1
x2

Verified OK.

2.31.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(x) dy =
(
8x2 − 2y

)
dx(

−8x2 + 2y
)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −8x2 + 2y
N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−8x2 + 2y

)
= 2

And
∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((2)− (1))

= 1
x
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

x
dx

The result of integrating gives

µ = eln(x)

= x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x
(
−8x2 + 2y

)
= −8x3 + 2yx

And

N = µN

= x(x)
= x2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−8x3 + 2yx
)
+
(
x2) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−8x3 + 2yx dx

(3)φ = −(4x2 − y)2

8 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 − y

4 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2. Therefore equation (4) becomes

(5)x2 = x2 − y

4 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y

4

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (y
4

)
dy

f(y) = y2

8 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −(4x2 − y)2

8 + y2

8 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −(4x2 − y)2

8 + y2

8

The solution becomes

y = 2x4 + c1
x2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

3 = c1 + 2
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c1 = 1

Substituting c1 found above in the general solution gives

y = 2x4 + 1
x2

Summary
The solution(s) found are the following

(1)y = 2x4 + 1
x2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2x4 + 1
x2

Verified OK.
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2.31.5 Maple step by step solution

Let’s solve
[2y + y′x = 8x2, y(1) = 3]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −2y

x
+ 8x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2y

x
= 8x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 2y

x

)
= 8µ(x)x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)

x

• Solve to find the integrating factor
µ(x) = x2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
8µ(x)xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
8µ(x)xdx+ c1

• Solve for y

y =
∫
8µ(x)xdx+c1

µ(x)

• Substitute µ(x) = x2

y =
∫
8x3dx+c1

x2

• Evaluate the integrals on the rhs
y = 2x4+c1

x2

• Use initial condition y(1) = 3
3 = c1 + 2
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• Solve for c1
c1 = 1

• Substitute c1 = 1 into general solution and simplify
y = 2x4+1

x2

• Solution to the IVP
y = 2x4+1

x2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve([x*diff(y(x),x)+2*y(x)=8*x^2,y(1) = 3],y(x), singsol=all)� �

y(x) = 2x4 + 1
x2

3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 14� �
DSolve[{x*y'[x]+2*y[x]==8*x^2,y[1]==3},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x2 + 1
x2
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2.32 problem 32
2.32.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 575
2.32.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 576
2.32.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 578
2.32.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 582
2.32.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 587

Internal problem ID [918]
Internal file name [OUTPUT/918_Sunday_June_05_2022_01_53_58_AM_39126823/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 32.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′x− 2y = −x2

With initial conditions

[y(1) = 1]

2.32.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = −2
x

q(x) = −x
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Hence the ode is

y′ − 2y
x

= −x

The domain of p(x) = − 2
x
is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The domain of q(x) = −x is

{−∞ < x < ∞}

And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

2.32.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes
d
dx(µy) = (µ) (−x)

d
dx

( y

x2

)
=
(

1
x2

)
(−x)

d
( y

x2

)
=
(
−1
x

)
dx

Integrating gives

y

x2 =
∫

−1
x
dx

y

x2 = − ln (x) + c1

Dividing both sides by the integrating factor µ = 1
x2 results in

y = − ln (x)x2 + c1x
2

which simplifies to

y = x2(− ln (x) + c1)
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Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c1

c1 = 1

Substituting c1 found above in the general solution gives

y = − ln (x)x2 + x2

Summary
The solution(s) found are the following

(1)y = − ln (x)x2 + x2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = − ln (x)x2 + x2

Verified OK.
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2.32.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x2 + 2y
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 123: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2dy

Which results in

S = y

x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2 + 2y
x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −2y
x3

Sy =
1
x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x2 = − ln (x) + c1

Which simplifies to
y

x2 = − ln (x) + c1

Which gives

y = −x2(ln (x)− c1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2+2y
x

dS
dR

= − 1
R

R = x

S = y

x2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c1

c1 = 1

Substituting c1 found above in the general solution gives

y = − ln (x)x2 + x2

Summary
The solution(s) found are the following

(1)y = − ln (x)x2 + x2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = − ln (x)x2 + x2

Verified OK.

2.32.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(x) dy =
(
−x2 + 2y

)
dx(

x2 − 2y
)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2 − 2y
N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x2 − 2y

)
= −2

And
∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((−2)− (1))

= −3
x
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 3

x
dx

The result of integrating gives

µ = e−3 ln(x)

= 1
x3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x3

(
x2 − 2y

)
= x2 − 2y

x3

And

N = µN

= 1
x3 (x)

= 1
x2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x2 − 2y
x3

)
+
(

1
x2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x2 − 2y

x3 dx

(3)φ = ln (x) + y

x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x2 . Therefore equation (4) becomes

(5)1
x2 = 1

x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = ln (x) + y

x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (x) + y

x2

The solution becomes
y = −x2(ln (x)− c1)
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Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c1

c1 = 1

Substituting c1 found above in the general solution gives

y = − ln (x)x2 + x2

Summary
The solution(s) found are the following

(1)y = − ln (x)x2 + x2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = − ln (x)x2 + x2

Verified OK.
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2.32.5 Maple step by step solution

Let’s solve
[y′x− 2y = −x2, y(1) = 1]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 2y

x
− x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − 2y

x
= −x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − 2y

x

)
= −µ(x)x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − 2y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −2µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−µ(x)xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−µ(x)xdx+ c1

• Solve for y

y =
∫
−µ(x)xdx+c1

µ(x)

• Substitute µ(x) = 1
x2

y = x2(∫ − 1
x
dx+ c1

)
• Evaluate the integrals on the rhs

y = x2(− ln (x) + c1)
• Use initial condition y(1) = 1

1 = c1
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• Solve for c1
c1 = 1

• Substitute c1 = 1 into general solution and simplify
y = (− ln (x) + 1) x2

• Solution to the IVP
y = (− ln (x) + 1) x2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 14� �
dsolve([x*diff(y(x),x)-2*y(x)=-x^2,y(1) = 1],y(x), singsol=all)� �

y(x) = (1− ln (x))x2

3 Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 14� �
DSolve[{x*y'[x]-2*y[x]==-x^2,y[1]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x2(log(x)− 1)
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Internal problem ID [919]
Internal file name [OUTPUT/919_Sunday_June_05_2022_01_53_59_AM_52983431/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 33.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

2yx+ y′ = x

With initial conditions

[y(0) = 3]

2.33.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 2x
q(x) = x
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Hence the ode is

2yx+ y′ = x

The domain of p(x) = 2x is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = x is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

2.33.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= x(1− 2y)

Where f(x) = x and g(y) = 1− 2y. Integrating both sides gives

1
1− 2y dy = x dx∫ 1
1− 2y dy =

∫
x dx

− ln (1− 2y)
2 = x2

2 + c1

Raising both side to exponential gives

1√
1− 2y

= ex2
2 +c1

Which simplifies to

1√
1− 2y

= c2e
x2
2
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

3 = e2c1e−2c1c22 − e−2c1

2c22

c1 = − ln (−5c22)
2

Substituting c1 found above in the general solution gives

y = 1
2 + 5 e−x2

2

Summary
The solution(s) found are the following

(1)y = 1
2 + 5 e−x2

2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1
2 + 5 e−x2

2

Verified OK.
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2.33.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
2xdx

= ex2

The ode becomes
d
dx(µy) = (µ) (x)

d
dx

(
ex2

y
)
=
(
ex2
)
(x)

d
(
ex2

y
)
=
(
ex2

x
)
dx

Integrating gives

ex2
y =

∫
ex2

x dx

ex2
y = ex2

2 + c1

Dividing both sides by the integrating factor µ = ex2 results in

y = e−x2ex2

2 + c1e−x2

which simplifies to

y = 1
2 + c1e−x2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

3 = 1
2 + c1

c1 =
5
2

Substituting c1 found above in the general solution gives

y = 1
2 + 5 e−x2

2
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Summary
The solution(s) found are the following

(1)y = 1
2 + 5 e−x2

2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1
2 + 5 e−x2

2

Verified OK.

2.33.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2yx+ x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 126: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x2 dy

Which results in

S = ex2
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2yx+ x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2x ex2

y

Sy = ex2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ex2

x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= eR2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = eR2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ex2
y = ex2

2 + c1

Which simplifies to

ex2
y = ex2

2 + c1

Which gives

y =

(
ex2 + 2c1

)
e−x2

2
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2yx+ x dS
dR

= eR2
R

R = x

S = ex2
y

Initial conditions are used to solve for c1. Substituting x = 0 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

3 = 1
2 + c1
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c1 =
5
2

Substituting c1 found above in the general solution gives

y = 1
2 + 5 e−x2

2

Summary
The solution(s) found are the following

(1)y = 1
2 + 5 e−x2

2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1
2 + 5 e−x2

2

Verified OK.
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2.33.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

1− 2y

)
dy = (x) dx

(−x) dx+
(

1
1− 2y

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
1− 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x)

= 0

And
∂N

∂x
= ∂

∂x

(
1

1− 2y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= 1
1−2y . Therefore equation (4) becomes

(5)1
1− 2y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
−1 + 2y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− 1
−1 + 2y

)
dy

f(y) = − ln (−1 + 2y)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 − ln (−1 + 2y)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 − ln (−1 + 2y)
2

The solution becomes

y = e−x2−2c1

2 + 1
2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

3 = e−2c1

2 + 1
2

c1 = − ln (5)
2
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Substituting c1 found above in the general solution gives

y = 1
2 + 5 e−x2

2

Summary
The solution(s) found are the following

(1)y = 1
2 + 5 e−x2

2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1
2 + 5 e−x2

2

Verified OK.

2.33.6 Maple step by step solution

Let’s solve
[2yx+ y′ = x, y(0) = 3]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables

601



y′

2y−1 = −x

• Integrate both sides with respect to x∫
y′

2y−1dx =
∫
−xdx+ c1

• Evaluate integral
ln(2y−1)

2 = −x2

2 + c1

• Solve for y

y = e−x2+2c1
2 + 1

2

• Use initial condition y(0) = 3
3 = e2c1

2 + 1
2

• Solve for c1
c1 = ln(5)

2

• Substitute c1 = ln(5)
2 into general solution and simplify

y = 1
2 +

5 e−x2

2

• Solution to the IVP

y = 1
2 +

5 e−x2

2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 14� �
dsolve([diff(y(x),x)+2*x*y(x)=x,y(0) = 3],y(x), singsol=all)� �

y(x) = 1
2 + 5 e−x2

2
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3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 20� �
DSolve[{y'[x]+2*x*y[x]==x,y[0]==3},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 5e−x2

2 + 1
2
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2.34 problem 34
2.34.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 604
2.34.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 605
2.34.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 606
2.34.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 610
2.34.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 614

Internal problem ID [920]
Internal file name [OUTPUT/920_Sunday_June_05_2022_01_54_01_AM_22703504/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 34.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(x− 1) y′ + 3y = 1 + (x− 1) sec (x)2

(x− 1)3

With initial conditions

[y(0) = −1]

2.34.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 3
x− 1

q(x) = − tan (x)2 + sec (x)2 x
(x− 1)4
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Hence the ode is

y′ + 3y
x− 1 = − tan (x)2 + sec (x)2 x

(x− 1)4

The domain of p(x) = 3
x−1 is

{x < 1∨ 1 < x}

And the point x0 = 0 is inside this domain. The domain of q(x) = − tan(x)2+sec(x)2x
(x−1)4 is

{
−∞ ≤ x < 1, 1 < x <

1
2π + π_Z50, 12π + π_Z50 < x ≤ ∞

}
And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

2.34.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫ 3

x−1dx

= (x− 1)3

The ode becomes

d
dx(µy) = (µ)

(
− tan (x)2 + sec (x)2 x

(x− 1)4

)
d
dx
(
y(x− 1)3

)
=
(
(x− 1)3

)(− tan (x)2 + sec (x)2 x
(x− 1)4

)

d
(
y(x− 1)3

)
=
(
− tan (x)2 + sec (x)2 x

x− 1

)
dx

Integrating gives

y(x− 1)3 =
∫

− tan (x)2 + sec (x)2 x
x− 1 dx

y(x− 1)3 = ln (x− 1) + tan (x) + c1

Dividing both sides by the integrating factor µ = (x− 1)3 results in

y = ln (x− 1) + tan (x)
(x− 1)3

+ c1

(x− 1)3
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which simplifies to

y = ln (x− 1) + tan (x) + c1

(x− 1)3

Initial conditions are used to solve for c1. Substituting x = 0 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = −iπ − c1

c1 = −iπ + 1

Substituting c1 found above in the general solution gives

y = ln (x− 1) + tan (x)− iπ + 1
x3 − 3x2 + 3x− 1

Summary
The solution(s) found are the following

(1)y = ln (x− 1) + tan (x)− iπ + 1
x3 − 3x2 + 3x− 1

Verification of solutions

y = ln (x− 1) + tan (x)− iπ + 1
x3 − 3x2 + 3x− 1

Verified OK.

2.34.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −3y x3 + sec (x)2 x+ 9y x2 − sec (x)2 − 9yx+ 3y + 1
(x− 1)4

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 129: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
(x− 1)3

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
(x−1)3

dy

Which results in

S = y(x− 1)3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3y x3 + sec (x)2 x+ 9y x2 − sec (x)2 − 9yx+ 3y + 1
(x− 1)4

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 3y(x− 1)2

Sy = (x− 1)3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − tan (x)2 + sec (x)2 x

x− 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − tan (R)2 + sec (R)2R

R− 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R− 1) + tan (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x− 1)3 y = ln (x− 1) + tan (x) + c1

Which simplifies to

(x− 1)3 y = ln (x− 1) + tan (x) + c1

Which gives

y = ln (x− 1) + tan (x) + c1

(x− 1)3

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
−3y x3+sec(x)2x+9y x2−sec(x)2−9yx+3y+1

(x−1)4

dS
dR

= − tan(R)2+sec(R)2R
R−1

R = x

S = y(x− 1)3
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Initial conditions are used to solve for c1. Substituting x = 0 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = −iπ − c1

c1 = −iπ + 1

Substituting c1 found above in the general solution gives

y = ln (x− 1) + tan (x)− iπ + 1
x3 − 3x2 + 3x− 1

Summary
The solution(s) found are the following

(1)y = ln (x− 1) + tan (x)− iπ + 1
x3 − 3x2 + 3x− 1

Verification of solutions

y = ln (x− 1) + tan (x)− iπ + 1
x3 − 3x2 + 3x− 1

Verified OK.

2.34.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x− 1) dy =
(
−3y + 1 + (x− 1) sec (x)2

(x− 1)3

)
dx(

3y − 1 + (x− 1) sec (x)2

(x− 1)3

)
dx+(x− 1) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3y − 1 + (x− 1) sec (x)2

(x− 1)3

N(x, y) = x− 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
3y − 1 + (x− 1) sec (x)2

(x− 1)3

)
= 3

And
∂N

∂x
= ∂

∂x
(x− 1)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x− 1((3)− (1))

= 2
x− 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ 2

x−1 dx

The result of integrating gives

µ = e2 ln(x−1)

= (x− 1)2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= (x− 1)2
(
3y − 1 + (x− 1) sec (x)2

(x− 1)3

)

=
(
3y + −1 + (1− x) sec (x)2

(x− 1)3

)
(x− 1)2

And

N = µN

= (x− 1)2 (x− 1)
= (x− 1)3

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

3y + −1 + (1− x) sec (x)2

(x− 1)3

)
(x− 1)2

)
+
(
(x− 1)3

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫ (
3y + −1 + (1− x) sec (x)2

(x− 1)3

)
(x− 1)2 dx

(3)φ = − ln (x− 1) cos (x) + y(x3 − 3x2 + 3x+ 9) cos (x)− sin (x)
cos (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x3 − 3x2 + 3x+ 9 + f ′(y)

But equation (2) says that ∂φ
∂y

= (x− 1)3. Therefore equation (4) becomes

(5)(x− 1)3 = x3 − 3x2 + 3x+ 9 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −10

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−10) dy

f(y) = −10y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x− 1) cos (x) + y(x3 − 3x2 + 3x+ 9) cos (x)− sin (x)
cos (x) − 10y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
− ln (x− 1) cos (x) + y(x3 − 3x2 + 3x+ 9) cos (x)− sin (x)

cos (x) − 10y

The solution becomes

y = ln (x− 1) cos (x) + c1 cos (x) + sin (x)
cos (x) (x3 − 3x2 + 3x− 1)

Initial conditions are used to solve for c1. Substituting x = 0 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = −iπ − c1

c1 = −iπ + 1

Substituting c1 found above in the general solution gives

y = ln (x− 1) + tan (x)− iπ + 1
x3 − 3x2 + 3x− 1

Summary
The solution(s) found are the following

(1)y = ln (x− 1) + tan (x)− iπ + 1
x3 − 3x2 + 3x− 1

Verification of solutions

y = ln (x− 1) + tan (x)− iπ + 1
x3 − 3x2 + 3x− 1

Verified OK.

2.34.5 Maple step by step solution

Let’s solve[
(x− 1) y′ + 3y = 1+(x−1) sec(x)2

(x−1)3 , y(0) = −1
]

• Highest derivative means the order of the ODE is 1
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y′

• Isolate the derivative

y′ = − 3y
x−1 +

sec(x)2x−sec(x)2+1
(x−1)4

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ + 3y
x−1 = sec(x)2x−sec(x)2+1

(x−1)4

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + 3y

x−1

)
=

µ(x)
(
sec(x)2x−sec(x)2+1

)
(x−1)4

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 3y

x−1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 3µ(x)

x−1

• Solve to find the integrating factor
µ(x) = (x− 1)3

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
(
sec(x)2x−sec(x)2+1

)
(x−1)4 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ µ(x)

(
sec(x)2x−sec(x)2+1

)
(x−1)4 dx+ c1

• Solve for y

y =
∫ µ(x)

(
sec(x)2x−sec(x)2+1

)
(x−1)4

dx+c1

µ(x)

• Substitute µ(x) = (x− 1)3

y =
∫ sec(x)2x−sec(x)2+1

x−1 dx+c1

(x−1)3

• Evaluate the integrals on the rhs

y =
−

2 tan
(
x
2
)

tan
(
x
2
)2

−1
+ln(x−1)+c1

(x−1)3

• Simplify
y = ln(x−1) cos(x)+c1 cos(x)+sin(x)

(x−1)3 cos(x)
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• Use initial condition y(0) = −1
−1 = −Iπ − c1

• Solve for c1
c1 = −Iπ + 1

• Substitute c1 = −Iπ + 1 into general solution and simplify
y = ln(x−1)+tan(x)−Iπ+1

(x−1)3

• Solution to the IVP
y = ln(x−1)+tan(x)−Iπ+1

(x−1)3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 22� �
dsolve([(x-1)*diff(y(x),x)+3*y(x)= (1+(x-1)*sec(x)^2)/(x-1)^3,y(0) = -1],y(x), singsol=all)� �

y(x) = ln (x− 1) + tan (x) + 1− iπ

(x− 1)3

3 Solution by Mathematica
Time used: 0.171 (sec). Leaf size: 21� �
DSolve[{(x-1)*y'[x]+3*y[x]==(1+(x-1)*Sec[x]^2)/(x-1)^3,y[0]==-1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log(1− x) + tan(x) + 1
(x− 1)3
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2.35 problem 35
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2.35.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 618
2.35.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 619
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2.35.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 627

Internal problem ID [921]
Internal file name [OUTPUT/921_Sunday_June_05_2022_01_54_03_AM_82947288/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 35.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(2 + x) y′ + 4y = 2x2 + 1
x (2 + x)3

With initial conditions

[y(−1) = 2]

2.35.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 4
2 + x

q(x) = 2x2 + 1
(2 + x)4 x
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Hence the ode is

y′ + 4y
2 + x

= 2x2 + 1
(2 + x)4 x

The domain of p(x) = 4
2+x

is

{x < −2∨−2 < x}

And the point x0 = −1 is inside this domain. The domain of q(x) = 2x2+1
(2+x)4x is

{−∞ ≤ x < −2,−2 < x < 0, 0 < x ≤ ∞}

And the point x0 = −1 is also inside this domain. Hence solution exists and is unique.

2.35.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫ 4

2+x
dx

= (2 + x)4

The ode becomes

d
dx(µy) = (µ)

(
2x2 + 1
(2 + x)4 x

)
d
dx
(
(2 + x)4 y

)
=
(
(2 + x)4

)( 2x2 + 1
(2 + x)4 x

)
d
(
(2 + x)4 y

)
=
(
2x2 + 1

x

)
dx

Integrating gives

(2 + x)4 y =
∫ 2x2 + 1

x
dx

(2 + x)4 y = x2 + ln (x) + c1

Dividing both sides by the integrating factor µ = (2 + x)4 results in

y = x2 + ln (x)
(2 + x)4

+ c1

(2 + x)4
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which simplifies to

y = x2 + ln (x) + c1

(2 + x)4

Initial conditions are used to solve for c1. Substituting x = −1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = iπ + c1 + 1

c1 = −iπ + 1

Substituting c1 found above in the general solution gives

y = x2 + ln (x)− iπ + 1
x4 + 8x3 + 24x2 + 32x+ 16

Summary
The solution(s) found are the following

(1)y = x2 + ln (x)− iπ + 1
x4 + 8x3 + 24x2 + 32x+ 16

Verification of solutions

y = x2 + ln (x)− iπ + 1
x4 + 8x3 + 24x2 + 32x+ 16

Verified OK.

2.35.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −4x4y + 24y x3 + 48y x2 − 2x2 + 32yx− 1
(2 + x)4 x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 132: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
(2 + x)4

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
(2+x)4

dy

Which results in

S = (2 + x)4 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −4x4y + 24y x3 + 48y x2 − 2x2 + 32yx− 1
(2 + x)4 x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 4(2 + x)3 y
Sy = (2 + x)4

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x2 + 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R2 + 1

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2 + ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(2 + x)4 y = x2 + ln (x) + c1

Which simplifies to

(2 + x)4 y = x2 + ln (x) + c1

Which gives

y = x2 + ln (x) + c1

(2 + x)4

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −4x4y+24y x3+48y x2−2x2+32yx−1
(2+x)4x

dS
dR

= 2R2+1
R

R = x

S = (2 + x)4 y

Initial conditions are used to solve for c1. Substituting x = −1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = iπ + c1 + 1
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c1 = −iπ + 1

Substituting c1 found above in the general solution gives

y = x2 + ln (x)− iπ + 1
x4 + 8x3 + 24x2 + 32x+ 16

Summary
The solution(s) found are the following

(1)y = x2 + ln (x)− iπ + 1
x4 + 8x3 + 24x2 + 32x+ 16

Verification of solutions

y = x2 + ln (x)− iπ + 1
x4 + 8x3 + 24x2 + 32x+ 16

Verified OK.

2.35.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x
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If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(2 + x) dy =
(
−4y + 2x2 + 1

x (2 + x)3
)
dx(

4y − 2x2 + 1
x (2 + x)3

)
dx+(2 + x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 4y − 2x2 + 1
x (2 + x)3

N(x, y) = 2 + x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
4y − 2x2 + 1

x (2 + x)3
)

= 4

And
∂N

∂x
= ∂

∂x
(2 + x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2 + x
((4)− (1))

= 3
2 + x
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ 3

2+x
dx

The result of integrating gives

µ = e3 ln(2+x)

= (2 + x)3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= (2 + x)3
(
4y − 2x2 + 1

x (2 + x)3
)

=
(
4y − 2x2 + 1

x (2 + x)3
)
(2 + x)3

And

N = µN

= (2 + x)3 (2 + x)
= (2 + x)4

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

4y − 2x2 + 1
x (2 + x)3

)
(2 + x)3

)
+
(
(2 + x)4

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (
4y − 2x2 + 1

x (2 + x)3
)
(2 + x)3 dx

(3)φ = − ln (x) + x4y + 8y x3 + (24y − 1)x2 + 32yx+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x4 + 8x3 + 24x2 + 32x+ f ′(y)

= x(x+ 4)
(
x2 + 4x+ 8

)
+ f ′(y)

But equation (2) says that ∂φ
∂y

= (2 + x)4. Therefore equation (4) becomes

(5)(2 + x)4 = x(x+ 4)
(
x2 + 4x+ 8

)
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 16

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(16) dy

f(y) = 16y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) + x4y + 8y x3 + (24y − 1)x2 + 32yx+ 16y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + x4y + 8y x3 + (24y − 1)x2 + 32yx+ 16y
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The solution becomes

y = x2 + ln (x) + c1
x4 + 8x3 + 24x2 + 32x+ 16

Initial conditions are used to solve for c1. Substituting x = −1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = iπ + c1 + 1

c1 = −iπ + 1

Substituting c1 found above in the general solution gives

y = x2 + ln (x)− iπ + 1
x4 + 8x3 + 24x2 + 32x+ 16

Summary
The solution(s) found are the following

(1)y = x2 + ln (x)− iπ + 1
x4 + 8x3 + 24x2 + 32x+ 16

Verification of solutions

y = x2 + ln (x)− iπ + 1
x4 + 8x3 + 24x2 + 32x+ 16

Verified OK.

2.35.5 Maple step by step solution

Let’s solve[
(2 + x) y′ + 4y = 2x2+1

x(2+x)3 , y(−1) = 2
]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − 4y

2+x
+ 2x2+1

(2+x)4x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 4y

2+x
= 2x2+1

(2+x)4x
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• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + 4y

2+x

)
= µ(x)

(
2x2+1

)
(2+x)4x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 4y

2+x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 4µ(x)

2+x

• Solve to find the integrating factor
µ(x) = (2 + x)4

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
(
2x2+1

)
(2+x)4x dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ µ(x)

(
2x2+1

)
(2+x)4x dx+ c1

• Solve for y

y =
∫ µ(x)

(
2x2+1

)
(2+x)4x

dx+c1

µ(x)

• Substitute µ(x) = (2 + x)4

y =
∫ 2x2+1

x
dx+c1

(2+x)4

• Evaluate the integrals on the rhs

y = x2+ln(x)+c1
(2+x)4

• Use initial condition y(−1) = 2
2 = Iπ + c1 + 1

• Solve for c1
c1 = −Iπ + 1

• Substitute c1 = −Iπ + 1 into general solution and simplify

y = x2+ln(x)−Iπ+1
(2+x)4

• Solution to the IVP

y = x2+ln(x)−Iπ+1
(2+x)4
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve([(x+2)*diff(y(x),x)+4*y(x)= (1+2*x^2)/(x*(x+2)^3),y(-1) = 2],y(x), singsol=all)� �

y(x) = x2 + ln (x) + 1− iπ

(2 + x)4

3 Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 23� �
DSolve[{(x+2)*y'[x]+4*y[x]== (1+2*x^2)/(x*(x+2)^3),y[-1]==2},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 + log(x)− iπ + 1
(x+ 2)4
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Internal problem ID [922]
Internal file name [OUTPUT/922_Sunday_June_05_2022_01_54_04_AM_39182112/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 36.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
x2 − 1

)
y′ − 2yx = x

(
x2 − 1

)
With initial conditions

[y(0) = 4]

2.36.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = − 2x
x2 − 1

q(x) = x
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Hence the ode is

y′ − 2xy
x2 − 1 = x

The domain of p(x) = − 2x
x2−1 is

{−∞ ≤ x < −1,−1 < x < 1, 1 < x ≤ ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = x is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

2.36.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
− 2x

x2−1dx

= e− ln(x−1)−ln(x+1)

Which simplifies to

µ = 1
x2 − 1

The ode becomes

d
dx(µy) = (µ) (x)

d
dx

(
y

x2 − 1

)
=
(

1
x2 − 1

)
(x)

d
(

y

x2 − 1

)
=
(

x

x2 − 1

)
dx

Integrating gives

y

x2 − 1 =
∫

x

x2 − 1 dx

y

x2 − 1 = ln (x− 1)
2 + ln (x+ 1)

2 + c1
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Dividing both sides by the integrating factor µ = 1
x2−1 results in

y =
(
x2 − 1

)( ln (x− 1)
2 + ln (x+ 1)

2

)
+ c1

(
x2 − 1

)
which simplifies to

y = (x2 − 1) (ln (x− 1) + ln (x+ 1) + 2c1)
2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 4 in the above
solution gives an equation to solve for the constant of integration.

4 = −iπ

2 − c1

c1 = −iπ

2 − 4

Substituting c1 found above in the general solution gives

y = −iπ x2

2 + ln (x− 1)x2

2 + ln (x+ 1)x2

2 + iπ

2 − 4x2 − ln (x− 1)
2 − ln (x+ 1)

2 + 4

Summary
The solution(s) found are the following

(1)y = −iπ x2

2 + ln (x− 1)x2

2 + ln (x+ 1)x2

2 + iπ

2 − 4x2 − ln (x− 1)
2 − ln (x+ 1)

2 + 4

Verification of solutions

y = −iπ x2

2 + ln (x− 1)x2

2 + ln (x+ 1)x2

2 + iπ

2 − 4x2 − ln (x− 1)
2 − ln (x+ 1)

2 + 4

Verified OK.

2.36.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x(x2 + 2y − 1)
x2 − 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 135: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = eln(x−1)+ln(x+1) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

eln(x−1)+ln(x+1)dy

Which results in

S = y

(x− 1) (x+ 1)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x(x2 + 2y − 1)
x2 − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2yx
(x2 − 1)2

Sy =
1

x2 − 1
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x

x2 − 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

R2 − 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R− 1)
2 + ln (R + 1)

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x2 − 1 = ln (x− 1)
2 + ln (x+ 1)

2 + c1

Which simplifies to

y

x2 − 1 = ln (x− 1)
2 + ln (x+ 1)

2 + c1

Which gives

y = (x2 − 1) (ln (x− 1) + ln (x+ 1) + 2c1)
2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x
(
x2+2y−1

)
x2−1

dS
dR

= R
R2−1

R = x

S = y

x2 − 1
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 4 in the above
solution gives an equation to solve for the constant of integration.

4 = −iπ

2 − c1

c1 = −iπ

2 − 4

Substituting c1 found above in the general solution gives

y = −iπ x2

2 + ln (x− 1)x2

2 + ln (x+ 1)x2

2 + iπ

2 − 4x2 − ln (x− 1)
2 − ln (x+ 1)

2 + 4

Summary
The solution(s) found are the following

(1)y = −iπ x2

2 + ln (x− 1)x2

2 + ln (x+ 1)x2

2 + iπ

2 − 4x2 − ln (x− 1)
2 − ln (x+ 1)

2 + 4

Verification of solutions

y = −iπ x2

2 + ln (x− 1)x2

2 + ln (x+ 1)x2

2 + iπ

2 − 4x2 − ln (x− 1)
2 − ln (x+ 1)

2 + 4

Verified OK.

2.36.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x2 − 1
)
dy =

(
2yx+ x

(
x2 − 1

))
dx(

−2yx− x
(
x2 − 1

))
dx+

(
x2 − 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2yx− x
(
x2 − 1

)
N(x, y) = x2 − 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−2yx− x

(
x2 − 1

))
= −2x

And
∂N

∂x
= ∂

∂x

(
x2 − 1

)
= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 − 1((−2x)− (2x))

= − 4x
x2 − 1
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 4x

x2−1 dx

The result of integrating gives

µ = e−2 ln(x−1)−2 ln(x+1)

= 1
(x− 1)2 (x+ 1)2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(x− 1)2 (x+ 1)2

(
−2yx− x

(
x2 − 1

))
= − x(x2 + 2y − 1)

(x− 1)2 (x+ 1)2

And

N = µN

= 1
(x− 1)2 (x+ 1)2

(
x2 − 1

)
= 1

x2 − 1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

− x(x2 + 2y − 1)
(x− 1)2 (x+ 1)2

)
+
(

1
x2 − 1

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x(x2 + 2y − 1)
(x− 1)2 (x+ 1)2

dx

(3)φ = − ln (x+ 1)
2 − y

2 + 2x − ln (x− 1)
2 + y

2x− 2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 1

2 + 2x + 1
2x− 2 + f ′(y)

= 1
x2 − 1 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x2−1 . Therefore equation (4) becomes

(5)1
x2 − 1 = 1

x2 − 1 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − ln (x+ 1)
2 − y

2 + 2x − ln (x− 1)
2 + y

2x− 2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x+ 1)
2 − y

2 + 2x − ln (x− 1)
2 + y

2x− 2
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The solution becomes

y = (ln (x− 1) + ln (x+ 1) + 2c1) (x− 1) (x+ 1)
2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 4 in the above
solution gives an equation to solve for the constant of integration.

4 = −iπ

2 − c1

c1 = −iπ

2 − 4

Substituting c1 found above in the general solution gives

y = −iπ x2

2 + ln (x− 1)x2

2 + ln (x+ 1)x2

2 + iπ

2 − 4x2 − ln (x− 1)
2 − ln (x+ 1)

2 + 4

Summary
The solution(s) found are the following

(1)y = −iπ x2

2 + ln (x− 1)x2

2 + ln (x+ 1)x2

2 + iπ

2 − 4x2 − ln (x− 1)
2 − ln (x+ 1)

2 + 4

Verification of solutions

y = −iπ x2

2 + ln (x− 1)x2

2 + ln (x+ 1)x2

2 + iπ

2 − 4x2 − ln (x− 1)
2 − ln (x+ 1)

2 + 4

Verified OK.

2.36.5 Maple step by step solution

Let’s solve
[(x2 − 1) y′ − 2yx = x(x2 − 1) , y(0) = 4]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 2xy

x2−1 + x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − 2xy

x2−1 = x
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• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − 2xy

x2−1

)
= µ(x)x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − 2xy

x2−1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −2µ(x)x

x2−1

• Solve to find the integrating factor
µ(x) = 1

(x−1)(x+1)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)xdx+ c1

• Solve for y

y =
∫
µ(x)xdx+c1

µ(x)

• Substitute µ(x) = 1
(x−1)(x+1)

y = (x− 1) (x+ 1)
(∫

x
(x−1)(x+1)dx+ c1

)
• Evaluate the integrals on the rhs

y = (x− 1) (x+ 1)
(

ln((x−1)(x+1))
2 + c1

)
• Simplify

y =
(
ln
(
x2−1

)
+2c1

)(
x2−1

)
2

• Use initial condition y(0) = 4
4 = − Iπ

2 − c1

• Solve for c1
c1 = − Iπ

2 − 4

• Substitute c1 = − Iπ
2 − 4 into general solution and simplify

y = −
(
Iπ−ln

(
x2−1

)
+8
)(
x2−1

)
2

• Solution to the IVP

y = −
(
Iπ−ln

(
x2−1

)
+8
)(
x2−1

)
2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 29� �
dsolve([(x^2-1)*diff(y(x),x)-2*x*y(x)= x*(x^2-1),y(0) = 4],y(x), singsol=all)� �

y(x) = −(iπ − ln (x+ 1)− ln (x− 1) + 8) (x2 − 1)
2

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 27� �
DSolve[{(x^2-1)*y'[x]-2*x*y[x]== x*(x^2-1),y[0]==4},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2
(
x2 − 1

) (
log
(
x2 − 1

)
− iπ − 8

)
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2.37 problem 44
2.37.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 644
2.37.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 644
2.37.3 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 645
2.37.4 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 646
2.37.5 Solving as first order ode lie symmetry lookup ode . . . . . . . 649
2.37.6 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 653
2.37.7 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 656

Internal problem ID [923]
Internal file name [OUTPUT/923_Sunday_June_05_2022_01_54_06_AM_51720512/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 44.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeMapleC", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′x− 2y = −1

With initial conditions [
y(0) = 1

2

]
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2.37.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = −2
x

q(x) = −1
x

Hence the ode is

y′ − 2y
x

= −1
x

The domain of p(x) = − 2
x
is

{x < 0∨ 0 < x}

But the point x0 = 0 is not inside this domain. Hence existence and uniqueness theorem
does not apply. There could be infinite number of solutions, or one solution or no solution
at all.

2.37.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −1 + 2y
x

Where f(x) = 1
x
and g(y) = −1 + 2y. Integrating both sides gives

1
−1 + 2y dy = 1

x
dx∫ 1

−1 + 2y dy =
∫ 1

x
dx

ln (−1 + 2y)
2 = ln (x) + c1
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Raising both side to exponential gives√
−1 + 2y = eln(x)+c1

Which simplifies to √
−1 + 2y = c2x

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1
2 in the above

solution gives an equation to solve for the constant of integration.

1
2 = 1

2

This solution is valid for any c1. Hence there are infinite number of solutions.
Summary
The solution(s) found are the following

(1)y = e2c1c22x2

2 + 1
2

Verification of solutions

y = e2c1c22x2

2 + 1
2

Verified OK.

2.37.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes

d
dx(µy) = (µ)

(
−1
x

)
d
dx

( y

x2

)
=
(

1
x2

)(
−1
x

)
d
( y

x2

)
=
(
− 1
x3

)
dx
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Integrating gives
y

x2 =
∫

− 1
x3 dx

y

x2 = 1
2x2 + c1

Dividing both sides by the integrating factor µ = 1
x2 results in

y = 1
2 + c1x

2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1
2 in the above

solution gives an equation to solve for the constant of integration.
1
2 = 1

2
This solution is valid for any c1. Hence there are infinite number of solutions.
Summary
The solution(s) found are the following

(1)y = 1
2 + c1x

2

Verification of solutions

y = 1
2 + c1x

2

Verified OK.

2.37.4 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = 2Y (X) + 2y0 − 1

X + x0

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 0

y0 =
1
2

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = 2Y (X)

X
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In canonical form, the ODE is

Y ′ = F (X,Y )

= 2Y
X

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = 2Y and N = X are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode
is homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = 2u

du
dX = u(X)

X

Or
d

dX
u(X)− u(X)

X
= 0

Or (
d

dX
u(X)

)
X − u(X) = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= u

X
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Where f(X) = 1
X

and g(u) = u. Integrating both sides gives
1
u
du = 1

X
dX∫ 1

u
du =

∫ 1
X

dX

ln (u) = ln (X) + c2

u = eln(X)+c2

= c2X

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = X2c2

Using the solution for Y (X)

Y (X) = X2c2

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y + 1
2

X = x

Then the solution in y becomes

y − 1
2 = c2x

2

Initial conditions are used to solve for c2. Substituting x = 0 and y = 1
2 in the above

solution gives an equation to solve for the constant of integration.

0 = 0

This solution is valid for any c2. Hence there are infinite number of solutions.
Summary
The solution(s) found are the following

(1)y − 1
2 = c2x

2

Verification of solutions

y − 1
2 = c2x

2

Verified OK.
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2.37.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −1 + 2y
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 138: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2dy

Which results in

S = y

x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −1 + 2y
x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −2y
x3

Sy =
1
x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

x3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 1
2R2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x2 = 1
2x2 + c1

Which simplifies to

y

x2 = 1
2x2 + c1

Which gives

y = 1
2 + c1x

2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −1+2y
x

dS
dR

= − 1
R3

R = x

S = y

x2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1
2 in the above

solution gives an equation to solve for the constant of integration.

1
2 = 1

2

This solution is valid for any c1. Hence there are infinite number of solutions.
Summary
The solution(s) found are the following

(1)y = 1
2 + c1x

2

Verification of solutions

y = 1
2 + c1x

2

Verified OK.
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2.37.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

−1 + 2y

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
1

−1 + 2y

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = 1
−1 + 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0

And
∂N

∂x
= ∂

∂x

(
1

−1 + 2y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= 1
−1+2y . Therefore equation (4) becomes

(5)1
−1 + 2y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
−1 + 2y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
−1 + 2y

)
dy

f(y) = ln (−1 + 2y)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) + ln (−1 + 2y)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + ln (−1 + 2y)
2

The solution becomes

y = x2e2c1
2 + 1

2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1
2 in the above

solution gives an equation to solve for the constant of integration.

1
2 = 1

2

This solution is valid for any c1. Hence there are infinite number of solutions.
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Summary
The solution(s) found are the following

(1)y = x2e2c1
2 + 1

2
Verification of solutions

y = x2e2c1
2 + 1

2

Verified OK.

2.37.7 Maple step by step solution

Let’s solve[
y′x− 2y = −1, y(0) = 1

2

]
• Highest derivative means the order of the ODE is 1

y′

• Separate variables
y′

2y−1 = 1
x

• Integrate both sides with respect to x∫
y′

2y−1dx =
∫ 1

x
dx+ c1

• Evaluate integral
ln(2y−1)

2 = ln (x) + c1

• Solve for y
y = x2e2c1

2 + 1
2

• Use initial condition y(0) = 1
2

1
2 = 1

2

• Solve for c1
c1 = c1

• Substitute c1 = c1 into general solution and simplify
y = x2e2c1

2 + 1
2

• Solution to the IVP
y = x2e2c1

2 + 1
2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 11� �
dsolve([x*diff(y(x),x)-2*y(x)= -1,y(0) = 1/2],y(x), singsol=all)� �

y(x) = 1
2 + c1x

2

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 8� �
DSolve[{x*y'[x]-2*y[x]== -1,y[0]==1/2},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2
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2.38 problem 48(a)
2.38.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 658
2.38.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 659

Internal problem ID [924]
Internal file name [OUTPUT/924_Sunday_June_05_2022_01_54_07_AM_72624317/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 48(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

sec (y)2 y′ − 3 tan (y) = −1

2.38.1 Solving as quadrature ode

Integrating both sides gives ∫ sec (y)2

3 tan (y)− 1dy =
∫

dx

ln (3 tan (y)− 1)
3 = x+ c1

Raising both side to exponential gives

(3 tan (y)− 1)
1
3 = ex+c1

Which simplifies to

(3 tan (y)− 1)
1
3 = c2ex

Summary
The solution(s) found are the following

(1)y = arctan
(
c32e3x
3 + 1

3

)
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Figure 141: Slope field plot

Verification of solutions

y = arctan
(
c32e3x
3 + 1

3

)
Verified OK.

2.38.2 Maple step by step solution

Let’s solve
sec (y)2 y′ − 3 tan (y) = −1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′ sec(y)2
3 tan(y)−1 = 1

• Integrate both sides with respect to x∫ y′ sec(y)2
3 tan(y)−1dx =

∫
1dx+ c1
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• Evaluate integral
ln(3 tan(y)−1)

3 = x+ c1

• Solve for y

y = arctan
(

e3x+3c1
3 + 1

3

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(sec(y(x))^2*diff(y(x),x)-3*tan(y(x))= -1,y(x), singsol=all)� �

y(x) = arctan
(
c1e3x
3 + 1

3

)
3 Solution by Mathematica
Time used: 60.217 (sec). Leaf size: 177� �
DSolve[Sec[y[x]]^2*y'[x]-3*Tan[y[x]]== -1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − arccos
(
− 3e6c1√

e6x − 2e3x+6c1 + 10e12c1

)
y(x) → arccos

(
− 3e6c1√

e6x − 2e3x+6c1 + 10e12c1

)
y(x) → − arccos

(
3e6c1√

e6x − 2e3x+6c1 + 10e12c1

)
y(x) → arccos

(
3e6c1√

e6x − 2e3x+6c1 + 10e12c1

)
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2.39 problem 48(b)
2.39.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 661

Internal problem ID [925]
Internal file name [OUTPUT/925_Sunday_June_05_2022_01_54_09_AM_99212434/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 48(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(y)]`]]

ey2
(
2yy′ + 2

x

)
= 1

x2

2.39.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

2 ey2y x2
)
dy =

(
−2 ey2x+ 1

)
dx(

2 ey2x− 1
)
dx+

(
2 ey2y x2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2 ey2x− 1
N(x, y) = 2 ey2y x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2 ey2x− 1

)
= 4 ey2yx

And
∂N

∂x
= ∂

∂x

(
2 ey2y x2

)
= 4 ey2yx

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2 ey2x− 1 dx

(3)φ = x
(
ey2x− 1

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2 ey2y x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= 2 ey2y x2. Therefore equation (4) becomes

(5)2 ey2y x2 = 2 ey2y x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x
(
ey2x− 1

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x
(
ey2x− 1

)
Summary
The solution(s) found are the following

(1)x
(
ey2x− 1

)
= c1
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Figure 142: Slope field plot

Verification of solutions

x
(
ey2x− 1

)
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �

664



3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 33� �
dsolve(exp(y(x)^2)*(2*y(x)*diff(y(x),x)+2/x)= 1/x^2,y(x), singsol=all)� �

y(x) =

√
ln
(
−c1 + x

x2

)

y(x) = −

√
ln
(
−c1 + x

x2

)
3 Solution by Mathematica
Time used: 7.286 (sec). Leaf size: 37� �
DSolve[Exp[y[x]^2]*(2*y[x]*y'[x]+2/x)== 1/x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
log
(
x+ c1
x2

)

y(x) →

√
log
(
x+ c1
x2

)

665



2.40 problem 48(c)
2.40.1 Solving as first order ode lie symmetry calculated ode . . . . . . 666
2.40.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 674

Internal problem ID [926]
Internal file name [OUTPUT/926_Sunday_June_05_2022_01_54_11_AM_71946659/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 48(c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

2 ln (y) = −xy′

y
+ 4x2

2.40.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −2y(−2x2 + ln (y))
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

(1E)ξ = x3a7 + y x2a8 + x y2a9 + y3a10 + x2a4 + yxa5 + y2a6 + xa2 + ya3 + a1

(2E)η = x3b7 + y x2b8 + x y2b9 + y3b10 + x2b4 + yxb5 + y2b6 + xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}

Substituting equations (1E,2E) and ω into (A) gives

(5E)3x2b7 + 2xyb8 + y2b9 + 2xb4 + yb5 + b2

− 2y(−2x2 + ln (y)) (−3x2a7 + x2b8 − 2xya8 + 2xyb9 − y2a9 + 3y2b10 − 2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)
x

− 4y2(−2x2 + ln (y))2 (x2a8 + 2xya9 + 3y2a10 + xa5 + 2ya6 + a3)
x2

−
(
8y + 2y(−2x2 + ln (y))

x2

)(
x3a7 + y x2a8 + x y2a9 + y3a10 + x2a4

+ yxa5 + y2a6 + xa2 + ya3 + a1
)
−
(
−2(−2x2 + ln (y))

x
− 2

x

)(
x3b7

+ y x2b8 + x y2b9 + y3b10 + x2b4 + yxb5 + y2b6 + xb2 + yb3 + b1
)
= 0

Putting the above in normal form gives

−−4 ln (y)x3ya7 − 2 ln (y)x2y2a8 + 2 ln (y)x2y2b9 + 4 ln (y)x y3b10 − 16 ln (y)x4y2a8 − 32 ln (y)x3y3a9 − 48 ln (y)x2y4a10 + 4 ln (y)2 x2y2a8 + 8 ln (y)2 x y3a9 − 16 ln (y)x3y2a5 − 32 ln (y)x2y3a6 + 4 ln (y)2 x y2a5 − 2 ln (y)x2ya4 + 2 ln (y)x y2b6 − 16 ln (y)x2y2a3 − 3yb5x2 + 16x5y2a5 + 32x4y3a6 + 12x4ya4 + 8x3y2a5 − 4x3y2b6 + 4x2y3a6 − 2x y2b6 − 4x3b4 + 4x5b4 + 16x4y2a3 + 8x3ya2 + 4x2y2a3 + 4x2ya1 − 2xyb3 + 4 ln (y)2 y2a3 − 2 ln (y)x2b2 + 2 ln (y) y2a3 − 2 ln (y)xb1 + 2 ln (y) ya1 − 4x3yb8 − 3y2b9x2 + 16x5ya7 + 12x4y2a8 − 4x4y2b9 + 8x3y3a9 − 8x3y3b10 + 16x6y2a8 + 32x5y3a9 + 48x4y4a10 + 4x2y4a10 − 2x y3b10 + 12 ln (y)2 y4a10 + 2 ln (y) y4a10 − 2 ln (y)x4b7 − 5x4b7 + 4x6b7 − 3b2x2 + 4x4b2 + 4x3b1 − 2xb1 + 8 ln (y)2 y3a6 − 2 ln (y)x3b4 + 2 ln (y) y3a6
x2

= 0

Setting the numerator to zero gives

(6E)

4 ln (y)x3ya7 + 2 ln (y)x2y2a8 − 2 ln (y)x2y2b9 − 4 ln (y)x y3b10
+ 16 ln (y)x4y2a8 + 32 ln (y)x3y3a9 + 48 ln (y)x2y4a10
− 4 ln (y)2 x2y2a8 − 8 ln (y)2 x y3a9 + 16 ln (y)x3y2a5
+ 32 ln (y)x2y3a6 − 4 ln (y)2 x y2a5 + 2 ln (y)x2ya4
− 2 ln (y)x y2b6 + 16 ln (y)x2y2a3 + 3yb5x2 − 16x5y2a5
− 32x4y3a6 − 12x4ya4 − 8x3y2a5 + 4x3y2b6 − 4x2y3a6
+ 2x y2b6 + 4x3b4 − 4x5b4 − 16x4y2a3 − 8x3ya2 − 4x2y2a3
− 4x2ya1 + 2xyb3 − 4 ln (y)2 y2a3 + 2 ln (y)x2b2 − 2 ln (y) y2a3
+ 2 ln (y)xb1 − 2 ln (y) ya1 + 4x3yb8 + 3y2b9x2 − 16x5ya7
− 12x4y2a8 + 4x4y2b9 − 8x3y3a9 + 8x3y3b10 − 16x6y2a8
− 32x5y3a9 − 48x4y4a10 − 4x2y4a10 + 2x y3b10 − 12 ln (y)2 y4a10
− 2 ln (y) y4a10 + 2 ln (y)x4b7 + 5x4b7 − 4x6b7 + 3b2x2 − 4x4b2
− 4x3b1 + 2xb1 − 8 ln (y)2 y3a6 + 2 ln (y)x3b4 − 2 ln (y) y3a6 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, ln (y)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, ln (y) = v3}

The above PDE (6E) now becomes

(7E)

4v3v31v2a7 + 2v3v21v22a8 − 2v3v21v22b9 − 4v3v1v32b10 + 16v3v41v22a8
+ 32v3v31v32a9 + 48v3v21v42a10 − 4v23v21v22a8 − 8v23v1v32a9 + 16v3v31v22a5
+ 32v3v21v32a6 − 4v23v1v22a5 + 2v3v21v2a4 − 2v3v1v22b6 + 16v3v21v22a3
+ 4v31b4 − 4v51b4 + 5v41b7 − 4v61b7 + 3b2v21 − 4v41b2 − 4v31b1 + 2v1b1
+ 3v2b5v21 − 16v51v22a5 − 32v41v32a6 − 12v41v2a4 − 8v31v22a5 + 4v31v22b6
− 4v21v32a6 + 2v1v22b6 − 16v41v22a3 − 8v31v2a2 − 4v21v22a3 − 4v21v2a1
+ 2v1v2b3 − 4v23v22a3 + 2v3v21b2 − 2v3v22a3 + 2v3v1b1 − 2v3v2a1
+ 4v31v2b8 + 3v22b9v21 − 16v51v2a7 − 12v41v22a8 + 4v41v22b9 − 8v31v32a9
+8v31v32b10− 16v61v22a8− 32v51v32a9− 48v41v42a10− 4v21v42a10+2v1v32b10
−12v23v42a10−2v3v42a10+2v3v41b7−8v23v32a6+2v3v31b4−2v3v32a6 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)

4v3v31v2a7 + (−4a1 + 3b5) v21v2 + (−8a5 + 4b6) v22v31
+(−16a3− 12a8+4b9) v22v41 +(−8a2+4b8) v2v31 +(−4a3+3b9) v22v21
+ (−8a9 + 8b10) v32v31 − 4v3v1v32b10 + 16v3v41v22a8 + 32v3v31v32a9
+ 48v3v21v42a10 − 4v23v21v22a8 − 8v23v1v32a9 + 16v3v31v22a5 + 32v3v21v32a6
−4v23v1v22a5+2v3v21v2a4−2v3v1v22b6−4v51b4−4v61b7+3b2v21 +2v1b1
+ (2a8 − 2b9 + 16a3) v22v21v3 + (−4b1 + 4b4) v31 + (5b7 − 4b2) v41
− 16v51v22a5 − 32v41v32a6 − 12v41v2a4 − 4v21v32a6 + 2v1v22b6 + 2v1v2b3
− 4v23v22a3 + 2v3v21b2 − 2v3v22a3 + 2v3v1b1 − 2v3v2a1 − 16v51v2a7
− 16v61v22a8 − 32v51v32a9 − 48v41v42a10 − 4v21v42a10 + 2v1v32b10
−12v23v42a10−2v3v42a10+2v3v41b7−8v23v32a6+2v3v31b4−2v3v32a6 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−2a1 = 0
−4a3 = 0
−2a3 = 0
−12a4 = 0

2a4 = 0
−16a5 = 0
−4a5 = 0
16a5 = 0

−32a6 = 0
−8a6 = 0
−4a6 = 0
−2a6 = 0
32a6 = 0

−16a7 = 0
4a7 = 0

−16a8 = 0
−4a8 = 0
16a8 = 0

−32a9 = 0
−8a9 = 0
32a9 = 0

−48a10 = 0
−12a10 = 0
−4a10 = 0
−2a10 = 0
48a10 = 0
2b1 = 0
2b2 = 0
3b2 = 0
2b3 = 0

−4b4 = 0
2b4 = 0

−2b6 = 0
2b6 = 0

−4b7 = 0
2b7 = 0

−4b10 = 0
2b10 = 0

−4a1 + 3b5 = 0
−8a2 + 4b8 = 0
−4a3 + 3b9 = 0
−8a5 + 4b6 = 0
−8a9 + 8b10 = 0
−4b1 + 4b4 = 0
5b7 − 4b2 = 0

−16a3 − 12a8 + 4b9 = 0
2a8 − 2b9 + 16a3 = 0

669



Solving the above equations for the unknowns gives

a1 = 0

a2 =
b8
2

a3 = 0
a4 = 0
a5 = 0
a6 = 0
a7 = 0
a8 = 0
a9 = 0
a10 = 0
b1 = 0
b2 = 0
b3 = 0
b4 = 0
b5 = 0
b6 = 0
b7 = 0
b8 = b8

b9 = 0
b10 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

2
η = y x2

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y x2 −
(
−2y(−2x2 + ln (y))

x

)(x
2

)
= −y x2 + y ln (y)

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y x2 + y ln (y)dy

Which results in

S = ln
(
−x2 + ln (y)

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2y(−2x2 + ln (y))
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2x
−x2 + ln (y)

Sy =
1

y (−x2 + ln (y))
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −2

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln
(
−x2 + ln (y)

)
= −2 ln (x) + c1

Which simplifies to

ln
(
−x2 + ln (y)

)
= −2 ln (x) + c1

Which gives

y = e
x4+ec1

x2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2y
(
−2x2+ln(y)

)
x

dS
dR

= − 2
R

R = x

S = ln
(
−x2 + ln (y)

)

Summary
The solution(s) found are the following

(1)y = e
x4+ec1

x2
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Figure 143: Slope field plot

Verification of solutions

y = e
x4+ec1

x2

Verified OK.

2.40.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x

y

)
dy =

(
−2 ln (y) + 4x2) dx

(
−4x2 + 2 ln (y)

)
dx+

(
x

y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −4x2 + 2 ln (y)

N(x, y) = x

y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−4x2 + 2 ln (y)

)
= 2

y
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And

∂N

∂x
= ∂

∂x

(
x

y

)
= 1

y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= y

x

((
2
y

)
−
(
1
y

))
= 1

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

x
dx

The result of integrating gives

µ = eln(x)

= x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x
(
−4x2 + 2 ln (y)

)
= −4x3 + 2x ln (y)

And

N = µN

= x

(
x

y

)
= x2

y
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−4x3 + 2x ln (y)
)
+
(
x2

y

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−4x3 + 2x ln (y) dx

(3)φ = −(−2x2 + ln (y))2

4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −−2x2 + ln (y)

2y + f ′(y)

But equation (2) says that ∂φ
∂y

= x2

y
. Therefore equation (4) becomes

(5)x2

y
= 2x2 − ln (y)

2y + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = ln (y)
2y
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( ln (y)
2y

)
dy

f(y) = ln (y)2

4 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −(−2x2 + ln (y))2

4 + ln (y)2

4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −(−2x2 + ln (y))2

4 + ln (y)2

4

The solution becomes

y = e
x4+c1

x2

Summary
The solution(s) found are the following

(1)y = e
x4+c1

x2
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Figure 144: Slope field plot

Verification of solutions

y = e
x4+c1

x2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(x*diff(y(x),x)/y(x)+2*ln(y(x))= 4*x^2,y(x), singsol=all)� �

y(x) = e
x4−c1

x2

3 Solution by Mathematica
Time used: 0.248 (sec). Leaf size: 17� �
DSolve[x*y'[x]/y[x]+2*Log[y[x]]== 4*x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex
2+ c1

x2
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2.41 problem 48(d)
2.41.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 681
2.41.2 Solving as first order ode lie symmetry calculated ode . . . . . . 684
2.41.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 690
2.41.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 695

Internal problem ID [927]
Internal file name [OUTPUT/927_Sunday_June_05_2022_01_54_13_AM_92514859/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number: 48(d).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeMapleC",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , _Riccati]

y′

(1 + y)2
− 1

x (1 + y) = − 3
x2

2.41.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)
d

dX
Y (X) = −(1 + Y (X) + y0) (3Y (X) + 3y0 + 3−X − x0)

(X + x0)2

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 0
y0 = −1

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = −−Y (X)X + 3Y (X)2

X2
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In canonical form, the ODE is

Y ′ = F (X,Y )

= −Y (−X + 3Y )
X2 (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = Y (X − 3Y ) and N = X2 are both homoge-
neous and of the same order n = 2. Therefore this is a homogeneous ode. Since this
ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives
du
dXX + u = −3u2 + u

du
dX = −3u(X)2

X
Or

d

dX
u(X) + 3u(X)2

X
= 0

Or (
d

dX
u(X)

)
X + 3u(X)2 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −3u2

X

Where f(X) = − 3
X

and g(u) = u2. Integrating both sides gives

1
u2 du = − 3

X
dX∫ 1

u2 du =
∫

− 3
X

dX

−1
u
= −3 ln (X) + c2
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The solution is

− 1
u (X) + 3 ln (X)− c2 = 0

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

− X

Y (X) + 3 ln (X)− c2 = 0

Using the solution for Y (X)

− X

Y (X) + 3 ln (X)− c2 = 0

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 1
X = x

Then the solution in y becomes

− x

1 + y
+ 3 ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)− x

1 + y
+ 3 ln (x)− c2 = 0
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Figure 145: Slope field plot

Verification of solutions

− x

1 + y
+ 3 ln (x)− c2 = 0

Verified OK.

2.41.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −−yx+ 3y2 − x+ 6y + 3
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

684



Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 −

(−yx+ 3y2 − x+ 6y + 3) (b3 − a2)
x2 − (−yx+ 3y2 − x+ 6y + 3)2 a3

x4

−
(
−−y − 1

x2 + −2yx+ 6y2 − 2x+ 12y + 6
x3

)
(xa2 + ya3 + a1)

+ (6y − x+ 6) (xb2 + yb3 + b1)
x2 = 0

Putting the above in normal form gives

6x3yb2 − 3x2y2a2 + 3x2y2b3 − 9y4a3 − x3b1 + 6x3b2 + x3b3 + x2ya1 − 6x2ya2 − x2ya3 + 6x2yb1 − 6x y2a1 + 6x y2a3 − 36y3a3 + x2a1 − 3x2a2 − x2a3 + 6x2b1 − 3x2b3 − 12xya1 + 12xya3 − 54y2a3 − 6xa1 + 6xa3 − 36ya3 − 9a3
x4

= 0

Setting the numerator to zero gives

(6E)6x3yb2 − 3x2y2a2 +3x2y2b3 − 9y4a3 − x3b1 +6x3b2 + x3b3 + x2ya1 − 6x2ya2
−x2ya3+6x2yb1−6x y2a1+6x y2a3−36y3a3+x2a1−3x2a2−x2a3+6x2b1
− 3x2b3 − 12xya1 + 12xya3 − 54y2a3 − 6xa1 + 6xa3 − 36ya3 − 9a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−3a2v21v22−9a3v42+6b2v31v2+3b3v21v22+a1v
2
1v2−6a1v1v22−6a2v21v2−a3v

2
1v2

+6a3v1v22 −36a3v32 − b1v
3
1 +6b1v21v2+6b2v31 + b3v

3
1 +a1v

2
1 −12a1v1v2−3a2v21

−a3v
2
1+12a3v1v2−54a3v22+6b1v21−3b3v21−6a1v1+6a3v1−36a3v2−9a3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)6b2v31v2+(−b1+6b2+ b3) v31 +(−3a2+3b3) v21v22 +(a1−6a2−a3+6b1) v21v2
+ (a1 − 3a2 − a3 + 6b1 − 3b3) v21 + (−6a1 + 6a3) v1v22 + (−12a1 + 12a3) v1v2
+ (−6a1 + 6a3) v1 − 9a3v42 − 36a3v32 − 54a3v22 − 36a3v2 − 9a3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−54a3 = 0
−36a3 = 0
−9a3 = 0
6b2 = 0

−12a1 + 12a3 = 0
−6a1 + 6a3 = 0
−3a2 + 3b3 = 0

−b1 + 6b2 + b3 = 0
a1 − 6a2 − a3 + 6b1 = 0

a1 − 3a2 − a3 + 6b1 − 3b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = b3

b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y + 1
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y + 1−
(
−−yx+ 3y2 − x+ 6y + 3

x2

)
(x)

= 3y2 + 6y + 3
x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3y2+6y+3
x

dy

Which results in

S = − x

3 (y + 1)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−yx+ 3y2 − x+ 6y + 3
x2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
3y + 3

Sy =
x

3 (y + 1)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− x

3y + 3 = − ln (x) + c1

Which simplifies to

− x

3y + 3 = − ln (x) + c1

Which gives

y = −3 ln (x)− 3c1 − x

3 (ln (x)− c1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−yx+3y2−x+6y+3
x2

dS
dR

= − 1
R

R = x

S = − x

3y + 3

Summary
The solution(s) found are the following

(1)y = −3 ln (x)− 3c1 − x

3 (ln (x)− c1)
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Figure 146: Slope field plot

Verification of solutions

y = −3 ln (x)− 3c1 − x

3 (ln (x)− c1)

Verified OK.

2.41.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

(y + 1)2
)
dy =

(
1

x (y + 1) −
3
x2

)
dx(

− 1
x (y + 1) +

3
x2

)
dx+

(
1

(y + 1)2
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x (y + 1) +

3
x2

N(x, y) = 1
(y + 1)2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x (y + 1) +

3
x2

)
= 1

x (y + 1)2
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And
∂N

∂x
= ∂

∂x

(
1

(y + 1)2
)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= (y + 1)2

((
1

x (y + 1)2
)
− (0)

)
= 1

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

x
dx

The result of integrating gives

µ = eln(x)

= x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x

(
− 1
x (y + 1) +

3
x2

)
= 3y − x+ 3

x (y + 1)

And

N = µN

= x

(
1

(y + 1)2
)

= x

(y + 1)2
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

3y − x+ 3
x (y + 1)

)
+
(

x

(y + 1)2
)

dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 3y − x+ 3
x (y + 1) dx

(3)φ = −x+ ln (x) (3y + 3)
y + 1 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −−x+ ln (x) (3y + 3)

(y + 1)2
+ 3 ln (x)

y + 1 + f ′(y)

= x

(y + 1)2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x
(y+1)2 . Therefore equation (4) becomes

(5)x

(y + 1)2
= x

(y + 1)2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x+ ln (x) (3y + 3)
y + 1 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
−x+ ln (x) (3y + 3)

y + 1

The solution becomes

y = −3 ln (x)− c1 − x

3 ln (x)− c1

Summary
The solution(s) found are the following

(1)y = −3 ln (x)− c1 − x

3 ln (x)− c1

Figure 147: Slope field plot
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Verification of solutions

y = −3 ln (x)− c1 − x

3 ln (x)− c1

Verified OK.

2.41.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −−yx+ 3y2 − x+ 6y + 3
x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = y

x
− 3y2

x2 + 1
x
− 6y

x2 − 3
x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = −3−x
x2 , f1(x) = −−x+6

x2 and f2(x) = − 3
x2 . Let

y = −u′

f2u

= −u′

−3u
x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

6
x3

f1f2 =
−3x+ 18

x4

f 2
2 f0 = −9(3− x)

x6

Substituting the above terms back in equation (2) gives

−3u′′(x)
x2 −

(
6
x3 + −3x+ 18

x4

)
u′(x)− 9(3− x)u(x)

x6 = 0
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Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = e 3
x (c1 + c2 ln (x))

The above shows that

u′(x) = e 3
x (−3c2 ln (x) + c2x− 3c1)

x2

Using the above in (1) gives the solution

y = −3c2 ln (x) + c2x− 3c1
3c1 + 3c2 ln (x)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −3 ln (x) + x− 3c3
3c3 + 3 ln (x)

Summary
The solution(s) found are the following

(1)y = −3 ln (x) + x− 3c3
3c3 + 3 ln (x)
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Figure 148: Slope field plot

Verification of solutions

y = −3 ln (x) + x− 3c3
3c3 + 3 ln (x)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 18� �
dsolve(diff(y(x),x)/(1+y(x))^2-1/(x*(1+y(x)))= -3/x^2,y(x), singsol=all)� �

y(x) = −1 + x

3 ln (x) + 3c1

3 Solution by Mathematica
Time used: 0.252 (sec). Leaf size: 31� �
DSolve[y'[x]/(1+y[x])^2-1/(x*(1+y[x]))== -3/x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x− 3 log(x)− 3c1
3(log(x) + c1)

y(x) → −1
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3 Chapter 2, First order equations. separable
equations. Section 2.2 Page 52

3.1 problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
3.2 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713
3.3 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725
3.4 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742
3.5 problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754
3.6 problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767
3.7 problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
3.8 problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796
3.9 problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810
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3.11 problem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840
3.12 problem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860
3.13 problem 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873
3.14 problem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887
3.15 problem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901
3.16 problem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915
3.17 problem 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930
3.18 problem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943
3.19 problem 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 962
3.20 problem 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967
3.21 problem 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983
3.22 problem 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997
3.23 problem 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012
3.24 problem 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026
3.25 problem 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038
3.26 problem 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1050
3.27 problem 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1054
3.28 problem 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1060
3.29 problem 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073
3.30 problem 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079
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3.1 problem 1
3.1.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 700
3.1.2 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 702
3.1.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 703
3.1.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 707
3.1.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 711

Internal problem ID [928]
Internal file name [OUTPUT/928_Sunday_June_05_2022_01_54_15_AM_81198624/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − 3x2 + 2x+ 1
y − 2 = 0

3.1.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 3x2 + 2x+ 1
y − 2

Where f(x) = 3x2 + 2x+ 1 and g(y) = 1
y−2 . Integrating both sides gives

1
1

y−2
dy = 3x2 + 2x+ 1 dx
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∫ 1
1

y−2
dy =

∫
3x2 + 2x+ 1 dx

1
2y

2 − 2y = x3 + x2 + c1 + x

Which results in
y = 2 +

√
2x3 + 2x2 + 2c1 + 2x+ 4

y = 2−
√
2x3 + 2x2 + 2c1 + 2x+ 4

Summary
The solution(s) found are the following

(1)y = 2 +
√
2x3 + 2x2 + 2c1 + 2x+ 4

(2)y = 2−
√
2x3 + 2x2 + 2c1 + 2x+ 4

Figure 149: Slope field plot
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Verification of solutions

y = 2 +
√

2x3 + 2x2 + 2c1 + 2x+ 4

Verified OK.

y = 2−
√
2x3 + 2x2 + 2c1 + 2x+ 4

Verified OK.

3.1.2 Solving as differentialType ode

Writing the ode as

y′ = 3x2 + 2x+ 1
y − 2 (1)

Which becomes

(y − 2) dy =
(
3x2 + 2x+ 1

)
dx (2)

But the RHS is complete differential because(
3x2 + 2x+ 1

)
dx = d

(
x3 + x2 + x

)
Hence (2) becomes

(y − 2) dy = d
(
x3 + x2 + x

)
Integrating both sides gives gives these solutions

y = 2 +
√

2x3 + 2x2 + 2c1 + 2x+ 4 + c1

y = 2−
√

2x3 + 2x2 + 2c1 + 2x+ 4 + c1

Summary
The solution(s) found are the following

(1)y = 2 +
√

2x3 + 2x2 + 2c1 + 2x+ 4 + c1

(2)y = 2−
√

2x3 + 2x2 + 2c1 + 2x+ 4 + c1
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Figure 150: Slope field plot

Verification of solutions

y = 2 +
√

2x3 + 2x2 + 2c1 + 2x+ 4 + c1

Verified OK.

y = 2−
√

2x3 + 2x2 + 2c1 + 2x+ 4 + c1

Verified OK.

3.1.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 3x2 + 2x+ 1
y − 2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 142: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
3x2 + 2x+ 1

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
3x2+2x+1

dx

Which results in

S = x3 + x2 + x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 3x2 + 2x+ 1
y − 2

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = 3x2 + 2x+ 1
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y − 2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R− 2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 1
2R

2 − 2R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x3 + x2 + x = y2

2 − 2y + c1

Which simplifies to

x3 + x2 + x = y2

2 − 2y + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 3x2+2x+1
y−2

dS
dR

= R− 2

R = y

S = x3 + x2 + x

Summary
The solution(s) found are the following

(1)x3 + x2 + x = y2

2 − 2y + c1
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Figure 151: Slope field plot

Verification of solutions

x3 + x2 + x = y2

2 − 2y + c1

Verified OK.

3.1.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(y − 2) dy =
(
3x2 + 2x+ 1

)
dx(

−3x2 − 2x− 1
)
dx+(y − 2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −3x2 − 2x− 1
N(x, y) = y − 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−3x2 − 2x− 1

)
= 0

And
∂N

∂x
= ∂

∂x
(y − 2)

= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−3x2 − 2x− 1 dx

(3)φ = −x3 − x2 − x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y − 2. Therefore equation (4) becomes

(5)y − 2 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y − 2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(y − 2) dy

f(y) = 1
2y

2 − 2y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x3 − x2 − x+ 1
2y

2 − 2y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x3 − x2 − x+ 1
2y

2 − 2y

Summary
The solution(s) found are the following

(1)−x3 + y2

2 − x2 − 2y − x = c1

Figure 152: Slope field plot

Verification of solutions

−x3 + y2

2 − x2 − 2y − x = c1

Verified OK.
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3.1.5 Maple step by step solution

Let’s solve
y′ − 3x2+2x+1

y−2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
(y − 2) y′ = 3x2 + 2x+ 1

• Integrate both sides with respect to x∫
(y − 2) y′dx =

∫
(3x2 + 2x+ 1) dx+ c1

• Evaluate integral
y2

2 − 2y = x3 + x2 + c1 + x

• Solve for y{
y = 2−

√
2x3 + 2x2 + 2c1 + 2x+ 4, y = 2 +

√
2x3 + 2x2 + 2c1 + 2x+ 4

}
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 53� �
dsolve(diff(y(x),x)= (3*x^2+2*x+1)/(y(x)-2),y(x), singsol=all)� �

y(x) = 2−
√

2x3 + 2x2 + 2c1 + 2x+ 4
y(x) = 2 +

√
2x3 + 2x2 + 2c1 + 2x+ 4
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3 Solution by Mathematica
Time used: 0.158 (sec). Leaf size: 56� �
DSolve[y'[x]== (3*x^2+2*x+1)/(y[x]-2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2−
√
2
√

x3 + x2 + x+ 2 + c1

y(x) → 2 +
√
2
√
x3 + x2 + x+ 2 + c1
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3.2 problem 2
3.2.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 713
3.2.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 715
3.2.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 719
3.2.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 723

Internal problem ID [929]
Internal file name [OUTPUT/929_Sunday_June_05_2022_01_54_16_AM_63498818/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

sin (y) sin (x) + cos (y) y′ = 0

3.2.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= − sin (x) tan (y)

Where f(x) = − sin (x) and g(y) = tan (y). Integrating both sides gives

1
tan (y) dy = − sin (x) dx∫ 1
tan (y) dy =

∫
− sin (x) dx

ln (sin (y)) = cos (x) + c1
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Raising both side to exponential gives

sin (y) = ecos(x)+c1

Which simplifies to

sin (y) = c2ecos(x)

Summary
The solution(s) found are the following

(1)y = arcsin
(
c2ecos(x)+c1

)

Figure 153: Slope field plot

Verification of solutions

y = arcsin
(
c2ecos(x)+c1

)
Verified OK.
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3.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −sin (y) sin (x)
cos (y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 145: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = − 1
sin (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− 1
sin(x)

dx

Which results in

S = cos (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −sin (y) sin (x)
cos (y)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = − sin (x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cot (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cot (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (sin (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

cos (x) = ln (sin (y)) + c1

Which simplifies to

cos (x) = ln (sin (y)) + c1

Which gives

y = arcsin
(
ecos(x)−c1

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − sin(y) sin(x)
cos(y)

dS
dR

= cot (R)

R = y

S = cos (x)

Summary
The solution(s) found are the following

(1)y = arcsin
(
ecos(x)−c1

)
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Figure 154: Slope field plot

Verification of solutions

y = arcsin
(
ecos(x)−c1

)
Verified OK.

3.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−cos (y)
sin (y)

)
dy = (sin (x)) dx

(− sin (x)) dx+
(
−cos (y)
sin (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sin (x)

N(x, y) = −cos (y)
sin (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− sin (x))

= 0
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And

∂N

∂x
= ∂

∂x

(
−cos (y)
sin (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sin (x) dx

(3)φ = cos (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − cos(y)
sin(y) . Therefore equation (4) becomes

(5)−cos (y)
sin (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −cos (y)
sin (y)

= − cot (y)
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Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(− cot (y)) dy

f(y) = − ln (sin (y)) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = cos (x)− ln (sin (y)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = cos (x)− ln (sin (y))

Summary
The solution(s) found are the following

(1)cos (x)− ln (sin (y)) = c1

Figure 155: Slope field plot
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Verification of solutions

cos (x)− ln (sin (y)) = c1

Verified OK.

3.2.4 Maple step by step solution

Let’s solve
sin (y) sin (x) + cos (y) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
cos(y)y′
sin(y) = − sin (x)

• Integrate both sides with respect to x∫ cos(y)y′
sin(y) dx =

∫
− sin (x) dx+ c1

• Evaluate integral
ln (sin (y)) = cos (x) + c1

• Solve for y
y = arcsin

(
ecos(x)+c1

)
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 12� �
dsolve(sin(x)*sin(y(x))+cos(y(x))*diff(y(x),x)= 0,y(x), singsol=all)� �

y(x) = arcsin
(
ecos(x)
c1

)
3 Solution by Mathematica
Time used: 29.953 (sec). Leaf size: 22� �
DSolve[Sin[x]*Sin[y[x]]+Cos[y[x]]*y'[x]== 0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → arcsin
(
ecos(x)+

c1
2

)
y(x) → 0
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3.3 problem 3
3.3.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 725
3.3.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 727
3.3.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 731
3.3.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 734
3.3.5 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 738
3.3.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 740

Internal problem ID [930]
Internal file name [OUTPUT/930_Sunday_June_05_2022_01_54_18_AM_67213606/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli",
"separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′x+ y2 + y = 0

3.3.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y(y + 1)
x

Where f(x) = − 1
x
and g(y) = y(y + 1). Integrating both sides gives

1
y (y + 1) dy = −1

x
dx
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∫ 1
y (y + 1) dy =

∫
−1
x
dx

ln (y)− ln (y + 1) = − ln (x) + c1

Raising both side to exponential gives

eln(y)−ln(y+1) = e− ln(x)+c1

Which simplifies to
y

y + 1 = c2
x

Summary
The solution(s) found are the following

(1)y = − c2
−x+ c2

Figure 156: Slope field plot

Verification of solutions

y = − c2
−x+ c2

Verified OK.
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3.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y(y + 1)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 148: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = −x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−x
dx

Which results in

S = − ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(y + 1)
x

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = −1
x

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y (y + 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R (R + 1)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)− ln (R + 1) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x) = ln (y)− ln (1 + y) + c1

Which simplifies to

− ln (x) = ln (y)− ln (1 + y) + c1

Which gives

y = 1
−1 + x ec1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y(y+1)
x

dS
dR

= 1
R(R+1)

R = y

S = − ln (x)

Summary
The solution(s) found are the following

(1)y = 1
−1 + x ec1
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Figure 157: Slope field plot

Verification of solutions

y = 1
−1 + x ec1

Verified OK.

3.3.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y(y + 1)
x

This is a Bernoulli ODE.
y′ = −1

x
y − 1

x
y2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
x

f1(x) = −1
x

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= − 1
yx

− 1
x

(4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = −w(x)
x

− 1
x

w′ = w

x
+ 1

x
(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −1
x

q(x) = 1
x
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Hence the ode is

w′(x)− w(x)
x

= 1
x

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µw) = (µ)

(
1
x

)
d
dx

(w
x

)
=
(
1
x

)(
1
x

)
d
(w
x

)
= 1

x2 dx

Integrating gives

w

x
=
∫ 1

x2 dx

w

x
= −1

x
+ c1

Dividing both sides by the integrating factor µ = 1
x
results in

w(x) = c1x− 1

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= c1x− 1

Or

y = 1
c1x− 1

Summary
The solution(s) found are the following

(1)y = 1
c1x− 1
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Figure 158: Slope field plot

Verification of solutions

y = 1
c1x− 1

Verified OK.

3.3.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
y (y + 1)

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
− 1
y (y + 1)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = − 1
y (y + 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
− 1
y (y + 1)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y(y+1) . Therefore equation (4) becomes

(5)− 1
y (y + 1) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
y (y + 1)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− 1
y (y + 1)

)
dy

f(y) = − ln (y) + ln (y + 1) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)− ln (y) + ln (y + 1) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)− ln (y) + ln (y + 1)

The solution becomes

y = 1
−1 + x ec1

Summary
The solution(s) found are the following

(1)y = 1
−1 + x ec1

Figure 159: Slope field plot
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Verification of solutions

y = 1
−1 + x ec1

Verified OK.

3.3.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −y(y + 1)
x

This is a Riccati ODE. Comparing the ODE to solve

y′ = −y2

x
− y

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = − 1
x
and f2(x) = − 1

x
. Let

y = −u′

f2u

= −u′

−u
x

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

1
x2

f1f2 =
1
x2

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

−u′′(x)
x

− 2u′(x)
x2 = 0
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Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 +
c2
x

The above shows that
u′(x) = − c2

x2

Using the above in (1) gives the solution

y = − c2
x
(
c1 + c2

x

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − 1
c3x+ 1

Summary
The solution(s) found are the following

(1)y = − 1
c3x+ 1
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Figure 160: Slope field plot

Verification of solutions

y = − 1
c3x+ 1

Verified OK.

3.3.6 Maple step by step solution

Let’s solve
y′x+ y2 + y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y2+y
= − 1

x

• Integrate both sides with respect to x∫
y′

y2+y
dx =

∫
− 1

x
dx+ c1

• Evaluate integral
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ln (y)− ln (1 + y) = − ln (x) + c1

• Solve for y
y = − ec1

ec1−x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 11� �
dsolve(x*diff(y(x),x)+y(x)^2+y(x)= 0,y(x), singsol=all)� �

y(x) = 1
c1x− 1

3 Solution by Mathematica
Time used: 0.251 (sec). Leaf size: 31� �
DSolve[x*y'[x]+y[x]^2+y[x]== 0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − ec1

−x+ ec1

y(x) → −1
y(x) → 0
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3.4 problem 5
3.4.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 742
3.4.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 744
3.4.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 748
3.4.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 752

Internal problem ID [931]
Internal file name [OUTPUT/931_Sunday_June_05_2022_01_54_19_AM_99537949/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
3y3 + 3y cos (y) + 1

)
y′ + (1 + 2x) y

x2 + 1 = 0

3.4.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − (1 + 2x) y
(x2 + 1) (3y3 + 3y cos (y) + 1)

Where f(x) = −1+2x
x2+1 and g(y) = y

3y3+3y cos(y)+1 . Integrating both sides gives

1
y

3y3+3y cos(y)+1
dy = −1 + 2x

x2 + 1 dx
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∫ 1
y

3y3+3y cos(y)+1
dy =

∫
−1 + 2x
x2 + 1 dx

y3 + 3 sin (y) + ln (y) = − ln
(
x2 + 1

)
− arctan (x) + c1

Which results in

y = RootOf
(
−_Z3 − ln

(
x2 + 1

)
− arctan (x)− 3 sin (_Z)− ln (_Z) + c1

)
Summary
The solution(s) found are the following

(1)y = RootOf
(
−_Z3 − ln

(
x2 + 1

)
− arctan (x)− 3 sin (_Z)− ln (_Z) + c1

)

Figure 161: Slope field plot

Verification of solutions

y = RootOf
(
−_Z3 − ln

(
x2 + 1

)
− arctan (x)− 3 sin (_Z)− ln (_Z) + c1

)
Verified OK.
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3.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − y(1 + 2x)
3y3x2 + 3y3 + 3y cos (y)x2 + 3y cos (y) + x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 151: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = −x2 + 1
1 + 2x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−x2+1
1+2x

dx

Which results in

S = − ln
(
x2 + 1

)
− arctan (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y(1 + 2x)
3y3x2 + 3y3 + 3y cos (y)x2 + 3y cos (y) + x2 + 1
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = −1− 2x
x2 + 1

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 3y3 + 3y cos (y) + 1

y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 3R3 + 3R cos (R) + 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R3 + 3 sin (R) + ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln
(
x2 + 1

)
− arctan (x) = y3 + 3 sin (y) + ln (y) + c1

Which simplifies to

− ln
(
x2 + 1

)
− arctan (x) = y3 + 3 sin (y) + ln (y) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
− y(1+2x)

3y3x2+3y3+3y cos(y)x2+3y cos(y)+x2+1

dS
dR

= 3R3+3R cos(R)+1
R

R = y

S = − ln
(
x2 + 1

)
− arctan (x)

Summary
The solution(s) found are the following

(1)− ln
(
x2 + 1

)
− arctan (x) = y3 + 3 sin (y) + ln (y) + c1
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Figure 162: Slope field plot

Verification of solutions

− ln
(
x2 + 1

)
− arctan (x) = y3 + 3 sin (y) + ln (y) + c1

Verified OK.

3.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−3y3 + 3y cos (y) + 1

y

)
dy =

(
1 + 2x
x2 + 1

)
dx(

−1 + 2x
x2 + 1

)
dx+

(
−3y3 + 3y cos (y) + 1

y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1 + 2x
x2 + 1

N(x, y) = −3y3 + 3y cos (y) + 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1 + 2x
x2 + 1

)
= 0
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And

∂N

∂x
= ∂

∂x

(
−3y3 + 3y cos (y) + 1

y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1 + 2x
x2 + 1 dx

(3)φ = − ln
(
x2 + 1

)
− arctan (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −3y3+3y cos(y)+1
y

. Therefore equation (4) becomes

(5)−3y3 + 3y cos (y) + 1
y

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −3y3 + 3y cos (y) + 1
y

= −3y3 − 3y cos (y)− 1
y
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Integrating the above w.r.t y results in∫
f ′(y) dy =

∫ (
−3y3 − 3y cos (y)− 1

y

)
dy

f(y) = −y3 − 3 sin (y)− ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln
(
x2 + 1

)
− arctan (x)− y3 − 3 sin (y)− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln
(
x2 + 1

)
− arctan (x)− y3 − 3 sin (y)− ln (y)

Summary
The solution(s) found are the following

(1)−y3 − 3 sin (y)− ln
(
x2 + 1

)
− arctan (x)− ln (y) = c1

Figure 163: Slope field plot
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Verification of solutions

−y3 − 3 sin (y)− ln
(
x2 + 1

)
− arctan (x)− ln (y) = c1

Verified OK.

3.4.4 Maple step by step solution

Let’s solve
(3y3 + 3y cos (y) + 1) y′ + (1+2x)y

x2+1 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′
(
3y3+3y cos(y)+1

)
y

= −1+2x
x2+1

• Integrate both sides with respect to x∫ y′
(
3y3+3y cos(y)+1

)
y

dx =
∫
−1+2x

x2+1dx+ c1

• Evaluate integral
y3 + 3 sin (y) + ln (y) = − ln (x2 + 1)− arctan (x) + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 25� �
dsolve((3*y(x)^3+3*y(x)*cos(y(x))+1)*diff(y(x),x)+((2*x+1)*y(x))/(1+x^2)= 0,y(x), singsol=all)� �

ln
(
x2 + 1

)
+ arctan (x) + y(x)3 + 3 sin (y(x)) + ln (y(x)) + c1 = 0
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3 Solution by Mathematica
Time used: 0.379 (sec). Leaf size: 40� �
DSolve[(3*y[x]^3+3*y[x]*Cos[y[x]]+1)*y'[x]+((2*x+1)*y[x])/(1+x^2)== 0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)→ InverseFunction

[
#13 + log(#1) + 3 sin(#1)&

] [
− arctan(x)− log

(
x2 +1

)
+ c1

]
y(x) → 0
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3.5 problem 6
3.5.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 754
3.5.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 756
3.5.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 760
3.5.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 764

Internal problem ID [932]
Internal file name [OUTPUT/932_Sunday_June_05_2022_01_54_21_AM_32716405/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′x2y −
(
−1 + y2

) 3
2 = 0

3.5.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= (y2 − 1)
3
2

x2y

Where f(x) = 1
x2 and g(y) =

(
y2−1

) 3
2

y
. Integrating both sides gives

1
(y2−1)

3
2

y

dy = 1
x2 dx
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∫ 1
(y2−1)

3
2

y

dy =
∫ 1

x2 dx

−(y − 1) (y + 1)
(y2 − 1)

3
2

= −1
x
+ c1

The solution is

−(y − 1) (1 + y)
(−1 + y2)

3
2

+ 1
x
− c1 = 0

Summary
The solution(s) found are the following

(1)−(y − 1) (1 + y)
(−1 + y2)

3
2

+ 1
x
− c1 = 0

Figure 164: Slope field plot

Verification of solutions

−(y − 1) (1 + y)
(−1 + y2)

3
2

+ 1
x
− c1 = 0

Verified OK.
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3.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (y2 − 1)
3
2

x2y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 154: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x2dx

Which results in

S = −1
x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (y2 − 1)
3
2

x2y
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y

(y2 − 1)
3
2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

(R2 − 1)
3
2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −(R− 1) (R + 1)
(R2 − 1)

3
2

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1
x
= −(y − 1) (1 + y)

(−1 + y2)
3
2

+ c1

Which simplifies to

−1
x
= −(y − 1) (1 + y)

(−1 + y2)
3
2

+ c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
(
y2−1

) 3
2

x2y

dS
dR

= R

(R2−1)
3
2

R = y

S = −1
x

Summary
The solution(s) found are the following

(1)−1
x
= −(y − 1) (1 + y)

(−1 + y2)
3
2

+ c1
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Figure 165: Slope field plot

Verification of solutions

−1
x
= −(y − 1) (1 + y)

(−1 + y2)
3
2

+ c1

Verified OK.

3.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y

(y2 − 1)
3
2

)
dy =

(
1
x2

)
dx

(
− 1
x2

)
dx+

(
y

(y2 − 1)
3
2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x2

N(x, y) = y

(y2 − 1)
3
2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x2

)
= 0

761



And

∂N

∂x
= ∂

∂x

(
y

(y2 − 1)
3
2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x2 dx

(3)φ = 1
x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y

(y2−1)
3
2
. Therefore equation (4) becomes

(5)y

(y2 − 1)
3
2
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y

(y2 − 1)
3
2
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y

(y2 − 1)
3
2

)
dy

f(y) = −(y − 1) (y + 1)
(y2 − 1)

3
2

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 1
x
− (y − 1) (y + 1)

(y2 − 1)
3
2

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1
x
− (y − 1) (y + 1)

(y2 − 1)
3
2

Summary
The solution(s) found are the following

(1)−(y − 1) (1 + y)
(−1 + y2)

3
2

+ 1
x
= c1
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Figure 166: Slope field plot

Verification of solutions

−(y − 1) (1 + y)
(−1 + y2)

3
2

+ 1
x
= c1

Verified OK.

3.5.4 Maple step by step solution

Let’s solve

y′x2y − (−1 + y2)
3
2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y

(−1+y2)
3
2
= 1

x2

• Integrate both sides with respect to x∫
y′y

(−1+y2)
3
2
dx =

∫ 1
x2dx+ c1
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• Evaluate integral
− 1√

−1+y2
= − 1

x
+ c1

• Solve for y{
y =

√
c21x

2−2c1x+x2+1
c1x−1 , y = −

√
c21x

2−2c1x+x2+1
c1x−1

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(x^2*y(x)*diff(y(x),x)= (y(x)^2-1)^(3/2),y(x), singsol=all)� �

−1
x
+ (y(x)− 1) (y(x) + 1)(

y (x)2 − 1
) 3

2
+ c1 = 0
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3 Solution by Mathematica
Time used: 0.707 (sec). Leaf size: 111� �
DSolve[x^2*y[x]*y'[x]== (y[x]^2-1)^(3/2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
√

(1 + c12)x2 − 2c1x+ 1
1− c1x

y(x) →
√

(1 + c12)x2 − 2c1x+ 1
−1 + c1x

y(x) → −1
y(x) → 1

y(x) → −
√
x2

x

y(x) →
√
x2

x
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3.6 problem 7
3.6.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 767
3.6.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 769
3.6.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 773
3.6.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 777
3.6.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 779

Internal problem ID [933]
Internal file name [OUTPUT/933_Sunday_June_05_2022_01_54_23_AM_59717124/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ −
(
1 + y2

)
x2 = 0

3.6.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
=
(
y2 + 1

)
x2

Where f(x) = x2 and g(y) = y2 + 1. Integrating both sides gives

1
y2 + 1 dy = x2 dx∫ 1
y2 + 1 dy =

∫
x2 dx
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arctan (y) = x3

3 + c1

Which results in

y = tan
(
x3

3 + c1

)
Summary
The solution(s) found are the following

(1)y = tan
(
x3

3 + c1

)

Figure 167: Slope field plot

Verification of solutions

y = tan
(
x3

3 + c1

)
Verified OK.
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3.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
(
y2 + 1

)
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 157: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
x2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x2

dx

Which results in

S = x3

3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
y2 + 1

)
x2
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = arctan (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x3

3 = arctan (y) + c1

Which simplifies to

x3

3 = arctan (y) + c1

Which gives

y = − tan
(
−x3

3 + c1

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (y2 + 1)x2 dS
dR

= 1
R2+1

R = y

S = x3

3

Summary
The solution(s) found are the following

(1)y = − tan
(
−x3

3 + c1

)
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Figure 168: Slope field plot

Verification of solutions

y = − tan
(
−x3

3 + c1

)
Verified OK.

3.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y2 + 1

)
dy =

(
x2) dx

(
−x2) dx+( 1

y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2

N(x, y) = 1
y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2)

= 0
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And
∂N

∂x
= ∂

∂x

(
1

y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 dx

(3)φ = −x3

3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2+1 . Therefore equation (4) becomes

(5)1
y2 + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2 + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y2 + 1

)
dy

f(y) = arctan (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x3

3 + arctan (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x3

3 + arctan (y)

The solution becomes

y = tan
(
x3

3 + c1

)

Summary
The solution(s) found are the following

(1)y = tan
(
x3

3 + c1

)

Figure 169: Slope field plot
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Verification of solutions

y = tan
(
x3

3 + c1

)
Verified OK.

3.6.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
=
(
y2 + 1

)
x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = x2y2 + x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x2, f1(x) = 0 and f2(x) = x2. Let

y = −u′

f2u

= −u′

x2u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 2x

f1f2 = 0
f 2
2 f0 = x6

Substituting the above terms back in equation (2) gives

x2u′′(x)− 2xu′(x) + x6u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives
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u(x) = c1 sin
(
x3

3

)
+ c2 cos

(
x3

3

)

The above shows that

u′(x) = x2
(
c1 cos

(
x3

3

)
− c2 sin

(
x3

3

))

Using the above in (1) gives the solution

y = −
c1 cos

(
x3

3

)
− c2 sin

(
x3

3

)
c1 sin

(
x3

3

)
+ c2 cos

(
x3

3

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
−c3 cos

(
x3

3

)
+ sin

(
x3

3

)
c3 sin

(
x3

3

)
+ cos

(
x3

3

)
Summary
The solution(s) found are the following

(1)y =
−c3 cos

(
x3

3

)
+ sin

(
x3

3

)
c3 sin

(
x3

3

)
+ cos

(
x3

3

)
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Figure 170: Slope field plot

Verification of solutions

y =
−c3 cos

(
x3

3

)
+ sin

(
x3

3

)
c3 sin

(
x3

3

)
+ cos

(
x3

3

)
Verified OK.

3.6.5 Maple step by step solution

Let’s solve
y′ − (1 + y2)x2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

1+y2
= x2

• Integrate both sides with respect to x∫
y′

1+y2
dx =

∫
x2dx+ c1
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• Evaluate integral
arctan (y) = x3

3 + c1

• Solve for y

y = tan
(

x3

3 + c1
)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(diff(y(x),x)= x^2*(1+y(x)^2),y(x), singsol=all)� �

y(x) = tan
(
x3

3 + c1

)
3 Solution by Mathematica
Time used: 0.169 (sec). Leaf size: 30� �
DSolve[y'[x]== x^2*(1+y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → tan
(
x3

3 + c1

)
y(x) → −i
y(x) → i
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3.7 problem 8
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3.7.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 783
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Internal problem ID [934]
Internal file name [OUTPUT/934_Sunday_June_05_2022_01_54_24_AM_4654346/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
x2 + 1

)
y′ + yx = 0

3.7.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − xy

x2 + 1
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Where f(x) = − x
x2+1 and g(y) = y. Integrating both sides gives

1
y
dy = − x

x2 + 1 dx∫ 1
y
dy =

∫
− x

x2 + 1 dx

ln (y) = − ln (x2 + 1)
2 + c1

y = e−
ln
(
x2+1

)
2 +c1

= c1√
x2 + 1

Summary
The solution(s) found are the following

(1)y = c1√
x2 + 1

Figure 171: Slope field plot

Verification of solutions

y = c1√
x2 + 1

Verified OK.
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3.7.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = x

x2 + 1
q(x) = 0

Hence the ode is

y′ + xy

x2 + 1 = 0

The integrating factor µ is

µ = e
∫

x
x2+1dx

=
√
x2 + 1

The ode becomes

d
dxµy = 0

d
dx

(√
x2 + 1 y

)
= 0

Integrating gives
√
x2 + 1 y = c1

Dividing both sides by the integrating factor µ =
√
x2 + 1 results in

y = c1√
x2 + 1

Summary
The solution(s) found are the following

(1)y = c1√
x2 + 1
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Figure 172: Slope field plot

Verification of solutions

y = c1√
x2 + 1

Verified OK.

3.7.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
x2 + 1

)
(u′(x)x+ u(x)) + u(x)x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(2x2 + 1)
x (x2 + 1)
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Where f(x) = − 2x2+1
x(x2+1) and g(u) = u. Integrating both sides gives

1
u
du = − 2x2 + 1

x (x2 + 1) dx∫ 1
u
du =

∫
− 2x2 + 1
x (x2 + 1) dx

ln (u) = − ln (x)− ln (x2 + 1)
2 + c2

u = e− ln(x)−
ln
(
x2+1

)
2 +c2

= c2e− ln(x)−
ln
(
x2+1

)
2

Which simplifies to

u(x) = c2

x
√
x2 + 1

Therefore the solution y is

y = ux

= c2√
x2 + 1

Summary
The solution(s) found are the following

(1)y = c2√
x2 + 1
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Figure 173: Slope field plot

Verification of solutions

y = c2√
x2 + 1

Verified OK.

3.7.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − xy

x2 + 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 160: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1√
x2 + 1

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1√
x2+1

dy

Which results in

S =
√
x2 + 1 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − xy

x2 + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = yx√
x2 + 1

Sy =
√
x2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

√
x2 + 1 y = c1

Which simplifies to
√
x2 + 1 y = c1

Which gives

y = c1√
x2 + 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − xy
x2+1

dS
dR

= 0

R = x

S =
√
x2 + 1 y

Summary
The solution(s) found are the following

(1)y = c1√
x2 + 1
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Figure 174: Slope field plot

Verification of solutions

y = c1√
x2 + 1

Verified OK.

3.7.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−1
y

)
dy =

(
x

x2 + 1

)
dx(

− x

x2 + 1

)
dx+

(
−1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x

x2 + 1
N(x, y) = −1

y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− x

x2 + 1

)
= 0
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And
∂N

∂x
= ∂

∂x

(
−1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

x2 + 1 dx

(3)φ = − ln (x2 + 1)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y
. Therefore equation (4) becomes

(5)−1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x2 + 1)
2 − ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x2 + 1)
2 − ln (y)

The solution becomes

y = e−
ln
(
x2+1

)
2 −c1

Summary
The solution(s) found are the following

(1)y = e−
ln
(
x2+1

)
2 −c1

Figure 175: Slope field plot
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Verification of solutions

y = e−
ln
(
x2+1

)
2 −c1

Verified OK.

3.7.6 Maple step by step solution

Let’s solve
(x2 + 1) y′ + yx = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= − x

x2+1

• Integrate both sides with respect to x∫
y′

y
dx =

∫
− x

x2+1dx+ c1

• Evaluate integral

ln (y) = − ln
(
x2+1

)
2 + c1

• Solve for y

y = e−
ln
(
x2+1

)
2 +c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(diff(y(x),x)*(1+x^2)+x*y(x)=0,y(x), singsol=all)� �

y(x) = c1√
x2 + 1

3 Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 22� �
DSolve[y'[x]*(1+x^2)+x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1√
x2 + 1

y(x) → 0
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3.8 problem 9
3.8.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 796
3.8.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 798
3.8.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 802
3.8.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 806
3.8.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 808

Internal problem ID [935]
Internal file name [OUTPUT/935_Sunday_June_05_2022_01_54_25_AM_80057781/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − (x− 1) (y − 1) (y − 2) = 0

3.8.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= (x− 1) (y − 1) (y − 2)

Where f(x) = x− 1 and g(y) = (y − 1) (y − 2). Integrating both sides gives

1
(y − 1) (y − 2) dy = x− 1 dx∫ 1
(y − 1) (y − 2) dy =

∫
x− 1 dx
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− ln (y − 1) + ln (y − 2) = 1
2x

2 − x+ c1

Raising both side to exponential gives

e− ln(y−1)+ln(y−2) = e 1
2x

2−x+c1

Which simplifies to
y − 2
y − 1 = c2e

1
2x

2−x

Summary
The solution(s) found are the following

(1)y = c2e
1
2x

2−x − 2
−1 + c2e

1
2x

2−x

Figure 176: Slope field plot

Verification of solutions

y = c2e
1
2x

2−x − 2
−1 + c2e

1
2x

2−x

Verified OK.
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3.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (x− 1) (y − 1) (y − 2)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 163: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
x− 1

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x−1

dx

Which results in

S = 1
2x

2 − x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (x− 1) (y − 1) (y − 2)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x− 1
Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

(y − 1) (y − 2) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

(R− 1) (R− 2)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R− 1) + ln (R− 2) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

1
2x

2 − x = − ln (y − 1) + ln (y − 2) + c1

Which simplifies to

1
2x

2 − x = − ln (y − 1) + ln (y − 2) + c1

Which gives

y = 2 e− 1
2x

2+c1+x − 1
−1 + e− 1

2x
2+c1+x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (x− 1) (y − 1) (y − 2) dS
dR

= 1
(R−1)(R−2)

R = y

S = 1
2x

2 − x

Summary
The solution(s) found are the following

(1)y = 2 e− 1
2x

2+c1+x − 1
−1 + e− 1

2x
2+c1+x
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Figure 177: Slope field plot

Verification of solutions

y = 2 e− 1
2x

2+c1+x − 1
−1 + e− 1

2x
2+c1+x

Verified OK.

3.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

(y − 1) (y − 2)

)
dy = (x− 1) dx

(1− x) dx+
(

1
(y − 1) (y − 2)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 1− x

N(x, y) = 1
(y − 1) (y − 2)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(1− x)

= 0
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And
∂N

∂x
= ∂

∂x

(
1

(y − 1) (y − 2)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
1− x dx

(3)φ = x− 1
2x

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
(y−1)(y−2) . Therefore equation (4) becomes

(5)1
(y − 1) (y − 2) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
(y − 1) (y − 2)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
(y − 1) (y − 2)

)
dy

f(y) = − ln (y − 1) + ln (y − 2) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x− x2

2 − ln (y − 1) + ln (y − 2) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x− x2

2 − ln (y − 1) + ln (y − 2)

The solution becomes

y = −2 + e 1
2x

2−x+c1

e 1
2x

2−x+c1 − 1

Summary
The solution(s) found are the following

(1)y = −2 + e 1
2x

2−x+c1

e 1
2x

2−x+c1 − 1

Figure 178: Slope field plot
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Verification of solutions

y = −2 + e 1
2x

2−x+c1

e 1
2x

2−x+c1 − 1

Verified OK.

3.8.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= (x− 1) (y − 1) (y − 2)

This is a Riccati ODE. Comparing the ODE to solve

y′ = x y2 − 3yx− y2 + 2x+ 3y − 2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 2x− 2, f1(x) = 3− 3x and f2(x) = x− 1. Let

y = −u′

f2u

= −u′

(x− 1)u (1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 1

f1f2 = (3− 3x) (x− 1)
f 2
2 f0 = (x− 1)2 (2x− 2)

Substituting the above terms back in equation (2) gives

(x− 1)u′′(x)− (1 + (3− 3x) (x− 1))u′(x) + (x− 1)2 (2x− 2)u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives
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u(x) = c1e−x(−2+x) + c2e−
x(−2+x)

2

The above shows that

u′(x) = −
(
2c1e−x(−2+x) + c2e−

x(−2+x)
2

)
(x− 1)

Using the above in (1) gives the solution

y = 2c1e−x(−2+x) + c2e−
x(−2+x)

2

c1e−x(−2+x) + c2e−
x(−2+x)

2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = 2c3e−
x(−2+x)

2 + 1
c3e−

x(−2+x)
2 + 1

Summary
The solution(s) found are the following

(1)y = 2c3e−
x(−2+x)

2 + 1
c3e−

x(−2+x)
2 + 1
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Figure 179: Slope field plot

Verification of solutions

y = 2c3e−
x(−2+x)

2 + 1
c3e−

x(−2+x)
2 + 1

Verified OK.

3.8.5 Maple step by step solution

Let’s solve
y′ − (x− 1) (y − 1) (y − 2) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

(y−1)(y−2) = x− 1

• Integrate both sides with respect to x∫
y′

(y−1)(y−2)dx =
∫
(x− 1) dx+ c1
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• Evaluate integral
− ln (y − 1) + ln (y − 2) = 1

2x
2 − x+ c1

• Solve for y

y = −2+e
1
2x2−x+c1

e
1
2x2−x+c1−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 29� �
dsolve(diff(y(x),x)=(x-1)*(y(x)-1)*(y(x)-2),y(x), singsol=all)� �

y(x) = −2 + c1e
x(−2+x)

2

c1e
x(−2+x)

2 − 1

3 Solution by Mathematica
Time used: 0.308 (sec). Leaf size: 56� �
DSolve[y'[x]==(x-1)*(y[x]-1)*(y[x]-2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2ex − e
x2
2 +c1

ex − e
x2
2 +c1

y(x) → 1
y(x) → 2
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3.9 problem 10
3.9.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 810
3.9.2 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 813
3.9.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 815
3.9.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 819
3.9.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 823

Internal problem ID [936]
Internal file name [OUTPUT/936_Sunday_June_05_2022_01_54_27_AM_35833158/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(y − 1)2 y′ = 2x+ 3

3.9.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 2x+ 3
y2 − 2y + 1

Where f(x) = 2x+ 3 and g(y) = 1
y2−2y+1 . Integrating both sides gives

1
1

y2−2y+1
dy = 2x+ 3 dx
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∫ 1
1

y2−2y+1
dy =

∫
2x+ 3 dx

(y − 1)3

3 = x2 + c1 + 3x

Which results in

y =
(
3x2 + 3c1 + 9x

) 1
3 + 1

y = −(3x2 + 3c1 + 9x)
1
3

2 + i
√
3 (3x2 + 3c1 + 9x)

1
3

2 + 1

y = −(3x2 + 3c1 + 9x)
1
3

2 − i
√
3 (3x2 + 3c1 + 9x)

1
3

2 + 1

Summary
The solution(s) found are the following

(1)y =
(
3x2 + 3c1 + 9x

) 1
3 + 1

(2)y = −(3x2 + 3c1 + 9x)
1
3

2 + i
√
3 (3x2 + 3c1 + 9x)

1
3

2 + 1

(3)y = −(3x2 + 3c1 + 9x)
1
3

2 − i
√
3 (3x2 + 3c1 + 9x)

1
3

2 + 1
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Figure 180: Slope field plot

Verification of solutions

y =
(
3x2 + 3c1 + 9x

) 1
3 + 1

Verified OK.

y = −(3x2 + 3c1 + 9x)
1
3

2 + i
√
3 (3x2 + 3c1 + 9x)

1
3

2 + 1

Verified OK.

y = −(3x2 + 3c1 + 9x)
1
3

2 − i
√
3 (3x2 + 3c1 + 9x)

1
3

2 + 1

Verified OK.
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3.9.2 Solving as differentialType ode

Writing the ode as

y′ = 2x+ 3
(y − 1)2

(1)

Which becomes (
y2 − 2y + 1

)
dy = (2x+ 3) dx (2)

But the RHS is complete differential because

(2x+ 3) dx = d
(
x2 + 3x

)
Hence (2) becomes (

y2 − 2y + 1
)
dy = d

(
x2 + 3x

)
Integrating both sides gives gives these solutions

y =
(
3x2 + 3c1 + 9x

) 1
3 + 1 + c1

y = −(3x2 + 3c1 + 9x)
1
3

2 + i
√
3 (3x2 + 3c1 + 9x)

1
3

2 + 1 + c1

y = −(3x2 + 3c1 + 9x)
1
3

2 − i
√
3 (3x2 + 3c1 + 9x)

1
3

2 + 1 + c1

Summary
The solution(s) found are the following

(1)y =
(
3x2 + 3c1 + 9x

) 1
3 + 1 + c1

(2)y = −(3x2 + 3c1 + 9x)
1
3

2 + i
√
3 (3x2 + 3c1 + 9x)

1
3

2 + 1 + c1

(3)y = −(3x2 + 3c1 + 9x)
1
3

2 − i
√
3 (3x2 + 3c1 + 9x)

1
3

2 + 1 + c1
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Figure 181: Slope field plot

Verification of solutions

y =
(
3x2 + 3c1 + 9x

) 1
3 + 1 + c1

Verified OK.

y = −(3x2 + 3c1 + 9x)
1
3

2 + i
√
3 (3x2 + 3c1 + 9x)

1
3

2 + 1 + c1

Verified OK.

y = −(3x2 + 3c1 + 9x)
1
3

2 − i
√
3 (3x2 + 3c1 + 9x)

1
3

2 + 1 + c1

Verified OK.
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3.9.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2x+ 3
y2 − 2y + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 166: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

815



The above table shows that

ξ(x, y) = 1
2x+ 3

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
2x+3

dx

Which results in

S = x2 + 3x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2x+ 3
y2 − 2y + 1
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = 2x+ 3
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= (y − 1)2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= (R− 1)2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = (R− 1)3

3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2 + 3x = (y − 1)3

3 + c1

Which simplifies to

x2 + 3x = (y − 1)3

3 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2x+3
y2−2y+1

dS
dR

= (R− 1)2

R = y

S = x2 + 3x

Summary
The solution(s) found are the following

(1)x2 + 3x = (y − 1)3

3 + c1
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Figure 182: Slope field plot

Verification of solutions

x2 + 3x = (y − 1)3

3 + c1

Verified OK.

3.9.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y2 − 2y + 1

)
dy = (2x+ 3) dx

(−3− 2x) dx+
(
y2 − 2y + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −3− 2x
N(x, y) = y2 − 2y + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−3− 2x)

= 0

And
∂N

∂x
= ∂

∂x

(
y2 − 2y + 1

)
= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−3− 2x dx

(3)φ = −x2 − 3x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y2 − 2y + 1. Therefore equation (4) becomes

(5)y2 − 2y + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y2 − 2y + 1

= (y − 1)2

Integrating the above w.r.t y results in∫
f ′(y) dy =

∫ (
(y − 1)2

)
dy

f(y) = (y − 1)3

3 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2 − 3x+ (y − 1)3

3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2 − 3x+ (y − 1)3

3

Summary
The solution(s) found are the following

(1)−x2 − 3x+ (y − 1)3

3 = c1

Figure 183: Slope field plot

Verification of solutions

−x2 − 3x+ (y − 1)3

3 = c1

Verified OK.
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3.9.5 Maple step by step solution

Let’s solve
(y − 1)2 y′ = 2x+ 3

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
(y − 1)2 y′dx =

∫
(2x+ 3) dx+ c1

• Evaluate integral
(y−1)3

3 = x2 + c1 + 3x

• Solve for y

y = (3x2 + 3c1 + 9x)
1
3 + 1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 102� �
dsolve((y(x)-1)^2*diff(y(x),x)=2*x+3,y(x), singsol=all)� �

y(x) =
(
3x2 + 3c1 + 9x

) 1
3 + 1

y(x) = −(3x2 + 3c1 + 9x)
1
3

2 − i
√
3 (3x2 + 3c1 + 9x)

1
3

2 + 1

y(x) = −(3x2 + 3c1 + 9x)
1
3

2 + i
√
3 (3x2 + 3c1 + 9x)

1
3

2 + 1
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3 Solution by Mathematica
Time used: 0.482 (sec). Leaf size: 103� �
DSolve[(y[x]-1)^2*y'[x]==2*x+3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1 + 3
√

3x2 + 9x− 1 + 3c1
y(x) → 1 + 1

2i
(√

3 + i
)

3
√
3x2 + 9x− 1 + 3c1

y(x) → 1− 1
2

(
1 + i

√
3
)

3
√

3x2 + 9x− 1 + 3c1
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Internal problem ID [937]
Internal file name [OUTPUT/937_Sunday_June_05_2022_01_54_28_AM_23520406/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − x2 + 3x+ 2
y − 2 = 0

With initial conditions

[y(1) = 4]
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3.10.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= x2 + 3x+ 2
y − 2

The x domain of f(x, y) when y = 4 is

{−∞ < x < ∞}

And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{y < 2∨ 2 < y}

And the point y0 = 4 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
x2 + 3x+ 2

y − 2

)
= −x2 + 3x+ 2

(y − 2)2

The x domain of ∂f
∂y

when y = 4 is

{−∞ < x < ∞}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{y < 2∨ 2 < y}

And the point y0 = 4 is inside this domain. Therefore solution exists and is unique.

3.10.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x2 + 3x+ 2
y − 2
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Where f(x) = x2 + 3x+ 2 and g(y) = 1
y−2 . Integrating both sides gives

1
1

y−2
dy = x2 + 3x+ 2 dx

∫ 1
1

y−2
dy =

∫
x2 + 3x+ 2 dx

1
2y

2 − 2y = 1
3x

3 + 3
2x

2 + 2x+ c1

Which results in

y = 2 +
√
6x3 + 27x2 + 18c1 + 36x+ 36

3

y = 2−
√
6x3 + 27x2 + 18c1 + 36x+ 36

3

Initial conditions are used to solve for c1. Substituting x = 1 and y = 4 in the above
solution gives an equation to solve for the constant of integration.

4 = 2−
√
105 + 18c1

3

Warning: Unable to solve for constant of integration. Initial conditions are used to solve
for c1. Substituting x = 1 and y = 4 in the above solution gives an equation to solve
for the constant of integration.

4 = 2 +
√
105 + 18c1

3

c1 = −23
6

Substituting c1 found above in the general solution gives

y = 2 +
√
6x3 + 27x2 + 36x− 33

3

Summary
The solution(s) found are the following

(1)y = 2 +
√
6x3 + 27x2 + 36x− 33

3
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2 +
√
6x3 + 27x2 + 36x− 33

3

Verified OK.

3.10.3 Solving as differentialType ode

Writing the ode as

y′ = x2 + 3x+ 2
y − 2 (1)

Which becomes

(y − 2) dy =
(
x2 + 3x+ 2

)
dx (2)

But the RHS is complete differential because

(
x2 + 3x+ 2

)
dx = d

(
1
3x

3 + 3
2x

2 + 2x
)

Hence (2) becomes

(y − 2) dy = d

(
1
3x

3 + 3
2x

2 + 2x
)

828



Integrating both sides gives gives these solutions

y = 2 +
√
6x3 + 27x2 + 18c1 + 36x+ 36

3 + c1

y = 2−
√
6x3 + 27x2 + 18c1 + 36x+ 36

3 + c1

Initial conditions are used to solve for c1. Substituting x = 1 and y = 4 in the above
solution gives an equation to solve for the constant of integration.

4 = 2−
√
105 + 18c1

3 + c1

c1 = 3 + 5
√
6

3

Substituting c1 found above in the general solution gives

y = 5−
√

6x3 + 27x2 + 90 + 30
√
6 + 36x

3 + 5
√
6

3

Initial conditions are used to solve for c1. Substituting x = 1 and y = 4 in the above
solution gives an equation to solve for the constant of integration.

4 = 2 +
√
105 + 18c1

3 + c1

c1 = 3− 5
√
6

3

Substituting c1 found above in the general solution gives

y = 5 +
√

6x3 + 27x2 + 90− 30
√
6 + 36x

3 − 5
√
6

3

Summary
The solution(s) found are the following

(1)y = 5 +
√

6x3 + 27x2 + 90− 30
√
6 + 36x

3 − 5
√
6

3

(2)y = 5−
√

6x3 + 27x2 + 90 + 30
√
6 + 36x

3 + 5
√
6

3
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 5 +
√

6x3 + 27x2 + 90− 30
√
6 + 36x

3 − 5
√
6

3

Verified OK.

y = 5−
√

6x3 + 27x2 + 90 + 30
√
6 + 36x

3 + 5
√
6

3

Verified OK.

3.10.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x2 + 3x+ 2
y − 2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 169: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
x2 + 3x+ 2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x2+3x+2

dx

Which results in

S = 1
3x

3 + 3
2x

2 + 2x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 + 3x+ 2
y − 2

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x2 + 3x+ 2
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y − 2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R− 2

832



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 1
2R

2 − 2R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

1
3x

3 + 3
2x

2 + 2x = y2

2 − 2y + c1

Which simplifies to

1
3x

3 + 3
2x

2 + 2x = y2

2 − 2y + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2+3x+2
y−2

dS
dR

= R− 2

R = y

S = 1
3x

3 + 3
2x

2 + 2x

Initial conditions are used to solve for c1. Substituting x = 1 and y = 4 in the above
solution gives an equation to solve for the constant of integration.

23
6 = c1
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c1 =
23
6

Substituting c1 found above in the general solution gives

1
3x

3 + 3
2x

2 + 2x = 1
2y

2 − 2y + 23
6

Summary
The solution(s) found are the following

(1)1
3x

3 + 3
2x

2 + 2x = y2

2 − 2y + 23
6

Verification of solutions

1
3x

3 + 3
2x

2 + 2x = y2

2 − 2y + 23
6

Verified OK.

3.10.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x
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If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(y − 2) dy =
(
x2 + 3x+ 2

)
dx(

−x2 − 3x− 2
)
dx+(y − 2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 − 3x− 2
N(x, y) = y − 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2 − 3x− 2

)
= 0

And

∂N

∂x
= ∂

∂x
(y − 2)

= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 − 3x− 2 dx

(3)φ = −
x
(
x2 + 9

2x+ 6
)

3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y − 2. Therefore equation (4) becomes

(5)y − 2 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y − 2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(y − 2) dy

f(y) = 1
2y

2 − 2y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −
x
(
x2 + 9

2x+ 6
)

3 + y2

2 − 2y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −
x
(
x2 + 9

2x+ 6
)

3 + y2

2 − 2y
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Initial conditions are used to solve for c1. Substituting x = 1 and y = 4 in the above
solution gives an equation to solve for the constant of integration.

−23
6 = c1

c1 = −23
6

Substituting c1 found above in the general solution gives

−
x
(
x2 + 9

2x+ 6
)

3 + y2

2 − 2y = −23
6

Summary
The solution(s) found are the following

(1)−x3

3 − 3x2

2 + y2

2 − 2x− 2y = −23
6

Verification of solutions

−x3

3 − 3x2

2 + y2

2 − 2x− 2y = −23
6

Verified OK.

3.10.6 Maple step by step solution

Let’s solve[
y′ − x2+3x+2

y−2 = 0, y(1) = 4
]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
(y − 2) y′ = x2 + 3x+ 2

• Integrate both sides with respect to x∫
(y − 2) y′dx =

∫
(x2 + 3x+ 2) dx+ c1

• Evaluate integral
y2

2 − 2y = 1
3x

3 + 3
2x

2 + 2x+ c1

• Solve for y
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{
y = 2−

√
6x3+27x2+18c1+36x+36

3 , y = 2 +
√

6x3+27x2+18c1+36x+36
3

}
• Use initial condition y(1) = 4

4 = 2−
√
105+18c1

3

• Solution does not satisfy initial condition
• Use initial condition y(1) = 4

4 = 2 +
√
105+18c1

3

• Solve for c1
c1 = −23

6

• Substitute c1 = −23
6 into general solution and simplify

y = 2 +
√
6x3+27x2+36x−33

3

• Solution to the IVP

y = 2 +
√
6x3+27x2+36x−33

3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 25� �
dsolve([diff(y(x),x)=(x^2+3*x+2)/(y(x)-2),y(1) = 4],y(x), singsol=all)� �

y(x) = 2 +
√
6x3 + 27x2 + 36x− 33

3
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3 Solution by Mathematica
Time used: 0.167 (sec). Leaf size: 30� �
DSolve[{y'[x]==(x^2+3*x+2)/(y[x]-2),y[1]==4},y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
√

2x3

3 + 3x2 + 4x− 11
3 + 2
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Internal problem ID [938]
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Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli",
"separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + x
(
y2 + y

)
= 0

With initial conditions

[y(2) = 1]
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3.11.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)
= −yx(y + 1)

The x domain of f(x, y) when y = 1 is

{−∞ < x < ∞}

And the point x0 = 2 is inside this domain. The y domain of f(x, y) when x = 2 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y
(−yx(y + 1))

= −x(y + 1)− yx

The x domain of ∂f
∂y

when y = 1 is

{−∞ < x < ∞}

And the point x0 = 2 is inside this domain. The y domain of ∂f
∂y

when x = 2 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

3.11.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= −yx(y + 1)
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Where f(x) = −x and g(y) = y(y + 1). Integrating both sides gives

1
y (y + 1) dy = −x dx∫ 1
y (y + 1) dy =

∫
−x dx

ln (y)− ln (y + 1) = −x2

2 + c1

Raising both side to exponential gives

eln(y)−ln(y+1) = e−x2
2 +c1

Which simplifies to

y

y + 1 = c2e−
x2
2

Initial conditions are used to solve for c2. Substituting x = 2 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = − c2e−2

c2e−2 − 1

c2 =
e2
2

Substituting c2 found above in the general solution gives

y = − e−
(−2+x)(2+x)

2

e−
(−2+x)(2+x)

2 − 2

Summary
The solution(s) found are the following

(1)y = − e−
(−2+x)(2+x)

2

e−
(−2+x)(2+x)

2 − 2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = − e−
(−2+x)(2+x)

2

e−
(−2+x)(2+x)

2 − 2

Verified OK.

3.11.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −yx(y + 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 172: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− 1
x

dx

Which results in

S = −x2

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −yx(y + 1)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = −x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y (y + 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R (R + 1)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)− ln (R + 1) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x2

2 = ln (y)− ln (1 + y) + c1

Which simplifies to

−x2

2 = ln (y)− ln (1 + y) + c1

Which gives

y = 1
ex2

2 +c1 − 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −yx(y + 1) dS
dR

= 1
R(R+1)

R = y

S = −x2

2
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Initial conditions are used to solve for c1. Substituting x = 2 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = 1
ec1+2 − 1

c1 = ln (2)− 2

Substituting c1 found above in the general solution gives

y = 1
2 e

(−2+x)(2+x)
2 − 1

Summary
The solution(s) found are the following

(1)y = 1
2 e

(−2+x)(2+x)
2 − 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1
2 e

(−2+x)(2+x)
2 − 1

Verified OK.
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3.11.4 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= −yx(y + 1)

This is a Bernoulli ODE.
y′ = −xy − xy2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −x

f1(x) = −x

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= −x

y
− x (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)
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Substituting equations (5) and (6) into equation (4) gives

−w′(x) = −w(x)x− x

w′ = xw + x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −x

q(x) = x

Hence the ode is

w′(x)− w(x)x = x

The integrating factor µ is

µ = e
∫
−xdx

= e−x2
2

The ode becomes

d
dx(µw) = (µ) (x)

d
dx

(
e−x2

2 w
)
=
(
e−x2

2

)
(x)

d
(
e−x2

2 w
)
=
(
x e−x2

2

)
dx

Integrating gives

e−x2
2 w =

∫
x e−x2

2 dx

e−x2
2 w = −e−x2

2 + c1

Dividing both sides by the integrating factor µ = e−x2
2 results in

w(x) = −ex2
2 e−x2

2 + c1e
x2
2
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which simplifies to

w(x) = −1 + c1e
x2
2

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= −1 + c1e

x2
2

Or

y = 1
−1 + c1e

x2
2

Initial conditions are used to solve for c1. Substituting x = 2 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = 1
−1 + e2c1

c1 = 2 e−2

Substituting c1 found above in the general solution gives

y = 1
2 e

(−2+x)(2+x)
2 − 1

Summary
The solution(s) found are the following

(1)y = 1
2 e

(−2+x)(2+x)
2 − 1

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = 1
2 e

(−2+x)(2+x)
2 − 1

Verified OK.

3.11.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore (
− 1
y (y + 1)

)
dy = (x) dx

(−x) dx+
(
− 1
y (y + 1)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = − 1
y (y + 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x)

= 0

And
∂N

∂x
= ∂

∂x

(
− 1
y (y + 1)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y(y+1) . Therefore equation (4) becomes

(5)− 1
y (y + 1) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
y (y + 1)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− 1
y (y + 1)

)
dy

f(y) = − ln (y) + ln (y + 1) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 − ln (y) + ln (y + 1) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 − ln (y) + ln (y + 1)

The solution becomes

y = 1
ex2

2 +c1 − 1

Initial conditions are used to solve for c1. Substituting x = 2 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = 1
ec1+2 − 1
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c1 = ln (2)− 2

Substituting c1 found above in the general solution gives

y = 1
2 e

(−2+x)(2+x)
2 − 1

Summary
The solution(s) found are the following

(1)y = 1
2 e

(−2+x)(2+x)
2 − 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1
2 e

(−2+x)(2+x)
2 − 1

Verified OK.
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3.11.6 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= −yx(y + 1)

This is a Riccati ODE. Comparing the ODE to solve

y′ = −x y2 − yx

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = −x and f2(x) = −x. Let

y = −u′

f2u

= −u′

−xu
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = −1

f1f2 = x2

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

−xu′′(x)−
(
x2 − 1

)
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 + c2e−
x2
2

The above shows that

u′(x) = −c2x e−
x2
2
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Using the above in (1) gives the solution

y = − c2e−
x2
2

c1 + c2e−
x2
2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − e−x2
2

c3 + e−x2
2

Initial conditions are used to solve for c3. Substituting x = 2 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = − e−2

e−2 + c3

c3 = −2 e−2

Substituting c3 found above in the general solution gives

y = e−x2
2

2 e−2 − e−x2
2

Summary
The solution(s) found are the following

(1)y = e−x2
2

2 e−2 − e−x2
2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = e−x2
2

2 e−2 − e−x2
2

Verified OK.

3.11.7 Maple step by step solution

Let’s solve
[y′ + x(y2 + y) = 0, y(2) = 1]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y2+y
= −x

• Integrate both sides with respect to x∫
y′

y2+y
dx =

∫
−xdx+ c1

• Evaluate integral
ln (y)− ln (1 + y) = −x2

2 + c1

• Solve for y
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y = − e−
x2
2 +c1

−1+e−
x2
2 +c1

• Use initial condition y(2) = 1
1 = − ec1−2

−1+ec1−2

• Solve for c1
c1 = 2− ln (2)

• Substitute c1 = 2− ln (2) into general solution and simplify

y = − e−
(−2+x)(2+x)

2

e−
(−2+x)(2+x)

2 −2

• Solution to the IVP

y = − e−
(−2+x)(2+x)

2

e−
(−2+x)(2+x)

2 −2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 19� �
dsolve([diff(y(x),x)+x*(y(x)^2+y(x))=0,y(2) = 1],y(x), singsol=all)� �

y(x) = 1
−1 + 2 e

(2+x)(−2+x)
2

858



3 Solution by Mathematica
Time used: 0.241 (sec). Leaf size: 27� �
DSolve[{y'[x]+x*(y[x]^2+y[x])==0,y[2]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − e2

e2 − 2ex2
2
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3.12 problem 13
3.12.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 860
3.12.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 861
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Internal problem ID [939]
Internal file name [OUTPUT/939_Sunday_June_05_2022_01_54_31_AM_4937947/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
3y2 + 4y

)
y′ = −2x− cos (x)

With initial conditions

[y(0) = 1]

3.12.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= −2x+ cos (x)
y (3y + 4)

The x domain of f(x, y) when y = 1 is

{−∞ < x < ∞}
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And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is{
−∞ ≤ y < 0, 0 < y < −4

3 ,−
4
3 < y ≤ ∞

}

And the point y0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
−2x+ cos (x)

y (3y + 4)

)
= 2x+ cos (x)

y2 (3y + 4) + 6x+ 3 cos (x)
y (3y + 4)2

The x domain of ∂f
∂y

when y = 1 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of ∂f
∂y

when x = 0 is

{
−∞ ≤ y < 0, 0 < y < −4

3 ,−
4
3 < y ≤ ∞

}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

3.12.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −2x− cos (x)
y (3y + 4)

Where f(x) = −2x− cos (x) and g(y) = 1
y(3y+4) . Integrating both sides gives

1
1

y(3y+4)
dy = −2x− cos (x) dx

∫ 1
1

y(3y+4)
dy =

∫
−2x− cos (x) dx

y3 + 2y2 = −x2 − sin (x) + c1
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Which results in

y

=

(
−64− 108x2 − 108 sin (x) + 108c1 + 12

√
96x2 + 96 sin (x)− 96c1 + 81x4 + 162 sin (x)x2 − 162c1x2 + 81 sin (x)2 − 162 sin (x) c1 + 81c21

) 1
3

6
+ 8

3
(
−64− 108x2 − 108 sin (x) + 108c1 + 12

√
96x2 + 96 sin (x)− 96c1 + 81x4 + 162 sin (x)x2 − 162c1x2 + 81 sin (x)2 − 162 sin (x) c1 + 81c21

) 1
3

− 2
3

y =

−

(
−64− 108x2 − 108 sin (x) + 108c1 + 12

√
96x2 + 96 sin (x)− 96c1 + 81x4 + 162 sin (x)x2 − 162c1x2 + 81 sin (x)2 − 162 sin (x) c1 + 81c21

) 1
3

12
− 4

3
(
−64− 108x2 − 108 sin (x) + 108c1 + 12

√
96x2 + 96 sin (x)− 96c1 + 81x4 + 162 sin (x)x2 − 162c1x2 + 81 sin (x)2 − 162 sin (x) c1 + 81c21

) 1
3

− 2
3

+

i
√
3

(
−64−108x2−108 sin(x)+108c1+12

√
96x2+96 sin(x)−96c1+81x4+162 sin(x)x2−162c1x2+81 sin(x)2−162 sin(x)c1+81c21

) 1
3

6 − 8

3
(
−64−108x2−108 sin(x)+108c1+12

√
96x2+96 sin(x)−96c1+81x4+162 sin(x)x2−162c1x2+81 sin(x)2−162 sin(x)c1+81c21

) 1
3


2

y =

−

(
−64− 108x2 − 108 sin (x) + 108c1 + 12

√
96x2 + 96 sin (x)− 96c1 + 81x4 + 162 sin (x)x2 − 162c1x2 + 81 sin (x)2 − 162 sin (x) c1 + 81c21

) 1
3

12
− 4

3
(
−64− 108x2 − 108 sin (x) + 108c1 + 12

√
96x2 + 96 sin (x)− 96c1 + 81x4 + 162 sin (x)x2 − 162c1x2 + 81 sin (x)2 − 162 sin (x) c1 + 81c21

) 1
3

− 2
3

−

i
√
3

(
−64−108x2−108 sin(x)+108c1+12

√
96x2+96 sin(x)−96c1+81x4+162 sin(x)x2−162c1x2+81 sin(x)2−162 sin(x)c1+81c21

) 1
3

6 − 8

3
(
−64−108x2−108 sin(x)+108c1+12

√
96x2+96 sin(x)−96c1+81x4+162 sin(x)x2−162c1x2+81 sin(x)2−162 sin(x)c1+81c21

) 1
3


2
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 =
−i
(
−64 + 108c1 + 12

√
3
√

27c21 − 32c1
) 2

3 √3 + 16i
√
3−

(
−64 + 108c1 + 12

√
3
√
27c21 − 32c1

) 2
3 − 8

(
−64 + 108c1 + 12

√
3
√

27c21 − 32c1
) 1

3 − 16

12
(
−64 + 108c1 + 12

√
3
√
27c21 − 32c1

) 1
3

Warning: Unable to solve for constant of integration. Initial conditions are used to solve
for c1. Substituting x = 0 and y = 1 in the above solution gives an equation to solve
for the constant of integration.

1 =
i
(
−64 + 108c1 + 12

√
3
√

27c21 − 32c1
) 2

3 √3− 16i
√
3−

(
−64 + 108c1 + 12

√
3
√

27c21 − 32c1
) 2

3 − 8
(
−64 + 108c1 + 12

√
3
√
27c21 − 32c1

) 1
3 − 16

12
(
−64 + 108c1 + 12

√
3
√

27c21 − 32c1
) 1

3

Warning: Unable to solve for constant of integration. Initial conditions are used to solve
for c1. Substituting x = 0 and y = 1 in the above solution gives an equation to solve
for the constant of integration.

1 =

(
−64 + 108c1 + 12

√
3
√

27c21 − 32c1
) 2

3 − 4
(
−64 + 108c1 + 12

√
3
√
27c21 − 32c1

) 1
3 + 16

6
(
−64 + 108c1 + 12

√
3
√
27c21 − 32c1

) 1
3

Warning: Unable to solve for constant of integration.

Verification of solutions N/A

3.12.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2x+ cos (x)
y (3y + 4)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 175: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
−2x− cos (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
−2x−cos(x)

dx

Which results in

S = −x2 − sin (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x+ cos (x)
y (3y + 4)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = −2x− cos (x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 3y2 + 4y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 3R2 + 4R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R3 + 2R2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x2 − sin (x) = y3 + 2y2 + c1

Which simplifies to

−x2 − sin (x) = y3 + 2y2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x+cos(x)
y(3y+4)

dS
dR

= 3R2 + 4R

R = y

S = −x2 − sin (x)

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

0 = 3 + c1

c1 = −3

866



Substituting c1 found above in the general solution gives

−x2 − sin (x) = y3 + 2y2 − 3

Summary
The solution(s) found are the following

(1)−x2 − sin (x) = y3 + 2y2 − 3
Verification of solutions

−x2 − sin (x) = y3 + 2y2 − 3

Verified OK.

3.12.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
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and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(−y(3y + 4)) dy = (2x+ cos (x)) dx
(−2x− cos (x)) dx+(−y(3y + 4)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2x− cos (x)
N(x, y) = −y(3y + 4)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−2x− cos (x))

= 0

And
∂N

∂x
= ∂

∂x
(−y(3y + 4))

= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x− cos (x) dx

(3)φ = −x2 − sin (x) + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −y(3y + 4). Therefore equation (4) becomes

(5)−y(3y + 4) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y(3y + 4)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−3y2 − 4y

)
dy

f(y) = −y3 − 2y2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2 − sin (x)− y3 − 2y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2 − sin (x)− y3 − 2y2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

−3 = c1

c1 = −3

Substituting c1 found above in the general solution gives

−x2 − sin (x)− y3 − 2y2 = −3
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Summary
The solution(s) found are the following

(1)−x2 − sin (x)− y3 − 2y2 = −3
Verification of solutions

−x2 − sin (x)− y3 − 2y2 = −3

Verified OK.

3.12.5 Maple step by step solution

Let’s solve
[(3y2 + 4y) y′ = −2x− cos (x) , y(0) = 1]

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
(3y2 + 4y) y′dx =

∫
(−2x− cos (x)) dx+ c1

• Evaluate integral
y3 + 2y2 = −x2 − sin (x) + c1

• Solve for y

y =

(
−64−108x2−108 sin(x)+108c1+12

√
96x2+96 sin(x)−96c1+81x4+162 sin(x)x2−162c1x2+81 sin(x)2−162 sin(x)c1+81c21

) 1
3

6 + 8

3
(
−64−108x2−108 sin(x)+108c1+12

√
96x2+96 sin(x)−96c1+81x4+162 sin(x)x2−162c1x2+81 sin(x)2−162 sin(x)c1+81c21

) 1
3
− 2

3

• Use initial condition y(0) = 1

1 =

(
−64+108c1+12

√
81c21−96c1

) 1
3

6 + 8

3
(
−64+108c1+12

√
81c21−96c1

) 1
3
− 2

3

• Solve for c1

c1 = RootOf
(
−
(
−64 + 108_Z+ 12

√
3
√

27_Z2 − 32_Z
) 2

3 + 10
(
−64 + 108_Z+ 12

√
3
√
27_Z2 − 32_Z

) 1
3 − 16

)
• Substitute c1 = RootOf

(
−
(
−64 + 108_Z+ 12

√
3
√
27_Z2 − 32_Z

) 2
3 + 10

(
−64 + 108_Z+ 12

√
3
√

27_Z2 − 32_Z
) 1

3 − 16
)

into general solution and simplify
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y = −

2


−

−64−108x2−108 sin(x)+108RootOf

−
(
−64+108_Z+12

√
3

√
_Z

(
27_Z−32

)) 2
3
+10

(
−64+108_Z+12

√
3

√
_Z

(
27_Z−32

)) 1
3
−16

+12
√
3

√√√√√√
27x2+27 sin(x)−27RootOf

−
(
−64+108_Z+12

√
3

√
_Z

(
27_Z−32

)) 2
3
+10

(
−64+108_Z+12

√
3

√
_Z

(
27_Z−32

)) 1
3
−16

+32


x2+sin(x)−RootOf

−
(
−64+108_Z+12

√
3

√
_Z

(
27_Z−32

)) 2
3
+10

(
−64+108_Z+12

√
3

√
_Z

(
27_Z−32

)) 1
3
−16





2
3

4 +

−64−108x2−108 sin(x)+108RootOf

−
(
−64+108_Z+12

√
3
√
_Z

(
27_Z−32

)) 2
3
+10

(
−64+108_Z+12

√
3
√
_Z

(
27_Z−32

)) 1
3
−16

+12
√
3

√√√√√
27x2+27 sin(x)−27RootOf

−
(
−64+108_Z+12

√
3
√
_Z

(
27_Z−32

)) 2
3
+10

(
−64+108_Z+12

√
3
√
_Z

(
27_Z−32

)) 1
3
−16

+32

x2+sin(x)−RootOf

−
(
−64+108_Z+12

√
3
√
_Z

(
27_Z−32

)) 2
3
+10

(
−64+108_Z+12

√
3
√
_Z

(
27_Z−32

)) 1
3
−16




1
3

−4



3

−64−108x2−108 sin(x)+108RootOf

−
(
−64+108_Z+12

√
3
√
_Z

(
27_Z−32

)) 2
3
+10

(
−64+108_Z+12

√
3
√
_Z

(
27_Z−32

)) 1
3
−16

+12
√
3

√√√√√
27x2+27 sin(x)−27RootOf

−
(
−64+108_Z+12

√
3
√
_Z

(
27_Z−32

)) 2
3
+10

(
−64+108_Z+12

√
3
√
_Z

(
27_Z−32

)) 1
3
−16

+32

x2+sin(x)−RootOf

−
(
−64+108_Z+12

√
3
√
_Z

(
27_Z−32

)) 2
3
+10

(
−64+108_Z+12

√
3
√
_Z

(
27_Z−32

)) 1
3
−16




1
3

• Solution to the IVP
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.422 (sec). Leaf size: 102� �
dsolve([(3*y(x)^2+4*y(x))*diff(y(x),x)+2*x+cos(x)=0,y(0) = 1],y(x), singsol=all)� �
y(x)

=

(
260− 108x2 − 108 sin (x) + 12

√
441− 390x2 − 390 sin (x) + 81x4 + 162 sin (x)x2 + 81 sin (x)2

) 1
3

6
+ 8

3
(
260− 108x2 − 108 sin (x) + 12

√
441− 390x2 − 390 sin (x) + 81x4 + 162 sin (x)x2 + 81 sin (x)2

) 1
3

− 2
3

3 Solution by Mathematica
Time used: 2.549 (sec). Leaf size: 127� �
DSolve[{(3*y[x]^2+4*y[x])*y'[x]+2*x+Cos[x]==0,y[0]==1},y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
22/3

(
−27x2 +

√
(27x2 + 27 sin(x)− 65)2 − 256− 27 sin(x) + 65

)2/3

− 4 3

√
−27x2 +

√
(27x2 + 27 sin(x)− 65)2 − 256− 27 sin(x) + 65 + 8 3

√
2

6 3

√
−27x2 +

√
(27x2 + 27 sin(x)− 65)2 − 256− 27 sin(x) + 65
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3.13 problem 14
3.13.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 873
3.13.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 874
3.13.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 875
3.13.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 879
3.13.5 Solving as abelFirstKind ode . . . . . . . . . . . . . . . . . . . 882
3.13.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 885

Internal problem ID [940]
Internal file name [OUTPUT/940_Sunday_June_05_2022_01_54_33_AM_69820171/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "abelFirstKind", "separa-
ble", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + (1 + y) (y − 1) (y − 2)
x+ 1 = 0

With initial conditions

[y(1) = 0]

3.13.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= −(y + 1) (y − 1) (y − 2)
x+ 1
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The x domain of f(x, y) when y = 0 is

{x < −1∨−1 < x}

And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{−∞ < y < ∞}

And the point y0 = 0 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
−(y + 1) (y − 1) (y − 2)

x+ 1

)
= −(y − 1) (y − 2)

x+ 1 − (y + 1) (y − 2)
x+ 1 − (y + 1) (y − 1)

x+ 1

The x domain of ∂f
∂y

when y = 0 is

{x < −1∨−1 < x}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{−∞ < y < ∞}

And the point y0 = 0 is inside this domain. Therefore solution exists and is unique.

3.13.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y3 − 2y2 − y + 2
x+ 1

Where f(x) = − 1
x+1 and g(y) = y3 − 2y2 − y + 2. Integrating both sides gives

1
y3 − 2y2 − y + 2 dy = − 1

x+ 1 dx∫ 1
y3 − 2y2 − y + 2 dy =

∫
− 1
x+ 1 dx

ln (y + 1)
6 − ln (y − 1)

2 + ln (y − 2)
3 = − ln (x+ 1) + c1
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Raising both side to exponential gives

e
ln(y+1)

6 − ln(y−1)
2 + ln(y−2)

3 = e− ln(x+1)+c1

Which simplifies to

(y + 1)
1
6 (y − 2)

1
3

√
y − 1

= c2
x+ 1

Unable to solve for constant of integration due to RootOf in solution.
Summary
The solution(s) found are the following

(1)y

=RootOf
((
c62 − x6 − 6x5 − 15x4 − 20x3 − 15x2 − 6x− 1

)
_Z18 +

(
−6c62 + 6x6 + 36x5 + 90x4 + 120x3 + 90x2 + 36x+ 6

)
_Z12 +

(
12c62 − 9x6 − 54x5 − 135x4 − 180x3 − 135x2 − 54x− 9

)
_Z6 − 8c62

)6
− 1

Verification of solutions
y

=RootOf
((
c62 − x6 − 6x5 − 15x4 − 20x3 − 15x2 − 6x− 1

)
_Z18 +

(
−6c62 + 6x6 + 36x5 + 90x4 + 120x3 + 90x2 + 36x+ 6

)
_Z12 +

(
12c62 − 9x6 − 54x5 − 135x4 − 180x3 − 135x2 − 54x− 9

)
_Z6 − 8c62

)6
− 1

Verified OK.

3.13.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −(y + 1) (y − 1) (y − 2)
x+ 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 178: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −x− 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−x− 1dx

Which results in

S = − ln (−x− 1)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −(y + 1) (y − 1) (y − 2)
x+ 1

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
−x− 1

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

(y − 2) (y2 − 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

(R− 2) (R2 − 1)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R + 1)
6 − ln (R− 1)

2 + ln (R− 2)
3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (−x− 1) = ln (1 + y)
6 − ln (y − 1)

2 + ln (y − 2)
3 + c1

Which simplifies to

− ln (−x− 1) = ln (1 + y)
6 − ln (y − 1)

2 + ln (y − 2)
3 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − (y+1)(y−1)(y−2)
x+1

dS
dR

= 1
(R−2)(R2−1)

R = y

S = − ln (−x− 1)

Initial conditions are used to solve for c1. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

− ln (2)− iπ = −iπ

6 + ln (2)
3 + c1

878



c1 = −5iπ
6 − 4 ln (2)

3
Substituting c1 found above in the general solution gives

− ln (−x− 1) = ln (y + 1)
6 − ln (y − 1)

2 + ln (y − 2)
3 − 5iπ

6 − 4 ln (2)
3

Summary
The solution(s) found are the following

(1)− ln (−x− 1) = ln (1 + y)
6 − ln (y − 1)

2 + ln (y − 2)
3 − 5iπ

6 − 4 ln (2)
3

Verification of solutions

− ln (−x− 1) = ln (1 + y)
6 − ln (y − 1)

2 + ln (y − 2)
3 − 5iπ

6 − 4 ln (2)
3

Verified OK.

3.13.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x
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If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
(y + 1) (y − 1) (y − 2)

)
dy =

(
1

x+ 1

)
dx(

− 1
x+ 1

)
dx+

(
− 1
(y + 1) (y − 1) (y − 2)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x+ 1

N(x, y) = − 1
(y + 1) (y − 1) (y − 2)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x+ 1

)
= 0

And
∂N

∂x
= ∂

∂x

(
− 1
(y + 1) (y − 1) (y − 2)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x+ 1 dx

(3)φ = − ln (x+ 1) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
(y+1)(y−1)(y−2) . Therefore equation (4) becomes

(5)− 1
(y + 1) (y − 1) (y − 2) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
(y + 1) (y − 1) (y − 2)

= − 1
(y − 2) (y2 − 1)

Integrating the above w.r.t y results in∫
f ′(y) dy =

∫ (
− 1
(y − 2) (y2 − 1)

)
dy

f(y) = − ln (y + 1)
6 + ln (y − 1)

2 − ln (y − 2)
3 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x+ 1)− ln (y + 1)
6 + ln (y − 1)

2 − ln (y − 2)
3 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x+ 1)− ln (y + 1)
6 + ln (y − 1)

2 − ln (y − 2)
3

Initial conditions are used to solve for c1. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

−4 ln (2)
3 + iπ

6 = c1

c1 = −4 ln (2)
3 + iπ

6

Substituting c1 found above in the general solution gives

− ln (x+ 1)− ln (y + 1)
6 + ln (y − 1)

2 − ln (y − 2)
3 = −4 ln (2)

3 + iπ

6

Summary
The solution(s) found are the following

(1)− ln (x+ 1)− ln (1 + y)
6 + ln (y − 1)

2 − ln (y − 2)
3 = −4 ln (2)

3 + iπ

6
Verification of solutions

− ln (x+ 1)− ln (1 + y)
6 + ln (y − 1)

2 − ln (y − 2)
3 = −4 ln (2)

3 + iπ

6

Verified OK.

3.13.5 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form

y′ = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3

Comparing the above to given ODE which is

y′ = − y3

x+ 1 + 2y2
x+ 1 + y

x+ 1 − 2
x+ 1 (1)
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Therefore

f0(x) = − 2
x+ 1

f1(x) =
1

x+ 1
f2(x) =

2
x+ 1

f3(x) = − 1
x+ 1

Since f2(x) = 2
x+1 is not zero, then the first step is to apply the following transformation

to remove f2. Let y = u(x)− f2
3f3 or

y = u(x)−
(

2
x+1

− 3
x+1

)
= u(x) + 2

3

The above transformation applied to (1) gives a new ODE as

u′(x) = 7u(x)
3 (x+ 1) −

20
27 (x+ 1) −

u(x)3

x+ 1 (2)

The above ODE (2) can now be solved as separable.

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

=
7
3u− 20

27 − u3

x+ 1

Where f(x) = 1
x+1 and g(u) = 7

3u− 20
27 − u3. Integrating both sides gives

1
7
3u− 20

27 − u3 du = 1
x+ 1 dx

∫ 1
7
3u− 20

27 − u3 du =
∫ 1

x+ 1 dx

ln (3u− 1)
2 − ln (3u+ 5)

6 − ln (3u− 4)
3 = ln (x+ 1) + c3
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Raising both side to exponential gives

e
ln(3u−1)

2 − ln(3u+5)
6 − ln(3u−4)

3 = eln(x+1)+c3

Which simplifies to
√
3u− 1

(3u+ 5)
1
6 (3u− 4)

1
3
= c4(x+ 1)

Now we transform the solution u(x) =
RootOf

(
−27+

(
c64x

6+6c64x5+15c64x4+20c64x3+15c64x2+6c64x+c64−1
)_Z9

+
(
9c64x6+54c64x5+135c64x4+180c64x3+135c64x2+54c64x+9c64−9

)_Z6
−27_Z3)3

3 +
4
3 to y using y = u(x)− f2

3f3 , which gives

y =
RootOf

(
−27 + (c64x6 + 6c64x5 + 15c64x4 + 20c64x3 + 15c64x2 + 6c64x+ c64 − 1)_Z9 + (9c64x6 + 54c64x5 + 135c64x4 + 180c64x3 + 135c64x2 + 54c64x+ 9c64 − 9)_Z6 − 27_Z3)3

3 + 4
3 −

(
−2
3

)
=

RootOf
(
−27 + (c64x6 + 6c64x5 + 15c64x4 + 20c64x3 + 15c64x2 + 6c64x+ c64 − 1)_Z9 + (9c64x6 + 54c64x5 + 135c64x4 + 180c64x3 + 135c64x2 + 54c64x+ 9c64 − 9)_Z6 − 27_Z3)3

3 + 10
3

=
RootOf

(
−27 + (c64x6 + 6c64x5 + 15c64x4 + 20c64x3 + 15c64x2 + 6c64x+ c64 − 1)_Z9 + (9c64x6 + 54c64x5 + 135c64x4 + 180c64x3 + 135c64x2 + 54c64x+ 9c64 − 9)_Z6 − 27_Z3)3

3 + 10
3

Unable to solve for constant of integration due to RootOf in solution.
Summary
The solution(s) found are the following

(1)y

=
RootOf

(
−27 + (c64x6 + 6c64x5 + 15c64x4 + 20c64x3 + 15c64x2 + 6c64x+ c64 − 1)_Z9 + (9c64x6 + 54c64x5 + 135c64x4 + 180c64x3 + 135c64x2 + 54c64x+ 9c64 − 9)_Z6 − 27_Z3)3

3
+ 10

3
Verification of solutions
y

=
RootOf

(
−27 + (c64x6 + 6c64x5 + 15c64x4 + 20c64x3 + 15c64x2 + 6c64x+ c64 − 1)_Z9 + (9c64x6 + 54c64x5 + 135c64x4 + 180c64x3 + 135c64x2 + 54c64x+ 9c64 − 9)_Z6 − 27_Z3)3

3
+ 10

3

Warning, solution could not be verified
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3.13.6 Maple step by step solution

Let’s solve[
y′ + (1+y)(y−1)(y−2)

x+1 = 0, y(1) = 0
]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

(1+y)(y−1)(y−2) = − 1
x+1

• Integrate both sides with respect to x∫
y′

(1+y)(y−1)(y−2)dx =
∫
− 1

x+1dx+ c1

• Evaluate integral
ln(1+y)

6 − ln(y−1)
2 + ln(y−2)

3 = − ln (x+ 1) + c1

• Use initial condition y(1) = 0
− Iπ

6 + ln(2)
3 = − ln (2) + c1

• Solve for c1
c1 = 4 ln(2)

3 − Iπ
6

• Substitute c1 = 4 ln(2)
3 − Iπ

6 into general solution and simplify
ln(1+y)

6 − ln(y−1)
2 + ln(y−2)

3 = − ln (x+ 1) + 4 ln(2)
3 − Iπ

6

• Solution to the IVP
ln(1+y)

6 − ln(y−1)
2 + ln(y−2)

3 = − ln (x+ 1) + 4 ln(2)
3 − Iπ

6

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 6.86 (sec). Leaf size: 633� �
dsolve([diff(y(x),x)+((y(x)+1)*(y(x)-1)*(y(x)-2))/(x+1)=0,y(1) = 0],y(x), singsol=all)� �
y(x)

=
8RootOf

(
512_Z6 +

(
96 2 1

3x2 + 192x2 1
3 + 96 2 1

3

)
_Z4 − x6 − 6x5 − 15x4 − 20x3 − 15x2 − 6x− 257

)2
− 2 1

3 (x+ 1)2

8RootOf
(
512_Z6 +

(
96 2 1

3x2 + 192x2 1
3 + 96 2 1

3

)
_Z4 − x6 − 6x5 − 15x4 − 20x3 − 15x2 − 6x− 257

)2
y(x)

=
16RootOf

(
512_Z6 +

(
48ix2√3 2 1

3 + 96ix
√
3 2 1

3 + 48i
√
3 2 1

3 − 48 2 1
3x2 − 96x2 1

3 − 48 2 1
3

)
_Z4 − x6 − 6x5 − 15x4 − 20x3 − 15x2 − 6x− 257

)2
− (x+ 1)2

(
i
√
3− 1

)
2 1

3

16RootOf
(
512_Z6 +

(
48ix2

√
3 2 1

3 + 96ix
√
3 2 1

3 + 48i
√
3 2 1

3 − 48 2 1
3x2 − 96x2 1

3 − 48 2 1
3

)
_Z4 − x6 − 6x5 − 15x4 − 20x3 − 15x2 − 6x− 257

)2
y(x)

=
16RootOf

(
512_Z6 +

(
−48ix2√3 2 1

3 − 96ix
√
3 2 1

3 − 48i
√
3 2 1

3 − 48 2 1
3x2 − 96x2 1

3 − 48 2 1
3

)
_Z4 − x6 − 6x5 − 15x4 − 20x3 − 15x2 − 6x− 257

)2
+
(
1 + i

√
3
)
(x+ 1)2 2 1

3

16RootOf
(
512_Z6 +

(
−48ix2

√
3 2 1

3 − 96ix
√
3 2 1

3 − 48i
√
3 2 1

3 − 48 2 1
3x2 − 96x2 1

3 − 48 2 1
3

)
_Z4 − x6 − 6x5 − 15x4 − 20x3 − 15x2 − 6x− 257

)2
3 Solution by Mathematica
Time used: 60.912 (sec). Leaf size: 1618� �
DSolve[{y'[x]+((y[x]+1)*(y[x]-1)*(y[x]-2))/(x+1)==0,y[1]==0},y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→

(
−1− i

√
3
)
x12 − 12i

(
−i+

√
3
)
x11 − 66i

(
−i+

√
3
)
x10 − 220i

(
−i+

√
3
)
x9 − 495i

(
−i+

√
3
)
x8 − 792i

(
−i+

√
3
)
x7 + 2

(
3

√
−x18 − 18x17 − 153x16 − 816x15 − 3060x14 − 8568x13 − 19076x12 − 37968x11 − 77550x10 − 161260x9 − 297198x8 − 437328x7 − 557188x6 − 807288x5 − 1239540x4 − 1424176x3 − 1016985x2 − 399378x+ 16

√
(x+ 1)12 (x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x+ 257)3 − 66049− 590i

√
3− 590

)
x6 + 12

(
3

√
−x18 − 18x17 − 153x16 − 816x15 − 3060x14 − 8568x13 − 19076x12 − 37968x11 − 77550x10 − 161260x9 − 297198x8 − 437328x7 − 557188x6 − 807288x5 − 1239540x4 − 1424176x3 − 1016985x2 − 399378x+ 16

√
(x+ 1)12 (x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x+ 257)3 − 66049− 194i

√
3− 194

)
x5 + 15

(
2 3

√
−x18 − 18x17 − 153x16 − 816x15 − 3060x14 − 8568x13 − 19076x12 − 37968x11 − 77550x10 − 161260x9 − 297198x8 − 437328x7 − 557188x6 − 807288x5 − 1239540x4 − 1424176x3 − 1016985x2 − 399378x+ 16

√
(x+ 1)12 (x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x+ 257)3 − 66049− 289i

√
3− 289

)
x4 + 20

(
2 3

√
−x18 − 18x17 − 153x16 − 816x15 − 3060x14 − 8568x13 − 19076x12 − 37968x11 − 77550x10 − 161260x9 − 297198x8 − 437328x7 − 557188x6 − 807288x5 − 1239540x4 − 1424176x3 − 1016985x2 − 399378x+ 16

√
(x+ 1)12 (x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x+ 257)3 − 66049− 267i

√
3− 267

)
x3 + 6

(
5 3

√
−x18 − 18x17 − 153x16 − 816x15 − 3060x14 − 8568x13 − 19076x12 − 37968x11 − 77550x10 − 161260x9 − 297198x8 − 437328x7 − 557188x6 − 807288x5 − 1239540x4 − 1424176x3 − 1016985x2 − 399378x+ 16

√
(x+ 1)12 (x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x+ 257)3 − 66049− 651i

√
3− 651

)
x2 + 12

(
3

√
−x18 − 18x17 − 153x16 − 816x15 − 3060x14 − 8568x13 − 19076x12 − 37968x11 − 77550x10 − 161260x9 − 297198x8 − 437328x7 − 557188x6 − 807288x5 − 1239540x4 − 1424176x3 − 1016985x2 − 399378x+ 16

√
(x+ 1)12 (x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x+ 257)3 − 66049− 129i

√
3− 129

)
x+ i

√
3
(
−x18 − 18x17 − 153x16 − 816x15 − 3060x14 − 8568x13 − 19076x12 − 37968x11 − 77550x10 − 161260x9 − 297198x8 − 437328x7 − 557188x6 − 807288x5 − 1239540x4 − 1424176x3 − 1016985x2 − 399378x+ 16

√
(x+ 1)12 (x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x+ 257)3 − 66049

)2/3

−
(
−x18 − 18x17 − 153x16 − 816x15 − 3060x14 − 8568x13 − 19076x12 − 37968x11 − 77550x10 − 161260x9 − 297198x8 − 437328x7 − 557188x6 − 807288x5 − 1239540x4 − 1424176x3 − 1016985x2 − 399378x+ 16

√
(x+ 1)12 (x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x+ 257)3 − 66049

)2/3

+ 514 3

√
−x18 − 18x17 − 153x16 − 816x15 − 3060x14 − 8568x13 − 19076x12 − 37968x11 − 77550x10 − 161260x9 − 297198x8 − 437328x7 − 557188x6 − 807288x5 − 1239540x4 − 1424176x3 − 1016985x2 − 399378x+ 16

√
(x+ 1)12 (x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x+ 257)3 − 66049− 257i

√
3− 257

2 (x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x+ 257) 3

√
−x18 − 18x17 − 153x16 − 816x15 − 3060x14 − 8568x13 − 19076x12 − 37968x11 − 77550x10 − 161260x9 − 297198x8 − 437328x7 − 557188x6 − 807288x5 − 1239540x4 − 1424176x3 − 1016985x2 − 399378x+ 16

√
(x+ 1)12 (x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x+ 257)3 − 66049
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3.14 problem 15
3.14.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 887
3.14.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 888
3.14.3 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 890
3.14.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 891
3.14.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 895
3.14.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 899

Internal problem ID [941]
Internal file name [OUTPUT/941_Sunday_June_05_2022_01_54_42_AM_8081077/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 15.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + 2x(1 + y) = 0

With initial conditions

[y(0) = 2]

3.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 2x
q(x) = −2x
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Hence the ode is

2yx+ y′ = −2x

The domain of p(x) = 2x is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = −2x is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

3.14.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= x(−2y − 2)

Where f(x) = x and g(y) = −2y − 2. Integrating both sides gives

1
−2y − 2 dy = x dx∫ 1
−2y − 2 dy =

∫
x dx

− ln (y + 1)
2 = x2

2 + c1

Raising both side to exponential gives

1√
y + 1

= ex2
2 +c1

Which simplifies to

1√
y + 1

= c2e
x2
2
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = −e−2c1e2c1c22 + e−2c1

c22

c1 = − ln (3c22)
2

Substituting c1 found above in the general solution gives

y = −1 + 3 e−x2

Summary
The solution(s) found are the following

(1)y = −1 + 3 e−x2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −1 + 3 e−x2

Verified OK.
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3.14.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
2xdx

= ex2

The ode becomes
d
dx(µy) = (µ) (−2x)

d
dx

(
ex2

y
)
=
(
ex2
)
(−2x)

d
(
ex2

y
)
=
(
−2 ex2

x
)
dx

Integrating gives

ex2
y =

∫
−2 ex2

x dx

ex2
y = −ex2 + c1

Dividing both sides by the integrating factor µ = ex2 results in

y = −e−x2ex2 + c1e−x2

which simplifies to

y = −1 + c1e−x2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = c1 − 1

c1 = 3

Substituting c1 found above in the general solution gives

y = −1 + 3 e−x2

Summary
The solution(s) found are the following

(1)y = −1 + 3 e−x2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −1 + 3 e−x2

Verified OK.

3.14.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2x(y + 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 181: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x2 dy

Which results in

S = ex2
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x(y + 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2x ex2

y

Sy = ex2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −2 ex2

x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −2 eR2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −eR2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ex2
y = −ex2 + c1

Which simplifies to

ex2
y = −ex2 + c1

Which gives

y = −
(
ex2 − c1

)
e−x2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x(y + 1) dS
dR

= −2 eR2
R

R = x

S = ex2
y

Initial conditions are used to solve for c1. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = c1 − 1
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c1 = 3

Substituting c1 found above in the general solution gives

y = −1 + 3 e−x2

Summary
The solution(s) found are the following

(1)y = −1 + 3 e−x2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −1 + 3 e−x2

Verified OK.

3.14.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

−2y − 2

)
dy = (x) dx

(−x) dx+
(

1
−2y − 2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
−2y − 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x)

= 0
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And

∂N

∂x
= ∂

∂x

(
1

−2y − 2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
−2y−2 . Therefore equation (4) becomes

(5)1
−2y − 2 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
2 (y + 1)
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
2y + 2

)
dy

f(y) = − ln (y + 1)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 − ln (y + 1)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 − ln (y + 1)
2

The solution becomes
y = e−x2−2c1 − 1

Initial conditions are used to solve for c1. Substituting x = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = e−2c1 − 1

c1 = − ln (3)
2

Substituting c1 found above in the general solution gives

y = −1 + 3 e−x2

Summary
The solution(s) found are the following

(1)y = −1 + 3 e−x2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −1 + 3 e−x2

Verified OK.

3.14.6 Maple step by step solution

Let’s solve
[y′ + 2x(1 + y) = 0, y(0) = 2]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

1+y
= −2x

• Integrate both sides with respect to x∫
y′

1+y
dx =

∫
−2xdx+ c1

• Evaluate integral
ln (1 + y) = −x2 + c1

• Solve for y
y = e−x2+c1 − 1
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• Use initial condition y(0) = 2
2 = −1 + ec1

• Solve for c1
c1 = ln (3)

• Substitute c1 = ln (3) into general solution and simplify
y = −1 + 3 e−x2

• Solution to the IVP
y = −1 + 3 e−x2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 14� �
dsolve([diff(y(x),x)+2*x*(y(x)+1)=0,y(0) = 2],y(x), singsol=all)� �

y(x) = −1 + 3 e−x2

3 Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 16� �
DSolve[{y'[x]+2*x*(y[x]+1)==0,y[0]==2},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3e−x2 − 1
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3.15 problem 16
3.15.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 901
3.15.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 902
3.15.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 903
3.15.4 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 907
3.15.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 910
3.15.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 913

Internal problem ID [942]
Internal file name [OUTPUT/942_Sunday_June_05_2022_01_54_44_AM_26322134/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − 2xy
(
1 + y2

)
= 0

With initial conditions

[y(0) = 1]

3.15.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)
= 2xy

(
y2 + 1

)
The x domain of f(x, y) when y = 1 is

{−∞ < x < ∞}
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And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
2xy
(
y2 + 1

))
= 2
(
y2 + 1

)
x+ 4x y2

The x domain of ∂f
∂y

when y = 1 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of ∂f
∂y

when x = 0 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

3.15.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= 2xy

(
y2 + 1

)
Where f(x) = 2x and g(y) = y(y2 + 1). Integrating both sides gives

1
y (y2 + 1) dy = 2x dx∫ 1
y (y2 + 1) dy =

∫
2x dx

ln (y)− ln (y2 + 1)
2 = x2 + c1

Raising both side to exponential gives

eln(y)−
ln
(
y2+1

)
2 = ex2+c1
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Which simplifies to
y√

y2 + 1
= c2ex

2

Initial conditions are used to solve for c2. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 =
√
− 1
c22 − 1 c2

c2 =
√
2
2

Substituting c2 found above in the general solution gives

y = lim
c2→

√
2

2

c2ex
2

√
− 1
c22e2x

2 − 1

Summary
The solution(s) found are the following

(1)y = lim
c2→

√
2

2

c2ex
2

√
− 1
c22e2x

2 − 1

Verification of solutions

y = lim
c2→

√
2

2

c2ex
2

√
− 1
c22e2x

2 − 1

Verified OK.

3.15.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2xy
(
y2 + 1

)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 184: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
2x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
2x
dx

Which results in

S = x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2xy
(
y2 + 1

)
Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = 2x
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y (y2 + 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R (R2 + 1)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)− ln (R2 + 1)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2 = ln (y)− ln (1 + y2)
2 + c1

Which simplifies to

x2 = ln (y)− ln (1 + y2)
2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2xy(y2 + 1) dS
dR

= 1
R(R2+1)

R = y

S = x2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

0 = − ln (2)
2 + c1

c1 =
ln (2)
2
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Substituting c1 found above in the general solution gives

x2 = ln (y)− ln (y2 + 1)
2 + ln (2)

2
Summary
The solution(s) found are the following

(1)x2 = ln (y)− ln (1 + y2)
2 + ln (2)

2
Verification of solutions

x2 = ln (y)− ln (1 + y2)
2 + ln (2)

2

Verified OK.

3.15.4 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= 2xy

(
y2 + 1

)
This is a Bernoulli ODE.

y′ = 2xy + 2xy3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = 2x
f1(x) = 2x

n = 3
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Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= 2x
y2

+ 2x (4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = 2w(x)x+ 2x

w′ = −4xw − 4x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 4x
q(x) = −4x

Hence the ode is

w′(x) + 4w(x)x = −4x

The integrating factor µ is

µ = e
∫
4xdx

= e2x2

The ode becomes
d
dx(µw) = (µ) (−4x)

d
dx

(
e2x2

w
)
=
(
e2x2
)
(−4x)

d
(
e2x2

w
)
=
(
−4x e2x2

)
dx
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Integrating gives

e2x2
w =

∫
−4x e2x2 dx

e2x2
w = −e2x2 + c1

Dividing both sides by the integrating factor µ = e2x2 results in

w(x) = −e−2x2e2x2 + c1e−2x2

which simplifies to

w(x) = −1 + c1e−2x2

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= −1 + c1e−2x2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c1 − 1

c1 = 2

Substituting c1 found above in the general solution gives

1
y2

= −1 + 2 e−2x2

The above simplifies to

−2 e−2x2
y2 + y2 + 1 = 0

Summary
The solution(s) found are the following

(1)−2 e−2x2
y2 + y2 + 1 = 0

Verification of solutions

−2 e−2x2
y2 + y2 + 1 = 0

Verified OK.
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3.15.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

2y (y2 + 1)

)
dy = (x) dx

(−x) dx+
(

1
2y (y2 + 1)

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
2y (y2 + 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x)

= 0

And
∂N

∂x
= ∂

∂x

(
1

2y (y2 + 1)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= 1
2y(y2+1) . Therefore equation (4) becomes

(5)1
2y (y2 + 1) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
2y (y2 + 1)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
2y (y2 + 1)

)
dy

f(y) = ln (y)
2 − ln (y2 + 1)

4 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + ln (y)
2 − ln (y2 + 1)

4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + ln (y)
2 − ln (y2 + 1)

4

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

− ln (2)
4 = c1

c1 = − ln (2)
4

Substituting c1 found above in the general solution gives

−x2

2 + ln (y)
2 − ln (y2 + 1)

4 = − ln (2)
4

912



Summary
The solution(s) found are the following

(1)−x2

2 + ln (y)
2 − ln (1 + y2)

4 = − ln (2)
4

Verification of solutions

−x2

2 + ln (y)
2 − ln (1 + y2)

4 = − ln (2)
4

Verified OK.

3.15.6 Maple step by step solution

Let’s solve
[y′ − 2xy(1 + y2) = 0, y(0) = 1]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y(1+y2) = 2x

• Integrate both sides with respect to x∫
y′

y(1+y2)dx =
∫
2xdx+ c1

• Evaluate integral

ln (y)− ln
(
1+y2

)
2 = x2 + c1

• Solve for yy =

√
−
(
e2x2+2c1−1

)
e2x2+2c1

e2x2+2c1−1
, y = −

√
−
(
e2x2+2c1−1

)
e2x2+2c1

e2x2+2c1−1


• Use initial condition y(0) = 1

1 =
√

−
(
e2c1−1

)
e2c1

e2c1−1

• Solution does not satisfy initial condition
• Use initial condition y(0) = 1

1 = −
√

−
(
e2c1−1

)
e2c1

e2c1−1

• Solve for c1
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c1 = − ln(2)
2

• Substitute c1 = − ln(2)
2 into general solution and simplify

y = −

√
−
((

ex2
)2

−2
)(

ex2
)2

e2x2−2

• Solution to the IVP

y = −

√
−
((

ex2
)2

−2
)(

ex2
)2

e2x2−2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.079 (sec). Leaf size: 16� �
dsolve([diff(y(x),x)=2*x*y(x)*(1+y(x)^2),y(0) = 1],y(x), singsol=all)� �

y(x) = 1√
2 e−2x2 − 1

3 Solution by Mathematica
Time used: 60.086 (sec). Leaf size: 27� �
DSolve[{y'[x]==2*x*y[x]*(1+y[x]^2),y[0]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → iex
2

√
e2x2 − 2
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3.16 problem 17
3.16.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 915
3.16.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 917
3.16.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 921
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Internal problem ID [943]
Internal file name [OUTPUT/943_Sunday_June_05_2022_01_54_46_AM_76131040/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 17.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
x2 + 2

)
y′ − 4x

(
y2 + 2y + 1

)
= 0

3.16.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x(4y2 + 8y + 4)
x2 + 2

Where f(x) = x
x2+2 and g(y) = 4y2 + 8y + 4. Integrating both sides gives

1
4y2 + 8y + 4 dy = x

x2 + 2 dx
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∫ 1
4y2 + 8y + 4 dy =

∫
x

x2 + 2 dx

− 1
4 (y + 1) = ln (x2 + 2)

2 + c1

Which results in

y = −2 ln (x2 + 2) + 4c1 + 1
2 (ln (x2 + 2) + 2c1)

Summary
The solution(s) found are the following

(1)y = −2 ln (x2 + 2) + 4c1 + 1
2 (ln (x2 + 2) + 2c1)

Figure 195: Slope field plot

Verification of solutions

y = −2 ln (x2 + 2) + 4c1 + 1
2 (ln (x2 + 2) + 2c1)

Verified OK.
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3.16.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 4x(y2 + 2y + 1)
x2 + 2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 187: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x2 + 2
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x2+2
x

dx

Which results in

S = ln (x2 + 2)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 4x(y2 + 2y + 1)
x2 + 2
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = x

x2 + 2
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

4 (y + 1)2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

4 (R + 1)2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
4 (R + 1) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x2 + 2)
2 = − 1

4 (1 + y) + c1

Which simplifies to

ln (x2 + 2)
2 = − 1

4 (1 + y) + c1

Which gives

y = −2 ln (x2 + 2)− 4c1 + 1
2 (ln (x2 + 2)− 2c1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 4x
(
y2+2y+1

)
x2+2

dS
dR

= 1
4(R+1)2

R = y

S = ln (x2 + 2)
2

Summary
The solution(s) found are the following

(1)y = −2 ln (x2 + 2)− 4c1 + 1
2 (ln (x2 + 2)− 2c1)
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Figure 196: Slope field plot

Verification of solutions

y = −2 ln (x2 + 2)− 4c1 + 1
2 (ln (x2 + 2)− 2c1)

Verified OK.

3.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

4y2 + 8y + 4

)
dy =

(
x

x2 + 2

)
dx(

− x

x2 + 2

)
dx+

(
1

4y2 + 8y + 4

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x

x2 + 2
N(x, y) = 1

4y2 + 8y + 4

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− x

x2 + 2

)
= 0
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And

∂N

∂x
= ∂

∂x

(
1

4y2 + 8y + 4

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

x2 + 2 dx

(3)φ = − ln (x2 + 2)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
4y2+8y+4 . Therefore equation (4) becomes

(5)1
4y2 + 8y + 4 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
4y2 + 8y + 4

= 1
4 (y + 1)2

923



Integrating the above w.r.t y results in

∫
f ′(y) dy =

∫ ( 1
4 (y + 1)2

)
dy

f(y) = − 1
4 (y + 1) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x2 + 2)
2 − 1

4 (y + 1) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x2 + 2)
2 − 1

4 (y + 1)

The solution becomes

y = −2 ln (x2 + 2) + 4c1 + 1
2 (ln (x2 + 2) + 2c1)

Summary
The solution(s) found are the following

(1)y = −2 ln (x2 + 2) + 4c1 + 1
2 (ln (x2 + 2) + 2c1)
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Figure 197: Slope field plot

Verification of solutions

y = −2 ln (x2 + 2) + 4c1 + 1
2 (ln (x2 + 2) + 2c1)

Verified OK.

3.16.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= 4x(y2 + 2y + 1)
x2 + 2

This is a Riccati ODE. Comparing the ODE to solve

y′ = 4x y2
x2 + 2 + 8xy

x2 + 2 + 4x
x2 + 2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

925



Shows that f0(x) = 4x
x2+2 , f1(x) =

8x
x2+2 and f2(x) = 4x

x2+2 . Let

y = −u′

f2u

= −u′

4xu
x2+2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

4
x2 + 2 − 8x2

(x2 + 2)2

f1f2 =
32x2

(x2 + 2)2

f 2
2 f0 =

64x3

(x2 + 2)3

Substituting the above terms back in equation (2) gives

4xu′′(x)
x2 + 2 −

(
4

x2 + 2 + 24x2

(x2 + 2)2
)
u′(x) + 64x3u(x)

(x2 + 2)3
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) =
(
x2 + 2

)2 (ln (x2 + 2
)
c1 + c2

)
The above shows that

u′(x) = 4x
(
ln
(
x2 + 2

)
c1 +

c1
2 + c2

) (
x2 + 2

)
Using the above in (1) gives the solution

y = −
ln (x2 + 2) c1 + c1

2 + c2
ln (x2 + 2) c1 + c2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y = −2 ln (x2 + 2) c3 − c3 − 2
2 ln (x2 + 2) c3 + 2

Summary
The solution(s) found are the following

(1)y = −2 ln (x2 + 2) c3 − c3 − 2
2 ln (x2 + 2) c3 + 2

Figure 198: Slope field plot

Verification of solutions

y = −2 ln (x2 + 2) c3 − c3 − 2
2 ln (x2 + 2) c3 + 2

Verified OK.
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3.16.5 Maple step by step solution

Let’s solve
(x2 + 2) y′ − 4x(y2 + 2y + 1) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y2+2y+1 = 4x
x2+2

• Integrate both sides with respect to x∫
y′

y2+2y+1dx =
∫ 4x

x2+2dx+ c1

• Evaluate integral
− 1

1+y
= 2 ln (x2 + 2) + c1

• Solve for y

y = −2 ln
(
x2+2

)
+c1+1

2 ln(x2+2)+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 32� �
dsolve(diff(y(x),x)*(x^2+2)=4*x*(y(x)^2+2*y(x)+1),y(x), singsol=all)� �

y(x) = −2 ln (x2 + 2)− 4c1 − 1
2 ln (x2 + 2) + 4c1
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3 Solution by Mathematica
Time used: 0.195 (sec). Leaf size: 37� �
DSolve[y'[x]*(x^2+2)==4*x*(y[x]^2+2*y[x]+1),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2 log (x2 + 2) + 1 + c1
2 log (x2 + 2) + c1

y(x) → −1
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Internal problem ID [944]
Internal file name [OUTPUT/944_Sunday_June_05_2022_01_54_47_AM_93818467/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 18.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "abelFirstKind", "separa-
ble", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + 2x
(
y3 − 3y + 2

)
= 0

With initial conditions

[y(0) = 3]

3.17.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)
= −2x

(
y3 − 3y + 2

)
The x domain of f(x, y) when y = 3 is

{−∞ < x < ∞}
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And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}

And the point y0 = 3 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
−2x

(
y3 − 3y + 2

))
= −2x

(
3y2 − 3

)
The x domain of ∂f

∂y
when y = 3 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of ∂f
∂y

when x = 0 is

{−∞ < y < ∞}

And the point y0 = 3 is inside this domain. Therefore solution exists and is unique.

3.17.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= x

(
−2y3 + 6y − 4

)
Where f(x) = x and g(y) = −2y3 + 6y − 4. Integrating both sides gives

1
−2y3 + 6y − 4 dy = x dx∫ 1
−2y3 + 6y − 4 dy =

∫
x dx

1
6y − 6 + ln (y − 1)

18 − ln (2 + y)
18 = x2

2 + c1

Which results in

y = eRootOf
(
9x2e_Z−ln

(
e_Z−3

)
e_Z+18c1e_Z+_Z e_Z−27x2+3 ln

(
e_Z−3

)
−54c1−3_Z−3

)
− 2
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Unable to solve for constant of integration due to RootOf in solution.
Summary
The solution(s) found are the following

(1)y = eRootOf
(
9x2e_Z−ln

(
e_Z−3

)
e_Z+18c1e_Z+_Z e_Z−27x2+3 ln

(
e_Z−3

)
−54c1−3_Z−3

)
− 2

Verification of solutions

y = eRootOf
(
9x2e_Z−ln

(
e_Z−3

)
e_Z+18c1e_Z+_Z e_Z−27x2+3 ln

(
e_Z−3

)
−54c1−3_Z−3

)
− 2

Verified OK.

3.17.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2x
(
y3 − 3y + 2

)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 190: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x

dx

Which results in

S = x2

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x
(
y3 − 3y + 2

)
Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

2y3 − 6y + 4 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

2R3 − 6R + 4
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 1
6R− 6 + ln (R− 1)

18 − ln (R + 2)
18 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2

2 = 1
6y − 6 + ln (y − 1)

18 − ln (2 + y)
18 + c1

Which simplifies to

x2

2 = 1
6y − 6 + ln (y − 1)

18 − ln (2 + y)
18 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x(y3 − 3y + 2) dS
dR

= − 1
2R3−6R+4

R = y

S = x2

2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

0 = ln (2)
18 − ln (5)

18 + c1 +
1
12

c1 = − 1
12 − ln (2)

18 + ln (5)
18
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Substituting c1 found above in the general solution gives

x2

2 = −2 ln (2) y + 2 ln (5) y + 2 ln (y − 1) y − 2 ln (2 + y) y + 2 ln (2)− 2 ln (5)− 2 ln (y − 1) + 2 ln (2 + y)− 3y + 9
36y − 36

The above simplifies to

18y x2 + 2 ln (2) y − 2 ln (5) y − 2 ln (y − 1) y + 2 ln (2 + y) y − 18x2 − 2 ln (2) + 2 ln (5) + 2 ln (y − 1)− 2 ln (2 + y) + 3y − 9 = 0

Summary
The solution(s) found are the following

(1)(−2 + 2y) ln (2 + y) + (−2y + 2) ln (y − 1) + (−2 + 2y) ln (2)
+ (−2y + 2) ln (5) + 18x2y − 18x2 + 3y − 9 = 0

Verification of solutions

(−2 + 2y) ln (2 + y) + (−2y + 2) ln (y − 1) + (−2 + 2y) ln (2)
+ (−2y + 2) ln (5) + 18x2y − 18x2 + 3y − 9 = 0

Verified OK.

3.17.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

−2y3 + 6y − 4

)
dy = (x) dx

(−x) dx+
(

1
−2y3 + 6y − 4

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
−2y3 + 6y − 4

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−x)

= 0

And

∂N

∂x
= ∂

∂x

(
1

−2y3 + 6y − 4

)
= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
−2y3+6y−4 . Therefore equation (4) becomes

(5)1
−2y3 + 6y − 4 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
2 (y3 − 3y + 2)

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
2y3 − 6y + 4

)
dy

f(y) = 1
6y − 6 + ln (y − 1)

18 − ln (2 + y)
18 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + 1
6y − 6 + ln (y − 1)

18 − ln (2 + y)
18 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + 1
6y − 6 + ln (y − 1)

18 − ln (2 + y)
18

Initial conditions are used to solve for c1. Substituting x = 0 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

1
12 + ln (2)

18 − ln (5)
18 = c1

c1 =
1
12 + ln (2)

18 − ln (5)
18

Substituting c1 found above in the general solution gives

−x2

2 + 1
6y − 6 + ln (y − 1)

18 − ln (2 + y)
18 = 1

12 + ln (2)
18 − ln (5)

18

The above simplifies to

−18y x2 − 2 ln (2) y + 2 ln (5) y + 2 ln (y − 1) y − 2 ln (2 + y) y + 18x2 + 2 ln (2)− 2 ln (5)− 2 ln (y − 1) + 2 ln (2 + y)− 3y + 9 = 0

Summary
The solution(s) found are the following

(1)(−2y + 2) ln (2 + y) + (−2 + 2y) ln (y − 1) + (−2y + 2) ln (2)
+ (−2 + 2y) ln (5)− 18x2y + 18x2 − 3y + 9 = 0

Verification of solutions

(−2y + 2) ln (2 + y) + (−2 + 2y) ln (y − 1) + (−2y + 2) ln (2)
+ (−2 + 2y) ln (5)− 18x2y + 18x2 − 3y + 9 = 0

Verified OK.
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3.17.5 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form

y′ = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3

Comparing the above to given ODE which is

y′ = −2xy3 + 6yx− 4x (1)

Therefore

f0(x) = −4x
f1(x) = 6x
f2(x) = 0
f3(x) = −2x

Since f2(x) = 0 then we check the Abel invariant to see if it depends on x or not. The
Abel invariant is given by

− f 3
1

f 2
0 f3

Which when evaluating gives

27
4

Since the Abel invariant does not depend on x then this ode can be solved directly.

3.17.6 Maple step by step solution

Let’s solve
[y′ + 2x(y3 − 3y + 2) = 0, y(0) = 3]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y3−3y+2 = −2x

• Integrate both sides with respect to x∫
y′

y3−3y+2dx =
∫
−2xdx+ c1
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• Evaluate integral
− 1

3(y−1) −
ln(y−1)

9 + ln(2+y)
9 = −x2 + c1

• Use initial condition y(0) = 3
−1

6 −
ln(2)
9 + ln(5)

9 = c1

• Solve for c1
c1 = −1

6 −
ln(2)
9 + ln(5)

9

• Substitute c1 = −1
6 −

ln(2)
9 + ln(5)

9 into general solution and simplify

− 1
3y−3 −

ln(y−1)
9 + ln(2+y)

9 = −x2 − 1
6 −

ln(2)
9 + ln(5)

9

• Solution to the IVP
− 1

3y−3 −
ln(y−1)

9 + ln(2+y)
9 = −x2 − 1

6 −
ln(2)
9 + ln(5)

9

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.375 (sec). Leaf size: 70� �
dsolve([diff(y(x),x)=-2*x*(y(x)^3-3*y(x)+2),y(0) = 3],y(x), singsol=all)� �
y(x)
= eRootOf

(
18x2e_Z−2 ln

(
e_Z−3

)
e_Z+2 e_Z ln(2)−2 e_Z ln(5)+2_Z e_Z−54x2+3 e_Z+6 ln

(
e_Z−3

)
−6 ln(2)+6 ln(5)−6_Z−15

)
− 2

3 Solution by Mathematica
Time used: 1.071 (sec). Leaf size: 49� �
DSolve[{y'[x]==-2*x*(y[x]^3-3*y[x]+2),y[0]==3},y[x],x,IncludeSingularSolutions -> True]� �
y(x) → InverseFunction

[
1
9

(
− 3
#1− 1 − log(#1− 1) + log(#1+ 2)

)
&
] [

−x2 − 1
6

+ 1
9 log

(
5
2

)]
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3.18 problem 19
3.18.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 944
3.18.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 945
3.18.3 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 946
3.18.4 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 948
3.18.5 Solving as first order ode lie symmetry lookup ode . . . . . . . 952
3.18.6 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 956
3.18.7 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 959

Internal problem ID [945]
Internal file name [OUTPUT/945_Sunday_June_05_2022_01_54_51_AM_48473993/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "homogeneousTypeMapleC", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − 2x
1 + 2y = 0

With initial conditions

[y(2) = 0]
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3.18.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= 2x
1 + 2y

The x domain of f(x, y) when y = 0 is

{−∞ < x < ∞}

And the point x0 = 2 is inside this domain. The y domain of f(x, y) when x = 2 is

{
y < −1

2 ∨−1
2 < y

}

And the point y0 = 0 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
2x

1 + 2y

)
= − 4x

(1 + 2y)2

The x domain of ∂f
∂y

when y = 0 is

{−∞ < x < ∞}

And the point x0 = 2 is inside this domain. The y domain of ∂f
∂y

when x = 2 is

{
y < −1

2 ∨−1
2 < y

}

And the point y0 = 0 is inside this domain. Therefore solution exists and is unique.
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3.18.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 2x
1 + 2y

Where f(x) = 2x and g(y) = 1
1+2y . Integrating both sides gives

1
1

1+2y
dy = 2x dx

∫ 1
1

1+2y
dy =

∫
2x dx

y2 + y = x2 + c1

Which results in

y = −1
2 +

√
4x2 + 4c1 + 1

2

y = −1
2 −

√
4x2 + 4c1 + 1

2

Initial conditions are used to solve for c1. Substituting x = 2 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = −1
2 −

√
17 + 4c1

2
Warning: Unable to solve for constant of integration. Initial conditions are used to solve
for c1. Substituting x = 2 and y = 0 in the above solution gives an equation to solve
for the constant of integration.

0 = −1
2 +

√
17 + 4c1

2

c1 = −4

Substituting c1 found above in the general solution gives

y = −1
2 +

√
4x2 − 15

2
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Summary
The solution(s) found are the following

(1)y = −1
2 +

√
4x2 − 15

2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −1
2 +

√
4x2 − 15

2

Verified OK.

3.18.3 Solving as differentialType ode

Writing the ode as

y′ = 2x
1 + 2y (1)

Which becomes

(1 + 2y) dy = (2x) dx (2)

But the RHS is complete differential because

(2x) dx = d
(
x2)
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Hence (2) becomes

(1 + 2y) dy = d
(
x2)

Integrating both sides gives gives these solutions

y = −1
2 +

√
4x2 + 4c1 + 1

2 + c1

y = −1
2 −

√
4x2 + 4c1 + 1

2 + c1

Initial conditions are used to solve for c1. Substituting x = 2 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = −1
2 −

√
17 + 4c1

2 + c1

c1 =
√
5 + 1

Substituting c1 found above in the general solution gives

y = 1
2 −

√
4x2 + 4

√
5 + 5

2 +
√
5

Initial conditions are used to solve for c1. Substituting x = 2 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = −1
2 +

√
17 + 4c1

2 + c1

c1 = −
√
5 + 1

Substituting c1 found above in the general solution gives

y = 1
2 +

√
4x2 − 4

√
5 + 5

2 −
√
5

Summary
The solution(s) found are the following

(1)y = 1
2 +

√
4x2 − 4

√
5 + 5

2 −
√
5

(2)y = 1
2 −

√
4x2 + 4

√
5 + 5

2 +
√
5
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1
2 +

√
4x2 − 4

√
5 + 5

2 −
√
5

Verified OK.

y = 1
2 −

√
4x2 + 4

√
5 + 5

2 +
√
5

Verified OK.

3.18.4 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = 2X + 2x0

1 + 2Y (X) + 2y0

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 0

y0 = −1
2
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Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = X

Y (X)

In canonical form, the ODE is

Y ′ = F (X,Y )

= X

Y
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = X and N = Y are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode
is homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = 1

u

du
dX =

1
u(X) − u(X)

X

Or
d

dX
u(X)−

1
u(X) − u(X)

X
= 0

Or (
d

dX
u(X)

)
u(X)X + u(X)2 − 1 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −u2 − 1
uX
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Where f(X) = − 1
X

and g(u) = u2−1
u

. Integrating both sides gives

1
u2−1
u

du = − 1
X

dX

∫ 1
u2−1
u

du =
∫

− 1
X

dX

ln (u− 1)
2 + ln (u+ 1)

2 = − ln (X) + c2

The above can be written as(
1
2

)
(ln (u− 1) + ln (u+ 1)) = − ln (X) + 2c2

ln (u− 1) + ln (u+ 1) = (2) (− ln (X) + 2c2)
= −2 ln (X) + 4c2

Raising both side to exponential gives

eln(u−1)+ln(u+1) = e−2 ln(X)+2c2

Which simplifies to

u2 − 1 = 2c2
X2

= c3
X2

The solution is
u(X)2 − 1 = c3

X2

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X)2

X2 − 1 = c3
X2

Which simplifies to

−(X − Y (X)) (X + Y (X)) = c3

Using the solution for Y (X)

−(X − Y (X)) (X + Y (X)) = c3
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And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 1
2

X = x

Then the solution in y becomes

−
(
x− 1

2 − y

)(
x+ 1

2 + y

)
= c3

Initial conditions are used to solve for c3. Substituting x = 2 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

−15
4 = c3

c3 = −15
4

Substituting c3 found above in the general solution gives

−
(
x− 1

2 − y

)(
x+ 1

2 + y

)
= −15

4

Solving for y from the above gives

y = −1
2 +

√
4x2 − 15

2

Summary
The solution(s) found are the following

(1)y = −1
2 +

√
4x2 − 15

2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −1
2 +

√
4x2 − 15

2

Verified OK.

3.18.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2x
1 + 2y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 193: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
2x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
2x
dx

Which results in

S = x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2x
1 + 2y

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = 2x
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 + 2y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1 + 2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2 +R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2 = y2 + c1 + y

Which simplifies to

x2 = y2 + c1 + y

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2x
1+2y

dS
dR

= 1 + 2R

R = y

S = x2

Initial conditions are used to solve for c1. Substituting x = 2 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

4 = c1

c1 = 4

955



Substituting c1 found above in the general solution gives

x2 = y2 + y + 4

Summary
The solution(s) found are the following

(1)x2 = y2 + y + 4
Verification of solutions

x2 = y2 + y + 4

Verified OK.

3.18.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
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and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
2 + y

)
dy = (x) dx

(−x) dx+
(
1
2 + y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
2 + y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−x)

= 0

And

∂N

∂x
= ∂

∂x

(
1
2 + y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
2 + y. Therefore equation (4) becomes

(5)1
2 + y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
2 + y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
2 + y

)
dy

f(y) = 1
2y +

1
2y

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −1
2x

2 + 1
2y +

1
2y

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −1
2x

2 + 1
2y +

1
2y

2
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Initial conditions are used to solve for c1. Substituting x = 2 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

−2 = c1

c1 = −2

Substituting c1 found above in the general solution gives

−1
2x

2 + 1
2y +

1
2y

2 = −2

Summary
The solution(s) found are the following

(1)−x2

2 + y

2 + y2

2 = −2

Verification of solutions

−x2

2 + y

2 + y2

2 = −2

Verified OK.

3.18.7 Maple step by step solution

Let’s solve[
y′ − 2x

1+2y = 0, y(2) = 0
]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(1 + 2y) = 2x

• Integrate both sides with respect to x∫
y′(1 + 2y) dx =

∫
2xdx+ c1

• Evaluate integral
y2 + y = x2 + c1

• Solve for y
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{
y = −1

2 −
√

4x2+4c1+1
2 , y = −1

2 +
√

4x2+4c1+1
2

}
• Use initial condition y(2) = 0

0 = −1
2 −

√
17+4c1
2

• Solution does not satisfy initial condition
• Use initial condition y(2) = 0

0 = −1
2 +

√
17+4c1
2

• Solve for c1
c1 = −4

• Substitute c1 = −4 into general solution and simplify

y = −1
2 +

√
4x2−15

2

• Solution to the IVP

y = −1
2 +

√
4x2−15

2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 17� �
dsolve([diff(y(x),x)=2*x/(1+2*y(x)),y(2) = 0],y(x), singsol=all)� �

y(x) = −1
2 +

√
4x2 − 15

2
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3 Solution by Mathematica
Time used: 0.111 (sec). Leaf size: 22� �
DSolve[{y'[x]==2*x/(1+2*y[x]),y[2]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(√
4x2 − 15− 1

)
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3.19 problem 20
3.19.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 962
3.19.2 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 963
3.19.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 964

Internal problem ID [946]
Internal file name [OUTPUT/946_Sunday_June_05_2022_01_54_52_AM_16422908/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 20.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ − 2y + y2 = 0

With initial conditions

[y(0) = 1]

3.19.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)
= −y2 + 2y

The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Now we will look at the continuity of
∂f

∂y
= ∂

∂y

(
−y2 + 2y

)
= −2y + 2
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The y domain of ∂f
∂y

when x = 0 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

3.19.2 Solving as quadrature ode

Integrating both sides gives ∫ 1
−y2 + 2ydy =

∫
dx

ln (y)
2 − ln (y − 2)

2 = x+ c1

The above can be written as(
1
2

)
(ln (y)− ln (y − 2)) = x+ c1

ln (y)− ln (y − 2) = (2) (x+ c1)
= 2x+ 2c1

Raising both side to exponential gives

eln(y)−ln(y−2) = 2c1e2x

Which simplifies to
y

y − 2 = c2e2x

Initial conditions are used to solve for c2. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = 2c2
c2 − 1

c2 = −1

Substituting c2 found above in the general solution gives

y = 2 e2x
e2x + 1
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Summary
The solution(s) found are the following

(1)y = 2 e2x
e2x + 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2 e2x
e2x + 1

Verified OK.

3.19.3 Maple step by step solution

Let’s solve
[y′ − 2y + y2 = 0, y(0) = 1]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

2y−y2
= 1

• Integrate both sides with respect to x∫
y′

2y−y2
dx =

∫
1dx+ c1
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• Evaluate integral
ln(y)
2 − ln(y−2)

2 = x+ c1

• Solve for y
y = 2 e2x+2c1

e2x+2c1−1

• Use initial condition y(0) = 1
1 = 2 e2c1

e2c1−1

• Solve for c1
c1 = I

2π

• Substitute c1 = I
2π into general solution and simplify

y = 2 e2x
e2x+1

• Solution to the IVP
y = 2 e2x

e2x+1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �

965



3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
dsolve([diff(y(x),x)=2*y(x)-y(x)^2,y(0) = 1],y(x), singsol=all)� �

y(x) = 2
1 + e−2x

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 21� �
DSolve[{y'[x]==2*y[x]-y[x]^2,y[0]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2e2x
e2x + 1
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3.20 problem 21
3.20.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 968
3.20.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 968
3.20.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 970
3.20.4 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 972
3.20.5 Solving as first order ode lie symmetry lookup ode . . . . . . . 973
3.20.6 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 978
3.20.7 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 981

Internal problem ID [947]
Internal file name [OUTPUT/947_Sunday_June_05_2022_01_54_54_AM_33089805/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 21.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

yy′ = −x

With initial conditions

[y(3) = −4]
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3.20.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= −x

y

The x domain of f(x, y) when y = −4 is

{−∞ < x < ∞}

And the point x0 = 3 is inside this domain. The y domain of f(x, y) when x = 3 is

{y < 0∨ 0 < y}

And the point y0 = −4 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
−x

y

)
= x

y2

The x domain of ∂f
∂y

when y = −4 is

{−∞ < x < ∞}

And the point x0 = 3 is inside this domain. The y domain of ∂f
∂y

when x = 3 is

{y < 0∨ 0 < y}

And the point y0 = −4 is inside this domain. Therefore solution exists and is unique.

3.20.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −x

y
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Where f(x) = −x and g(y) = 1
y
. Integrating both sides gives

1
1
y

dy = −x dx

∫ 1
1
y

dy =
∫

−x dx

y2

2 = −x2

2 + c1

Which results in
y =

√
−x2 + 2c1

y = −
√

−x2 + 2c1

Initial conditions are used to solve for c1. Substituting x = 3 and y = −4 in the above
solution gives an equation to solve for the constant of integration.

−4 = −
√
−9 + 2c1

c1 =
25
2

Substituting c1 found above in the general solution gives

y = −
√
−x2 + 25

Initial conditions are used to solve for c1. Substituting x = 3 and y = −4 in the above
solution gives an equation to solve for the constant of integration.

−4 =
√
−9 + 2c1

Warning: Unable to solve for constant of integration.

Summary
The solution(s) found are the following

(1)y = −
√
−x2 + 25
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −
√
−x2 + 25

Verified OK.

3.20.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)x(u′(x)x+ u(x)) = −x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u2 + 1
ux

Where f(x) = − 1
x
and g(u) = u2+1

u
. Integrating both sides gives

1
u2+1
u

du = −1
x
dx

∫ 1
u2+1
u

du =
∫

−1
x
dx

ln (u2 + 1)
2 = − ln (x) + c2
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Raising both side to exponential gives
√
u2 + 1 = e− ln(x)+c2

Which simplifies to
√
u2 + 1 = c3

x

Which simplifies to √
u (x)2 + 1 = c3ec2

x

The solution is √
u (x)2 + 1 = c3ec2

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form√

y2

x2 + 1 = c3ec2
x√

x2 + y2

x2 = c3ec2
x

Substituting initial conditions and solving for c2 gives c2 =
ln
(

25
c23

)
2 . Hence the solution

becomes Initial conditions are used to solve for c3. Substituting x = 3 and y = −4 in
the above solution gives an equation to solve for the constant of integration.

5
3 =

5c3
√

1
c23

3

This solution is valid for any c3. Hence there are infinite number of solutions.

Solving for y from the above gives

y = −
√
−x2 + 25

Summary
The solution(s) found are the following

(1)y = −
√
−x2 + 25

971



(a) Solution plot (b) Slope field plot

Verification of solutions

y = −
√
−x2 + 25

Verified OK. {positive}

3.20.4 Solving as differentialType ode

Writing the ode as

y′ = −x

y
(1)

Which becomes

(y) dy = (−x) dx (2)

But the RHS is complete differential because

(−x) dx = d

(
−x2

2

)
Hence (2) becomes

(y) dy = d

(
−x2

2

)
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Integrating both sides gives gives these solutions

y =
√

−x2 + 2c1 + c1

y = −
√
−x2 + 2c1 + c1

Initial conditions are used to solve for c1. Substituting x = 3 and y = −4 in the above
solution gives an equation to solve for the constant of integration.

−4 = −
√
−9 + 2c1 + c1

c1 = −3− 4i

Substituting c1 found above in the general solution gives

y = −
√
−x2 − 8i− 6− 3− 4i

Initial conditions are used to solve for c1. Substituting x = 3 and y = −4 in the above
solution gives an equation to solve for the constant of integration.

−4 =
√
−9 + 2c1 + c1

Warning: Unable to solve for constant of integration.

Summary
The solution(s) found are the following

(1)y = −
√
−x2 − 8i− 6− 3− 4i

Verification of solutions

y = −
√
−x2 − 8i− 6− 3− 4i

Verified OK. {positive}

3.20.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x

y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 197: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− 1
x

dx

Which results in

S = −x2

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x

y

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = −x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x2

2 = y2

2 + c1

Which simplifies to

−x2

2 = y2

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x
y

dS
dR

= R

R = y

S = −x2

2

Initial conditions are used to solve for c1. Substituting x = 3 and y = −4 in the above
solution gives an equation to solve for the constant of integration.

−9
2 = 8 + c1
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c1 = −25
2

Substituting c1 found above in the general solution gives

−x2

2 = y2

2 − 25
2

Solving for y from the above gives

y = −
√
−x2 + 25

Summary
The solution(s) found are the following

(1)y = −
√
−x2 + 25

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −
√
−x2 + 25

Verified OK. {positive}
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3.20.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−y) dy = (x) dx
(−x) dx+(−y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = −y
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−x)

= 0

And
∂N

∂x
= ∂

∂x
(−y)

= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −y. Therefore equation (4) becomes

(5)−y = 0 + f ′(y)

979



Solving equation (5) for f ′(y) gives

f ′(y) = −y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−y) dy

f(y) = −y2

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 − y2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 − y2

2

Initial conditions are used to solve for c1. Substituting x = 3 and y = −4 in the above
solution gives an equation to solve for the constant of integration.

−25
2 = c1

c1 = −25
2

Substituting c1 found above in the general solution gives

−x2

2 − y2

2 = −25
2

Solving for y from the above gives

y = −
√
−x2 + 25

Summary
The solution(s) found are the following

(1)y = −
√
−x2 + 25
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −
√
−x2 + 25

Verified OK. {positive}

3.20.7 Maple step by step solution

Let’s solve
[yy′ = −x, y(3) = −4]

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
yy′dx =

∫
−xdx+ c1

• Evaluate integral
y2

2 = −x2

2 + c1

• Solve for y{
y =

√
−x2 + 2c1, y = −

√
−x2 + 2c1

}
• Use initial condition y(3) = −4

−4 =
√
−9 + 2c1
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• Solution does not satisfy initial condition
• Use initial condition y(3) = −4

−4 = −
√
−9 + 2c1

• Solve for c1
c1 = 25

2

• Substitute c1 = 25
2 into general solution and simplify

y = −
√
−x2 + 25

• Solution to the IVP
y = −

√
−x2 + 25

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 15� �
dsolve([x+y(x)*diff(y(x),x)=0,y(3) = -4],y(x), singsol=all)� �

y(x) = −
√
−x2 + 25

3 Solution by Mathematica
Time used: 0.083 (sec). Leaf size: 18� �
DSolve[{x+y[x]*y'[x]==0,y[3]==-4},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
25− x2
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3.21 problem 22
3.21.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 983
3.21.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 985
3.21.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 989
3.21.4 Solving as abelFirstKind ode . . . . . . . . . . . . . . . . . . . 993
3.21.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 995

Internal problem ID [948]
Internal file name [OUTPUT/948_Sunday_June_05_2022_01_54_55_AM_27304392/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 22.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "abelFirstKind", "separa-
ble", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + x2(1 + y) (y − 2)2 = 0

3.21.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= −x2(y + 1) (y − 2)2

Where f(x) = −x2 and g(y) = (y + 1) (y − 2)2. Integrating both sides gives

1
(y + 1) (y − 2)2

dy = −x2 dx

∫ 1
(y + 1) (y − 2)2

dy =
∫

−x2 dx
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ln (y + 1)
9 − 1

3 (y − 2) −
ln (y − 2)

9 = −x3

3 + c1

Which results in

y = eRootOf
(
−3x3e_Z−ln

(
e_Z+3

)
e_Z+9c1e_Z+_Z e_Z+3

)
+ 2

Summary
The solution(s) found are the following

(1)y = eRootOf
(
−3x3e_Z−ln

(
e_Z+3

)
e_Z+9c1e_Z+_Z e_Z+3

)
+ 2

Figure 207: Slope field plot

Verification of solutions

y = eRootOf
(
−3x3e_Z−ln

(
e_Z+3

)
e_Z+9c1e_Z+_Z e_Z+3

)
+ 2

Verified OK.
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3.21.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x2(y + 1) (y − 2)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 200: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = − 1
x2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− 1
x2

dx

Which results in

S = −x3

3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2(y + 1) (y − 2)2
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = −x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

(y + 1) (y − 2)2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

(R + 1) (R− 2)2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R + 1)
9 − 1

3 (R− 2) −
ln (R− 2)

9 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x3

3 = ln (1 + y)
9 − 1

3 (y − 2) −
ln (y − 2)

9 + c1

Which simplifies to

−x3

3 = ln (1 + y)
9 − 1

3 (y − 2) −
ln (y − 2)

9 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2(y + 1) (y − 2)2 dS
dR

= 1
(R+1)(R−2)2

R = y

S = −x3

3

Summary
The solution(s) found are the following

(1)−x3

3 = ln (1 + y)
9 − 1

3 (y − 2) −
ln (y − 2)

9 + c1
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Figure 208: Slope field plot

Verification of solutions

−x3

3 = ln (1 + y)
9 − 1

3 (y − 2) −
ln (y − 2)

9 + c1

Verified OK.

3.21.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
(y + 1) (y − 2)2

)
dy =

(
x2) dx

(
−x2) dx+(− 1

(y + 1) (y − 2)2
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2

N(x, y) = − 1
(y + 1) (y − 2)2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2)

= 0
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And

∂N

∂x
= ∂

∂x

(
− 1
(y + 1) (y − 2)2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 dx

(3)φ = −x3

3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
(y+1)(y−2)2 . Therefore equation (4) becomes

(5)− 1
(y + 1) (y − 2)2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
(y + 1) (y − 2)2

991



Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
(y + 1) (y − 2)2

)
dy

f(y) = − ln (y + 1)
9 + 1

3y − 6 + ln (y − 2)
9 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x3

3 − ln (y + 1)
9 + 1

3y − 6 + ln (y − 2)
9 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x3

3 − ln (y + 1)
9 + 1

3y − 6 + ln (y − 2)
9

Summary
The solution(s) found are the following

(1)−x3

3 − ln (1 + y)
9 + 1

3y − 6 + ln (y − 2)
9 = c1
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Figure 209: Slope field plot

Verification of solutions

−x3

3 − ln (1 + y)
9 + 1

3y − 6 + ln (y − 2)
9 = c1

Verified OK.

3.21.4 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form

y′ = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3

Comparing the above to given ODE which is

y′ = −y3x2 + 3x2y2 − 4x2 (1)

Therefore

f0(x) = −4x2

f1(x) = 0
f2(x) = 3x2

f3(x) = −x2
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Since f2(x) = 3x2 is not zero, then the first step is to apply the following transformation
to remove f2. Let y = u(x)− f2

3f3 or

y = u(x)−
(

3x2

−3x2

)
= u(x) + 1

The above transformation applied to (1) gives a new ODE as

u′(x) = 3x2u(x)− 2x2 − x2u(x)3 (2)

The above ODE (2) can now be solved as separable.

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)
= x2(−u3 + 3u− 2

)
Where f(x) = x2 and g(u) = −u3 + 3u− 2. Integrating both sides gives

1
−u3 + 3u− 2 du = x2 dx∫ 1
−u3 + 3u− 2 du =

∫
x2 dx

1
3u− 3 + ln (u− 1)

9 − ln (u+ 2)
9 = x3

3 + c2

The solution is

1
3u (x)− 3 + ln (u(x)− 1)

9 − ln (2 + u(x))
9 − x3

3 − c2 = 0

Substituting u = 1 + y in the above solution gives

1
3y + ln (y)

9 − ln (3 + y)
9 − x3

3 − c2 = 0

Summary
The solution(s) found are the following

(1)1
3y + ln (y)

9 − ln (3 + y)
9 − x3

3 − c2 = 0
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Figure 210: Slope field plot

Verification of solutions

1
3y + ln (y)

9 − ln (3 + y)
9 − x3

3 − c2 = 0

Verified OK.

3.21.5 Maple step by step solution

Let’s solve
y′ + x2(1 + y) (y − 2)2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

(1+y)(y−2)2 = −x2

• Integrate both sides with respect to x∫
y′

(1+y)(y−2)2dx =
∫
−x2dx+ c1

• Evaluate integral
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ln(1+y)
9 − 1

3(y−2) −
ln(y−2)

9 = −x3

3 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 35� �
dsolve(diff(y(x),x)+x^2*(y(x)+1)*(y(x)-2)^2=0,y(x), singsol=all)� �

y(x) = eRootOf
(
3x3e_Z+ln

(
e_Z+3

)
e_Z+9c1e_Z−_Z e_Z−3

)
+ 2

3 Solution by Mathematica
Time used: 0.482 (sec). Leaf size: 52� �
DSolve[y'[x]+x^2*(y[x]+1)*(y[x]-2)^2==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → InverseFunction

[
1
9

(
− 3
#1− 2 − log(#1− 2) + log(#1+ 1)

)
&
] [

−x3

3 + c1

]
y(x) → −1
y(x) → 2
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Internal problem ID [949]
Internal file name [OUTPUT/949_Sunday_June_05_2022_01_54_58_AM_55960160/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 23.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(x+ 1) (−2 + x) y′ + y = 0

With initial conditions

[y(1) = −3]
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3.22.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 1
(−2 + x) (x+ 1)

q(x) = 0

Hence the ode is

y′ + y

(x+ 1) (−2 + x) = 0

The domain of p(x) = 1
(−2+x)(x+1) is

{−∞ ≤ x < −1,−1 < x < 2, 2 < x ≤ ∞}

And the point x0 = 1 is inside this domain. Hence solution exists and is unique.

3.22.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − y

(x+ 1) (−2 + x)

Where f(x) = − 1
(−2+x)(x+1) and g(y) = y. Integrating both sides gives

1
y
dy = − 1

(−2 + x) (x+ 1) dx∫ 1
y
dy =

∫
− 1
(−2 + x) (x+ 1) dx

ln (y) = ln (x+ 1)
3 − ln (−2 + x)

3 + c1

y = e
ln(x+1)

3 − ln(−2+x)
3 +c1

= c1e
ln(x+1)

3 − ln(−2+x)
3
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Which can be simplified to become

y = c1(x+ 1)
1
3

(−2 + x)
1
3

Initial conditions are used to solve for c1. Substituting x = 1 and y = −3 in the above
solution gives an equation to solve for the constant of integration.

−3 = −i2 1
3
√
3 c1

2 + 2 1
3 c1
2

c1 =
32 2

3

i
√
3− 1

Substituting c1 found above in the general solution gives

y = 32 2
3 (x+ 1)

1
3

i (−2 + x)
1
3
√
3− (−2 + x)

1
3

Summary
The solution(s) found are the following

(1)y = 32 2
3 (x+ 1)

1
3

i (−2 + x)
1
3
√
3− (−2 + x)

1
3

Verification of solutions

y = 32 2
3 (x+ 1)

1
3

i (−2 + x)
1
3
√
3− (−2 + x)

1
3

Verified OK.

3.22.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫ 1

(−2+x)(x+1)dx

= e−
ln(x+1)

3 + ln(−2+x)
3

Which simplifies to

µ = (−2 + x)
1
3

(x+ 1)
1
3
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The ode becomes
d
dxµy = 0

d
dx

(
(−2 + x)

1
3 y

(x+ 1)
1
3

)
= 0

Integrating gives

(−2 + x)
1
3 y

(x+ 1)
1
3

= c1

Dividing both sides by the integrating factor µ = (−2+x)
1
3

(x+1)
1
3

results in

y = c1(x+ 1)
1
3

(−2 + x)
1
3

Initial conditions are used to solve for c1. Substituting x = 1 and y = −3 in the above
solution gives an equation to solve for the constant of integration.

−3 = −i2 1
3
√
3 c1

2 + 2 1
3 c1
2

c1 =
32 2

3

i
√
3− 1

Substituting c1 found above in the general solution gives

y = 32 2
3 (x+ 1)

1
3

i (−2 + x)
1
3
√
3− (−2 + x)

1
3

Summary
The solution(s) found are the following

(1)y = 32 2
3 (x+ 1)

1
3

i (−2 + x)
1
3
√
3− (−2 + x)

1
3

Verification of solutions

y = 32 2
3 (x+ 1)

1
3

i (−2 + x)
1
3
√
3− (−2 + x)

1
3

Verified OK.
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3.22.4 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(x+ 1) (−2 + x) (u′(x)x+ u(x)) + u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u(x2 − 2)
(x+ 1) (−2 + x)x

Where f(x) = − x2−2
(−2+x)x(x+1) and g(u) = u. Integrating both sides gives

1
u
du = − x2 − 2

(−2 + x)x (x+ 1) dx∫ 1
u
du =

∫
− x2 − 2
(−2 + x)x (x+ 1) dx

ln (u) = − ln (x) + ln (x+ 1)
3 − ln (−2 + x)

3 + c2

u = e− ln(x)+ ln(x+1)
3 − ln(−2+x)

3 +c2

= c2e− ln(x)+ ln(x+1)
3 − ln(−2+x)

3

Which simplifies to

u(x) = c2(x+ 1)
1
3

x (−2 + x)
1
3

Therefore the solution y is

y = ux

= c2(x+ 1)
1
3

(−2 + x)
1
3

Initial conditions are used to solve for c2. Substituting x = 1 and y = −3 in the above
solution gives an equation to solve for the constant of integration.

−3 = −i2 1
3
√
3 c2

2 + 2 1
3 c2
2

1001



c2 =
32 2

3

i
√
3− 1

Substituting c2 found above in the general solution gives

y = 32 2
3 (x+ 1)

1
3

i (−2 + x)
1
3
√
3− (−2 + x)

1
3

Summary
The solution(s) found are the following

(1)y = 32 2
3 (x+ 1)

1
3

i (−2 + x)
1
3
√
3− (−2 + x)

1
3

Verification of solutions

y = 32 2
3 (x+ 1)

1
3

i (−2 + x)
1
3
√
3− (−2 + x)

1
3

Verified OK.

3.22.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − y

(x+ 1) (−2 + x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 203: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e
ln(x+1)

3 − ln(−2+x)
3 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
ln(x+1)

3 − ln(−2+x)
3

dy

Which results in

S = e
ln
(

1

(x+1)
1
3

)
+ln

(
(−2+x)

1
3
)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y

(x+ 1) (−2 + x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

(x+ 1)
4
3 (−2 + x)

2
3

Sy =
(−2 + x)

1
3

(x+ 1)
1
3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(−2 + x)
1
3 y

(x+ 1)
1
3

= c1

Which simplifies to

(−2 + x)
1
3 y

(x+ 1)
1
3

= c1

Which gives

y = c1(x+ 1)
1
3

(−2 + x)
1
3

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y
(x+1)(−2+x)

dS
dR

= 0

R = x

S = (−2 + x)
1
3 y

(x+ 1)
1
3
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Initial conditions are used to solve for c1. Substituting x = 1 and y = −3 in the above
solution gives an equation to solve for the constant of integration.

−3 = −i2 1
3
√
3 c1

2 + 2 1
3 c1
2

c1 =
32 2

3

i
√
3− 1

Substituting c1 found above in the general solution gives

y = 32 2
3 (x+ 1)

1
3

i (−2 + x)
1
3
√
3− (−2 + x)

1
3

Summary
The solution(s) found are the following

(1)y = 32 2
3 (x+ 1)

1
3

i (−2 + x)
1
3
√
3− (−2 + x)

1
3

Verification of solutions

y = 32 2
3 (x+ 1)

1
3

i (−2 + x)
1
3
√
3− (−2 + x)

1
3

Verified OK.

3.22.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−1
y

)
dy =

(
1

(−2 + x) (x+ 1)

)
dx(

− 1
(−2 + x) (x+ 1)

)
dx+

(
−1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
(−2 + x) (x+ 1)

N(x, y) = −1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
(−2 + x) (x+ 1)

)
= 0
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And
∂N

∂x
= ∂

∂x

(
−1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
(−2 + x) (x+ 1) dx

(3)φ = ln (x+ 1)
3 − ln (−2 + x)

3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y
. Therefore equation (4) becomes

(5)−1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (x+ 1)
3 − ln (−2 + x)

3 − ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (x+ 1)

3 − ln (−2 + x)
3 − ln (y)

The solution becomes
y = e

ln(x+1)
3 − ln(−2+x)

3 −c1

Initial conditions are used to solve for c1. Substituting x = 1 and y = −3 in the above
solution gives an equation to solve for the constant of integration.

−3 = −i2 1
3
√
3 e−c1

2 + 2 1
3 e−c1

2

c1 = −
ln
(

108(
i
√
3−1

)3
)

3

Substituting c1 found above in the general solution gives

y = (x+ 1)
1
3 108 1

38 2
3

8 (−2 + x)
1
3

But this does not satisfy the initial conditions. Hence no solution can be found.

Verification of solutions N/A

3.22.7 Maple step by step solution

Let’s solve
[(x+ 1) (−2 + x) y′ + y = 0, y(1) = −3]

• Highest derivative means the order of the ODE is 1
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y′

• Separate variables
y′

y
= − 1

(−2+x)(x+1)

• Integrate both sides with respect to x∫
y′

y
dx =

∫
− 1

(−2+x)(x+1)dx+ c1

• Evaluate integral
ln (y) = ln(x+1)

3 − ln(−2+x)
3 + c1

• Solve for y

y = e
ln(x+1)

3 − ln(−2+x)
3 +c1

• Use initial condition y(1) = −3

−3 = −e
ln(2)
3 + 2 Iπ

3 +c1

• Solve for c1
c1 = −2 Iπ

3 − ln(2)
3 + ln (3)

• Substitute c1 = −2 Iπ
3 − ln(2)

3 + ln (3) into general solution and simplify

y = −
3(x+1)

1
3 2

2
3
(
1+I

√
3
)

4(−2+x)
1
3

• Solution to the IVP

y = −
3(x+1)

1
3 2

2
3
(
1+I

√
3
)

4(−2+x)
1
3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 22� �
dsolve([(x+1)*(x-2)*diff(y(x),x)+y(x)=0,y(1) = -3],y(x), singsol=all)� �

y(x) = −
3 2 2

3
(
1 + i

√
3
)
(x+ 1)

1
3

4 (−2 + x)
1
3

3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 23� �
DSolve[{(x+1)*(x-2)*y'[x]+y[x]==0,y[1]==-3},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −3 3
√
x+ 1

3
√
4− 2x
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3.23 problem 24
3.23.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1012
3.23.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1014
3.23.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1018
3.23.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1022
3.23.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1024

Internal problem ID [950]
Internal file name [OUTPUT/950_Sunday_June_05_2022_01_54_59_AM_61564361/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 24.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − 1 + y2

x2 + 1 = 0

3.23.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y2 + 1
x2 + 1

Where f(x) = 1
x2+1 and g(y) = y2 + 1. Integrating both sides gives

1
y2 + 1 dy = 1

x2 + 1 dx
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∫ 1
y2 + 1 dy =

∫ 1
x2 + 1 dx

arctan (y) = arctan (x) + c1

Which results in
y = tan (arctan (x) + c1)

Summary
The solution(s) found are the following

(1)y = tan (arctan (x) + c1)

Figure 211: Slope field plot

Verification of solutions

y = tan (arctan (x) + c1)

Verified OK.
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3.23.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2 + 1
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 206: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x2 + 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x2 + 1dx

Which results in

S = arctan (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2 + 1
x2 + 1
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x2 + 1

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = arctan (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

arctan (x) = arctan (y) + c1

Which simplifies to

arctan (x) = arctan (y) + c1

Which gives

y = − tan (− arctan (x) + c1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2+1
x2+1

dS
dR

= 1
R2+1

R = y

S = arctan (x)

Summary
The solution(s) found are the following

(1)y = − tan (− arctan (x) + c1)
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Figure 212: Slope field plot

Verification of solutions

y = − tan (− arctan (x) + c1)

Verified OK.

3.23.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y2 + 1

)
dy =

(
1

x2 + 1

)
dx(

− 1
x2 + 1

)
dx+

(
1

y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x2 + 1

N(x, y) = 1
y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x2 + 1

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1

y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x2 + 1 dx

(3)φ = − arctan (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2+1 . Therefore equation (4) becomes

(5)1
y2 + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2 + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y2 + 1

)
dy

f(y) = arctan (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − arctan (x) + arctan (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − arctan (x) + arctan (y)

Summary
The solution(s) found are the following

(1)− arctan (x) + arctan (y) = c1

Figure 213: Slope field plot

Verification of solutions

− arctan (x) + arctan (y) = c1

Verified OK.
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3.23.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y2 + 1
x2 + 1

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2

x2 + 1 + 1
x2 + 1

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 1
x2+1 , f1(x) = 0 and f2(x) = 1

x2+1 . Let

y = −u′

f2u

= −u′

u
x2+1

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2x

(x2 + 1)2

f1f2 = 0

f 2
2 f0 =

1
(x2 + 1)3

Substituting the above terms back in equation (2) gives

u′′(x)
x2 + 1 + 2xu′(x)

(x2 + 1)2
+ u(x)

(x2 + 1)3
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1x+ c2√
x2 + 1
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The above shows that

u′(x) = −c2x+ c1

(x2 + 1)
3
2

Using the above in (1) gives the solution

y = −−c2x+ c1
c1x+ c2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −c3 + x

c3x+ 1

Summary
The solution(s) found are the following

(1)y = −c3 + x

c3x+ 1

Figure 214: Slope field plot
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Verification of solutions

y = −c3 + x

c3x+ 1

Verified OK.

3.23.5 Maple step by step solution

Let’s solve

y′ − 1+y2

x2+1 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

1+y2
= 1

x2+1

• Integrate both sides with respect to x∫
y′

1+y2
dx =

∫ 1
x2+1dx+ c1

• Evaluate integral
arctan (y) = arctan (x) + c1

• Solve for y
y = tan (arctan (x) + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve(diff(y(x),x)=(1+y(x)^2)/(1+x^2),y(x), singsol=all)� �

y(x) = tan (arctan (x) + c1)

3 Solution by Mathematica
Time used: 0.227 (sec). Leaf size: 25� �
DSolve[y'[x]==(1+y[x]^2)/(1+x^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → tan(arctan(x) + c1)
y(x) → −i
y(x) → i
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3.24 problem 25
3.24.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1026
3.24.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1028
3.24.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1032
3.24.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1036

Internal problem ID [951]
Internal file name [OUTPUT/951_Sunday_June_05_2022_01_55_01_AM_95367927/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 25.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′
√
−x2 + 1 +

√
1− y2 = 0

3.24.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −
√
−y2 + 1√
−x2 + 1

Where f(x) = − 1√
−x2+1 and g(y) =

√
−y2 + 1. Integrating both sides gives

1√
−y2 + 1

dy = − 1√
−x2 + 1

dx∫ 1√
−y2 + 1

dy =
∫

− 1√
−x2 + 1

dx
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arcsin (y) =

√
− (x− 1)2 − 2x+ 2

2 − arcsin (x)−

√
− (x+ 1)2 + 2x+ 2

2 + c1

Which results in
y = sin (− arcsin (x) + c1)

Summary
The solution(s) found are the following

(1)y = sin (− arcsin (x) + c1)

Figure 215: Slope field plot

Verification of solutions

y = sin (− arcsin (x) + c1)

Verified OK.
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3.24.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −
√
−y2 + 1√
−x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 209: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = −
√
−x2 + 1

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−
√
−x2 + 1

dx

Which results in

S = − arcsin (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
√
−y2 + 1√
−x2 + 1

1029



Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = − 1√
−x2 + 1

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1√

−y2 + 1
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1√

−R2 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = arcsin (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− arcsin (x) = arcsin (y) + c1

Which simplifies to

− arcsin (x) = arcsin (y) + c1

Which gives

y = − sin (arcsin (x) + c1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −
√

−y2+1√
−x2+1

dS
dR

= 1√
−R2+1

R = y

S = − arcsin (x)

Summary
The solution(s) found are the following

(1)y = − sin (arcsin (x) + c1)

1031



Figure 216: Slope field plot

Verification of solutions

y = − sin (arcsin (x) + c1)

Verified OK.

3.24.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

1032



Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1√

−y2 + 1

)
dy =

(
1√

−x2 + 1

)
dx(

− 1√
−x2 + 1

)
dx+

(
− 1√

−y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1√
−x2 + 1

N(x, y) = − 1√
−y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1√

−x2 + 1

)
= 0
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And
∂N

∂x
= ∂

∂x

(
− 1√

−y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1√

−x2 + 1
dx

(3)φ = − arcsin (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1√
−y2+1

. Therefore equation (4) becomes

(5)− 1√
−y2 + 1

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1√
−y2 + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− 1√

−y2 + 1

)
dy

f(y) = − arcsin (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − arcsin (x)− arcsin (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − arcsin (x)− arcsin (y)

Summary
The solution(s) found are the following

(1)− arcsin (x)− arcsin (y) = c1

Figure 217: Slope field plot

Verification of solutions

− arcsin (x)− arcsin (y) = c1

Verified OK.
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3.24.4 Maple step by step solution

Let’s solve
y′
√
−x2 + 1 +

√
1− y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√
1−y2

= − 1√
−x2+1

• Integrate both sides with respect to x∫
y′√
1−y2

dx =
∫
− 1√

−x2+1dx+ c1

• Evaluate integral
arcsin (y) = − arcsin (x) + c1

• Solve for y
y = sin (− arcsin (x) + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 11� �
dsolve(diff(y(x),x)*sqrt(1-x^2)+sqrt(1-y(x)^2)=0,y(x), singsol=all)� �

y(x) = − sin (arcsin (x) + c1)
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3 Solution by Mathematica
Time used: 0.317 (sec). Leaf size: 47� �
DSolve[y'[x]*Sqrt[1-x^2]+Sqrt[1-y[x]^2]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → cos
(
2 arctan

(√
1− x2

x+ 1

)
+ c1

)
y(x) → −1
y(x) → 1
y(x) → Interval[{−1, 1}]
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3.25 problem 26
3.25.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1038
3.25.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1039
3.25.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1041
3.25.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1045

Internal problem ID [952]
Internal file name [OUTPUT/952_Sunday_June_05_2022_01_55_03_AM_8578478/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 26.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − cos (x)
sin (y) = 0

With initial conditions [
y(π) = π

2

]
3.25.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= cos (x)
sin (y)

The x domain of f(x, y) when y = π
2 is

{−∞ < x < ∞}
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And the point x0 = π is inside this domain. The y domain of f(x, y) when x = π is

{y < π_Z54∨ π_Z54 < y}

And the point y0 = π
2 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
cos (x)
sin (y)

)
= −cos (x) cos (y)

sin (y)2

The x domain of ∂f
∂y

when y = π
2 is

{−∞ < x < ∞}

And the point x0 = π is inside this domain. The y domain of ∂f
∂y

when x = π is

{y < π_Z54∨ π_Z54 < y}

And the point y0 = π
2 is inside this domain. Therefore solution exists and is unique.

3.25.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= cos (x)
sin (y)

Where f(x) = cos (x) and g(y) = 1
sin(y) . Integrating both sides gives

1
1

sin(y)
dy = cos (x) dx

∫ 1
1

sin(y)
dy =

∫
cos (x) dx

− cos (y) = sin (x) + c1

Which results in
y = π − arccos (sin (x) + c1)
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Initial conditions are used to solve for c1. Substituting x = π and y = π
2 in the above

solution gives an equation to solve for the constant of integration.
π

2 = π

2 + arcsin (c1)

c1 = 0

Substituting c1 found above in the general solution gives

y = π

2 + arcsin (sin (x))

Summary
The solution(s) found are the following

(1)y = π

2 + arcsin (sin (x))

(a) Solution plot (b) Slope field plot

Verification of solutions

y = π

2 + arcsin (sin (x))

Verified OK.

1040



3.25.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = cos (x)
sin (y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 212: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
cos (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
cos(x)

dx

Which results in

S = sin (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = cos (x)
sin (y)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = cos (x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sin (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sin (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − cos (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

sin (x) = − cos (y) + c1

Which simplifies to

sin (x) = − cos (y) + c1

Which gives

y = arccos (− sin (x) + c1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= cos(x)
sin(y)

dS
dR

= sin (R)

R = y

S = sin (x)

Initial conditions are used to solve for c1. Substituting x = π and y = π
2 in the above

solution gives an equation to solve for the constant of integration.
π

2 = π

2 − arcsin (c1)

c1 = 0

Substituting c1 found above in the general solution gives

y = π

2 + arcsin (sin (x))

Summary
The solution(s) found are the following

(1)y = π

2 + arcsin (sin (x))
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = π

2 + arcsin (sin (x))

Verified OK.

3.25.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(sin (y)) dy = (cos (x)) dx
(− cos (x)) dx+(sin (y)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − cos (x)
N(x, y) = sin (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− cos (x))

= 0

And
∂N

∂x
= ∂

∂x
(sin (y))

= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− cos (x) dx

(3)φ = − sin (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= sin (y). Therefore equation (4) becomes

(5)sin (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = sin (y)

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(sin (y)) dy

f(y) = − cos (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − sin (x)− cos (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − sin (x)− cos (y)
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Initial conditions are used to solve for c1. Substituting x = π and y = π
2 in the above

solution gives an equation to solve for the constant of integration.

0 = c1

c1 = 0

Substituting c1 found above in the general solution gives

− sin (x)− cos (y) = 0

Solving for y from the above gives

y = π

2 + arcsin (sin (x))

Summary
The solution(s) found are the following

(1)y = π

2 + arcsin (sin (x))

(a) Solution plot (b) Slope field plot

Verification of solutions

y = π

2 + arcsin (sin (x))

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 11� �
dsolve([diff(y(x),x)=cos(x)/sin(y(x)),y(Pi) = 1/2*Pi],y(x), singsol=all)� �

y(x) = π

2 + arcsin (sin (x))

3 Solution by Mathematica
Time used: 0.439 (sec). Leaf size: 10� �
DSolve[{y'[x]==Cos[x]/Sin[y[x]],y[Pi]==Pi/2},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → arccos(− sin(x))
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3.26 problem 27
3.26.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1050
3.26.2 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 1051
3.26.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1052

Internal problem ID [953]
Internal file name [OUTPUT/953_Sunday_June_05_2022_01_55_05_AM_25158409/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 27.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ − ay + by2 = 0

With initial conditions

[y(0) = y0]

3.26.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)
= −b y2 + ay

The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}

But the point y0 = y0 is not inside this domain. Hence existence and uniqueness
theorem does not apply. There could be infinite number of solutions, or one solution or
no solution at all.
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3.26.2 Solving as quadrature ode

Integrating both sides gives ∫ 1
−b y2 + ay

dy =
∫

dx

ln (y)
a

− ln (by − a)
a

= x+ c1

The above can be written as(
1
a

)
(ln (y)− ln (by − a)) = x+ c1

ln (y)− ln (by − a) = (a) (x+ c1)
= a(x+ c1)

Raising both side to exponential gives

eln(y)−ln(by−a) = ac1eax

Which simplifies to

− y

−by + a
= c2eax

Initial conditions are used to solve for c2. Substituting x = 0 and y = y0 in the above
solution gives an equation to solve for the constant of integration.

y0 = c2a

bc2 − 1

c2 = − y0
−b y0+a

Substituting c2 found above in the general solution gives

y = y0 eaxa
eaxb y0−b y0+a

Summary
The solution(s) found are the following

(1)y = y0 eaxa
eaxb y0−b y0+a

Verification of solutions

y = y0 eaxa
eaxb y0−b y0+a

Verified OK.
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3.26.3 Maple step by step solution

Let’s solve
[y′ − ay + by2 = 0, y(0) = y0 ]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

ay−by2
= 1

• Integrate both sides with respect to x∫
y′

ay−by2
dx =

∫
1dx+ c1

• Evaluate integral
ln(y)
a

− ln(by−a)
a

= x+ c1

• Solve for y
y = ec1a+axa

−1+b ec1a+ax

• Use initial condition y(0) = y0
y0 = ec1aa

−1+b ec1a

• Solve for c1

c1 =
ln
(
− y0

−by0+a

)
a

• Substitute c1 =
ln
(
− y0

−by0+a

)
a

into general solution and simplify

y = y0 eaxa
eaxby0−by0+a

• Solution to the IVP
y = y0 eaxa

eaxby0−by0+a

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 25� �
dsolve([diff(y(x),x)=a*y(x)-b*y(x)^2,y(0) = y0],y(x), singsol=all)� �

y(x) = a y0
(− y0 b+ a) e−ax + y0 b

3 Solution by Mathematica
Time used: 0.854 (sec). Leaf size: 27� �
DSolve[{y'[x]==a*y[x]-b*y[x]^2,y[0]==y0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ay0eax
by0 (eax − 1) + a
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3.27 problem 35
3.27.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1054

Internal problem ID [954]
Internal file name [OUTPUT/954_Sunday_June_05_2022_01_55_06_AM_83316683/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 35.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[[_Abel , `2nd type `, `class B`]]

y′ + y − 2x e−x

1 + exy = 0

3.27.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(1 + exy) dy =
(
−y2ex + 2x e−x − y

)
dx(

y2ex − 2x e−x + y
)
dx+(1 + exy) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y2ex − 2x e−x + y

N(x, y) = 1 + exy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y2ex − 2x e−x + y

)
= 2 exy + 1

And
∂N

∂x
= ∂

∂x
(1 + exy)

= exy

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

1 + exy ((2 e
xy + 1)− (exy))

= 1
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
1 dx

The result of integrating gives

µ = ex

= ex

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex
(
y2ex − 2x e−x + y

)
= e2xy2 + exy − 2x

And

N = µN

= ex(1 + exy)
= (1 + exy) ex

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

e2xy2 + exy − 2x
)
+ ((1 + exy) ex) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
e2xy2 + exy − 2x dx

(3)φ = exy + e2xy2
2 − x2 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ex + e2xy + f ′(y)

But equation (2) says that ∂φ
∂y

= (1 + exy) ex. Therefore equation (4) becomes

(5)(1 + exy) ex = ex + e2xy + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = exy + e2xy2
2 − x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = exy + e2xy2
2 − x2

Summary
The solution(s) found are the following

(1)exy + y2e2x
2 − x2 = c1
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Figure 221: Slope field plot

Verification of solutions

exy + y2e2x
2 − x2 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �

1058



3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 47� �
dsolve(diff(y(x),x)+y(x)=(2*x*exp(-x))/(1+y(x)*exp(x)),y(x), singsol=all)� �

y(x) =
(
−1−

√
2x2 − 2c1 + 1

)
e−x

y(x) =
(
−1 +

√
2x2 − 2c1 + 1

)
e−x

3 Solution by Mathematica
Time used: 32.427 (sec). Leaf size: 70� �
DSolve[y'[x]+y[x]==(2*x*Exp[-x])/(1+y[x]*Exp[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −e−2x
(
ex +

√
e2x (2x2 + 1 + c1)

)
y(x) → e−2x

(
−ex +

√
e2x (2x2 + 1 + c1)

)
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3.28 problem 36
3.28.1 Solving as first order ode lie symmetry calculated ode . . . . . . 1060
3.28.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1067

Internal problem ID [955]
Internal file name [OUTPUT/955_Sunday_June_05_2022_01_55_09_AM_31201813/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 36.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[_rational , [_Abel , `2nd type `, `class B`]]

y′x− 2y − x6

x2 + y
= 0

3.28.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x6 + 2y x2 + 2y2
x (x2 + y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + yxa5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + yxb5 + y2b6 + xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

2xb4+yb5+b2+
(x6 + 2y x2 + 2y2) (−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

x (x2 + y)

− (x6 + 2y x2 + 2y2)2 (xa5 + 2ya6 + a3)
x2 (x2 + y)2

−
(
6x5 + 4yx
x (x2 + y) −

x6 + 2y x2 + 2y2
x2 (x2 + y) − 2(x6 + 2y x2 + 2y2)

(x2 + y)2
)(

x2a4

+ yxa5 + y2a6 + xa2 + ya3 + a1
)
−
(

2x2 + 4y
x (x2 + y)

− x6 + 2y x2 + 2y2

x (x2 + y)2
)(

x2b4 + yxb5 + y2b6 + xb2 + yb3 + b1
)
= 0

Putting the above in normal form gives

−x13a5 + 2x12ya6 + x12a3 + 5x10a4 − x10b5 + 8x9ya5 − 2x9yb6 + 11x8y2a6 + 4x9a2 − x9b3 − x9b4 + 7x8ya3 + 7x8ya4 − 2x8yb5 + 10x7y2a5 − 3x7y2b6 + 13x6y3a6 + 3x8a1 − x8b2 + 6x7ya2 − 2x7yb3 + 9x6y2a3 − x7b1 + 5x6ya1 + 2x6ya4 − x6yb5 + 4x5y2a5 − 2x5y2b6 + 6x4y3a6 + x6b2 + 2x4y2a3 + 4x4y2a4 − 2x4y2b5 + 8x3y3a5 − 4x3y3b6 + 12x2y4a6 + 2x5b1 − 2x4ya1 + 2x4yb2 + 4x2y3a3 + 2x2y3a4 − x2y3b5 + 4x y4a5 − 2x y4b6 + 6y5a6 + 4x3yb1 − 4x2y2a1 + x2y2b2 + 2y4a3 + 2x y2b1 − 2y3a1
x2 (x2 + y)2

= 0

Setting the numerator to zero gives

(6E)

−x13a5−2x12ya6−x12a3−5x10a4+x10b5−8x9ya5+2x9yb6−11x8y2a6
−4x9a2+x9b3+x9b4−7x8ya3−7x8ya4+2x8yb5−10x7y2a5+3x7y2b6
− 13x6y3a6 − 3x8a1 + x8b2 − 6x7ya2 + 2x7yb3 − 9x6y2a3 + x7b1
− 5x6ya1 − 2x6ya4 + x6yb5 − 4x5y2a5 + 2x5y2b6 − 6x4y3a6 − x6b2
− 2x4y2a3− 4x4y2a4+2x4y2b5− 8x3y3a5+4x3y3b6− 12x2y4a6− 2x5b1
+ 2x4ya1 − 2x4yb2 − 4x2y3a3 − 2x2y3a4 + x2y3b5 − 4x y4a5 + 2x y4b6
− 6y5a6 − 4x3yb1 + 4x2y2a1 − x2y2b2 − 2y4a3 − 2x y2b1 + 2y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

−a5v
13
1 − 2a6v121 v2 − a3v

12
1 − 5a4v101 − 8a5v91v2 − 11a6v81v22 + b5v

10
1 + 2b6v91v2 − 4a2v91

− 7a3v81v2 − 7a4v81v2 − 10a5v71v22 − 13a6v61v32 + b3v
9
1 + b4v

9
1 + 2b5v81v2 + 3b6v71v22 − 3a1v81

− 6a2v71v2 − 9a3v61v22 + b2v
8
1 + 2b3v71v2 − 5a1v61v2 − 2a4v61v2 − 4a5v51v22 − 6a6v41v32

+ b1v
7
1 + b5v

6
1v2 + 2b6v51v22 − 2a3v41v22 − 4a4v41v22 − 8a5v31v32 − 12a6v21v42 − b2v

6
1 + 2b5v41v22

+ 4b6v31v32 + 2a1v41v2 − 4a3v21v32 − 2a4v21v32 − 4a5v1v42 − 6a6v52 − 2b1v51 − 2b2v41v2
+ b5v

2
1v

3
2 + 2b6v1v42 + 4a1v21v22 − 2a3v42 − 4b1v31v2 − b2v

2
1v

2
2 + 2a1v32 − 2b1v1v22 = 0

(7E)

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

(−8a5 + 4b6) v31v32 + (−4a3 − 2a4 + b5) v21v32 + (4a1 − b2) v21v22
+ (−4a5 + 2b6) v1v42 + (−8a5 + 2b6) v91v2 + (−7a3 − 7a4 + 2b5) v81v2
+ (−10a5 + 3b6) v71v22 + (−6a2 + 2b3) v71v2 + (−5a1 − 2a4 + b5) v61v2
+(−4a5+2b6) v51v22+(−2a3−4a4+2b5) v41v22+(2a1−2b2) v41v2−6a6v41v32
− 12a6v21v42 − 4b1v31v2 − 2b1v1v22 + (−4a2 + b3 + b4) v91 + (−3a1 + b2) v81
+ (−5a4 + b5) v101 − 2a6v121 v2 − 11a6v81v22 − 13a6v61v32 − 9a3v61v22
− a5v

13
1 − a3v

12
1 + b1v

7
1 − b2v

6
1 − 6a6v52 − 2b1v51 − 2a3v42 + 2a1v32 = 0

1062



Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
2a1 = 0

−9a3 = 0
−2a3 = 0
−a3 = 0
−a5 = 0

−13a6 = 0
−12a6 = 0
−11a6 = 0
−6a6 = 0
−2a6 = 0
−4b1 = 0
−2b1 = 0
−b2 = 0

−3a1 + b2 = 0
2a1 − 2b2 = 0
4a1 − b2 = 0

−6a2 + 2b3 = 0
−5a4 + b5 = 0

−10a5 + 3b6 = 0
−8a5 + 2b6 = 0
−8a5 + 4b6 = 0
−4a5 + 2b6 = 0

−5a1 − 2a4 + b5 = 0
−4a2 + b3 + b4 = 0

−7a3 − 7a4 + 2b5 = 0
−4a3 − 2a4 + b5 = 0
−2a3 − 4a4 + 2b5 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b4

a3 = 0
a4 = 0
a5 = 0
a6 = 0
b1 = 0
b2 = 0
b3 = 3b4
b4 = b4

b5 = 0
b6 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = x2 + 3y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= x2 + 3y −
(
x6 + 2y x2 + 2y2

x (x2 + y)

)
(x)

= −x6 + x4 + 2y x2 + y2

x2 + y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x6+x4+2y x2+y2

x2+y

dy

Which results in

S = ln (−x6 + x4 + 2y x2 + y2)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x6 + 2y x2 + 2y2
x (x2 + y)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x(3x4 − 2x2 − 2y)
(x3 + x2 + y) (x3 − x2 − y)

Sy =
−x2 − y

(x3 + x2 + y) (x3 − x2 − y)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2

x
(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (−x3 − x2 − y)
2 + ln (x3 − x2 − y)

2 = 2 ln (x) + c1

Which simplifies to

ln (−x3 − x2 − y)
2 + ln (x3 − x2 − y)

2 = 2 ln (x) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x6+2y x2+2y2
x(x2+y)

dS
dR

= 2
R

R = x

S = ln (−x3 − x2 − y)
2 + ln (x3 − x2 − y)

2
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Summary
The solution(s) found are the following

(1)ln (−x3 − x2 − y)
2 + ln (x3 − x2 − y)

2 = 2 ln (x) + c1

Figure 222: Slope field plot

Verification of solutions

ln (−x3 − x2 − y)
2 + ln (x3 − x2 − y)

2 = 2 ln (x) + c1

Verified OK.

3.28.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
x2 + y

))
dy =

(
x6 + 2y x2 + 2y2

)
dx(

−x6 − 2y x2 − 2y2
)
dx+

(
x
(
x2 + y

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x6 − 2y x2 − 2y2

N(x, y) = x
(
x2 + y

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x6 − 2y x2 − 2y2

)
= −2x2 − 4y
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And
∂N

∂x
= ∂

∂x

(
x
(
x2 + y

))
= 3x2 + y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (x2 + y)
((
−2x2 − 4y

)
−
(
3x2 + y

))
= −5

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 5

x
dx

The result of integrating gives

µ = e−5 ln(x)

= 1
x5

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x5

(
−x6 − 2y x2 − 2y2

)
= −x6 − 2y x2 − 2y2

x5

And

N = µN

= 1
x5

(
x
(
x2 + y

))
= x2 + y

x4
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x6 − 2y x2 − 2y2
x5

)
+
(
x2 + y

x4

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x6 − 2y x2 − 2y2

x5 dx

(3)φ = −x2

2 + y2

2x4 + y

x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y

x4 + 1
x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2+y
x4 . Therefore equation (4) becomes

(5)x2 + y

x4 = x2 + y

x4 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x2

2 + y2

2x4 + y

x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + y2

2x4 + y

x2

Summary
The solution(s) found are the following

(1)−x2

2 + y2

2x4 + y

x2 = c1

Figure 223: Slope field plot

Verification of solutions

−x2

2 + y2

2x4 + y

x2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 41� �
dsolve(x*diff(y(x),x)-2*y(x)=x^6/(y(x)+x^2),y(x), singsol=all)� �

y(x) =
(
−1−

√
x2 − 2c1 + 1

)
x2

y(x) =
(
−1 +

√
x2 − 2c1 + 1

)
x2

3 Solution by Mathematica
Time used: 0.635 (sec). Leaf size: 70� �
DSolve[x*y'[x]-2*y[x]==x^6/(y[x]+x^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x2

(
1 +

√
1
x5x

2
√
x (x2 + 1 + c1)

)

y(x) → −x2 +
√

1
x5x

4
√
x (x2 + 1 + c1)
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3.29 problem 37
3.29.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1073

Internal problem ID [956]
Internal file name [OUTPUT/956_Sunday_June_05_2022_01_55_10_AM_76344571/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 37.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

y′ − y − (x+ 1) e4x

(y + ex)2
= 0

3.29.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

(y + ex)2
)
dy =

(
e2xy + 2y2ex + y3 + x e4x + e4x

)
dx(

−e2xy − 2y2ex − y3 − x e4x − e4x
)
dx+

(
(y + ex)2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −e2xy − 2y2ex − y3 − x e4x − e4x

N(x, y) = (y + ex)2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−e2xy − 2y2ex − y3 − x e4x − e4x

)
= −3y2 − 4 exy − e2x

And
∂N

∂x
= ∂

∂x

(
(y + ex)2

)
= 2(y + ex) ex

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

(y + ex)2
((
−3y2 − 4 exy − e2x

)
− (2(y + ex) ex)

)
= −3
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−3 dx

The result of integrating gives

µ = e−3x

= e−3x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−3x(−e2xy − 2y2ex − y3 − x e4x − e4x
)

= −
(
e2xy + 2y2ex + y3 + x e4x + e4x

)
e−3x

And

N = µN

= e−3x((y + ex)2
)

= (y + ex)2 e−3x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−
(
e2xy + 2y2ex + y3 + x e4x + e4x

)
e−3x)+ ((y + ex)2 e−3x) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−
(
e2xy + 2y2ex + y3 + x e4x + e4x

)
e−3x dx

(3)φ = −e−3x
(
x e4x − (3 e2x + y(y + 3 ex)) y

3

)
+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −e−3x

(
−(2y + 3 ex) y

3 − e2x − y(y + 3 ex)
3

)
+ f ′(y)

=
(
y2 + 2 exy + e2x

)
e−3x + f ′(y)

But equation (2) says that ∂φ
∂y

= (y + ex)2 e−3x. Therefore equation (4) becomes

(5)(y + ex)2 e−3x =
(
y2 + 2 exy + e2x

)
e−3x + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −e−3x
(
x e4x − (3 e2x + y(y + 3 ex)) y

3

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −e−3x
(
x e4x − (3 e2x + y(y + 3 ex)) y

3

)

Summary
The solution(s) found are the following

(1)−e−3x
(
x e4x − (3 e2x + y(y + 3 ex)) y

3

)
= c1
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Figure 224: Slope field plot

Verification of solutions

−e−3x
(
x e4x − (3 e2x + y(y + 3 ex)) y

3

)
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 92� �
dsolve(diff(y(x),x)-y(x)=((x+1)*exp(4*x))/(y(x)+exp(x))^2,y(x), singsol=all)� �

y(x) = ex
(
−1 + (3x ex − 3c1 + 1)

1
3

)
y(x) = −

ex
(
i
√
3 (3x ex − 3c1 + 1)

1
3 + (3x ex − 3c1 + 1)

1
3 + 2

)
2

y(x) =
ex
(
i
√
3− 1

)
(3x ex − 3c1 + 1)

1
3

2 − ex

3 Solution by Mathematica
Time used: 19.018 (sec). Leaf size: 143� �
DSolve[y'[x]-y[x]==((x+1)*Exp[4*x])/(y[x]+Exp[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −ex + e3x 3
√
e−6x (3exx+ 1 + 3c1)

y(x) → −ex + 1
2i
(√

3 + i
)
e3x 3
√
e−6x (3exx+ 1 + 3c1)

y(x) → −ex − 1
2

(
1 + i

√
3
)
e3x 3
√
e−6x (3exx+ 1 + 3c1)
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3.30 problem 38
3.30.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1079

Internal problem ID [957]
Internal file name [OUTPUT/957_Sunday_June_05_2022_01_55_14_AM_57865975/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number: 38.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[[_Abel , `2nd type `, `class A`]]

y′ − 2y − x e2x
1− y e−2x = 0

3.30.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

y e−2x − 1
)
dy =

(
2y2e−2x − x e2x − 2y

)
dx(

−2y2e−2x + x e2x + 2y
)
dx+

(
y e−2x − 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2y2e−2x + x e2x + 2y
N(x, y) = y e−2x − 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−2y2e−2x + x e2x + 2y

)
= −4y e−2x + 2

And
∂N

∂x
= ∂

∂x

(
y e−2x − 1

)
= −2y e−2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

y e−2x − 1
((
−4y e−2x + 2

)
−
(
−2y e−2x))

= −2
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−2 dx

The result of integrating gives

µ = e−2x

= e−2x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−2x(−2y2e−2x + x e2x + 2y
)

=
(
x e4x − 2y

(
y − e2x

))
e−4x

And

N = µN

= e−2x(y e−2x − 1
)

=
(
y e−2x − 1

)
e−2x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

x e4x − 2y
(
y − e2x

))
e−4x)+ ((y e−2x − 1

)
e−2x) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (
x e4x − 2y

(
y − e2x

))
e−4x dx

(3)φ = x2

2 + e−4xy2

2 − y e−2x + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−4xy − e−2x + f ′(y)

But equation (2) says that ∂φ
∂y

= (y e−2x − 1) e−2x. Therefore equation (4) becomes

(5)
(
y e−2x − 1

)
e−2x = e−4xy − e−2x + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x2

2 + e−4xy2

2 − y e−2x + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x2

2 + e−4xy2

2 − y e−2x

Summary
The solution(s) found are the following

(1)x2

2 + e−4xy2

2 − y e−2x = c1
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Figure 225: Slope field plot

Verification of solutions

x2

2 + e−4xy2

2 − y e−2x = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 60� �
dsolve(diff(y(x),x)-2*y(x)=x*exp(2*x)/(1-y(x)*exp(-2*x)),y(x), singsol=all)� �

y(x) = e4x
√

−e−4x (x2 + 2c1 − 1) + e2x

y(x) = −e4x
√

−e−4x (x2 + 2c1 − 1) + e2x

3 Solution by Mathematica
Time used: 0.777 (sec). Leaf size: 72� �
DSolve[y'[x]-2*y[x]==x*Exp[2*x]/(1-y[x]*Exp[-2*x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e2x −
√
x2 − 1− c1√

−e−4x

y(x) → e2x +
√
x2 − 1− c1√

−e−4x

1084



4 Chapter 2, First order equations. Existence and
Uniqueness of Solutions of Nonlinear Equations.
Section 2.3 Page 60

4.1 problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086
4.2 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091
4.3 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1094
4.4 problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1097
4.5 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1100
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4.7 problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118
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4.9 problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131
4.10 problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1133
4.11 problem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145
4.12 problem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148
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4.14 problem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1168
4.15 problem 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1172
4.16 problem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1185
4.17 problem 20(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1198
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4.1 problem 1
4.1.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1086

Internal problem ID [958]
Internal file name [OUTPUT/958_Sunday_June_05_2022_01_55_16_AM_8468720/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Existence and Uniqueness of Solutions of Nonlin-
ear Equations. Section 2.3 Page 60
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′ − x2 + y2

sin (x) = 0

4.1.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= x2 + y2

sin (x)

This is a Riccati ODE. Comparing the ODE to solve

y′ = x2

sin (x) +
y2

sin (x)

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = x2

sin(x) , f1(x) = 0 and f2(x) = 1
sin(x) . Let

y = −u′

f2u

= −u′

u
sin(x)

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − cos (x)

sin (x)2

f1f2 = 0

f 2
2 f0 =

x2

sin (x)3

Substituting the above terms back in equation (2) gives

u′′(x)
sin (x) +

cos (x)u′(x)
sin (x)2

+ x2u(x)
sin (x)3

= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = DESol
({

_Y′′(x) + cot (x)_Y′(x) + csc (x)2 x2_Y(x)
}
, {_Y(x)}

)
The above shows that

u′(x) = d

dx
DESol

({
_Y′′(x) + cot (x)_Y′(x) + csc (x)2 x2_Y(x)

}
, {_Y(x)}

)
Using the above in (1) gives the solution

y = −
(

d
dx

DESol
({

_Y′′(x) + cot (x)_Y′(x) + csc (x)2 x2_Y(x)
}
, {_Y(x)}

))
sin (x)

DESol
({

_Y′′ (x) + cot (x)_Y′ (x) + csc (x)2 x2_Y (x)
}
, {_Y (x)}

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y = −
(

d
dx

DESol
({

_Y′′(x) + cot (x)_Y′(x) + csc (x)2 x2_Y(x)
}
, {_Y(x)}

))
sin (x)

DESol
({

_Y′′ (x) + cot (x)_Y′ (x) + csc (x)2 x2_Y (x)
}
, {_Y (x)}

)
Summary
The solution(s) found are the following

y = −
(

d
dx

DESol
({

_Y′′(x) + cot (x)_Y′(x) + csc (x)2 x2_Y(x)
}
, {_Y(x)}

))
sin (x)

DESol
({

_Y′′ (x) + cot (x)_Y′ (x) + csc (x)2 x2_Y (x)
}
, {_Y (x)}

)
(1)

Figure 226: Slope field plot

Verification of solutions

y = −
(

d
dx

DESol
({

_Y′′(x) + cot (x)_Y′(x) + csc (x)2 x2_Y(x)
}
, {_Y(x)}

))
sin (x)

DESol
({

_Y′′ (x) + cot (x)_Y′ (x) + csc (x)2 x2_Y (x)
}
, {_Y (x)}

)
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -cos(x)*(diff(y(x), x))/sin(x)-x^2*y(x)/sin(x)^2, y(x)` *** Suble

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients

<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients

<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]

trying to convert to an ODE of Bessel type
-> trying with_periodic_functions in the coefficients

-> Trying a change of variables to reduce to Bernoulli
-> Calling odsolve with the ODE`, diff(y(x), x)-(y(x)^2/sin(x)+y(x)+x^4/sin(x))/x, y(x), explicit` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation

-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]

trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 6`� �
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7 Solution by Maple� �
dsolve(diff(y(x),x)=(x^2+y(x)^2)/sin(x),y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y'[x]==(x^2+y[x]^2)/Sin[x],y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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4.2 problem 2
Internal problem ID [959]
Internal file name [OUTPUT/959_Sunday_June_05_2022_01_55_21_AM_90170821/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Existence and Uniqueness of Solutions of Nonlin-
ear Equations. Section 2.3 Page 60
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

y′ − y + ex
x2 + y2

= 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT

-> Calling odsolve with the ODE`, diff(y(x), x)+(exp(x)*y(x)-K[1])/exp(x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-2*(y(x)*x+exp(x)*K[1])/x^2, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(exp(x)*y(x)*x-2*exp(x)*y(x)+K[1]*x)/(x*exp(x)), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-2*K[1], y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+y(x)-3*K[1], y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(y(x)*x-K[1]*x-2*y(x))/x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-K[1], y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+(-K[1]*x+2*y(x))/x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, -K[1]*x^2+diff(y(x), x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful

-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
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7 Solution by Maple� �
dsolve(diff(y(x),x)=(exp(x)+y(x))/(x^2+y(x)^2),y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y'[x]==(Exp[x]+y[x])/(x^2+y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �
Not solved

1093



4.3 problem 3
Internal problem ID [960]
Internal file name [OUTPUT/960_Sunday_June_05_2022_01_55_22_AM_80577424/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Existence and Uniqueness of Solutions of Nonlin-
ear Equations. Section 2.3 Page 60
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

y′ − tan (yx) = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type
<- found 1 conformal symmetry. Proceeding with integration step
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful`� �

1095



3 Solution by Maple
Time used: 0.046 (sec). Leaf size: 44� �
dsolve(diff(y(x),x)=tan(x*y(x)),y(x), singsol=all)� �
y(x) = −iRootOf

(
− erf

(
(−x+ _Z)

√
2

2

)
√
π −

√
π erf

(√
2 (x+ _Z)

2

)
+
√
2 c1

)

3 Solution by Mathematica
Time used: 0.311 (sec). Leaf size: 69� �
DSolve[y'[x]==Tan[x*y[x]],y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
1
2

√
π

2 e
x2
2

(
erfi
(
y(x)− ix√

2

)
+ erfi

(
y(x) + ix√

2

))
= c1e

x2
2 , y(x)

]
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4.4 problem 4
Internal problem ID [961]
Internal file name [OUTPUT/961_Sunday_June_05_2022_01_55_23_AM_35075872/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Existence and Uniqueness of Solutions of Nonlin-
ear Equations. Section 2.3 Page 60
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

y′ − x2 + y2

ln (yx) = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
7 Solution by Maple� �
dsolve(diff(y(x),x)=(x^2+y(x)^2)/ln(x*y(x)),y(x), singsol=all)� �

No solution found
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7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y'[x]==(x^2+y[x]^2)/Log[x*y[x]],y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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4.5 problem 5
Internal problem ID [962]
Internal file name [OUTPUT/962_Sunday_June_05_2022_01_55_25_AM_72143897/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Existence and Uniqueness of Solutions of Nonlin-
ear Equations. Section 2.3 Page 60
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

y′ −
(
x2 + y2

)
y

1
3 = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
`, `-> Computing symmetries using: way = HINT

-> Calling odsolve with the ODE`, diff(y(x), x) = (1/3)*y(x)/x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x) = (7/3)*y(x)/x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x) = -2*y(x)/x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-(1/3)*y(x)/x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-(7/3)*y(x)/x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
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7 Solution by Maple� �
dsolve(diff(y(x),x)=(x^2+y(x)^2)*y(x)^(1/3),y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y'[x]==(x^2+y[x]^2)*y[x]^(1/3),y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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4.6 problem 6
4.6.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1103
4.6.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1105
4.6.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1106
4.6.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 1108
4.6.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1112
4.6.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1116

Internal problem ID [963]
Internal file name [OUTPUT/963_Sunday_June_05_2022_01_55_26_AM_63170606/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Existence and Uniqueness of Solutions of Nonlin-
ear Equations. Section 2.3 Page 60
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

−2yx+ y′ = 0

4.6.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= 2yx
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Where f(x) = 2x and g(y) = y. Integrating both sides gives

1
y
dy = 2x dx∫ 1

y
dy =

∫
2x dx

ln (y) = x2 + c1

y = ex2+c1

= c1ex
2

Summary
The solution(s) found are the following

(1)y = c1ex
2

Figure 227: Slope field plot

Verification of solutions

y = c1ex
2

Verified OK.
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4.6.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −2x
q(x) = 0

Hence the ode is

−2yx+ y′ = 0

The integrating factor µ is

µ = e
∫
−2xdx

= e−x2

The ode becomes

d
dxµy = 0

d
dx

(
e−x2

y
)
= 0

Integrating gives

e−x2
y = c1

Dividing both sides by the integrating factor µ = e−x2 results in

y = c1ex
2

Summary
The solution(s) found are the following

(1)y = c1ex
2
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Figure 228: Slope field plot

Verification of solutions

y = c1ex
2

Verified OK.

4.6.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

−2u(x)x2 + u′(x)x+ u(x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(2x2 − 1)
x
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Where f(x) = 2x2−1
x

and g(u) = u. Integrating both sides gives

1
u
du = 2x2 − 1

x
dx∫ 1

u
du =

∫ 2x2 − 1
x

dx

ln (u) = x2 − ln (x) + c2

u = ex2−ln(x)+c2

= c2ex
2−ln(x)

Which simplifies to

u(x) = c2ex
2

x

Therefore the solution y is

y = xu

= c2ex
2

Summary
The solution(s) found are the following

(1)y = c2ex
2
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Figure 229: Slope field plot

Verification of solutions

y = c2ex
2

Verified OK.

4.6.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2yx
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 215: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ex2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ex2 dy

Which results in

S = e−x2
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2yx

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −2x e−x2

y

Sy = e−x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−x2
y = c1

Which simplifies to

e−x2
y = c1

Which gives

y = c1ex
2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2yx dS
dR

= 0

R = x

S = e−x2
y

Summary
The solution(s) found are the following

(1)y = c1ex
2
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Figure 230: Slope field plot

Verification of solutions

y = c1ex
2

Verified OK.

4.6.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
2y

)
dy = (x) dx

(−x) dx+
(

1
2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−x)

= 0
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And

∂N

∂x
= ∂

∂x

(
1
2y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
2y . Therefore equation (4) becomes

(5)1
2y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
2y
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
2y

)
dy

f(y) = ln (y)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + ln (y)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + ln (y)
2

The solution becomes
y = ex2+2c1

Summary
The solution(s) found are the following

(1)y = ex2+2c1
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Figure 231: Slope field plot

Verification of solutions

y = ex2+2c1

Verified OK.

4.6.6 Maple step by step solution

Let’s solve
−2yx+ y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 2x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
2xdx+ c1

• Evaluate integral
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ln (y) = x2 + c1

• Solve for y
y = ex2+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 10� �
dsolve(diff(y(x),x)=2*x*y(x),y(x), singsol=all)� �

y(x) = ex2
c1

3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 18� �
DSolve[y'[x]==2*x*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x2

y(x) → 0
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4.7 problem 7
Internal problem ID [964]
Internal file name [OUTPUT/964_Sunday_June_05_2022_01_55_27_AM_80801569/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Existence and Uniqueness of Solutions of Nonlin-
ear Equations. Section 2.3 Page 60
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

y′ − ln
(
1 + x2 + y2

)
= 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
7 Solution by Maple� �
dsolve(diff(y(x),x)=ln(1+x^2+y(x)^2),y(x), singsol=all)� �

No solution found
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7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y'[x]==Log[1+x^2+y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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4.8 problem 8
4.8.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1121
4.8.2 Solving as first order ode lie symmetry calculated ode . . . . . . 1123

Internal problem ID [965]
Internal file name [OUTPUT/965_Sunday_June_05_2022_01_55_28_AM_30487176/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Existence and Uniqueness of Solutions of Nonlin-
ear Equations. Section 2.3 Page 60
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ − 2x+ 3y
x− 4y = 0

4.8.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− 2x+ 3u(x)x
x− 4u (x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2(2u2 + u+ 1)
x (4u− 1)

1121



Where f(x) = − 2
x
and g(u) = 2u2+u+1

4u−1 . Integrating both sides gives

1
2u2+u+1
4u−1

du = −2
x
dx

∫ 1
2u2+u+1
4u−1

du =
∫

−2
x
dx

ln
(
2u2 + u+ 1

)
−

4
√
7 arctan

(
(4u+1)

√
7

7

)
7 = −2 ln (x) + c2

The solution is

ln
(
2u(x)2 + u(x) + 1

)
−

4
√
7 arctan

(
(4u(x)+1)

√
7

7

)
7 + 2 ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

ln
(
2y2
x2 + y

x
+ 1
)
−

4
√
7 arctan

((
4y
x
+1
)√

7
7

)
7 + 2 ln (x)− c2 = 0

ln
(
2y2
x2 + y

x
+ 1
)
−

4
√
7 arctan

(
(4y+x)

√
7

7x

)
7 + 2 ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)ln
(
2y2
x2 + y

x
+ 1
)
−

4
√
7 arctan

(
(4y+x)

√
7

7x

)
7 + 2 ln (x)− c2 = 0
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Figure 232: Slope field plot

Verification of solutions

ln
(
2y2
x2 + y

x
+ 1
)
−

4
√
7 arctan

(
(4y+x)

√
7

7x

)
7 + 2 ln (x)− c2 = 0

Verified OK.

4.8.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − 2x+ 3y
−x+ 4y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(2x+ 3y) (b3 − a2)

−x+ 4y − (2x+ 3y)2 a3
(−x+ 4y)2

−
(
− 2
−x+ 4y − 2x+ 3y

(−x+ 4y)2
)
(xa2 + ya3 + a1)

−
(
− 3
−x+ 4y + 8x+ 12y

(−x+ 4y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−2x2a2 + 4x2a3 + 10x2b2 − 2x2b3 − 16xya2 + 12xya3 + 8xyb2 + 16xyb3 − 12y2a2 − 2y2a3 − 16y2b2 + 12y2b3 + 11xb1 − 11ya1
(x− 4y)2

= 0

Setting the numerator to zero gives

(6E)−2x2a2 − 4x2a3 − 10x2b2 + 2x2b3 + 16xya2 − 12xya3 − 8xyb2
− 16xyb3 + 12y2a2 + 2y2a3 + 16y2b2 − 12y2b3 − 11xb1 + 11ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a2v21 + 16a2v1v2 + 12a2v22 − 4a3v21 − 12a3v1v2 + 2a3v22 − 10b2v21
− 8b2v1v2 + 16b2v22 + 2b3v21 − 16b3v1v2 − 12b3v22 + 11a1v2 − 11b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−2a2 − 4a3 − 10b2 + 2b3) v21 + (16a2 − 12a3 − 8b2 − 16b3) v1v2
− 11b1v1 + (12a2 + 2a3 + 16b2 − 12b3) v22 + 11a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

11a1 = 0
−11b1 = 0

−2a2 − 4a3 − 10b2 + 2b3 = 0
12a2 + 2a3 + 16b2 − 12b3 = 0
16a2 − 12a3 − 8b2 − 16b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b2 + b3

a3 = −2b2
b1 = 0
b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− 2x+ 3y
−x+ 4y

)
(x)

= −2x2 − 2yx− 4y2
x− 4y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2x2−2yx−4y2
x−4y

dy

Which results in

S = ln (x2 + yx+ 2y2)
2 −

2
√
7 arctan

(
(x+4y)

√
7

7x

)
7

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 2x+ 3y
−x+ 4y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x+ 3y
2x2 + 2yx+ 4y2

Sy =
−x+ 4y

2x2 + 2yx+ 4y2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (2y2 + yx+ x2)
2 −

2
√
7 arctan

(
(4y+x)

√
7

7x

)
7 = c1

Which simplifies to

ln (2y2 + yx+ x2)
2 −

2
√
7 arctan

(
(4y+x)

√
7

7x

)
7 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 2x+3y
−x+4y

dS
dR

= 0

R = x

S = ln (x2 + yx+ 2y2)
2 −

2
√
7 arctan

(
(x+4y)

√
7

7x

)
7

Summary
The solution(s) found are the following

(1)ln (2y2 + yx+ x2)
2 −

2
√
7 arctan

(
(4y+x)

√
7

7x

)
7 = c1
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Figure 233: Slope field plot

Verification of solutions

ln (2y2 + yx+ x2)
2 −

2
√
7 arctan

(
(4y+x)

√
7

7x

)
7 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.156 (sec). Leaf size: 51� �
dsolve(diff(y(x),x)=(2*x+3*y(x))/(x-4*y(x)),y(x), singsol=all)� �
y(x)

=
x
(√

7 tan
(
RootOf

(√
7 ln

(
sec (_Z)2 x2)+√

7 ln (7)− 3
√
7 ln (2) + 2

√
7 c1 − 4_Z

))
− 1
)

4

3 Solution by Mathematica
Time used: 0.069 (sec). Leaf size: 53� �
DSolve[y'[x]==(2*x+3*y[x])/(x-4*y[x]),y[x],x,IncludeSingularSolutions -> True]� �

Solve

log(2y(x)2
x2 + y(x)

x
+ 1
)
−

4 arctan
(

4y(x)
x

+1√
7

)
√
7

= −2 log(x) + c1, y(x)
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4.9 problem 9
Internal problem ID [966]
Internal file name [OUTPUT/966_Sunday_June_05_2022_01_55_30_AM_71086193/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Existence and Uniqueness of Solutions of Nonlin-
ear Equations. Section 2.3 Page 60
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

y′ −
√

x2 + y2 = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
7 Solution by Maple� �
dsolve(diff(y(x),x)=(x^2+y(x)^2)^(1/2),y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y'[x]==(x^2+y[x]^2)^(1/2),y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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4.10 problem 10
4.10.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1133
4.10.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1135
4.10.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1139
4.10.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1143

Internal problem ID [967]
Internal file name [OUTPUT/967_Sunday_June_05_2022_01_55_31_AM_4635800/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Existence and Uniqueness of Solutions of Nonlin-
ear Equations. Section 2.3 Page 60
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − x
(
−1 + y2

) 2
3 = 0

4.10.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x
(
y2 − 1

) 2
3

Where f(x) = x and g(y) = (y2 − 1)
2
3 . Integrating both sides gives

1
(y2 − 1)

2
3
dy = x dx
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∫ 1
(y2 − 1)

2
3
dy =

∫
x dx

(− signum (y2 − 1))
2
3y hypergeom

([1
2 ,

2
3

]
,
[3
2

]
, y2
)

signum (y2 − 1)
2
3

= x2

2 + c1

The solution is

(− signum (−1 + y2))
2
3y hypergeom

([1
2 ,

2
3

]
,
[3
2

]
, y2
)

signum (−1 + y2)
2
3

− x2

2 − c1 = 0

Summary
The solution(s) found are the following

(1)
(− signum (−1 + y2))

2
3y hypergeom

([1
2 ,

2
3

]
,
[3
2

]
, y2
)

signum (−1 + y2)
2
3

− x2

2 − c1 = 0

Figure 234: Slope field plot
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Verification of solutions

(− signum (−1 + y2))
2
3y hypergeom

([1
2 ,

2
3

]
,
[3
2

]
, y2
)

signum (−1 + y2)
2
3

− x2

2 − c1 = 0

Verified OK.

4.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x
(
y2 − 1

) 2
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 218: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x

dx

Which results in

S = x2

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x
(
y2 − 1

) 2
3

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

(y2 − 1)
2
3

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

(R2 − 1)
2
3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
(− signum (R2 − 1))

2
3R hypergeom

([1
2 ,

2
3

]
,
[3
2

]
, R2)

signum (R2 − 1)
2
3

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2

2 =
(− signum (−1 + y2))

2
3y hypergeom

([1
2 ,

2
3

]
,
[3
2

]
, y2
)

signum (−1 + y2)
2
3

+ c1

Which simplifies to
y
(
1− i

√
3
)
hypergeom

([1
2 ,

2
3

]
,
[3
2

]
, y2
)

2 + x2

2 − c1 = 0

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x(y2 − 1)
2
3 dS

dR
= 1

(R2−1)
2
3

R = y

S = x2

2

Summary
The solution(s) found are the following

(1)
y
(
1− i

√
3
)
hypergeom

([1
2 ,

2
3

]
,
[3
2

]
, y2
)

2 + x2

2 − c1 = 0
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Figure 235: Slope field plot

Verification of solutions

y
(
1− i

√
3
)
hypergeom

([1
2 ,

2
3

]
,
[3
2

]
, y2
)

2 + x2

2 − c1 = 0

Verified OK.

4.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

(y2 − 1)
2
3

)
dy = (x) dx

(−x) dx+
(

1
(y2 − 1)

2
3

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
(y2 − 1)

2
3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−x)

= 0
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And

∂N

∂x
= ∂

∂x

(
1

(y2 − 1)
2
3

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
(y2−1)

2
3
. Therefore equation (4) becomes

(5)1
(y2 − 1)

2
3
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
(y2 − 1)

2
3
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
(y2 − 1)

2
3

)
dy

f(y) =
(− signum (y2 − 1))

2
3y hypergeom

([1
2 ,

2
3

]
,
[3
2

]
, y2
)

signum (y2 − 1)
2
3

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 +
(− signum (y2 − 1))

2
3y hypergeom

([1
2 ,

2
3

]
,
[3
2

]
, y2
)

signum (y2 − 1)
2
3

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 +
(− signum (y2 − 1))

2
3y hypergeom

([1
2 ,

2
3

]
,
[3
2

]
, y2
)

signum (y2 − 1)
2
3

Summary
The solution(s) found are the following

(1)
(− signum (−1 + y2))

2
3y hypergeom

([1
2 ,

2
3

]
,
[3
2

]
, y2
)

signum (−1 + y2)
2
3

− x2

2 = c1
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Figure 236: Slope field plot

Verification of solutions

(− signum (−1 + y2))
2
3y hypergeom

([1
2 ,

2
3

]
,
[3
2

]
, y2
)

signum (−1 + y2)
2
3

− x2

2 = c1

Verified OK.

4.10.4 Maple step by step solution

Let’s solve

y′ − x(−1 + y2)
2
3 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

(−1+y2)
2
3
= x

• Integrate both sides with respect to x∫
y′

(−1+y2)
2
3
dx =

∫
xdx+ c1
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• Cannot compute integral∫
y′

(−1+y2)
2
3
dx = x2

2 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 44� �
dsolve(diff(y(x),x)=x*(y(x)^2-1)^(2/3),y(x), singsol=all)� �

x2

2 −
(
− signum

(
y(x)2 − 1

)) 2
3y(x) hypergeom

([1
2 ,

2
3

]
,
[3
2

]
, y(x)2

)
signum

(
y (x)2 − 1

) 2
3

+ c1 = 0

3 Solution by Mathematica
Time used: 6.768 (sec). Leaf size: 66� �
DSolve[y'[x]==x*(y[x]^2-1)^(2/3),y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ InverseFunction
[
#1
(
1−#12

)2/3Hypergeometric2F1
(1
2 ,

2
3 ,

3
2 ,#12

)(
#12 − 1

)2/3 &
] [

x2

2 + c1

]
y(x) → −1
y(x) → 1
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4.11 problem 11
Internal problem ID [968]
Internal file name [OUTPUT/968_Sunday_June_05_2022_01_55_33_AM_80678656/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Existence and Uniqueness of Solutions of Nonlin-
ear Equations. Section 2.3 Page 60
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[`y=_G(x,y') `]

Unable to solve or complete the solution.

y′ −
(
x2 + y2

)2 = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
7 Solution by Maple� �
dsolve(diff(y(x),x)=(x^2+y(x)^2)^2,y(x), singsol=all)� �

No solution found
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7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y'[x]==(x^2+y[x]^2)^2,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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4.12 problem 12
4.12.1 Solving as homogeneousTypeC ode . . . . . . . . . . . . . . . . 1148
4.12.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1150

Internal problem ID [969]
Internal file name [OUTPUT/969_Sunday_June_05_2022_01_55_34_AM_74084635/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Existence and Uniqueness of Solutions of Nonlin-
ear Equations. Section 2.3 Page 60
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeC", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′ −
√
x+ y = 0

4.12.1 Solving as homogeneousTypeC ode

Let

z = x+ y (1)

Then

z′(x) = 1 + y′

Therefore

y′ = z′(x)− 1

Hence the given ode can now be written as

z′(x)− 1 =
√
z
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This is separable first order ode. Integrating∫
dx =

∫ 1√
z + 1

dz

x+ c1 = 2
√
z + ln

(
−1 +

√
z
)
− ln

(√
z + 1

)
− ln (z − 1)

Replacing z back by its value from (1) then the above gives the solution as

2
√
x+ y + ln

(
−1 +

√
x+ y

)
− ln

(√
x+ y + 1

)
− ln (x− 1 + y) = x+ c1

Summary
The solution(s) found are the following

(1)2
√
x+ y + ln

(
−1 +

√
x+ y

)
− ln

(√
x+ y + 1

)
− ln (x− 1 + y) = x+ c1

Figure 237: Slope field plot

Verification of solutions

2
√
x+ y + ln

(
−1 +

√
x+ y

)
− ln

(√
x+ y + 1

)
− ln (x− 1 + y) = x+ c1

Verified OK.
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4.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
√
x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type C. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 221: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
η(x, y) = −1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= −1
1

= −1

This is easily solved to give

y = −x+ c1

Where now the coordinate R is taken as the constant of integration. Hence

R = x+ y

And S is found from

dS = dx

ξ

= dx

1

Integrating gives

S =
∫

dx

T

= x
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Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√
x+ y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 1
Sx = 1
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1√

x+ y + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1√

R + 1
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2
√
R + ln

(
−1 +

√
R
)
− ln

(√
R + 1

)
− ln (R− 1) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x = 2
√
x+ y + ln

(
−1 +

√
x+ y

)
− ln

(√
x+ y + 1

)
− ln (x− 1 + y) + c1

Which simplifies to

x = 2
√
x+ y + ln

(
−1 +

√
x+ y

)
− ln

(√
x+ y + 1

)
− ln (x− 1 + y) + c1
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Which gives

y = e−2LambertW
(
−e−

x
2−1+ c1

2
)
−x−2+c1 − 2 e−LambertW

(
−e−

x
2−1+ c1

2
)
−x

2−1+ c1
2 − x+ 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= √
x+ y dS

dR
= 1√

R+1

R = x+ y

S = x

Summary
The solution(s) found are the following

(1)y = e−2LambertW
(
−e−

x
2−1+ c1

2
)
−x−2+c1 − 2 e−LambertW

(
−e−

x
2−1+ c1

2
)
−x

2−1+ c1
2 − x+ 1
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Figure 238: Slope field plot

Verification of solutions

y = e−2LambertW
(
−e−

x
2−1+ c1

2
)
−x−2+c1 − 2 e−LambertW

(
−e−

x
2−1+ c1

2
)
−x

2−1+ c1
2 − x+ 1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 42� �
dsolve(diff(y(x),x)=(x+y(x))^(1/2),y(x), singsol=all)� �

x− 2
√

x+ y (x)− ln
(
−1 +

√
x+ y (x)

)
+ ln

(
1 +

√
x+ y (x)

)
+ ln (x+ y(x)− 1)− c1 = 0

3 Solution by Mathematica
Time used: 9.242 (sec). Leaf size: 59� �
DSolve[y'[x]==(x+y[x])^(1/2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → W
(
−e−

x
2−1− c1

2

)
2 + 2W

(
−e−

x
2−1− c1

2

)
− x+ 1

y(x) → 1− x
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4.13 problem 13
4.13.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1156
4.13.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1158
4.13.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1162
4.13.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1166

Internal problem ID [970]
Internal file name [OUTPUT/970_Sunday_June_05_2022_01_55_37_AM_91098866/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Existence and Uniqueness of Solutions of Nonlin-
ear Equations. Section 2.3 Page 60
Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − tan (y)
x− 1 = 0

4.13.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= tan (y)
x− 1

Where f(x) = 1
x−1 and g(y) = tan (y). Integrating both sides gives

1
tan (y) dy = 1

x− 1 dx
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∫ 1
tan (y) dy =

∫ 1
x− 1 dx

ln (sin (y)) = ln (x− 1) + c1

Raising both side to exponential gives

sin (y) = eln(x−1)+c1

Which simplifies to

sin (y) = c2(x− 1)

Summary
The solution(s) found are the following

(1)y = arcsin (c2ec1(x− 1))

Figure 239: Slope field plot

Verification of solutions

y = arcsin (c2ec1(x− 1))

Verified OK.
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4.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = tan (y)
x− 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 223: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x− 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x− 1dx

Which results in

S = ln (x− 1)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = tan (y)
x− 1
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x− 1

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cot (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cot (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (sin (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x− 1) = ln (sin (y)) + c1

Which simplifies to

ln (x− 1) = ln (sin (y)) + c1

Which gives

y = arcsin
(
e−c1(x− 1)

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= tan(y)
x−1

dS
dR

= cot (R)

R = y

S = ln (x− 1)

Summary
The solution(s) found are the following

(1)y = arcsin
(
e−c1(x− 1)

)
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Figure 240: Slope field plot

Verification of solutions

y = arcsin
(
e−c1(x− 1)

)
Verified OK.

4.13.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

1162



Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

tan (y)

)
dy =

(
1

x− 1

)
dx(

− 1
x− 1

)
dx+

(
1

tan (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x− 1

N(x, y) = 1
tan (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x− 1

)
= 0
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And

∂N

∂x
= ∂

∂x

(
1

tan (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x− 1 dx

(3)φ = − ln (x− 1) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
tan(y) . Therefore equation (4) becomes

(5)1
tan (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
tan (y)

= cot (y)
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Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(cot (y)) dy

f(y) = ln (sin (y)) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x− 1) + ln (sin (y)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x− 1) + ln (sin (y))

Summary
The solution(s) found are the following

(1)− ln (x− 1) + ln (sin (y)) = c1

Figure 241: Slope field plot
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Verification of solutions

− ln (x− 1) + ln (sin (y)) = c1

Verified OK.

4.13.4 Maple step by step solution

Let’s solve
y′ − tan(y)

x−1 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

tan(y) =
1

x−1

• Integrate both sides with respect to x∫
y′

tan(y)dx =
∫ 1

x−1dx+ c1

• Evaluate integral
ln (sin (y)) = ln (x− 1) + c1

• Solve for y
y = arcsin (ec1(x− 1))

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 10� �
dsolve(diff(y(x),x)=tan(y(x))/(x-1),y(x), singsol=all)� �

y(x) = arcsin (c1(x− 1))

3 Solution by Mathematica
Time used: 7.817 (sec). Leaf size: 19� �
DSolve[y'[x]==Tan[y[x]]/(x-1),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → arcsin (ec1(x− 1))
y(x) → 0
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4.14 problem 16
4.14.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1168
4.14.2 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 1169
4.14.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1170

Internal problem ID [971]
Internal file name [OUTPUT/971_Sunday_June_05_2022_01_55_38_AM_93564178/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Existence and Uniqueness of Solutions of Nonlin-
ear Equations. Section 2.3 Page 60
Problem number: 16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ − y
2
5 = 0

With initial conditions

[y(0) = 1]

4.14.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)
= y

2
5

The y domain of f(x, y) when x = 0 is

{0 ≤ y}
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And the point y0 = 1 is inside this domain. Now we will look at the continuity of
∂f

∂y
= ∂

∂y

(
y

2
5

)
= 2

5y 3
5

The y domain of ∂f
∂y

when x = 0 is

{0 < y}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

4.14.2 Solving as quadrature ode

Integrating both sides gives ∫ 1
y

2
5
dy =

∫
dx

5y 3
5

3 = x+ c1

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

5
3 = c1

c1 =
5
3

Substituting c1 found above in the general solution gives

5y 3
5

3 = x+ 5
3

Summary
The solution(s) found are the following

(1)5y 3
5

3 = x+ 5
3

Verification of solutions

5y 3
5

3 = x+ 5
3

Verified OK.
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4.14.3 Maple step by step solution

Let’s solve[
y′ − y

2
5 = 0, y(0) = 1

]
• Highest derivative means the order of the ODE is 1

y′

• Separate variables
y′

y
2
5
= 1

• Integrate both sides with respect to x∫
y′

y
2
5
dx =

∫
1dx+ c1

• Evaluate integral
5y

3
5

3 = x+ c1

• Solve for y

y =
(3x

5 + 3c1
5

) 5
3

• Use initial condition y(0) = 1

1 = 3 3
2
3 5

1
3 c

5
3
1

25

• Solve for c1
c1 = 5

3

• Substitute c1 = 5
3 into general solution and simplify

y = (3x+5)
( 3x

5 +1
) 2
3

5

• Solution to the IVP

y = (3x+5)
( 3x

5 +1
) 2
3

5
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 11� �
dsolve([diff(y(x),x)=y(x)^(2/5),y(0) = 1],y(x), singsol=all)� �

y(x) =
(3x+ 5)

(3x
5 + 1

) 2
3

5

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 23� �
DSolve[{y'[x]==y[x]^(2/5),y[0]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (3x+ 5)5/3
5 52/3
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4.15 problem 18
4.15.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1172
4.15.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1173
4.15.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1174
4.15.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1179
4.15.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1182

Internal problem ID [972]
Internal file name [OUTPUT/972_Sunday_June_05_2022_01_55_40_AM_21455212/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Existence and Uniqueness of Solutions of Nonlin-
ear Equations. Section 2.3 Page 60
Problem number: 18.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − 3x(y − 1)
1
3 = 0

With initial conditions

[y(0) = 1]

4.15.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= 3x(y − 1)
1
3

The x domain of f(x, y) when y = 1 is

{−∞ < x < ∞}

1172



And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
3x(y − 1)

1
3

)
= x

(y − 1)
2
3

∂f
∂y

is not defined at y = 1 therefore existence and uniqueness theorem do not apply.
Solution exist but not guaranteed to be unique.

4.15.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 3x(y − 1)
1
3

Where f(x) = 3x and g(y) = (y − 1)
1
3 . Integrating both sides gives

1
(y − 1)

1
3
dy = 3x dx

∫ 1
(y − 1)

1
3
dy =

∫
3x dx

3(y − 1)
2
3

2 = 3x2

2 + c1

The solution is
3(y − 1)

2
3

2 − 3x2

2 − c1 = 0

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

−c1 = 0
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c1 = 0

Substituting c1 found above in the general solution gives

3(y − 1)
2
3

2 − 3x2

2 = 0

Summary
The solution(s) found are the following

(1)3(y − 1)
2
3

2 − 3x2

2 = 0

Verification of solutions

3(y − 1)
2
3

2 − 3x2

2 = 0

Verified OK.

4.15.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 3x(y − 1)
1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 227: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
3x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
3x
dx

Which results in

S = 3x2

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 3x(y − 1)
1
3

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = 3x
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

(y − 1)
1
3

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

(R− 1)
1
3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 3(R− 1)
2
3

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3x2

2 = 3(y − 1)
2
3

2 + c1

Which simplifies to

3x2

2 = 3(y − 1)
2
3

2 + c1

Which gives

y = (9x2 − 6c1)
3
2

27 + 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 3x(y − 1)
1
3 dS

dR
= 1

(R−1)
1
3

R = y

S = 3x2

2
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = (−6c1)
3
2

27 + 1

c1 = 0

Substituting c1 found above in the general solution gives

y = x3 + 1

Summary
The solution(s) found are the following

(1)y = x3 + 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = x3 + 1

Verified OK. {positive}
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4.15.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

3 (y − 1)
1
3

)
dy = (x) dx

(−x) dx+
(

1
3 (y − 1)

1
3

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
3 (y − 1)

1
3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x)

= 0

And

∂N

∂x
= ∂

∂x

(
1

3 (y − 1)
1
3

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= 1
3(y−1)

1
3
. Therefore equation (4) becomes

(5)1
3 (y − 1)

1
3
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
3 (y − 1)

1
3

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
3 (y − 1)

1
3

)
dy

f(y) = (y − 1)
2
3

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + (y − 1)
2
3

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + (y − 1)
2
3

2

The solution becomes

y = 1 +
(
x2 + 2c1

) 3
2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = 1 + 2c
3
2
1
√
2

c1 = 0
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Substituting c1 found above in the general solution gives

y = x3 + 1

Summary
The solution(s) found are the following

(1)y = x3 + 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = x3 + 1

Verified OK. {positive}

4.15.5 Maple step by step solution

Let’s solve[
y′ − 3x(y − 1)

1
3 = 0, y(0) = 1

]
• Highest derivative means the order of the ODE is 1

y′

• Separate variables

1182



y′

(y−1)
1
3
= 3x

• Integrate both sides with respect to x∫
y′

(y−1)
1
3
dx =

∫
3xdx+ c1

• Evaluate integral
3(y−1)

2
3

2 = 3x2

2 + c1

• Solve for y

y =
(
9x2+6c1

) 3
2

27 + 1

• Use initial condition y(0) = 1

1 = 2
√
6 c

3
2
1

9 + 1

• Solve for c1
c1 = 0

• Substitute c1 = 0 into general solution and simplify
y = 1 + csgn(x)x3

• Solution to the IVP
y = 1 + csgn(x)x3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 5� �
dsolve([diff(y(x),x)=3*x*(y(x)-1)^(1/3),y(0) = 1],y(x), singsol=all)� �

y(x) = 1
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3 Solution by Mathematica
Time used: 0.296 (sec). Leaf size: 19� �
DSolve[{y'[x]==3*x*(y[x]-1)^(1/3),y[0]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
y(x) →

(
x2)3/2 + 1
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4.16 problem 19
4.16.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1185
4.16.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1186
4.16.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1187
4.16.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1192
4.16.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1195

Internal problem ID [973]
Internal file name [OUTPUT/973_Sunday_June_05_2022_01_55_41_AM_2489202/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Existence and Uniqueness of Solutions of Nonlin-
ear Equations. Section 2.3 Page 60
Problem number: 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − 3x(y − 1)
1
3 = 0

With initial conditions

[y(0) = 9]

4.16.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= 3x(y − 1)
1
3

The x domain of f(x, y) when y = 9 is

{−∞ < x < ∞}
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And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}

And the point y0 = 9 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
3x(y − 1)

1
3

)
= x

(y − 1)
2
3

The x domain of ∂f
∂y

when y = 9 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of ∂f
∂y

when x = 0 is

{−∞ < y < ∞}

And the point y0 = 9 is inside this domain. Therefore solution exists and is unique.

4.16.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 3x(y − 1)
1
3

Where f(x) = 3x and g(y) = (y − 1)
1
3 . Integrating both sides gives

1
(y − 1)

1
3
dy = 3x dx

∫ 1
(y − 1)

1
3
dy =

∫
3x dx

3(y − 1)
2
3

2 = 3x2

2 + c1

1186



The solution is
3(y − 1)

2
3

2 − 3x2

2 − c1 = 0

Initial conditions are used to solve for c1. Substituting x = 0 and y = 9 in the above
solution gives an equation to solve for the constant of integration.

6− c1 = 0

c1 = 6

Substituting c1 found above in the general solution gives

3(y − 1)
2
3

2 − 3x2

2 − 6 = 0

Summary
The solution(s) found are the following

(1)3(y − 1)
2
3

2 − 3x2

2 − 6 = 0

Verification of solutions

3(y − 1)
2
3

2 − 3x2

2 − 6 = 0

Verified OK.

4.16.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 3x(y − 1)
1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 230: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
3x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
3x
dx

Which results in

S = 3x2

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 3x(y − 1)
1
3

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = 3x
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

(y − 1)
1
3

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

(R− 1)
1
3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 3(R− 1)
2
3

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3x2

2 = 3(y − 1)
2
3

2 + c1

Which simplifies to

3x2

2 = 3(y − 1)
2
3

2 + c1

Which gives

y = (9x2 − 6c1)
3
2

27 + 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 3x(y − 1)
1
3 dS

dR
= 1

(R−1)
1
3

R = y

S = 3x2

2
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 9 in the above
solution gives an equation to solve for the constant of integration.

9 = (−6c1)
3
2

27 + 1

c1 = −6

Substituting c1 found above in the general solution gives

y = 1 +
(
x2 + 4

) 3
2

Summary
The solution(s) found are the following

(1)y = 1 +
(
x2 + 4

) 3
2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1 +
(
x2 + 4

) 3
2

Verified OK.
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4.16.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

3 (y − 1)
1
3

)
dy = (x) dx

(−x) dx+
(

1
3 (y − 1)

1
3

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
3 (y − 1)

1
3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x)

= 0

And

∂N

∂x
= ∂

∂x

(
1

3 (y − 1)
1
3

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= 1
3(y−1)

1
3
. Therefore equation (4) becomes

(5)1
3 (y − 1)

1
3
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
3 (y − 1)

1
3

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
3 (y − 1)

1
3

)
dy

f(y) = (y − 1)
2
3

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + (y − 1)
2
3

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + (y − 1)
2
3

2

The solution becomes

y = 1 +
(
x2 + 2c1

) 3
2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 9 in the above
solution gives an equation to solve for the constant of integration.

9 = 1 + 2c
3
2
1
√
2

c1 = 2
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Substituting c1 found above in the general solution gives

y = 1 +
(
x2 + 4

) 3
2

Summary
The solution(s) found are the following

(1)y = 1 +
(
x2 + 4

) 3
2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1 +
(
x2 + 4

) 3
2

Verified OK.

4.16.5 Maple step by step solution

Let’s solve[
y′ − 3x(y − 1)

1
3 = 0, y(0) = 9

]
• Highest derivative means the order of the ODE is 1

y′

• Separate variables
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y′

(y−1)
1
3
= 3x

• Integrate both sides with respect to x∫
y′

(y−1)
1
3
dx =

∫
3xdx+ c1

• Evaluate integral
3(y−1)

2
3

2 = 3x2

2 + c1

• Solve for y

y =
(
9x2+6c1

) 3
2

27 + 1

• Use initial condition y(0) = 9

9 = 2
√
6 c

3
2
1

9 + 1

• Solve for c1
c1 = 6

• Substitute c1 = 6 into general solution and simplify
y = x2

√
x2 + 4 + 4

√
x2 + 4 + 1

• Solution to the IVP
y = x2

√
x2 + 4 + 4

√
x2 + 4 + 1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 13� �
dsolve([diff(y(x),x)=3*x*(y(x)-1)^(1/3),y(0) = 9],y(x), singsol=all)� �

y(x) = x2
√
x2 + 4 + 4

√
x2 + 4 + 1
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3 Solution by Mathematica
Time used: 0.125 (sec). Leaf size: 16� �
DSolve[{y'[x]==3*x*(y[x]-1)^(1/3),y[0]==9},y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
x2 + 4

)3/2 + 1
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4.17 problem 20(a)
4.17.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1198
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Internal problem ID [974]
Internal file name [OUTPUT/974_Sunday_June_05_2022_01_55_42_AM_64506206/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Existence and Uniqueness of Solutions of Nonlin-
ear Equations. Section 2.3 Page 60
Problem number: 20(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − 3x(y − 1)
1
3 = 0

With initial conditions

[y(3) = −7]

4.17.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= 3x(y − 1)
1
3

The x domain of f(x, y) when y = −7 is

{−∞ < x < ∞}
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And the point x0 = 3 is inside this domain. The y domain of f(x, y) when x = 3 is

{1 ≤ y}

But the point y0 = −7 is not inside this domain. Hence existence and uniqueness
theorem does not apply. There could be infinite number of solutions, or one solution or
no solution at all.

4.17.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 3x(y − 1)
1
3

Where f(x) = 3x and g(y) = (y − 1)
1
3 . Integrating both sides gives

1
(y − 1)

1
3
dy = 3x dx

∫ 1
(y − 1)

1
3
dy =

∫
3x dx

3(y − 1)
2
3

2 = 3x2

2 + c1

The solution is
3(y − 1)

2
3

2 − 3x2

2 − c1 = 0

Initial conditions are used to solve for c1. Substituting x = 3 and y = −7 in the above
solution gives an equation to solve for the constant of integration.

−33
2 + 3i

√
3− c1 = 0

c1 = −33
2 + 3i

√
3
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Substituting c1 found above in the general solution gives

3(y − 1)
2
3

2 − 3x2

2 + 33
2 − 3i

√
3 = 0

Solving for y from the above gives

y = 1 +
(
2i
√
3 + x2 − 11

) 3
2

Summary
The solution(s) found are the following

(1)y = 1 +
(
2i
√
3 + x2 − 11

) 3
2

Verification of solutions

y = 1 +
(
2i
√
3 + x2 − 11

) 3
2

Verified OK.

4.17.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 3x(y − 1)
1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 233: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
3x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
3x
dx

Which results in

S = 3x2

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 3x(y − 1)
1
3

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = 3x
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

(y − 1)
1
3

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

(R− 1)
1
3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 3(R− 1)
2
3

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3x2

2 = 3(y − 1)
2
3

2 + c1

Which simplifies to

3x2

2 = 3(y − 1)
2
3

2 + c1

Which gives

y = (9x2 − 6c1)
3
2

27 + 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 3x(y − 1)
1
3 dS

dR
= 1

(R−1)
1
3

R = y

S = 3x2

2
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Initial conditions are used to solve for c1. Substituting x = 3 and y = −7 in the above
solution gives an equation to solve for the constant of integration.

−7 = (81− 6c1)
3
2

27 + 1

c1 =
33
2 + 3i

√
3

Substituting c1 found above in the general solution gives

y =
(
−2i

√
3 + x2 − 11

) 3
2 + 1

Summary
The solution(s) found are the following

(1)y =
(
−2i

√
3 + x2 − 11

) 3
2 + 1

Verification of solutions

y =
(
−2i

√
3 + x2 − 11

) 3
2 + 1

Verified OK.

4.17.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

3 (y − 1)
1
3

)
dy = (x) dx

(−x) dx+
(

1
3 (y − 1)

1
3

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
3 (y − 1)

1
3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−x)

= 0

And

∂N

∂x
= ∂

∂x

(
1

3 (y − 1)
1
3

)
= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
3(y−1)

1
3
. Therefore equation (4) becomes

(5)1
3 (y − 1)

1
3
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
3 (y − 1)

1
3

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
3 (y − 1)

1
3

)
dy

f(y) = (y − 1)
2
3

2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + (y − 1)
2
3

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + (y − 1)
2
3

2

The solution becomes

y = 1 +
(
x2 + 2c1

) 3
2

Initial conditions are used to solve for c1. Substituting x = 3 and y = −7 in the above
solution gives an equation to solve for the constant of integration.

−7 = 1 + (9 + 2c1)
3
2

c1 = −11
2 − i

√
3

Substituting c1 found above in the general solution gives

y =
(
−2i

√
3 + x2 − 11

) 3
2 + 1

Summary
The solution(s) found are the following

(1)y =
(
−2i

√
3 + x2 − 11

) 3
2 + 1

Verification of solutions

y =
(
−2i

√
3 + x2 − 11

) 3
2 + 1

Verified OK.

1207



4.17.5 Maple step by step solution

Let’s solve[
y′ − 3x(y − 1)

1
3 = 0, y(3) = −7

]
• Highest derivative means the order of the ODE is 1

y′

• Separate variables
y′

(y−1)
1
3
= 3x

• Integrate both sides with respect to x∫
y′

(y−1)
1
3
dx =

∫
3xdx+ c1

• Evaluate integral
3(y−1)

2
3

2 = 3x2

2 + c1

• Solve for y

y =
(
9x2+6c1

) 3
2

27 + 1

• Use initial condition y(3) = −7

−7 = (6c1+81)
3
2

27 + 1

• Solve for c1
c1 =

(
−33

2 − 3 I
√
3,−33

2 + 3 I
√
3
)

• Substitute c1 =
(
−33

2 − 3 I
√
3,−33

2 + 3 I
√
3
)
into general solution and simplify

y =
(
−2 I

√
3 + x2 − 11

) 3
2 + 1

• Solution to the IVP

y =
(
−2 I

√
3 + x2 − 11

) 3
2 + 1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.156 (sec). Leaf size: 19� �
dsolve([diff(y(x),x)=3*x*(y(x)-1)^(1/3),y(3) = -7],y(x), singsol=all)� �

y(x) = 1 +
(
−11 + 2i

√
3 + x2

) 3
2

3 Solution by Mathematica
Time used: 0.134 (sec). Leaf size: 49� �
DSolve[{y'[x]==3*x*(y[x]-1)^(1/3),y[3]==-7},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1 +
(
x2 − 2i

√
3− 11

)3/2
y(x) → 1 +

(
x2 + 2i

√
3− 11

)3/2
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5.1 problem Example 1
5.1.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 1212
5.1.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1216
5.1.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1219

Internal problem ID [975]
Internal file name [OUTPUT/975_Sunday_June_05_2022_01_55_45_AM_98582848/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: Example 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

y′ − y − xy2 = 0

5.1.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x y2 + y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 236: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y2e−x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2e−x
dy

Which results in

S = −ex
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x y2 + y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −ex
y

Sy =
ex
y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x ex (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R eR
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = (R− 1) eR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−ex
y

= (x− 1) ex + c1

Which simplifies to

−ex
y

= (x− 1) ex + c1

Which gives

y = − ex
x ex − ex + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x y2 + y dS
dR

= R eR

R = x

S = −ex
y
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Summary
The solution(s) found are the following

(1)y = − ex
x ex − ex + c1

Figure 246: Slope field plot

Verification of solutions

y = − ex
x ex − ex + c1

Verified OK.

5.1.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= x y2 + y

This is a Bernoulli ODE.
y′ = y + xy2 (1)
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The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = 1
f1(x) = x

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= 1
y
+ x (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = w(x) + x

w′ = −w − x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = 1
q(x) = −x

Hence the ode is

w′(x) + w(x) = −x

The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes
d
dx(µw) = (µ) (−x)
d
dx(e

xw) = (ex) (−x)

d(exw) = (−x ex) dx

Integrating gives

exw =
∫

−x ex dx

exw = −(x− 1) ex + c1

Dividing both sides by the integrating factor µ = ex results in

w(x) = −e−x(x− 1) ex + c1e−x

which simplifies to

w(x) = 1− x+ c1e−x

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= 1− x+ c1e−x

Or

y = 1
1− x+ c1e−x
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Summary
The solution(s) found are the following

(1)y = 1
1− x+ c1e−x

Figure 247: Slope field plot

Verification of solutions

y = 1
1− x+ c1e−x

Verified OK.

5.1.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= x y2 + y

This is a Riccati ODE. Comparing the ODE to solve

y′ = x y2 + y
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With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = 1 and f2(x) = x. Let

y = −u′

f2u

= −u′

xu
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 1

f1f2 = x

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

xu′′(x)− (x+ 1)u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 + (x− 1) exc2

The above shows that
u′(x) = c2x ex

Using the above in (1) gives the solution

y = − c2ex
c1 + (x− 1) exc2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y = − ex
c3 + (x− 1) ex

Summary
The solution(s) found are the following

(1)y = − ex
c3 + (x− 1) ex

Figure 248: Slope field plot

Verification of solutions

y = − ex
c3 + (x− 1) ex

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 17� �
dsolve(diff(y(x),x)-y(x)=x*y(x)^2,y(x), singsol=all)� �

y(x) = 1
1 + e−xc1 − x

3 Solution by Mathematica
Time used: 0.11 (sec). Leaf size: 27� �
DSolve[y'[x]-y[x]==x*y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex

−ex(x− 1) + c1
y(x) → 0
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5.2 problem Example 2
5.2.1 Solving as homogeneousTypeD ode . . . . . . . . . . . . . . . . 1223
5.2.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1225
5.2.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1227

Internal problem ID [976]
Internal file name [OUTPUT/976_Sunday_June_05_2022_01_55_46_AM_27482921/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: Example 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

y′ − y + x e− y
x

x
= 0

5.2.1 Solving as homogeneousTypeD ode

Writing the ode as

y′ = e−
y
x + y

x
(A)

The given ode has the form

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Where b is scalar and g(x) is function of x and n,m are integers. The solution is given
in Kamke page 20. Using the substitution y(x) = u(x)x then

dy

dx
= du

dx
x+ u
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Hence the given ode becomes

du

dx
x+ u = u+ g(x) f(bu)

n
m

u′ = 1
x
g(x) f(bu)

n
m (2)

The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux. Comapring
the given ode (A) with the form (1) shows that

g(x) = 1
b = 1

f

(
bx

y

)
= e

y
x

Substituting the above in (2) results in the u(x) ode as

u′(x) = e−u(x)

x

Which is now solved as separable In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= e−u

x

Where f(x) = 1
x
and g(u) = e−u. Integrating both sides gives

1
e−u

du = 1
x
dx∫ 1

e−u
du =

∫ 1
x
dx

eu = ln (x) + c1

The solution is
eu(x) − ln (x)− c1 = 0

Therefore the solution is found using y = ux. Hence

e
y
x − ln (x)− c1 = 0
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Summary
The solution(s) found are the following

(1)e
y
x − ln (x)− c1 = 0

Figure 249: Slope field plot

Verification of solutions

e
y
x − ln (x)− c1 = 0

Verified OK.

5.2.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− u(x)x+ x e−u(x)

x
= 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= e−u

x
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Where f(x) = 1
x
and g(u) = e−u. Integrating both sides gives

1
e−u

du = 1
x
dx∫ 1

e−u
du =

∫ 1
x
dx

eu = ln (x) + c2

The solution is
eu(x) − ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

e
y
x − ln (x)− c2 = 0

e
y
x − ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)e
y
x − ln (x)− c2 = 0

Figure 250: Slope field plot
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Verification of solutions

e
y
x − ln (x)− c2 = 0

Verified OK.

5.2.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y + x e− y
x

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 238: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2

η(x, y) = yx (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= yx

x2

= y

x
This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
And S is found from

dS = dx

ξ

= dx

x2

Integrating gives

S =
∫

dx

T

= −1
x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y + x e− y
x

x
Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x2

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e y

x

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −S(R) eR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1e−eR (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1
x
= c1e−e

y
x

Which simplifies to

−1
x
= c1e−e

y
x

Which gives

y = ln
(
− ln

(
− 1
c1x

))
x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y+x e−
y
x

x
dS
dR

= −S(R) eR

R = y

x

S = −1
x

Summary
The solution(s) found are the following

(1)y = ln
(
− ln

(
− 1
c1x

))
x
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Figure 251: Slope field plot

Verification of solutions

y = ln
(
− ln

(
− 1
c1x

))
x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �

1232



3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve(diff(y(x),x)=(y(x)+x*exp(-y(x)/x))/x,y(x), singsol=all)� �

y(x) = ln (ln (x) + c1)x

3 Solution by Mathematica
Time used: 0.368 (sec). Leaf size: 13� �
DSolve[y'[x]==(y[x]+x*Exp[-y[x]/x])/x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x log(log(x) + c1)
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5.3 problem Example 3(a) (As Riccati)
5.3.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1234

Internal problem ID [977]
Internal file name [OUTPUT/977_Sunday_June_05_2022_01_55_47_AM_9394587/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: Example 3(a) (As Riccati).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Riccati]

y′x2 − y2 − yx = −x2

5.3.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −x2 + yx+ y2

x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = −1 + y

x
+ y2

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = −1, f1(x) = 1
x
and f2(x) = 1

x2 . Let

y = −u′

f2u

= −u′

u
x2

(1)

1234



Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2

x3

f1f2 =
1
x3

f 2
2 f0 = − 1

x4

Substituting the above terms back in equation (2) gives

u′′(x)
x2 + u′(x)

x3 − u(x)
x4 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2x
2 + c1
x

The above shows that

u′(x) = c2x
2 − c1
x2

Using the above in (1) gives the solution

y = −(c2x2 − c1)x
c2x2 + c1

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = (−x2 + c3)x
x2 + c3

Summary
The solution(s) found are the following

(1)y = (−x2 + c3)x
x2 + c3
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Figure 252: Slope field plot

Verification of solutions

y = (−x2 + c3)x
x2 + c3

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 12� �
dsolve(x^2*diff(y(x),x)=y(x)^2+x*y(x)-x^2,y(x), singsol=all)� �

y(x) = − tanh (ln (x) + c1)x

3 Solution by Mathematica
Time used: 0.298 (sec). Leaf size: 298� �
DSolve[y'[x]==y[x]^2+x*y[x]-x^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
5
(√

5− 1
)
x

(
c1HermiteH

(
1
10

(
−5 +

√
5
)
,

4
√
5x√
2

)
− Hypergeometric1F1

(
5
4 −

1
4
√
5 ,

3
2 ,

√
5x2

2

)
+Hypergeometric1F1

(
1
20

(
5−

√
5
)
, 12 ,

√
5x2

2

))
−

√
2 4
√
5
(√

5− 5
)
c1HermiteH

(
1
10

(
−15 +

√
5
)
,

4
√
5x√
2

)
10
(
Hypergeometric1F1

(
1
20

(
5−

√
5
)
, 12 ,

√
5x2

2

)
+ c1HermiteH

(
1
10

(
−5 +

√
5
)
,

4
√
5x√
2

))

y(x) → 1
2

(√
5− 1

)
x−

(√
5− 5

)
HermiteH

(
1
10

(
−15 +

√
5
)
,

4
√
5x√
2

)
√
253/4HermiteH

(
1
10

(
−5 +

√
5
)
,

4
√
5x√
2

)
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5.4 problem Example 3(b)
5.4.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1238
5.4.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1239
5.4.3 Solving as first order ode lie symmetry calculated ode . . . . . . 1241
5.4.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1246

Internal problem ID [978]
Internal file name [OUTPUT/979_Sunday_June_05_2022_01_55_50_AM_63671662/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: Example 3(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Riccati]

y′x2 − y2 − yx = −x2

With initial conditions

[y(1) = 2]

5.4.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= −x2 + yx+ y2

x2

The x domain of f(x, y) when y = 2 is

{x < 0∨ 0 < x}
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And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{−∞ < y < ∞}

And the point y0 = 2 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
−x2 + yx+ y2

x2

)
= x+ 2y

x2

The x domain of ∂f
∂y

when y = 2 is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{−∞ < y < ∞}

And the point y0 = 2 is inside this domain. Therefore solution exists and is unique.

5.4.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x2 − u(x)2 x2 − u(x)x2 = −x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u2 − 1
x

Where f(x) = 1
x
and g(u) = u2 − 1. Integrating both sides gives

1
u2 − 1 du = 1

x
dx∫ 1

u2 − 1 du =
∫ 1

x
dx

− arctanh (u) = ln (x) + c2
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The solution is
− arctanh (u(x))− ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

− arctanh
(y
x

)
− ln (x)− c2 = 0

− arctanh
(y
x

)
− ln (x)− c2 = 0

Substituting initial conditions and solving for c2 gives c2 = − arctanh
(1
2

)
+ iπ

2 . Hence
the solution becomes Solving for y from the above gives

y = − coth
(
− arctanh

(
1
2

)
+ ln (x)

)
x

Summary
The solution(s) found are the following

(1)y = − coth
(
− arctanh

(
1
2

)
+ ln (x)

)
x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = − coth
(
− arctanh

(
1
2

)
+ ln (x)

)
x

Verified OK.
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5.4.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x2 + yx+ y2

x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(−x2 + yx+ y2) (b3 − a2)
x2 − (−x2 + yx+ y2)2 a3

x4

−
(
−2x+ y

x2 − 2(−x2 + yx+ y2)
x3

)
(xa2 + ya3 + a1)

− (x+ 2y) (xb2 + yb3 + b1)
x2 = 0

Putting the above in normal form gives

x4a2 − x4a3 − x4b3 + 2x3ya3 − 2x3yb2 + x2y2a2 + 2x2y2a3 − x2y2b3 − y4a3 − x3b1 + x2ya1 − 2x2yb1 + 2x y2a1
x4

= 0

Setting the numerator to zero gives

(6E)x4a2 − x4a3 − x4b3 + 2x3ya3 − 2x3yb2 + x2y2a2 + 2x2y2a3
− x2y2b3 − y4a3 − x3b1 + x2ya1 − 2x2yb1 + 2x y2a1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2v
4
1 + a2v

2
1v

2
2 − a3v

4
1 + 2a3v31v2 + 2a3v21v22 − a3v

4
2 − 2b2v31v2

− b3v
4
1 − b3v

2
1v

2
2 + a1v

2
1v2 + 2a1v1v22 − b1v

3
1 − 2b1v21v2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(a2 − a3 − b3) v41 + (2a3 − 2b2) v31v2 − b1v
3
1

+ (a2 + 2a3 − b3) v21v22 + (a1 − 2b1) v21v2 + 2a1v1v22 − a3v
4
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
−a3 = 0
−b1 = 0

a1 − 2b1 = 0
2a3 − 2b2 = 0

a2 − a3 − b3 = 0
a2 + 2a3 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−x2 + yx+ y2

x2

)
(x)

= x2 − y2

x
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2−y2

x

dy

Which results in

S = ln (x+ y)
2 − ln (−x+ y)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2 + yx+ y2

x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2 − y2

Sy =
x

x2 − y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x+ y)
2 − ln (−x+ y)

2 = − ln (x) + c1

Which simplifies to

ln (x+ y)
2 − ln (−x+ y)

2 = − ln (x) + c1

Which gives

y = x(e2c1 + x2)
e2c1 − x2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2+yx+y2

x2
dS
dR

= − 1
R

R = x

S = ln (x+ y)
2 − ln (−x+ y)

2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = e2c1 + 1
e2c1 − 1

c1 =
ln (3)
2

Substituting c1 found above in the general solution gives

y = −x3 − 3x
x2 − 3

Summary
The solution(s) found are the following

(1)y = −x3 − 3x
x2 − 3
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −x3 − 3x
x2 − 3

Verified OK.

5.4.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −x2 + yx+ y2

x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = −1 + y

x
+ y2

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = −1, f1(x) = 1
x
and f2(x) = 1

x2 . Let

y = −u′

f2u

= −u′

u
x2

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2

x3

f1f2 =
1
x3

f 2
2 f0 = − 1

x4

Substituting the above terms back in equation (2) gives

u′′(x)
x2 + u′(x)

x3 − u(x)
x4 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2x
2 + c1
x

The above shows that

u′(x) = c2x
2 − c1
x2

Using the above in (1) gives the solution

y = −(c2x2 − c1)x
c2x2 + c1

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = (−x2 + c3)x
x2 + c3

Initial conditions are used to solve for c3. Substituting x = 1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = c3 − 1
c3 + 1
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c3 = −3

Substituting c3 found above in the general solution gives

y = −(x2 + 3)x
x2 − 3

Summary
The solution(s) found are the following

(1)y = −(x2 + 3)x
x2 − 3

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −(x2 + 3)x
x2 − 3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 19� �
dsolve([x^2*diff(y(x),x)=y(x)^2+x*y(x)-x^2,y(1) = 2],y(x), singsol=all)� �

y(x) = −x(x2 + 3)
x2 − 3

3 Solution by Mathematica
Time used: 0.576 (sec). Leaf size: 20� �
DSolve[{x^2*y'[x]==y[x]^2+x*y[x]-x^2,y[1]==2},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x(x2 + 3)
x2 − 3
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5.5 problem 1
5.5.1 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1250
5.5.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1253

Internal problem ID [979]
Internal file name [OUTPUT/980_Sunday_June_05_2022_01_55_51_AM_82695140/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_quadrature]

y′ + y − y2 = 0

5.5.1 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= y2 − y

This is a Bernoulli ODE.
y′ = −y + y2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
f1(x) = 1

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= −1
y
+ 1 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = −w(x) + 1
w′ = w − 1 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −1
q(x) = −1

Hence the ode is

w′(x)− w(x) = −1
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The integrating factor µ is

µ = e
∫
(−1)dx

= e−x

The ode becomes

d
dx(µw) = (µ) (−1)

d
dx
(
e−xw

)
=
(
e−x
)
(−1)

d
(
e−xw

)
=
(
−e−x

)
dx

Integrating gives

e−xw =
∫

−e−x dx

e−xw = e−x + c1

Dividing both sides by the integrating factor µ = e−x results in

w(x) = e−xex + c1ex

which simplifies to

w(x) = 1 + c1ex

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= 1 + c1ex

Or

y = 1
1 + c1ex

Summary
The solution(s) found are the following

(1)y = 1
1 + c1ex
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Figure 256: Slope field plot

Verification of solutions

y = 1
1 + c1ex

Verified OK.

5.5.2 Maple step by step solution

Let’s solve
y′ + y − y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y2−y
= 1

• Integrate both sides with respect to x∫
y′

y2−y
dx =

∫
1dx+ c1

• Evaluate integral
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− ln (y) + ln (y − 1) = x+ c1

• Solve for y
y = − 1

ex+c1−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(diff(y(x),x)+y(x)=y(x)^2,y(x), singsol=all)� �

y(x) = 1
1 + exc1

3 Solution by Mathematica
Time used: 0.777 (sec). Leaf size: 54� �
DSolve[y'[x]+y[x]==y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1√
1 + e2(x+c1)

y(x) → 1√
1 + e2(x+c1)

y(x) → −1
y(x) → 0
y(x) → 1
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5.6 problem 2
5.6.1 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1255

Internal problem ID [980]
Internal file name [OUTPUT/981_Sunday_June_05_2022_01_55_53_AM_1156564/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

7y′x− 2y + x2

y6
= 0

5.6.1 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= 2y7 − x2

7x y6

This is a Bernoulli ODE.
y′ = 2

7xy −
x

7
1
y6

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
2
7x

f1(x) = −x

7
n = −6

Dividing both sides of ODE (1) by yn = 1
y6

gives

y′y6 = 2y7
7x − x

7 (4)

Let

w = y1−n

= y7 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 7y6y′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
7 = 2w(x)

7x − x

7
w′ = 2w

x
− x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −2
x

q(x) = −x
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Hence the ode is

w′(x)− 2w(x)
x

= −x

The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes

d
dx(µw) = (µ) (−x)

d
dx

( w
x2

)
=
(

1
x2

)
(−x)

d
( w
x2

)
=
(
−1
x

)
dx

Integrating gives

w

x2 =
∫

−1
x
dx

w

x2 = − ln (x) + c1

Dividing both sides by the integrating factor µ = 1
x2 results in

w(x) = − ln (x)x2 + c1x
2

which simplifies to

w(x) = x2(− ln (x) + c1)

Replacing w in the above by y7 using equation (5) gives the final solution.

y7 = x2(− ln (x) + c1)
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Solving for y gives

y(x) =
(
−x2(ln (x)− c1)

) 1
7

y(x) = (−1)
2
7
(
x2(− ln (x) + c1)

) 1
7

y(x) = (−1)
4
7
(
x2(− ln (x) + c1)

) 1
7

y(x) = (−1)
6
7
(
x2(− ln (x) + c1)

) 1
7

y(x) = −(−1)
1
7
(
x2(− ln (x) + c1)

) 1
7

y(x) = −(−1)
3
7
(
x2(− ln (x) + c1)

) 1
7

y(x) = −(−1)
5
7
(
x2(− ln (x) + c1)

) 1
7

Summary
The solution(s) found are the following

(1)y =
(
−x2(ln (x)− c1)

) 1
7

(2)y = (−1)
2
7
(
x2(− ln (x) + c1)

) 1
7

(3)y = (−1)
4
7
(
x2(− ln (x) + c1)

) 1
7

(4)y = (−1)
6
7
(
x2(− ln (x) + c1)

) 1
7

(5)y = −(−1)
1
7
(
x2(− ln (x) + c1)

) 1
7

(6)y = −(−1)
3
7
(
x2(− ln (x) + c1)

) 1
7

(7)y = −(−1)
5
7
(
x2(− ln (x) + c1)

) 1
7
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Figure 257: Slope field plot

1259



Verification of solutions

y =
(
−x2(ln (x)− c1)

) 1
7

Verified OK.

y = (−1)
2
7
(
x2(− ln (x) + c1)

) 1
7

Verified OK.

y = (−1)
4
7
(
x2(− ln (x) + c1)

) 1
7

Verified OK.

y = (−1)
6
7
(
x2(− ln (x) + c1)

) 1
7

Verified OK.

y = −(−1)
1
7
(
x2(− ln (x) + c1)

) 1
7

Verified OK.

y = −(−1)
3
7
(
x2(− ln (x) + c1)

) 1
7

Verified OK.

y = −(−1)
5
7
(
x2(− ln (x) + c1)

) 1
7

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 134� �
dsolve(7*x*diff(y(x),x)-2*y(x)=-x^2/y(x)^6,y(x), singsol=all)� �

y(x) =
(
−x2(ln (x)− c1)

) 1
7

y(x) = −
(
(c1 − ln (x))x2) 1

7 (−1)
1
7

y(x) =
(
(c1 − ln (x))x2) 1

7 (−1)
6
7

y(x) = −
(
(c1 − ln (x))x2) 1

7 (−1)
5
7

y(x) =
(
(c1 − ln (x))x2) 1

7 (−1)
2
7

y(x) = −
(
(c1 − ln (x))x2) 1

7 (−1)
3
7

y(x) =
(
(c1 − ln (x))x2) 1

7 (−1)
4
7

3 Solution by Mathematica
Time used: 0.238 (sec). Leaf size: 181� �
DSolve[7*x*y'[x]-2*y[x]==-x^2/y[x]^6,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2/7 7
√
− log(x) + c1

y(x) → − 7
√
−1x2/7 7

√
− log(x) + c1

y(x) → (−1)2/7x2/7 7
√

− log(x) + c1

y(x) → −(−1)3/7x2/7 7
√
− log(x) + c1

y(x) → (−1)4/7x2/7 7
√

− log(x) + c1

y(x) → −(−1)5/7x2/7 7
√
− log(x) + c1

y(x) → (−1)6/7x2/7 7
√

− log(x) + c1
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5.7 problem 3
5.7.1 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1262

Internal problem ID [981]
Internal file name [OUTPUT/982_Sunday_June_05_2022_01_55_56_AM_71242951/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_Bernoulli]

y′x2 + 2y − 2 e 1
x
√
y = 0

5.7.1 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −
2
(
−e 1

x
√
y + y

)
x2

This is a Bernoulli ODE.
y′ = − 2

x2y +
2 e 1

x

x2
√
y (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − 2
x2

f1(x) =
2 e 1

x

x2

n = 1
2

Dividing both sides of ODE (1) by yn = √
y gives

y′
1
√
y
= −

2√y

x2 + 2 e 1
x

x2 (4)

Let

w = y1−n

= √
y (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 1
2√y

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

2w′(x) = −2w(x)
x2 + 2 e 1

x

x2

w′ = − w

x2 + e 1
x

x2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 1
x2

q(x) = e 1
x

x2
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Hence the ode is

w′(x) + w(x)
x2 = e 1

x

x2

The integrating factor µ is

µ = e
∫ 1

x2 dx

= e− 1
x

The ode becomes

d
dx(µw) = (µ)

(
e 1

x

x2

)
d
dx

(
e− 1

xw
)
=
(
e− 1

x

)(e 1
x

x2

)
d
(
e− 1

xw
)
= 1

x2 dx

Integrating gives

e− 1
xw =

∫ 1
x2 dx

e− 1
xw = −1

x
+ c1

Dividing both sides by the integrating factor µ = e− 1
x results in

w(x) = −e 1
x

x
+ c1e

1
x

which simplifies to

w(x) = e 1
x (c1x− 1)

x

Replacing w in the above by √
y using equation (5) gives the final solution.

√
y = e 1

x (c1x− 1)
x

Summary
The solution(s) found are the following

(1)√
y = e 1

x (c1x− 1)
x

1264



Figure 258: Slope field plot

Verification of solutions

√
y = e 1

x (c1x− 1)
x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve(x^2*diff(y(x),x)+2*y(x)=2*exp(1/x)*y(x)^(1/2),y(x), singsol=all)� �

−c1x e
1
x + x

√
y (x) + e 1

x

x
= 0

3 Solution by Mathematica
Time used: 0.269 (sec). Leaf size: 39� �
DSolve[y'[x]+2*y[x]==2*Exp[1/x]*y[x]^(1/2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4e

−2x
(∫ x

1
2eK[1]+ 1

K[1]dK[1] + 2c1
)

2
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5.8 problem 4
5.8.1 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1267

Internal problem ID [982]
Internal file name [OUTPUT/983_Sunday_June_05_2022_01_55_58_AM_35701149/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_rational , _Bernoulli]

(
x2 + 1

)
y′ + 2yx− 1

(x2 + 1) y = 0

5.8.1 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −2x3y2 + 2x y2 − 1
(x2 + 1)2 y

This is a Bernoulli ODE.

y′ = − 2x3 + 2x
(x2 + 1)2

y + 1
(x2 + 1)2

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − 2x3 + 2x
(x2 + 1)2

f1(x) =
1

(x2 + 1)2

n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = −(2x3 + 2x) y2

(x2 + 1)2
+ 1

(x2 + 1)2
(4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = −(2x3 + 2x)w(x)

(x2 + 1)2
+ 1

(x2 + 1)2

w′ = −2(2x3 + 2x)w
(x2 + 1)2

+ 2
(x2 + 1)2

(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 4x
x2 + 1

q(x) = 2
(x2 + 1)2

1268



Hence the ode is

w′(x) + 4xw(x)
x2 + 1 = 2

(x2 + 1)2

The integrating factor µ is

µ = e
∫ 4x

x2+1dx

=
(
x2 + 1

)2
The ode becomes

d
dx(µw) = (µ)

(
2

(x2 + 1)2
)

d
dx

((
x2 + 1

)2
w
)
=
((

x2 + 1
)2)( 2

(x2 + 1)2
)

d
((

x2 + 1
)2

w
)
= 2dx

Integrating gives (
x2 + 1

)2
w =

∫
2 dx(

x2 + 1
)2

w = 2x+ c1

Dividing both sides by the integrating factor µ = (x2 + 1)2 results in

w(x) = 2x
(x2 + 1)2

+ c1

(x2 + 1)2

which simplifies to

w(x) = 2x+ c1

(x2 + 1)2

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = 2x+ c1

(x2 + 1)2

Solving for y gives

y(x) =
√
2x+ c1
x2 + 1

y(x) = −
√
2x+ c1
x2 + 1
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Summary
The solution(s) found are the following

(1)y =
√
2x+ c1
x2 + 1

(2)y = −
√
2x+ c1
x2 + 1

Figure 259: Slope field plot

Verification of solutions

y =
√
2x+ c1
x2 + 1

Verified OK.

y = −
√
2x+ c1
x2 + 1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 38� �
dsolve((1+x^2)*diff(y(x),x)+2*x*y(x)=1/((1+x^2)*y(x)),y(x), singsol=all)� �

y(x) =
√
2x+ c1
x2 + 1

y(x) = −
√
2x+ c1
x2 + 1

3 Solution by Mathematica
Time used: 0.264 (sec). Leaf size: 46� �
DSolve[(1+x^2)*y'[x]+2*x*y[x]==1/((1+x^2)*y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
2x+ c1
x2 + 1

y(x) →
√
2x+ c1
x2 + 1
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5.9 problem 5
5.9.1 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1272

Internal problem ID [983]
Internal file name [OUTPUT/984_Sunday_June_05_2022_01_55_59_AM_7349123/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_Bernoulli]

−yx+ y′ − x3y3 = 0

5.9.1 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= y3x3 + yx

This is a Bernoulli ODE.
y′ = xy + x3y3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.
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This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = x

f1(x) = x3

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= x

y2
+ x3 (4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = w(x)x+ x3

w′ = −2x3 − 2xw (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 2x
q(x) = −2x3

Hence the ode is

w′(x) + 2w(x)x = −2x3
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The integrating factor µ is

µ = e
∫
2xdx

= ex2

The ode becomes
d
dx(µw) = (µ)

(
−2x3)

d
dx

(
ex2

w
)
=
(
ex2
) (

−2x3)
d
(
ex2

w
)
=
(
−2 ex2

x3
)
dx

Integrating gives

ex2
w =

∫
−2 ex2

x3 dx

ex2
w = −

(
x2 − 1

)
ex2 + c1

Dividing both sides by the integrating factor µ = ex2 results in

w(x) = −e−x2(
x2 − 1

)
ex2 + c1e−x2

which simplifies to

w(x) = −x2 + 1 + c1e−x2

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= −x2 + 1 + c1e−x2

Solving for y gives

y(x) = 1√
−x2 + 1 + c1e−x2

y(x) = − 1√
−x2 + 1 + c1e−x2

Summary
The solution(s) found are the following

(1)y = 1√
−x2 + 1 + c1e−x2

(2)y = − 1√
−x2 + 1 + c1e−x2
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Figure 260: Slope field plot

Verification of solutions

y = 1√
−x2 + 1 + c1e−x2

Verified OK.

y = − 1√
−x2 + 1 + c1e−x2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 43� �
dsolve(diff(y(x),x)-x*y(x)=x^3*y(x)^3,y(x), singsol=all)� �

y(x) = 1√
e−x2c1 − x2 + 1

y(x) = − 1√
e−x2c1 − x2 + 1

3 Solution by Mathematica
Time used: 1.866 (sec). Leaf size: 80� �
DSolve[y'[x]-x*y[x]==x^3*y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − ie
x2
2√

ex2 (x2 − 1)− c1

y(x) → ie
x2
2√

ex2 (x2 − 1)− c1
y(x) → 0
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5.10 problem 6
5.10.1 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1277

Internal problem ID [984]
Internal file name [OUTPUT/985_Sunday_June_05_2022_01_56_01_AM_84307276/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_rational , _Bernoulli]

y′ − (x+ 1) y
3x − y4 = 0

5.10.1 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(3x y3 + x+ 1)
3x

This is a Bernoulli ODE.
y′ = x+ 1

3x y + y4 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
x+ 1
3x

f1(x) = 1
n = 4

Dividing both sides of ODE (1) by yn = y4 gives

y′
1
y4

= x+ 1
3x y3 + 1 (4)

Let

w = y1−n

= 1
y3

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 3
y4

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
3 = (x+ 1)w(x)

3x + 1

w′ = −(x+ 1)w
x

− 3 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −−x− 1
x

q(x) = −3
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Hence the ode is

w′(x)− (−x− 1)w(x)
x

= −3

The integrating factor µ is

µ = e
∫
−−x−1

x
dx

= ex+ln(x)

Which simplifies to
µ = x ex

The ode becomes

d
dx(µw) = (µ) (−3)

d
dx(x e

xw) = (x ex) (−3)

d(x exw) = (−3x ex) dx

Integrating gives

x exw =
∫

−3x ex dx

x exw = −3(x− 1) ex + c1

Dividing both sides by the integrating factor µ = x ex results in

w(x) = −3 e−x(x− 1) ex
x

+ c1e−x

x

which simplifies to

w(x) = c1e−x − 3x+ 3
x

Replacing w in the above by 1
y3

using equation (5) gives the final solution.

1
y3

= c1e−x − 3x+ 3
x
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Solving for y gives

y(x) =

(
x(c1e−x − 3x+ 3)2

) 1
3

c1e−x − 3x+ 3

y(x) =

(
i
√
3− 1

) (
x(c1e−x − 3x+ 3)2

) 1
3

2c1e−x − 6x+ 6

y(x) =

(
1 + i

√
3
) (

x(c1e−x − 3x+ 3)2
) 1

3

−2c1e−x + 6x− 6

Summary
The solution(s) found are the following

(1)y =

(
x(c1e−x − 3x+ 3)2

) 1
3

c1e−x − 3x+ 3

(2)y =

(
i
√
3− 1

) (
x(c1e−x − 3x+ 3)2

) 1
3

2c1e−x − 6x+ 6

(3)y =

(
1 + i

√
3
) (

x(c1e−x − 3x+ 3)2
) 1

3

−2c1e−x + 6x− 6

1280



Figure 261: Slope field plot

Verification of solutions

y =

(
x(c1e−x − 3x+ 3)2

) 1
3

c1e−x − 3x+ 3

Verified OK.

y =

(
i
√
3− 1

) (
x(c1e−x − 3x+ 3)2

) 1
3

2c1e−x − 6x+ 6

Verified OK.

y =

(
1 + i

√
3
) (

x(c1e−x − 3x+ 3)2
) 1

3

−2c1e−x + 6x− 6

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 121� �
dsolve(diff(y(x),x)-(1+x)/(3*x)*y(x)=y(x)^4,y(x), singsol=all)� �

y(x) =

(
x(e−xc1 − 3x+ 3)2

) 1
3

e−xc1 − 3x+ 3

y(x) =

(
1 + i

√
3
) (

x(e−xc1 − 3x+ 3)2
) 1

3

−2 e−xc1 + 6x− 6

y(x) =

(
i
√
3− 1

) (
x(e−xc1 − 3x+ 3)2

) 1
3

2 e−xc1 − 6x+ 6

3 Solution by Mathematica
Time used: 1.88 (sec). Leaf size: 120� �
DSolve[y'[x]-(1+x)/(3*x)*y[x]==y[x]^4,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − ex/3 3
√
x

3
√

3ex(x− 1)− c1

y(x) →
3
√
−1ex/3 3

√
x

3
√
3ex(x− 1)− c1

y(x) → − (−1)2/3ex/3 3
√
x

3
√

3ex(x− 1)− c1
y(x) → 0
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5.11 problem 7
5.11.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1283
5.11.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1284

Internal problem ID [985]
Internal file name [OUTPUT/986_Sunday_June_05_2022_01_56_03_AM_17244321/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

y′ − 2y − xy3 = 0

With initial conditions [
y(0) = 2

√
2
]

5.11.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)
= x y3 + 2y

The x domain of f(x, y) when y = 2
√
2 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}
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And the point y0 = 2
√
2 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
x y3 + 2y

)
= 3x y2 + 2

The x domain of ∂f
∂y

when y = 2
√
2 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of ∂f
∂y

when x = 0 is

{−∞ < y < ∞}

And the point y0 = 2
√
2 is inside this domain. Therefore solution exists and is unique.

5.11.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= x y3 + 2y

This is a Bernoulli ODE.
y′ = 2y + xy3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = 2
f1(x) = x

n = 3
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Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= 2
y2

+ x (4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = 2w(x) + x

w′ = −4w − 2x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 4
q(x) = −2x

Hence the ode is

w′(x) + 4w(x) = −2x

The integrating factor µ is

µ = e
∫
4dx

= e4x

The ode becomes
d
dx(µw) = (µ) (−2x)

d
dx
(
e4xw

)
=
(
e4x
)
(−2x)

d
(
e4xw

)
=
(
−2x e4x

)
dx
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Integrating gives

e4xw =
∫

−2x e4x dx

e4xw = −(4x− 1) e4x
8 + c1

Dividing both sides by the integrating factor µ = e4x results in

w(x) = −e−4x(4x− 1) e4x
8 + c1e−4x

which simplifies to

w(x) = −x

2 + 1
8 + c1e−4x

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= −x

2 + 1
8 + c1e−4x

Initial conditions are used to solve for c1. Substituting x = 0 and y = 2
√
2 in the above

solution gives an equation to solve for the constant of integration.
1
8 = 1

8 + c1

c1 = 0

Substituting c1 found above in the general solution gives
1
y2

= −x

2 + 1
8

The above simplifies to

4x y2 − y2 + 8 = 0

Solving for y from the above gives

y = 4√
−8x+ 2

Summary
The solution(s) found are the following

(1)y = 4√
−8x+ 2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 4√
−8x+ 2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 13� �
dsolve([diff(y(x),x)-2*y(x)=x*y(x)^3,y(0) = 2*sqrt(2)],y(x), singsol=all)� �

y(x) = 4√
−8x+ 2
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3 Solution by Mathematica
Time used: 1.869 (sec). Leaf size: 34� �
DSolve[{y'[x]-2*y[x]==x*y[x]^3,y[0]==2*Sqrt[2]},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2i
√
2e2x√

e4x(4x− 1)
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5.12 problem 8
5.12.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1290
5.12.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1290
5.12.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1292
5.12.4 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1296
5.12.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1298
5.12.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1302

Internal problem ID [986]
Internal file name [OUTPUT/987_Sunday_June_05_2022_01_56_05_AM_12543053/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

−yx+ y′ − xy
3
2 = 0

With initial conditions

[y(1) = 4]
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5.12.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)
= yx+ y

3
2x

The x domain of f(x, y) when y = 4 is

{−∞ < x < ∞}

And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{0 ≤ y}

And the point y0 = 4 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
yx+ y

3
2x
)

= x+
3√y x

2

The x domain of ∂f
∂y

when y = 4 is

{−∞ < x < ∞}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{0 ≤ y}

And the point y0 = 4 is inside this domain. Therefore solution exists and is unique.

5.12.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x
(
y

3
2 + y

)

1290



Where f(x) = x and g(y) = y
3
2 + y. Integrating both sides gives

1
y

3
2 + y

dy = x dx

∫ 1
y

3
2 + y

dy =
∫

x dx

−2 arctanh (√y) + ln (y)− ln (y − 1) = x2

2 + c1

The solution is

−2 arctanh (√y) + ln (y)− ln (y − 1)− x2

2 − c1 = 0

Initial conditions are used to solve for c1. Substituting x = 1 and y = 4 in the above
solution gives an equation to solve for the constant of integration.

−2 arccoth (2) + iπ − 1
2 − c1 − ln (3) + 2 ln (2) = 0

c1 = −1
2 − 2 arccoth (2) + iπ − ln (3) + 2 ln (2)

Substituting c1 found above in the general solution gives

−2 arctanh (√y) + ln (y)− ln (y − 1)− x2

2 + 1
2 + 2 arccoth (2)− iπ + ln (3)− 2 ln (2) = 0

Summary
The solution(s) found are the following

−2 arctanh (√y)+ ln (y)− ln (y− 1)− x2

2 + 1
2 +2 arccoth (2)− iπ+ln (3)− 2 ln (2) = 0

(1)
Verification of solutions

−2 arctanh (√y)+ ln (y)− ln (y− 1)− x2

2 + 1
2 +2 arccoth (2)− iπ+ln (3)− 2 ln (2) = 0

Verified OK.
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5.12.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = yx+ y
3
2x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 241: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x

dx

Which results in

S = x2

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = yx+ y
3
2x
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y
(√

y + 1
) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R
(√

R + 1
)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)− 2 ln
(√

R + 1
)
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2

2 = ln (y)− 2 ln (1 +√
y) + c1

Which simplifies to

x2

2 = ln (y)− 2 ln (1 +√
y) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= yx+ y
3
2x

dS
dR

= 1
R
(√

R+1
)

R = y

S = x2

2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 4 in the above
solution gives an equation to solve for the constant of integration.

1
2 = 2 ln (2)− 2 ln (3) + c1

c1 = −2 ln (2) + 2 ln (3) + 1
2

Substituting c1 found above in the general solution gives

x2

2 = ln (y)− 2 ln (√y + 1)− 2 ln (2) + 2 ln (3) + 1
2

Summary
The solution(s) found are the following

(1)x2

2 = ln (y)− 2 ln (1 +√
y)− 2 ln (2) + 2 ln (3) + 1

2
Verification of solutions

x2

2 = ln (y)− 2 ln (1 +√
y)− 2 ln (2) + 2 ln (3) + 1

2

Verified OK.
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5.12.4 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= yx+ y

3
2x

This is a Bernoulli ODE.
y′ = xy + xy

3
2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = x

f1(x) = x

n = 3
2

Dividing both sides of ODE (1) by yn = y
3
2 gives

y′
1
y

3
2
= x

√
y
+ x (4)

Let

w = y1−n

= 1
√
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
2y 3

2
y′ (6)
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Substituting equations (5) and (6) into equation (4) gives

−2w′(x) = w(x)x+ x

w′ = −1
2xw − 1

2x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = x

2
q(x) = −x

2
Hence the ode is

w′(x) + w(x)x
2 = −x

2
The integrating factor µ is

µ = e
∫

x
2 dx

= ex2
4

The ode becomes
d
dx(µw) = (µ)

(
−x

2

)
d
dx

(
ex2

4 w
)
=
(
ex2

4

)(
−x

2

)
d
(
ex2

4 w
)
=
(
−x ex2

4

2

)
dx

Integrating gives

ex2
4 w =

∫
−x ex2

4

2 dx

ex2
4 w = −ex2

4 + c1

Dividing both sides by the integrating factor µ = ex2
4 results in

w(x) = −e−x2
4 ex2

4 + c1e−
x2
4
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which simplifies to

w(x) = −1 + c1e−
x2
4

Replacing w in the above by 1√
y
using equation (5) gives the final solution.

1
√
y
= −1 + c1e−

x2
4

Initial conditions are used to solve for c1. Substituting x = 1 and y = 4 in the above
solution gives an equation to solve for the constant of integration.

1
2 = −1 + c1e−

1
4

c1 =
3 e 1

4

2
Substituting c1 found above in the general solution gives

1
√
y
= −1 + 3 e−

(x−1)(x+1)
4

2

The above simplifies to

−3 e−
(x−1)(x+1)

4
√
y + 2√y + 2 = 0

Summary
The solution(s) found are the following

(1)−3 e−
(x−1)(x+1)

4
√
y + 2√y + 2 = 0

Verification of solutions

−3 e−
(x−1)(x+1)

4
√
y + 2√y + 2 = 0

Verified OK.

5.12.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)
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We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y
3
2 + y

)
dy = (x) dx

(−x) dx+
(

1
y

3
2 + y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
y

3
2 + y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y
(−x)

= 0

And

∂N

∂x
= ∂

∂x

(
1

y
3
2 + y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
3
2+y

. Therefore equation (4) becomes

(5)1
y

3
2 + y

= 0 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

3
2 + y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y
(√

y + 1
)) dy

f(y) = ln (y)− 2 ln (√y + 1) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + ln (y)− 2 ln (√y + 1) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + ln (y)− 2 ln (√y + 1)

Initial conditions are used to solve for c1. Substituting x = 1 and y = 4 in the above
solution gives an equation to solve for the constant of integration.

2 ln (2)− 2 ln (3)− 1
2 = c1

c1 = 2 ln (2)− 2 ln (3)− 1
2

Substituting c1 found above in the general solution gives

−x2

2 + ln (y)− 2 ln (√y + 1) = 2 ln (2)− 2 ln (3)− 1
2

Summary
The solution(s) found are the following

(1)−x2

2 + ln (y)− 2 ln (1 +√
y) = 2 ln (2)− 2 ln (3)− 1

2
Verification of solutions

−x2

2 + ln (y)− 2 ln (1 +√
y) = 2 ln (2)− 2 ln (3)− 1

2

Verified OK.
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5.12.6 Maple step by step solution

Let’s solve[
−yx+ y′ − xy

3
2 = 0, y(1) = 4

]
• Highest derivative means the order of the ODE is 1

y′

• Separate variables
y′

y
3
2+y

= x

• Integrate both sides with respect to x∫
y′

y
3
2+y

dx =
∫
xdx+ c1

• Evaluate integral
−2 arctanh

(√
y
)
+ ln (y)− ln (y − 1) = x2

2 + c1

• Use initial condition y(1) = 4
−2 arctanh

(√
4
)
+ 2 ln (2)− ln (3) = 1

2 + c1

• Solve for c1
c1 = −1

2 − 2 arctanh
(√

4
)
+ 2 ln (2)− ln (3)

• Substitute c1 = −1
2 − 2arctanh

(√
4
)
+ 2 ln (2)− ln (3) into general solution and simplify

−2 arctanh
(√

y
)
+ ln (y)− ln (y − 1) = x2

2 − 1
2 − 2 arctanh

(1
2

)
+ Iπ + 2 ln (2)− ln (3)

• Solution to the IVP
−2 arctanh

(√
y
)
+ ln (y)− ln (y − 1) = x2

2 − 1
2 − 2 arctanh

(1
2

)
+ Iπ + 2 ln (2)− ln (3)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 21� �
dsolve([diff(y(x),x)-x*y(x)=x*y(x)^(3/2),y(1) = 4],y(x), singsol=all)� �

y(x) = 4(
−2 + 3 e−

(x−1)(x+1)
4

)2
3 Solution by Mathematica
Time used: 0.405 (sec). Leaf size: 55� �
DSolve[{y'[x]-x*y[x]==x*y[x]^(3/2),y[1]==4},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4

(
tanh

(
1
8
(
−8arctanh(3)− x2 + 1

))
− 1
)2

y(x) → 1
4

(
tanh

(
arctanh(5)− x2

8 + 1
8

)
− 1
)2
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5.13 problem 9
5.13.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1304
5.13.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1305

Internal problem ID [987]
Internal file name [OUTPUT/988_Sunday_June_05_2022_01_56_08_AM_70124900/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

y′x+ y − x4y4 = 0

With initial conditions [
y(1) = 1

2

]

5.13.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= y(x4y3 − 1)
x

The x domain of f(x, y) when y = 1
2 is

{x < 0∨ 0 < x}
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And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{−∞ < y < ∞}

And the point y0 = 1
2 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
y(x4y3 − 1)

x

)
= x4y3 − 1

x
+ 3y3x3

The x domain of ∂f
∂y

when y = 1
2 is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{−∞ < y < ∞}

And the point y0 = 1
2 is inside this domain. Therefore solution exists and is unique.

5.13.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(x4y3 − 1)
x

This is a Bernoulli ODE.
y′ = −1

x
y + x3y4 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.
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This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
x

f1(x) = x3

n = 4

Dividing both sides of ODE (1) by yn = y4 gives

y′
1
y4

= − 1
x y3

+ x3 (4)

Let

w = y1−n

= 1
y3

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 3
y4

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
3 = −w(x)

x
+ x3

w′ = 3w
x

− 3x3 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −3
x

q(x) = −3x3

Hence the ode is

w′(x)− 3w(x)
x

= −3x3
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The integrating factor µ is

µ = e
∫
− 3

x
dx

= 1
x3

The ode becomes
d
dx(µw) = (µ)

(
−3x3)

d
dx

( w
x3

)
=
(

1
x3

)(
−3x3)

d
( w
x3

)
= −3 dx

Integrating gives

w

x3 =
∫

−3 dx
w

x3 = −3x+ c1

Dividing both sides by the integrating factor µ = 1
x3 results in

w(x) = c1x
3 − 3x4

Replacing w in the above by 1
y3

using equation (5) gives the final solution.

1
y3

= c1x
3 − 3x4

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1
2 in the above

solution gives an equation to solve for the constant of integration.

8 = −3 + c1

c1 = 11

Substituting c1 found above in the general solution gives

1
y3

= −3x4 + 11x3

The above simplifies to

3x4y3 − 11y3x3 + 1 = 0
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Summary
The solution(s) found are the following

(1)1 +
(
3x4 − 11x3) y3 = 0

Verification of solutions

1 +
(
3x4 − 11x3) y3 = 0

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 35� �
dsolve([x*diff(y(x),x)+y(x)=x^4*y(x)^4,y(1) = 1/2],y(x), singsol=all)� �

y(x) =
(
−(3x− 11)2

) 1
3
(
i
√
3− 1

)
6x2 − 22x

3 Solution by Mathematica
Time used: 0.415 (sec). Leaf size: 19� �
DSolve[{x*y'[x]+y[x]==x^4*y[x]^4,y[1]==1/2},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3
√
−x3(3x− 11)
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5.14 problem 10
5.14.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1309
5.14.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1310

Internal problem ID [988]
Internal file name [OUTPUT/989_Sunday_June_05_2022_01_56_09_AM_77334256/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ − 2y − 2√y = 0

With initial conditions

[y(0) = 1]

5.14.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)
= 2y + 2√y

The y domain of f(x, y) when x = 0 is

{0 ≤ y}

And the point y0 = 1 is inside this domain. Now we will look at the continuity of
∂f

∂y
= ∂

∂y
(2y + 2√y)

= 2 + 1
√
y
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The y domain of ∂f
∂y

when x = 0 is

{0 < y}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

5.14.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= 2y + 2√y

This is a Bernoulli ODE.
y′ = 2y + 2√y (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = 2
f1(x) = 2

n = 1
2

Dividing both sides of ODE (1) by yn = √
y gives

y′
1
√
y
= 2√y + 2 (4)

Let

w = y1−n

= √
y (5)
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Taking derivative of equation (5) w.r.t x gives

w′ = 1
2√y

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

2w′(x) = 2w(x) + 2
w′ = w + 1 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −1
q(x) = 1

Hence the ode is

w′(x)− w(x) = 1

The integrating factor µ is

µ = e
∫
(−1)dx

= e−x

The ode becomes
d
dx(µw) = µ

d
dx
(
e−xw

)
= e−x

d
(
e−xw

)
= e−xdx

Integrating gives

e−xw =
∫

e−x dx

e−xw = −e−x + c1

Dividing both sides by the integrating factor µ = e−x results in

w(x) = −e−xex + c1ex
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which simplifies to

w(x) = c1ex − 1

Replacing w in the above by √
y using equation (5) gives the final solution.

√
y = c1ex − 1

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c1 − 1

c1 = 2

Substituting c1 found above in the general solution gives
√
y = −1 + 2 ex

Solving for y from the above gives

y = 4 e2x − 4 ex + 1

Summary
The solution(s) found are the following

(1)y = 4 e2x − 4 ex + 1

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = 4 e2x − 4 ex + 1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 16� �
dsolve([diff(y(x),x)-2*y(x)=2*y(x)^(1/2),y(0) = 1],y(x), singsol=all)� �

y(x) = 4 e2x − 4 ex + 1

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 14� �
DSolve[{y'[x]-2*y[x]==2*y[x]^(1/2),y[0]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (1− 2ex)2
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5.15 problem 11
5.15.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1314
5.15.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1315

Internal problem ID [989]
Internal file name [OUTPUT/990_Sunday_June_05_2022_01_56_11_AM_82313958/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

y′ − 4y − 48x
y2

= 0

With initial conditions

[y(0) = 1]

5.15.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= 4y3 + 48x
y2

The x domain of f(x, y) when y = 1 is

{−∞ < x < ∞}
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And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
4y3 + 48x

y2

)
= 12− 8(y3 + 12x)

y3

The x domain of ∂f
∂y

when y = 1 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of ∂f
∂y

when x = 0 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

5.15.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= 4y3 + 48x
y2

This is a Bernoulli ODE.
y′ = 4y + 48x 1

y2
(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

1315



This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = 4
f1(x) = 48x

n = −2

Dividing both sides of ODE (1) by yn = 1
y2

gives

y′y2 = 4y3 + 48x (4)

Let

w = y1−n

= y3 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 3y2y′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
3 = 4w(x) + 48x

w′ = 12w + 144x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −12
q(x) = 144x

Hence the ode is

w′(x)− 12w(x) = 144x

The integrating factor µ is

µ = e
∫
(−12)dx

= e−12x
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The ode becomes
d
dx(µw) = (µ) (144x)

d
dx
(
e−12xw

)
=
(
e−12x) (144x)

d
(
e−12xw

)
=
(
144x e−12x) dx

Integrating gives

e−12xw =
∫

144x e−12x dx

e−12xw = −(12x+ 1) e−12x + c1

Dividing both sides by the integrating factor µ = e−12x results in

w(x) = −e12x(12x+ 1) e−12x + c1e12x

which simplifies to

w(x) = −12x− 1 + c1e12x

Replacing w in the above by y3 using equation (5) gives the final solution.

y3 = −12x− 1 + c1e12x

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c1 − 1

c1 = 2

Substituting c1 found above in the general solution gives

y3 = −1 + 2 e12x − 12x

Summary
The solution(s) found are the following

(1)y3 = −1 + 2 e12x − 12x
Verification of solutions

y3 = −1 + 2 e12x − 12x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 17� �
dsolve([diff(y(x),x)-4*y(x)=48*x/y(x)^2,y(0) = 1],y(x), singsol=all)� �

y(x) =
(
2 e12x − 12x− 1

) 1
3

3 Solution by Mathematica
Time used: 4.195 (sec). Leaf size: 21� �
DSolve[{y'[x]-4*y[x]==48*x/y[x]^2,y[0]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3
√
−12x+ 2e12x − 1
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5.16 problem 12
5.16.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1319
5.16.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1320

Internal problem ID [990]
Internal file name [OUTPUT/991_Sunday_June_05_2022_01_56_13_AM_67970129/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

y′x2 + 2yx− y3 = 0

With initial conditions [
y(1) =

√
2
2

]

5.16.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= y(y2 − 2x)
x2

The x domain of f(x, y) when y =
√
2
2 is

{x < 0∨ 0 < x}
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And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{−∞ < y < ∞}

And the point y0 =
√
2
2 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
y(y2 − 2x)

x2

)
= y2 − 2x

x2 + 2y2
x2

The x domain of ∂f
∂y

when y =
√
2
2 is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{−∞ < y < ∞}

And the point y0 =
√
2
2 is inside this domain. Therefore solution exists and is unique.

5.16.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(y2 − 2x)
x2

This is a Bernoulli ODE.
y′ = −2

x
y + 1

x2y
3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.
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This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −2
x

f1(x) =
1
x2

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= − 2
x y2

+ 1
x2 (4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = −2w(x)

x
+ 1

x2

w′ = 4w
x

− 2
x2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −4
x

q(x) = − 2
x2

Hence the ode is

w′(x)− 4w(x)
x

= − 2
x2

1321



The integrating factor µ is

µ = e
∫
− 4

x
dx

= 1
x4

The ode becomes

d
dx(µw) = (µ)

(
− 2
x2

)
d
dx

( w
x4

)
=
(

1
x4

)(
− 2
x2

)
d
( w
x4

)
=
(
− 2
x6

)
dx

Integrating gives

w

x4 =
∫

− 2
x6 dx

w

x4 = 2
5x5 + c1

Dividing both sides by the integrating factor µ = 1
x4 results in

w(x) = 2
5x + c1x

4

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= 2
5x + c1x

4

Initial conditions are used to solve for c1. Substituting x = 1 and y =
√
2
2 in the above

solution gives an equation to solve for the constant of integration.

2 = c1 +
2
5

c1 =
8
5

Substituting c1 found above in the general solution gives

1
y2

=
2
5 +

8x5

5
x
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The above simplifies to

−8x5y2 − 2y2 + 5x = 0

Solving for y from the above gives

y =
√
10

√
4x6 + x

8x5 + 2

Summary
The solution(s) found are the following

(1)y =
√
10

√
4x6 + x

8x5 + 2

(a) Solution plot (b) Slope field plot

Verification of solutions

y =
√
10

√
4x6 + x

8x5 + 2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 26� �
dsolve([x^2*diff(y(x),x)+2*x*y(x)=y(x)^3,y(1) = 1/sqrt(2)],y(x), singsol=all)� �

y(x) =
√
10

√
4x6 + x

8x5 + 2

3 Solution by Mathematica
Time used: 0.462 (sec). Leaf size: 29� �
DSolve[{x^2*y'[x]+2*x*y[x]==y[x]^3,y[1]==1/Sqrt[2]},y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

√
5
2
√
x

√
4x5 + 1
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5.17 problem 13
5.17.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1325
5.17.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1326

Internal problem ID [991]
Internal file name [OUTPUT/992_Sunday_June_05_2022_01_56_15_AM_45033092/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

y′ − y −√
y x = 0

With initial conditions

[y(0) = 4]

5.17.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)
= y +√

y x

The x domain of f(x, y) when y = 4 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}
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And the point y0 = 4 is inside this domain. Now we will look at the continuity of
∂f

∂y
= ∂

∂y
(y +√

y x)

= 1 + x

2√y

The x domain of ∂f
∂y

when y = 4 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of ∂f
∂y

when x = 0 is

{−∞ < y < ∞}

And the point y0 = 4 is inside this domain. Therefore solution exists and is unique.

5.17.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= y +√

y x

This is a Bernoulli ODE.
y′ = y + x

√
y (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = 1
f1(x) = x

n = 1
2
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Dividing both sides of ODE (1) by yn = √
y gives

y′
1
√
y
= √

y + x (4)

Let

w = y1−n

= √
y (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 1
2√y

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

2w′(x) = w(x) + x

w′ = w

2 + x

2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −1
2

q(x) = x

2
Hence the ode is

w′(x)− w(x)
2 = x

2
The integrating factor µ is

µ = e
∫
− 1

2dx

= e−x
2

The ode becomes
d
dx(µw) = (µ)

(x
2

)
d
dx
(
e−x

2w
)
=
(
e−x

2
) (x

2

)
d
(
e−x

2w
)
=
(
x e−x

2

2

)
dx
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Integrating gives

e−x
2w =

∫
x e−x

2

2 dx

e−x
2w = −(2 + x) e−x

2 + c1

Dividing both sides by the integrating factor µ = e−x
2 results in

w(x) = −ex
2 (2 + x) e−x

2 + c1e
x
2

which simplifies to

w(x) = −x− 2 + c1e
x
2

Replacing w in the above by √
y using equation (5) gives the final solution.
√
y = −x− 2 + c1e

x
2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 4 in the above
solution gives an equation to solve for the constant of integration.

2 = c1 − 2

c1 = 4

Substituting c1 found above in the general solution gives
√
y = −2 + 4 ex

2 − x

Summary
The solution(s) found are the following

(1)√
y = −2 + 4 ex

2 − x

Verification of solutions
√
y = −2 + 4 ex

2 − x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 26� �
dsolve([diff(y(x),x)-y(x)=x*y(x)^(1/2),y(0) = 4],y(x), singsol=all)� �

y(x) = (−8x− 16) ex
2 + x2 + 4x+ 16 ex + 4

3 Solution by Mathematica
Time used: 0.146 (sec). Leaf size: 28� �
DSolve[{y'[x]-y[x]==x*y[x]^(1/2),y[0]==4},y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
x− 4ex/2 + 2

)2
y(x) → (x+ 2)2
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5.18 problem 15
5.18.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1330
5.18.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1332
5.18.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1333
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5.18.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1342

Internal problem ID [992]
Internal file name [OUTPUT/993_Sunday_June_05_2022_01_56_17_AM_34017998/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 15.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − x+ y

x
= 0

5.18.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = 1

Hence the ode is

y′ − y

x
= 1
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The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µy) = µ

d
dx

(y
x

)
= 1

x

d
(y
x

)
= 1

x
dx

Integrating gives

y

x
=
∫ 1

x
dx

y

x
= ln (x) + c1

Dividing both sides by the integrating factor µ = 1
x
results in

y = c1x+ x ln (x)

which simplifies to

y = x(ln (x) + c1)

Summary
The solution(s) found are the following

(1)y = x(ln (x) + c1)
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Figure 265: Slope field plot

Verification of solutions

y = x(ln (x) + c1)

Verified OK.

5.18.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− x+ u(x)x
x

= 0

Integrating both sides gives

u(x) =
∫ 1

x
dx

= ln (x) + c2

Therefore the solution y is

y = ux

= x(ln (x) + c2)

1332



Summary
The solution(s) found are the following

(1)y = x(ln (x) + c2)

Figure 266: Slope field plot

Verification of solutions

y = x(ln (x) + c2)

Verified OK.

5.18.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x+ y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 244: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
dy

Which results in

S = y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x+ y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2

Sy =
1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x
= ln (x) + c1

Which simplifies to
y

x
= ln (x) + c1

Which gives

y = x(ln (x) + c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x+y
x

dS
dR

= 1
R

R = x

S = y

x

Summary
The solution(s) found are the following

(1)y = x(ln (x) + c1)
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Figure 267: Slope field plot

Verification of solutions

y = x(ln (x) + c1)

Verified OK.

5.18.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
x+ y

x

)
dx(

−x+ y

x

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x+ y

x
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x+ y

x

)
= −1

x
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And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

−1
x

)
− (0)

)
= −1

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 1

x
dx

The result of integrating gives

µ = e− ln(x)

= 1
x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x

(
−x+ y

x

)
= −x− y

x2

And

N = µN

= 1
x
(1)

= 1
x
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x− y

x2

)
+
(
1
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x− y

x2 dx

(3)φ = − ln (x) + y

x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x
. Therefore equation (4) becomes

(5)1
x
= 1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − ln (x) + y

x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + y

x

The solution becomes
y = x(ln (x) + c1)

Summary
The solution(s) found are the following

(1)y = x(ln (x) + c1)

Figure 268: Slope field plot

Verification of solutions

y = x(ln (x) + c1)

Verified OK.
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5.18.5 Maple step by step solution

Let’s solve
y′ − x+y

x
= 0

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 1 + y

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x
= 1

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − y

x

)
= µ(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) dx+ c1

• Solve for y

y =
∫
µ(x)dx+c1

µ(x)

• Substitute µ(x) = 1
x

y = x
(∫ 1

x
dx+ c1

)
• Evaluate the integrals on the rhs

y = x(ln (x) + c1)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 10� �
dsolve(diff(y(x),x)=(y(x)+x)/x,y(x), singsol=all)� �

y(x) = (ln (x) + c1)x

3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 12� �
DSolve[y'[x]==(y[x]+x)/x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(log(x) + c1)

1343



5.19 problem 16
5.19.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1344
5.19.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1346
5.19.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1350
5.19.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1354
5.19.5 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1358

Internal problem ID [993]
Internal file name [OUTPUT/994_Sunday_June_05_2022_01_56_18_AM_28134479/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "homoge-
neousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

y′ − y2 + 2yx
x2 = 0

5.19.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− u(x)2 x2 + 2u(x)x2

x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(u+ 1)
x
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Where f(x) = 1
x
and g(u) = u(u+ 1). Integrating both sides gives

1
u (u+ 1) du = 1

x
dx∫ 1

u (u+ 1) du =
∫ 1

x
dx

ln (u)− ln (u+ 1) = ln (x) + c2

Raising both side to exponential gives

eln(u)−ln(u+1) = eln(x)+c2

Which simplifies to
u

u+ 1 = c3x

Therefore the solution y is

y = xu

= − x2c3
c3x− 1

Summary
The solution(s) found are the following

(1)y = − x2c3
c3x− 1
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Figure 269: Slope field plot

Verification of solutions

y = − x2c3
c3x− 1

Verified OK.

5.19.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(2x+ y)
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 247: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = y2

x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2

x2

dy

Which results in

S = −x2

y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(2x+ y)
x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −2x
y

Sy =
x2

y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x2

y
= x+ c1

Which simplifies to

−x2

y
= x+ c1

Which gives

y = − x2

x+ c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y(2x+y)
x2

dS
dR

= 1

R = x

S = −x2

y
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Summary
The solution(s) found are the following

(1)y = − x2

x+ c1

Figure 270: Slope field plot

Verification of solutions

y = − x2

x+ c1

Verified OK.

5.19.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(2x+ y)
x2

This is a Bernoulli ODE.
y′ = 2

x
y + 1

x2y
2 (1)
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The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
2
x

f1(x) =
1
x2

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= 2
yx

+ 1
x2 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = 2w(x)
x

+ 1
x2

w′ = −2w
x

− 1
x2 (7)

The above now is a linear ODE in w(x) which is now solved.
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Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 2
x

q(x) = − 1
x2

Hence the ode is

w′(x) + 2w(x)
x

= − 1
x2

The integrating factor µ is

µ = e
∫ 2

x
dx

= x2

The ode becomes
d
dx(µw) = (µ)

(
− 1
x2

)
d
dx
(
x2w

)
=
(
x2)(− 1

x2

)
d
(
x2w

)
= −1 dx

Integrating gives

x2w =
∫

−1 dx

x2w = −x+ c1

Dividing both sides by the integrating factor µ = x2 results in

w(x) = −1
x
+ c1

x2

which simplifies to

w(x) = −x+ c1
x2

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= −x+ c1

x2
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Or

y = x2

−x+ c1

Summary
The solution(s) found are the following

(1)y = x2

−x+ c1

Figure 271: Slope field plot

Verification of solutions

y = x2

−x+ c1

Verified OK.
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5.19.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2) dy = (y(2x+ y)) dx

(−y(2x+ y)) dx+
(
x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y(2x+ y)
N(x, y) = x2
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−y(2x+ y))

= −2x− 2y

And

∂N

∂x
= ∂

∂x

(
x2)

= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 ((−2x− 2y)− (2x))

= −4x− 2y
x2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y (2x+ y)((2x)− (−2x− 2y))

= −2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y
dy
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The result of integrating gives

µ = e−2 ln(y)

= 1
y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y2

(−y(2x+ y))

= −2x− y

y

And

N = µN

= 1
y2
(
x2)

= x2

y2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−2x− y

y

)
+
(
x2

y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x− y

y
dx

(3)φ = −(x+ y)x
y

+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x

y
+ (x+ y)x

y2
+ f ′(y)

= x2

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x2

y2
. Therefore equation (4) becomes

(5)x2

y2
= x2

y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −(x+ y)x
y

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −(x+ y)x
y

The solution becomes

y = − x2

x+ c1

Summary
The solution(s) found are the following

(1)y = − x2

x+ c1
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Figure 272: Slope field plot

Verification of solutions

y = − x2

x+ c1

Verified OK.

5.19.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y(2x+ y)
x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = 2y
x

+ y2

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

1358



Shows that f0(x) = 0, f1(x) = 2
x
and f2(x) = 1

x2 . Let

y = −u′

f2u

= −u′

u
x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2

x3

f1f2 =
2
x3

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

u′′(x)
x2 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1x+ c2

The above shows that
u′(x) = c1

Using the above in (1) gives the solution

y = − c1x
2

c1x+ c2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − c3x
2

c3x+ 1
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Summary
The solution(s) found are the following

(1)y = − c3x
2

c3x+ 1

Figure 273: Slope field plot

Verification of solutions

y = − c3x
2

c3x+ 1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x)=(y(x)^2+2*x*y(x))/x^2,y(x), singsol=all)� �

y(x) = x2

c1 − x

3 Solution by Mathematica
Time used: 0.126 (sec). Leaf size: 23� �
DSolve[y'[x]==(y[x]^2+2*x*y[x])/x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x2

x− c1
y(x) → 0
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5.20 problem 17
5.20.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1362
5.20.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1364
5.20.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1368
5.20.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1372

Internal problem ID [994]
Internal file name [OUTPUT/995_Sunday_June_05_2022_01_56_19_AM_37774740/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 17.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

xy3y′ − y4 = x4

5.20.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x4u(x)3 (u′(x)x+ u(x))− u(x)4 x4 = x4

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 1
u3x
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Where f(x) = 1
x
and g(u) = 1

u3 . Integrating both sides gives

1
1
u3

du = 1
x
dx

∫ 1
1
u3

du =
∫ 1

x
dx

u4

4 = ln (x) + c2

The solution is
u(x)4

4 − ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y4

4x4 − ln (x)− c2 = 0

y4

4x4 − ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)y4

4x4 − ln (x)− c2 = 0
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Figure 274: Slope field plot

Verification of solutions

y4

4x4 − ln (x)− c2 = 0

Verified OK.

5.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x4 + y4

x y3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 249: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = x4

y3
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x4

y3

dy

Which results in

S = y4

4x4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x4 + y4

x y3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y4

x5

Sy =
y3

x4

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y4

4x4 = ln (x) + c1

Which simplifies to

y4

4x4 = ln (x) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x4+y4

x y3
dS
dR

= 1
R

R = x

S = y4

4x4

Summary
The solution(s) found are the following

(1)y4

4x4 = ln (x) + c1
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Figure 275: Slope field plot

Verification of solutions

y4

4x4 = ln (x) + c1

Verified OK.

5.20.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= x4 + y4

x y3

This is a Bernoulli ODE.
y′ = 1

x
y + x3 1

y3
(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
x

f1(x) = x3

n = −3

Dividing both sides of ODE (1) by yn = 1
y3

gives

y′y3 = y4

x
+ x3 (4)

Let

w = y1−n

= y4 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 4y3y′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
4 = w(x)

x
+ x3

w′ = 4w
x

+ 4x3 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −4
x

q(x) = 4x3
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Hence the ode is

w′(x)− 4w(x)
x

= 4x3

The integrating factor µ is

µ = e
∫
− 4

x
dx

= 1
x4

The ode becomes
d
dx(µw) = (µ)

(
4x3)

d
dx

( w
x4

)
=
(

1
x4

)(
4x3)

d
( w
x4

)
=
(
4
x

)
dx

Integrating gives
w

x4 =
∫ 4

x
dx

w

x4 = 4 ln (x) + c1

Dividing both sides by the integrating factor µ = 1
x4 results in

w(x) = 4 ln (x)x4 + c1x
4

which simplifies to

w(x) = x4(4 ln (x) + c1)

Replacing w in the above by y4 using equation (5) gives the final solution.

y4 = x4(4 ln (x) + c1)

Solving for y gives

y(x) = (4 ln (x) + c1)
1
4 x

y(x) = i(4 ln (x) + c1)
1
4 x

y(x) = −(4 ln (x) + c1)
1
4 x

y(x) = −i(4 ln (x) + c1)
1
4 x
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Summary
The solution(s) found are the following

(1)y = (4 ln (x) + c1)
1
4 x

(2)y = i(4 ln (x) + c1)
1
4 x

(3)y = −(4 ln (x) + c1)
1
4 x

(4)y = −i(4 ln (x) + c1)
1
4 x

Figure 276: Slope field plot
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Verification of solutions

y = (4 ln (x) + c1)
1
4 x

Verified OK.

y = i(4 ln (x) + c1)
1
4 x

Verified OK.

y = −(4 ln (x) + c1)
1
4 x

Verified OK.

y = −i(4 ln (x) + c1)
1
4 x

Verified OK.

5.20.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x
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If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x y3

)
dy =

(
x4 + y4

)
dx(

−x4 − y4
)
dx+

(
x y3

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x4 − y4

N(x, y) = x y3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x4 − y4

)
= −4y3

And
∂N

∂x
= ∂

∂x

(
x y3

)
= y3

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x y3
((
−4y3

)
−
(
y3
))

= −5
x
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 5

x
dx

The result of integrating gives

µ = e−5 ln(x)

= 1
x5

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x5

(
−x4 − y4

)
= −x4 − y4

x5

And

N = µN

= 1
x5

(
x y3

)
= y3

x4

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x4 − y4

x5

)
+
(
y3

x4

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x4 − y4

x5 dx

(3)φ = y4

4x4 − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y3

x4 + f ′(y)

But equation (2) says that ∂φ
∂y

= y3

x4 . Therefore equation (4) becomes

(5)y3

x4 = y3

x4 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y4

4x4 − ln (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
y4

4x4 − ln (x)

Summary
The solution(s) found are the following

(1)y4

4x4 − ln (x) = c1
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Figure 277: Slope field plot

Verification of solutions

y4

4x4 − ln (x) = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 58� �
dsolve(x*y(x)^3*diff(y(x),x)=y(x)^4+x^4,y(x), singsol=all)� �

y(x) = (4 ln (x) + c1)
1
4 x

y(x) = −(4 ln (x) + c1)
1
4 x

y(x) = −i(4 ln (x) + c1)
1
4 x

y(x) = i(4 ln (x) + c1)
1
4 x

3 Solution by Mathematica
Time used: 0.2 (sec). Leaf size: 76� �
DSolve[x*y[x]^3*y'[x]==y[x]^4+x^4,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x 4
√

4 log(x) + c1

y(x) → −ix 4
√

4 log(x) + c1

y(x) → ix 4
√

4 log(x) + c1

y(x) → x 4
√

4 log(x) + c1
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5.21 problem 18
5.21.1 Solving as homogeneousTypeD ode . . . . . . . . . . . . . . . . 1378
5.21.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1380
5.21.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1382

Internal problem ID [995]
Internal file name [OUTPUT/996_Sunday_June_05_2022_01_56_21_AM_51119622/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 18.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

y′ − y

x
− sec

(y
x

)
= 0

5.21.1 Solving as homogeneousTypeD ode

Writing the ode as

y′ = y

x
+ sec

(y
x

)
(A)

The given ode has the form

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Where b is scalar and g(x) is function of x and n,m are integers. The solution is given
in Kamke page 20. Using the substitution y(x) = u(x)x then

dy

dx
= du

dx
x+ u
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Hence the given ode becomes

du

dx
x+ u = u+ g(x) f(bu)

n
m

u′ = 1
x
g(x) f(bu)

n
m (2)

The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux. Comapring
the given ode (A) with the form (1) shows that

g(x) = 1
b = 1

f

(
bx

y

)
= sec

(y
x

)
Substituting the above in (2) results in the u(x) ode as

u′(x) = sec (u(x))
x

Which is now solved as separable In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= sec (u)
x

Where f(x) = 1
x
and g(u) = sec (u). Integrating both sides gives

1
sec (u) du = 1

x
dx∫ 1

sec (u) du =
∫ 1

x
dx

sin (u) = ln (x) + c1

The solution is
sin (u(x))− ln (x)− c1 = 0

Therefore the solution is found using y = ux. Hence

sin
(y
x

)
− ln (x)− c1 = 0
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Summary
The solution(s) found are the following

(1)sin
(y
x

)
− ln (x)− c1 = 0

Figure 278: Slope field plot

Verification of solutions

sin
(y
x

)
− ln (x)− c1 = 0

Verified OK.

5.21.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x− sec (u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= sec (u)
x
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Where f(x) = 1
x
and g(u) = sec (u). Integrating both sides gives

1
sec (u) du = 1

x
dx∫ 1

sec (u) du =
∫ 1

x
dx

sin (u) = ln (x) + c2

The solution is
sin (u(x))− ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

sin
(y
x

)
− ln (x)− c2 = 0

sin
(y
x

)
− ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)sin
(y
x

)
− ln (x)− c2 = 0

Figure 279: Slope field plot

1381



Verification of solutions

sin
(y
x

)
− ln (x)− c2 = 0

Verified OK.

5.21.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
sec
(
y
x

)
x+ y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 251: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2

η(x, y) = yx (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= yx

x2

= y

x
This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
And S is found from

dS = dx

ξ

= dx

x2

Integrating gives

S =
∫

dx

T

= −1
x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
sec
(
y
x

)
x+ y

x
Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x2

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

cos
(
y
x

)
x

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −S(R) cos (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1e− sin(R) (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1
x
= c1e− sin

( y
x

)

Which simplifies to

−1
x
= c1e− sin

( y
x

)

Which gives

y = − arcsin
(
ln
(
− 1
c1x

))
x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sec
( y
x

)
x+y

x
dS
dR

= −S(R) cos (R)

R = y

x

S = −1
x

Summary
The solution(s) found are the following

(1)y = − arcsin
(
ln
(
− 1
c1x

))
x
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Figure 280: Slope field plot

Verification of solutions

y = − arcsin
(
ln
(
− 1
c1x

))
x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 11� �
dsolve(diff(y(x),x)=y(x)/x+sec(y(x)/x),y(x), singsol=all)� �

y(x) = arcsin (ln (x) + c1)x

3 Solution by Mathematica
Time used: 0.409 (sec). Leaf size: 13� �
DSolve[y'[x]==y[x]/x+Sec[y[x]/x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x arcsin(log(x) + c1)
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5.22 problem 19
5.22.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1389
5.22.2 Solving as first order ode lie symmetry calculated ode . . . . . . 1391
5.22.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1396

Internal problem ID [996]
Internal file name [OUTPUT/997_Sunday_June_05_2022_01_56_23_AM_46290338/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Riccati]

y′x2 − y2 − yx = x2

5.22.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x2 − u(x)2 x2 − u(x)x2 = x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u2 + 1
x
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Where f(x) = 1
x
and g(u) = u2 + 1. Integrating both sides gives

1
u2 + 1 du = 1

x
dx∫ 1

u2 + 1 du =
∫ 1

x
dx

arctan (u) = ln (x) + c2

The solution is
arctan (u(x))− ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

arctan
(y
x

)
− ln (x)− c2 = 0

arctan
(y
x

)
− ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)arctan
(y
x

)
− ln (x)− c2 = 0

Figure 281: Slope field plot
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Verification of solutions

arctan
(y
x

)
− ln (x)− c2 = 0

Verified OK.

5.22.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x2 + yx+ y2

x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(x2 + yx+ y2) (b3 − a2)
x2 − (x2 + yx+ y2)2 a3

x4

−
(
2x+ y

x2 − 2(x2 + yx+ y2)
x3

)
(xa2 + ya3 + a1)

− (x+ 2y) (xb2 + yb3 + b1)
x2 = 0

Putting the above in normal form gives

−x4a2 + x4a3 − x4b3 + 2x3ya3 + 2x3yb2 − x2y2a2 + 2x2y2a3 + x2y2b3 + y4a3 + x3b1 − x2ya1 + 2x2yb1 − 2x y2a1
x4

= 0
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Setting the numerator to zero gives

(6E)−x4a2 − x4a3 + x4b3 − 2x3ya3 − 2x3yb2 + x2y2a2 − 2x2y2a3
− x2y2b3 − y4a3 − x3b1 + x2ya1 − 2x2yb1 + 2x y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
4
1 + a2v

2
1v

2
2 − a3v

4
1 − 2a3v31v2 − 2a3v21v22 − a3v

4
2 − 2b2v31v2

+ b3v
4
1 − b3v

2
1v

2
2 + a1v

2
1v2 + 2a1v1v22 − b1v

3
1 − 2b1v21v2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a2 − a3 + b3) v41 + (−2a3 − 2b2) v31v2 − b1v
3
1

+ (a2 − 2a3 − b3) v21v22 + (a1 − 2b1) v21v2 + 2a1v1v22 − a3v
4
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
−a3 = 0
−b1 = 0

a1 − 2b1 = 0
−2a3 − 2b2 = 0

−a2 − a3 + b3 = 0
a2 − 2a3 − b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
x2 + yx+ y2

x2

)
(x)

= −x2 − y2

x
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2−y2

x

dy
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Which results in

S = − arctan
(y
x

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 + yx+ y2

x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

x2 + y2

Sy = − x

x2 + y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− arctan
(y
x

)
= − ln (x) + c1
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Which simplifies to

− arctan
(y
x

)
= − ln (x) + c1

Which gives

y = − tan (− ln (x) + c1)x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2+yx+y2

x2
dS
dR

= − 1
R

R = x

S = − arctan
(y
x

)

Summary
The solution(s) found are the following

(1)y = − tan (− ln (x) + c1)x
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Figure 282: Slope field plot

Verification of solutions

y = − tan (− ln (x) + c1)x

Verified OK.

5.22.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= x2 + yx+ y2

x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = 1 + y

x
+ y2

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = 1, f1(x) = 1
x
and f2(x) = 1

x2 . Let

y = −u′

f2u

= −u′

u
x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2

x3

f1f2 =
1
x3

f 2
2 f0 =

1
x4

Substituting the above terms back in equation (2) gives

u′′(x)
x2 + u′(x)

x3 + u(x)
x4 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = sin (ln (x)) c1 + c2 cos (ln (x))

The above shows that

u′(x) = cos (ln (x)) c1 − c2 sin (ln (x))
x

Using the above in (1) gives the solution

y = −x(cos (ln (x)) c1 − c2 sin (ln (x)))
sin (ln (x)) c1 + c2 cos (ln (x))

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y = (− cos (ln (x)) c3 + sin (ln (x)))x
sin (ln (x)) c3 + cos (ln (x))

Summary
The solution(s) found are the following

(1)y = (− cos (ln (x)) c3 + sin (ln (x)))x
sin (ln (x)) c3 + cos (ln (x))

Figure 283: Slope field plot

Verification of solutions

y = (− cos (ln (x)) c3 + sin (ln (x)))x
sin (ln (x)) c3 + cos (ln (x))

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve(x^2*diff(y(x),x)=x*y(x)+x^2+y(x)^2,y(x), singsol=all)� �

y(x) = tan (ln (x) + c1)x

3 Solution by Mathematica
Time used: 0.174 (sec). Leaf size: 13� �
DSolve[x^2*y'[x]==x*y[x]+x^2+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x tan(log(x) + c1)
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5.23 problem 20
5.23.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1400
5.23.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1402
5.23.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1406
5.23.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1409

Internal problem ID [997]
Internal file name [OUTPUT/998_Sunday_June_05_2022_01_56_24_AM_63092252/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 20.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

y′xy − 2y2 = x2

5.23.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x2u(x)− 2u(x)2 x2 = x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u2 + 1
ux
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Where f(x) = 1
x
and g(u) = u2+1

u
. Integrating both sides gives

1
u2+1
u

du = 1
x
dx

∫ 1
u2+1
u

du =
∫ 1

x
dx

ln (u2 + 1)
2 = ln (x) + c2

Raising both side to exponential gives
√
u2 + 1 = eln(x)+c2

Which simplifies to
√
u2 + 1 = c3x

Which simplifies to √
u (x)2 + 1 = c3ec2x

The solution is √
u (x)2 + 1 = c3ec2x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form√

y2

x2 + 1 = c3ec2x√
x2 + y2

x2 = c3ec2x

Summary
The solution(s) found are the following

(1)
√

x2 + y2

x2 = c3ec2x
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Figure 284: Slope field plot

Verification of solutions √
x2 + y2

x2 = c3ec2x

Verified OK.

5.23.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x2 + 2y2
xy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 253: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = x4

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x4

y

dy

Which results in

S = y2

2x4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 + 2y2
xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −2y2
x5

Sy =
y

x4

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
2R2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2

2x4 = − 1
2x2 + c1

Which simplifies to

y2

2x4 = − 1
2x2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2+2y2
xy

dS
dR

= 1
R3

R = x

S = y2

2x4

Summary
The solution(s) found are the following

(1)y2

2x4 = − 1
2x2 + c1
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Figure 285: Slope field plot

Verification of solutions

y2

2x4 = − 1
2x2 + c1

Verified OK.

5.23.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= x2 + 2y2
xy

This is a Bernoulli ODE.
y′ = 2

x
y + x

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)

1406



The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
2
x

f1(x) = x

n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = 2y2
x

+ x (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = 2w(x)

x
+ x

w′ = 4w
x

+ 2x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −4
x

q(x) = 2x
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Hence the ode is

w′(x)− 4w(x)
x

= 2x

The integrating factor µ is

µ = e
∫
− 4

x
dx

= 1
x4

The ode becomes
d
dx(µw) = (µ) (2x)

d
dx

( w
x4

)
=
(

1
x4

)
(2x)

d
( w
x4

)
=
(

2
x3

)
dx

Integrating gives

w

x4 =
∫ 2

x3 dx

w

x4 = − 1
x2 + c1

Dividing both sides by the integrating factor µ = 1
x4 results in

w(x) = c1x
4 − x2

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = c1x
4 − x2

Solving for y gives

y(x) =
√
c1x2 − 1x

y(x) = −
√

c1x2 − 1x

Summary
The solution(s) found are the following

(1)y =
√

c1x2 − 1x
(2)y = −

√
c1x2 − 1x
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Figure 286: Slope field plot

Verification of solutions

y =
√

c1x2 − 1x

Verified OK.

y = −
√
c1x2 − 1x

Verified OK.

5.23.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(yx) dy =
(
x2 + 2y2

)
dx(

−x2 − 2y2
)
dx+(yx) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 − 2y2

N(x, y) = yx

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2 − 2y2

)
= −4y

1410



And

∂N

∂x
= ∂

∂x
(yx)

= y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

yx
((−4y)− (y))

= −5
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 5

x
dx

The result of integrating gives

µ = e−5 ln(x)

= 1
x5

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x5

(
−x2 − 2y2

)
= −x2 − 2y2

x5

And

N = µN

= 1
x5 (yx)

= y

x4
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x2 − 2y2
x5

)
+
( y

x4

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 − 2y2

x5 dx

(3)φ = x2 + y2

2x4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y

x4 + f ′(y)

But equation (2) says that ∂φ
∂y

= y
x4 . Therefore equation (4) becomes

(5)y

x4 = y

x4 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

1412



Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x2 + y2

2x4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x2 + y2

2x4

Summary
The solution(s) found are the following

(1)x2 + y2

2x4 = c1

Figure 287: Slope field plot

Verification of solutions

x2 + y2

2x4 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 30� �
dsolve(x*y(x)*diff(y(x),x)=x^2+2*y(x)^2,y(x), singsol=all)� �

y(x) =
√

c1x2 − 1x
y(x) = −

√
c1x2 − 1x

3 Solution by Mathematica
Time used: 0.441 (sec). Leaf size: 38� �
DSolve[x*y[x]*y'[x]==x^2+2*y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x
√

−1 + c1x2

y(x) → x
√

−1 + c1x2
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5.24 problem 21
5.24.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1415
5.24.2 Solving as first order ode lie symmetry calculated ode . . . . . . 1417

Internal problem ID [998]
Internal file name [OUTPUT/999_Sunday_June_05_2022_01_56_25_AM_89065044/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 21.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`]]

y′ − 2y2 + x2e−
y2

x2

2yx = 0

5.24.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− 2u(x)2 x2 + x2e−u(x)2

2u (x)x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= e−u2

2xu
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Where f(x) = 1
2x and g(u) = e−u2

u
. Integrating both sides gives

1
e−u2

u

du = 1
2x dx

∫ 1
e−u2

u

du =
∫ 1

2x dx

eu2

2 = ln (x)
2 + c2

The solution is
eu(x)2

2 − ln (x)
2 − c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

e
y2

x2

2 − ln (x)
2 − c2 = 0

e
y2

x2

2 − ln (x)
2 − c2 = 0

Summary
The solution(s) found are the following

(1)e
y2

x2

2 − ln (x)
2 − c2 = 0
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Figure 288: Slope field plot

Verification of solutions

e
y2

x2

2 − ln (x)
2 − c2 = 0

Verified OK.

5.24.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 2y2 + x2e−
y2

x2

2yx
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

1417



Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +

(
2y2 + x2e−

y2

x2

)
(b3 − a2)

2yx −

(
2y2 + x2e−

y2

x2

)2

a3

4y2x2

−

2x e−
y2

x2 + 2y2e−
y2
x2

x

2yx − 2y2 + x2e−
y2

x2

2y x2

 (xa2 + ya3 + a1)

−

4y − 2y e−
y2

x2

2yx − 2y2 + x2e−
y2

x2

2y2x

 (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−e−
2y2

x2 x4a3 − 2 e−
y2

x2 x4b2 + 4 e−
y2

x2 x3ya2 − 4 e−
y2

x2 x3yb3 + 6 e−
y2

x2 x2y2a3 − 4 e−
y2

x2 x2y2b2 + 4 e−
y2

x2 x y3a2 − 4 e−
y2

x2 x y3b3 + 4 e−
y2

x2 y4a3 − 2 e−
y2

x2 x3b1 + 2 e−
y2

x2 x2ya1 − 4 e−
y2

x2 x y2b1 + 4 e−
y2

x2 y3a1 + 4x y2b1 − 4y3a1
4x2y2

= 0

Setting the numerator to zero gives

(6E)−e−
2y2

x2 x4a3 + 2 e−
y2

x2 x4b2 − 4 e−
y2

x2 x3ya2 + 4 e−
y2

x2 x3yb3 − 6 e−
y2

x2 x2y2a3

+ 4 e−
y2

x2 x2y2b2 − 4 e−
y2

x2 x y3a2 + 4 e−
y2

x2 x y3b3 − 4 e−
y2

x2 y4a3 + 2 e−
y2

x2 x3b1

− 2 e−
y2

x2 x2ya1 + 4 e−
y2

x2 x y2b1 − 4 e−
y2

x2 y3a1 − 4x y2b1 + 4y3a1 = 0

Simplifying the above gives

(6E)−e−
2y2

x2 x4a3 + 2 e−
y2

x2 x4b2 − 4 e−
y2

x2 x3ya2 + 4 e−
y2

x2 x3yb3 − 6 e−
y2

x2 x2y2a3

+ 4 e−
y2

x2 x2y2b2 − 4 e−
y2

x2 x y3a2 + 4 e−
y2

x2 x y3b3 − 4 e−
y2

x2 y4a3 + 2 e−
y2

x2 x3b1

− 2 e−
y2

x2 x2ya1 + 4 e−
y2

x2 x y2b1 − 4 e−
y2

x2 y3a1 − 4x y2b1 + 4y3a1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y, e−

2y2

x2 , e−
y2

x2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2, e−
2y2

x2 = v3, e−
y2

x2 = v4

}
The above PDE (6E) now becomes

(7E)−4v4v31v2a2 − 4v4v1v32a2 − v3v
4
1a3 − 6v4v21v22a3 − 4v4v42a3

+ 2v4v41b2 + 4v4v21v22b2 + 4v4v31v2b3 + 4v4v1v32b3 − 2v4v21v2a1
− 4v4v32a1 + 2v4v31b1 + 4v4v1v22b1 + 4v32a1 − 4v1v22b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)−v3v
4
1a3 + 2v4v41b2 + (−4a2 + 4b3) v31v2v4 + 2v4v31b1

+ (−6a3 + 4b2) v21v22v4 − 2v4v21v2a1 + (−4a2 + 4b3) v1v32v4
+ 4v4v1v22b1 − 4v1v22b1 − 4v4v42a3 − 4v4v32a1 + 4v32a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−4a1 = 0
−2a1 = 0
4a1 = 0

−4a3 = 0
−a3 = 0
−4b1 = 0
2b1 = 0
4b1 = 0
2b2 = 0

−4a2 + 4b3 = 0
−6a3 + 4b2 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −

2y2 + x2e−
y2

x2

2yx

 (x)

= −x2e−
y2

x2

2y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x
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S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2e−
y2
x2

2y

dy

Which results in

S = −e
y2

x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2y2 + x2e−
y2

x2

2yx

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2y2e
y2

x2

x3

Sy = −2 e
y2

x2 y

x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−e
y2

x2 = − ln (x) + c1

Which simplifies to

−e
y2

x2 = − ln (x) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2y2+x2e−
y2
x2

2yx
dS
dR

= − 1
R

R = x

S = −e
y2

x2

Summary
The solution(s) found are the following

(1)−e
y2

x2 = − ln (x) + c1
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Figure 289: Slope field plot

Verification of solutions

−e
y2

x2 = − ln (x) + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve(diff(y(x),x)=(2*y(x)^2+x^2*exp(- (y(x)/x)^2 ))/(2*x*y(x)),y(x), singsol=all)� �

y(x) =
√

ln (ln (x) + c1)x
y(x) = −

√
ln (ln (x) + c1)x

3 Solution by Mathematica
Time used: 2.166 (sec). Leaf size: 38� �
DSolve[y'[x]==(2*y[x]^2+x^2*Exp[- (y[x]/x)^2 ])/(2*x*y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x
√
log(log(x) + 2c1)

y(x) → x
√
log(log(x) + 2c1)
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5.25 problem 22
5.25.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1426
5.25.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1426
5.25.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1428
5.25.4 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1432
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5.25.6 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1440

Internal problem ID [999]
Internal file name [OUTPUT/1000_Sunday_June_05_2022_01_56_27_AM_47396048/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 22.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exactByIn-
spection", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

y′ − yx+ y2

x2 = 0

With initial conditions

[y(−1) = 2]
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5.25.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= y(x+ y)
x2

The x domain of f(x, y) when y = 2 is

{x < 0∨ 0 < x}

And the point x0 = −1 is inside this domain. The y domain of f(x, y) when x = −1 is

{−∞ < y < ∞}

And the point y0 = 2 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
y(x+ y)

x2

)
= x+ y

x2 + y

x2

The x domain of ∂f
∂y

when y = 2 is

{x < 0∨ 0 < x}

And the point x0 = −1 is inside this domain. The y domain of ∂f
∂y

when x = −1 is

{−∞ < y < ∞}

And the point y0 = 2 is inside this domain. Therefore solution exists and is unique.

5.25.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− u(x)x2 + u(x)2 x2

x2 = 0

1426



In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u2

x

Where f(x) = 1
x
and g(u) = u2. Integrating both sides gives

1
u2 du = 1

x
dx∫ 1

u2 du =
∫ 1

x
dx

−1
u
= ln (x) + c2

The solution is

− 1
u (x) − ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

−x

y
− ln (x)− c2 = 0

−x

y
− ln (x)− c2 = 0

Substituting initial conditions and solving for c2 gives c2 = −iπ+ 1
2 . Hence the solution

becomes Solving for y from the above gives

y = 2x
−2 ln (x)− 1 + 2iπ

Summary
The solution(s) found are the following

(1)y = 2x
−2 ln (x)− 1 + 2iπ

Verification of solutions

y = 2x
−2 ln (x)− 1 + 2iπ

Verified OK.
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5.25.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(x+ y)
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 255: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = y2

x
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2

x

dy

Which results in

S = −x

y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(x+ y)
x2

1429



Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −1
y

Sy =
x

y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x

y
= ln (x) + c1

Which simplifies to

−x

y
= ln (x) + c1

Which gives

y = − x

ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y(x+y)
x2

dS
dR

= 1
R

R = x

S = −x

y

Initial conditions are used to solve for c1. Substituting x = −1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = 1
iπ + c1

c1 = −iπ + 1
2

Substituting c1 found above in the general solution gives

y = 2x
−2 ln (x)− 1 + 2iπ

Summary
The solution(s) found are the following

(1)y = 2x
−2 ln (x)− 1 + 2iπ

Verification of solutions

y = 2x
−2 ln (x)− 1 + 2iπ

Verified OK.
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5.25.4 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(x+ y)
x2

This is a Bernoulli ODE.
y′ = 1

x
y + 1

x2y
2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
x

f1(x) =
1
x2

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= 1
yx

+ 1
x2 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)
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Substituting equations (5) and (6) into equation (4) gives

−w′(x) = w(x)
x

+ 1
x2

w′ = −w

x
− 1

x2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 1
x

q(x) = − 1
x2

Hence the ode is

w′(x) + w(x)
x

= − 1
x2

The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes

d
dx(µw) = (µ)

(
− 1
x2

)
d
dx(xw) = (x)

(
− 1
x2

)
d(xw) =

(
−1
x

)
dx

Integrating gives

xw =
∫

−1
x
dx

xw = − ln (x) + c1

Dividing both sides by the integrating factor µ = x results in

w(x) = − ln (x)
x

+ c1
x
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which simplifies to

w(x) = − ln (x) + c1
x

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= − ln (x) + c1

x

Or

y = x

− ln (x) + c1

Initial conditions are used to solve for c1. Substituting x = −1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = 1
iπ − c1

c1 = iπ − 1
2

Substituting c1 found above in the general solution gives

y = 2x
−2 ln (x)− 1 + 2iπ

Summary
The solution(s) found are the following

(1)y = 2x
−2 ln (x)− 1 + 2iπ

Verification of solutions

y = 2x
−2 ln (x)− 1 + 2iπ

Verified OK.
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5.25.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
yx+ y2

x2

)
dx(

−yx+ y2

x2

)
dx+dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −yx+ y2

x2

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−yx+ y2

x2

)
= −2y − x

x2

And

∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection x
y2

is an integrating factor.
Therefore by multiplying M = −yx+y2

x2 and N = 1 by this integrating factor the ode
becomes exact. The new M,N are

M = −yx+ y2

xy2

N = x

y2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x

y2

)
dy =

(
yx+ y2

x y2

)
dx(

−yx+ y2

x y2

)
dx+

(
x

y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −yx+ y2

x y2

N(x, y) = x

y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−yx+ y2

x y2

)
= 1

y2
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And

∂N

∂x
= ∂

∂x

(
x

y2

)
= 1

y2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−yx+ y2

x y2
dx

(3)φ = − ln (x)− x

y
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x
y2
. Therefore equation (4) becomes

(5)x

y2
= x

y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − ln (x)− x

y
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)− x

y

The solution becomes
y = − x

ln (x) + c1

Initial conditions are used to solve for c1. Substituting x = −1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = 1
iπ + c1

c1 = −iπ + 1
2

Substituting c1 found above in the general solution gives

y = 2x
−2 ln (x)− 1 + 2iπ

Summary
The solution(s) found are the following

(1)y = 2x
−2 ln (x)− 1 + 2iπ

Verification of solutions

y = 2x
−2 ln (x)− 1 + 2iπ

Verified OK.
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5.25.6 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y(x+ y)
x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = y

x
+ y2

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = 1
x
and f2(x) = 1

x2 . Let

y = −u′

f2u

= −u′

u
x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2

x3

f1f2 =
1
x3

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

u′′(x)
x2 + u′(x)

x3 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 + c2 ln (x)
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The above shows that
u′(x) = c2

x

Using the above in (1) gives the solution

y = − c2x

c1 + c2 ln (x)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − x

c3 + ln (x)

Initial conditions are used to solve for c3. Substituting x = −1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = 1
iπ + c3

c3 = −iπ + 1
2

Substituting c3 found above in the general solution gives

y = 2x
−2 ln (x)− 1 + 2iπ

Summary
The solution(s) found are the following

(1)y = 2x
−2 ln (x)− 1 + 2iπ

Verification of solutions

y = 2x
−2 ln (x)− 1 + 2iπ

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 19� �
dsolve([diff(y(x),x)=(x*y(x)+y(x)^2)/x^2,y(-1) = 2],y(x), singsol=all)� �

y(x) = 2x
−2 ln (x)− 1 + 2iπ

3 Solution by Mathematica
Time used: 0.126 (sec). Leaf size: 25� �
DSolve[{y'[x]==(x*y[x]+y[x]^2)/x^2,y[-1]==2},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 2ix
2i log(x) + 2π + i

1442



5.26 problem 23
5.26.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1444
5.26.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1444
5.26.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1446
5.26.4 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1450
5.26.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1452

Internal problem ID [1000]
Internal file name [OUTPUT/1001_Sunday_June_05_2022_01_56_29_AM_53614540/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 23.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

y′ − x3 + y3

xy2
= 0

With initial conditions

[y(1) = 3]
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5.26.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= x3 + y3

x y2

The x domain of f(x, y) when y = 3 is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{y < 0∨ 0 < y}

And the point y0 = 3 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
x3 + y3

x y2

)
= 3

x
− 2(x3 + y3)

x y3

The x domain of ∂f
∂y

when y = 3 is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{y < 0∨ 0 < y}

And the point y0 = 3 is inside this domain. Therefore solution exists and is unique.

5.26.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− x3 + u(x)3 x3

x3u (x)2
= 0
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In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 1
u2x

Where f(x) = 1
x
and g(u) = 1

u2 . Integrating both sides gives

1
1
u2

du = 1
x
dx

∫ 1
1
u2

du =
∫ 1

x
dx

u3

3 = ln (x) + c2

The solution is
u(x)3

3 − ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y3

3x3 − ln (x)− c2 = 0

y3

3x3 − ln (x)− c2 = 0

Substituting initial conditions and solving for c2 gives c2 = 9. Hence the solution be-

comes

Summary
The solution(s) found are the following

(1)y3

3x3 − ln (x)− 9 = 0

Verification of solutions

y3

3x3 − ln (x)− 9 = 0

Verified OK.
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5.26.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x3 + y3

x y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 257: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = x3

y2
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x3

y2

dy

Which results in

S = y3

3x3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x3 + y3

x y2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y3

x4

Sy =
y2

x3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y3

3x3 = ln (x) + c1

Which simplifies to

y3

3x3 = ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x3+y3

x y2
dS
dR

= 1
R

R = x

S = y3

3x3

Initial conditions are used to solve for c1. Substituting x = 1 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

9 = c1

c1 = 9

Substituting c1 found above in the general solution gives
y3

3x3 = ln (x) + 9

The above simplifies to

−3x3 ln (x)− 27x3 + y3 = 0

Summary
The solution(s) found are the following

(1)−3x3 ln (x)− 27x3 + y3 = 0
Verification of solutions

−3x3 ln (x)− 27x3 + y3 = 0

Verified OK.
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5.26.4 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= x3 + y3

x y2

This is a Bernoulli ODE.
y′ = 1

x
y + x2 1

y2
(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
x

f1(x) = x2

n = −2

Dividing both sides of ODE (1) by yn = 1
y2

gives

y′y2 = y3

x
+ x2 (4)

Let

w = y1−n

= y3 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 3y2y′ (6)

1450



Substituting equations (5) and (6) into equation (4) gives

w′(x)
3 = w(x)

x
+ x2

w′ = 3w
x

+ 3x2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −3
x

q(x) = 3x2

Hence the ode is

w′(x)− 3w(x)
x

= 3x2

The integrating factor µ is

µ = e
∫
− 3

x
dx

= 1
x3

The ode becomes
d
dx(µw) = (µ)

(
3x2)

d
dx

( w
x3

)
=
(

1
x3

)(
3x2)

d
( w
x3

)
=
(
3
x

)
dx

Integrating gives

w

x3 =
∫ 3

x
dx

w

x3 = 3 ln (x) + c1

Dividing both sides by the integrating factor µ = 1
x3 results in

w(x) = 3x3 ln (x) + c1x
3
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which simplifies to

w(x) = x3(3 ln (x) + c1)

Replacing w in the above by y3 using equation (5) gives the final solution.

y3 = x3(3 ln (x) + c1)

Initial conditions are used to solve for c1. Substituting x = 1 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

27 = c1

c1 = 27

Substituting c1 found above in the general solution gives

y3 = 3x3 ln (x) + 27x3

Summary
The solution(s) found are the following

(1)y3 = 3(ln (x) + 9)x3

Verification of solutions

y3 = 3(ln (x) + 9)x3

Verified OK.

5.26.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x y2

)
dy =

(
x3 + y3

)
dx(

−x3 − y3
)
dx+

(
x y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x3 − y3

N(x, y) = x y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x3 − y3

)
= −3y2

And
∂N

∂x
= ∂

∂x

(
x y2

)
= y2
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x y2
((
−3y2

)
−
(
y2
))

= −4
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 4

x
dx

The result of integrating gives

µ = e−4 ln(x)

= 1
x4

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x4

(
−x3 − y3

)
= −x3 − y3

x4

And

N = µN

= 1
x4

(
x y2

)
= y2

x3

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x3 − y3

x4

)
+
(
y2

x3

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x3 − y3

x4 dx

(3)φ = − ln (x) + y3

3x3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y2

x3 + f ′(y)

But equation (2) says that ∂φ
∂y

= y2

x3 . Therefore equation (4) becomes

(5)y2

x3 = y2

x3 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − ln (x) + y3

3x3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + y3

3x3
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Initial conditions are used to solve for c1. Substituting x = 1 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

9 = c1

c1 = 9

Substituting c1 found above in the general solution gives

− ln (x) + y3

3x3 = 9

The above simplifies to

−3x3 ln (x)− 27x3 + y3 = 0

Summary
The solution(s) found are the following

(1)−3x3 ln (x)− 27x3 + y3 = 0
Verification of solutions

−3x3 ln (x)− 27x3 + y3 = 0

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.046 (sec). Leaf size: 14� �
dsolve([diff(y(x),x)=(x^3+y(x)^3)/(x*y(x)^2),y(1) = 3],y(x), singsol=all)� �

y(x) = (3 ln (x) + 27)
1
3 x
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3 Solution by Mathematica
Time used: 0.21 (sec). Leaf size: 20� �
DSolve[{y'[x]==(x^3+y[x]^3)/(x*y[x]^2),y[1]==3},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3
√
3x 3
√
log(x) + 9
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5.27.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1458
5.27.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1459
5.27.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1461
5.27.4 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1466
5.27.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1469

Internal problem ID [1001]
Internal file name [OUTPUT/1002_Sunday_June_05_2022_01_56_30_AM_62428672/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 24.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

y′xy + y2 = −x2

With initial conditions

[y(1) = 2]

5.27.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= −x2 + y2

xy

The x domain of f(x, y) when y = 2 is

{x < 0∨ 0 < x}
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And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{y < 0∨ 0 < y}

And the point y0 = 2 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
−x2 + y2

xy

)
= −2

x
+ x2 + y2

x y2

The x domain of ∂f
∂y

when y = 2 is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{y < 0∨ 0 < y}

And the point y0 = 2 is inside this domain. Therefore solution exists and is unique.

5.27.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x2u(x) + u(x)2 x2 = −x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2u2 + 1
ux

Where f(x) = − 1
x
and g(u) = 2u2+1

u
. Integrating both sides gives

1
2u2+1

u

du = −1
x
dx

∫ 1
2u2+1

u

du =
∫

−1
x
dx

ln (2u2 + 1)
4 = − ln (x) + c2
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Raising both side to exponential gives(
2u2 + 1

) 1
4 = e− ln(x)+c2

Which simplifies to (
2u2 + 1

) 1
4 = c3

x

Which simplifies to (
2u(x)2 + 1

) 1
4 = c3ec2

x

The solution is (
2u(x)2 + 1

) 1
4 = c3ec2

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

2y2
x2 + 1

) 1
4

= c3ec2
x(

2y2 + x2

x2

) 1
4

= c3ec2
x

Substituting initial conditions and solving for c2 gives c2 =
ln
(

9
c43

)
4 . Hence the solution

becomes Initial conditions are used to solve for c3. Substituting x = 1 and y = 2 in the
above solution gives an equation to solve for the constant of integration.

9 1
4 = c3

√
3
(
1
c43

) 1
4

Since limc1→∞ gives
(

x2+2y2
x2

) 1
4 =

c3
√
3
(

1
c43

) 1
4

x
=
(

x2+2y2
x2

) 1
4 =

√
3
x

and this result satisfies
the given initial condition. Solving for y from the above gives

y =
√
−2x4 + 18

2x

Summary
The solution(s) found are the following

(1)y =
√
−2x4 + 18

2x
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(a) Solution plot (b) Slope field plot

Verification of solutions

y =
√
−2x4 + 18

2x

Verified OK.

5.27.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x2 + y2

xy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 259: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x2y

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x2y

dy

Which results in

S = x2y2

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2 + y2

xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = x y2

Sy = y x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R4

4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2y2

2 = −x4

4 + c1

Which simplifies to

x2y2

2 = −x4

4 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2+y2

xy
dS
dR

= −R3

R = x

S = x2y2

2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = −1
4 + c1
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c1 =
9
4

Substituting c1 found above in the general solution gives

x2y2

2 = −x4

4 + 9
4

Solving for y from the above gives

y =
√
−2x4 + 18

2x

Summary
The solution(s) found are the following

(1)y =
√
−2x4 + 18

2x

(a) Solution plot (b) Slope field plot

Verification of solutions

y =
√
−2x4 + 18

2x

Verified OK.
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5.27.4 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −x2 + y2

xy

This is a Bernoulli ODE.
y′ = −1

x
y − x

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
x

f1(x) = −x

n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = −y2

x
− x (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)
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Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = −w(x)

x
− x

w′ = −2w
x

− 2x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 2
x

q(x) = −2x

Hence the ode is

w′(x) + 2w(x)
x

= −2x

The integrating factor µ is

µ = e
∫ 2

x
dx

= x2

The ode becomes
d
dx(µw) = (µ) (−2x)
d
dx
(
x2w

)
=
(
x2) (−2x)

d
(
x2w

)
=
(
−2x3) dx

Integrating gives

x2w =
∫

−2x3 dx

x2w = −x4

2 + c1

Dividing both sides by the integrating factor µ = x2 results in

w(x) = −x2

2 + c1
x2
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Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = −x2

2 + c1
x2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

4 = −1
2 + c1

c1 =
9
2

Substituting c1 found above in the general solution gives

y2 = −x4 − 9
2x2

The above simplifies to
x4 + 2x2y2 − 9 = 0

Solving for y from the above gives

y =
√
−2x4 + 18

2x

Summary
The solution(s) found are the following

(1)y =
√
−2x4 + 18

2x

(a) Solution plot (b) Slope field plot
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Verification of solutions

y =
√
−2x4 + 18

2x

Verified OK.

5.27.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(yx) dy =
(
−x2 − y2

)
dx(

x2 + y2
)
dx+(yx) dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = x2 + y2

N(x, y) = yx

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x2 + y2

)
= 2y

And

∂N

∂x
= ∂

∂x
(yx)

= y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

yx
((2y)− (y))

= 1
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

x
dx

The result of integrating gives

µ = eln(x)

= x
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x
(
x2 + y2

)
= x

(
x2 + y2

)
And

N = µN

= x(yx)
= y x2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x
(
x2 + y2

))
+
(
y x2) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x
(
x2 + y2

)
dx

(3)φ = (x2 + y2)2

4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y
(
x2 + y2

)
+ f ′(y)
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But equation (2) says that ∂φ
∂y

= y x2. Therefore equation (4) becomes

(5)y x2 = y
(
x2 + y2

)
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y3

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−y3

)
dy

f(y) = −y4

4 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = (x2 + y2)2

4 − y4

4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(x2 + y2)2

4 − y4

4

Initial conditions are used to solve for c1. Substituting x = 1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

9
4 = c1

c1 =
9
4

Substituting c1 found above in the general solution gives

(x2 + y2)2

4 − y4

4 = 9
4
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Solving for y from the above gives

y =
√
−2x4 + 18

2x

Summary
The solution(s) found are the following

(1)y =
√
−2x4 + 18

2x

(a) Solution plot (b) Slope field plot

Verification of solutions

y =
√
−2x4 + 18

2x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 18� �
dsolve([x*y(x)*diff(y(x),x)+x^2+y(x)^2=0,y(1) = 2],y(x), singsol=all)� �

y(x) =
√
−2x4 + 18

2x

3 Solution by Mathematica
Time used: 0.216 (sec). Leaf size: 25� �
DSolve[{x*y[x]*y'[x]+x^2+y[x]^2==0,y[1]==2},y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
√
9− x4
√
2x
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5.28 problem 25
5.28.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1475
5.28.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1476
5.28.3 Solving as first order ode lie symmetry calculated ode . . . . . . 1478
5.28.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1484

Internal problem ID [1002]
Internal file name [OUTPUT/1003_Sunday_June_05_2022_01_56_32_AM_34654589/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 25.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Riccati]

y′ − y2 − 3yx− 5x2

x2 = 0

With initial conditions

[y(1) = 1]

5.28.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= −5x2 − 3yx+ y2

x2

The x domain of f(x, y) when y = 1 is

{x < 0∨ 0 < x}
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And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
−5x2 − 3yx+ y2

x2

)
= −3x+ 2y

x2

The x domain of ∂f
∂y

when y = 1 is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

5.28.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− u(x)2 x2 − 3u(x)x2 − 5x2

x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u2 − 4u− 5
x

Where f(x) = 1
x
and g(u) = u2 − 4u− 5. Integrating both sides gives

1
u2 − 4u− 5 du = 1

x
dx∫ 1

u2 − 4u− 5 du =
∫ 1

x
dx

ln (u− 5)
6 − ln (u+ 1)

6 = ln (x) + c2
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The above can be written as(
1
6

)
(ln (u− 5)− ln (u+ 1)) = ln (x) + 2c2

ln (u− 5)− ln (u+ 1) = (6) (ln (x) + 2c2)
= 6 ln (x) + 12c2

Raising both side to exponential gives

eln(u−5)−ln(u+1) = e6 ln(x)+6c2

Which simplifies to

u− 5
u+ 1 = 6c2x6

= c3x
6

Therefore the solution y is

y = xu

= −x(c3x6 + 5)
c3x6 − 1

Initial conditions are used to solve for c3. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = −c3 + 5
c3 − 1

c3 = −2

Substituting c3 found above in the general solution gives

y = −x(2x6 − 5)
2x6 + 1

Summary
The solution(s) found are the following

(1)y = −x(2x6 − 5)
2x6 + 1
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −x(2x6 − 5)
2x6 + 1

Verified OK.

5.28.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −5x2 − 3yx+ y2

x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(−5x2 − 3yx+ y2) (b3 − a2)
x2 − (−5x2 − 3yx+ y2)2 a3

x4

−
(
−10x− 3y

x2 − 2(−5x2 − 3yx+ y2)
x3

)
(xa2 + ya3 + a1)

− (−3x+ 2y) (xb2 + yb3 + b1)
x2 = 0

Putting the above in normal form gives

5x4a2 − 25x4a3 + 4b2x4 − 5x4b3 − 30x3ya3 − 2x3yb2 + x2y2a2 − 2x2y2a3 − x2y2b3 + 8x y3a3 − y4a3 + 3x3b1 − 3x2ya1 − 2x2yb1 + 2x y2a1
x4

= 0

Setting the numerator to zero gives

(6E)5x4a2 − 25x4a3 + 4b2x4 − 5x4b3 − 30x3ya3 − 2x3yb2 + x2y2a2 − 2x2y2a3
− x2y2b3 + 8x y3a3 − y4a3 + 3x3b1 − 3x2ya1 − 2x2yb1 + 2x y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)5a2v41 + a2v
2
1v

2
2 − 25a3v41 − 30a3v31v2 − 2a3v21v22 + 8a3v1v32 − a3v

4
2 + 4b2v41

− 2b2v31v2 − 5b3v41 − b3v
2
1v

2
2 − 3a1v21v2 + 2a1v1v22 + 3b1v31 − 2b1v21v2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)(5a2 − 25a3 + 4b2 − 5b3) v41 + (−30a3 − 2b2) v31v2 + 3b1v31
+ (a2 − 2a3 − b3) v21v22 + (−3a1 − 2b1) v21v2 + 8a3v1v32 + 2a1v1v22 − a3v

4
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
−a3 = 0
8a3 = 0
3b1 = 0

−3a1 − 2b1 = 0
−30a3 − 2b2 = 0
a2 − 2a3 − b3 = 0

5a2 − 25a3 + 4b2 − 5b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−5x2 − 3yx+ y2

x2

)
(x)

= 5x2 + 4yx− y2

x
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

5x2+4yx−y2

x

dy

Which results in

S = − ln (y − 5x)
6 + ln (x+ y)

6
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −5x2 − 3yx+ y2

x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

(x+ y) (5x− y)
Sy =

x

(x+ y) (5x− y)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y − 5x)
6 + ln (x+ y)

6 = − ln (x) + c1

Which simplifies to

− ln (y − 5x)
6 + ln (x+ y)

6 = − ln (x) + c1

Which gives

y = x(5 e6c1 + x6)
e6c1 − x6
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −5x2−3yx+y2

x2
dS
dR

= − 1
R

R = x

S = − ln (y − 5x)
6 + ln (x+ y)

6

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = 5 e6c1 + 1
e6c1 − 1

c1 = − ln (2)
6 + iπ

6

Substituting c1 found above in the general solution gives

y = −2x7 + 5x
2x6 + 1

Summary
The solution(s) found are the following

(1)y = −2x7 + 5x
2x6 + 1
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −2x7 + 5x
2x6 + 1

Verified OK.

5.28.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −5x2 − 3yx+ y2

x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = −5− 3y
x

+ y2

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = −5, f1(x) = − 3
x
and f2(x) = 1

x2 . Let

y = −u′

f2u

= −u′

u
x2

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2

x3

f1f2 = − 3
x3

f 2
2 f0 = − 5

x4

Substituting the above terms back in equation (2) gives

u′′(x)
x2 + 5u′(x)

x3 − 5u(x)
x4 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1x
6 + c2
x5

The above shows that

u′(x) = c1x
6 − 5c2
x6

Using the above in (1) gives the solution

y = −(c1x6 − 5c2)x
c1x6 + c2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −(c3x6 − 5)x
c3x6 + 1

Initial conditions are used to solve for c3. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = −c3 − 5
c3 + 1
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c3 = 2

Substituting c3 found above in the general solution gives

y = −x(2x6 − 5)
2x6 + 1

Summary
The solution(s) found are the following

(1)y = −x(2x6 − 5)
2x6 + 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −x(2x6 − 5)
2x6 + 1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.313 (sec). Leaf size: 23� �
dsolve([diff(y(x),x)=(y(x)^2-3*x*y(x)-5*x^2)/x^2,y(1) = 1],y(x), singsol=all)� �

y(x) = −2x7 + 5x
2x6 + 1

3 Solution by Mathematica
Time used: 1.947 (sec). Leaf size: 24� �
DSolve[{y'[x]==(y[x]^2-3*x*y[x]-5*x^2)/x^2,y[1]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 5x− 2x7

2x6 + 1
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5.29 problem 26
5.29.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1488
5.29.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1489
5.29.3 Solving as first order ode lie symmetry calculated ode . . . . . . 1491
5.29.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1497

Internal problem ID [1003]
Internal file name [OUTPUT/1004_Sunday_June_05_2022_01_56_34_AM_72577261/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 26.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Riccati]

y′x2 − y2 − 4yx = 2x2

With initial conditions

[y(1) = 1]

5.29.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= 2x2 + 4yx+ y2

x2

The x domain of f(x, y) when y = 1 is

{x < 0∨ 0 < x}
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And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
2x2 + 4yx+ y2

x2

)
= 4x+ 2y

x2

The x domain of ∂f
∂y

when y = 1 is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

5.29.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x2 − u(x)2 x2 − 4u(x)x2 = 2x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u2 + 3u+ 2
x

Where f(x) = 1
x
and g(u) = u2 + 3u+ 2. Integrating both sides gives

1
u2 + 3u+ 2 du = 1

x
dx∫ 1

u2 + 3u+ 2 du =
∫ 1

x
dx

ln (u+ 1)− ln (u+ 2) = ln (x) + c2
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Raising both side to exponential gives

eln(u+1)−ln(u+2) = eln(x)+c2

Which simplifies to

u+ 1
u+ 2 = c3x

Therefore the solution y is

y = xu

= −x(2c3x− 1)
c3x− 1

Initial conditions are used to solve for c3. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = −2c3 − 1
c3 − 1

c3 =
2
3

Substituting c3 found above in the general solution gives

y = −x(4x− 3)
−3 + 2x

Summary
The solution(s) found are the following

(1)y = −x(4x− 3)
−3 + 2x
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −x(4x− 3)
−3 + 2x

Verified OK.

5.29.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 2x2 + 4yx+ y2

x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(2x2 + 4yx+ y2) (b3 − a2)
x2 − (2x2 + 4yx+ y2)2 a3

x4

−
(
4x+ 4y

x2 − 2(2x2 + 4yx+ y2)
x3

)
(xa2 + ya3 + a1)

− (4x+ 2y) (xb2 + yb3 + b1)
x2 = 0

Putting the above in normal form gives

−2x4a2 + 4x4a3 + 3b2x4 − 2x4b3 + 16x3ya3 + 2x3yb2 − x2y2a2 + 16x2y2a3 + x2y2b3 + 6x y3a3 + y4a3 + 4x3b1 − 4x2ya1 + 2x2yb1 − 2x y2a1
x4

= 0

Setting the numerator to zero gives

(6E)−2x4a2 − 4x4a3 − 3b2x4 + 2x4b3 − 16x3ya3 − 2x3yb2 + x2y2a2 − 16x2y2a3
− x2y2b3 − 6x y3a3 − y4a3 − 4x3b1 + 4x2ya1 − 2x2yb1 + 2x y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a2v41 + a2v
2
1v

2
2 − 4a3v41 − 16a3v31v2 − 16a3v21v22 − 6a3v1v32 − a3v

4
2 − 3b2v41

− 2b2v31v2 + 2b3v41 − b3v
2
1v

2
2 + 4a1v21v2 + 2a1v1v22 − 4b1v31 − 2b1v21v2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

1492



Equation (7E) now becomes

(8E)(−2a2 − 4a3 − 3b2 + 2b3) v41 + (−16a3 − 2b2) v31v2 − 4b1v31
+ (a2 − 16a3 − b3) v21v22 + (4a1 − 2b1) v21v2 − 6a3v1v32 + 2a1v1v22 − a3v

4
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
−6a3 = 0
−a3 = 0
−4b1 = 0

4a1 − 2b1 = 0
−16a3 − 2b2 = 0

a2 − 16a3 − b3 = 0
−2a2 − 4a3 − 3b2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
2x2 + 4yx+ y2

x2

)
(x)

= −2x2 − 3yx− y2

x
ξ = 0

1493



The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2x2−3yx−y2

x

dy

Which results in

S = − ln (x+ y) + ln (2x+ y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2x2 + 4yx+ y2

x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

(x+ y) (2x+ y)
Sy = − x

(x+ y) (2x+ y)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x+ y) + ln (2x+ y) = − ln (x) + c1

Which simplifies to

− ln (x+ y) + ln (2x+ y) = − ln (x) + c1

Which gives

y = −x(ec1 − 2x)
ec1 − x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2x2+4yx+y2

x2
dS
dR

= − 1
R

R = x

S = − ln (x+ y) + ln (2x+ y)

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = −ec1 + 2
−1 + ec1

c1 = ln
(
3
2

)
Substituting c1 found above in the general solution gives

y = −4x2 + 3x
−3 + 2x

Summary
The solution(s) found are the following

(1)y = −4x2 + 3x
−3 + 2x
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −4x2 + 3x
−3 + 2x

Verified OK.

5.29.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= 2x2 + 4yx+ y2

x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = 2 + 4y
x

+ y2

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 2, f1(x) = 4
x
and f2(x) = 1

x2 . Let

y = −u′

f2u

= −u′

u
x2

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2

x3

f1f2 =
4
x3

f 2
2 f0 =

2
x4

Substituting the above terms back in equation (2) gives

u′′(x)
x2 − 2u′(x)

x3 + 2u(x)
x4 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = x(c1x+ c2)

The above shows that
u′(x) = 2c1x+ c2

Using the above in (1) gives the solution

y = −(2c1x+ c2)x
c1x+ c2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −2c3x2 − x

c3x+ 1

Initial conditions are used to solve for c3. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = −2c3 + 1
c3 + 1
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c3 = −2
3

Substituting c3 found above in the general solution gives

y = −x(4x− 3)
−3 + 2x

Summary
The solution(s) found are the following

(1)y = −x(4x− 3)
−3 + 2x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −x(4x− 3)
−3 + 2x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 21� �
dsolve([x^2*diff(y(x),x)=2*x^2+y(x)^2+4*x*y(x),y(1) = 1],y(x), singsol=all)� �

y(x) = −4x2 + 3x
2x− 3

3 Solution by Mathematica
Time used: 0.492 (sec). Leaf size: 20� �
DSolve[{x^2*y'[x]==2*x^2+y[x]^2+4*x*y[x],y[1]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x(4x− 3)
2x− 3
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5.30 problem 27
5.30.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1501
5.30.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1502
5.30.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1504
5.30.4 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1509
5.30.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1512

Internal problem ID [1004]
Internal file name [OUTPUT/1005_Sunday_June_05_2022_01_56_35_AM_15507582/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 27.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

y′xy − 4y2 = 3x2

With initial conditions [
y(1) =

√
3
]

5.30.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= 3x2 + 4y2
xy

The x domain of f(x, y) when y =
√
3 is

{x < 0∨ 0 < x}
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And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{y < 0∨ 0 < y}

And the point y0 =
√
3 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
3x2 + 4y2

xy

)
= 8

x
− 3x2 + 4y2

x y2

The x domain of ∂f
∂y

when y =
√
3 is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{y < 0∨ 0 < y}

And the point y0 =
√
3 is inside this domain. Therefore solution exists and is unique.

5.30.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x2u(x)− 4u(x)2 x2 = 3x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 3u2 + 3
ux

Where f(x) = 3
x
and g(u) = u2+1

u
. Integrating both sides gives

1
u2+1
u

du = 3
x
dx

∫ 1
u2+1
u

du =
∫ 3

x
dx

ln (u2 + 1)
2 = 3 ln (x) + c2
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Raising both side to exponential gives
√
u2 + 1 = e3 ln(x)+c2

Which simplifies to
√
u2 + 1 = c3x

3

Which simplifies to √
u (x)2 + 1 = c3ec2x3

The solution is √
u (x)2 + 1 = c3ec2x3

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form√

y2

x2 + 1 = c3ec2x3√
x2 + y2

x2 = c3ec2x3

Substituting initial conditions and solving for c2 gives c2 =
ln
(

4
c23

)
2 . Hence the solution

becomes Initial conditions are used to solve for c3. Substituting x = 1 and y =
√
3 in

the above solution gives an equation to solve for the constant of integration.

2 = 2c3

√
1
c23

This solution is valid for any c3. Hence there are infinite number of solutions.

Solving for y from the above gives

y =
√
4x6 − 1x

Summary
The solution(s) found are the following

(1)y =
√
4x6 − 1x
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(a) Solution plot (b) Slope field plot

Verification of solutions

y =
√
4x6 − 1x

Verified OK. {positive}

5.30.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 3x2 + 4y2
xy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 261: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = x8

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x8

y

dy

Which results in

S = y2

2x8

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 3x2 + 4y2
xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −4y2
x9

Sy =
y

x8

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 3

x7 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 3

R7
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
2R6 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2

2x8 = − 1
2x6 + c1

Which simplifies to

y2

2x8 = − 1
2x6 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 3x2+4y2
xy

dS
dR

= 3
R7

R = x

S = y2

2x8

Initial conditions are used to solve for c1. Substituting x = 1 and y =
√
3 in the above

solution gives an equation to solve for the constant of integration.

3
2 = −1

2 + c1
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c1 = 2

Substituting c1 found above in the general solution gives

y2

2x8 = 4x6 − 1
2x6

The above simplifies to

−4x8 + x2 + y2 = 0

Solving for y from the above gives

y =
√
4x6 − 1x

Summary
The solution(s) found are the following

(1)y =
√
4x6 − 1x

(a) Solution plot (b) Slope field plot

Verification of solutions

y =
√
4x6 − 1x

Verified OK. {positive}
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5.30.4 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= 3x2 + 4y2
xy

This is a Bernoulli ODE.
y′ = 4

x
y + 3x1

y
(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
4
x

f1(x) = 3x
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = 4y2
x

+ 3x (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)
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Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = 4w(x)

x
+ 3x

w′ = 8w
x

+ 6x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −8
x

q(x) = 6x

Hence the ode is

w′(x)− 8w(x)
x

= 6x

The integrating factor µ is

µ = e
∫
− 8

x
dx

= 1
x8

The ode becomes
d
dx(µw) = (µ) (6x)

d
dx

( w
x8

)
=
(

1
x8

)
(6x)

d
( w
x8

)
=
(

6
x7

)
dx

Integrating gives

w

x8 =
∫ 6

x7 dx

w

x8 = − 1
x6 + c1

Dividing both sides by the integrating factor µ = 1
x8 results in

w(x) = c1x
8 − x2
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Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = c1x
8 − x2

Initial conditions are used to solve for c1. Substituting x = 1 and y =
√
3 in the above

solution gives an equation to solve for the constant of integration.

3 = c1 − 1

c1 = 4

Substituting c1 found above in the general solution gives

y2 = 4x8 − x2

Solving for y from the above gives

y =
√
4x6 − 1x

Summary
The solution(s) found are the following

(1)y =
√
4x6 − 1x

(a) Solution plot (b) Slope field plot

Verification of solutions

y =
√
4x6 − 1x

Verified OK. {positive}
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5.30.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(yx) dy =
(
3x2 + 4y2

)
dx(

−3x2 − 4y2
)
dx+(yx) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −3x2 − 4y2

N(x, y) = yx
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−3x2 − 4y2

)
= −8y

And
∂N

∂x
= ∂

∂x
(yx)

= y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

yx
((−8y)− (y))

= −9
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 9

x
dx

The result of integrating gives

µ = e−9 ln(x)

= 1
x9

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x9

(
−3x2 − 4y2

)
= −3x2 − 4y2

x9
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And

N = µN

= 1
x9 (yx)

= y

x8

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−3x2 − 4y2
x9

)
+
( y

x8

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−3x2 − 4y2

x9 dx

(3)φ = x2 + y2

2x8 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y

x8 + f ′(y)

But equation (2) says that ∂φ
∂y

= y
x8 . Therefore equation (4) becomes

(5)y

x8 = y

x8 + f ′(y)

1514



Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x2 + y2

2x8 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x2 + y2

2x8

Initial conditions are used to solve for c1. Substituting x = 1 and y =
√
3 in the above

solution gives an equation to solve for the constant of integration.

2 = c1

c1 = 2

Substituting c1 found above in the general solution gives

x2 + y2

2x8 = 2

The above simplifies to

−4x8 + x2 + y2 = 0

Solving for y from the above gives

y =
√
4x6 − 1x

Summary
The solution(s) found are the following

(1)y =
√
4x6 − 1x
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(a) Solution plot (b) Slope field plot

Verification of solutions

y =
√
4x6 − 1x

Verified OK. {positive}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 15� �
dsolve([x*y(x)*diff(y(x),x)=3*x^2+4*y(x)^2,y(1) = sqrt(3)],y(x), singsol=all)� �

y(x) =
√
4x6 − 1x

1516



3 Solution by Mathematica
Time used: 0.603 (sec). Leaf size: 18� �
DSolve[{x*y[x]*y'[x]==3*x^2+4*y[x]^2,y[1]==Sqrt[3]},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x
√
4x6 − 1
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5.31 problem 28
5.31.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1518
5.31.2 Solving as first order ode lie symmetry calculated ode . . . . . . 1520
5.31.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1525

Internal problem ID [1005]
Internal file name [OUTPUT/1006_Sunday_June_05_2022_01_56_37_AM_88901093/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 28.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ − x+ y

x− y
= 0

5.31.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− x+ u(x)x
x− u (x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u2 + 1
x (u− 1)
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Where f(x) = − 1
x
and g(u) = u2+1

u−1 . Integrating both sides gives

1
u2+1
u−1

du = −1
x
dx

∫ 1
u2+1
u−1

du =
∫

−1
x
dx

ln (u2 + 1)
2 − arctan (u) = − ln (x) + c2

The solution is

ln
(
u(x)2 + 1

)
2 − arctan (u(x)) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

ln
(

y2

x2 + 1
)

2 − arctan
(y
x

)
+ ln (x)− c2 = 0

ln
(

y2

x2 + 1
)

2 − arctan
(y
x

)
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)
ln
(

y2

x2 + 1
)

2 − arctan
(y
x

)
+ ln (x)− c2 = 0
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Figure 304: Slope field plot

Verification of solutions

ln
(

y2

x2 + 1
)

2 − arctan
(y
x

)
+ ln (x)− c2 = 0

Verified OK.

5.31.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − x+ y

−x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(x+ y) (b3 − a2)

−x+ y
− (x+ y)2 a3

(−x+ y)2

−
(
− 1
−x+ y

− x+ y

(−x+ y)2
)
(xa2 + ya3 + a1)

−
(
− 1
−x+ y

+ x+ y

(−x+ y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x2a2 + x2a3 + x2b2 − x2b3 − 2xya2 + 2xya3 + 2xyb2 + 2xyb3 − y2a2 − y2a3 − y2b2 + y2b3 + 2xb1 − 2ya1
(x− y)2

= 0

Setting the numerator to zero gives

(6E)−x2a2 − x2a3 − x2b2 + x2b3 + 2xya2 − 2xya3 − 2xyb2
− 2xyb3 + y2a2 + y2a3 + y2b2 − y2b3 − 2xb1 + 2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
2
1 + 2a2v1v2 + a2v

2
2 − a3v

2
1 − 2a3v1v2 + a3v

2
2 − b2v

2
1

− 2b2v1v2 + b2v
2
2 + b3v

2
1 − 2b3v1v2 − b3v

2
2 + 2a1v2 − 2b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a2 − a3 − b2 + b3) v21 + (2a2 − 2a3 − 2b2 − 2b3) v1v2
− 2b1v1 + (a2 + a3 + b2 − b3) v22 + 2a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
−2b1 = 0

−a2 − a3 − b2 + b3 = 0
a2 + a3 + b2 − b3 = 0

2a2 − 2a3 − 2b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = −b2

b1 = 0
b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− x+ y

−x+ y

)
(x)

= −x2 − y2

x− y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2−y2

x−y

dy

Which results in

S = ln (x2 + y2)
2 − arctan

(y
x

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − x+ y

−x+ y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x+ y

x2 + y2

Sy =
−x+ y

x2 + y2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x2 + y2)
2 − arctan

(y
x

)
= c1

Which simplifies to
ln (x2 + y2)

2 − arctan
(y
x

)
= c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − x+y
−x+y

dS
dR

= 0

R = x

S = ln (x2 + y2)
2 − arctan

(y
x

)
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Summary
The solution(s) found are the following

(1)ln (x2 + y2)
2 − arctan

(y
x

)
= c1

Figure 305: Slope field plot

Verification of solutions

ln (x2 + y2)
2 − arctan

(y
x

)
= c1

Verified OK.

5.31.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

1525



Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−x+ y) dy = (−x− y) dx
(x+ y) dx+(−x+ y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x+ y

N(x, y) = −x+ y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(x+ y)

= 1
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And
∂N

∂x
= ∂

∂x
(−x+ y)

= −1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
x2+y2

is an integrating factor.
Therefore by multiplying M = x + y and N = −x + y by this integrating factor the
ode becomes exact. The new M,N are

M = x+ y

x2 + y2

N = −x+ y

x2 + y2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−x+ y

x2 + y2

)
dy =

(
− x+ y

x2 + y2

)
dx(

x+ y

x2 + y2

)
dx+

(
−x+ y

x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x+ y

x2 + y2

N(x, y) = −x+ y

x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x+ y

x2 + y2

)
= x2 − 2yx− y2

(x2 + y2)2

And

∂N

∂x
= ∂

∂x

(
−x+ y

x2 + y2

)
= x2 − 2yx− y2

(x2 + y2)2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x+ y

x2 + y2
dx

(3)φ = ln (x2 + y2)
2 + arctan

(
x

y

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y

x2 + y2
− x

y2
(

x2

y2
+ 1
) + f ′(y)

= −x+ y

x2 + y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −x+y
x2+y2

. Therefore equation (4) becomes

(5)−x+ y

x2 + y2
= −x+ y

x2 + y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = ln (x2 + y2)
2 + arctan

(
x

y

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (x2 + y2)

2 + arctan
(
x

y

)

1529



Summary
The solution(s) found are the following

(1)ln (x2 + y2)
2 + arctan

(
x

y

)
= c1

Figure 306: Slope field plot

Verification of solutions

ln (x2 + y2)
2 + arctan

(
x

y

)
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 24� �
dsolve(diff(y(x),x)=(x+y(x))/(x-y(x)),y(x), singsol=all)� �

y(x) = tan
(
RootOf

(
−2_Z+ ln

(
sec (_Z)2

)
+ 2 ln (x) + 2c1

))
x

3 Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 36� �
DSolve[y'[x]==(x+y[x])/(x-y[x]),y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
1
2 log

(
y(x)2
x2 + 1

)
− arctan

(
y(x)
x

)
= − log(x) + c1, y(x)

]

1531



5.32 problem 29
5.32.1 Solving as first order ode lie symmetry calculated ode . . . . . . 1532
5.32.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1538

Internal problem ID [1006]
Internal file name [OUTPUT/1007_Sunday_June_05_2022_01_56_38_AM_17805956/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 29.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`]]

(−y + y′x) (ln (y)− ln (x)) = x

5.32.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = ln (y) y − ln (x) y + x

(ln (y)− ln (x))x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(ln (y) y − ln (x) y + x) (b3 − a2)

(ln (y)− ln (x))x − (ln (y) y − ln (x) y + x)2 a3
(ln (y)− ln (x))2 x2

−
( − y

x
+ 1

(ln (y)− ln (x))x + ln (y) y − ln (x) y + x

(ln (y)− ln (x))2 x2

− ln (y) y − ln (x) y + x

(ln (y)− ln (x))x2

)
(xa2 + ya3 + a1)

−
(
1 + ln (y)− ln (x)
(ln (y)− ln (x))x − ln (y) y − ln (x) y + x

(ln (y)− ln (x))2 xy

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

− ln (x)2 xyb1 − ln (x)2 y2a1 − 2 ln (x) ln (y)xyb1 + 2 ln (x) ln (y) y2a1 − ln (x)x2ya2 + ln (x)x2yb3 − 2 ln (x)x y2a3 + ln (y)2 xyb1 − ln (y)2 y2a1 + ln (y)x2ya2 − ln (y)x2yb3 + 2 ln (y)x y2a3 − x3b2 + x2ya2 + x2ya3 − x2yb3 + x y2a3 − x2b1 + xya1

(− ln (y) + ln (x))2 x2y
= 0

Setting the numerator to zero gives

(6E)
− ln (x)2 xyb1 + ln (x)2 y2a1 + 2 ln (x) ln (y)xyb1 − 2 ln (x) ln (y) y2a1
+ ln (x)x2ya2 − ln (x)x2yb3 + 2 ln (x)x y2a3 − ln (y)2 xyb1
+ ln (y)2 y2a1 − ln (y)x2ya2 + ln (y)x2yb3 − 2 ln (y)x y2a3
+ x3b2 − x2ya2 − x2ya3 + x2yb3 − x y2a3 + x2b1 − xya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, ln (x) , ln (y)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, ln (x) = v3, ln (y) = v4}
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The above PDE (6E) now becomes

(7E)v23v
2
2a1 − 2v3v4v22a1 + v24v

2
2a1 + v3v

2
1v2a2 − v4v

2
1v2a2 + 2v3v1v22a3

− 2v4v1v22a3 − v23v1v2b1 + 2v3v4v1v2b1 − v24v1v2b1 − v3v
2
1v2b3 + v4v

2
1v2b3

− v21v2a2 − v21v2a3 − v1v
2
2a3 + v31b2 + v21v2b3 − v1v2a1 + v21b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)v31b2 + (−b3 + a2) v21v2v3 + (b3 − a2) v21v2v4 + (−a2 − a3 + b3) v21v2
+ v21b1 + 2v3v1v22a3 − 2v4v1v22a3 − v1v

2
2a3 − v23v1v2b1 + 2v3v4v1v2b1

− v24v1v2b1 − v1v2a1 + v23v
2
2a1 − 2v3v4v22a1 + v24v

2
2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0
b2 = 0

−2a1 = 0
−a1 = 0
−2a3 = 0
−a3 = 0
2a3 = 0
−b1 = 0
2b1 = 0

−b3 + a2 = 0
b3 − a2 = 0

−a2 − a3 + b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
ln (y) y − ln (x) y + x

(ln (y)− ln (x))x

)
(x)

= x

− ln (y) + ln (x)
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
− ln(y)+ln(x)

dy
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Which results in

S = − ln (y) y + y + ln (x) y
x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ln (y) y − ln (x) y + x

(ln (y)− ln (x))x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y(ln (y)− ln (x))
x2

Sy =
− ln (y) + ln (x)

x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y(ln (x)− ln (y) + 1)
x

= − ln (x) + c1
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Which simplifies to

y(ln (x)− ln (y) + 1)
x

= − ln (x) + c1

Which gives

y = eLambertW
(
(ln(x)−c1)e−1)+1x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= ln(y)y−ln(x)y+x
(ln(y)−ln(x))x

dS
dR

= − 1
R

R = x

S = y(ln (x)− ln (y) + 1)
x

Summary
The solution(s) found are the following

(1)y = eLambertW
(
(ln(x)−c1)e−1)+1x
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Figure 307: Slope field plot

Verification of solutions

y = eLambertW
(
(ln(x)−c1)e−1)+1x

Verified OK.

5.32.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x(ln (y)− ln (x))) dy = (x+ (ln (y)− ln (x)) y) dx
(−x− (ln (y)− ln (x)) y) dx+(x(ln (y)− ln (x))) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x− (ln (y)− ln (x)) y
N(x, y) = x(ln (y)− ln (x))

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x− (ln (y)− ln (x)) y)

= −1− ln (y) + ln (x)

And
∂N

∂x
= ∂

∂x
(x(ln (y)− ln (x)))

= ln (y)− ln (x)− 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

(ln (y)− ln (x))x((−1− ln (y) + ln (x))− (ln (y)− ln (x)− 1))

= −2
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2 (−x− (ln (y)− ln (x)) y)

= −x− (ln (y)− ln (x)) y
x2

And

N = µN

= 1
x2 (x(ln (y)− ln (x)))

= ln (y)− ln (x)
x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x− (ln (y)− ln (x)) y
x2

)
+
(
ln (y)− ln (x)

x

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x− (ln (y)− ln (x)) y

x2 dx

(3)φ = (−x− y) ln (x) + y(ln (y)− 1)
x

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ln (y)− ln (x)

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= ln(y)−ln(x)
x

. Therefore equation (4) becomes

(5)ln (y)− ln (x)
x

= ln (y)− ln (x)
x

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (−x− y) ln (x) + y(ln (y)− 1)
x

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(−x− y) ln (x) + y(ln (y)− 1)

x
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The solution becomes
y = eLambertW

(
(ln(x)+c1)e−1)+1x

Summary
The solution(s) found are the following

(1)y = eLambertW
(
(ln(x)+c1)e−1)+1x

Figure 308: Slope field plot

Verification of solutions

y = eLambertW
(
(ln(x)+c1)e−1)+1x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 24� �
dsolve((diff(y(x),x)*x-y(x))*(ln(y(x))-ln(x))=x,y(x), singsol=all)� �

y(x) =
x ln

(
x
c1

)
LambertW

(
ln
(

x
c1

)
e−1
)

3 Solution by Mathematica
Time used: 60.147 (sec). Leaf size: 24� �
DSolve[(y'[x]*x-y[x])*(Log[y[x]]-Log[x])==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(log(x) + c1)
W
(

log(x)+c1
e

)
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5.33 problem 30
5.33.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1544
5.33.2 Solving as first order ode lie symmetry calculated ode . . . . . . 1546
5.33.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1552

Internal problem ID [1007]
Internal file name [OUTPUT/1008_Sunday_June_05_2022_01_56_41_AM_39474354/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 30.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

y′ − y3 + 2xy2 + x2y + x3

x (x+ y)2
= 0

5.33.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− u(x)3 x3 + 2x3u(x)2 + x3u(x) + x3

x (x+ u (x)x)2
= 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 1
x (u+ 1)2
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Where f(x) = 1
x
and g(u) = 1

(u+1)2 . Integrating both sides gives

1
1

(u+1)2
du = 1

x
dx

∫ 1
1

(u+1)2
du =

∫ 1
x
dx

(u+ 1)3

3 = ln (x) + c2

The solution is
(u(x) + 1)3

3 − ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

1 + y
x

)3
3 − ln (x)− c2 = 0

(x+ y)3

3x3 − ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)(x+ y)3

3x3 − ln (x)− c2 = 0

1545



Figure 309: Slope field plot

Verification of solutions

(x+ y)3

3x3 − ln (x)− c2 = 0

Verified OK.

5.33.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x3 + y x2 + 2x y2 + y3

x (x+ y)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(x3 + y x2 + 2x y2 + y3) (b3 − a2)

x (x+ y)2
− (x3 + y x2 + 2x y2 + y3)2 a3

x2 (x+ y)4

−
(
3x2 + 2yx+ 2y2

x (x+ y)2
− x3 + y x2 + 2x y2 + y3

x2 (x+ y)2

− 2(x3 + y x2 + 2x y2 + y3)
x (x+ y)3

)
(xa2 + ya3 + a1)

−
(
x2 + 4yx+ 3y2

x (x+ y)2
− 2(x3 + y x2 + 2x y2 + y3)

x (x+ y)3
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x6a2 + x6a3 − 2x6b2 − x6b3 + 4x5ya2 + 2x5ya3 − 2x5yb2 − 4x5yb3 + 3x4y2a2 + 6x4y2a3 − 3x4y2b3 + 4x3y3a3 − x5b1 + x4ya1 + 2x4yb1 − 2x3y2a1 + 6x3y2b1 − 6x2y3a1 + 4x2y3b1 − 4x y4a1 + x y4b1 − y5a1

x2 (x+ y)4
= 0

Setting the numerator to zero gives

(6E)−x6a2 − x6a3 + 2x6b2 + x6b3 − 4x5ya2 − 2x5ya3 + 2x5yb2 + 4x5yb3
− 3x4y2a2 − 6x4y2a3 + 3x4y2b3 − 4x3y3a3 + x5b1 − x4ya1 − 2x4yb1
+ 2x3y2a1 − 6x3y2b1 + 6x2y3a1 − 4x2y3b1 + 4x y4a1 − x y4b1 + y5a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
6
1 − 4a2v51v2 − 3a2v41v22 − a3v

6
1 − 2a3v51v2 − 6a3v41v22 − 4a3v31v32 + 2b2v61

+ 2b2v51v2 + b3v
6
1 + 4b3v51v2 + 3b3v41v22 − a1v

4
1v2 + 2a1v31v22 + 6a1v21v32

+ 4a1v1v42 + a1v
5
2 + b1v

5
1 − 2b1v41v2 − 6b1v31v22 − 4b1v21v32 − b1v1v

4
2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a2 − a3 + 2b2 + b3) v61 + (−4a2 − 2a3 + 2b2 + 4b3) v51v2 + b1v
5
1

+ (−3a2 − 6a3 + 3b3) v41v22 + (−a1 − 2b1) v41v2 − 4a3v31v32
+ (2a1 − 6b1) v31v22 + (6a1 − 4b1) v21v32 + (4a1 − b1) v1v42 + a1v

5
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0

−4a3 = 0
−a1 − 2b1 = 0
2a1 − 6b1 = 0
4a1 − b1 = 0
6a1 − 4b1 = 0

−3a2 − 6a3 + 3b3 = 0
−4a2 − 2a3 + 2b2 + 4b3 = 0

−a2 − a3 + 2b2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
x3 + y x2 + 2x y2 + y3

x (x+ y)2
)
(x)

= − x3

x2 + 2yx+ y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− x3

x2+2yx+y2

dy

Which results in

S = −(x+ y)3

3x3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x3 + y x2 + 2x y2 + y3

x (x+ y)2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y(x+ y)2

x4

Sy = −(x+ y)2

x3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−(x+ y)3

3x3 = − ln (x) + c1

Which simplifies to

−(x+ y)3

3x3 = − ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x3+y x2+2x y2+y3

x(x+y)2
dS
dR

= − 1
R

R = x

S = −(x+ y)3

3x3

Summary
The solution(s) found are the following

(1)−(x+ y)3

3x3 = − ln (x) + c1
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Figure 310: Slope field plot

Verification of solutions

−(x+ y)3

3x3 = − ln (x) + c1

Verified OK.

5.33.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x(x+ y)2

)
dy =

(
x3 + y x2 + 2x y2 + y3

)
dx(

−x3 − y x2 − 2x y2 − y3
)
dx+

(
x(x+ y)2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x3 − y x2 − 2x y2 − y3

N(x, y) = x(x+ y)2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x3 − y x2 − 2x y2 − y3

)
= −(3y + x) (x+ y)

And
∂N

∂x
= ∂

∂x

(
x(x+ y)2

)
= 3x2 + 4yx+ y2
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (x+ y)2
((
−x2 − 4yx− 3y2

)
−
(
(x+ y)2 + 2x(x+ y)

))
= −4

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 4

x
dx

The result of integrating gives

µ = e−4 ln(x)

= 1
x4

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x4

(
−x3 − y x2 − 2x y2 − y3

)
= −x3 − y x2 − 2x y2 − y3

x4

And

N = µN

= 1
x4

(
x(x+ y)2

)
= (x+ y)2

x3

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x3 − y x2 − 2x y2 − y3

x4

)
+
(
(x+ y)2

x3

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x3 − y x2 − 2x y2 − y3

x4 dx

(3)φ = − ln (x) + y

x
+ y2

x2 + y3

3x3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x
+ 2y

x2 + y2

x3 + f ′(y)

= (x+ y)2

x3 + f ′(y)

But equation (2) says that ∂φ
∂y

= (x+y)2
x3 . Therefore equation (4) becomes

(5)(x+ y)2

x3 = (x+ y)2

x3 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − ln (x) + y

x
+ y2

x2 + y3

3x3 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + y

x
+ y2

x2 + y3

3x3

Summary
The solution(s) found are the following

(1)− ln (x) + y

x
+ y2

x2 + y3

3x3 = c1

Figure 311: Slope field plot

Verification of solutions

− ln (x) + y

x
+ y2

x2 + y3

3x3 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 80� �
dsolve(diff(y(x),x)=(y(x)^3+2*x*y(x)^2+x^2*y(x)+x^3)/(x*(y(x)+x)^2),y(x), singsol=all)� �

y(x) = x
(
−1 + (3 ln (x) + 3c1)

1
3

)
y(x) = −

x
(
i
√
3 (3 ln (x) + 3c1)

1
3 + (3 ln (x) + 3c1)

1
3 + 2

)
2

y(x) =
x
(
i
√
3− 1

)
(3 ln (x) + 3c1)

1
3

2 − x

3 Solution by Mathematica
Time used: 1.409 (sec). Leaf size: 109� �
DSolve[y'[x]==(y[x]^3+2*x*y[x]^2+x^2*y[x]+x^3)/(x*(y[x]+x)^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x+ 3
√

x3(3 log(x) + 1 + 3c1)

y(x) → −x+ 1
2i
(√

3 + i
)

3
√

x3(3 log(x) + 1 + 3c1)

y(x) → −x− 1
2

(
1 + i

√
3
)

3
√

x3(3 log(x) + 1 + 3c1)
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5.34 problem 31
5.34.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1558
5.34.2 Solving as first order ode lie symmetry calculated ode . . . . . . 1561
5.34.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1566

Internal problem ID [1008]
Internal file name [OUTPUT/1009_Sunday_June_05_2022_01_56_42_AM_67943606/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 31.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ − x+ 2y
2x+ y

= 0

5.34.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− x+ 2u(x)x
2x+ u (x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u2 − 1
x (u+ 2)
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Where f(x) = − 1
x
and g(u) = u2−1

u+2 . Integrating both sides gives

1
u2−1
u+2

du = −1
x
dx

∫ 1
u2−1
u+2

du =
∫

−1
x
dx

3 ln (u− 1)
2 − ln (u+ 1)

2 = − ln (x) + c2

The above can be written as
3 ln (u− 1)− ln (u+ 1)

2 = − ln (x) + c2

3 ln (u− 1)− ln (u+ 1) = (2) (− ln (x) + c2)
= −2 ln (x) + 2c2

Raising both side to exponential gives

e3 ln(u−1)−ln(u+1) = e−2 ln(x)+2c2

Which simplifies to

(u− 1)3

u+ 1 = 2c2
x2

= c3
x2

Which simplifies to
(u(x)− 1)3

u (x) + 1 = c3e2c2
x2

The solution is
(u(x)− 1)3

u (x) + 1 = c3e2c2
x2

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

y
x
− 1
)3

1 + y
x

= c3e2c2
x2

(−x+ y)3

x2 (x+ y) = c3e2c2
x2
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Which simplifies to

−(x− y)3

x+ y
= c3e2c2

Summary
The solution(s) found are the following

(1)−(x− y)3

x+ y
= c3e2c2

Figure 312: Slope field plot

Verification of solutions

−(x− y)3

x+ y
= c3e2c2

Verified OK.
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5.34.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x+ 2y
2x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(x+ 2y) (b3 − a2)

2x+ y
− (x+ 2y)2 a3

(2x+ y)2

−
(

1
2x+ y

− 2(x+ 2y)
(2x+ y)2

)
(xa2 + ya3 + a1)

−
(

2
2x+ y

− x+ 2y
(2x+ y)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−2x2a2 + x2a3 − x2b2 − 2x2b3 + 2xya2 + 4xya3 − 4xyb2 − 2xyb3 + 2y2a2 + y2a3 − y2b2 − 2y2b3 + 3xb1 − 3ya1
(2x+ y)2

= 0

Setting the numerator to zero gives

(6E)−2x2a2 − x2a3 + x2b2 + 2x2b3 − 2xya2 − 4xya3 + 4xyb2
+ 2xyb3 − 2y2a2 − y2a3 + y2b2 + 2y2b3 − 3xb1 + 3ya1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a2v21 − 2a2v1v2 − 2a2v22 − a3v
2
1 − 4a3v1v2 − a3v

2
2 + b2v

2
1

+ 4b2v1v2 + b2v
2
2 + 2b3v21 + 2b3v1v2 + 2b3v22 + 3a1v2 − 3b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−2a2 − a3 + b2 + 2b3) v21 + (−2a2 − 4a3 + 4b2 + 2b3) v1v2
− 3b1v1 + (−2a2 − a3 + b2 + 2b3) v22 + 3a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

3a1 = 0
−3b1 = 0

−2a2 − 4a3 + 4b2 + 2b3 = 0
−2a2 − a3 + b2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = b2

b1 = 0
b2 = b2

b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
x+ 2y
2x+ y

)
(x)

= −x2 + y2

2x+ y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2+y2

2x+y

dy

Which results in

S = − ln (x+ y)
2 + 3 ln (−x+ y)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x+ 2y
2x+ y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x+ 2y
x2 − y2

Sy =
−2x− y

x2 − y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x+ y)
2 + 3 ln (−x+ y)

2 = c1

Which simplifies to

− ln (x+ y)
2 + 3 ln (−x+ y)

2 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x+2y
2x+y

dS
dR

= 0

R = x

S = − ln (x+ y)
2 + 3 ln (−x+ y)

2

Summary
The solution(s) found are the following

(1)− ln (x+ y)
2 + 3 ln (−x+ y)

2 = c1
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Figure 313: Slope field plot

Verification of solutions

− ln (x+ y)
2 + 3 ln (−x+ y)

2 = c1

Verified OK.

5.34.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

1566



Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2x+ y) dy = (x+ 2y) dx
(−2y − x) dx+(2x+ y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2y − x

N(x, y) = 2x+ y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−2y − x)

= −2

And
∂N

∂x
= ∂

∂x
(2x+ y)

= 2
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
x2−y2

is an integrating factor.
Therefore by multiplying M = −x− 2y and N = 2x+ y by this integrating factor the
ode becomes exact. The new M,N are

M = −x− 2y
x2 − y2

N = 2x+ y

x2 − y2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore (
2x+ y

x2 − y2

)
dy =

(
−−2y − x

x2 − y2

)
dx(

−2y − x

x2 − y2

)
dx+

(
2x+ y

x2 − y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2y − x

x2 − y2

N(x, y) = 2x+ y

x2 − y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−2y − x

x2 − y2

)
= −2x2 − 2yx− 2y2

(x2 − y2)2

And
∂N

∂x
= ∂

∂x

(
2x+ y

x2 − y2

)
= −2x2 − 2yx− 2y2

(x2 − y2)2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2y − x

x2 − y2
dx

(3)φ = ln (x+ y)
2 − 3 ln (x− y)

2 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

2x+ 2y + 3
2 (x− y) + f ′(y)

But equation (2) says that ∂φ
∂y

= 2x+y
x2−y2

. Therefore equation (4) becomes

(5)2x+ y

x2 − y2
= 2x+ y

x2 − y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = ln (x+ y)
2 − 3 ln (x− y)

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (x+ y)

2 − 3 ln (x− y)
2

Summary
The solution(s) found are the following

(1)ln (x+ y)
2 − 3 ln (x− y)

2 = c1
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Figure 314: Slope field plot

Verification of solutions

ln (x+ y)
2 − 3 ln (x− y)

2 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.203 (sec). Leaf size: 271� �
dsolve(diff(y(x),x)=(x+2*y(x))/(2*x+y(x)),y(x), singsol=all)� �

y(x) =

x

 c1

(27c1x+3
√
3
√

27c21x2−1
) 2

3
+3


3x
(
27c1x+3

√
3
√

27c21x2−1
) 1

3
+ c21


c21

y(x) =

−

(
1 + i

√
3
) (

27c1x+ 3
√
3
√

27c21x2 − 1
) 2

3 − 6xc1
(
27c1x+ 3

√
3
√

27c21x2 − 1
) 1

3 − 3i
√
3 + 3

6
(
27c1x+ 3

√
3
√
27c21x2 − 1

) 1
3
c1

y(x)

=

(
i
√
3− 1

) (
27c1x+ 3

√
3
√

27c21x2 − 1
) 2

3 + 6xc1
(
27c1x+ 3

√
3
√

27c21x2 − 1
) 1

3 − 3i
√
3− 3

6
(
27c1x+ 3

√
3
√
27c21x2 − 1

) 1
3
c1

3 Solution by Mathematica
Time used: 30.082 (sec). Leaf size: 382� �
DSolve[y'[x]==(x+2*y[x])/(2*x+y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√√

3
√
27e4c1x2 + e6c1 − 9e2c1x

32/3 − e2c1

3
√
3 3
√√

3
√
27e4c1x2 + e6c1 − 9e2c1x

+ x

y(x) →
i
(√

3 + i
) 3
√√

3
√
27e4c1x2 + e6c1 − 9e2c1x
2 32/3

+
(
1 + i

√
3
)
e2c1

2 3
√
3 3
√√

3
√
27e4c1x2 + e6c1 − 9e2c1x

+ x

y(x) → −
(
1 + i

√
3
) 3
√√

3
√
27e4c1x2 + e6c1 − 9e2c1x
2 32/3

+
(
1− i

√
3
)
e2c1

2 3
√
3 3
√√

3
√
27e4c1x2 + e6c1 − 9e2c1x

+ x
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5.35 problem 32
5.35.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1573
5.35.2 Solving as first order ode lie symmetry calculated ode . . . . . . 1576
5.35.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1581

Internal problem ID [1009]
Internal file name [OUTPUT/1010_Sunday_June_05_2022_01_56_44_AM_88150377/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 32.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ − y

−2x+ y
= 0

5.35.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− u(x)x
−2x+ u (x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u(u− 3)
x (u− 2)
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Where f(x) = − 1
x
and g(u) = u(u−3)

u−2 . Integrating both sides gives

1
u(u−3)
u−2

du = −1
x
dx

∫ 1
u(u−3)
u−2

du =
∫

−1
x
dx

2 ln (u)
3 + ln (u− 3)

3 = − ln (x) + c2

The above can be written as

2 ln (u) + ln (u− 3)
3 = − ln (x) + c2

2 ln (u) + ln (u− 3) = (3) (− ln (x) + c2)
= −3 ln (x) + 3c2

Raising both side to exponential gives

e2 ln(u)+ln(u−3) = e−3 ln(x)+3c2

Which simplifies to

u2(u− 3) = 3c2
x3

= c3
x3

Which simplifies to

u(x)2 (u(x)− 3) = c3e3c2
x3

The solution is

u(x)2 (u(x)− 3) = c3e3c2
x3

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y2
(
y
x
− 3
)

x2 = c3e3c2
x3

−3xy2 + y3

x3 = c3e3c2
x3
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Which simplifies to

−3xy2 + y3 = c3e3c2

Summary
The solution(s) found are the following

(1)−3xy2 + y3 = c3e3c2

Figure 315: Slope field plot

Verification of solutions

−3xy2 + y3 = c3e3c2

Verified OK.
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5.35.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y

−2x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
y(b3 − a2)
−2x+ y

− y2a3

(−2x+ y)2
− 2y(xa2 + ya3 + a1)

(−2x+ y)2

−
(

1
−2x+ y

− y

(−2x+ y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

6x2b2 − 4xyb2 − y2a2 − 3y2a3 + y2b2 + y2b3 + 2xb1 − 2ya1
(2x− y)2

= 0

Setting the numerator to zero gives

(6E)6x2b2 − 4xyb2 − y2a2 − 3y2a3 + y2b2 + y2b3 + 2xb1 − 2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
2
2 − 3a3v22 + 6b2v21 − 4b2v1v2 + b2v

2
2 + b3v

2
2 − 2a1v2 + 2b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)6b2v21 − 4b2v1v2 + 2b1v1 + (−a2 − 3a3 + b2 + b3) v22 − 2a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
2b1 = 0

−4b2 = 0
6b2 = 0

−a2 − 3a3 + b2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −3a3 + b3

a3 = a3

b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(

y

−2x+ y

)
(x)

= 3yx− y2

2x− y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3yx−y2

2x−y

dy

Which results in

S = 2 ln (y)
3 + ln (−3x+ y)

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y

−2x+ y
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
3x− y

Sy =
2x− y

y (3x− y)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 ln (y)
3 + ln (−3x+ y)

3 = c1

Which simplifies to

2 ln (y)
3 + ln (−3x+ y)

3 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
−2x+y

dS
dR

= 0

R = x

S = 2 ln (y)
3 + ln (−3x+ y)

3

Summary
The solution(s) found are the following

(1)2 ln (y)
3 + ln (−3x+ y)

3 = c1
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Figure 316: Slope field plot

Verification of solutions

2 ln (y)
3 + ln (−3x+ y)

3 = c1

Verified OK.

5.35.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−2x+ y) dy = (y) dx
(−y) dx+(−2x+ y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y

N(x, y) = −2x+ y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−y)

= −1

And
∂N

∂x
= ∂

∂x
(−2x+ y)

= −2
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−2x+ y
((−1)− (−2))

= 1
−2x+ y

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= −1

y
((−2)− (−1))

= 1
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫ 1

y
dy

The result of integrating gives

µ = eln(y)

= y

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= y(−y)
= −y2

And

N = µN

= y(−2x+ y)
= (−2x+ y) y
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−y2
)
+ ((−2x+ y) y) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−y2 dx

(3)φ = −x y2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −2yx+ f ′(y)

But equation (2) says that ∂φ
∂y

= (−2x+ y) y. Therefore equation (4) becomes

(5)(−2x+ y) y = −2yx+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y2
)
dy

f(y) = y3

3 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x y2 + 1
3y

3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x y2 + 1
3y

3

Summary
The solution(s) found are the following

(1)−xy2 + y3

3 = c1

Figure 317: Slope field plot

Verification of solutions

−xy2 + y3

3 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 306� �
dsolve(diff(y(x),x)=y(x)/(y(x)-2*x),y(x), singsol=all)� �

y(x) =

(
−12c1 + 8x3 + 4

√
3
√
c1 (−4x3 + 3c1)

) 1
3

2
+ 2x2(

−12c1 + 8x3 + 4
√
3
√

c1 (−4x3 + 3c1)
) 1

3
+ x

y(x) =

(
−1− i

√
3
) (

−12c1 + 8x3 + 4
√
3
√
−4c1x3 + 3c21

) 1
3

4

+
x

(
ix
√
3− x+

(
−12c1 + 8x3 + 4

√
3
√
−4c1x3 + 3c21

) 1
3
)

(
−12c1 + 8x3 + 4

√
3
√

−4c1x3 + 3c21
) 1

3

y(x) =

(
i
√
3− 1

) (
−12c1 + 8x3 + 4

√
3
√

−4c1x3 + 3c21
) 1

3

4

−
x

(
ix
√
3 + x−

(
−12c1 + 8x3 + 4

√
3
√

−4c1x3 + 3c21
) 1

3
)

(
−12c1 + 8x3 + 4

√
3
√

−4c1x3 + 3c21
) 1

3
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3 Solution by Mathematica
Time used: 37.127 (sec). Leaf size: 479� �
DSolve[y'[x]==y[x]/(y[x]-2*x),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√

2x3 +
√
e6c1 − 4e3c1x3 − e3c1

3
√
2

+
3
√
2x2

3
√

2x3 +
√
e6c1 − 4e3c1x3 − e3c1

+ x

y(x) →
i
(√

3 + i
) 3
√

2x3 +
√
e6c1 − 4e3c1x3 − e3c1

2 3
√
2

−
(
1 + i

√
3
)
x2

22/3 3
√

2x3 +
√
e6c1 − 4e3c1x3 − e3c1

+ x

y(x) → −
(
1 + i

√
3
) 3
√

2x3 +
√
e6c1 − 4e3c1x3 − e3c1

2 3
√
2

+
i
(√

3 + i
)
x2

22/3 3
√

2x3 +
√
e6c1 − 4e3c1x3 − e3c1

+ x

y(x) → 0

y(x) → −
i
(

3√
x3 − x

)((√
3− i

) 3√
x3 − 2ix

)
2x

y(x) →
i
(

3√
x3 − x

)((√
3 + i

) 3√
x3 + 2ix

)
2x

y(x) → 3√
x3 + (x3)2/3

x
+ x
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5.36 problem 33
5.36.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1588
5.36.2 Solving as first order ode lie symmetry calculated ode . . . . . . 1590

Internal problem ID [1010]
Internal file name [OUTPUT/1011_Sunday_June_05_2022_01_56_45_AM_37605449/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 33.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

y′ − xy2 + 2y3
x3 + x2y + xy2

= 0

5.36.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− x3u(x)2 + 2u(x)3 x3

x3 + x3u (x) + x3u (x)2
= 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u3 − u

x (u2 + u+ 1)
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Where f(x) = 1
x
and g(u) = u3−u

u2+u+1 . Integrating both sides gives

1
u3−u

u2+u+1
du = 1

x
dx

∫ 1
u3−u

u2+u+1
du =

∫ 1
x
dx

− ln (u) + ln (u+ 1)
2 + 3 ln (u− 1)

2 = ln (x) + c2

Raising both side to exponential gives

e− ln(u)+ ln(u+1)
2 + 3 ln(u−1)

2 = eln(x)+c2

Which simplifies to
√
u+ 1 (u− 1)

3
2

u
= c3x

Therefore the solution y is

y = xu

= −
x
(
−RootOf

(
_Z8 − _Z4c23x

2 + 2_Z6 − 2_Z2c23x
2 − c23x

2)4 c23x2 +RootOf
(
_Z8 − _Z4c23x

2 + 2_Z6 − 2_Z2c23x
2 − c23x

2)6 − 2RootOf
(
_Z8 − _Z4c23x

2 + 2_Z6 − 2_Z2c23x
2 − c23x

2)2 c23x2 − c23x
2
)

RootOf
(
_Z8 − _Z4c23x

2 + 2_Z6 − 2_Z2c23x
2 − c23x

2
)6

Summary
The solution(s) found are the following

(1)y =

−
x
(
−RootOf

(
_Z8 − _Z4c23x

2 + 2_Z6 − 2_Z2c23x
2 − c23x

2)4 c23x2 +RootOf
(
_Z8 − _Z4c23x

2 + 2_Z6 − 2_Z2c23x
2 − c23x

2)6 − 2RootOf
(
_Z8 − _Z4c23x

2 + 2_Z6 − 2_Z2c23x
2 − c23x

2)2 c23x2 − c23x
2
)

RootOf
(
_Z8 − _Z4c23x

2 + 2_Z6 − 2_Z2c23x
2 − c23x

2
)6
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Figure 318: Slope field plot

Verification of solutions
y =

−
x
(
−RootOf

(
_Z8 − _Z4c23x

2 + 2_Z6 − 2_Z2c23x
2 − c23x

2)4 c23x2 +RootOf
(
_Z8 − _Z4c23x

2 + 2_Z6 − 2_Z2c23x
2 − c23x

2)6 − 2RootOf
(
_Z8 − _Z4c23x

2 + 2_Z6 − 2_Z2c23x
2 − c23x

2)2 c23x2 − c23x
2
)

RootOf
(
_Z8 − _Z4c23x

2 + 2_Z6 − 2_Z2c23x
2 − c23x

2
)6

Warning, solution could not be verified

5.36.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y2(x+ 2y)
x (x2 + yx+ y2)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
y2(x+ 2y) (b3 − a2)
x (x2 + yx+ y2) − y4(x+ 2y)2 a3

x2 (x2 + yx+ y2)2

−
(

y2

x (x2 + yx+ y2) −
y2(x+ 2y)

x2 (x2 + yx+ y2)

− y2(x+ 2y) (2x+ y)
x (x2 + yx+ y2)2

)
(xa2 + ya3 + a1)−

(
2y(x+ 2y)

x (x2 + yx+ y2)

+ 2y2
x (x2 + yx+ y2) −

y2(x+ 2y)2

x (x2 + yx+ y2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x6b2 + x4y2a2 − 4x4y2b2 − x4y2b3 + 4x3y3a2 + 2x3y3a3 − 2x3y3b2 − 4x3y3b3 + x2y4a2 + 6x2y4a3 − x2y4b2 − x2y4b3 − 2y6a3 − 2x4yb1 + 2x3y2a1 − 7x3y2b1 + 7x2y3a1 − 4x2y3b1 + 4x y4a1 − 2x y4b1 + 2y5a1
x2 (x2 + yx+ y2)2

= 0

Setting the numerator to zero gives

(6E)x6b2 + x4y2a2 − 4x4y2b2 − x4y2b3 + 4x3y3a2 + 2x3y3a3 − 2x3y3b2 − 4x3y3b3
+ x2y4a2 + 6x2y4a3 − x2y4b2 − x2y4b3 − 2y6a3 − 2x4yb1 + 2x3y2a1
− 7x3y2b1 + 7x2y3a1 − 4x2y3b1 + 4x y4a1 − 2x y4b1 + 2y5a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2v
4
1v

2
2 + 4a2v31v32 + a2v

2
1v

4
2 + 2a3v31v32 + 6a3v21v42 − 2a3v62 + b2v

6
1 − 4b2v41v22

− 2b2v31v32 − b2v
2
1v

4
2 − b3v

4
1v

2
2 − 4b3v31v32 − b3v

2
1v

4
2 + 2a1v31v22 + 7a1v21v32

+ 4a1v1v42 + 2a1v52 − 2b1v41v2 − 7b1v31v22 − 4b1v21v32 − 2b1v1v42 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)b2v
6
1 + (a2 − 4b2 − b3) v41v22 − 2b1v41v2 + (4a2 + 2a3 − 2b2 − 4b3) v31v32

+ (2a1 − 7b1) v31v22 + (a2 + 6a3 − b2 − b3) v21v42
+ (7a1 − 4b1) v21v32 + (4a1 − 2b1) v1v42 − 2a3v62 + 2a1v52 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
2a1 = 0

−2a3 = 0
−2b1 = 0

2a1 − 7b1 = 0
4a1 − 2b1 = 0
7a1 − 4b1 = 0

a2 − 4b2 − b3 = 0
a2 + 6a3 − b2 − b3 = 0

4a2 + 2a3 − 2b2 − 4b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(

y2(x+ 2y)
x (x2 + yx+ y2)

)
(x)

= y x2 − y3

x2 + yx+ y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y x2−y3

x2+yx+y2

dy
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Which results in

S = ln (y)− ln (x+ y)
2 − 3 ln (−x+ y)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2(x+ 2y)
x (x2 + yx+ y2)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −2x− y

x2 − y2

Sy =
1
y
− 1

2x+ 2y + 3
2x− 2y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −2

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)− ln (x+ y)
2 − 3 ln (−x+ y)

2 = −2 ln (x) + c1
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Which simplifies to

ln (y)− ln (x+ y)
2 − 3 ln (−x+ y)

2 = −2 ln (x) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2(x+2y)
x(x2+yx+y2)

dS
dR

= − 2
R

R = x

S = ln (y)− ln (x+ y)
2 − 3 ln (−x+ y)

2

Summary
The solution(s) found are the following

(1)ln (y)− ln (x+ y)
2 − 3 ln (−x+ y)

2 = −2 ln (x) + c1
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Figure 319: Slope field plot

Verification of solutions

ln (y)− ln (x+ y)
2 − 3 ln (−x+ y)

2 = −2 ln (x) + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 2.969 (sec). Leaf size: 129� �
dsolve(diff(y(x),x)=(x*y(x)^2+2*y(x)^3)/(x^3+x^2*y(x)+x*y(x)^2),y(x), singsol=all)� �

y(x) = x
(
RootOf

(
_Z8c1x

2 + 2_Z6c1x
2 + _Z4c1x

2 − 2_Z2 − 1
)6

c1x
2

+ 2RootOf
(
_Z8c1x

2 + 2_Z6c1x
2 + _Z4c1x

2 − 2_Z2 − 1
)4

c1x
2

+RootOf
(
_Z8c1x

2 + 2_Z6c1x
2 + _Z4c1x

2 − 2_Z2 − 1
)2

c1x
2 − 1

)
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3 Solution by Mathematica
Time used: 60.157 (sec). Leaf size: 1989� �
DSolve[y'[x]==(x*y[x]^2+2*y[x]^3)/(x^3+x^2*y[x]+x*y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ 1
6


−
√
3
√√√√−2e2c1x4 + 3x2 + e4c1x8

3
√

e6c1x12 + 54e2c1x8 + 6
√
3
√
e4c1x16 (27 + e4c1x4)

+ 3
√

e6c1x12 + 54e2c1x8 + 6
√
3
√
e4c1x16 (27 + e4c1x4)

−
√
3

√√√√√√√−4e2c1x4 + 6x2 − e4c1x8

3
√

e6c1x12 + 54e2c1x8 + 6
√
3
√

e4c1x16 (27 + e4c1x4)
− 3
√

e6c1x12 + 54e2c1x8 + 6
√
3
√

e4c1x16 (27 + e4c1x4) + 6
√
3x3 (1 + e2c1x2)√√√√−2e2c1x4 + 3x2 + e4c1x8

3
√
e6c1x12 + 54e2c1x8 + 6

√
3
√

e4c1x16 (27 + e4c1x4)
+ 3
√

e6c1x12 + 54e2c1x8 + 6
√
3
√

e4c1x16 (27 + e4c1x4)

+ 3x


y(x)

→ 1
6


−
√
3
√√√√−2e2c1x4 + 3x2 + e4c1x8

3
√

e6c1x12 + 54e2c1x8 + 6
√
3
√
e4c1x16 (27 + e4c1x4)

+ 3
√

e6c1x12 + 54e2c1x8 + 6
√
3
√
e4c1x16 (27 + e4c1x4)

+
√
3

√√√√√√√−4e2c1x4 + 6x2 − e4c1x8

3
√

e6c1x12 + 54e2c1x8 + 6
√
3
√
e4c1x16 (27 + e4c1x4)

− 3
√

e6c1x12 + 54e2c1x8 + 6
√
3
√

e4c1x16 (27 + e4c1x4) + 6
√
3x3 (1 + e2c1x2)√√√√−2e2c1x4 + 3x2 + e4c1x8

3
√

e6c1x12 + 54e2c1x8 + 6
√
3
√

e4c1x16 (27 + e4c1x4)
+ 3
√
e6c1x12 + 54e2c1x8 + 6

√
3
√
e4c1x16 (27 + e4c1x4)

+ 3x


y(x)

→ 1
6


√
3
√√√√−2e2c1x4 + 3x2 + e4c1x8

3
√

e6c1x12 + 54e2c1x8 + 6
√
3
√
e4c1x16 (27 + e4c1x4)

+ 3
√

e6c1x12 + 54e2c1x8 + 6
√
3
√

e4c1x16 (27 + e4c1x4)

−
√
3

√√√√√√√−4e2c1x4 + 6x2 − e4c1x8

3
√

e6c1x12 + 54e2c1x8 + 6
√
3
√

e4c1x16 (27 + e4c1x4)
− 3
√

e6c1x12 + 54e2c1x8 + 6
√
3
√

e4c1x16 (27 + e4c1x4)− 6
√
3x3 (1 + e2c1x2)√√√√−2e2c1x4 + 3x2 + e4c1x8

3
√

e6c1x12 + 54e2c1x8 + 6
√
3
√

e4c1x16 (27 + e4c1x4)
+ 3
√
e6c1x12 + 54e2c1x8 + 6

√
3
√

e4c1x16 (27 + e4c1x4)

+ 3x


y(x)

→ 1
6


√
3
√√√√−2e2c1x4 + 3x2 + e4c1x8

3
√

e6c1x12 + 54e2c1x8 + 6
√
3
√
e4c1x16 (27 + e4c1x4)

+ 3
√

e6c1x12 + 54e2c1x8 + 6
√
3
√

e4c1x16 (27 + e4c1x4)

+
√
3

√√√√√√√−4e2c1x4 + 6x2 − e4c1x8

3
√

e6c1x12 + 54e2c1x8 + 6
√
3
√
e4c1x16 (27 + e4c1x4)

− 3
√

e6c1x12 + 54e2c1x8 + 6
√
3
√

e4c1x16 (27 + e4c1x4)− 6
√
3x3 (1 + e2c1x2)√√√√−2e2c1x4 + 3x2 + e4c1x8

3
√
e6c1x12 + 54e2c1x8 + 6

√
3
√

e4c1x16 (27 + e4c1x4)
+ 3
√

e6c1x12 + 54e2c1x8 + 6
√
3
√
e4c1x16 (27 + e4c1x4)

+ 3x
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5.37 problem 34
5.37.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1599
5.37.2 Solving as first order ode lie symmetry calculated ode . . . . . . 1601
5.37.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1607

Internal problem ID [1011]
Internal file name [OUTPUT/1012_Sunday_June_05_2022_01_56_48_AM_18891282/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 34.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

y′ − x3 + x2y + 3y3
x3 + 3xy2 = 0

5.37.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− x3 + x3u(x) + 3u(x)3 x3

x3 + 3x3u (x)2
= 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 1
x (3u2 + 1)
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Where f(x) = 1
x
and g(u) = 1

3u2+1 . Integrating both sides gives

1
1

3u2+1
du = 1

x
dx

∫ 1
1

3u2+1
du =

∫ 1
x
dx

u3 + u = ln (x) + c2

The solution is
u(x)3 + u(x)− ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y3

x3 + y

x
− ln (x)− c2 = 0

y3

x3 + y

x
− ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)y3

x3 + y

x
− ln (x)− c2 = 0
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Figure 320: Slope field plot

Verification of solutions

y3

x3 + y

x
− ln (x)− c2 = 0

Verified OK.

5.37.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x3 + y x2 + 3y3
x (x2 + 3y2)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(x3 + y x2 + 3y3) (b3 − a2)

x (x2 + 3y2) − (x3 + y x2 + 3y3)2 a3
x2 (x2 + 3y2)2

−
(

3x2 + 2yx
x (x2 + 3y2) −

x3 + y x2 + 3y3
x2 (x2 + 3y2) − 2(x3 + y x2 + 3y3)

(x2 + 3y2)2
)
(xa2 + ya3 + a1)

−
(

x2 + 9y2
x (x2 + 3y2) −

6(x3 + y x2 + 3y3) y
x (x2 + 3y2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x6a2 + x6a3 − x6b3 + 2x5ya3 − 6x5yb2 + 9x4y2a2 − 9x4y2b3 + 12x3y3a3 + x5b1 − x4ya1 − 6x4yb1 + 6x3y2a1 + 6x3y2b1 − 6x2y3a1 + 9x y4b1 − 9y5a1
x2 (x2 + 3y2)2

= 0

Setting the numerator to zero gives

(6E)−x6a2 − x6a3 + x6b3 − 2x5ya3 + 6x5yb2 − 9x4y2a2 + 9x4y2b3 − 12x3y3a3
−x5b1+x4ya1+6x4yb1− 6x3y2a1− 6x3y2b1+6x2y3a1− 9x y4b1+9y5a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
6
1 − 9a2v41v22 − a3v

6
1 − 2a3v51v2 − 12a3v31v32 + 6b2v51v2 + b3v

6
1 + 9b3v41v22

+a1v
4
1v2−6a1v31v22 +6a1v21v32 +9a1v52 − b1v

5
1 +6b1v41v2−6b1v31v22 −9b1v1v42 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a2 − a3 + b3) v61 + (−2a3 + 6b2) v51v2 − b1v
5
1 + (−9a2 + 9b3) v41v22

+(a1+6b1) v41v2−12a3v31v32+(−6a1−6b1) v31v22+6a1v21v32−9b1v1v42+9a1v52 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

6a1 = 0
9a1 = 0

−12a3 = 0
−9b1 = 0
−b1 = 0

−6a1 − 6b1 = 0
a1 + 6b1 = 0

−9a2 + 9b3 = 0
−2a3 + 6b2 = 0

−a2 − a3 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
x3 + y x2 + 3y3
x (x2 + 3y2)

)
(x)

= − x3

x2 + 3y2
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− x3

x2+3y2
dy

Which results in

S = −y x2 + y3

x3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x3 + y x2 + 3y3
x (x2 + 3y2)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y(x2 + 3y2)
x4

Sy =
−x2 − 3y2

x3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−y(x2 + y2)
x3 = − ln (x) + c1

Which simplifies to

−y(x2 + y2)
x3 = − ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x3+y x2+3y3
x(x2+3y2)

dS
dR

= − 1
R

R = x

S = −y(x2 + y2)
x3

Summary
The solution(s) found are the following

(1)−y(x2 + y2)
x3 = − ln (x) + c1
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Figure 321: Slope field plot

Verification of solutions

−y(x2 + y2)
x3 = − ln (x) + c1

Verified OK.

5.37.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
x2 + 3y2

))
dy =

(
x3 + y x2 + 3y3

)
dx(

−x3 − y x2 − 3y3
)
dx+

(
x
(
x2 + 3y2

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x3 − y x2 − 3y3

N(x, y) = x
(
x2 + 3y2

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x3 − y x2 − 3y3

)
= −x2 − 9y2

And
∂N

∂x
= ∂

∂x

(
x
(
x2 + 3y2

))
= 3x2 + 3y2
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (x2 + 3y2)
((
−x2 − 9y2

)
−
(
3x2 + 3y2

))
= −4

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 4

x
dx

The result of integrating gives

µ = e−4 ln(x)

= 1
x4

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x4

(
−x3 − y x2 − 3y3

)
= −x3 − y x2 − 3y3

x4

And

N = µN

= 1
x4

(
x
(
x2 + 3y2

))
= x2 + 3y2

x3

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x3 − y x2 − 3y3
x4

)
+
(
x2 + 3y2

x3

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x3 − y x2 − 3y3

x4 dx

(3)φ = − ln (x) + y

x
+ y3

x3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x
+ 3y2

x3 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2+3y2
x3 . Therefore equation (4) becomes

(5)x2 + 3y2
x3 = 1

x
+ 3y2

x3 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − ln (x) + y

x
+ y3

x3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + y

x
+ y3

x3
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Summary
The solution(s) found are the following

(1)y3

x3 + y

x
− ln (x) = c1

Figure 322: Slope field plot

Verification of solutions

y3

x3 + y

x
− ln (x) = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 276� �
dsolve(diff(y(x),x)=(x^3+x^2*y(x)+3*y(x)^3)/(x^3+3*x*y(x)^2),y(x), singsol=all)� �

y(x) =

((
108 ln (x) + 108c1 + 12

√
12 + 81 ln (x)2 + 162 ln (x) c1 + 81c21

) 2
3

− 12
)
x

6
(
108 ln (x) + 108c1 + 12

√
12 + 81 ln (x)2 + 162 ln (x) c1 + 81c21

) 1
3

y(x) =

−

(
i
√
3
(
108 ln (x) + 108c1 + 12

√
12 + 81 ln (x)2 + 162 ln (x) c1 + 81c21

) 2
3

+ 12i
√
3 +

(
108 ln (x) + 108c1 + 12

√
12 + 81 ln (x)2 + 162 ln (x) c1 + 81c21

) 2
3

− 12
)
x

12
(
108 ln (x) + 108c1 + 12

√
12 + 81 ln (x)2 + 162 ln (x) c1 + 81c21

) 1
3

y(x)

=
x

((
i
√
3− 1

)(
108 ln (x) + 108c1 + 12

√
12 + 81 ln (x)2 + 162 ln (x) c1 + 81c21

) 2
3

+ 12i
√
3 + 12

)

12
(
108 ln (x) + 108c1 + 12

√
12 + 81 ln (x)2 + 162 ln (x) c1 + 81c21

) 1
3
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3 Solution by Mathematica
Time used: 27.532 (sec). Leaf size: 398� �
DSolve[y'[x]==(x^3+x^2*y[x]+3*y[x]^3)/(x^3+3*x*y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−2 3
√
3x2 + 3

√
2
(√

3
√

x6 (4 + 27(log(x) + c1)2) + 9x3 log(x) + 9c1x3
)

2/3

62/3 3
√√

3
√

x6 (4 + 27(log(x) + c1)2) + 9x3 log(x) + 9c1x3

y(x)

→
2 3
√
3
(
1 + i

√
3
)
x2 + i

3
√
2
(√

3 + i
) (√

3
√

x6 (4 + 27(log(x) + c1)2) + 9x3 log(x) + 9c1x3
)

2/3

2 62/3 3
√√

3
√

x6 (4 + 27(log(x) + c1)2) + 9x3 log(x) + 9c1x3

y(x)

→
2 3
√
3
(
1− i

√
3
)
x2 − 3

√
2
(
1 + i

√
3
) (√

3
√
x6 (4 + 27(log(x) + c1)2) + 9x3 log(x) + 9c1x3

)
2/3

2 62/3 3
√√

3
√

x6 (4 + 27(log(x) + c1)2) + 9x3 log(x) + 9c1x3
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5.38 problem 35(a)
5.38.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1614
5.38.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1615
5.38.3 Solving as first order ode lie symmetry calculated ode . . . . . . 1617
5.38.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1623

Internal problem ID [1012]
Internal file name [OUTPUT/1013_Sunday_June_05_2022_01_56_49_AM_26280276/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 35(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Riccati]

y′x2 − y2 − yx = −4x2

With initial conditions

[y(−1) = 0]

5.38.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= −4x2 + yx+ y2

x2

The x domain of f(x, y) when y = 0 is

{−∞ < x < ∞}
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And the point x0 = −1 is inside this domain. The y domain of f(x, y) when x = −1 is

{−∞ < y < ∞}

And the point y0 = 0 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
−4x2 + yx+ y2

x2

)
= x+ 2y

x2

The x domain of ∂f
∂y

when y = 0 is

{x < 0∨ 0 < x}

And the point x0 = −1 is inside this domain. The y domain of ∂f
∂y

when x = −1 is

{−∞ < y < ∞}

And the point y0 = 0 is inside this domain. Therefore solution exists and is unique.

5.38.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x2 − u(x)2 x2 − u(x)x2 = −4x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u2 − 4
x

Where f(x) = 1
x
and g(u) = u2 − 4. Integrating both sides gives

1
u2 − 4 du = 1

x
dx∫ 1

u2 − 4 du =
∫ 1

x
dx

ln (u− 2)
4 − ln (u+ 2)

4 = ln (x) + c2
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The above can be written as(
1
4

)
(ln (u− 2)− ln (u+ 2)) = ln (x) + 2c2

ln (u− 2)− ln (u+ 2) = (4) (ln (x) + 2c2)
= 4 ln (x) + 8c2

Raising both side to exponential gives

eln(u−2)−ln(u+2) = e4 ln(x)+4c2

Which simplifies to

u− 2
u+ 2 = 4c2x4

= c3x
4

Therefore the solution y is

y = xu

= −2x(c3x4 + 1)
c3x4 − 1

Initial conditions are used to solve for c3. Substituting x = −1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = 2c3 + 2
c3 − 1

c3 = −1

Substituting c3 found above in the general solution gives

y = −2x(x4 − 1)
x4 + 1

Summary
The solution(s) found are the following

(1)y = −2x(x4 − 1)
x4 + 1
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −2x(x4 − 1)
x4 + 1

Verified OK.

5.38.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −4x2 + yx+ y2

x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(−4x2 + yx+ y2) (b3 − a2)
x2 − (−4x2 + yx+ y2)2 a3

x4

−
(
−8x+ y

x2 − 2(−4x2 + yx+ y2)
x3

)
(xa2 + ya3 + a1)

− (x+ 2y) (xb2 + yb3 + b1)
x2 = 0

Putting the above in normal form gives

4x4a2 − 16x4a3 − 4x4b3 + 8x3ya3 − 2x3yb2 + x2y2a2 + 8x2y2a3 − x2y2b3 − y4a3 − x3b1 + x2ya1 − 2x2yb1 + 2x y2a1
x4

= 0

Setting the numerator to zero gives

(6E)4x4a2 − 16x4a3 − 4x4b3 + 8x3ya3 − 2x3yb2 + x2y2a2 + 8x2y2a3
− x2y2b3 − y4a3 − x3b1 + x2ya1 − 2x2yb1 + 2x y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)4a2v41 + a2v
2
1v

2
2 − 16a3v41 + 8a3v31v2 + 8a3v21v22 − a3v

4
2 − 2b2v31v2

− 4b3v41 − b3v
2
1v

2
2 + a1v

2
1v2 + 2a1v1v22 − b1v

3
1 − 2b1v21v2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)(4a2 − 16a3 − 4b3) v41 + (8a3 − 2b2) v31v2 − b1v
3
1

+ (a2 + 8a3 − b3) v21v22 + (a1 − 2b1) v21v2 + 2a1v1v22 − a3v
4
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
−a3 = 0
−b1 = 0

a1 − 2b1 = 0
8a3 − 2b2 = 0

a2 + 8a3 − b3 = 0
4a2 − 16a3 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−4x2 + yx+ y2

x2

)
(x)

= 4x2 − y2

x
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

4x2−y2

x

dy

Which results in

S = ln (2x+ y)
4 − ln (−2x+ y)

4
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −4x2 + yx+ y2

x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

4x2 − y2

Sy =
x

4x2 − y2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (2x+ y)
4 − ln (−2x+ y)

4 = − ln (x) + c1

Which simplifies to

ln (2x+ y)
4 − ln (−2x+ y)

4 = − ln (x) + c1

Which gives

y = −2x(−e4c1 − x4)
e4c1 − x4
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −4x2+yx+y2

x2
dS
dR

= − 1
R

R = x

S = ln (2x+ y)
4 − ln (−2x+ y)

4

Initial conditions are used to solve for c1. Substituting x = −1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = −2 e4c1 − 2
e4c1 − 1

c1 =
iπ

4

Substituting c1 found above in the general solution gives

y = −2x5 + 2x
x4 + 1

Summary
The solution(s) found are the following

(1)y = −2x5 + 2x
x4 + 1
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −2x5 + 2x
x4 + 1

Verified OK.

5.38.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −4x2 + yx+ y2

x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = −4 + y

x
+ y2

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = −4, f1(x) = 1
x
and f2(x) = 1

x2 . Let

y = −u′

f2u

= −u′

u
x2

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2

x3

f1f2 =
1
x3

f 2
2 f0 = − 4

x4

Substituting the above terms back in equation (2) gives

u′′(x)
x2 + u′(x)

x3 − 4u(x)
x4 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2x
4 + c1
x2

The above shows that

u′(x) = 2c2x4 − 2c1
x3

Using the above in (1) gives the solution

y = −(2c2x4 − 2c1)x
c2x4 + c1

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = 2(−x4 + c3)x
x4 + c3

Initial conditions are used to solve for c3. Substituting x = −1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = −2(c3 − 1)
c3 + 1
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c3 = 1

Substituting c3 found above in the general solution gives

y = −2x(x4 − 1)
x4 + 1

Summary
The solution(s) found are the following

(1)y = −2x(x4 − 1)
x4 + 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −2x(x4 − 1)
x4 + 1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.312 (sec). Leaf size: 19� �
dsolve([x^2*diff(y(x),x)=y(x)^2+x*y(x)-4*x^2,y(-1) = 0],y(x), singsol=all)� �

y(x) = −2x5 + 2x
x4 + 1

3 Solution by Mathematica
Time used: 2.186 (sec). Leaf size: 20� �
DSolve[{x^2*y'[x]==y[x]^2+x*y[x]-4*x^2,y[-1]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2x(x4 − 1)
x4 + 1
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5.39 problem 36(a)
5.39.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1627
5.39.2 Solving as first order ode lie symmetry calculated ode . . . . . . 1629

Internal problem ID [1013]
Internal file name [OUTPUT/1014_Sunday_June_05_2022_01_56_51_AM_97637980/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 36(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

y′xy − y2 + yx = x2

5.39.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x2u(x)− u(x)2 x2 + u(x)x2 = x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u− 1
ux
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Where f(x) = − 1
x
and g(u) = u−1

u
. Integrating both sides gives

1
u−1
u

du = −1
x
dx

∫ 1
u−1
u

du =
∫

−1
x
dx

u+ ln (u− 1) = − ln (x) + c2

The solution is
u(x) + ln (u(x)− 1) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y

x
+ ln

(y
x
− 1
)
+ ln (x)− c2 = 0

y

x
+ ln

(
−x+ y

x

)
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)y

x
+ ln

(
−x+ y

x

)
+ ln (x)− c2 = 0
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Figure 326: Slope field plot

Verification of solutions

y

x
+ ln

(
−x+ y

x

)
+ ln (x)− c2 = 0

Verified OK.

5.39.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x2 − yx+ y2

xy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(x2 − yx+ y2) (b3 − a2)
xy

− (x2 − yx+ y2)2 a3
x2y2

−
(
2x− y

xy
− x2 − yx+ y2

x2y

)
(xa2 + ya3 + a1)

−
(
−x+ 2y

xy
− x2 − yx+ y2

x y2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x4a3 − x4b2 + 2x3ya2 − 2x3ya3 − 2x3yb3 − x2y2a2 + 4x2y2a3 + x2y2b3 − 2x y3a3 − x3b1 + x2ya1 + x y2b1 − y3a1
x2y2

= 0

Setting the numerator to zero gives

(6E)−x4a3 + x4b2 − 2x3ya2 + 2x3ya3 + 2x3yb3 + x2y2a2 − 4x2y2a3
− x2y2b3 + 2x y3a3 + x3b1 − x2ya1 − x y2b1 + y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a2v31v2 + a2v
2
1v

2
2 − a3v

4
1 + 2a3v31v2 − 4a3v21v22 + 2a3v1v32

+ b2v
4
1 + 2b3v31v2 − b3v

2
1v

2
2 − a1v

2
1v2 + a1v

3
2 + b1v

3
1 − b1v1v

2
2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a3 + b2) v41 + (−2a2 + 2a3 + 2b3) v31v2 + b1v
3
1

+ (a2 − 4a3 − b3) v21v22 − a1v
2
1v2 + 2a3v1v32 − b1v1v

2
2 + a1v

3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0

−a1 = 0
2a3 = 0
−b1 = 0

−a3 + b2 = 0
−2a2 + 2a3 + 2b3 = 0

a2 − 4a3 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
x2 − yx+ y2

xy

)
(x)

= −x2 + yx

y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2+yx
y

dy

Which results in

S = ln (−x+ y) + y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 − yx+ y2

xy
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x2 − yx+ y2

x2 (x− y)
Sy = − y

x (x− y)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (−x+ y)x+ y

x
= c1

Which simplifies to

ln (−x+ y)x+ y

x
= c1

Which gives

y = xLambertW
(
ec1−1

x

)
+ x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2−yx+y2

xy
dS
dR

= 0

R = x

S = ln (−x+ y)x+ y

x

Summary
The solution(s) found are the following

(1)y = xLambertW
(
ec1−1

x

)
+ x
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Figure 327: Slope field plot

Verification of solutions

y = xLambertW
(
ec1−1

x

)
+ x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 19� �
dsolve(x*y(x)*diff(y(x),x)=x^2-x*y(x)+y(x)^2,y(x), singsol=all)� �

y(x) = x

(
1 + LambertW

(
e−1−c1

x

))
3 Solution by Mathematica
Time used: 3.649 (sec). Leaf size: 25� �
DSolve[x*y[x]*y'[x]==x^2-x*y[x]+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

(
1 +W

(
e−1+c1

x

))
y(x) → x

1636



5.40 problem 37(a)
5.40.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1637
5.40.2 Solving as first order ode lie symmetry calculated ode . . . . . . 1639

Internal problem ID [1014]
Internal file name [OUTPUT/1015_Sunday_June_05_2022_01_56_53_AM_8622130/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 37(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

y′ − 2y2 − yx+ 2x2

yx+ 2x2 = 0

5.40.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− 2u(x)2 x2 − u(x)x2 + 2x2

u (x)x2 + 2x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u2 − 3u+ 2
x (u+ 2)
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Where f(x) = 1
x
and g(u) = u2−3u+2

u+2 . Integrating both sides gives

1
u2−3u+2

u+2
du = 1

x
dx

∫ 1
u2−3u+2

u+2
du =

∫ 1
x
dx

−3 ln (u− 1) + 4 ln (u− 2) = ln (x) + c2

Raising both side to exponential gives

e−3 ln(u−1)+4 ln(u−2) = eln(x)+c2

Which simplifies to

(u− 2)4

(u− 1)3
= c3x

Therefore the solution y is

y = xu

= xRootOf
(
_Z4 + (−c3x− 8)_Z3 + (3c3x+ 24)_Z2 + (−3c3x− 32)_Z+ c3x+ 16

)
Summary
The solution(s) found are the following

y = xRootOf
(
_Z4 + (−c3x− 8)_Z3 + (3c3x+ 24)_Z2 + (−3c3x− 32)_Z+ c3x+ 16

)
(1)

1638



Figure 328: Slope field plot

Verification of solutions

y = xRootOf
(
_Z4 + (−c3x− 8)_Z3 + (3c3x+ 24)_Z2 + (−3c3x− 32)_Z+ c3x+ 16

)
Verified OK.

5.40.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 2x2 − yx+ 2y2
x (2x+ y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(2x2 − yx+ 2y2) (b3 − a2)

x (2x+ y) − (2x2 − yx+ 2y2)2 a3
x2 (2x+ y)2

−
(

4x− y

x (2x+ y) −
2x2 − yx+ 2y2
x2 (2x+ y) − 2(2x2 − yx+ 2y2)

x (2x+ y)2
)
(xa2 + ya3 + a1)

−
(

−x+ 4y
x (2x+ y) −

2x2 − yx+ 2y2

x (2x+ y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−4x4a2 + 4x4a3 − 8x4b2 − 4x4b3 + 4x3ya2 − 4x3ya3 + 4x3yb2 − 4x3yb3 − 5x2y2a2 + 13x2y2a3 + x2y2b2 + 5x2y2b3 − 12x y3a3 + 2y4a3 − 4x3b1 + 4x2ya1 + 8x2yb1 − 8x y2a1 + 2x y2b1 − 2y3a1
x2 (2x+ y)2

= 0

Setting the numerator to zero gives

(6E)−4x4a2 − 4x4a3 + 8x4b2 + 4x4b3 − 4x3ya2 + 4x3ya3 − 4x3yb2
+ 4x3yb3 + 5x2y2a2 − 13x2y2a3 − x2y2b2 − 5x2y2b3 + 12x y3a3
− 2y4a3 + 4x3b1 − 4x2ya1 − 8x2yb1 + 8x y2a1 − 2x y2b1 + 2y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−4a2v41 − 4a2v31v2 + 5a2v21v22 − 4a3v41 + 4a3v31v2 − 13a3v21v22 + 12a3v1v32
− 2a3v42 + 8b2v41 − 4b2v31v2 − b2v

2
1v

2
2 + 4b3v41 + 4b3v31v2 − 5b3v21v22

− 4a1v21v2 + 8a1v1v22 + 2a1v32 + 4b1v31 − 8b1v21v2 − 2b1v1v22 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−4a2 − 4a3 + 8b2 + 4b3) v41 + (−4a2 + 4a3 − 4b2 + 4b3) v31v2
+ 4b1v31 + (5a2 − 13a3 − b2 − 5b3) v21v22 + (−4a1 − 8b1) v21v2
+ 12a3v1v32 + (8a1 − 2b1) v1v22 − 2a3v42 + 2a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
−2a3 = 0
12a3 = 0
4b1 = 0

−4a1 − 8b1 = 0
8a1 − 2b1 = 0

−4a2 − 4a3 + 8b2 + 4b3 = 0
−4a2 + 4a3 − 4b2 + 4b3 = 0
5a2 − 13a3 − b2 − 5b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
2x2 − yx+ 2y2

x (2x+ y)

)
(x)

= −2x2 + 3yx− y2

2x+ y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2x2+3yx−y2

2x+y

dy

Which results in

S = 3 ln (−x+ y)− 4 ln (−2x+ y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2x2 − yx+ 2y2
x (2x+ y)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 3
−x+ y

+ 8
−2x+ y

Sy =
3

−x+ y
− 4

−2x+ y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −2

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3 ln (−x+ y)− 4 ln (−2x+ y) = −2 ln (x) + c1

Which simplifies to

3 ln (−x+ y)− 4 ln (−2x+ y) = −2 ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2x2−yx+2y2
x(2x+y)

dS
dR

= − 2
R

R = x

S = 3 ln (−x+ y)− 4 ln (−2x+ y)

Summary
The solution(s) found are the following

(1)3 ln (−x+ y)− 4 ln (−2x+ y) = −2 ln (x) + c1
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Figure 329: Slope field plot

Verification of solutions

3 ln (−x+ y)− 4 ln (−2x+ y) = −2 ln (x) + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 43� �
dsolve(diff(y(x),x)=(2*y(x)^2-x*y(x)+2*x^2)/(x*y(x)+2*x^2),y(x), singsol=all)� �
y(x) = RootOf

(
_Z4+c1x+16+(−3c1x−32)_Z+(3c1x+24)_Z2+(−c1x−8)_Z3)x
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3 Solution by Mathematica
Time used: 60.166 (sec). Leaf size: 1913� �
DSolve[y'[x]==(2*y[x]^2-x*y[x]+2*x^2)/(x*y[x]+2*x^2),y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ 1
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5.41 problem 38
5.41.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1648
5.41.2 Solving as first order ode lie symmetry calculated ode . . . . . . 1650

Internal problem ID [1015]
Internal file name [OUTPUT/1016_Sunday_June_05_2022_01_56_55_AM_38015959/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 38.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

y′ − x2 + yx+ y2

yx
= 0

5.41.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− x2 + u(x)x2 + u(x)2 x2

u (x)x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u+ 1
xu
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Where f(x) = 1
x
and g(u) = u+1

u
. Integrating both sides gives

1
u+1
u

du = 1
x
dx

∫ 1
u+1
u

du =
∫ 1

x
dx

u− ln (u+ 1) = ln (x) + c2

The solution is
u(x)− ln (u(x) + 1)− ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y

x
− ln

(
1 + y

x

)
− ln (x)− c2 = 0

y

x
− ln

(
x+ y

x

)
− ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)y

x
− ln

(
x+ y

x

)
− ln (x)− c2 = 0
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Figure 330: Slope field plot

Verification of solutions

y

x
− ln

(
x+ y

x

)
− ln (x)− c2 = 0

Verified OK.

5.41.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x2 + yx+ y2

yx

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(x2 + yx+ y2) (b3 − a2)
yx

− (x2 + yx+ y2)2 a3
y2x2

−
(
2x+ y

yx
− x2 + yx+ y2

y x2

)
(xa2 + ya3 + a1)

−
(
x+ 2y
yx

− x2 + yx+ y2

y2x

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x4a3 − x4b2 + 2x3ya2 + 2x3ya3 − 2x3yb3 + x2y2a2 + 4x2y2a3 − x2y2b3 + 2x y3a3 − x3b1 + x2ya1 + x y2b1 − y3a1
x2y2

= 0

Setting the numerator to zero gives

(6E)−x4a3 + x4b2 − 2x3ya2 − 2x3ya3 + 2x3yb3 − x2y2a2 − 4x2y2a3
+ x2y2b3 − 2x y3a3 + x3b1 − x2ya1 − x y2b1 + y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a2v31v2 − a2v
2
1v

2
2 − a3v

4
1 − 2a3v31v2 − 4a3v21v22 − 2a3v1v32

+ b2v
4
1 + 2b3v31v2 + b3v

2
1v

2
2 − a1v

2
1v2 + a1v

3
2 + b1v

3
1 − b1v1v

2
2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a3 + b2) v41 + (−2a2 − 2a3 + 2b3) v31v2 + b1v
3
1

+ (−a2 − 4a3 + b3) v21v22 − a1v
2
1v2 − 2a3v1v32 − b1v1v

2
2 + a1v

3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0

−a1 = 0
−2a3 = 0
−b1 = 0

−a3 + b2 = 0
−2a2 − 2a3 + 2b3 = 0
−a2 − 4a3 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
x2 + yx+ y2

yx

)
(x)

= −x2 − yx

y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2−yx
y

dy

Which results in

S = ln (x+ y)− y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 + yx+ y2

yx
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x2 + yx+ y2

x2 (x+ y)
Sy = − y

x (x+ y)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x+ y)x− y

x
= c1

Which simplifies to

ln (x+ y)x− y

x
= c1

Which gives

y = −xLambertW
(
−ec1−1

x

)
− x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2+yx+y2

yx
dS
dR

= 0

R = x

S = ln (x+ y)x− y

x

Summary
The solution(s) found are the following

(1)y = −xLambertW
(
−ec1−1

x

)
− x
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Figure 331: Slope field plot

Verification of solutions

y = −xLambertW
(
−ec1−1

x

)
− x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 22� �
dsolve(diff(y(x),x)=(x*y(x)+x^2+y(x)^2)/(x*y(x)),y(x), singsol=all)� �

y(x) = x

(
−LambertW

(
−e−1−c1

x

)
− 1
)

3 Solution by Mathematica
Time used: 4.422 (sec). Leaf size: 31� �
DSolve[y'[x]==(x*y[x]+x^2+y[x]^2)/(x*y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x

(
1 +W

(
−e−1−c1

x

))
y(x) → −x
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5.42 problem 41
5.42.1 Solving as polynomial ode . . . . . . . . . . . . . . . . . . . . . 1658

Internal problem ID [1016]
Internal file name [OUTPUT/1017_Sunday_June_05_2022_01_56_56_AM_54647075/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 41.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ − −6x+ y − 3
2x− y − 1 = 0

5.42.1 Solving as polynomial ode

This is ODE of type polynomial. Where the RHS of the ode is ratio of equations of two
lines. Writing the ODE in the form

y′ = a1x+ b1y + c1
a2x+ b2y + c3

Where a1 = −6, b1 = 1, c1 = −3, a2 = 2, b2 = −1, c2 = −1. There are now two possible
solution methods. The first case is when the two lines a1x+ b1y + c1,a2x+ b2y + c3 are
not parallel and the second case is if they are parallel. If they are not parallel, then
the transformation X = x− x0, Y = y − y0 converts the ODE to a homogeneous ODE.
The values x0, y0 have to be determined. If they are parallel then a transformation
U(x) = a1x+ b1y converts the given ODE in y to a separable ODE in U(x). The first
case is when a1

b1
6= a2

b2
and the second case when a1

b1
= a2

b2
. From the above we see that
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a1
b1

6= a2
b2
. Hence this is case one where lines are not parallel. Using the transformation

X = x− x0

Y = y − y0

Where the constants x0, y0 are obtained by solving the following two linear algebraic
equations

a1x0 + b1y0 + c1 = 0
a2x0 + b2y0 + c2 = 0

Substituting the values for a1, b1, c1, a2, b2, c2 gives

−6x0 + y0 − 3 = 0
2x0 − y0 − 1 = 0

Solving for x0, y0 from the above gives

x0 = −1
y0 = −3

Therefore the transformation becomes

X = x+ 1
Y = y + 3

Using this transformation in y′ − −6x+y−3
2x−y−1 = 0 result in

dY

dX
= −6X + Y

2X − Y

This is now a homogeneous ODE which will now be solved for Y (X). In canonical form,
the ODE is

Y ′ = F (X,Y )

= −−6X + Y

−2X + Y
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )
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In this case, it can be seen that both M = −6X + Y and N = 2X − Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −u+ 6

u− 2
du
dX =

−u(X)+6
u(X)−2 − u(X)

X

Or
d

dX
u(X)−

−u(X)+6
u(X)−2 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X)− 2

(
d

dX
u(X)

)
X + u(X)2 − u(X)− 6 = 0

Or
X(u(X)− 2)

(
d

dX
u(X)

)
+ u(X)2 − u(X)− 6 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −u2 − u− 6
X (u− 2)

Where f(X) = − 1
X

and g(u) = u2−u−6
u−2 . Integrating both sides gives

1
u2−u−6
u−2

du = − 1
X

dX

∫ 1
u2−u−6
u−2

du =
∫

− 1
X

dX

ln (u− 3)
5 + 4 ln (u+ 2)

5 = − ln (X) + c3

1660



The above can be written as
ln (u− 3) + 4 ln (u+ 2)

5 = − ln (X) + c3

ln (u− 3) + 4 ln (u+ 2) = (5) (− ln (X) + c3)
= −5 ln (X) + 5c3

Raising both side to exponential gives

eln(u−3)+4 ln(u+2) = e−5 ln(X)+5c3

Which simplifies to

(u− 3) (u+ 2)4 = 5c3
X5

= c4
X5

Which simplifies to

u(X) = RootOf
(
_Z5 + 5_Z4 − c4e5c3

X5 − 40_Z2 − 80_Z− 48
)

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = X RootOf
(
_Z5X5 + 5_Z4X5 − 40_Z2X5 − c4e5c3 − 80_ZX5 − 48X5)

The solution is

Y (X) = X RootOf
(
_Z5X5 + 5_Z4X5 − 40_Z2X5 − c4e5c3 − 80_ZX5 − 48X5)

Replacing Y = y − y0, X = x− x0 gives

3+y = (x+ 1)RootOf
(
_Z5(x+ 1)5 + 5_Z4(x+ 1)5 − 40_Z2(x+ 1)5 − c4e5c3 − 80_Z(x+ 1)5 − 48(x+ 1)5

)
Or

y = (x+ 1)RootOf
(
_Z5(x+ 1)5 + 5_Z4(x+ 1)5 − 40_Z2(x+ 1)5 − c4e5c3 − 80_Z(x+ 1)5 − 48(x+ 1)5

)
−3

Summary
The solution(s) found are the following

(1)

y = (x+ 1)RootOf
((
x5 + 5x4 + 10x3 + 10x2 + 5x+ 1

)
_Z5

+
(
5x5 + 25x4 + 50x3 + 50x2 + 25x+ 5

)
_Z4

+
(
−40x5 − 200x4 − 400x3 − 400x2 − 200x− 40

)
_Z2

+
(
−80x5 − 400x4 − 800x3 − 800x2 − 400x− 80

)
_Z− 48x5 − 240x4 − 480x3

− c4e5c3 − 480x2 − 240x− 48
)
− 3
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Figure 332: Slope field plot

Verification of solutions

y = (x+ 1)RootOf
((
x5 + 5x4 + 10x3 + 10x2 + 5x+ 1

)
_Z5

+
(
5x5 + 25x4 + 50x3 + 50x2 + 25x+ 5

)
_Z4

+
(
−40x5 − 200x4 − 400x3 − 400x2 − 200x− 40

)
_Z2

+
(
−80x5 − 400x4 − 800x3 − 800x2 − 400x− 80

)
_Z− 48x5 − 240x4 − 480x3

− c4e5c3 − 480x2 − 240x− 48
)
− 3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 1.422 (sec). Leaf size: 99� �
dsolve(diff(y(x),x)=(-6*x+y(x)-3)/(2*x-y(x)-1),y(x), singsol=all)� �
y(x)

=
−RootOf

(
_Z25 + (−5c1x5 − 25c1x4 − 50c1x3 − 50c1x2 − 25c1x− 5c1)_Z5 − c1x

5 − 5c1x4 − 10c1x3 − 10c1x2 − 5c1x− c1
)20 + 3c1x(x+ 1)4

c1 (x+ 1)4

3 Solution by Mathematica
Time used: 60.095 (sec). Leaf size: 3011� �
DSolve[y'[x]==(-6*x+y[x]-3)/(2*x-y[x]-1),y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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5.43 problem 42
5.43.1 Solving as polynomial ode . . . . . . . . . . . . . . . . . . . . . 1664

Internal problem ID [1017]
Internal file name [OUTPUT/1018_Sunday_June_05_2022_01_56_58_AM_44778598/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 42.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ − 2x+ y + 1
x+ 2y − 4 = 0

5.43.1 Solving as polynomial ode

This is ODE of type polynomial. Where the RHS of the ode is ratio of equations of two
lines. Writing the ODE in the form

y′ = a1x+ b1y + c1
a2x+ b2y + c3

Where a1 = 2, b1 = 1, c1 = 1, a2 = 1, b2 = 2, c2 = −4. There are now two possible
solution methods. The first case is when the two lines a1x+ b1y + c1,a2x+ b2y + c3 are
not parallel and the second case is if they are parallel. If they are not parallel, then
the transformation X = x− x0, Y = y − y0 converts the ODE to a homogeneous ODE.
The values x0, y0 have to be determined. If they are parallel then a transformation
U(x) = a1x+ b1y converts the given ODE in y to a separable ODE in U(x). The first
case is when a1

b1
6= a2

b2
and the second case when a1

b1
= a2

b2
. From the above we see that
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a1
b1

6= a2
b2
. Hence this is case one where lines are not parallel. Using the transformation

X = x− x0

Y = y − y0

Where the constants x0, y0 are obtained by solving the following two linear algebraic
equations

a1x0 + b1y0 + c1 = 0
a2x0 + b2y0 + c2 = 0

Substituting the values for a1, b1, c1, a2, b2, c2 gives

2x0 + y0 + 1 = 0
x0 + 2y0 − 4 = 0

Solving for x0, y0 from the above gives

x0 = −2
y0 = 3

Therefore the transformation becomes

X = x+ 2
Y = y − 3

Using this transformation in y′ − 2x+y+1
x+2y−4 = 0 result in

dY

dX
= 2X + Y

X + 2Y
This is now a homogeneous ODE which will now be solved for Y (X). In canonical form,
the ODE is

Y ′ = F (X,Y )

= 2X + Y

X + 2Y (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )
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In this case, it can be seen that both M = 2X + Y and N = X + 2Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = u+ 2

2u+ 1
du
dX =

u(X)+2
2u(X)+1 − u(X)

X

Or
d

dX
u(X)−

u(X)+2
2u(X)+1 − u(X)

X
= 0

Or
2
(

d

dX
u(X)

)
Xu(X) +

(
d

dX
u(X)

)
X + 2u(X)2 − 2 = 0

Or
−2 +X(2u(X) + 1)

(
d

dX
u(X)

)
+ 2u(X)2 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − 2(u2 − 1)
X (2u+ 1)

Where f(X) = − 2
X

and g(u) = u2−1
2u+1 . Integrating both sides gives

1
u2−1
2u+1

du = − 2
X

dX

∫ 1
u2−1
2u+1

du =
∫

− 2
X

dX

3 ln (u− 1)
2 + ln (u+ 1)

2 = −2 ln (X) + c3
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The above can be written as
3 ln (u− 1) + ln (u+ 1)

2 = −2 ln (X) + c3

3 ln (u− 1) + ln (u+ 1) = (2) (−2 ln (X) + c3)
= −4 ln (X) + 2c3

Raising both side to exponential gives

e3 ln(u−1)+ln(u+1) = e−4 ln(X)+2c3

Which simplifies to

(u− 1)3 (u+ 1) = 2c3
X4

= c4
X4

Which simplifies to

u(X) = RootOf
(
_Z4 − 2_Z3 − c4e2c3

X4 + 2_Z− 1
)

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = X RootOf
(
_Z4X4 − 2_Z3X4 + 2_ZX4 −X4 − c4e2c3

)
The solution is

Y (X) = X RootOf
(
_Z4X4 − 2_Z3X4 + 2_ZX4 −X4 − c4e2c3

)
Replacing Y = y − y0, X = x− x0 gives

−3+y = (2 + x) RootOf
(
_Z4(2 + x)4 − 2_Z3(2 + x)4 + 2_Z(2 + x)4 − (2 + x)4 − c4e2c3

)
Or

y = (2 + x) RootOf
(
_Z4(2 + x)4 − 2_Z3(2 + x)4 + 2_Z(2 + x)4 − (2 + x)4 − c4e2c3

)
+3

Summary
The solution(s) found are the following

(1)
y = (2 + x) RootOf

((
x4 + 8x3 + 24x2 + 32x+ 16

)
_Z4

+
(
−2x4 − 16x3 − 48x2 − 64x− 32

)
_Z3 +

(
2x4 + 16x3 + 48x2 + 64x+ 32

)
_Z

− x4 − 8x3 − c4e2c3 − 24x2 − 32x− 16
)
+ 3
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Figure 333: Slope field plot

Verification of solutions

y = (2 + x) RootOf
((
x4 + 8x3 + 24x2 + 32x+ 16

)
_Z4

+
(
−2x4 − 16x3 − 48x2 − 64x− 32

)
_Z3 +

(
2x4 + 16x3 + 48x2 + 64x+ 32

)
_Z

− x4 − 8x3 − c4e2c3 − 24x2 − 32x− 16
)
+ 3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 4.359 (sec). Leaf size: 138� �
dsolve(diff(y(x),x)=(2*x+y(x)+1)/(x+2*y(x)-4),y(x), singsol=all)� �
y(x)

=
(x+ 5)RootOf

(
_Z16 + (2c1x4 + 16c1x3 + 48c1x2 + 64c1x+ 32c1)_Z4 − c1x

4 − 8c1x3 − 24c1x2 − 32c1x− 16c1
)4 − 2− x

RootOf
(
_Z16 + (2c1x4 + 16c1x3 + 48c1x2 + 64c1x+ 32c1)_Z4 − c1x4 − 8c1x3 − 24c1x2 − 32c1x− 16c1

)4
3 Solution by Mathematica
Time used: 60.312 (sec). Leaf size: 8077� �
DSolve[y'[x]==(2*x+y[x]+1)/(x+2*y[x]-4),y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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5.44 problem 43
5.44.1 Solving as polynomial ode . . . . . . . . . . . . . . . . . . . . . 1670

Internal problem ID [1018]
Internal file name [OUTPUT/1019_Sunday_June_05_2022_01_57_02_AM_87412369/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 43.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ − −x+ 3y − 14
x+ y − 2 = 0

5.44.1 Solving as polynomial ode

This is ODE of type polynomial. Where the RHS of the ode is ratio of equations of two
lines. Writing the ODE in the form

y′ = a1x+ b1y + c1
a2x+ b2y + c3

Where a1 = −1, b1 = 3, c1 = −14, a2 = 1, b2 = 1, c2 = −2. There are now two possible
solution methods. The first case is when the two lines a1x+ b1y + c1,a2x+ b2y + c3 are
not parallel and the second case is if they are parallel. If they are not parallel, then
the transformation X = x− x0, Y = y − y0 converts the ODE to a homogeneous ODE.
The values x0, y0 have to be determined. If they are parallel then a transformation
U(x) = a1x+ b1y converts the given ODE in y to a separable ODE in U(x). The first
case is when a1

b1
6= a2

b2
and the second case when a1

b1
= a2

b2
. From the above we see that
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a1
b1

6= a2
b2
. Hence this is case one where lines are not parallel. Using the transformation

X = x− x0

Y = y − y0

Where the constants x0, y0 are obtained by solving the following two linear algebraic
equations

a1x0 + b1y0 + c1 = 0
a2x0 + b2y0 + c2 = 0

Substituting the values for a1, b1, c1, a2, b2, c2 gives

−x0 + 3y0 − 14 = 0
x0 + y0 − 2 = 0

Solving for x0, y0 from the above gives

x0 = −2
y0 = 4

Therefore the transformation becomes

X = x+ 2
Y = y − 4

Using this transformation in y′ − −x+3y−14
x+y−2 = 0 result in

dY

dX
= −X + 3Y

X + Y

This is now a homogeneous ODE which will now be solved for Y (X). In canonical form,
the ODE is

Y ′ = F (X,Y )

= −X + 3Y
X + Y

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )
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In this case, it can be seen that both M = −X + 3Y and N = X + Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = 3u− 1

u+ 1
du
dX =

3u(X)−1
u(X)+1 − u(X)

X

Or
d

dX
u(X)−

3u(X)−1
u(X)+1 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X) +

(
d

dX
u(X)

)
X + u(X)2 − 2u(X) + 1 = 0

Or
X(u(X) + 1)

(
d

dX
u(X)

)
+ (u(X)− 1)2 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − (u− 1)2

X (u+ 1)

Where f(X) = − 1
X

and g(u) = (u−1)2
u+1 . Integrating both sides gives

1
(u−1)2
u+1

du = − 1
X

dX

∫ 1
(u−1)2
u+1

du =
∫

− 1
X

dX

ln (u− 1)− 2
u− 1 = − ln (X) + c3
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The solution is

ln (u(X)− 1)− 2
u (X)− 1 + ln (X)− c3 = 0

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

ln
(
Y (X)
X

− 1
)
− 2

Y (X)
X

− 1
+ ln (X)− c3 = 0

The solution is implicit ln
(

Y (X)−X
X

)
+ 2X

−Y (X)+X
+ ln (X) − c3 = 0. Replacing Y =

y − y0, X = x− x0 gives

ln
(
y − 6− x

2 + x

)
+ 2x+ 4

−y + 6 + x
+ ln (2 + x)− c3 = 0

Summary
The solution(s) found are the following

(1)ln
(
y − 6− x

2 + x

)
+ 2x+ 4

−y + 6 + x
+ ln (2 + x)− c3 = 0

Figure 334: Slope field plot
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Verification of solutions

ln
(
y − 6− x

2 + x

)
+ 2x+ 4

−y + 6 + x
+ ln (2 + x)− c3 = 0

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 30� �
dsolve(diff(y(x),x)=(-x+3*y(x)-14)/(x+y(x)-2),y(x), singsol=all)� �

y(x) = (x+ 6)LambertW (−2c1(2 + x)) + 2x+ 4
LambertW (−2c1 (2 + x))

3 Solution by Mathematica
Time used: 1.05 (sec). Leaf size: 144� �
DSolve[y'[x]==(-x+3*y[x]-14)/(x+y[x]-2),y[x],x,IncludeSingularSolutions -> True]� �
Solve

−22/3
(
x log

(
y(x)−x−6
y(x)+x−2

)
− (x+ 6) log

(
x+2

y(x)+x−2

)
+ 6 log

(
y(x)−x−6
y(x)+x−2

)
+ y(x)

(
log
(

x+2
y(x)+x−2

)
− log

(
y(x)−x−6
y(x)+x−2

)
+ 1 + log(2)

)
+ x− x log(6) + x log(3)− 2− log(64)

)
9(−y(x) + x+ 6) = 1

92
2/3 log(x+2)+c1, y(x)
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5.45 problem 44
5.45.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 1675
5.45.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1679
5.45.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1683

Internal problem ID [1019]
Internal file name [OUTPUT/1020_Sunday_June_05_2022_01_57_03_AM_92182999/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 44.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

3y′y2x− y3 = x

5.45.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y3 + x

3y2x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 263: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = x

y2
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
y2
dy

Which results in

S = y3

3x
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y3 + x

3y2x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y3

3x2

Sy =
y2

x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

3x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

3R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)
3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y3

3x = ln (x)
3 + c1

Which simplifies to

y3

3x = ln (x)
3 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y3+x
3y2x

dS
dR

= 1
3R

R = x

S = y3

3x

Summary
The solution(s) found are the following

(1)y3

3x = ln (x)
3 + c1
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Figure 335: Slope field plot

Verification of solutions

y3

3x = ln (x)
3 + c1

Verified OK.

5.45.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y3 + x

3y2x
This is a Bernoulli ODE.

y′ = 1
3xy +

1
3
1
y2

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
3x

f1(x) =
1
3

n = −2

Dividing both sides of ODE (1) by yn = 1
y2

gives

y′y2 = y3

3x + 1
3 (4)

Let

w = y1−n

= y3 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 3y2y′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
3 = w(x)

3x + 1
3

w′ = w

x
+ 1 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −1
x

q(x) = 1
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Hence the ode is

w′(x)− w(x)
x

= 1

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes
d
dx(µw) = µ

d
dx

(w
x

)
= 1

x

d
(w
x

)
= 1

x
dx

Integrating gives

w

x
=
∫ 1

x
dx

w

x
= ln (x) + c1

Dividing both sides by the integrating factor µ = 1
x
results in

w(x) = c1x+ x ln (x)

which simplifies to

w(x) = x(ln (x) + c1)

Replacing w in the above by y3 using equation (5) gives the final solution.

y3 = x(ln (x) + c1)

Solving for y gives

y(x) = (x(ln (x) + c1))
1
3

y(x) =
(x(ln (x) + c1))

1
3
(
i
√
3− 1

)
2

y(x) = −
(x(ln (x) + c1))

1
3
(
1 + i

√
3
)

2
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Summary
The solution(s) found are the following

(1)y = (x(ln (x) + c1))
1
3

(2)y =
(x(ln (x) + c1))

1
3
(
i
√
3− 1

)
2

(3)y = −
(x(ln (x) + c1))

1
3
(
1 + i

√
3
)

2

Figure 336: Slope field plot
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Verification of solutions

y = (x(ln (x) + c1))
1
3

Verified OK.

y =
(x(ln (x) + c1))

1
3
(
i
√
3− 1

)
2

Verified OK.

y = −
(x(ln (x) + c1))

1
3
(
1 + i

√
3
)

2

Verified OK.

5.45.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
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∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
3x y2

)
dy =

(
y3 + x

)
dx(

−y3 − x
)
dx+

(
3x y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y3 − x

N(x, y) = 3x y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−y3 − x

)
= −3y2

And

∂N

∂x
= ∂

∂x

(
3x y2

)
= 3y2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

3x y2
((
−3y2

)
−
(
3y2
))

= −2
x
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
−y3 − x

)
= −y3 − x

x2

And

N = µN

= 1
x2

(
3x y2

)
= 3y2

x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−y3 − x

x2

)
+
(
3y2
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−y3 − x

x2 dx

(3)φ = − ln (x) + y3

x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3y2

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 3y2
x
. Therefore equation (4) becomes

(5)3y2
x

= 3y2
x

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − ln (x) + y3

x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + y3

x

Summary
The solution(s) found are the following

(1)− ln (x) + y3

x
= c1
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Figure 337: Slope field plot

Verification of solutions

− ln (x) + y3

x
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 54� �
dsolve(3*x*y(x)^2*diff(y(x),x)=y(x)^3+x,y(x), singsol=all)� �

y(x) = ((ln (x) + c1)x)
1
3

y(x) = −
((ln (x) + c1)x)

1
3
(
1 + i

√
3
)

2

y(x) =
((ln (x) + c1)x)

1
3
(
i
√
3− 1

)
2

3 Solution by Mathematica
Time used: 0.196 (sec). Leaf size: 69� �
DSolve[3*x*y[x]^2*y'[x]==y[x]^3+x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3
√
x 3
√

log(x) + c1

y(x) → − 3
√
−1 3

√
x 3
√
log(x) + c1

y(x) → (−1)2/3 3
√
x 3
√
log(x) + c1
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5.46 problem 45
5.46.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 1689
5.46.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 1693
5.46.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1696

Internal problem ID [1020]
Internal file name [OUTPUT/1021_Sunday_June_05_2022_01_57_06_AM_9504560/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 45.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

y′xy − 6y2 = 3x6

5.46.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 3x6 + 6y2
xy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 265: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = x12

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x12

y

dy

Which results in

S = y2

2x12

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 3x6 + 6y2
xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −6y2
x13

Sy =
y

x12

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 3

x7 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 3

R7
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
2R6 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2

2x12 = − 1
2x6 + c1

Which simplifies to

y2

2x12 = − 1
2x6 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 3x6+6y2
xy

dS
dR

= 3
R7

R = x

S = y2

2x12

Summary
The solution(s) found are the following

(1)y2

2x12 = − 1
2x6 + c1
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Figure 338: Slope field plot

Verification of solutions

y2

2x12 = − 1
2x6 + c1

Verified OK.

5.46.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= 3x6 + 6y2
xy

This is a Bernoulli ODE.
y′ = 6

x
y + 3x5 1

y
(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
6
x

f1(x) = 3x5

n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = 6y2
x

+ 3x5 (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = 6w(x)

x
+ 3x5

w′ = 12w
x

+ 6x5 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −12
x

q(x) = 6x5
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Hence the ode is

w′(x)− 12w(x)
x

= 6x5

The integrating factor µ is

µ = e
∫
− 12

x
dx

= 1
x12

The ode becomes
d
dx(µw) = (µ)

(
6x5)

d
dx

( w

x12

)
=
(

1
x12

)(
6x5)

d
( w

x12

)
=
(

6
x7

)
dx

Integrating gives

w

x12 =
∫ 6

x7 dx

w

x12 = − 1
x6 + c1

Dividing both sides by the integrating factor µ = 1
x12 results in

w(x) = c1x
12 − x6

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = c1x
12 − x6

Solving for y gives

y(x) =
√
c1x6 − 1x3

y(x) = −
√

c1x6 − 1x3

Summary
The solution(s) found are the following

(1)y =
√
c1x6 − 1x3

(2)y = −
√
c1x6 − 1x3
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Figure 339: Slope field plot

Verification of solutions

y =
√

c1x6 − 1x3

Verified OK.

y = −
√
c1x6 − 1x3

Verified OK.

5.46.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(yx) dy =
(
3x6 + 6y2

)
dx(

−3x6 − 6y2
)
dx+(yx) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −3x6 − 6y2

N(x, y) = yx

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−3x6 − 6y2

)
= −12y

1697



And

∂N

∂x
= ∂

∂x
(yx)

= y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

yx
((−12y)− (y))

= −13
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 13

x
dx

The result of integrating gives

µ = e−13 ln(x)

= 1
x13

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x13

(
−3x6 − 6y2

)
= −3x6 − 6y2

x13

And

N = µN

= 1
x13 (yx)

= y

x12
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−3x6 − 6y2
x13

)
+
( y

x12

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−3x6 − 6y2

x13 dx

(3)φ = x6 + y2

2x12 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y

x12 + f ′(y)

But equation (2) says that ∂φ
∂y

= y
x12 . Therefore equation (4) becomes

(5)y

x12 = y

x12 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x6 + y2

2x12 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x6 + y2

2x12

Summary
The solution(s) found are the following

(1)x6 + y2

2x12 = c1

Figure 340: Slope field plot

Verification of solutions

x6 + y2

2x12 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
dsolve(x*y(x)*diff(y(x),x)=3*x^6+6*y(x)^2,y(x), singsol=all)� �

y(x) =
√

c1x6 − 1x3

y(x) = −
√
c1x6 − 1x3

3 Solution by Mathematica
Time used: 0.672 (sec). Leaf size: 42� �
DSolve[x*y[x]*y'[x]==3*x^6+6*y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x3
√

−1 + c1x6

y(x) → x3
√

−1 + c1x6
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5.47 problem 46
5.47.1 Solving as first order ode lie symmetry calculated ode . . . . . . 1702
5.47.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1708

Internal problem ID [1021]
Internal file name [OUTPUT/1022_Sunday_June_05_2022_01_57_07_AM_99991387/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 46.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Riccati]

x3y′ − 2y2 − 2x2y = −2x4

5.47.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −2x4 + 2y x2 + 2y2
x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

2(−x4 + y x2 + y2) (b3 − a2)
x3 − 4(−x4 + y x2 + y2)2 a3

x6

−
(
−8x3 + 4yx

x3 − 6(−x4 + y x2 + y2)
x4

)
(xa2 + ya3 + a1)

− 2(x2 + 2y) (xb2 + yb3 + b1)
x3 = 0

Putting the above in normal form gives

−4x8a3 − 4x7a2 + 2x7b3 − 10x6ya3 − 2x6a1 + b2x
6 − 6x4y2a3 + 2x5b1 − 2x4ya1 + 4x4yb2 − 4x3y2a2 + 2x3y2b3 + 2x2y3a3 + 4x3yb1 − 6x2y2a1 + 4y4a3

x6

= 0

Setting the numerator to zero gives

(6E)−4x8a3+4x7a2− 2x7b3+10x6ya3+2x6a1− b2x
6+6x4y2a3− 2x5b1+2x4ya1

− 4x4yb2 + 4x3y2a2 − 2x3y2b3 − 2x2y3a3 − 4x3yb1 + 6x2y2a1 − 4y4a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−4a3v81 + 4a2v71 + 10a3v61v2 − 2b3v71 + 2a1v61 + 6a3v41v22 − b2v
6
1 + 2a1v41v2

+4a2v31v22−2a3v21v32−2b1v51−4b2v41v2−2b3v31v22+6a1v21v22−4a3v42−4b1v31v2 =0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−4a3v81 + (4a2 − 2b3) v71 + 10a3v61v2 + (2a1 − b2) v61 − 2b1v51 + 6a3v41v22
+(2a1−4b2) v41v2+(4a2−2b3) v31v22−4b1v31v2−2a3v21v32+6a1v21v22−4a3v42 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

6a1 = 0
−4a3 = 0
−2a3 = 0
6a3 = 0
10a3 = 0
−4b1 = 0
−2b1 = 0

2a1 − 4b2 = 0
2a1 − b2 = 0
4a2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2y −
(
−2x4 + 2y x2 + 2y2

x3

)
(x)

= 2x4 − 2y2
x2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x4−2y2
x2

dy

Which results in

S = − ln (−x2 + y)
4 + ln (x2 + y)

4
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x4 + 2y x2 + 2y2
x3

1705



Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − yx

x4 − y2

Sy =
x2

2x4 − 2y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (−x2 + y)
4 + ln (x2 + y)

4 = − ln (x) + c1

Which simplifies to

− ln (−x2 + y)
4 + ln (x2 + y)

4 = − ln (x) + c1

Which gives

y = −x2(−e4c1 − x4)
e4c1 − x4
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x4+2y x2+2y2
x3

dS
dR

= − 1
R

R = x

S = − ln (−x2 + y)
4 + ln (x2 + y)

4

Summary
The solution(s) found are the following

(1)y = −x2(−e4c1 − x4)
e4c1 − x4
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Figure 341: Slope field plot

Verification of solutions

y = −x2(−e4c1 − x4)
e4c1 − x4

Verified OK.

5.47.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −2x4 + 2y x2 + 2y2
x3

This is a Riccati ODE. Comparing the ODE to solve

y′ = −2x+ 2y
x

+ 2y2
x3

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = −2x, f1(x) = 2
x
and f2(x) = 2

x3 . Let

y = −u′

f2u

= −u′

2u
x3

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 6

x4

f1f2 =
4
x4

f 2
2 f0 = − 8

x5

Substituting the above terms back in equation (2) gives

2u′′(x)
x3 + 2u′(x)

x4 − 8u(x)
x5 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1x
4 + c2
x2

The above shows that

u′(x) = 2c1x4 − 2c2
x3

Using the above in (1) gives the solution

y = −(2c1x4 − 2c2)x2

2 (c1x4 + c2)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y = −(c3x4 − 1)x2

c3x4 + 1

Summary
The solution(s) found are the following

(1)y = −(c3x4 − 1)x2

c3x4 + 1

Figure 342: Slope field plot

Verification of solutions

y = −(c3x4 − 1)x2

c3x4 + 1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x^3*diff(y(x),x)=2*(y(x)^2+x^2*y(x)-x^4),y(x), singsol=all)� �

y(x) = tanh (−2 ln (x) + 2c1)x2

3 Solution by Mathematica
Time used: 1.137 (sec). Leaf size: 62� �
DSolve[x^3*y'[x]==2*(y[x]^2+x^2*y[x]-x^4),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ix2 tan(2i log(x) + c1)

y(x) →
x2(−x4 + e2iInterval[{0,π}]

)
x4 + e2iInterval[{0,π}]
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5.48 problem 47
5.48.1 Solving as first order ode lie symmetry calculated ode . . . . . . 1712
5.48.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1718

Internal problem ID [1022]
Internal file name [OUTPUT/1023_Sunday_June_05_2022_01_57_08_AM_74272329/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 47.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Riccati]

y′ − y2e−x − 4y = 2 ex

5.48.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y2e−x + 4y + 2 ex

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
y2e−x + 4y + 2 ex

)
(b3 − a2)−

(
y2e−x + 4y + 2 ex

)2
a3

−
(
−y2e−x + 2 ex

)
(xa2 + ya3 + a1)−

(
4 + 2 e−xy

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−e−2xy4a3 − 4 e−xexy2a3 + e−xx y2a2 − 7 e−xy3a3 − 2 e−xxyb2 + e−xy2a1
− e−xy2a2 − e−xy2b3 − 2 e−xyb1 − 4 e2xa3 − 2 exxa2 − 18 exya3
− 16y2a3 − 2 exa1 − 2 exa2 + 2 exb3 − 4xb2 − 4ya2 − 4b1 + b2 = 0

Setting the numerator to zero gives

(6E)−e−2xy4a3 − 4 e−xexy2a3 + e−xx y2a2 − 7 e−xy3a3 − 2 e−xxyb2 + e−xy2a1
− e−xy2a2 − e−xy2b3 − 2 e−xyb1 − 4 e2xa3 − 2 exxa2 − 18 exya3
− 16y2a3 − 2 exa1 − 2 exa2 + 2 exb3 − 4xb2 − 4ya2 − 4b1 + b2 = 0

Simplifying the above gives

(6E)−e−2xy4a3 − 20y2a3 + e−xx y2a2 − 7 e−xy3a3 − 2 e−xxyb2 + e−xy2a1
− e−xy2a2 − e−xy2b3 − 2 e−xyb1 − 4 e2xa3 − 2 exxa2 − 18 exya3
− 2 exa1 − 2 exa2 + 2 exb3 − 4xb2 − 4ya2 − 4b1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, ex, e−2x, e−x, e2x}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, ex = v3, e−2x = v4, e−x = v5, e2x = v6}
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The above PDE (6E) now becomes

(7E)−v4v
4
2a3 + v5v1v

2
2a2 − 7v5v32a3 + v5v

2
2a1 − v5v

2
2a2 − 2v5v1v2b2

− v5v
2
2b3 − 2v3v1a2 − 20v22a3 − 18v3v2a3 − 2v5v2b1 − 2v3a1

− 4v2a2 − 2v3a2 − 4v6a3 − 4v1b2 + 2v3b3 − 4b1 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5, v6}

Equation (7E) now becomes

(8E)v5v1v
2
2a2 − 2v5v1v2b2 − 2v3v1a2 − 4v1b2 − v4v

4
2a3 − 7v5v32a3

+ (a1 − a2 − b3) v22v5 − 20v22a3 − 18v3v2a3 − 2v5v2b1
− 4v2a2 + (−2a1 − 2a2 + 2b3) v3 − 4v6a3 − 4b1 + b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a2 = 0
−4a2 = 0
−2a2 = 0
−20a3 = 0
−18a3 = 0
−7a3 = 0
−4a3 = 0
−a3 = 0
−2b1 = 0
−4b2 = 0
−2b2 = 0

−4b1 + b2 = 0
−2a1 − 2a2 + 2b3 = 0

a1 − a2 − b3 = 0
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Solving the above equations for the unknowns gives

a1 = b3

a2 = 0
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ
= y −

(
y2e−x + 4y + 2 ex

)
(1)

= −y2e−x − 2 ex − 3y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y2e−x − 2 ex − 3ydy
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Which results in

S = −
2 ex arctan

(
2y+3 ex√

−e2x

)
√
−e2x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2e−x + 4y + 2 ex

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = e−xy

y2e−2x + 3 e−xy + 2

Sy = − e−x

y2e−2x + 3 e−xy + 2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 arctanh
(
2y e−x + 3

)
= −x+ c1
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Which simplifies to

2 arctanh
(
2y e−x + 3

)
= −x+ c1

Which gives

y =
(
−3 + tanh

(
−x

2 +
c1
2

))
ex

2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2e−x + 4y + 2 ex dS
dR

= −1

R = x

S = 2 arctanh
(
2 e−xy + 3

)

Summary
The solution(s) found are the following

(1)y =
(
−3 + tanh

(
−x

2 +
c1
2

))
ex

2
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Figure 343: Slope field plot

Verification of solutions

y =
(
−3 + tanh

(
−x

2 +
c1
2

))
ex

2

Verified OK.

5.48.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= y2e−x + 4y + 2 ex

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2e−x + 4y + 2 ex

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

1718



Shows that f0(x) = 2 ex, f1(x) = 4 and f2(x) = e−x. Let

y = −u′

f2u

= −u′

e−xu
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = −e−x

f1f2 = 4 e−x

f 2
2 f0 = 2 e−2xex

Substituting the above terms back in equation (2) gives

e−xu′′(x)− 3 e−xu′(x) + 2 e−2xexu(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1e2x + c2ex

The above shows that
u′(x) = 2c1e2x + c2ex

Using the above in (1) gives the solution

y = −(2c1e2x + c2ex) ex
c1e2x + c2ex

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −2c3e2x − ex
c3ex + 1
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Summary
The solution(s) found are the following

(1)y = −2c3e2x − ex
c3ex + 1

Figure 344: Slope field plot

Verification of solutions

y = −2c3e2x − ex
c3ex + 1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 22� �
dsolve(diff(y(x),x)=y(x)^2*exp(-x)+4*y(x)+2*exp(x),y(x), singsol=all)� �

y(x) = −2 ex(exc1 − 1)
−2 + exc1

3 Solution by Mathematica
Time used: 0.265 (sec). Leaf size: 30� �
DSolve[y'[x]==y[x]^2*Exp[-x]+4*y[x]+2*Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2ex + 1
e−x + c1

y(x) → −2ex
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5.49 problem 48
5.49.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1722

Internal problem ID [1023]
Internal file name [OUTPUT/1024_Sunday_June_05_2022_01_57_10_AM_73978969/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 48.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_Riccati]

y′ − y2 + tan (x) y + tan (x)2

sin (x)2
= 0

5.49.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y2 + tan (x) y + tan (x)2

sin (x)2

This is a Riccati ODE. Comparing the ODE to solve

y′ = tan (x)2

sin (x)2
+ tan (x) y

sin (x)2
+ y2

sin (x)2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = tan(x)2

sin(x)2 , f1(x) =
tan(x)
sin(x)2 and f2(x) = 1

sin(x)2 . Let

y = −u′

f2u

= −u′

u
sin(x)2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = −2 cos (x)

sin (x)3

f1f2 =
tan (x)
sin (x)4

f 2
2 f0 =

tan (x)2

sin (x)6

Substituting the above terms back in equation (2) gives

u′′(x)
sin (x)2

−
(
−2 cos (x)

sin (x)3
+ tan (x)

sin (x)4
)
u′(x) + tan (x)2 u(x)

sin (x)6
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sin
(
− ln (sin (x)) + ln (sin (x) + 1)

2 + ln (sin (x)− 1)
2

)
+ c2 cos

(
− ln (sin (x)) + ln (sin (x) + 1)

2 + ln (sin (x)− 1)
2

)

The above shows that

u′(x) = sec (x) csc (x)
(
c2 sin

(
− ln (sin (x)) + ln (sin (x) + 1)

2 + ln (sin (x)− 1)
2

)
− c1 cos

(
− ln (sin (x)) + ln (sin (x) + 1)

2 + ln (sin (x)− 1)
2

))
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Using the above in (1) gives the solution
y =

−
sec (x) csc (x)

(
c2 sin

(
− ln (sin (x)) + ln(sin(x)+1)

2 + ln(sin(x)−1)
2

)
− c1 cos

(
− ln (sin (x)) + ln(sin(x)+1)

2 + ln(sin(x)−1)
2

))
sin (x)2

c1 sin
(
− ln (sin (x)) + ln(sin(x)+1)

2 + ln(sin(x)−1)
2

)
+ c2 cos

(
− ln (sin (x)) + ln(sin(x)+1)

2 + ln(sin(x)−1)
2

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y

=

(
− sin

(
− ln (sin (x)) + ln(sin(x)+1)

2 + ln(sin(x)−1)
2

)
+ c3 cos

(
− ln (sin (x)) + ln(sin(x)+1)

2 + ln(sin(x)−1)
2

))
tan (x)

c3 sin
(
− ln (sin (x)) + ln(sin(x)+1)

2 + ln(sin(x)−1)
2

)
+ cos

(
− ln (sin (x)) + ln(sin(x)+1)

2 + ln(sin(x)−1)
2

)
Summary
The solution(s) found are the following

(1)y

=

(
− sin

(
− ln (sin (x)) + ln(sin(x)+1)

2 + ln(sin(x)−1)
2

)
+ c3 cos

(
− ln (sin (x)) + ln(sin(x)+1)

2 + ln(sin(x)−1)
2

))
tan (x)

c3 sin
(
− ln (sin (x)) + ln(sin(x)+1)

2 + ln(sin(x)−1)
2

)
+ cos

(
− ln (sin (x)) + ln(sin(x)+1)

2 + ln(sin(x)−1)
2

)

Figure 345: Slope field plot
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Verification of solutions
y

=

(
− sin

(
− ln (sin (x)) + ln(sin(x)+1)

2 + ln(sin(x)−1)
2

)
+ c3 cos

(
− ln (sin (x)) + ln(sin(x)+1)

2 + ln(sin(x)−1)
2

))
tan (x)

c3 sin
(
− ln (sin (x)) + ln(sin(x)+1)

2 + ln(sin(x)−1)
2

)
+ cos

(
− ln (sin (x)) + ln(sin(x)+1)

2 + ln(sin(x)−1)
2

)
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (-2*cos(x)*sin(x)+tan(x))*(diff(y(x), x))/sin(x)^2-tan(x)^2*y(x)/sin(x

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful
Change of variables used:

[x = arcsin(t)]
Linear ODE actually solved:

-8*t^2*u(t)+(-24*t^7+32*t^5-8*t^3)*diff(u(t),t)+(-8*t^8+16*t^6-8*t^4)*diff(diff(u(t),t),t) = 0
<- change of variables successful

<- Riccati to 2nd Order successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 102� �
dsolve(diff(y(x),x)=(y(x)^2+y(x)*tan(x)+tan(x)^2)/sin(x)^2,y(x), singsol=all)� �
y(x) =

−
tan (x)

(
c1 sin

(
ln(sin(x)−1)

2 + ln(sin(x)+1)
2 − ln (sin (x))

)
− cos

(
ln(sin(x)−1)

2 + ln(sin(x)+1)
2 − ln (sin (x))

))
c1 cos

(
ln(sin(x)−1)

2 + ln(sin(x)+1)
2 − ln (sin (x))

)
+ sin

(
ln(sin(x)−1)

2 + ln(sin(x)+1)
2 − ln (sin (x))

)
3 Solution by Mathematica
Time used: 0.678 (sec). Leaf size: 20� �
DSolve[y'[x]==(y[x]^2+y[x]*Tan[x]+Tan[x]^2)/Sin[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → tan(x) tan(log(sin(x))− log(cos(x)) + c1)
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5.50 problem 49
5.50.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1728

Internal problem ID [1024]
Internal file name [OUTPUT/1025_Sunday_June_05_2022_01_57_12_AM_91127049/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 49.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(y)]`], _Riccati]

x ln (x)2 y′ − ln (x) y − y2 = −4 ln (x)2

5.50.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −4 ln (x)2 − ln (x) y − y2

x ln (x)2

This is a Riccati ODE. Comparing the ODE to solve

y′ = −4
x
+ y

x ln (x) +
y2

x ln (x)2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = − 4
x
, f1(x) = 1

x ln(x) and f2(x) = 1
x ln(x)2 . Let

y = −u′

f2u

= −u′

u
x ln(x)2

(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 1

x2 ln (x)2
− 2

x2 ln (x)3

f1f2 =
1

x2 ln (x)3

f 2
2 f0 = − 4

x3 ln (x)4

Substituting the above terms back in equation (2) gives

u′′(x)
x ln (x)2

−
(
− 1
x2 ln (x)2

− 1
x2 ln (x)3

)
u′(x)− 4u(x)

x3 ln (x)4
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2 ln (x)4 + c1

ln (x)2

The above shows that

u′(x) = 2c2 ln (x)4 − 2c1
x ln (x)3

Using the above in (1) gives the solution

y = −
(
2c2 ln (x)4 − 2c1

)
ln (x)

c2 ln (x)4 + c1

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −
2
(
ln (x)4 − c3

)
ln (x)

ln (x)4 + c3
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Summary
The solution(s) found are the following

(1)y = −
2
(
ln (x)4 − c3

)
ln (x)

ln (x)4 + c3

Figure 346: Slope field plot

Verification of solutions

y = −
2
(
ln (x)4 − c3

)
ln (x)

ln (x)4 + c3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(x*(ln(x))^2*diff(y(x),x)=-4*(ln(x))^2+y(x)*ln(x)+y(x)^2,y(x), singsol=all)� �

y(x) = 2i tan (2i ln (ln (x)) + c1) ln (x)

3 Solution by Mathematica
Time used: 1.259 (sec). Leaf size: 64� �
DSolve[x*(Log[x])^2*y'[x]==-4*(Log[x])^2+y[x]*Log[x]+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2i log(x) tan(2i log(log(x)) + c1)

y(x) →
2 log(x)

(
− log4(x) + e2iInterval[{0,π}]

)
log4(x) + e2iInterval[{0,π}]
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5.51 problem 50
5.51.1 Solving as first order ode lie symmetry calculated ode . . . . . . 1732
5.51.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1738

Internal problem ID [1025]
Internal file name [OUTPUT/1026_Sunday_June_05_2022_01_57_13_AM_3413717/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 50.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

2x
(
y + 2

√
x
)
y′ −

(
y +

√
x
)2 = 0

5.51.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 2y
√
x+ y2 + x

4x 3
2 + 2yx

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
2y

√
x+ y2 + x

)
(b3 − a2)

4x 3
2 + 2yx

−
(
2y

√
x+ y2 + x

)2
a3

4
(
yx+ 2x 3

2

)2
−

 y√
x
+ 1

4x 3
2 + 2yx

−
(
2y

√
x+ y2 + x

) (
y + 3

√
x
)

2
(
yx+ 2x 3

2

)2
 (xa2 + ya3 + a1)

−

 2y + 2
√
x

4x 3
2 + 2yx

−
(
2y

√
x+ y2 + x

)
x

2
(
yx+ 2x 3

2

)2
 (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x 5
2y2b2 + 4x 5

2yb3 − 2x 3
2y2b1 + 8x3yb2 + 10x 7

2 b2 − 6x 5
2 b1 + 2x2a1 + 2

√
x y3a1 + 2x 3

2y2a3 +
√
x y4a3 + 8x 3

2ya1 − 2x3a2 + 4x3b3 − 2x2ya3 − 8x2yb1 − 2x 5
2ya2 + 4x y3a3 + 8x y2a1 − x

5
2a3

4
√
x
(
yx+ 2x 3

2

)2
= 0

Setting the numerator to zero gives

(6E)2x 5
2y2b2 + 4x 5

2yb3 − 2x 3
2y2b1 + 8x3yb2 + 10x 7

2 b2 − 6x 5
2 b1 + 2x2a1

+ 2
√
x y3a1 + 2x 3

2y2a3 +
√
x y4a3 + 8x 3

2ya1 − 2x3a2 + 4x3b3

− 2x2ya3 − 8x2yb1 − 2x 5
2ya2 + 4x y3a3 + 8x y2a1 − x

5
2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x, x

3
2 , x

5
2 , x

7
2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x = v3, x

3
2 = v4, x

5
2 = v5, x

7
2 = v6

}
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The above PDE (6E) now becomes

(7E)v3v
4
2a3 + 2v3v32a1 + 4v1v32a3 + 8v31v2b2 + 8v1v22a1 − 2v31a2 − 2v21v2a3

+ 2v4v22a3 − 8v21v2b1 − 2v4v22b1 + 2v5v22b2 + 4v31b3 + 2v21a1
+ 8v4v2a1 − 2v5v2a2 + 4v5v2b3 − v5a3 − 6v5b1 + 10v6b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5, v6}

Equation (7E) now becomes

(8E)8v31v2b2 + (−2a2 + 4b3) v31 + (−2a3 − 8b1) v21v2 + 2v21a1 + 4v1v32a3
+ 8v1v22a1 + v3v

4
2a3 + 2v3v32a1 + (2a3 − 2b1) v22v4 + 2v5v22b2

+ 8v4v2a1 + (−2a2 + 4b3) v2v5 + (−a3 − 6b1) v5 + 10v6b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a3 = 0
2a1 = 0
8a1 = 0
4a3 = 0
2b2 = 0
8b2 = 0
10b2 = 0

−2a2 + 4b3 = 0
−2a3 − 8b1 = 0
−a3 − 6b1 = 0
2a3 − 2b1 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
2y

√
x+ y2 + x

4x 3
2 + 2yx

)
(2x)

= − x2

yx+ 2x 3
2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− x2

yx+2x
3
2

dy

Which results in

S = −
x y2

2 + 2x 3
2y

x2
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Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2y
√
x+ y2 + x

4x 3
2 + 2yx

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
y
(
y
√
x+ 2x

)
2x 5

2

Sy =
−y − 2

√
x

x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −y

√
x− 2x

x
3
2
(
2y + 4

√
x
) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

2R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
y
(
y + 4

√
x
)

2x = − ln (x)
2 + c1
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Which simplifies to

−
y
(
y + 4

√
x
)

2x = − ln (x)
2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2y
√
x+y2+x

4x
3
2+2yx

dS
dR

= − 1
2R

R = x

S = −
y
(
y + 4

√
x
)

2x

Summary
The solution(s) found are the following

(1)−
y
(
y + 4

√
x
)

2x = − ln (x)
2 + c1
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Figure 347: Slope field plot

Verification of solutions

−
y
(
y + 4

√
x
)

2x = − ln (x)
2 + c1

Verified OK.

5.51.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

2x
(
y + 2

√
x
))

dy =
((

y +
√
x
)2) dx(

−
(
y +

√
x
)2) dx+(2x(y + 2

√
x
))

dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −
(
y +

√
x
)2

N(x, y) = 2x
(
y + 2

√
x
)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−
(
y +

√
x
)2)

= −2y − 2
√
x

And
∂N

∂x
= ∂

∂x

(
2x
(
y + 2

√
x
))

= 2y + 6
√
x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2x
(
y + 2

√
x
)((−2y − 2

√
x
)
−
(
2y + 6

√
x
))

= −2
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
−
(
y +

√
x
)2)

= −
(
y +

√
x
)2

x2

And

N = µN

= 1
x2

(
2x
(
y + 2

√
x
))

= 2y + 4
√
x

x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−
(
y +

√
x
)2

x2

)
+
(
2y + 4

√
x

x

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫
−
(
y +

√
x
)2

x2 dx

(3)φ = − ln (x) + 4y√
x
+ y2

x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 4√

x
+ 2y

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2y+4
√
x

x
. Therefore equation (4) becomes

(5)2y + 4
√
x

x
= 4√

x
+ 2y

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − ln (x) + 4y√
x
+ y2

x
+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + 4y√
x
+ y2

x

Summary
The solution(s) found are the following

(1)− ln (x) + 4y√
x
+ y2

x
= c1

Figure 348: Slope field plot

Verification of solutions

− ln (x) + 4y√
x
+ y2

x
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 50� �
dsolve(2*x*(y(x)+2*sqrt(x))*diff(y(x),x)=(y(x)+sqrt(x))^2,y(x), singsol=all)� �

y(x) = −2x+
√
x2 (ln (x)− c1 + 4)√

x

y(x) = −
2x+

√
x2 (ln (x)− c1 + 4)√

x

3 Solution by Mathematica
Time used: 0.61 (sec). Leaf size: 68� �
DSolve[2*x*(y[x]+2*Sqrt[x])*y'[x]==(y[x]+Sqrt[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2
√
x−

√
1
x2x

√
x(log(x) + 4 + c1)

y(x) → −2
√
x+

√
1
x2x

√
x(log(x) + 4 + c1)
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5.52 problem 51
5.52.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1744

Internal problem ID [1026]
Internal file name [OUTPUT/1027_Sunday_June_05_2022_01_57_15_AM_76060930/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 51.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(y)]`], [_Abel , `2nd type

`, `class A`]]

(
y + ex2

)
y′ − 2x

(
y2 + ex2

y + e2x2
)
= 0

5.52.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y + ex2

)
dy =

(
2x
(
y2 + ex2

y + e2x2
))

dx(
−2x

(
y2 + ex2

y + e2x2
))

dx+
(
y + ex2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2x
(
y2 + ex2

y + e2x2
)

N(x, y) = y + ex2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−2x

(
y2 + ex2

y + e2x2
))

= −2x
(
2y + ex2

)
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And

∂N

∂x
= ∂

∂x

(
y + ex2

)
= 2 ex2

x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

y + ex2

((
−2x

(
2y + ex2

))
−
(
2 ex2

x
))

= −4x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−4x dx

The result of integrating gives

µ = e−2x2

= e−2x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−2x2
(
−2x

(
y2 + ex2

y + e2x2
))

= −2x
(
y2 + ex2

y + e2x2
)
e−2x2

And

N = µN

= e−2x2
(
y + ex2

)
=
(
y + ex2

)
e−2x2
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−2x
(
y2 + ex2

y + e2x2
)
e−2x2

)
+
((

y + ex2
)
e−2x2

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x

(
y2 + ex2

y + e2x2
)
e−2x2 dx

(3)φ = −x2 + e−2x2
y2

2 + e−x2
y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−2x2

y + e−x2 + f ′(y)

But equation (2) says that ∂φ
∂y

=
(
y + ex2

)
e−2x2 . Therefore equation (4) becomes

(5)
(
y + ex2

)
e−2x2 = e−2x2

y + e−x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x2 + e−2x2
y2

2 + e−x2
y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2 + e−2x2
y2

2 + e−x2
y

Summary
The solution(s) found are the following

(1)−x2 + e−2x2
y2

2 + e−x2
y = c1

Figure 349: Slope field plot

Verification of solutions

−x2 + e−2x2
y2

2 + e−x2
y = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 47� �
dsolve((y(x)+exp(x^2))*diff(y(x),x)=2*x*(y(x)^2+y(x)*exp(x^2)+exp(2*x^2)),y(x), singsol=all)� �

y(x) =
(
−1−

√
2x2 − 2c1 + 1

)
ex2

y(x) =
(
−1 +

√
2x2 − 2c1 + 1

)
ex2

3 Solution by Mathematica
Time used: 0.744 (sec). Leaf size: 76� �
DSolve[(y[x]+Exp[x^2])*y'[x]==2*x*(y[x]^2+y[x]*Exp[x^2]+Exp[2*x^2]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −ex
2 −

√
2x2 + 1 + c1√

e−2x2

y(x) → −ex
2 +

√
2x2 + 1 + c1√

e−2x2
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5.53 problem 52
5.53.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1750
5.53.2 Solving as first order ode lie symmetry calculated ode . . . . . . 1751
5.53.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1757

Internal problem ID [1027]
Internal file name [OUTPUT/1028_Sunday_June_05_2022_01_57_16_AM_139120/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 52.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

y′ + 2y
x

− 3x2y2 + 6yx+ 2
x2 (2yx+ 3) = 0

With initial conditions

[y(2) = 2]

5.53.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= − x2y2 − 2
x2 (2yx+ 3)

The x domain of f(x, y) when y = 2 is{
−∞ ≤ x < 0, 0 < x < −3

4 ,−
3
4 < x ≤ ∞

}
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And the point x0 = 2 is inside this domain. The y domain of f(x, y) when x = 2 is{
y < −3

4 ∨−3
4 < y

}

And the point y0 = 2 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
− x2y2 − 2
x2 (2yx+ 3)

)
= − 2y

2yx+ 3 + 2x2y2 − 4
x (2yx+ 3)2

The x domain of ∂f
∂y

when y = 2 is

{
−∞ ≤ x < 0, 0 < x < −3

4 ,−
3
4 < x ≤ ∞

}

And the point x0 = 2 is inside this domain. The y domain of ∂f
∂y

when x = 2 is

{
y < −3

4 ∨−3
4 < y

}

And the point y0 = 2 is inside this domain. Therefore solution exists and is unique.

5.53.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − x2y2 − 2
x2 (2yx+ 3)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(x2y2 − 2) (b3 − a2)

x2 (2yx+ 3) − (x2y2 − 2)2 a3
x4 (2yx+ 3)2

−
(
− 2y2
x (2yx+ 3) +

2x2y2 − 4
x3 (2yx+ 3) +

2(x2y2 − 2) y
x2 (2yx+ 3)2

)
(xa2 + ya3 + a1)

−
(
− 2y
2yx+ 3 + 2x2y2 − 4

x (2yx+ 3)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

6x6y2b2 − 3x4y4a3 + 2x5y2b1 − 2x4y3a1 + 18x5yb2 + 3x4y2a2 + 3x4y2b3 + 6x4yb1 + 13b2x4 + 8x3ya2 + 8x3yb3 + 16x2y2a3 + 4x3b1 + 12x2ya1 + 6x2a2 + 6x2b3 + 12xya3 + 12xa1 − 4a3
x4 (2yx+ 3)2

= 0

Setting the numerator to zero gives

(6E)6x6y2b2 − 3x4y4a3 + 2x5y2b1 − 2x4y3a1 + 18x5yb2 + 3x4y2a2
+ 3x4y2b3 + 6x4yb1 + 13b2x4 + 8x3ya2 + 8x3yb3 + 16x2y2a3
+ 4x3b1 + 12x2ya1 + 6x2a2 + 6x2b3 + 12xya3 + 12xa1 − 4a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−3a3v41v42 + 6b2v61v22 − 2a1v41v32 + 2b1v51v22 + 3a2v41v22 + 18b2v51v2
+ 3b3v41v22 + 6b1v41v2 + 8a2v31v2 + 16a3v21v22 + 13b2v41 + 8b3v31v2
+ 12a1v21v2 + 4b1v31 + 6a2v21 + 12a3v1v2 + 6b3v21 + 12a1v1 − 4a3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)6b2v61v22 + 2b1v51v22 + 18b2v51v2 − 3a3v41v42 − 2a1v41v32 + (3a2 + 3b3) v41v22
+ 6b1v41v2 + 13b2v41 + (8a2 + 8b3) v31v2 + 4b1v31 + 16a3v21v22
+ 12a1v21v2 + (6a2 + 6b3) v21 + 12a3v1v2 + 12a1v1 − 4a3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
12a1 = 0
−4a3 = 0
−3a3 = 0
12a3 = 0
16a3 = 0
2b1 = 0
4b1 = 0
6b1 = 0
6b2 = 0
13b2 = 0
18b2 = 0

3a2 + 3b3 = 0
6a2 + 6b3 = 0
8a2 + 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− x2y2 − 2
x2 (2yx+ 3)

)
(−x)

= x2y2 + 3yx+ 2
2y x2 + 3x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2y2+3yx+2
2y x2+3x

dy

Which results in

S = ln
(
x2y2 + 3yx+ 2

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − x2y2 − 2
x2 (2yx+ 3)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x y2 + 3y
(yx+ 2) (yx+ 1)

Sy =
2y x2 + 3x

(yx+ 2) (yx+ 1)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (yx+ 2) + ln (yx+ 1) = ln (x) + c1

Which simplifies to

ln (yx+ 2) + ln (yx+ 1) = ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − x2y2−2
x2(2yx+3)

dS
dR

= 1
R

R = x

S = ln (yx+ 2) + ln (yx+ 1)

Initial conditions are used to solve for c1. Substituting x = 2 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

ln (2) + ln (3) + ln (5) = ln (2) + c1

c1 = ln (3) + ln (5)

Substituting c1 found above in the general solution gives

ln (yx+ 2) + ln (yx+ 1) = ln (x) + ln (3) + ln (5)

Summary
The solution(s) found are the following

(1)ln (yx+ 2) + ln (yx+ 1) = ln (x) + ln (3) + ln (5)
Verification of solutions

ln (yx+ 2) + ln (yx+ 1) = ln (x) + ln (3) + ln (5)

Verified OK.

1756



5.53.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
−2y

x
+ 3x2y2 + 6yx+ 2

x2 (2yx+ 3)

)
dx(

2y
x

− 3x2y2 + 6yx+ 2
x2 (2yx+ 3)

)
dx+dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = 2y
x

− 3x2y2 + 6yx+ 2
x2 (2yx+ 3)

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
2y
x

− 3x2y2 + 6yx+ 2
x2 (2yx+ 3)

)
= 2x2y2 + 6yx+ 4

x (2yx+ 3)2

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

2
x
− 6y x2 + 6x

x2 (2yx+ 3) +
6x2y2 + 12yx+ 4

x (2yx+ 3)2
)
− (0)

)
= 2x2y2 + 6yx+ 4

x (2yx+ 3)2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= x2(2yx+ 3)

x2y2 − 2

(
(0)−

(
2
x
− 6y x2 + 6x

x2 (2yx+ 3) +
6x2y2 + 12yx+ 4

x (2yx+ 3)2
))

= − 2(x2y2 + 3yx+ 2)x
(2yx+ 3) (x2y2 − 2)
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Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

=
(0)−

(
2
x
− 6y x2+6x

x2(2yx+3) +
6x2y2+12yx+4

x(2yx+3)2

)
x
(

2y
x
− 3x2y2+6yx+2

x2(2yx+3)

)
− y (1)

= 2
2yx+ 3

Replacing all powers of terms xy by t gives

R = 2
2t+ 3

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ ( 2

2t+3

)
dt

The result of integrating gives

µ = eln(2t+3)

= 2t+ 3

Now t is replaced back with xy giving

µ = 2yx+ 3

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 2yx+ 3
(
2y
x

− 3x2y2 + 6yx+ 2
x2 (2yx+ 3)

)
= x2y2 − 2

x2
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And

N = µN

= 2yx+ 3(1)
= 2yx+ 3

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

x2y2 − 2
x2

)
+ (2yx+ 3) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x2y2 − 2

x2 dx

(3)φ = x y2 + 2
x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2yx+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2yx+ 3. Therefore equation (4) becomes

(5)2yx+ 3 = 2yx+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 3
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Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(3) dy

f(y) = 3y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x y2 + 2
x
+ 3y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x y2 + 2
x
+ 3y

Initial conditions are used to solve for c1. Substituting x = 2 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

15 = c1

c1 = 15

Substituting c1 found above in the general solution gives

x y2 + 2
x
+ 3y = 15

The above simplifies to

x2y2 + 3yx− 15x+ 2 = 0

Summary
The solution(s) found are the following

(1)2 + x2y2 + 3(y − 5)x = 0
Verification of solutions

2 + x2y2 + 3(y − 5)x = 0

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 18� �
dsolve([diff(y(x),x)+2/x*y(x)=(3*x^2*y(x)^2+6*x*y(x)+2)/(x^2*(2*x*y(x)+3)),y(2) = 2],y(x), singsol=all)� �

y(x) = −3 +
√
60x+ 1

2x

3 Solution by Mathematica
Time used: 0.725 (sec). Leaf size: 35� �
DSolve[{y'[x]+2/x*y[x]==(3*x^2*y[x]^2+6*x*y[x]+2)/(x^2*(2*x*y[x]+3)),y[2]==2},y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

√
1
x2

√
x2(60x+ 1)− 3

2x
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5.54 problem 53
5.54.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1763
5.54.2 Solving as first order ode lie symmetry calculated ode . . . . . . 1764
5.54.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1770

Internal problem ID [1028]
Internal file name [OUTPUT/1029_Sunday_June_05_2022_01_57_17_AM_39879720/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 53.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

y′ + 3y
x

− 3x4y2 + 10x2y + 6
x3 (2x2y + 5) = 0

With initial conditions

[y(1) = 1]

5.54.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= −3x4y2 + 5y x2 − 6
x3 (2y x2 + 5)

The x domain of f(x, y) when y = 1 is

{x < 0∨ 0 < x}
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And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{
y < −5

2 ∨−5
2 < y

}

And the point y0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
−3x4y2 + 5y x2 − 6

x3 (2y x2 + 5)

)
= − 6x4y + 5x2

x3 (2y x2 + 5) +
6x4y2 + 10y x2 − 12

x (2y x2 + 5)2

The x domain of ∂f
∂y

when y = 1 is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{
y < −5

2 ∨−5
2 < y

}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

5.54.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −3x4y2 + 5y x2 − 6
x3 (2y x2 + 5)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(3x4y2 + 5y x2 − 6) (b3 − a2)

x3 (2y x2 + 5) − (3x4y2 + 5y x2 − 6)2 a3
x6 (2y x2 + 5)2

−
(
−12x3y2 + 10yx

x3 (2y x2 + 5) + 9x4y2 + 15y x2 − 18
x4 (2y x2 + 5) + 4(3x4y2 + 5y x2 − 6) y

x2 (2y x2 + 5)2
)
(xa2

+ya3+a1)−
(
− 6x4y + 5x2

x3 (2y x2 + 5) +
6x4y2 + 10y x2 − 12

x (2y x2 + 5)2
)
(xb2+yb3+ b1) = 0

Putting the above in normal form gives

10x10y2b2 − 15x8y4a3 + 6x9y2b1 − 6x8y3a1 + 50x8yb2 + 10x7y2a2 + 5x7y2b3 − 45x6y3a3 + 30x7yb1 − 15x6y2a1 + 62b2x6 + 48x5ya2 + 24x5yb3 + 46x4y2a3 + 37x5b1 + 35x4ya1 + 60x3a2 + 30x3b3 + 150x2ya3 + 90x2a1 − 36a3
x6 (2y x2 + 5)2

= 0

Setting the numerator to zero gives

(6E)10x10y2b2 − 15x8y4a3 + 6x9y2b1 − 6x8y3a1 + 50x8yb2 + 10x7y2a2 + 5x7y2b3
− 45x6y3a3 +30x7yb1 − 15x6y2a1 +62b2x6 +48x5ya2 +24x5yb3 +46x4y2a3
+ 37x5b1 + 35x4ya1 + 60x3a2 + 30x3b3 + 150x2ya3 + 90x2a1 − 36a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−15a3v81v42+10b2v101 v22−6a1v81v32+6b1v91v22+10a2v71v22−45a3v61v32+50b2v81v2
+5b3v71v22 − 15a1v61v22 +30b1v71v2 +48a2v51v2 +46a3v41v22 +62b2v61 +24b3v51v2
+ 35a1v41v2 + 37b1v51 + 60a2v31 + 150a3v21v2 + 30b3v31 + 90a1v21 − 36a3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)10b2v101 v22 + 6b1v91v22 − 15a3v81v42 − 6a1v81v32 + 50b2v81v2 + (10a2 + 5b3) v71v22
+ 30b1v71v2 − 45a3v61v32 − 15a1v61v22 + 62b2v61 + (48a2 + 24b3) v51v2 + 37b1v51
+ 46a3v41v22 + 35a1v41v2 + (60a2 + 30b3) v31 + 150a3v21v2 + 90a1v21 − 36a3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−15a1 = 0
−6a1 = 0
35a1 = 0
90a1 = 0

−45a3 = 0
−36a3 = 0
−15a3 = 0
46a3 = 0
150a3 = 0

6b1 = 0
30b1 = 0
37b1 = 0
10b2 = 0
50b2 = 0
62b2 = 0

10a2 + 5b3 = 0
48a2 + 24b3 = 0
60a2 + 30b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −2y −
(
−3x4y2 + 5y x2 − 6

x3 (2y x2 + 5)

)
(x)

= −x4y2 − 5y x2 − 6
2x4y + 5x2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x4y2−5y x2−6
2x4y+5x2

dy
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Which results in

S = − ln
(
x4y2 + 5y x2 + 6

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3x4y2 + 5y x2 − 6
x3 (2y x2 + 5)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2yx
y x2 + 3 − 2yx

y x2 + 2

Sy =
−2x4y − 5x2

(y x2 + 3) (y x2 + 2)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln
(
x2y + 3

)
− ln

(
x2y + 2

)
= − ln (x) + c1
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Which simplifies to

− ln
(
x2y + 3

)
− ln

(
x2y + 2

)
= − ln (x) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −3x4y2+5y x2−6
x3(2y x2+5)

dS
dR

= − 1
R

R = x

S = − ln
(
y x2 + 3

)
− ln

(
y x2 + 2

)

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

−2 ln (2)− ln (3) = c1

c1 = −2 ln (2)− ln (3)

Substituting c1 found above in the general solution gives

− ln
(
y x2 + 3

)
− ln

(
y x2 + 2

)
= − ln (x)− 2 ln (2)− ln (3)

Summary
The solution(s) found are the following

(1)− ln
(
x2y + 3

)
− ln

(
x2y + 2

)
= − ln (x)− 2 ln (2)− ln (3)

Verification of solutions

− ln
(
x2y + 3

)
− ln

(
x2y + 2

)
= − ln (x)− 2 ln (2)− ln (3)

Verified OK.
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5.54.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x3(2y x2 + 5

))
dy =

(
−3x4y2 − 5y x2 + 6

)
dx(

3x4y2 + 5y x2 − 6
)
dx+

(
x3(2y x2 + 5

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3x4y2 + 5y x2 − 6
N(x, y) = x3(2y x2 + 5

)
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
3x4y2 + 5y x2 − 6

)
= 6x4y + 5x2

And
∂N

∂x
= ∂

∂x

(
x3(2y x2 + 5

))
= 10x4y + 15x2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2y x5 + 5x3

((
6x4y + 5x2)− (3x2(2y x2 + 5

)
+ 4x4y

))
= −2

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
3x4y2 + 5y x2 − 6

)
= 3x4y2 + 5y x2 − 6

x2
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And

N = µN

= 1
x2

(
x3(2y x2 + 5

))
= 2y x3 + 5x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

3x4y2 + 5y x2 − 6
x2

)
+
(
2y x3 + 5x

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 3x4y2 + 5y x2 − 6
x2 dx

(3)φ = x3y2 + 5yx+ 6
x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2y x3 + 5x+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2y x3 + 5x. Therefore equation (4) becomes

(5)2y x3 + 5x = 2y x3 + 5x+ f ′(y)

1772



Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x3y2 + 5yx+ 6
x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x3y2 + 5yx+ 6
x

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

12 = c1

c1 = 12

Substituting c1 found above in the general solution gives

x3y2 + 5yx+ 6
x
= 12

The above simplifies to

x4y2 + 5y x2 − 12x+ 6 = 0

Summary
The solution(s) found are the following

(1)x4y2 + 5x2y − 12x+ 6 = 0
Verification of solutions

x4y2 + 5x2y − 12x+ 6 = 0

Verified OK.

1773



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 18� �
dsolve([diff(y(x),x)+3/x*y(x)=(3*x^4*y(x)^2+10*x^2*y(x)+6)/(x^3*(2*x^2*y(x)+5)),y(1) = 1],y(x), singsol=all)� �

y(x) = −5 +
√
48x+ 1

2x2

3 Solution by Mathematica
Time used: 0.815 (sec). Leaf size: 37� �
DSolve[{y'[x]+3/x*y[x]==(3*x^4*y[x]^2+10*x^2*y[x]+6)/(x^3*(2*x^2*y[x]+5)),y[1]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

√
1
x2

√
x4(48x+ 1)− 5x

2x3
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5.55 problem 56
5.55.1 Solving as first order ode lie symmetry calculated ode . . . . . . 1775
5.55.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1782

Internal problem ID [1029]
Internal file name [OUTPUT/1030_Sunday_June_05_2022_01_57_19_AM_22874992/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Transformation of Nonlinear Equations into Sep-
arable Equations. Section 2.4 Page 68
Problem number: 56.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[_Riccati]

y′ + (1 + 2x) y − xy2 = x+ 1

5.55.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x y2 − 2yx+ x− y + 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + yxa5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + yxb5 + y2b6 + xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
2xb4+yb5+b2+

(
x y2−2yx+x−y+1

)
(−2xa4+xb5−ya5+2yb6−a2+b3)

−
(
x y2 − 2yx+ x− y + 1

)2 (xa5 + 2ya6 + a3)
−
(
y2 − 2y + 1

) (
x2a4 + yxa5 + y2a6 + xa2 + ya3 + a1

)
− (2yx− 2x− 1)

(
x2b4 + yxb5 + y2b6 + xb2 + yb3 + b1

)
= 0

Putting the above in normal form gives

−x3y4a5 − 2x2y5a6 + 4x3y3a5 − x2y4a3 + 8x2y4a6 − 6x3y2a5 + 4x2y3a3
+ 2x2y3a5 − 12x2y3a6 + 4x y4a6 + 4x3ya5 − 2x3yb4 − 6x2y2a3 − 3x2y2a4
− 6x2y2a5 + 8x2y2a6 − x2y2b5 + 2x y3a3 − 2x y3a5 − 12x y3a6 − y4a6
− x3a5 + 2x3b4 + 4x2ya3 + 6x2ya4 + 6x2ya5 − 2x2ya6 − 2x2yb2 − 2x y2a2
− 6x y2a3 + 3x y2a5 + 12x y2a6 − x y2b3 − 2x y2b6 − y3a3 − x2a3
− 3x2a4 − 2x2a5 + 2x2b2 + x2b4 + x2b5 + 4xya2 + 6xya3 + 2xya4
− 4xya6 − 2xyb1 + 2xyb6 − y2a1 + y2a3 + y2a5 + 3y2a6 − y2b6 − 2xa2
− 2xa3 − 2xa4 − xa5 + 2xb1 + xb2 + xb3 + 2xb4 + xb5 + 2ya1 + ya2
+ ya3 − ya5 − 2ya6 + yb5 + 2yb6 − a1 − a2 − a3 + b1 + b2 + b3 = 0

Setting the numerator to zero gives

(6E)

−x3y4a5 − 2x2y5a6 + 4x3y3a5 − x2y4a3 + 8x2y4a6 − 6x3y2a5
+ 4x2y3a3 + 2x2y3a5 − 12x2y3a6 + 4x y4a6 + 4x3ya5 − 2x3yb4
−6x2y2a3−3x2y2a4−6x2y2a5+8x2y2a6−x2y2b5+2x y3a3−2x y3a5
−12x y3a6−y4a6−x3a5+2x3b4+4x2ya3+6x2ya4+6x2ya5−2x2ya6
−2x2yb2−2x y2a2−6x y2a3+3x y2a5+12x y2a6−x y2b3−2x y2b6
−y3a3−x2a3−3x2a4−2x2a5+2x2b2+x2b4+x2b5+4xya2+6xya3
+2xya4−4xya6−2xyb1+2xyb6−y2a1+y2a3+y2a5+3y2a6−y2b6
− 2xa2 − 2xa3 − 2xa4 − xa5 +2xb1 + xb2 + xb3 +2xb4 + xb5 +2ya1
+ya2+ya3−ya5−2ya6+yb5+2yb6−a1−a2−a3+ b1+ b2+ b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)

−a5v
3
1v

4
2 − 2a6v21v52 − a3v

2
1v

4
2 + 4a5v31v32 + 8a6v21v42 + 4a3v21v32

− 6a5v31v22 + 2a5v21v32 − 12a6v21v32 + 4a6v1v42 − 6a3v21v22 + 2a3v1v32
− 3a4v21v22 + 4a5v31v2 − 6a5v21v22 − 2a5v1v32 + 8a6v21v22 − 12a6v1v32
− a6v

4
2 − 2b4v31v2 − b5v

2
1v

2
2 − 2a2v1v22 + 4a3v21v2 − 6a3v1v22 − a3v

3
2

+6a4v21v2−a5v
3
1+6a5v21v2+3a5v1v22−2a6v21v2+12a6v1v22−2b2v21v2

− b3v1v
2
2 +2b4v31 − 2b6v1v22 −a1v

2
2 +4a2v1v2−a3v

2
1 +6a3v1v2+a3v

2
2

− 3a4v21 + 2a4v1v2 − 2a5v21 + a5v
2
2 − 4a6v1v2 + 3a6v22 − 2b1v1v2

+ 2b2v21 + b4v
2
1 + b5v

2
1 + 2b6v1v2 − b6v

2
2 + 2a1v2 − 2a2v1 + a2v2

− 2a3v1 + a3v2 − 2a4v1 − a5v1 − a5v2 − 2a6v2 + 2b1v1 + b2v1 + b3v1
+ 2b4v1 + b5v1 + b5v2 + 2b6v2 − a1 − a2 − a3 + b1 + b2 + b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

(4a5 − 2b4) v31v2 + (−a3 + 8a6) v21v42 + (4a3 + 2a5 − 12a6) v21v32
+(−6a3−3a4−6a5+8a6−b5) v21v22+(4a3+6a4+6a5−2a6−2b2) v21v2
+ (2a3 − 2a5 − 12a6) v1v32 + (−2a2 − 6a3 +3a5 +12a6 − b3 − 2b6) v1v22
+ (4a2 + 6a3 + 2a4 − 4a6 − 2b1 + 2b6) v1v2 + b1 + b2 + b3 − a1
− a2 − a3 + (−a3 − 3a4 − 2a5 + 2b2 + b4 + b5) v21 + (−a5 + 2b4) v31
− a5v

3
1v

4
2 − 2a6v21v52 + 4a6v1v42 − 6a5v31v22 + 4a5v31v32 − a6v

4
2 − a3v

3
2

+(−a1+a3+a5+3a6−b6) v22+(2a1+a2+a3−a5−2a6+b5+2b6) v2
+ (−2a2 − 2a3 − 2a4 − a5 + 2b1 + b2 + b3 + 2b4 + b5) v1 = 0

1777



Setting each coefficients in (8E) to zero gives the following equations to solve

−a3 = 0
−6a5 = 0
−a5 = 0
4a5 = 0

−2a6 = 0
−a6 = 0
4a6 = 0

−a3 + 8a6 = 0
−a5 + 2b4 = 0
4a5 − 2b4 = 0

2a3 − 2a5 − 12a6 = 0
4a3 + 2a5 − 12a6 = 0

−a1 + a3 + a5 + 3a6 − b6 = 0
−6a3 − 3a4 − 6a5 + 8a6 − b5 = 0
4a3 + 6a4 + 6a5 − 2a6 − 2b2 = 0
−a1 − a2 − a3 + b1 + b2 + b3 = 0

−2a2 − 6a3 + 3a5 + 12a6 − b3 − 2b6 = 0
4a2 + 6a3 + 2a4 − 4a6 − 2b1 + 2b6 = 0
−a3 − 3a4 − 2a5 + 2b2 + b4 + b5 = 0

2a1 + a2 + a3 − a5 − 2a6 + b5 + 2b6 = 0
−2a2 − 2a3 − 2a4 − a5 + 2b1 + b2 + b3 + 2b4 + b5 = 0
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Solving the above equations for the unknowns gives

a1 = −b6

a2 = 0
a3 = 0
a4 = 0
a5 = 0
a6 = 0
b1 = b6

b2 = 0
b3 = −2b6
b4 = 0
b5 = 0
b6 = b6

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −1

η = y2 − 2y + 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ
= y2 − 2y + 1−

(
x y2 − 2yx+ x− y + 1

)
(−1)

= x y2 − 2yx+ y2 + x− 3y + 2
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x y2 − 2yx+ y2 + x− 3y + 2dy

Which results in

S = − ln (y − 1) + ln (yx− x+ y − 2)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x y2 − 2yx+ x− y + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y − 1
(y − 1)x+ y − 2

Sy =
1

(yx− x+ y − 2) (y − 1)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y − 1) + ln ((y − 1)x+ y − 2) = x+ c1

Which simplifies to

− ln (y − 1) + ln ((y − 1)x+ y − 2) = x+ c1

Which gives

y = −2 + ex+c1 − x

ex+c1 − x− 1
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x y2 − 2yx+ x− y + 1 dS
dR

= 1

R = x

S = − ln (y − 1) + ln ((y − 1)x+ y − 2)

Summary
The solution(s) found are the following

(1)y = −2 + ex+c1 − x

ex+c1 − x− 1
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Figure 350: Slope field plot

Verification of solutions

y = −2 + ex+c1 − x

ex+c1 − x− 1

Verified OK.

5.55.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= x y2 − 2yx+ x− y + 1

This is a Riccati ODE. Comparing the ODE to solve

y′ = x y2 − 2yx+ x− y + 1

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = x+ 1, f1(x) = −1− 2x and f2(x) = x. Let

y = −u′

f2u

= −u′

xu
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 1

f1f2 = (−1− 2x)x
f 2
2 f0 = x2(x+ 1)

Substituting the above terms back in equation (2) gives

xu′′(x)− (1 + (−1− 2x)x)u′(x) + x2(x+ 1)u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1e−
x2
2 + c2(x+ 1) e−

x(2+x)
2

The above shows that

u′(x) = −
(
c1e−

x2
2 + c2e−

x(2+x)
2 (2 + x)

)
x

Using the above in (1) gives the solution

y = c1e−
x2
2 + c2e−

x(2+x)
2 (2 + x)

c1e−
x2
2 + c2 (x+ 1) e−

x(2+x)
2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = e−
x(2+x)

2 x+ c3e−
x2
2 + 2 e−

x(2+x)
2

e−
x(2+x)

2 x+ c3e−
x2
2 + e−

x(2+x)
2
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Summary
The solution(s) found are the following

(1)y = e−
x(2+x)

2 x+ c3e−
x2
2 + 2 e−

x(2+x)
2

e−
x(2+x)

2 x+ c3e−
x2
2 + e−

x(2+x)
2

Figure 351: Slope field plot

Verification of solutions

y = e−
x(2+x)

2 x+ c3e−
x2
2 + 2 e−

x(2+x)
2

e−
x(2+x)

2 x+ c3e−
x2
2 + e−

x(2+x)
2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

<- Riccati particular case Kamke (a) successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 35� �
dsolve(diff(y(x),x)=1+x-(1+2*x)*y(x)+x*y(x)^2,y(x), singsol=all)� �

y(x) = (2x+ 4) e−x − c1
(2 + 2x) e−x − c1

3 Solution by Mathematica
Time used: 0.149 (sec). Leaf size: 31� �
DSolve[y'[x]==1+x-(1+2*x)*y[x]+x*y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x+ c1e
x + 2

x+ c1ex + 1
y(x) → 1
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6 Chapter 2, First order equations. Exact
equations. Section 2.5 Page 79

6.1 problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1787
6.2 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1802
6.3 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1818
6.4 problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1821
6.5 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1829
6.6 problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1832
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Internal problem ID [1030]
Internal file name [OUTPUT/1031_Sunday_June_05_2022_01_57_20_AM_80314616/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

6x2y2 + 4y′yx3 = 0

6.1.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −3y
2x
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Where f(x) = − 3
2x and g(y) = y. Integrating both sides gives

1
y
dy = − 3

2x dx∫ 1
y
dy =

∫
− 3
2x dx

ln (y) = −3 ln (x)
2 + c1

y = e−
3 ln(x)

2 +c1

= c1

x
3
2

Summary
The solution(s) found are the following

(1)y = c1

x
3
2

Figure 352: Slope field plot

Verification of solutions

y = c1

x
3
2

Verified OK.
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6.1.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 3
2x

q(x) = 0

Hence the ode is

y′ + 3y
2x = 0

The integrating factor µ is

µ = e
∫ 3

2xdx

= x
3
2

The ode becomes

d
dxµy = 0

d
dx

(
x

3
2y
)
= 0

Integrating gives

x
3
2y = c1

Dividing both sides by the integrating factor µ = x
3
2 results in

y = c1

x
3
2

Summary
The solution(s) found are the following

(1)y = c1

x
3
2
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Figure 353: Slope field plot

Verification of solutions

y = c1

x
3
2

Verified OK.

6.1.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

6x4u(x)2 + 4(u′(x)x+ u(x))u(x)x4 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −5u
2x
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Where f(x) = − 5
2x and g(u) = u. Integrating both sides gives

1
u
du = − 5

2x dx∫ 1
u
du =

∫
− 5
2x dx

ln (u) = −5 ln (x)
2 + c2

u = e−
5 ln(x)

2 +c2

= c2

x
5
2

Therefore the solution y is

y = xu

= c2

x
3
2

Summary
The solution(s) found are the following

(1)y = c2

x
3
2

Figure 354: Slope field plot
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Verification of solutions

y = c2

x
3
2

Verified OK.

6.1.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −3y
2x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 267: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x

3
2

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x
3
2

dy

Which results in

S = x
3
2y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3y
2x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3y
√
x

2
Sy = x

3
2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx
3
2 = c1

Which simplifies to

yx
3
2 = c1

Which gives

y = c1

x
3
2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 3y
2x

dS
dR

= 0

R = x

S = x
3
2y

Summary
The solution(s) found are the following

(1)y = c1

x
3
2
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Figure 355: Slope field plot

Verification of solutions

y = c1

x
3
2

Verified OK.

6.1.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 2
3y

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
− 2
3y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = − 2
3y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
− 2
3y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 2
3y . Therefore equation (4) becomes

(5)− 2
3y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 2
3y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− 2
3y

)
dy

f(y) = −2 ln (y)
3 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)− 2 ln (y)
3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)− 2 ln (y)
3

The solution becomes
y = e−

3 ln(x)
2 − 3c1

2

Summary
The solution(s) found are the following

(1)y = e−
3 ln(x)

2 − 3c1
2

Figure 356: Slope field plot
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Verification of solutions

y = e−
3 ln(x)

2 − 3c1
2

Verified OK.

6.1.6 Maple step by step solution

Let’s solve
6x2y2 + 4y′yx3 = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
(6x2y2 + 4y′yx3) dx =

∫
0dx+ c1

• Evaluate integral
2x3y2 = c1

• Solve for y{
y = −

√
2√c1x
2x2 , y =

√
2√c1x
2x2

}

Maple trace

� �
`Classification methods on request
Methods to be used are: [exact]
----------------------------
* Tackling ODE using method: exact
--- Trying classification methods ---
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 39� �
dsolve(6*x^2*y(x)^2+4*x^3*y(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 0

y(x) = −
√
2
√
−c1x

2x2

y(x) =
√
2
√
−c1x

2x2

3 Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 23� �
DSolve[6*x^2*y[x]^2+4*x^3*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 0
y(x) → c1

x3/2

y(x) → 0
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6.2 problem 2
6.2.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1802
6.2.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1804
6.2.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1809
6.2.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1816

Internal problem ID [1031]
Internal file name [OUTPUT/1032_Sunday_June_05_2022_01_57_21_AM_47277048/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

3 cos (x) y + 2yx3 + (3 sin (x) + 3) y′ = −4x ex

6.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −−2x3 − 3 cos (x)
3 sin (x) + 3

q(x) = − 4x ex
3 sin (x) + 3

Hence the ode is

y′ − (−2x3 − 3 cos (x)) y
3 sin (x) + 3 = − 4x ex

3 sin (x) + 3
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The integrating factor µ is
µ = e

∫
−−2x3−3 cos(x)

3 sin(x)+3 dx

The ode becomes

d
dx(µy) = (µ)

(
− 4x ex
3 sin (x) + 3

)
d
dx

(
e
∫
−−2x3−3 cos(x)

3 sin(x)+3 dxy

)
=
(
e
∫
−−2x3−3 cos(x)

3 sin(x)+3 dx

)(
− 4x ex
3 sin (x) + 3

)

d
(
e
∫
−−2x3−3 cos(x)

3 sin(x)+3 dxy

)
=

−4x ex+
(∫ 2x3+3 cos(x)

sin(x)+1 dx

)
3

3 sin (x) + 3

 dx

Integrating gives

e
∫
−−2x3−3 cos(x)

3 sin(x)+3 dxy =
∫

−4x ex+
(∫ 2x3+3 cos(x)

sin(x)+1 dx

)
3

3 sin (x) + 3 dx

e
∫
−−2x3−3 cos(x)

3 sin(x)+3 dxy =
∫

−4x ex+
(∫ 2x3+3 cos(x)

sin(x)+1 dx

)
3

3 sin (x) + 3 dx+ c1

Dividing both sides by the integrating factor µ = e
∫
−−2x3−3 cos(x)

3 sin(x)+3 dx results in

y = e−
(∫ 2x3+3 cos(x)

sin(x)+1 dx

)
3

∫ −4x ex+
(∫ 2x3+3 cos(x)

sin(x)+1 dx

)
3

3 sin (x) + 3 dx

+ c1e−
(∫ 2x3+3 cos(x)

sin(x)+1 dx

)
3

which simplifies to

y = −

e−
(∫ 2x3+3 cos(x)

sin(x)+1 dx

)
3

4

∫ x ex+

(∫ 2x3+3 cos(x)
sin(x)+1 dx

)
3

sin(x)+1 dx

− 3c1


3

Summary
The solution(s) found are the following

(1)y = −

e−
(∫ 2x3+3 cos(x)

sin(x)+1 dx

)
3

4

∫ x ex+

(∫ 2x3+3 cos(x)
sin(x)+1 dx

)
3

sin(x)+1 dx

− 3c1


3
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Figure 357: Slope field plot

Verification of solutions

y = −

e−
(∫ 2x3+3 cos(x)

sin(x)+1 dx

)
3

4

∫ x ex+

(∫ 2x3+3 cos(x)
sin(x)+1 dx

)
3

sin(x)+1 dx

− 3c1


3

Verified OK.

6.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2y x3 + 4x ex + 3 cos (x) y
3 (sin (x) + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 270: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e
−ix+ 4x3

3
(
eix+i

)−2 ln
(
eix+i

)
+2 ln

(
eix
)
+ 4ix3

3 −4x2 ln
(
1−ieix

)
+8ixpolylog

(
2,ieix

)
−8 polylog

(
3,ieix

)
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
−ix+ 4x3

3
(
eix+i

)−2 ln(eix+i)+2 ln(eix)+ 4ix3
3 −4x2 ln(1−ieix)+8ixpolylog(2,ieix)−8 polylog(3,ieix)

dy

Which results in

S =
(
eix + i

)2 e−ix− 4x3

3
(
eix+i

)− 4ix3
3 +4x2 ln

(
1−ieix

)
−8ixpolylog

(
2,ieix

)
+8polylog

(
3,ieix

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2y x3 + 4x ex + 3 cos (x) y
3 (sin (x) + 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
4(eix + i)

4x2
(
e2ix−1+2ieix

)
(
eix+i

)2
y

((
−3ixπ + 6x ln (eix + i)− 6x ln (1− ieix) + 3i

4

)
e
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ix

(
x2+3

2πx− 3
4
)
eix+6π x2−3x

3 eix+3i +
(
3ixπ − 6x ln (eix + i) + 6x ln (1− ieix) + 3i

4

)
e
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ix

(
x2+3

2πx+3
4
)
eix+6π x2+3x

3 eix+3i + (ix2 + 12i ln (eix + i)− 12i ln (1− ieix) + 6π) e
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4i

(
x+3π

2
)
x2eix+6π x2

3 eix+3i x

)
3

Sy = e
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
+12

(
x2+1

2
)(

eix+i
)
ln
(
eix+i

)
−4ix

(
x2+3

2πx+3
4
)
eix+6π x2+3x

3 eix+3i

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −4x sec (x) (sec (x)− tan (x)) e

24
(
eix+i

)
x polylog

(
2,ieix

)
+
(
24ieix−24

)
polylog

(
3,ieix

)
+12

(
x2+1

2
)(

ieix−1
)
ln
(
eix+i

)
+6x

((
2
3x2+πx+1

2+1
2 i
)
eix+ixπ− 1

2+ i
2
)

3ieix−3

3 +

4

−
(
sec(x)x3+ 3

2
)
(sec(x)−tan(x))e

(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
+12

(
x2+1

2
)(

eix+i
)
ln
(
eix+i

)
−4ix

(
x2+3

2πx+3
4
)
eix+6π x2+3x

3 eix+3i

2 +
((

−3ixπ + 6x ln (eix + i)− 6x ln (1− ieix) + 3i
4

)
e
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ix

(
x2+3

2πx− 3
4
)
eix+6π x2−3x

3 eix+3i +
(
3ixπ − 6x ln (eix + i) + 6x ln (1− ieix) + 3i

4

)
e
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ix

(
x2+3

2πx+3
4
)
eix+6π x2+3x

3 eix+3i + (ix2 + 12i ln (eix + i)− 12i ln (1− ieix) + 6π) e
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4i

(
x+3π

2
)
x2eix+6π x2

3 eix+3i x

)
(eix + i)

4x2
(
e2ix−1+2ieix

)
(
eix+i

)2
 y

3
(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −

4
(
eiR + i

) 2
(
2R2−1

)(
e2iR−1+2ieiR

)
(
eiR+i

)2
R

(
4ie

(
24i+24 eiR

)
polylog

(
3,ieiR

)
−4
((

6ieiR−6
)
polylog

(
2,ieiR

)
+
(
iR2+3

2 iRπ− 3
4− 3

2 i
)
eiR− 3πR

2 +3
2− 3i

4
)
R

3 eiR+3i − 4ie
24
(
eiR+i

)
R polylog

(
2,ieiR

)
+
(
24ieiR−24

)
polylog

(
3,ieiR

)
+
(
6π R2+4R3+3iR

)
eiR+6iR2π−3R

3ieiR−3 − 6 e
(
24i+24 eiR

)
polylog

(
3,ieiR

)
−4
((

6ieiR−6
)
polylog

(
2,ieiR

)
+
(
iR2+3

2 iRπ− 3
4− 3

4 i
)
eiR− 3πR

2 +3
4− 3i

4
)
R

3 eiR+3i + e
(
24i+24 eiR

)
polylog

(
3,ieiR

)
−4R

((
6ieiR−6

)
polylog

(
2,ieiR

)
+
(
iR2+3

2 iRπ− 3
4+3

4 i
)
eiR− 3πR

2 − 3
4− 3i

4
)

3 eiR+3i + e
(
24i+24 eiR

)
polylog

(
3,ieiR

)
−4
((

6ieiR−6
)
polylog

(
2,ieiR

)
+
(
iR2+3

2 iRπ− 3
4− 9

4 i
)
eiR− 3πR

2 +9
4− 3i

4
)
R

3 eiR+3i

)
3 sin (R) + 3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫ 4

(
−4ie

−6iR2eiRπ−4iR3eiR−24ieiR polylog
(
2,ieiR

)
R+6iR eiR+6π R2+24 polylog

(
2,ieiR

)
R+24i polylog

(
3,ieiR

)
+3iR+24 polylog

(
3,ieiR

)
eiR+3R eiR−6R

3 eiR+3i + 4ie
6iR2π+6R2eiRπ+4R3eiR+24i polylog

(
2,ieiR

)
R+24 eiR polylog

(
2,ieiR

)
R+24i polylog

(
3,ieiR

)
eiR+3iR eiR−24 polylog

(
3,ieiR

)
−3R

3ieiR−3 + 6 e
−6iR2eiRπ−4iR3eiR−24ieiR polylog

(
2,ieiR

)
R+3iR eiR+6π R2+24 polylog

(
2,ieiR

)
R+24i polylog

(
3,ieiR

)
+3iR+24 polylog

(
3,ieiR

)
eiR+3R eiR−3R

3 eiR+3i − e
−6iR2eiRπ−4iR3eiR−24ieiR polylog

(
2,ieiR

)
R−3iR eiR+6π R2+24 polylog

(
2,ieiR

)
R+24i polylog

(
3,ieiR

)
+3iR+24 polylog

(
3,ieiR

)
eiR+3R eiR+3R

3 eiR+3i − e
−6iR2eiRπ−4iR3eiR−24ieiR polylog

(
2,ieiR

)
R+9iR eiR+6π R2+24 polylog

(
2,ieiR

)
R+24i polylog

(
3,ieiR

)
+3iR+24 polylog

(
3,ieiR

)
eiR+3R eiR−9R

3 eiR+3i

)
R
(
eiR + i

) 2
(
2R2−1

)(
e2iR−1+2ieiR

)
(
eiR+i

)2

3 sin (R) + 3 dR + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y e
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
+12

(
x2+1

2
)(

eix+i
)
ln
(
eix+i

)
−4ix

(
x2+3

2πx+3
4
)
eix+6π x2+3x

3 eix+3i =
∫ 4

(
−4ie

−6ieixπ x2−4ieixx3−24ieix polylog
(
2,ieix

)
x+6ix eix+6π x2+24 eix polylog

(
3,ieix

)
+3x eix+24i polylog

(
3,ieix

)
+24x polylog

(
2,ieix

)
+3ix−6x

3 eix+3i + 4ie
6 eixπ x2+4 eixx3+24 eix polylog

(
2,ieix

)
x+6ix2π+24ieix polylog

(
3,ieix

)
+3ix eix−24 polylog

(
3,ieix

)
+24ix polylog

(
2,ieix

)
−3x

3ieix−3 + 6 e
−6ieixπ x2−4ieixx3−24ieix polylog

(
2,ieix

)
x+3ix eix+6π x2+24 eix polylog

(
3,ieix

)
+3x eix+24i polylog

(
3,ieix

)
+24x polylog

(
2,ieix

)
+3ix−3x

3 eix+3i − e
−6ieixπ x2−4ieixx3−24ieix polylog

(
2,ieix

)
x−3ix eix+6π x2+24 eix polylog

(
3,ieix

)
+3x eix+24i polylog

(
3,ieix

)
+24x polylog

(
2,ieix

)
+3ix+3x

3 eix+3i − e
−6ieixπ x2−4ieixx3−24ieix polylog

(
2,ieix

)
x+9ix eix+6π x2+24 eix polylog

(
3,ieix

)
+3x eix+24i polylog

(
3,ieix

)
+24x polylog

(
2,ieix

)
+3ix−9x

3 eix+3i

)
x(eix + i)

2
(
2x2−1

)(
e2ix−1+2ieix

)
(
eix+i

)2

3 sin (x) + 3 dx+ c1

Which simplifies to

y e
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
+12

(
x2+1

2
)(

eix+i
)
ln
(
eix+i

)
−4ix

(
x2+3

2πx+3
4
)
eix+6π x2+3x

3 eix+3i −

4


∫
−

(
eix+i

) 2
(
2x2−1

)(
e2ix−1+2ieix

)
(
eix+i

)2
x

4ie

(
24i+24 eix

)
polylog

(
3,ieix

)
−4
((

6ieix−6
)
polylog

(
2,ieix

)
+
(
ix2+3

2 ixπ− 3
4− 3

2 i
)
eix− 3πx

2 +3
2− 3i

4
)
x

3 eix+3i −4ie
24
(
eix+i

)
x polylog

(
2,ieix

)
+
(
24ieix−24

)
polylog

(
3,ieix

)
+
(
6π x2+4x3+3ix

)
eix+6ix2π−3x

3ieix−3 −6 e

(
24i+24 eix

)
polylog

(
3,ieix

)
−4
((

6ieix−6
)
polylog

(
2,ieix

)
+
(
ix2+3

2 ixπ− 3
4− 3

4 i
)
eix− 3πx

2 +3
4− 3i

4
)
x

3 eix+3i +e

(
24i+24 eix

)
polylog

(
3,ieix

)
−4x

((
6ieix−6

)
polylog

(
2,ieix

)
+
(
ix2+3

2 ixπ− 3
4+3

4 i
)
eix− 3πx

2 − 3
4− 3i

4
)

3 eix+3i +e

(
24i+24 eix

)
polylog

(
3,ieix

)
−4
((

6ieix−6
)
polylog

(
2,ieix

)
+
(
ix2+3

2 ixπ− 3
4− 9

4 i
)
eix− 3πx

2 +9
4− 3i

4
)
x

3 eix+3i


sin(x)+1 dx


3 − c1 = 0

Which gives

Expression too large to display
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2y x3+4x ex+3 cos(x)y
3(sin(x)+1)

dS
dR

=

−
4
(
eiR+i

) 2
(
2R2−1

)(
e2iR−1+2ieiR

)
(
eiR+i

)2
R

4ie

(
24i+24 eiR

)
polylog

(
3,ieiR

)
−4
((

6ieiR−6
)
polylog

(
2,ieiR

)
+
(
iR2+3

2 iRπ− 3
4− 3

2 i
)
eiR− 3πR

2 +3
2− 3i

4
)
R

3 eiR+3i −4ie
24
(
eiR+i

)
R polylog

(
2,ieiR

)
+
(
24ieiR−24

)
polylog

(
3,ieiR

)
+
(
6π R2+4R3+3iR

)
eiR+6iR2π−3R

3ieiR−3 −6 e

(
24i+24 eiR

)
polylog

(
3,ieiR

)
−4
((

6ieiR−6
)
polylog

(
2,ieiR

)
+
(
iR2+3

2 iRπ− 3
4− 3

4 i
)
eiR− 3πR

2 +3
4− 3i

4
)
R

3 eiR+3i +e

(
24i+24 eiR

)
polylog

(
3,ieiR

)
−4R

((
6ieiR−6

)
polylog

(
2,ieiR

)
+
(
iR2+3

2 iRπ− 3
4+3

4 i
)
eiR− 3πR

2 − 3
4− 3i

4
)

3 eiR+3i +e

(
24i+24 eiR

)
polylog

(
3,ieiR

)
−4
((

6ieiR−6
)
polylog

(
2,ieiR

)
+
(
iR2+3

2 iRπ− 3
4− 9

4 i
)
eiR− 3πR

2 +9
4− 3i

4
)
R

3 eiR+3i


3 sin(R)+3

R = x

S = y e
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
+12

(
x2+1

2
)(

eix+i
)
ln
(
eix+i

)
−4ix

(
x2+3

2πx+3
4
)
eix+6π x2+3x

3 eix+3i

Summary
The solution(s) found are the following

(1)Expression too large to display
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Figure 358: Slope field plot

Verification of solutions

Expression too large to display

Verified OK.

6.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

1809



Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(3 sin (x) + 3) dy =
(
−2y x3 − 3 cos (x) y − 4x ex

)
dx(

2y x3 + 4x ex + 3 cos (x) y
)
dx+(3 sin (x) + 3) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2y x3 + 4x ex + 3 cos (x) y
N(x, y) = 3 sin (x) + 3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2y x3 + 4x ex + 3 cos (x) y

)
= 2x3 + 3 cos (x)

And
∂N

∂x
= ∂

∂x
(3 sin (x) + 3)

= 3 cos (x)
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

3 sin (x) + 3
((
2x3 + 3 cos (x)

)
− (3 cos (x))

)
= 2x3

3 sin (x) + 3
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ 2x3

3 sin(x)+3 dx

The result of integrating gives

µ = e
− 4x3

3
(
eix+i

)− 4ix3
3 +4x2 ln

(
1−ieix

)
−8ixpolylog

(
2,ieix

)
+8polylog

(
3,ieix

)

= e
12
(
eix+i

)
x2 ln

(
1−ieix

)
+
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ieixx3

3 eix+3i

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e
12
(
eix+i

)
x2 ln

(
1−ieix

)
+
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ieixx3

3 eix+3i
(
2y x3 + 4x ex + 3 cos (x) y

)
=
(
2y x3 + 4x ex + 3 cos (x) y

)
e

12
(
eix+i

)
x2 ln

(
1−ieix

)
+
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ieixx3

3 eix+3i

And

N = µN

= e
12
(
eix+i

)
x2 ln

(
1−ieix

)
+
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ieixx3

3 eix+3i (3 sin (x) + 3)

= 3(sin (x) + 1) e
12
(
eix+i

)
x2 ln

(
1−ieix

)
+
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ieixx3

3 eix+3i

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

2y x3 + 4x ex + 3 cos (x) y
)
e

12
(
eix+i

)
x2 ln

(
1−ieix

)
+
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ieixx3

3 eix+3i

)
+
(
3(sin (x) + 1) e

12
(
eix+i

)
x2 ln

(
1−ieix

)
+
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ieixx3

3 eix+3i

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx

=
∫ (

2y x3 + 4x ex

+3 cos (x) y
)
e

12
(
eix+i

)
x2 ln

(
1−ieix

)
+
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ieixx3

3 eix+3i dx

(3)φ =
∫ x (

2y_a3 + 4_a e_a

+3 cos (_a) y
)
e

12
(
ei_a+i

)
_a2 ln

(
1−iei_a)+(−24i_a ei_a+24_a

)
polylog

(
2,iei_a)+(24i+24 ei_a) polylog

(
3,iei_a)−4iei_a_a3

3 ei_a+3i d_a
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
=
∫ x (

2_a3

+3 cos (_a)
)
e

12
(
ei_a+i

)
_a2 ln

(
1−iei_a)+(−24i_a ei_a+24_a

)
polylog

(
2,iei_a)+(24i+24 ei_a) polylog

(
3,iei_a)−4iei_a_a3

3 ei_a+3i d_a
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 3(sin (x) + 1) e
12
(
eix+i

)
x2 ln

(
1−ieix

)
+
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ieixx3

3 eix+3i .
Therefore equation (4) becomes

(5)3(sin (x) + 1) e
12
(
eix+i

)
x2 ln

(
1−ieix

)
+
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ieixx3

3 eix+3i

=
∫ x (

2_a3

+3 cos (_a)
)
e

12
(
ei_a+i

)
_a2 ln

(
1−iei_a)+(−24i_a ei_a+24_a

)
polylog

(
2,iei_a)+(24i+24 ei_a) polylog

(
3,iei_a)−4iei_a_a3

3 ei_a+3i d_a
+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 3 e
12
(
eix+i

)
x2 ln

(
1−ieix

)
+
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ieixx3

3 eix+3i sin (x)

−

(∫ x (
2_a3

+3 cos (_a)
)
e

12
(
ei_a+i

)
_a2 ln

(
1−iei_a)+(−24i_a ei_a+24_a

)
polylog

(
2,iei_a)+(24i+24 ei_a) polylog

(
3,iei_a)−4iei_a_a3

3 ei_a+3i d_a
)

+ 3 e
12
(
eix+i

)
x2 ln

(
1−ieix

)
+
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ieixx3

3 eix+3i

= −

(∫ x (
2_a3

+3 cos (_a)
)
e

12
(
ei_a+i

)
_a2 ln

(
1−iei_a)+(−24i_a ei_a+24_a

)
polylog

(
2,iei_a)+(24i+24 ei_a) polylog

(
3,iei_a)−4iei_a_a3

3 ei_a+3i d_a
)

+ (3 sin (x)

+ 3) e
12
(
eix+i

)
x2 ln

(
1−ieix

)
+
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ieixx3

3 eix+3i

Integrating the above w.r.t y results in∫
f ′(y) dy

=
∫ (

−

(∫ x (
2_a3+3 cos (_a)

)
e

12
(
ei_a+i

)
_a2 ln

(
1−iei_a)+(−24i_a ei_a+24_a

)
polylog

(
2,iei_a)+(24i+24 ei_a) polylog

(
3,iei_a)−4iei_a_a3

3 ei_a+3i d_a
)

+ (3 sin (x)

+ 3) e
12
(
eix+i

)
x2 ln

(
1−ieix

)
+
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ieixx3

3 eix+3i

)
dy

f(y)

=
(
−

(∫ x (
2_a3+3 cos (_a)

)
e

12
(
ei_a+i

)
_a2 ln

(
1−iei_a)+(−24i_a ei_a+24_a

)
polylog

(
2,iei_a)+(24i+24 ei_a) polylog

(
3,iei_a)−4iei_a_a3

3 ei_a+3i d_a
)

+ (3 sin (x)

+3) e
12
(
eix+i

)
x2 ln

(
1−ieix

)
+
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ieixx3

3 eix+3i

)
y+c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
∫ x (

2y_a3 + 4_a e_a

+3 cos (_a) y
)
e

12
(
ei_a+i

)
_a2 ln

(
1−iei_a)+(−24i_a ei_a+24_a

)
polylog

(
2,iei_a)+(24i+24 ei_a) polylog

(
3,iei_a)−4iei_a_a3

3 ei_a+3i d_a

+
(
−

(∫ x (
2_a3+3 cos (_a)

)
e

12
(
ei_a+i

)
_a2 ln

(
1−iei_a)+(−24i_a ei_a+24_a

)
polylog

(
2,iei_a)+(24i+24 ei_a) polylog

(
3,iei_a)−4iei_a_a3

3 ei_a+3i d_a
)

+ (3 sin (x)

+ 3) e
12
(
eix+i

)
x2 ln

(
1−ieix

)
+
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ieixx3

3 eix+3i

)
y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
∫ x (

2y_a3 + 4_a e_a

+3 cos (_a) y
)
e

12
(
ei_a+i

)
_a2 ln

(
1−iei_a)+(−24i_a ei_a+24_a

)
polylog

(
2,iei_a)+(24i+24 ei_a) polylog

(
3,iei_a)−4iei_a_a3

3 ei_a+3i d_a

+
(
−

(∫ x (
2_a3+3 cos (_a)

)
e

12
(
ei_a+i

)
_a2 ln

(
1−iei_a)+(−24i_a ei_a+24_a

)
polylog

(
2,iei_a)+(24i+24 ei_a) polylog

(
3,iei_a)−4iei_a_a3

3 ei_a+3i d_a
)

+ (3 sin (x)

+ 3) e
12
(
eix+i

)
x2 ln

(
1−ieix

)
+
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ieixx3

3 eix+3i

)
y

Summary
The solution(s) found are the following

(1)
∫ x (

2y_a3 + 4_a e_a

+3 cos (_a) y
)
e

12
(
ei_a+i

)
_a2 ln

(
1−iei_a)+(−24i_a ei_a+24_a

)
polylog

(
2,iei_a)+(24i+24 ei_a) polylog

(
3,iei_a)−4iei_a_a3

3 ei_a+3i d_a

+
(
−

(∫ x (
2_a3+3 cos (_a)

)
e

12
(
ei_a+i

)
_a2 ln

(
1−iei_a)+(−24i_a ei_a+24_a

)
polylog

(
2,iei_a)+(24i+24 ei_a) polylog

(
3,iei_a)−4iei_a_a3

3 ei_a+3i d_a
)

+ (3 sin (x) + 3) e
12
(
eix+i

)
x2 ln

(
1−ieix

)
+
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ieixx3

3 eix+3i

)
y

= c1
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Figure 359: Slope field plot

Verification of solutions∫ x (
2y_a3 + 4_a e_a

+3 cos (_a) y
)
e

12
(
ei_a+i

)
_a2 ln

(
1−iei_a)+(−24i_a ei_a+24_a

)
polylog

(
2,iei_a)+(24i+24 ei_a) polylog

(
3,iei_a)−4iei_a_a3

3 ei_a+3i d_a

+
(
−

(∫ x (
2_a3+3 cos (_a)

)
e

12
(
ei_a+i

)
_a2 ln

(
1−iei_a)+(−24i_a ei_a+24_a

)
polylog

(
2,iei_a)+(24i+24 ei_a) polylog

(
3,iei_a)−4iei_a_a3

3 ei_a+3i d_a
)

+ (3 sin (x) + 3) e
12
(
eix+i

)
x2 ln

(
1−ieix

)
+
(
−24ix eix+24x

)
polylog

(
2,ieix

)
+
(
24i+24 eix

)
polylog

(
3,ieix

)
−4ieixx3

3 eix+3i

)
y

= c1

Verified OK.

1815



6.2.4 Maple step by step solution

Let’s solve
3 cos (x) y + 2yx3 + (3 sin (x) + 3) y′ = −4x ex

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ = −
(
2x3+3 cos(x)

)
y

3(sin(x)+1) − 4x ex
3(sin(x)+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ +
(
2x3+3 cos(x)

)
y

3(sin(x)+1) = − 4x ex
3(sin(x)+1)

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ +

(
2x3+3 cos(x)

)
y

3(sin(x)+1)

)
= − 4µ(x)x ex

3(sin(x)+1)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ +

(
2x3+3 cos(x)

)
y

3(sin(x)+1)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)

µ′(x) = µ(x)
(
2x3+3 cos(x)

)
3(sin(x)+1)

• Solve to find the integrating factor

µ(x) = e
−4 I eIxx3+12x2 ln

(
−I
(
eIx+I

))
eIx−24 I eIxpolylog

(
2,I eIx

)
x+12 Ix2 ln

(
−I
(
eIx+I

))
−3 Ix eIx+6 eIx ln

(
eIx+I

)
+24 eIxpolylog

(
3,I eIx

)
+6 I ln

(
eIx+I

)
+24 Ipolylog

(
3,I eIx

)
+24xpolylog

(
2,I eIx

)
+3x

3
(
eIx+I

)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
− 4µ(x)x ex

3(sin(x)+1)dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
− 4µ(x)x ex

3(sin(x)+1)dx+ c1

• Solve for y

y =
∫
− 4µ(x)x ex

3(sin(x)+1)dx+c1

µ(x)

• Substitute µ(x) = e
−4 IeIxx3+12x2 ln

(
−I
(
eIx+I

))
eIx−24 IeIxpolylog

(
2,IeIx

)
x+12 Ix2 ln

(
−I
(
eIx+I

))
−3 IxeIx+6eIx ln

(
eIx+I

)
+24eIxpolylog

(
3,IeIx

)
+6 I ln

(
eIx+I

)
+24 Ipolylog

(
3,IeIx

)
+24xpolylog

(
2,IeIx

)
+3x

3
(
eIx+I

)
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y =
∫
− 4 e

−4 I eIxx3+12x2 ln
(
−I
(
eIx+I

))
eIx−24 I eIxpolylog

(
2,I eIx

)
x+12 Ix2 ln

(
−I
(
eIx+I

))
−3 Ix eIx+6 eIx ln

(
eIx+I

)
+24 eIxpolylog

(
3,I eIx

)
+6 I ln

(
eIx+I

)
+24 Ipolylog

(
3,I eIx

)
+24xpolylog

(
2,I eIx

)
+3x

3
(
eIx+I

)
x ex

3(sin(x)+1) dx+c1

e

−4 I eIxx3+12x2 ln
(
−I
(
eIx+I

))
eIx−24 I eIxpolylog

(
2,I eIx

)
x+12 Ix2 ln

(
−I
(
eIx+I

))
−3 Ix eIx+6 eIx ln

(
eIx+I

)
+24 eIxpolylog

(
3,I eIx

)
+6 I ln

(
eIx+I

)
+24 Ipolylog

(
3,I eIx

)
+24xpolylog

(
2,I eIx

)
+3x

3
(
eIx+I

)

• Simplify

y = −

4

∫ x e

4
(
eIx+I

)
x2 ln

(
1−I eIx

)
+8x

(
1−I eIx

)
polylog

(
2,I eIx

)
+8polylog

(
3,I eIx

)(
eIx+I

)
+2 ln

(
eIx+I

)(
eIx+I

)
+
((

− 4 Ix2
3 +1−I

)
eIx+1+I

)
x

eIx+I
sin(x)+1 dx

−3c1

e
−12

(
eIx+I

)
x2 ln

(
1−I eIx

)
+
(
−24x+24 Ix eIx

)
polylog

(
2,I eIx

)
+
(
−24 I−24 eIx

)
polylog

(
3,I eIx

)
+
(
−6 I−6 eIx

)
ln
(
eIx+I

)
+4 I

(
x2+3

4
)
x eIx−3x

3 eIx+3 I

3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 395� �
dsolve((3*y(x)*cos(x)+4*x*exp(x)+2*x^3*y(x))+(3*sin(x)+3)*diff(y(x),x)=0,y(x), singsol=all)� �
y(x)

=

e
(
−24x+24ix eix

)
polylog

(
2,ieix

)
+
(
−24i−24 eix

)
polylog

(
3,ieix

)
+4ix

(
x2+3

4
)
eix−3x

3 eix+3i

4

∫
−2ie

24x
(
eix+i

)
polylog

(
2,ieix

)
+4 eixx3+3ix eix+24i polylog

(
3,ieix

)
eix−3x−24 polylog

(
3,ieix

)
3ieix−3 +e

(
24i+24 eix

)
polylog

(
3,ieix

)
−4x

((
6ieix−6

)
polylog

(
2,ieix

)
+
(
ix2− 3

4+3
4 i
)
eix− 3

4− 3i
4
)

3 eix+3i −e

(
24i+24 eix

)
polylog

(
3,ieix

)
−4x

((
6ieix−6

)
polylog

(
2,ieix

)
+
(
ix2− 3

4− 3
4 i
)
eix+3

4− 3i
4
)

3 eix+3i

(1−ieix
)4x2

x

sin(x)+1 dx

+ 3c1

 (1− ieix)−4x2

3 (eix + i)2

3 Solution by Mathematica
Time used: 27.47 (sec). Leaf size: 193� �
DSolve[(3*y[x]*Cos[x]+4*x*Exp[x]+2*x^3*y[x])+(3*Sin[x]+3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
(1 + ie−ix)−4x2

exp
(
−8ixPolyLog (2,−ie−ix)− 8PolyLog (3,−ie−ix) + 2

3x
3(cot (14(2x+ π)

)
− i
)) (∫ x

1 −4
3 exp

(
−2

3 cot
(1
4(2K[1] + π)

)
K[1]3 + 2

3iK[1]3 + 8iPolyLog
(
2,−ie−iK[1])K[1] +K[1] + 8PolyLog

(
3,−ie−iK[1]))K[1](i cos(K[1]) + sin(K[1]) + 1)4K[1]2dK[1] + c1

)
sin(x) + 1
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6.3 problem 3
6.3.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 1818
6.3.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1819

Internal problem ID [1032]
Internal file name [OUTPUT/1033_Sunday_June_05_2022_01_57_23_AM_85532474/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

14y3x2 + 21x2y2y′ = 0

6.3.1 Solving as quadrature ode

Integrating both sides gives ∫
− 3
2ydy =

∫
dx

−3 ln (y)
2 = x+ c1

Raising both side to exponential gives
1
y

3
2
= ex+c1

Which simplifies to
1
y

3
2
= c2ex

Summary
The solution(s) found are the following

(1)y = 1
(c2ex)

2
3
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Figure 360: Slope field plot

Verification of solutions

y = 1
(c2ex)

2
3

Verified OK.

6.3.2 Maple step by step solution

Let’s solve
14y3x2 + 21x2y2y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= −2

3

• Integrate both sides with respect to x∫
y′

y
dx =

∫
−2

3dx+ c1

• Evaluate integral

1819



ln (y) = −2x
3 + c1

• Solve for y
y = e− 2x

3 +c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve((14*x^2*y(x)^3)+(21*x^2*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 0
y(x) = c1e−

2x
3

3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 25� �
DSolve[(14*x^2*y[x]^3)+(21*x^2*y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 0
y(x) → c1e

−2x/3

y(x) → 0
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6.4 problem 4
6.4.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1821
6.4.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1824

Internal problem ID [1033]
Internal file name [OUTPUT/1034_Sunday_June_05_2022_01_57_25_AM_50789681/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational]

−2y2 +
(
12y2 − 4yx

)
y′ = −2x

6.4.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

−4yx+ 12y2
)
dy =

(
2y2 − 2x

)
dx(

−2y2 + 2x
)
dx+

(
−4yx+ 12y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2y2 + 2x
N(x, y) = −4yx+ 12y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−2y2 + 2x

)
= −4y

And
∂N

∂x
= ∂

∂x

(
−4yx+ 12y2

)
= −4y

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2y2 + 2x dx

(3)φ = x
(
−2y2 + x

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −4yx+ f ′(y)

But equation (2) says that ∂φ
∂y

= −4yx+ 12y2. Therefore equation (4) becomes

(5)−4yx+ 12y2 = −4yx+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 12y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
12y2

)
dy

f(y) = 4y3 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x
(
−2y2 + x

)
+ 4y3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x
(
−2y2 + x

)
+ 4y3
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Summary
The solution(s) found are the following

(1)x
(
−2y2 + x

)
+ 4y3 = c1

Figure 361: Slope field plot

Verification of solutions

x
(
−2y2 + x

)
+ 4y3 = c1

Verified OK.

6.4.2 Maple step by step solution

Let’s solve
−2y2 + (12y2 − 4yx) y′ = −2x

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function
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F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
−4y = −4y

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−2y2 + 2x) dx+ f1(y)

• Evaluate integral
F (x, y) = −2x y2 + x2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
−4yx+ 12y2 = −4yx+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 12y2

• Solve for f1(y)
f1(y) = 4y3

• Substitute f1(y) into equation for F (x, y)
F (x, y) = −2x y2 + 4y3 + x2

• Substitute F (x, y) into the solution of the ODE
−2x y2 + 4y3 + x2 = c1

• Solve for y
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y =

(
−27x2+27c1+x3+3

√
−6x5+6c1x3+81x4−162c1x2+81c21

) 1
3

6 + x2

6
(
−27x2+27c1+x3+3

√
−6x5+6c1x3+81x4−162c1x2+81c21

) 1
3
+ x

6 , y = −

(
−27x2+27c1+x3+3

√
−6x5+6c1x3+81x4−162c1x2+81c21

) 1
3

12 − x2

12
(
−27x2+27c1+x3+3

√
−6x5+6c1x3+81x4−162c1x2+81c21

) 1
3
+ x

6 −

I
√
3


(
−27x2+27c1+x3+3

√
−6x5+6c1x3+81x4−162c1x2+81c21

) 1
3

6 − x2

6
(
−27x2+27c1+x3+3

√
−6x5+6c1x3+81x4−162c1x2+81c21

) 1
3


2 , y = −

(
−27x2+27c1+x3+3

√
−6x5+6c1x3+81x4−162c1x2+81c21

) 1
3

12 − x2

12
(
−27x2+27c1+x3+3

√
−6x5+6c1x3+81x4−162c1x2+81c21

) 1
3
+ x

6 +
I
√
3


(
−27x2+27c1+x3+3

√
−6x5+6c1x3+81x4−162c1x2+81c21

) 1
3

6 − x2

6
(
−27x2+27c1+x3+3

√
−6x5+6c1x3+81x4−162c1x2+81c21

) 1
3


2


Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 429� �
dsolve((2*x-2*y(x)^2)+(12*y(x)^2-4*x*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �
y(x) =

(
−27x2 − 27c1 + x3 + 3

√
−6x5 − 6c1x3 + 81x4 + 162c1x2 + 81c21

) 1
3

6
+ x2

6
(
−27x2 − 27c1 + x3 + 3

√
−6x5 − 6c1x3 + 81x4 + 162c1x2 + 81c21

) 1
3
+ x

6

y(x)

=

(
−
(
−27x2 − 27c1 + x3 + 3

√
−3 (x2 + c1) (2x3 − 27x2 − 27c1)

) 1
3 + x

)(
i

((
−27x2 − 27c1 + x3 + 3

√
−3 (x2 + c1) (2x3 − 27x2 − 27c1)

) 1
3 + x

)√
3 +

(
−27x2 − 27c1 + x3 + 3

√
−3 (x2 + c1) (2x3 − 27x2 − 27c1)

) 1
3 − x

)
12
(
−27x2 − 27c1 + x3 + 3

√
−3 (x2 + c1) (2x3 − 27x2 − 27c1)

) 1
3

y(x)

=

(
−27x2 − 27c1 + x3 + 3

√
−3 (x2 + c1) (2x3 − 27x2 − 27c1)

) 1
3 (

i
√
3− 1

)
12

−
x

(
ix
√
3 + x− 2

(
−27x2 − 27c1 + x3 + 3

√
−3 (x2 + c1) (2x3 − 27x2 − 27c1)

) 1
3
)

12
(
−27x2 − 27c1 + x3 + 3

√
−3 (x2 + c1) (2x3 − 27x2 − 27c1)

) 1
3
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3 Solution by Mathematica
Time used: 4.8 (sec). Leaf size: 414� �
DSolve[(2*x-2*y[x]^2)+(12*y[x]^2-4*x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → − x2

3 22/3 3
√

−2x3 + 54x2 +
√

−4x6 + 4 (x3 − 27x2 − 54c1) 2 + 108c1

−
3
√

−2x3 + 54x2 +
√

−4x6 + 4 (x3 − 27x2 − 54c1) 2 + 108c1
6 3
√
2

+ x

6

y(x) →
(
1 + i

√
3
)
x2

6 22/3 3
√

−2x3 + 54x2 +
√

−4x6 + 4 (x3 − 27x2 − 54c1) 2 + 108c1

+
(
1− i

√
3
) 3
√

−2x3 + 54x2 +
√

−4x6 + 4 (x3 − 27x2 − 54c1) 2 + 108c1
12 3

√
2

+ x

6

y(x) →
(
1− i

√
3
)
x2

6 22/3 3
√

−2x3 + 54x2 +
√

−4x6 + 4 (x3 − 27x2 − 54c1) 2 + 108c1

+
(
1 + i

√
3
) 3
√

−2x3 + 54x2 +
√
−4x6 + 4 (x3 − 27x2 − 54c1) 2 + 108c1
12 3

√
2

+ x

6
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6.5 problem 5
6.5.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 1829
6.5.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1830

Internal problem ID [1034]
Internal file name [OUTPUT/1035_Sunday_June_05_2022_01_57_26_AM_68709905/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

(x+ y)2 + (x+ y)2 y′ = 0

6.5.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

−1 dx

= −x+ c1

Summary
The solution(s) found are the following

(1)y = −x+ c1

1829



Figure 362: Slope field plot

Verification of solutions

y = −x+ c1

Verified OK.

6.5.2 Maple step by step solution

Let’s solve
(x+ y)2 + (x+ y)2 y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
(x+ y)2 + (x+ y)2 y′

)
dx =

∫
0dx+ c1

• Evaluate integral
(x+y)3

3 = c1

• Solve for y
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y = c
1
3
1 3

1
3 − x

Maple trace

� �
`Classification methods on request
Methods to be used are: [exact]
----------------------------
* Tackling ODE using method: exact
--- Trying classification methods ---
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 49� �
dsolve((x+y(x))^2+(x+y(x))^2*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −x
y(x) = c1 − x

y(x) = −c1
2 − i

√
3 c1
2 − x

y(x) = −c1
2 + i

√
3 c1
2 − x

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 18� �
DSolve[(x+y[x])^2+(x+y[x])^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x
y(x) → −x+ c1
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6.6 problem 6
6.6.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1832
6.6.2 Solving as first order ode lie symmetry calculated ode . . . . . . 1834

Internal problem ID [1035]
Internal file name [OUTPUT/1036_Sunday_June_05_2022_01_57_27_AM_85796263/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

7y + (3x+ 4y) y′ = −4x

6.6.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

7u(x)x+ (3x+ 4u(x)x) (u′(x)x+ u(x)) = −4x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2(2u2 + 5u+ 2)
x (4u+ 3)

1832



Where f(x) = − 2
x
and g(u) = 2u2+5u+2

4u+3 . Integrating both sides gives

1
2u2+5u+2

4u+3
du = −2

x
dx

∫ 1
2u2+5u+2

4u+3
du =

∫
−2
x
dx

ln (2u+ 1)
3 + 5 ln (u+ 2)

3 = −2 ln (x) + c2

The above can be written as

ln (2u+ 1) + 5 ln (u+ 2)
3 = −2 ln (x) + c2

ln (2u+ 1) + 5 ln (u+ 2) = (3) (−2 ln (x) + c2)
= −6 ln (x) + 3c2

Raising both side to exponential gives

eln(2u+1)+5 ln(u+2) = e−6 ln(x)+3c2

Which simplifies to

(2u+ 1) (u+ 2)5 = 3c2
x6

= c3
x6

Which simplifies to

u(x) = RootOf
(
2_Z6 + 21_Z5 + 90_Z4 + 200_Z3 − c3e3c2

x6 + 240_Z2 + 144_Z+ 32
)

Therefore the solution y is

y = xu

= xRootOf
(
2_Z6x6 + 21_Z5x6 + 90x6_Z4 + 200_Z3x6 + 240_Z2x6 + 144_Zx6 + 32x6 − c3e3c2

)
Summary
The solution(s) found are the following

(1)y = xRootOf
(
2_Z6x6 + 21_Z5x6 + 90x6_Z4 + 200_Z3x6 + 240_Z2x6

+ 144_Zx6 + 32x6 − c3e3c2
)
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Figure 363: Slope field plot

Verification of solutions

y = xRootOf
(
2_Z6x6 + 21_Z5x6 + 90x6_Z4 + 200_Z3x6 + 240_Z2x6 + 144_Zx6

+ 32x6 − c3e3c2
)

Verified OK.

6.6.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −4x+ 7y
3x+ 4y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(4x+ 7y) (b3 − a2)

3x+ 4y − (4x+ 7y)2 a3
(3x+ 4y)2

−
(
− 4
3x+ 4y + 12x+ 21y

(3x+ 4y)2
)
(xa2 + ya3 + a1)

−
(
− 7
3x+ 4y + 16x+ 28y

(3x+ 4y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

12x2a2 − 16x2a3 + 14x2b2 − 12x2b3 + 32xya2 − 56xya3 + 24xyb2 − 32xyb3 + 28y2a2 − 54y2a3 + 16y2b2 − 28y2b3 + 5xb1 − 5ya1
(3x+ 4y)2

= 0

Setting the numerator to zero gives

(6E)12x2a2 − 16x2a3 + 14x2b2 − 12x2b3 + 32xya2 − 56xya3 + 24xyb2
− 32xyb3 + 28y2a2 − 54y2a3 + 16y2b2 − 28y2b3 + 5xb1 − 5ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)12a2v21 + 32a2v1v2 + 28a2v22 − 16a3v21 − 56a3v1v2 − 54a3v22 + 14b2v21
+ 24b2v1v2 + 16b2v22 − 12b3v21 − 32b3v1v2 − 28b3v22 − 5a1v2 + 5b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(12a2 − 16a3 + 14b2 − 12b3) v21 + (32a2 − 56a3 + 24b2 − 32b3) v1v2
+ 5b1v1 + (28a2 − 54a3 + 16b2 − 28b3) v22 − 5a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−5a1 = 0
5b1 = 0

12a2 − 16a3 + 14b2 − 12b3 = 0
28a2 − 54a3 + 16b2 − 28b3 = 0
32a2 − 56a3 + 24b2 − 32b3 = 0

Solving the above equations for the unknowns gives

a1 = 0

a2 =
5a3
2 + b3

a3 = a3

b1 = 0
b2 = −a3

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−4x+ 7y
3x+ 4y

)
(x)

= 4x2 + 10yx+ 4y2
3x+ 4y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

4x2+10yx+4y2
3x+4y

dy

Which results in

S = ln (x+ 2y)
6 + 5 ln (2x+ y)

6
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −4x+ 7y
3x+ 4y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 4x+ 7y
4x2 + 10yx+ 4y2

Sy =
3x+ 4y

4x2 + 10yx+ 4y2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x+ 2y)
6 + 5 ln (2x+ y)

6 = c1

Which simplifies to
ln (x+ 2y)

6 + 5 ln (2x+ y)
6 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −4x+7y
3x+4y

dS
dR

= 0

R = x

S = ln (x+ 2y)
6 + 5 ln (2x+ y)

6
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Summary
The solution(s) found are the following

(1)ln (x+ 2y)
6 + 5 ln (2x+ y)

6 = c1

Figure 364: Slope field plot

Verification of solutions

ln (x+ 2y)
6 + 5 ln (2x+ y)

6 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.25 (sec). Leaf size: 54� �
dsolve((4*x+7*y(x))+(3*x+4*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
x
(
−2RootOf

(
_Z36 + 3_Z6c1x

6 − 2c1x6)6 + 1
)

RootOf
(
_Z36 + 3_Z6c1x6 − 2c1x6

)6
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3 Solution by Mathematica
Time used: 3.222 (sec). Leaf size: 409� �
DSolve[(4*x+7*y[x])+(3*x+4*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → Root

[
2#16 + 21#15x+ 90#14x2 + 200#13x3 + 240#12x4 + 144#1x5 + 32x6

− e3c1&, 1
]

y(x) → Root
[
2#16 + 21#15x+ 90#14x2 + 200#13x3 + 240#12x4 + 144#1x5 + 32x6

− e3c1&, 2
]

y(x) → Root
[
2#16 + 21#15x+ 90#14x2 + 200#13x3 + 240#12x4 + 144#1x5 + 32x6

− e3c1&, 3
]

y(x) → Root
[
2#16 + 21#15x+ 90#14x2 + 200#13x3 + 240#12x4 + 144#1x5 + 32x6

− e3c1&, 4
]

y(x) → Root
[
2#16 + 21#15x+ 90#14x2 + 200#13x3 + 240#12x4 + 144#1x5 + 32x6

− e3c1&, 5
]

y(x) → Root
[
2#16 + 21#15x+ 90#14x2 + 200#13x3 + 240#12x4 + 144#1x5 + 32x6

− e3c1&, 6
]
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6.7 problem 7
6.7.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1842
6.7.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1845

Internal problem ID [1036]
Internal file name [OUTPUT/1037_Sunday_June_05_2022_01_57_28_AM_49692152/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact]

−2 sin (x) y2 + 3y3 +
(
4 cos (x) y + 9xy2

)
y′ = 2x

6.7.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

4 cos (x) y + 9x y2
)
dy =

(
2 sin (x) y2 − 3y3 + 2x

)
dx(

3y3 − 2 sin (x) y2 − 2x
)
dx+

(
4 cos (x) y + 9x y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3y3 − 2 sin (x) y2 − 2x
N(x, y) = 4 cos (x) y + 9x y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
3y3 − 2 sin (x) y2 − 2x

)
= y(9y − 4 sin (x))

And
∂N

∂x
= ∂

∂x

(
4 cos (x) y + 9x y2

)
= y(9y − 4 sin (x))

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
3y3 − 2 sin (x) y2 − 2x dx

(3)φ = 3x y3 − x2 + 2 cos (x) y2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 4 cos (x) y + 9x y2 + f ′(y)

But equation (2) says that ∂φ
∂y

= 4 cos (x) y + 9x y2. Therefore equation (4) becomes

(5)4 cos (x) y + 9x y2 = 4 cos (x) y + 9x y2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 3x y3 − x2 + 2 cos (x) y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = 3x y3 − x2 + 2 cos (x) y2

Summary
The solution(s) found are the following

(1)3xy3 − x2 + 2 cos (x) y2 = c1
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Figure 365: Slope field plot

Verification of solutions

3xy3 − x2 + 2 cos (x) y2 = c1

Verified OK.

6.7.2 Maple step by step solution

Let’s solve
−2 sin (x) y2 + 3y3 + (4 cos (x) y + 9xy2) y′ = 2x

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
9y2 − 4 sin (x) y = 9y2 − 4 sin (x) y

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(3y3 − 2 sin (x) y2 − 2x) dx+ f1(y)

• Evaluate integral
F (x, y) = 3x y3 − x2 + 2 cos (x) y2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
4 cos (x) y + 9x y2 = 9x y2 + 4 cos (x) y + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = 3x y3 − x2 + 2 cos (x) y2

• Substitute F (x, y) into the solution of the ODE
3x y3 − x2 + 2 cos (x) y2 = c1

• Solve for y
y =

(
972x4−64 cos(x)3+972c1x2+36

√
729x6−96 cos(x)3x2+1458c1x4−96 cos(x)3c1+729c21x2 x

) 1
3

18x + 8 cos(x)2

9x
(
972x4−64 cos(x)3+972c1x2+36

√
729x6−96 cos(x)3x2+1458c1x4−96 cos(x)3c1+729c21x2 x

) 1
3
− 2 cos(x)

9x , y = −

(
972x4−64 cos(x)3+972c1x2+36

√
729x6−96 cos(x)3x2+1458c1x4−96 cos(x)3c1+729c21x2 x

) 1
3

36x − 4 cos(x)2

9x
(
972x4−64 cos(x)3+972c1x2+36

√
729x6−96 cos(x)3x2+1458c1x4−96 cos(x)3c1+729c21x2 x

) 1
3
− 2 cos(x)

9x −

I
√
3


(
972x4−64 cos(x)3+972c1x

2+36
√

729x6−96 cos(x)3x2+1458c1x4−96 cos(x)3c1+729c21x
2 x

) 1
3

18x − 8 cos(x)2

9x
(
972x4−64 cos(x)3+972c1x2+36

√
729x6−96 cos(x)3x2+1458c1x4−96 cos(x)3c1+729c21x

2 x

) 1
3


2 , y = −

(
972x4−64 cos(x)3+972c1x2+36

√
729x6−96 cos(x)3x2+1458c1x4−96 cos(x)3c1+729c21x2 x

) 1
3

36x − 4 cos(x)2

9x
(
972x4−64 cos(x)3+972c1x2+36

√
729x6−96 cos(x)3x2+1458c1x4−96 cos(x)3c1+729c21x2 x

) 1
3
− 2 cos(x)

9x +
I
√
3


(
972x4−64 cos(x)3+972c1x

2+36
√

729x6−96 cos(x)3x2+1458c1x4−96 cos(x)3c1+729c21x
2 x

) 1
3

18x − 8 cos(x)2

9x
(
972x4−64 cos(x)3+972c1x2+36

√
729x6−96 cos(x)3x2+1458c1x4−96 cos(x)3c1+729c21x

2 x

) 1
3


2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 638� �
dsolve((-2*y(x)^2*sin(x)+3*y(x)^3-2*x)+(4*y(x)*cos(x)+9*x*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �
y(x)

=

(
972x4+36

√
3
√

(−x2+c1)
(
−243x4+32 cos(x)3+243c1x2

)
x−64 cos(x)3−972c1x2

) 1
3

2 + 8 cos(x)2(
972x4+36

√
3
√

(−x2+c1)
(
−243x4+32 cos(x)3+243c1x2

)
x−64 cos(x)3−972c1x2

) 1
3
− 2 cos (x)

9x
y(x) =

−

((
972x4 + 36

√
3
√

32 cos (x)3 (−x2 + c1) + 243 (x2 − c1)2 x2 x− 64 cos (x)3 − 972c1x2
) 1

3

+ 4 cos (x)
)(

i

((
972x4 + 36

√
3
√

32 cos (x)3 (−x2 + c1) + 243 (x2 − c1)2 x2 x− 64 cos (x)3 − 972c1x2
) 1

3

− 4 cos (x)
)
√
3 +

(
972x4 + 36

√
3
√
32 cos (x)3 (−x2 + c1) + 243 (x2 − c1)2 x2 x− 64 cos (x)3 − 972c1x2

) 1
3

+ 4 cos (x)
)

36x
(
972x4 + 36

√
3
√

32 cos (x)3 (−x2 + c1) + 243 (x2 − c1)2 x2 x− 64 cos (x)3 − 972c1x2
) 1

3

y(x)

=

(
i

((
972x4 + 36

√
3
√

32 cos (x)3 (−x2 + c1) + 243 (x2 − c1)2 x2 x− 64 cos (x)3 − 972c1x2
) 1

3

− 4 cos (x)
)
√
3−

(
972x4 + 36

√
3
√

32 cos (x)3 (−x2 + c1) + 243 (x2 − c1)2 x2 x− 64 cos (x)3 − 972c1x2
) 1

3

− 4 cos (x)
)((

972x4 + 36
√
3
√

32 cos (x)3 (−x2 + c1) + 243 (x2 − c1)2 x2 x− 64 cos (x)3 − 972c1x2
) 1

3

+ 4 cos (x)
)

36x
(
972x4 + 36

√
3
√
32 cos (x)3 (−x2 + c1) + 243 (x2 − c1)2 x2 x− 64 cos (x)3 − 972c1x2

) 1
3
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3 Solution by Mathematica
Time used: 34.362 (sec). Leaf size: 520� �
DSolve[(-2*y[x]^2*Sin[x]+3*y[x]^3-2*x)+(4*y[x]*Cos[x]+9*x*y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→

22/3 3

√
−16 cos3(x) + 9

(
27x4 + 27c1x2 +

√
3
√

x2 (x2 + c1) (−32 cos3(x) + 243x2 (x2 + c1))
)
+ 8 cos2(x)

3

√
−8 cos3(x) + 9

2

(
27x4 + 27c1x2 +

√
3
√
x2 (x2 + c1) (−32 cos3(x) + 243x2 (x2 + c1))

) − 4 cos(x)

18x
y(x)

→

i22/3
(√

3 + i
)

3

√
−16 cos3(x) + 9

(
27x4 + 27c1x2 +

√
3
√

x2 (x2 + c1) (−32 cos3(x) + 243x2 (x2 + c1))
)
−

8i
(√

3−i
)
cos2(x)

3

√
−8 cos3(x) + 9

2

(
27x4 + 27c1x2 +

√
3
√

x2 (x2 + c1) (−32 cos3(x) + 243x2 (x2 + c1))
) − 8 cos(x)

36x
y(x) →

−

22/3
(
1 + i

√
3
)

3

√
−16 cos3(x) + 9

(
27x4 + 27c1x2 +

√
3
√
x2 (x2 + c1) (−32 cos3(x) + 243x2 (x2 + c1))

)
−

8i
(√

3+i
)
cos2(x)

3

√
−8 cos3(x) + 9

2

(
27x4 + 27c1x2 +

√
3
√

x2 (x2 + c1) (−32 cos3(x) + 243x2 (x2 + c1))
) + 8 cos(x)

36x
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6.8 problem 8
6.8.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1849
6.8.2 Solving as first order ode lie symmetry calculated ode . . . . . . 1851

Internal problem ID [1037]
Internal file name [OUTPUT/1038_Sunday_June_05_2022_01_57_34_AM_71905172/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

y + (2y + 2x) y′ = −2x

6.8.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)x+ (2u(x)x+ 2x) (u′(x)x+ u(x)) = −2x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2u2 + 3u+ 2
2x (u+ 1)
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Where f(x) = − 1
2x and g(u) = 2u2+3u+2

u+1 . Integrating both sides gives

1
2u2+3u+2

u+1
du = − 1

2x dx

∫ 1
2u2+3u+2

u+1
du =

∫
− 1
2x dx

ln (2u2 + 3u+ 2)
4 +

√
7 arctan

(
(4u+3)

√
7

7

)
14 = − ln (x)

2 + c2

The solution is

ln
(
2u(x)2 + 3u(x) + 2

)
4 +

√
7 arctan

(
(4u(x)+3)

√
7

7

)
14 + ln (x)

2 − c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

ln
(

2y2
x2 + 3y

x
+ 2
)

4 +

√
7 arctan

((
4y
x
+3
)√

7
7

)
14 + ln (x)

2 − c2 = 0

ln
(

2y2
x2 + 3y

x
+ 2
)

4 +

√
7 arctan

(
(3x+4y)

√
7

7x

)
14 + ln (x)

2 − c2 = 0

Summary
The solution(s) found are the following

(1)
ln
(

2y2
x2 + 3y

x
+ 2
)

4 +

√
7 arctan

(
(3x+4y)

√
7

7x

)
14 + ln (x)

2 − c2 = 0
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Figure 366: Slope field plot

Verification of solutions

ln
(

2y2
x2 + 3y

x
+ 2
)

4 +

√
7 arctan

(
(3x+4y)

√
7

7x

)
14 + ln (x)

2 − c2 = 0

Verified OK.

6.8.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − 2x+ y

2 (x+ y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(2x+ y) (b3 − a2)

2 (x+ y) − (2x+ y)2 a3
4 (x+ y)2

−
(
− 1
x+ y

+ 2x+ y

2 (x+ y)2
)
(xa2 + ya3 + a1)

−
(
− 1
2 (x+ y) +

2x+ y

2 (x+ y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

4x2a2 − 4x2a3 + 2x2b2 − 4x2b3 + 8xya2 − 4xya3 + 8xyb2 − 8xyb3 + 2y2a2 + y2a3 + 4y2b2 − 2y2b3 − 2xb1 + 2ya1
4 (x+ y)2

= 0

Setting the numerator to zero gives

(6E)4x2a2 − 4x2a3 + 2x2b2 − 4x2b3 + 8xya2 − 4xya3 + 8xyb2
− 8xyb3 + 2y2a2 + y2a3 + 4y2b2 − 2y2b3 − 2xb1 + 2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)4a2v21 + 8a2v1v2 + 2a2v22 − 4a3v21 − 4a3v1v2 + a3v
2
2 + 2b2v21

+ 8b2v1v2 + 4b2v22 − 4b3v21 − 8b3v1v2 − 2b3v22 + 2a1v2 − 2b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(4a2 − 4a3 + 2b2 − 4b3) v21 + (8a2 − 4a3 + 8b2 − 8b3) v1v2
− 2b1v1 + (2a2 + a3 + 4b2 − 2b3) v22 + 2a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
−2b1 = 0

2a2 + a3 + 4b2 − 2b3 = 0
4a2 − 4a3 + 2b2 − 4b3 = 0
8a2 − 4a3 + 8b2 − 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 0

a2 =
3a3
2 + b3

a3 = a3

b1 = 0
b2 = −a3

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− 2x+ y

2 (x+ y)

)
(x)

= 2x2 + 3yx+ 2y2
2x+ 2y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x2+3yx+2y2
2x+2y

dy

Which results in

S = ln (2x2 + 3yx+ 2y2)
2 +

√
7 arctan

(
(3x+4y)

√
7

7x

)
7

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 2x+ y

2 (x+ y)
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x+ y

2x2 + 3yx+ 2y2

Sy =
2x+ 2y

2x2 + 3yx+ 2y2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (2y2 + 3yx+ 2x2)
2 +

√
7 arctan

(
(3x+4y)

√
7

7x

)
7 = c1

Which simplifies to

ln (2y2 + 3yx+ 2x2)
2 +

√
7 arctan

(
(3x+4y)

√
7

7x

)
7 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 2x+y
2(x+y)

dS
dR

= 0

R = x

S = ln (2x2 + 3yx+ 2y2)
2 +

√
7 arctan

(
(3x+4y)

√
7

7x

)
7

Summary
The solution(s) found are the following

(1)ln (2y2 + 3yx+ 2x2)
2 +

√
7 arctan

(
(3x+4y)

√
7

7x

)
7 = c1
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Figure 367: Slope field plot

Verification of solutions

ln (2y2 + 3yx+ 2x2)
2 +

√
7 arctan

(
(3x+4y)

√
7

7x

)
7 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.156 (sec). Leaf size: 51� �
dsolve((2*x+y(x))+(2*y(x)+2*x)*diff(y(x),x)=0,y(x), singsol=all)� �
y(x)

=
x
(√

7 tan
(
RootOf

(√
7 ln

(
sec (_Z)2 x2)+√

7 ln (7)− 3
√
7 ln (2) + 2

√
7 c1 + 2_Z

))
− 3
)

4

3 Solution by Mathematica
Time used: 0.071 (sec). Leaf size: 62� �
DSolve[(2*x+y[x])+(2*y[x]+2*x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

arctan
(

4y(x)
x

+3√
7

)
2
√
7

+ 1
4 log

(
2y(x)2
x2 + 3y(x)

x
+ 2
)

= − log(x)
2 + c1, y(x)
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6.9 problem 9
6.9.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1859
6.9.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1862

Internal problem ID [1038]
Internal file name [OUTPUT/1039_Sunday_June_05_2022_01_57_36_AM_71641712/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational , [_Abel , `2nd type `, `class B`]]

2yx+ 4y2 +
(
x2 + 8yx+ 18y

)
y′ = −3x2

6.9.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x2 + 8yx+ 18y
)
dy =

(
−3x2 − 2yx− 4y2

)
dx(

3x2 + 2yx+ 4y2
)
dx+

(
x2 + 8yx+ 18y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3x2 + 2yx+ 4y2

N(x, y) = x2 + 8yx+ 18y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
3x2 + 2yx+ 4y2

)
= 2x+ 8y

And
∂N

∂x
= ∂

∂x

(
x2 + 8yx+ 18y

)
= 2x+ 8y

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
3x2 + 2yx+ 4y2 dx

(3)φ = x3 + y x2 + 4x y2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + 8yx+ f ′(y)

= x(x+ 8y) + f ′(y)

But equation (2) says that ∂φ
∂y

= x2 + 8yx+ 18y. Therefore equation (4) becomes

(5)x2 + 8yx+ 18y = x(x+ 8y) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 18y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(18y) dy

f(y) = 9y2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x3 + y x2 + 4x y2 + 9y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x3 + y x2 + 4x y2 + 9y2
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Summary
The solution(s) found are the following

(1)x3 + x2y + 4xy2 + 9y2 = c1

Figure 368: Slope field plot

Verification of solutions

x3 + x2y + 4xy2 + 9y2 = c1

Verified OK.

6.9.2 Maple step by step solution

Let’s solve
2yx+ 4y2 + (x2 + 8yx+ 18y) y′ = −3x2

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function
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F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
2x+ 8y = 2x+ 8y

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(3x2 + 2yx+ 4y2) dx+ f1(y)

• Evaluate integral
F (x, y) = x3 + y x2 + 4x y2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x2 + 8yx+ 18y = x2 + 8yx+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 18y

• Solve for f1(y)
f1(y) = 9y2

• Substitute f1(y) into equation for F (x, y)
F (x, y) = x3 + y x2 + 4x y2 + 9y2

• Substitute F (x, y) into the solution of the ODE
x3 + y x2 + 4x y2 + 9y2 = c1

• Solve for y{
y = −x2+

√
−15x4−36x3+16c1x+36c1

2(4x+9) , y = −x2+
√

−15x4−36x3+16c1x+36c1
2(4x+9)

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 77� �
dsolve((3*x^2+2*x*y(x)+4*y(x)^2)+(x^2+8*x*y(x)+18*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −x2 +
√
−15x4 − 36x3 − 16c1x− 36c1

8x+ 18

y(x) = −x2 −
√
−15x4 − 36x3 − 16c1x− 36c1

8x+ 18

3 Solution by Mathematica
Time used: 0.616 (sec). Leaf size: 84� �
DSolve[(3*x^2+2*x*y[x]+4*y[x]^2)+(x^2+8*x*y[x]+18*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x2 +
√
−15x4 − 36x3 + 16c1x+ 36c1

8x+ 18

y(x) → −x2 +
√
−15x4 − 36x3 + 16c1x+ 36c1

8x+ 18
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6.10 problem 10
Internal problem ID [1039]
Internal file name [OUTPUT/1040_Sunday_June_05_2022_01_57_38_AM_50380762/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational]

Unable to solve or complete the solution.

8yx+ y2 +
(
2x2 + xy3

3

)
y′ = −2x2

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
7 Solution by Maple� �
dsolve((2*x^2+8*x*y(x)+y(x)^2)+(2*x^2+x*y(x)^3/3)*diff(y(x),x)=0,y(x), singsol=all)� �

No solution found
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7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(2*x^2+8*x*y[x]+y[x]^2)+(2*x^2+x*y[x]^3/3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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6.11 problem 11
6.11.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1868
6.11.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 1870
6.11.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1874
6.11.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1878

Internal problem ID [1040]
Internal file name [OUTPUT/1041_Sunday_June_05_2022_01_57_40_AM_87212688/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
1
y
+ 2y

)
y′ = −1

x
− 2x

6.11.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − y(2x2 + 1)
(2y2 + 1)x

Where f(x) = −2x2+1
x

and g(y) = y
2y2+1 . Integrating both sides gives

1
y

2y2+1
dy = −2x2 + 1

x
dx
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∫ 1
y

2y2+1
dy =

∫
−2x2 + 1

x
dx

y2 + ln (y) = −x2 − ln (x) + c1

Which results in

y = e−
LambertW

(
2 e−2x2+2c1

x2

)
2 −x2+c1

x

Summary
The solution(s) found are the following

(1)y = e−
LambertW

(
2 e−2x2+2c1

x2

)
2 −x2+c1

x

Figure 369: Slope field plot

Verification of solutions

y = e−
LambertW

(
2 e−2x2+2c1

x2

)
2 −x2+c1

x

Verified OK.
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6.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − y(2x2 + 1)
(2y2 + 1)x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 278: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = − x

2x2 + 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− x
2x2+1

dx

Which results in

S = −x2 − ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y(2x2 + 1)
(2y2 + 1)x
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = −1
x
− 2x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2y2 + 1

y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R2 + 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2 + ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x2 − ln (x) = y2 + ln (y) + c1

Which simplifies to

−x2 − ln (x) = y2 + ln (y) + c1

Which gives

y = e−
LambertW

(
2 e−2x2−2c1

x2

)
2 −x2−c1

x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
2x2+1

)
(2y2+1)x

dS
dR

= 2R2+1
R

R = y

S = −x2 − ln (x)

Summary
The solution(s) found are the following

(1)y = e−
LambertW

(
2 e−2x2−2c1

x2

)
2 −x2−c1

x

1873



Figure 370: Slope field plot

Verification of solutions

y = e−
LambertW

(
2 e−2x2−2c1

x2

)
2 −x2−c1

x

Verified OK.

6.11.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−2y2 + 1

y

)
dy =

(
2x2 + 1

x

)
dx(

−2x2 + 1
x

)
dx+

(
−2y2 + 1

y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2x2 + 1
x

N(x, y) = −2y2 + 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−2x2 + 1

x

)
= 0
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And

∂N

∂x
= ∂

∂x

(
−2y2 + 1

y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x2 + 1

x
dx

(3)φ = −x2 − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −2y2+1
y

. Therefore equation (4) becomes

(5)−2y2 + 1
y

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −2y2 + 1
y

= −2y2 − 1
y
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Integrating the above w.r.t y results in

∫
f ′(y) dy =

∫ (
−2y2 − 1

y

)
dy

f(y) = −y2 − ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2 − ln (x)− y2 − ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2 − ln (x)− y2 − ln (y)

The solution becomes

y = e−
LambertW

(
2 e−2x2−2c1

x2

)
2 −x2−c1

x

Summary
The solution(s) found are the following

(1)y = e−
LambertW

(
2 e−2x2−2c1

x2

)
2 −x2−c1

x
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Figure 371: Slope field plot

Verification of solutions

y = e−
LambertW

(
2 e−2x2−2c1

x2

)
2 −x2−c1

x

Verified OK.

6.11.4 Maple step by step solution

Let’s solve(
1
y
+ 2y

)
y′ = − 1

x
− 2x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ ( 1
y
+ 2y

)
y′dx =

∫ (
− 1

x
− 2x

)
dx+ c1

• Evaluate integral
y2 + ln (y) = −x2 − ln (x) + c1
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• Solve for y

y = e−
LambertW

(
2 e−2x2+2c1

x2

)
2 −x2+c1

x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 56� �
dsolve((1/x+2*x)+(1/y(x)+2*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = e−x2−c1
√
2

2
√

e−2x2−2c1

x2 LambertW
(

2 e−2x2−2c1
x2

) x

3 Solution by Mathematica
Time used: 9.517 (sec). Leaf size: 71� �
DSolve[(1/x+2*x)+(1/y[x]+2*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
W
(

2e−2x2+2c1
x2

)
√
2

y(x) →

√
W
(

2e−2x2+2c1
x2

)
√
2

y(x) → 0
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6.12 problem 12
Internal problem ID [1041]
Internal file name [OUTPUT/1042_Sunday_June_05_2022_01_57_41_AM_93331707/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[NONE]

Unable to solve or complete the solution.

sin (x) y2 + xy3 cos (x) +
(
sin (x)xy + xy3 cos (x)

)
y′ = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT

-> Calling odsolve with the ODE`, diff(y(x), x)+(sin(2*x)-2*y(x))/sin(2*x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-y(x)/x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-(y(x)*sin(2*x)+2*x*sin(2*x)-2*y(x)*x)/(sin(2*x)*x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-1, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

`, `-> Computing symmetries using: way = HINT
-> Calling odsolve with the ODE`, diff(y(x), x)+y(x)/x, y(x)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)-(x+1)/x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful

-> Calling odsolve with the ODE`, diff(y(x), x)-(2*y(x)+x)/x, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 5� �
dsolve((y(x)^2*sin(x)+x*y(x)^3*cos(x))+(x*sin(x)*y(x)+x*y(x)^3*cos(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 0

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(y[x]^2*Sin[x]+x*y[x]^3*Cos[x])+(x*Sin[x]*y[x]+x*y[x]^3*Cos[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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6.13 problem 13
6.13.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1883
6.13.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1885
6.13.3 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 1887
6.13.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 1888
6.13.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1892
6.13.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1896

Internal problem ID [1042]
Internal file name [OUTPUT/1043_Sunday_June_05_2022_01_58_44_AM_54770693/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x

(x2 + y2)
3
2
+ yy′

(x2 + y2)
3
2
= 0

6.13.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −x

y
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Where f(x) = −x and g(y) = 1
y
. Integrating both sides gives

1
1
y

dy = −x dx

∫ 1
1
y

dy =
∫

−x dx

y2

2 = −x2

2 + c1

Which results in
y =

√
−x2 + 2c1

y = −
√

−x2 + 2c1

Summary
The solution(s) found are the following

(1)y =
√

−x2 + 2c1
(2)y = −

√
−x2 + 2c1

Figure 372: Slope field plot
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Verification of solutions

y =
√

−x2 + 2c1

Verified OK.

y = −
√

−x2 + 2c1

Verified OK.

6.13.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(
x2 + u (x)2 x2

) 3
2
+ u(x)x(u′(x)x+ u(x))(

x2 + u (x)2 x2
) 3

2
= 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u2 + 1
ux

Where f(x) = − 1
x
and g(u) = u2+1

u
. Integrating both sides gives

1
u2+1
u

du = −1
x
dx

∫ 1
u2+1
u

du =
∫

−1
x
dx

ln (u2 + 1)
2 = − ln (x) + c2

Raising both side to exponential gives
√
u2 + 1 = e− ln(x)+c2

Which simplifies to
√
u2 + 1 = c3

x

Which simplifies to √
u (x)2 + 1 = c3ec2

x
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The solution is √
u (x)2 + 1 = c3ec2

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form√

y2

x2 + 1 = c3ec2
x√

x2 + y2

x2 = c3ec2
x

Summary
The solution(s) found are the following

(1)
√

x2 + y2

x2 = c3ec2
x

Figure 373: Slope field plot

Verification of solutions √
x2 + y2

x2 = c3ec2
x

Verified OK.
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6.13.3 Solving as differentialType ode

Writing the ode as

y′ = −x

y
(1)

Which becomes

(y) dy = (−x) dx (2)

But the RHS is complete differential because

(−x) dx = d

(
−x2

2

)
Hence (2) becomes

(y) dy = d

(
−x2

2

)
Integrating both sides gives gives these solutions

y =
√

−x2 + 2c1 + c1

y = −
√
−x2 + 2c1 + c1

Summary
The solution(s) found are the following

(1)y =
√

−x2 + 2c1 + c1

(2)y = −
√
−x2 + 2c1 + c1
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Figure 374: Slope field plot

Verification of solutions

y =
√

−x2 + 2c1 + c1

Verified OK.

y = −
√
−x2 + 2c1 + c1

Verified OK.

6.13.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x

y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 281: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− 1
x

dx

Which results in

S = −x2

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x

y

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = −x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x2

2 = y2

2 + c1

Which simplifies to

−x2

2 = y2

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x
y

dS
dR

= R

R = y

S = −x2

2

Summary
The solution(s) found are the following

(1)−x2

2 = y2

2 + c1
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Figure 375: Slope field plot

Verification of solutions

−x2

2 = y2

2 + c1

Verified OK.

6.13.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−y) dy = (x) dx
(−x) dx+(−y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = −y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x)

= 0

And
∂N

∂x
= ∂

∂x
(−y)

= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −y. Therefore equation (4) becomes

(5)−y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−y) dy

f(y) = −y2

2 + c1

1894



Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 − y2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 − y2

2

Summary
The solution(s) found are the following

(1)−x2

2 − y2

2 = c1

Figure 376: Slope field plot

Verification of solutions

−x2

2 − y2

2 = c1

Verified OK.
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6.13.6 Maple step by step solution

Let’s solve
x

(x2+y2)
3
2
+ yy′

(x2+y2)
3
2
= 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
x

(x2+y2)
3
2
+ yy′

(x2+y2)
3
2

)
dx =

∫
0dx+ c1

• Evaluate integral
− 1√

x2+y2
= c1

• Solve for y{
y =

√
−c21x

2+1
c1

, y = −
√

−c21x
2+1

c1

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 27� �
dsolve((x/(x^2+y(x)^2)^(3/2))+(y(x)/(x^2+y(x)^2)^(3/2))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
√
−x2 + c1

y(x) = −
√

−x2 + c1
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3 Solution by Mathematica
Time used: 0.094 (sec). Leaf size: 39� �
DSolve[(x/(x^2+y[x]^2)^(3/2))+(y[x]/(x^2+y[x]^2)^(3/2))*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−x2 + 2c1

y(x) →
√
−x2 + 2c1
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6.14 problem 14
6.14.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1898
6.14.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1901

Internal problem ID [1043]
Internal file name [OUTPUT/1044_Sunday_June_05_2022_01_58_45_AM_33933115/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , [_Abel , `2nd type `, `class B`]]

ex
(
x2y2 + 2xy2

)
+
(
2x2y ex + 2

)
y′ = −6x

6.14.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

2x2y ex + 2
)
dy =

(
−ex

(
x2y2 + 2x y2

)
− 6x

)
dx(

ex
(
x2y2 + 2x y2

)
+ 6x

)
dx+

(
2x2y ex + 2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = ex
(
x2y2 + 2x y2

)
+ 6x

N(x, y) = 2x2y ex + 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
ex
(
x2y2 + 2x y2

)
+ 6x

)
= 2x exy(2 + x)

And
∂N

∂x
= ∂

∂x

(
2x2y ex + 2

)
= 2x exy(2 + x)

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
ex
(
x2y2 + 2x y2

)
+ 6x dx

(3)φ = x2(3 + y2ex
)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2x2y ex + f ′(y)

But equation (2) says that ∂φ
∂y

= 2x2y ex + 2. Therefore equation (4) becomes

(5)2x2y ex + 2 = 2x2y ex + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(2) dy

f(y) = 2y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x2(3 + y2ex
)
+ 2y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x2(3 + y2ex
)
+ 2y

1900



Summary
The solution(s) found are the following

(1)x2(3 + y2ex
)
+ 2y = c1

Figure 377: Slope field plot

Verification of solutions

x2(3 + y2ex
)
+ 2y = c1

Verified OK.

6.14.2 Maple step by step solution

Let’s solve
ex(x2y2 + 2xy2) + (2x2y ex + 2) y′ = −6x

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function
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F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
ex(2y x2 + 4yx) = 4x exy + 2x2y ex

◦ Simplify
2x exy(2 + x) = 2x exy(2 + x)

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(ex(x2y2 + 2x y2) + 6x) dx+ f1(y)

• Evaluate integral
F (x, y) = y2(x2ex − 2x ex + 2 ex) + 2y2(x ex − ex) + 3x2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
2x2y ex + 2 = 2y(x2ex − 2x ex + 2 ex) + 4y(x ex − ex) + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 2x2y ex + 2− 2y(x2ex − 2x ex + 2 ex)− 4y(x ex − ex)

• Solve for f1(y)
f1(y) = 2y

• Substitute f1(y) into equation for F (x, y)
F (x, y) = y2(x2ex − 2x ex + 2 ex) + 2y2(x ex − ex) + 3x2 + 2y

• Substitute F (x, y) into the solution of the ODE
y2(x2ex − 2x ex + 2 ex) + 2y2(x ex − ex) + 3x2 + 2y = c1

• Solve for y{
y = −1+

√
−3 exx4+exc1x2+1

exx2 , y = −1+
√

−3 exx4+exc1x2+1
exx2

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 67� �
dsolve((exp(x)*(x^2*y(x)^2+2*x*y(x)^2)+6*x)+(2*x^2*y(x)*exp(x)+2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
(
−1 +

√
−3 exx4 − exc1x2 + 1

)
e−x

x2

y(x) =
(
−1−

√
−3 exx4 − exc1x2 + 1

)
e−x

x2

3 Solution by Mathematica
Time used: 36.472 (sec). Leaf size: 76� �
DSolve[(Exp[x]*(x^2*y[x]^2+2*x*y[x]^2)+6*x)+(2*x^2*y[x]*Exp[x]+2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
e−x
(
1 +

√
1 + ex (−3x4 + c1x2)

)
x2

y(x) →
e−x
(
−1 +

√
1 + ex (−3x4 + c1x2)

)
x2
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6.15 problem 15
6.15.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1904
6.15.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1907

Internal problem ID [1044]
Internal file name [OUTPUT/1045_Sunday_June_05_2022_01_58_48_AM_12936598/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 15.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact]

x2ex2+y
(
2x2 + 3

)
+
(
x3ex2+y − 12y2

)
y′ = −4x

6.15.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x3ex2+y − 12y2
)
dy =

(
−x2ex2+y

(
2x2 + 3

)
− 4x

)
dx(

x2ex2+y
(
2x2 + 3

)
+ 4x

)
dx+

(
x3ex2+y − 12y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2ex2+y
(
2x2 + 3

)
+ 4x

N(x, y) = x3ex2+y − 12y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x2ex2+y

(
2x2 + 3

)
+ 4x

)
= x2ex2+y

(
2x2 + 3

)
And

∂N

∂x
= ∂

∂x

(
x3ex2+y − 12y2

)
= x2ex2+y

(
2x2 + 3

)
Since ∂M

∂y
= ∂N

∂x
, then the ODE is exact The following equations are now set up to solve

for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x2ex2+y

(
2x2 + 3

)
+ 4x dx

(3)φ = x2
(
ex2+yx+ 2

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x3ex2+y + f ′(y)

But equation (2) says that ∂φ
∂y

= x3ex2+y − 12y2. Therefore equation (4) becomes

(5)x3ex2+y − 12y2 = x3ex2+y + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −12y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−12y2

)
dy

f(y) = −4y3 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x2
(
ex2+yx+ 2

)
− 4y3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x2
(
ex2+yx+ 2

)
− 4y3
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Summary
The solution(s) found are the following

(1)x2
(
ex2+yx+ 2

)
− 4y3 = c1

Figure 378: Slope field plot

Verification of solutions

x2
(
ex2+yx+ 2

)
− 4y3 = c1

Verified OK.

6.15.2 Maple step by step solution

Let’s solve

x2ex2+y(2x2 + 3) +
(
x3ex2+y − 12y2

)
y′ = −4x

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
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◦ ODE is exact if the lhs is the total derivative of a C2 function
F ′(x, y) = 0

◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
x2ex2+y(2x2 + 3) = 3x2ex2+y + 2x4ex2+y

◦ Simplify
x2ex2+y(2x2 + 3) = x2ex2+y(2x2 + 3)

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫ (

x2ex2+y(2x2 + 3) + 4x
)
dx+ f1(y)

• Evaluate integral

F (x, y) = 3 ey
(

ex2x
2 −

√
π erfi(x)

4

)
+ 2 ey

(
ex2x3

2 − 3 ex2x
4 + 3

√
π erfi(x)
8

)
+ 2x2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative

x3ex2+y − 12y2 = 3 ey
(

ex2x
2 −

√
π erfi(x)

4

)
+ 2 ey

(
ex2x3

2 − 3 ex2x
4 + 3

√
π erfi(x)
8

)
+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = x3ex2+y − 12y2 − 3 ey

(
ex2x
2 −

√
π erfi(x)

4

)
− 2 ey

(
ex2x3

2 − 3 ex2x
4 + 3

√
π erfi(x)
8

)
• Solve for f1(y)

f1(y) = −x3ex2ey + x3ex2+y − 4y3

• Substitute f1(y) into equation for F (x, y)

F (x, y) = 3 ey
(

ex2x
2 −

√
π erfi(x)

4

)
+ 2 ey

(
ex2x3

2 − 3 ex2x
4 + 3

√
π erfi(x)
8

)
+ 2x2 − x3ex2ey + x3ex2+y − 4y3

• Substitute F (x, y) into the solution of the ODE

3 ey
(

ex2x
2 −

√
π erfi(x)

4

)
+ 2 ey

(
ex2x3

2 − 3 ex2x
4 + 3

√
π erfi(x)
8

)
+ 2x2 − x3ex2ey + x3ex2+y − 4y3 = c1
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• Solve for y

y = RootOf
(
−x3ex2+_Z + 4_Z3 − 2x2 + c1

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve((x^2*exp(x^2+y(x))*(2*x^2+3)+4*x)+(x^3*exp(x^2+y(x))-12*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

x3ex2+y(x) − 4y(x)3 + 2x2 + c1 = 0

3 Solution by Mathematica
Time used: 0.428 (sec). Leaf size: 30� �
DSolve[(x^2*Exp[x^2+y[x]]*(2*x^2+3)+4*x)+(x^3*Exp[x^2+y[x]]-12*y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
2x2 + x3ex

2+y(x) − 4y(x)3 = c1, y(x)
]
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6.16 problem 16
6.16.1 Solving as first order ode lie symmetry calculated ode . . . . . . 1910
6.16.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1921
6.16.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1925

Internal problem ID [1045]
Internal file name [OUTPUT/1046_Sunday_June_05_2022_01_58_50_AM_38794570/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[_exact , [_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

eyx
(
yx4 + 4x3)+ 3y +

(
x5eyx + 3x

)
y′ = 0

6.16.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −eyxx4y + 4 eyxx3 + 3y
x (eyxx4 + 3)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

(1E)ξ = x3a7 + y x2a8 + x y2a9 + y3a10 + x2a4 + yxa5 + y2a6 + xa2 + ya3 + a1

(2E)η = x3b7 + y x2b8 + x y2b9 + y3b10 + x2b4 + yxb5 + y2b6 + xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}

Substituting equations (1E,2E) and ω into (A) gives

(5E)3x2b7 + 2xyb8 + y2b9 + 2xb4 + yb5 + b2

− (eyxx4y + 4 eyxx3 + 3y) (−3x2a7 + x2b8 − 2xya8 + 2xyb9 − y2a9 + 3y2b10 − 2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)
x (eyxx4 + 3)

− (eyxx4y + 4 eyxx3 + 3y)2 (x2a8 + 2xya9 + 3y2a10 + xa5 + 2ya6 + a3)
x2 (eyxx4 + 3)2

−
(
−eyxy2x4 + 8 eyxx3y + 12 eyxx2

x (eyxx4 + 3) + eyxx4y + 4 eyxx3 + 3y
x2 (eyxx4 + 3)

+ (eyxx4y + 4 eyxx3 + 3y) (eyxx4y + 4 eyxx3)
x (eyxx4 + 3)2

)(
x3a7 + y x2a8

+ x y2a9 + y3a10 + x2a4 + yxa5 + y2a6 + xa2 + ya3 + a1
)

−
(
−5 eyxx4 + x5eyxy + 3

x (eyxx4 + 3) + (eyxx4y + 4 eyxx3 + 3y)x4eyx

(eyxx4 + 3)2
)(

x3b7

+ y x2b8 + x y2b9 + y3b10 + x2b4 + yxb5 + y2b6 + xb2 + yb3 + b1
)
= 0

Putting the above in normal form gives

−27y3a6 − 12 eyxx4y4a10 − 48 eyxx3y3a10 + 18x3yb8 + 2 e2yxx10b2 + e2yxx9b1 − 4 e2yxx8a2 − 4 e2yxx8b3 − 8 e2yxx7a1 − 16 e2yxx6a3 + 24 eyxx6b2 + 18 eyxx5b1 + 36 eyxx4a2 − 12 eyxx4b3 + 24 eyxx3a1 + 4 e2yxx12b7 + 4 e2yxx10a7 − 4 e2yxx10b8 − 16 e2yxx8a8 + 27x3b4 + 9x2ya4 − 9x y2a5 − 9x y2b6 + 30 eyxx7b4 + 48 eyxx5a4 − 12 eyxx5b5 − 36y4a10 + 18b2x2 + 9yb5x2 + 24 eyxx7yb8 + 12 eyxx6y2b9 + 24 eyxx7ya7 + 12 eyxx6y2a8 + 24 eyxx5ya8 − 24 eyxx5yb9 − 12 eyxx4y2a9 − 36 eyxx4y2b10 − 12 e2yxx8ya5 − 8 e2yxx8yb6 − 24 e2yxx7y2a6 − 32 e2yxx6ya6 + e2yxx10ya4 + e2yxx10yb5 − e2yxx9y2a5 − e2yxx9y2b6 − 3 e2yxx8y3a6 + 3 e2yxx11b4 − 4 e2yxx9b5 − 16 e2yxx7a5 − 48 e2yxx6y2a10 + 2 e2yxx11yb8 + 2 e2yxx11ya7 − 2 e2yxx9y3a9 − 2 e2yxx9y3b10 − 8 e2yxx9ya8 − 8 e2yxx9yb9 − 20 e2yxx8y2a9 − 12 e2yxx8y2b10 − 4 e2yxx8y4a10 − 32 e2yxx7y3a10 − 32 e2yxx7ya9 + 18 eyxx6ya4 + 18 eyxx6yb5 + 6 eyxx5y2a5 + 6 eyxx5y2b6 − 6 eyxx4y3a6 + 12 eyxx4ya5 − 24 eyxx4yb6 − 24 eyxx3y2a6 + 36x4b7 + 18x3ya7 − 18x y3a9 − 18x y3b10 + 12 eyxx5ya2 + 12 eyxx5yb3 + 6 eyxx4ya1 − 2 e2yxx8y2a3 − e2yxx8ya1 − 16 e2yxx7ya3 − 18y2a3 + 9xb1 − 9ya1 + 36 eyxx8b7 + 60 eyxx6a7 − 12 eyxx6b8

x2 (eyxx4 + 3)2
= 0
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Setting the numerator to zero gives

(6E)

−27y3a6 − 12 eyxx4y4a10 − 48 eyxx3y3a10 + 18x3yb8
+ 2 e2yxx10b2 + e2yxx9b1 − 4 e2yxx8a2 − 4 e2yxx8b3
− 8 e2yxx7a1 − 16 e2yxx6a3 + 24 eyxx6b2 + 18 eyxx5b1
+ 36 eyxx4a2 − 12 eyxx4b3 + 24 eyxx3a1 + 4 e2yxx12b7
+4 e2yxx10a7− 4 e2yxx10b8− 16 e2yxx8a8+27x3b4+9x2ya4
− 9x y2a5 − 9x y2b6 +30 eyxx7b4 +48 eyxx5a4 − 12 eyxx5b5
− 36y4a10 + 18b2x2 + 9yb5x2 + 24 eyxx7yb8 + 12 eyxx6y2b9
+ 24 eyxx7ya7 + 12 eyxx6y2a8 + 24 eyxx5ya8 − 24 eyxx5yb9
− 12 eyxx4y2a9 − 36 eyxx4y2b10 − 12 e2yxx8ya5
− 8 e2yxx8yb6 − 24 e2yxx7y2a6 − 32 e2yxx6ya6 + e2yxx10ya4
+ e2yxx10yb5 − e2yxx9y2a5 − e2yxx9y2b6 − 3 e2yxx8y3a6
+ 3 e2yxx11b4 − 4 e2yxx9b5 − 16 e2yxx7a5 − 48 e2yxx6y2a10
+2 e2yxx11yb8+2 e2yxx11ya7−2 e2yxx9y3a9−2 e2yxx9y3b10
− 8 e2yxx9ya8 − 8 e2yxx9yb9 − 20 e2yxx8y2a9
− 12 e2yxx8y2b10 − 4 e2yxx8y4a10 − 32 e2yxx7y3a10
− 32 e2yxx7ya9 + 18 eyxx6ya4 + 18 eyxx6yb5 + 6 eyxx5y2a5
+ 6 eyxx5y2b6 − 6 eyxx4y3a6 + 12 eyxx4ya5 − 24 eyxx4yb6
− 24 eyxx3y2a6 + 36x4b7 + 18x3ya7 − 18x y3a9
− 18x y3b10 + 12 eyxx5ya2 + 12 eyxx5yb3 + 6 eyxx4ya1
− 2 e2yxx8y2a3 − e2yxx8ya1 − 16 e2yxx7ya3 − 18y2a3
+ 9xb1 − 9ya1 + 36 eyxx8b7 + 60 eyxx6a7 − 12 eyxx6b8 = 0
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Simplifying the above gives

(6E)

−27y3a6 − 12 eyxx4y4a10 − 48 eyxx3y3a10 + 18x3yb8
+ 2 e2yxx10b2 + e2yxx9b1 − 4 e2yxx8a2 − 4 e2yxx8b3
− 8 e2yxx7a1 − 16 e2yxx6a3 + 24 eyxx6b2 + 18 eyxx5b1
+ 36 eyxx4a2 − 12 eyxx4b3 + 24 eyxx3a1 + 4 e2yxx12b7
+4 e2yxx10a7− 4 e2yxx10b8− 16 e2yxx8a8+27x3b4+9x2ya4
− 9x y2a5 − 9x y2b6 +30 eyxx7b4 +48 eyxx5a4 − 12 eyxx5b5
− 36y4a10 + 18b2x2 + 9yb5x2 + 24 eyxx7yb8 + 12 eyxx6y2b9
+ 24 eyxx7ya7 + 12 eyxx6y2a8 + 24 eyxx5ya8 − 24 eyxx5yb9
− 12 eyxx4y2a9 − 36 eyxx4y2b10 − 12 e2yxx8ya5
− 8 e2yxx8yb6 − 24 e2yxx7y2a6 − 32 e2yxx6ya6 + e2yxx10ya4
+ e2yxx10yb5 − e2yxx9y2a5 − e2yxx9y2b6 − 3 e2yxx8y3a6
+ 3 e2yxx11b4 − 4 e2yxx9b5 − 16 e2yxx7a5 − 48 e2yxx6y2a10
+2 e2yxx11yb8+2 e2yxx11ya7−2 e2yxx9y3a9−2 e2yxx9y3b10
− 8 e2yxx9ya8 − 8 e2yxx9yb9 − 20 e2yxx8y2a9
− 12 e2yxx8y2b10 − 4 e2yxx8y4a10 − 32 e2yxx7y3a10
− 32 e2yxx7ya9 + 18 eyxx6ya4 + 18 eyxx6yb5 + 6 eyxx5y2a5
+ 6 eyxx5y2b6 − 6 eyxx4y3a6 + 12 eyxx4ya5 − 24 eyxx4yb6
− 24 eyxx3y2a6 + 36x4b7 + 18x3ya7 − 18x y3a9
− 18x y3b10 + 12 eyxx5ya2 + 12 eyxx5yb3 + 6 eyxx4ya1
− 2 e2yxx8y2a3 − e2yxx8ya1 − 16 e2yxx7ya3 − 18y2a3
+ 9xb1 − 9ya1 + 36 eyxx8b7 + 60 eyxx6a7 − 12 eyxx6b8 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, eyx, e2yx}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, eyx = v3, e2yx = v4}
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The above PDE (6E) now becomes

(7E)

18v31v2b8 + 2v4v101 b2 + v4v
9
1b1 − 4v4v81a2 − 4v4v81b3

− 8v4v71a1 − 16v4v61a3 + 24v3v61b2 + 18v3v51b1 + 36v3v41a2
− 12v3v41b3 + 24v3v31a1 + 4v4v121 b7 + 4v4v101 a7 − 4v4v101 b8
− 16v4v81a8 + 9v21v2a4 − 9v1v22a5 − 9v1v22b6 + 30v3v71b4
+ 48v3v51a4 − 12v3v51b5 + 9v2b5v21 + 3v4v111 b4 − 4v4v91b5
− 16v4v71a5 + 18v31v2a7 − 18v1v32a9 − 18v1v32b10 + 36v3v81b7
+ 60v3v61a7 − 12v3v61b8 − 27v32a6 + 27v31b4 − 36v42a10
+ 18b2v21 + 36v41b7 − 18v22a3 + 9v1b1 − 9v2a1 − 12v3v41v42a10
− 48v3v31v32a10 + 24v3v71v2b8 + 12v3v61v22b9 + 24v3v71v2a7
+ 12v3v61v22a8 + 24v3v51v2a8 − 24v3v51v2b9 − 12v3v41v22a9
− 36v3v41v22b10 − 12v4v81v2a5 − 8v4v81v2b6 − 24v4v71v22a6
− 32v4v61v2a6 + v4v

10
1 v2a4 + v4v

10
1 v2b5 − v4v

9
1v

2
2a5

− v4v
9
1v

2
2b6 − 3v4v81v32a6 − 48v4v61v22a10 + 2v4v111 v2b8

+ 2v4v111 v2a7 − 2v4v91v32a9 − 2v4v91v32b10 − 8v4v91v2a8
− 8v4v91v2b9 − 20v4v81v22a9 − 12v4v81v22b10 − 4v4v81v42a10
− 32v4v71v32a10 − 32v4v71v2a9 + 18v3v61v2a4 + 18v3v61v2b5
+ 6v3v51v22a5 + 6v3v51v22b6 − 6v3v41v32a6 + 12v3v41v2a5
− 24v3v41v2b6 − 24v3v31v22a6 + 12v3v51v2a2 + 12v3v51v2b3
+ 6v3v41v2a1 − 2v4v81v22a3 − v4v

8
1v2a1 − 16v4v71v2a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

1914



Equation (7E) now becomes

(8E)

(18b8 + 18a7) v2v31 + (2b2 + 4a7 − 4b8) v101 v4 + (b1 − 4b5) v91v4
+ (−4a2 − 4b3 − 16a8) v81v4 + (−8a1 − 16a5) v71v4
+ (24b2 + 60a7 − 12b8) v61v3 + (18b1 + 48a4 − 12b5) v51v3
+ (36a2 − 12b3) v41v3 + (9a4 + 9b5) v2v21 + (−9a5 − 9b6) v22v1
+ (−18a9 − 18b10) v32v1 + (−20a9 − 12b10 − 2a3) v22v81v4
+ (−32a9 − 16a3) v2v71v4 + (18a4 + 18b5) v2v61v3
+ (6a5 + 6b6) v22v51v3 + (12a5 − 24b6 + 6a1) v2v41v3 − 16v4v61a3
+ 24v3v31a1 + 4v4v121 b7 + 30v3v71b4 + 3v4v111 b4 + 36v3v81b7
− 27v32a6 + 27v31b4 − 36v42a10 + 18b2v21 + 36v41b7 − 18v22a3
+ 9v1b1 − 9v2a1 + (24b8 + 24a7) v2v71v3 + (12b9 + 12a8) v22v61v3
+ (24a8 − 24b9 + 12a2 + 12b3) v2v51v3 + (−12a9 − 36b10) v22v41v3
+ (−8b6 − a1 − 12a5) v2v81v4 + (a4 + b5) v2v101 v4
+(−a5− b6) v22v91v4+(2b8+2a7) v2v111 v4+(−2a9−2b10) v32v91v4
+ (−8a8 − 8b9) v2v91v4 − 12v3v41v42a10 − 48v3v31v32a10
− 24v4v71v22a6 − 32v4v61v2a6 − 3v4v81v32a6 − 48v4v61v22a10
− 4v4v81v42a10 − 32v4v71v32a10 − 6v3v41v32a6 − 24v3v31v22a6 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−9a1 = 0
24a1 = 0

−18a3 = 0
−16a3 = 0
−32a6 = 0
−27a6 = 0
−24a6 = 0
−6a6 = 0
−3a6 = 0

−48a10 = 0
−36a10 = 0
−32a10 = 0
−12a10 = 0
−4a10 = 0

9b1 = 0
18b2 = 0
3b4 = 0
27b4 = 0
30b4 = 0
4b7 = 0
36b7 = 0

−8a1 − 16a5 = 0
36a2 − 12b3 = 0

a4 + b5 = 0
9a4 + 9b5 = 0

18a4 + 18b5 = 0
−9a5 − 9b6 = 0
−a5 − b6 = 0
6a5 + 6b6 = 0

−8a8 − 8b9 = 0
−32a9 − 16a3 = 0
−18a9 − 18b10 = 0
−12a9 − 36b10 = 0
−2a9 − 2b10 = 0

b1 − 4b5 = 0
2b8 + 2a7 = 0

18b8 + 18a7 = 0
24b8 + 24a7 = 0
12b9 + 12a8 = 0

−4a2 − 4b3 − 16a8 = 0
12a5 − 24b6 + 6a1 = 0

−20a9 − 12b10 − 2a3 = 0
18b1 + 48a4 − 12b5 = 0

2b2 + 4a7 − 4b8 = 0
24b2 + 60a7 − 12b8 = 0
−8b6 − a1 − 12a5 = 0

24a8 − 24b9 + 12a2 + 12b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b9

a3 = 0
a4 = 0
a5 = 0
a6 = 0
a7 = 0
a8 = −b9

a9 = 0
a10 = 0
b1 = 0
b2 = 0
b3 = 3b9
b4 = 0
b5 = 0
b6 = 0
b7 = 0
b8 = 0
b9 = b9

b10 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −y x2 + x

η = x y2 + 3y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= x y2 + 3y −
(
−eyxx4y + 4 eyxx3 + 3y

x (eyxx4 + 3)

)(
−y x2 + x

)
= 4 eyxx4 + 12yx

x5eyx + 3x
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

4 eyxx4+12yx
x5eyx+3x

dy

Which results in

S = ln (eyxx4 + 3yx)
4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −eyxx4y + 4 eyxx3 + 3y
x (eyxx4 + 3)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = eyxx4y + 4 eyxx3 + 3y
4x (eyxx3 + 3y)

Sy =
eyxx4 + 3

4 eyxx3 + 12y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x)
4 + ln (eyxx3 + 3y)

4 = c1

Which simplifies to

ln (x)
4 + ln (eyxx3 + 3y)

4 = c1

Which gives

y = −
3 LambertW

(
x4e

e4c1
3

3

)
− e4c1

3x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − eyxx4y+4 eyxx3+3y
x(eyxx4+3)

dS
dR

= 0

R = x

S = ln (x)
4 + ln (eyxx3 + 3y)

4

Summary
The solution(s) found are the following

(1)y = −
3 LambertW

(
x4e

e4c1
3

3

)
− e4c1

3x
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Figure 379: Slope field plot

Verification of solutions

y = −
3 LambertW

(
x4e

e4c1
3

3

)
− e4c1

3x

Verified OK.

6.16.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x5eyx + 3x

)
dy =

(
−eyx

(
x4y + 4x3)− 3y

)
dx(

eyx
(
x4y + 4x3)+ 3y

)
dx+

(
x5eyx + 3x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = eyx
(
x4y + 4x3)+ 3y

N(x, y) = x5eyx + 3x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
eyx
(
x4y + 4x3)+ 3y

)
= 5 eyxx4 + x5eyxy + 3

And
∂N

∂x
= ∂

∂x

(
x5eyx + 3x

)
= 5 eyxx4 + x5eyxy + 3
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
eyx
(
x4y + 4x3)+ 3y dx

(3)φ = x
(
eyxx3 + 3y

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

(
eyxx4 + 3

)
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x5eyx + 3x. Therefore equation (4) becomes

(5)x5eyx + 3x = x
(
eyxx4 + 3

)
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x
(
eyxx3 + 3y

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x
(
eyxx3 + 3y

)
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The solution becomes

y = −
3 LambertW

(
x4e

c1
3

3

)
− c1

3x

Summary
The solution(s) found are the following

(1)y = −
3 LambertW

(
x4e

c1
3

3

)
− c1

3x

Figure 380: Slope field plot

Verification of solutions

y = −
3 LambertW

(
x4e

c1
3

3

)
− c1

3x

Verified OK.
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6.16.3 Maple step by step solution

Let’s solve
eyx(yx4 + 4x3) + 3y + (x5eyx + 3x) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
eyxx(x4y + 4x3) + eyxx4 + 3 = 5 eyxx4 + x5eyxy + 3

◦ Simplify
5 eyxx4 + x5eyxy + 3 = 5 eyxx4 + x5eyxy + 3

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(eyx(x4y + 4x3) + 3y) dx+ f1(y)

• Evaluate integral

F (x, y) =
eyxy4x4−4y3x3eyx+12 eyxy2x2−24 eyxyx+24 eyx

y3 +
4
(
y3x3eyx−3 eyxy2x2+6 eyxyx−6 eyx

)
y3

y
+ 3yx+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative

x5eyx + 3x = −
eyxy4x4−4y3x3eyx+12 eyxy2x2−24 eyxyx+24 eyx

y3 +
4
(
y3x3eyx−3 eyxy2x2+6 eyxyx−6 eyx

)
y3

y2
+

−
3
(
eyxy4x4−4y3x3eyx+12 eyxy2x2−24 eyxyx+24 eyx

)
y4 +x5eyxy−

12
(
y3x3eyx−3 eyxy2x2+6 eyxyx−6 eyx

)
y4 +4 eyxx4

y
+ 3x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = x5eyx +

eyxy4x4−4y3x3eyx+12 eyxy2x2−24 eyxyx+24 eyx

y3 +
4
(
y3x3eyx−3 eyxy2x2+6 eyxyx−6 eyx

)
y3

y2
−

−
3
(
eyxy4x4−4y3x3eyx+12 eyxy2x2−24 eyxyx+24 eyx

)
y4 +x5eyxy−

12
(
y3x3eyx−3 eyxy2x2+6 eyxyx−6 eyx

)
y4 +4 eyxx4

y
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• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)

F (x, y) =
eyxy4x4−4y3x3eyx+12 eyxy2x2−24 eyxyx+24 eyx

y3 +
4
(
y3x3eyx−3 eyxy2x2+6 eyxyx−6 eyx

)
y3

y
+ 3yx

• Substitute F (x, y) into the solution of the ODE
eyxy4x4−4y3x3eyx+12 eyxy2x2−24 eyxyx+24 eyx

y3 +
4
(
y3x3eyx−3 eyxy2x2+6 eyxyx−6 eyx

)
y3

y
+ 3yx = c1

• Solve for y

y = −
3LambertW

(
x4e

c1
3

3

)
−c1

3x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 25� �
dsolve((exp(x*y(x))*(x^4*y(x)+4*x^3)+3*y(x))+( x^5*exp(x*y(x))+3*x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
−3 LambertW

(
x4e−

c1
3

3

)
− c1

3x
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3 Solution by Mathematica
Time used: 4.486 (sec). Leaf size: 33� �
DSolve[(Exp[x*y[x]]*(x^4*y[x]+4*x^3)+3*y[x])+(x^5*Exp[x*y[x]]+3*x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
c1 − 3W

(
1
3e

c1
3 x4
)

3x
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6.17 problem 17
Internal problem ID [1046]
Internal file name [OUTPUT/1047_Sunday_June_05_2022_01_58_53_AM_46735432/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 17.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_Abel , `2nd type `, `class B`]]

Unable to solve or complete the solution.

3 cos (x) yx2 − x3y2 sin (x) +
(
8y − x4 sin (x) y

)
y′ = −4x

Unable to determine ODE type.

7 Solution by Maple� �
dsolve((3*x^2*cos(x)*y(x)-x^3*y(x)*sin(x)*y(x)+4*x)+(8*y(x)-x^4*sin(x)*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(3*x^2*Cos[x]*y[x]-x^3*y[x]*Sin[x]*y[x]+4*x)+(8*y[x]-x^4*Sin[x]*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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6.18 problem 18
6.18.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1929
6.18.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1930
6.18.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1933

Internal problem ID [1047]
Internal file name [OUTPUT/1048_Sunday_June_05_2022_02_01_17_AM_9722049/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 18.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational , [_Abel , `2nd type `, `class B`]]

4x3y2 − 6x2y +
(
2yx4 − 2x3) y′ = 2x+ 3

With initial conditions

[y(1) = 3]

6.18.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= −4x3y2 − 6y x2 − 2x− 3
2x3 (yx− 1)

The x domain of f(x, y) when y = 3 is

{
−∞ ≤ x < 0, 0 < x <

1
3 ,

1
3 < x ≤ ∞

}
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And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{y < 1∨ 1 < y}

And the point y0 = 3 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
−4x3y2 − 6y x2 − 2x− 3

2x3 (yx− 1)

)
= − 8y x3 − 6x2

2x3 (yx− 1) +
4x3y2 − 6y x2 − 2x− 3

2x2 (yx− 1)2

The x domain of ∂f
∂y

when y = 3 is{
−∞ ≤ x < 0, 0 < x <

1
3 ,

1
3 < x ≤ ∞

}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{y < 1∨ 1 < y}

And the point y0 = 3 is inside this domain. Therefore solution exists and is unique.

6.18.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

2x4y − 2x3) dy =
(
−4x3y2 + 6y x2 + 2x+ 3

)
dx(

4x3y2 − 6y x2 − 2x− 3
)
dx+

(
2x4y − 2x3) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 4x3y2 − 6y x2 − 2x− 3
N(x, y) = 2x4y − 2x3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
4x3y2 − 6y x2 − 2x− 3

)
= 8y x3 − 6x2

And
∂N

∂x
= ∂

∂x

(
2x4y − 2x3)

= 8y x3 − 6x2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

1931



Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
4x3y2 − 6y x2 − 2x− 3 dx

(3)φ = x4y2 − 2y x3 − x2 − 3x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2x4y − 2x3 + f ′(y)

But equation (2) says that ∂φ
∂y

= 2x4y − 2x3. Therefore equation (4) becomes

(5)2x4y − 2x3 = 2x4y − 2x3 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x4y2 − 2y x3 − x2 − 3x+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x4y2 − 2y x3 − x2 − 3x

Initial conditions are used to solve for c1. Substituting x = 1 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

−1 = c1
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c1 = −1

Substituting c1 found above in the general solution gives

x4y2 − 2y x3 − x2 − 3x = −1

Summary
The solution(s) found are the following

(1)x4y2 − 2yx3 − x2 − 3x = −1
Verification of solutions

x4y2 − 2yx3 − x2 − 3x = −1

Verified OK.

6.18.3 Maple step by step solution

Let’s solve
[4x3y2 − 6x2y + (2yx4 − 2x3) y′ = 2x+ 3, y(1) = 3]

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
8y x3 − 6x2 = 8y x3 − 6x2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(4x3y2 − 6y x2 − 2x− 3) dx+ f1(y)

• Evaluate integral
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F (x, y) = x4y2 − 2y x3 − x2 − 3x+ f1(y)
• Take derivative of F (x, y) with respect to y

N(x, y) = ∂
∂y
F (x, y)

• Compute derivative
2x4y − 2x3 = 2x4y − 2x3 + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = x4y2 − 2y x3 − x2 − 3x

• Substitute F (x, y) into the solution of the ODE
x4y2 − 2y x3 − x2 − 3x = c1

• Solve for y{
y = x−

√
2x2+c1+3x
x2 , y = x+

√
2x2+c1+3x
x2

}
• Use initial condition y(1) = 3

3 = 1−
√
c1 + 5

• Solution does not satisfy initial condition
• Use initial condition y(1) = 3

3 = 1 +
√
c1 + 5

• Solve for c1
c1 = −1

• Substitute c1 = −1 into general solution and simplify

y = x+
√
2x2+3x−1
x2

• Solution to the IVP

y = x+
√
2x2+3x−1
x2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.079 (sec). Leaf size: 22� �
dsolve([(4*x^3*y(x)^2-6*x^2*y(x)-2*x-3)+(2*x^4*y(x)-2*x^3)*diff(y(x),x)=0,y(1) = 3],y(x), singsol=all)� �

y(x) = x+
√
2x2 + 3x− 1
x2

3 Solution by Mathematica
Time used: 0.743 (sec). Leaf size: 31� �
DSolve[{(4*x^3*y[x]^2-6*x^2*y[x]-2*x-3)+(2*x^4*y[x]-2*x^3)*y'[x]==0,y[1]==3},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x3 +
√
x4 (2x2 + 3x− 1)

x4
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6.19 problem 19
6.19.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1936
6.19.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1939

Internal problem ID [1048]
Internal file name [OUTPUT/1049_Sunday_June_05_2022_02_01_18_AM_62428574/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , [_1st_order , `_with_symmetry_[F(x),G(x)]`], [_Abel , `2

nd type `, `class A`]]

−4 cos (x) y + (4y − 4 sin (x)) y′ = −4 cos (x) sin (x)− sec (x)2

With initial conditions [
y
(π
4

)
= 0
]

6.19.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(4y − 4 sin (x)) dy =
(
4 cos (x) y − 4 cos (x) sin (x)− sec (x)2

)
dx(

sec (x)2 − 4 cos (x) y + 4 cos (x) sin (x)
)
dx+(4y − 4 sin (x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = sec (x)2 − 4 cos (x) y + 4 cos (x) sin (x)
N(x, y) = 4y − 4 sin (x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
sec (x)2 − 4 cos (x) y + 4 cos (x) sin (x)

)
= −4 cos (x)
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And
∂N

∂x
= ∂

∂x
(4y − 4 sin (x))

= −4 cos (x)

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
sec (x)2 − 4 cos (x) y + 4 cos (x) sin (x) dx

(3)φ = tan (x)− 4 sin (x) y + 2 sin (x)2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −4 sin (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= 4y − 4 sin (x). Therefore equation (4) becomes

(5)4y − 4 sin (x) = −4 sin (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 4y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(4y) dy

f(y) = 2y2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = tan (x)− 4 sin (x) y + 2 sin (x)2 + 2y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = tan (x)− 4 sin (x) y + 2 sin (x)2 + 2y2

Initial conditions are used to solve for c1. Substituting x = π
4 and y = 0 in the above

solution gives an equation to solve for the constant of integration.

2 = c1

c1 = 2

Substituting c1 found above in the general solution gives

tan (x)− 4 sin (x) y + 2 sin (x)2 + 2y2 = 2

Summary
The solution(s) found are the following

(1)tan (x)− 4 sin (x) y + 2 sin (x)2 + 2y2 = 2
Verification of solutions

tan (x)− 4 sin (x) y + 2 sin (x)2 + 2y2 = 2

Verified OK.

6.19.2 Maple step by step solution

Let’s solve[
−4 cos (x) y + (4y − 4 sin (x)) y′ = −4 cos (x) sin (x)− sec (x)2 , y

(
π
4

)
= 0
]

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact

1939



◦ ODE is exact if the lhs is the total derivative of a C2 function
F ′(x, y) = 0

◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
−4 cos (x) = −4 cos (x)

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫ (

sec (x)2 − 4 cos (x) y + 4 cos (x) sin (x)
)
dx+ f1(y)

• Evaluate integral
F (x, y) = tan (x)− 4 sin (x) y + 2 sin (x)2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
4y − 4 sin (x) = −4 sin (x) + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 4y

• Solve for f1(y)
f1(y) = 2y2

• Substitute f1(y) into equation for F (x, y)
F (x, y) = tan (x)− 4 sin (x) y + 2 sin (x)2 + 2y2

• Substitute F (x, y) into the solution of the ODE
tan (x)− 4 sin (x) y + 2 sin (x)2 + 2y2 = c1

• Solve for y{
y = −2 sin(x)3−2 sin(x)−

√
4 cos(x)2 sin(x)4+4 sin(x)6+2 cos(x)4c1+4 cos(x)4−2 sin(x) cos(x)3−8 sin(x)4−4 cos(x)2+4 sin(x)2

2 cos(x)2 , y = −2 sin(x)3−2 sin(x)+
√

4 cos(x)2 sin(x)4+4 sin(x)6+2 cos(x)4c1+4 cos(x)4−2 sin(x) cos(x)3−8 sin(x)4−4 cos(x)2+4 sin(x)2

2 cos(x)2

}
• Use initial condition y

(
π
4

)
= 0
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0 =
√
2
2 +

√
−1

2 +
c1
2

• Solution does not satisfy initial condition
• Use initial condition y

(
π
4

)
= 0

0 =
√
2
2 −

√
−1

2 +
c1
2

• Solve for c1
c1 = 2

• Substitute c1 = 2 into general solution and simplify

y = sin (x)− sec(x)2
√
2
√

cos(x)3(− sin(x)+2 cos(x))
2

• Solution to the IVP

y = sin (x)− sec(x)2
√
2
√

cos(x)3(− sin(x)+2 cos(x))
2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 1.719 (sec). Leaf size: 32� �
dsolve([(-4*y(x)*cos(x)+4*sin(x)*cos(x)+sec(x)^2)+(4*y(x)-4*sin(x))*diff(y(x),x)=0,y(1/4*Pi) = 0],y(x), singsol=all)� �

y(x) = sin (x)−
sec (x)2

√
2
√
cos (x)3 (2 cos (x)− sin (x))

2
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3 Solution by Mathematica
Time used: 11.693 (sec). Leaf size: 38� �
DSolve[{(-4*y[x]*Cos[x]+4*Sin[x]*Cos[x]+Sec[x]^2)+(4*y[x]-4*Sin[x])*y'[x]==0,y[Pi/4]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(x) + 1
2
√
− sec2(x)

√
sin(2x)− 2 cos(2x)− 2
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6.20 problem 20
6.20.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1943
6.20.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1944
6.20.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1945
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Internal problem ID [1049]
Internal file name [OUTPUT/1050_Sunday_June_05_2022_02_01_25_AM_47202873/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 20.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
y3 − 1

)
ex + 3y2(1 + ex) y′ = 0

With initial conditions

[y(0) = 0]

6.20.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= − (y3 − 1) ex
3y2 (1 + ex)

f(x, y) is not defined at y = 0 therefore existence and uniqueness theorem do not apply.
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6.20.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − (y3 − 1) ex
3y2 (1 + ex)

Where f(x) = − ex
3(1+ex) and g(y) = y3−1

y2
. Integrating both sides gives

1
y3−1
y2

dy = − ex
3 (1 + ex) dx∫ 1

y3−1
y2

dy =
∫

− ex
3 (1 + ex) dx

ln (y3 − 1)
3 = − ln (1 + ex)

3 + c1

Raising both side to exponential gives(
y3 − 1

) 1
3 = e−

ln
(
1+ex

)
3 +c1

Which simplifies to (
y3 − 1

) 1
3 = c2

(1 + ex)
1
3

Which can be simplified to become

(
y3 − 1

) 1
3 = c2ec1

(1 + ex)
1
3

The solution is (
y3 − 1

) 1
3 = c2ec1

(1 + ex)
1
3

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

1
2 + i

√
3

2 = 2 2
3 c2ec1
2
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c1 =
ln
((

1+i
√
3
)3

4c32

)
3

Substituting c1 found above in the general solution gives

(
y3 − 1

) 1
3 =

c24
2
3

(
− 8

c32

) 1
3

4 (1 + ex)
1
3

The above simplifies to

−c24
2
3

(
− 8
c32

) 1
3

+ 4
(
y3 − 1

) 1
3 (1 + ex)

1
3 = 0

Summary
The solution(s) found are the following

(1)−4c22
1
3

(
− 1
c32

) 1
3

+ 4
(
y3 − 1

) 1
3 (1 + ex)

1
3 = 0

Verification of solutions

−4c22
1
3

(
− 1
c32

) 1
3

+ 4
(
y3 − 1

) 1
3 (1 + ex)

1
3 = 0

Verified OK.

6.20.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − (y3 − 1) ex
3y2 (1 + ex)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 289: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −3(1 + ex) e−x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−3 (1 + ex) e−x
dx

Which results in

S = − ln (1 + ex)
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − (y3 − 1) ex
3y2 (1 + ex)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = − ex
3 + 3 ex

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y2

y3 − 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2

R3 − 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln ((R− 1) (R2 +R + 1))
3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (1 + ex)
3 = ln ((y − 1) (y2 + y + 1))

3 + c1

Which simplifies to

− ln (1 + ex)
3 = ln ((y − 1) (y2 + y + 1))

3 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −
(
y3−1

)
ex

3y2(1+ex)
dS
dR

= R2

R3−1

R = y

S = − ln (1 + ex)
3

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

− ln (2)
3 = iπ

3 + c1
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c1 = −iπ

3 − ln (2)
3

Substituting c1 found above in the general solution gives

− ln (1 + ex)
3 = ln ((y − 1) (y2 + y + 1))

3 − iπ

3 − ln (2)
3

Summary
The solution(s) found are the following

(1)− ln (1 + ex)
3 = ln ((y − 1) (y2 + y + 1))

3 − iπ

3 − ln (2)
3

Verification of solutions

− ln (1 + ex)
3 = ln ((y − 1) (y2 + y + 1))

3 − iπ

3 − ln (2)
3

Verified OK.

6.20.4 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= − (y3 − 1) ex
3y2 (1 + ex)

This is a Bernoulli ODE.

y′ = − ex
3 (1 + ex)y +

ex
3 + 3 ex

1
y2

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.
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This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − ex
3 (1 + ex)

f1(x) =
ex

3 + 3 ex
n = −2

Dividing both sides of ODE (1) by yn = 1
y2

gives

y′y2 = − exy3
3 (1 + ex) +

ex
3 + 3 ex (4)

Let

w = y1−n

= y3 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 3y2y′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
3 = − exw(x)

3 (1 + ex) +
ex

3 + 3 ex

w′ = − exw
1 + ex + ex

1 + ex (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = ex
1 + ex

q(x) = ex
1 + ex

Hence the ode is

w′(x) + exw(x)
1 + ex = ex

1 + ex
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The integrating factor µ is

µ = e
∫ ex

1+ex dx

= 1 + ex

The ode becomes

d
dx(µw) = (µ)

(
ex

1 + ex

)
d
dx((1 + ex)w) = (1 + ex)

(
ex

1 + ex

)
d((1 + ex)w) = ex dx

Integrating gives

(1 + ex)w =
∫

ex dx

(1 + ex)w = ex + c1

Dividing both sides by the integrating factor µ = 1 + ex results in

w(x) = ex
1 + ex + c1

1 + ex

which simplifies to

w(x) = ex + c1
1 + ex

Replacing w in the above by y3 using equation (5) gives the final solution.

y3 = ex + c1
1 + ex

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = 1
2 + c1

2

c1 = −1

Substituting c1 found above in the general solution gives

y3 = ex − 1
1 + ex
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The above simplifies to

1 + y3ex + y3 − ex = 0

Summary
The solution(s) found are the following

(1)1 + y3ex + y3 − ex = 0
Verification of solutions

1 + y3ex + y3 − ex = 0

Verified OK.

6.20.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work

1952



and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 3y2
y3 − 1

)
dy =

(
ex

1 + ex

)
dx(

− ex
1 + ex

)
dx+

(
− 3y2
y3 − 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − ex
1 + ex

N(x, y) = − 3y2
y3 − 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− ex
1 + ex

)
= 0

And

∂N

∂x
= ∂

∂x

(
− 3y2
y3 − 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− ex
1 + ex dx

(3)φ = − ln (1 + ex) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 3y2
y3−1 . Therefore equation (4) becomes

(5)− 3y2
y3 − 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 3y2
y3 − 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− 3y2
y3 − 1

)
dy

f(y) = − ln
(
y3 − 1

)
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (1 + ex)− ln
(
y3 − 1

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (1 + ex)− ln
(
y3 − 1

)

1954



Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

− ln (2)− iπ = c1

c1 = − ln (2)− iπ

Substituting c1 found above in the general solution gives

− ln (1 + ex)− ln
(
y3 − 1

)
= − ln (2)− iπ

Summary
The solution(s) found are the following

(1)− ln (1 + ex)− ln
(
y3 − 1

)
= − ln (2)− iπ

Verification of solutions

− ln (1 + ex)− ln
(
y3 − 1

)
= − ln (2)− iπ

Verified OK.

6.20.6 Maple step by step solution

Let’s solve
[(y3 − 1) ex + 3y2(1 + ex) y′ = 0, y(0) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
((y3 − 1) ex + 3y2(1 + ex) y′) dx =

∫
0dx+ c1

• Evaluate integral
y3(1 + ex)− ex = c1

• Solve for y

y =
(
(ex+c1)(1+ex)2

) 1
3

1+ex

• Use initial condition y(0) = 0

0 = (4+4c1)
1
3

2

• Solve for c1

1955



c1 = −1
• Substitute c1 = −1 into general solution and simplify

y =
(
(ex−1)(1+ex)2

) 1
3

1+ex

• Solution to the IVP

y =
(
(ex−1)(1+ex)2

) 1
3

1+ex

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.219 (sec). Leaf size: 91� �
dsolve([((y(x)^3-1)*exp(x))+(3*y(x)^2*(exp(x)+1))*diff(y(x),x)=0,y(0) = 0],y(x), singsol=all)� �

y(x) =
(
(ex − 1) (1 + ex)2

) 1
3

1 + ex

y(x) =
(
i
√
3− 1

) (
(ex − 1) (1 + ex)2

) 1
3

2 + 2 ex

y(x) = −
(
1 + i

√
3
) (

(ex − 1) (1 + ex)2
) 1

3

2 + 2 ex
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3 Solution by Mathematica
Time used: 0.984 (sec). Leaf size: 77� �
DSolve[{((y[x]^3-1)*Exp[x])+(3*y[x]^2*(Exp[x]+1))*y'[x]==0,y[0]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3

√
ex − 1
ex + 1

y(x) → − 3
√
−1 3

√
ex − 1
ex + 1

y(x) → (−1)2/3 3

√
ex − 1
ex + 1
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6.21 problem 21
6.21.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1958
6.21.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1959
6.21.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 1961
6.21.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1965
6.21.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1969

Internal problem ID [1050]
Internal file name [OUTPUT/1051_Sunday_June_05_2022_02_01_26_AM_60860642/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 21.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_linear]

− sin (x) y + y′ cos (x) = − sin (x) + 2 cos (x)

With initial conditions

[y(0) = 1]

6.21.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = − tan (x)
q(x) = − tan (x) + 2
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Hence the ode is

y′ − tan (x) y = − tan (x) + 2

The domain of p(x) = − tan (x) is{
x <

1
2π + π_Z50∨ 1

2π + π_Z50 < x

}
And the point x0 = 0 is inside this domain. The domain of q(x) = − tan (x) + 2 is{

x <
1
2π + π_Z50∨ 1

2π + π_Z50 < x

}
And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

6.21.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
− tan(x)dx

= cos (x)

The ode becomes
d
dx(µy) = (µ) (− tan (x) + 2)

d
dx(cos (x) y) = (cos (x)) (− tan (x) + 2)

d(cos (x) y) = (− sin (x) + 2 cos (x)) dx

Integrating gives

cos (x) y =
∫

− sin (x) + 2 cos (x) dx

cos (x) y = cos (x) + 2 sin (x) + c1

Dividing both sides by the integrating factor µ = cos (x) results in

y = sec (x) (cos (x) + 2 sin (x)) + c1 sec (x)

which simplifies to

y = 1 + 2 tan (x) + c1 sec (x)
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = 1 + c1

c1 = 0

Substituting c1 found above in the general solution gives

y = 1 + 2 tan (x)

Summary
The solution(s) found are the following

(1)y = 1 + 2 tan (x)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1 + 2 tan (x)

Verified OK.
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6.21.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − sin (x) + sin (x) y + 2 cos (x)
cos (x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 292: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
cos (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
cos(x)

dy

Which results in

S = cos (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − sin (x) + sin (x) y + 2 cos (x)
cos (x)

1962



Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = − sin (x) y
Sy = cos (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − sin (x) + 2 cos (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − sin (R) + 2 cos (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = cos (R) + 2 sin (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

cos (x) y = cos (x) + 2 sin (x) + c1

Which simplifies to

cos (x) y = cos (x) + 2 sin (x) + c1

Which gives

y = cos (x) + 2 sin (x) + c1
cos (x)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − sin(x)+sin(x)y+2 cos(x)
cos(x)

dS
dR

= − sin (R) + 2 cos (R)

R = x

S = cos (x) y

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = 1 + c1

c1 = 0

Substituting c1 found above in the general solution gives

y = 1 + 2 tan (x)

Summary
The solution(s) found are the following

(1)y = 1 + 2 tan (x)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1 + 2 tan (x)

Verified OK.

6.21.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(cos (x)) dy = (− sin (x) + sin (x) y + 2 cos (x)) dx
(sin (x)− sin (x) y − 2 cos (x)) dx+(cos (x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = sin (x)− sin (x) y − 2 cos (x)
N(x, y) = cos (x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(sin (x)− sin (x) y − 2 cos (x))

= − sin (x)

And
∂N

∂x
= ∂

∂x
(cos (x))

= − sin (x)

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
sin (x)− sin (x) y − 2 cos (x) dx

(3)φ = cos (x) (y − 1)− 2 sin (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= cos (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= cos (x). Therefore equation (4) becomes

(5)cos (x) = cos (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = cos (x) (y − 1)− 2 sin (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = cos (x) (y − 1)− 2 sin (x)

The solution becomes

y = cos (x) + 2 sin (x) + c1
cos (x)
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = 1 + c1

c1 = 0

Substituting c1 found above in the general solution gives

y = 1 + 2 tan (x)

Summary
The solution(s) found are the following

(1)y = 1 + 2 tan (x)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1 + 2 tan (x)

Verified OK.
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6.21.5 Maple step by step solution

Let’s solve
[− sin (x) y + y′ cos (x) = − sin (x) + 2 cos (x) , y(0) = 1]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = sin(x)y

cos(x) + − sin(x)+2 cos(x)
cos(x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − sin(x)y

cos(x) = − sin(x)+2 cos(x)
cos(x)

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ − sin(x)y

cos(x)

)
= µ(x)(− sin(x)+2 cos(x))

cos(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − sin(x)y

cos(x)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) sin(x)

cos(x)

• Solve to find the integrating factor
µ(x) = cos (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)(− sin(x)+2 cos(x))
cos(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)(− sin(x)+2 cos(x))
cos(x) dx+ c1

• Solve for y

y =
∫ µ(x)(− sin(x)+2 cos(x))

cos(x) dx+c1

µ(x)

• Substitute µ(x) = cos (x)

y =
∫
(− sin(x)+2 cos(x))dx+c1

cos(x)

• Evaluate the integrals on the rhs
y = cos(x)+2 sin(x)+c1

cos(x)
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• Simplify
y = 1 + 2 tan (x) + c1 sec (x)

• Use initial condition y(0) = 1
1 = 1 + c1

• Solve for c1
c1 = 0

• Substitute c1 = 0 into general solution and simplify
y = 1 + 2 tan (x)

• Solution to the IVP
y = 1 + 2 tan (x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 10� �
dsolve([(sin(x)-y(x)*sin(x)-2*cos(x))+(cos(x))*diff(y(x),x)=0,y(0) = 1],y(x), singsol=all)� �

y(x) = 2 tan (x) + 1

3 Solution by Mathematica
Time used: 0.093 (sec). Leaf size: 11� �
DSolve[{(Sin[x]-y[x]*Sin[x]-2*Cos[x])+(Cos[x])*y'[x]==0,y[0]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2 tan(x) + 1
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6.22 problem 22
6.22.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 1972
6.22.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 1972
6.22.3 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 1974
6.22.4 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 1975
6.22.5 Solving as first order ode lie symmetry lookup ode . . . . . . . 1977
6.22.6 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1982
6.22.7 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1985

Internal problem ID [1051]
Internal file name [OUTPUT/1052_Sunday_June_05_2022_02_01_28_AM_20778865/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 22.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"differentialType", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(2x− 1) (y − 1) + (2 + x) (x− 3) y′ = 0

With initial conditions

[y(1) = −1]
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6.22.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = − 1− 2x
(2 + x) (x− 3)

q(x) = 2x− 1
(2 + x) (x− 3)

Hence the ode is

y′ − (1− 2x) y
(2 + x) (x− 3) = 2x− 1

(2 + x) (x− 3)

The domain of p(x) = − 1−2x
(2+x)(x−3) is

{−∞ ≤ x < −2,−2 < x < 3, 3 < x ≤ ∞}

And the point x0 = 1 is inside this domain. The domain of q(x) = 2x−1
(2+x)(x−3) is

{−∞ ≤ x < −2,−2 < x < 3, 3 < x ≤ ∞}

And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

6.22.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= (2x− 1) (−y + 1)
(2 + x) (x− 3)

Where f(x) = 2x−1
(2+x)(x−3) and g(y) = −y + 1. Integrating both sides gives

1
−y + 1 dy = 2x− 1

(2 + x) (x− 3) dx∫ 1
−y + 1 dy =

∫ 2x− 1
(2 + x) (x− 3) dx

− ln (y − 1) = ln ((2 + x) (x− 3)) + c1
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Raising both side to exponential gives

1
y − 1 = eln((2+x)(x−3))+c1

Which simplifies to

1
y − 1 = c2(2 + x) (x− 3)

Initial conditions are used to solve for c1. Substituting x = 1 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = 6 e−c1ec1c2 − e−c1

6c2

c1 = − ln (12c2)

Substituting c1 found above in the general solution gives

y = x2 − x+ 6
x2 − x− 6

Summary
The solution(s) found are the following

(1)y = x2 − x+ 6
x2 − x− 6

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = x2 − x+ 6
x2 − x− 6

Verified OK.

6.22.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
− 1−2x

(2+x)(x−3)dx

= (2 + x) (x− 3)

The ode becomes

d
dx(µy) = (µ)

(
2x− 1

(2 + x) (x− 3)

)
d
dx((2 + x) (x− 3) y) = ((2 + x) (x− 3))

(
2x− 1

(2 + x) (x− 3)

)
d((2 + x) (x− 3) y) = (2x− 1) dx

Integrating gives

(2 + x) (x− 3) y =
∫

2x− 1 dx

(2 + x) (x− 3) y = x2 − x+ c1

Dividing both sides by the integrating factor µ = (2 + x) (x− 3) results in

y = x2 − x

(2 + x) (x− 3) +
c1

(2 + x) (x− 3)

which simplifies to

y = x2 + c1 − x

(2 + x) (x− 3)

Initial conditions are used to solve for c1. Substituting x = 1 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = −c1
6

c1 = 6
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Substituting c1 found above in the general solution gives

y = x2 − x+ 6
(2 + x) (x− 3)

Summary
The solution(s) found are the following

(1)y = x2 − x+ 6
(2 + x) (x− 3)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = x2 − x+ 6
(2 + x) (x− 3)

Verified OK.

6.22.4 Solving as differentialType ode

Writing the ode as

y′ = −(2x− 1) (y − 1)
(2 + x) (x− 3) (1)

Which becomes

0 =
(
−x2 + x+ 6

)
dy + (−(y − 1) (2x− 1)) dx (2)
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But the RHS is complete differential because(
−x2 + x+ 6

)
dy + (−(y − 1) (2x− 1)) dx = d

(
−(y − 1)

(
x2 − x

)
+ 6y

)
Hence (2) becomes

0 = d
(
−(y − 1)

(
x2 − x

)
+ 6y

)
Integrating both sides gives gives these solutions

y = x2 + c1 − x

x2 − x− 6 + c1

Initial conditions are used to solve for c1. Substituting x = 1 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = 5c1
6

c1 = −6
5

Substituting c1 found above in the general solution gives

y = − x2 − x− 30
5 (x2 − x− 6)

Summary
The solution(s) found are the following

(1)y = − x2 − x− 30
5 (x2 − x− 6)

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = − x2 − x− 30
5 (x2 − x− 6)

Verified OK.

6.22.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −(2x− 1) (y − 1)
(2 + x) (x− 3)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 295: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
(2 + x) (x− 3) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
(2+x)(x−3)

dy

Which results in

S = (2 + x) (x− 3) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −(2x− 1) (y − 1)
(2 + x) (x− 3)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y(2x− 1)
Sy = (2 + x) (x− 3)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x− 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R− 1

1979



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2 −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(2 + x) (x− 3) y = x2 + c1 − x

Which simplifies to

(2 + x) (x− 3) y = x2 + c1 − x

Which gives

y = x2 + c1 − x

(2 + x) (x− 3)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − (2x−1)(y−1)
(2+x)(x−3)

dS
dR

= 2R− 1

R = x

S = (2 + x) (x− 3) y

Initial conditions are used to solve for c1. Substituting x = 1 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = −c1
6

1980



c1 = 6

Substituting c1 found above in the general solution gives

y = x2 − x+ 6
(2 + x) (x− 3)

Summary
The solution(s) found are the following

(1)y = x2 − x+ 6
(2 + x) (x− 3)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = x2 − x+ 6
(2 + x) (x− 3)

Verified OK.
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6.22.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

−y + 1

)
dy =

(
2x− 1

(2 + x) (x− 3)

)
dx(

− 2x− 1
(2 + x) (x− 3)

)
dx+

(
1

−y + 1

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = − 2x− 1
(2 + x) (x− 3)

N(x, y) = 1
−y + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 2x− 1
(2 + x) (x− 3)

)
= 0

And
∂N

∂x
= ∂

∂x

(
1

−y + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 2x− 1
(2 + x) (x− 3) dx

(3)φ = − ln ((2 + x) (x− 3)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= 1
−y+1 . Therefore equation (4) becomes

(5)1
−y + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
y − 1

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
y − 1

)
dy

f(y) = − ln (y − 1) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln ((2 + x) (x− 3))− ln (y − 1) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln ((2 + x) (x− 3))− ln (y − 1)

The solution becomes

y = (x2ec1 − x ec1 − 6 ec1 + 1) e−c1

x2 − x− 6

Initial conditions are used to solve for c1. Substituting x = 1 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = 1− e−c1

6

c1 = − ln (12)

1984



Substituting c1 found above in the general solution gives

y = x2 − x+ 6
x2 − x− 6

Summary
The solution(s) found are the following

(1)y = x2 − x+ 6
x2 − x− 6

(a) Solution plot (b) Slope field plot

Verification of solutions

y = x2 − x+ 6
x2 − x− 6

Verified OK.

6.22.7 Maple step by step solution

Let’s solve
[(2x− 1) (y − 1) + (2 + x) (x− 3) y′ = 0, y(1) = −1]

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x
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∫
((2x− 1) (y − 1) + (2 + x) (x− 3) y′) dx =

∫
0dx+ c1

• Evaluate integral
(x2 − x− 6) y − x2 + x = c1

• Solve for y
y = x2+c1−x

x2−x−6

• Use initial condition y(1) = −1
−1 = − c1

6

• Solve for c1
c1 = 6

• Substitute c1 = 6 into general solution and simplify
y = x2−x+6

x2−x−6

• Solution to the IVP
y = x2−x+6

x2−x−6

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 23� �
dsolve([((2*x-1)*(y(x)-1))+((x+2)*(x-3))*diff(y(x),x)=0,y(1) = -1],y(x), singsol=all)� �

y(x) = x2 − x+ 6
(2 + x) (x− 3)
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3 Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 24� �
DSolve[{((2*x-1)*(y[x]-1))+((x+2)*(x-3))*y'[x]==0,y[1]==-1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 − x+ 6
x2 − x− 6
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6.23 problem 23
6.23.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 1988
6.23.2 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 1990
6.23.3 Solving as first order ode lie symmetry calculated ode . . . . . . 1992
6.23.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1997
6.23.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2001

Internal problem ID [1052]
Internal file name [OUTPUT/1053_Sunday_June_05_2022_02_01_29_AM_51323999/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 23.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "ho-
mogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , [_Abel , `2nd

type `, `class A`]]

4y + (4x+ 3y) y′ = −7x

6.23.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

4u(x)x+ (4x+ 3u(x)x) (u′(x)x+ u(x)) = −7x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −3u2 + 8u+ 7
x (3u+ 4)
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Where f(x) = − 1
x
and g(u) = 3u2+8u+7

3u+4 . Integrating both sides gives

1
3u2+8u+7

3u+4
du = −1

x
dx

∫ 1
3u2+8u+7

3u+4
du =

∫
−1
x
dx

ln (3u2 + 8u+ 7)
2 = − ln (x) + c2

Raising both side to exponential gives
√
3u2 + 8u+ 7 = e− ln(x)+c2

Which simplifies to
√
3u2 + 8u+ 7 = c3

x

Which simplifies to √
3u (x)2 + 8u (x) + 7 = c3ec2

x

The solution is √
3u (x)2 + 8u (x) + 7 = c3ec2

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form√

3y2
x2 + 8y

x
+ 7 = c3ec2

x√
3y2 + 8yx+ 7x2

x2 = c3ec2
x

Summary
The solution(s) found are the following

(1)
√

3y2 + 8yx+ 7x2

x2 = c3ec2
x
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Figure 389: Slope field plot

Verification of solutions √
3y2 + 8yx+ 7x2

x2 = c3ec2
x

Verified OK.

6.23.2 Solving as differentialType ode

Writing the ode as

y′ = −7x− 4y
4x+ 3y (1)

Which becomes

(3y) dy = (−4x) dy + (−7x− 4y) dx (2)

But the RHS is complete differential because

(−4x) dy + (−7x− 4y) dx = d

(
−7
2x

2 − 4yx
)
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Hence (2) becomes

(3y) dy = d

(
−7
2x

2 − 4yx
)

Integrating both sides gives gives these solutions

y = −4x
3 +

√
−5x2 + 6c1

3 + c1

y = −4x
3 −

√
−5x2 + 6c1

3 + c1

Summary
The solution(s) found are the following

(1)y = −4x
3 +

√
−5x2 + 6c1

3 + c1

(2)y = −4x
3 −

√
−5x2 + 6c1

3 + c1

Figure 390: Slope field plot
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Verification of solutions

y = −4x
3 +

√
−5x2 + 6c1

3 + c1

Verified OK.

y = −4x
3 −

√
−5x2 + 6c1

3 + c1

Verified OK.

6.23.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −7x+ 4y
4x+ 3y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(7x+ 4y) (b3 − a2)

4x+ 3y − (7x+ 4y)2 a3
(4x+ 3y)2

−
(
− 7
4x+ 3y + 28x+ 16y

(4x+ 3y)2
)
(xa2 + ya3 + a1)

−
(
− 4
4x+ 3y + 21x+ 12y

(4x+ 3y)2
)
(xb2 + yb3 + b1) = 0
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Putting the above in normal form gives

28x2a2 − 49x2a3 + 11x2b2 − 28x2b3 + 42xya2 − 56xya3 + 24xyb2 − 42xyb3 + 12y2a2 − 11y2a3 + 9y2b2 − 12y2b3 − 5xb1 + 5ya1
(4x+ 3y)2

= 0

Setting the numerator to zero gives

(6E)28x2a2 − 49x2a3 + 11x2b2 − 28x2b3 + 42xya2 − 56xya3 + 24xyb2
− 42xyb3 + 12y2a2 − 11y2a3 + 9y2b2 − 12y2b3 − 5xb1 + 5ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)28a2v21 + 42a2v1v2 + 12a2v22 − 49a3v21 − 56a3v1v2 − 11a3v22 + 11b2v21
+ 24b2v1v2 + 9b2v22 − 28b3v21 − 42b3v1v2 − 12b3v22 + 5a1v2 − 5b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(28a2 − 49a3 + 11b2 − 28b3) v21 + (42a2 − 56a3 + 24b2 − 42b3) v1v2
− 5b1v1 + (12a2 − 11a3 + 9b2 − 12b3) v22 + 5a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

5a1 = 0
−5b1 = 0

12a2 − 11a3 + 9b2 − 12b3 = 0
28a2 − 49a3 + 11b2 − 28b3 = 0
42a2 − 56a3 + 24b2 − 42b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 =
8a3
3 + b3

a3 = a3

b1 = 0

b2 = −7a3
3

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−7x+ 4y
4x+ 3y

)
(x)

= 7x2 + 8yx+ 3y2
4x+ 3y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x
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S is found from

S =
∫ 1

η
dy

=
∫ 1

7x2+8yx+3y2
4x+3y

dy

Which results in

S = ln (7x2 + 8yx+ 3y2)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −7x+ 4y
4x+ 3y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 7x+ 4y
7x2 + 8yx+ 3y2

Sy =
4x+ 3y

7x2 + 8yx+ 3y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (3y2 + 8yx+ 7x2)
2 = c1

Which simplifies to

ln (3y2 + 8yx+ 7x2)
2 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −7x+4y
4x+3y

dS
dR

= 0

R = x

S = ln (7x2 + 8yx+ 3y2)
2

Summary
The solution(s) found are the following

(1)ln (3y2 + 8yx+ 7x2)
2 = c1
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Figure 391: Slope field plot

Verification of solutions

ln (3y2 + 8yx+ 7x2)
2 = c1

Verified OK.

6.23.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(4x+ 3y) dy = (−7x− 4y) dx
(7x+ 4y) dx+(4x+ 3y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 7x+ 4y
N(x, y) = 4x+ 3y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(7x+ 4y)

= 4

And
∂N

∂x
= ∂

∂x
(4x+ 3y)

= 4
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
7x+ 4y dx

(3)φ = x(7x+ 8y)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 4x+ f ′(y)

But equation (2) says that ∂φ
∂y

= 4x+ 3y. Therefore equation (4) becomes

(5)4x+ 3y = 4x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 3y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(3y) dy

f(y) = 3y2
2 + c1

1999



Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x(7x+ 8y)
2 + 3y2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x(7x+ 8y)

2 + 3y2
2

Summary
The solution(s) found are the following

(1)x(7x+ 8y)
2 + 3y2

2 = c1

Figure 392: Slope field plot

Verification of solutions

x(7x+ 8y)
2 + 3y2

2 = c1

Verified OK.
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6.23.5 Maple step by step solution

Let’s solve
4y + (4x+ 3y) y′ = −7x

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
4 = 4

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(7x+ 4y) dx+ f1(y)

• Evaluate integral
F (x, y) = 7x2

2 + 4yx+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
4x+ 3y = 4x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 3y

• Solve for f1(y)

f1(y) = 3y2
2

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = 7
2x

2 + 4yx+ 3
2y

2

• Substitute F (x, y) into the solution of the ODE
7
2x

2 + 4yx+ 3
2y

2 = c1

• Solve for y{
y = −4x

3 −
√

−5x2+6c1
3 , y = −4x

3 +
√

−5x2+6c1
3

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 53� �
dsolve((7*x+4*y(x))+(4*x+3*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −4c1x−
√

−5c21x2 + 3
3c1

y(x) = −4c1x+
√

−5c21x2 + 3
3c1
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3 Solution by Mathematica
Time used: 0.483 (sec). Leaf size: 118� �
DSolve[(7*x+4*y[x])+(4*x+3*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3

(
−4x−

√
−5x2 + 3e2c1

)
y(x) → 1

3

(
−4x+

√
−5x2 + 3e2c1

)
y(x) → 1

3

(
−
√
5
√
−x2 − 4x

)
y(x) → 1

3

(√
5
√
−x2 − 4x

)
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6.24 problem 24
6.24.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 2004
6.24.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2008
6.24.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2012
6.24.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2015

Internal problem ID [1053]
Internal file name [OUTPUT/1054_Sunday_June_05_2022_02_01_30_AM_2174050/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 24.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_exact , _Bernoulli]

ex
(
x4y2 + 4x3y2 + 1

)
+
(
2x4y ex + 2y

)
y′ = 0

6.24.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −ex(x4y2 + 4x3y2 + 1)
2y (exx4 + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 299: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
y (2 exx4 + 2) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
y(2 exx4+2)

dy

Which results in

S = y2(2 exx4 + 2)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −ex(x4y2 + 4x3y2 + 1)
2y (exx4 + 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y2exx3(x+ 4)
Sy = 2y

(
exx4 + 1

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −ex (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −eR

2006



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −eR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2
(
exx4 + 1

)
= −ex + c1

Which simplifies to

y2
(
exx4 + 1

)
= −ex + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − ex
(
x4y2+4x3y2+1

)
2y(exx4+1)

dS
dR

= −eR

R = x

S = y2
(
exx4 + 1

)

Summary
The solution(s) found are the following

(1)y2
(
exx4 + 1

)
= −ex + c1
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Figure 393: Slope field plot

Verification of solutions

y2
(
exx4 + 1

)
= −ex + c1

Verified OK.

6.24.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −ex(x4y2 + 4x3y2 + 1)
2y (exx4 + 1)

This is a Bernoulli ODE.

y′ = −ex(x4 + 4x3)
2 (exx4 + 1) y −

ex
2 (exx4 + 1)

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −ex(x4 + 4x3)
2 (exx4 + 1)

f1(x) = − ex
2 (exx4 + 1)

n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = −ex(x4 + 4x3) y2
2 (exx4 + 1) − ex

2 (exx4 + 1) (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = −ex(x4 + 4x3)w(x)

2 (exx4 + 1) − ex
2 (exx4 + 1)

w′ = −ex(x4 + 4x3)w
exx4 + 1 − ex

exx4 + 1 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

2009



Where here

p(x) = exx3(x+ 4)
exx4 + 1

q(x) = − ex
exx4 + 1

Hence the ode is

w′(x) + exx3(x+ 4)w(x)
exx4 + 1 = − ex

exx4 + 1

The integrating factor µ is

µ = e
∫ exx3(x+4)

exx4+1 dx

= exx4 + 1

The ode becomes

d
dx(µw) = (µ)

(
− ex
exx4 + 1

)
d
dx
((
exx4 + 1

)
w
)
=
(
exx4 + 1

)(
− ex
exx4 + 1

)
d
((
exx4 + 1

)
w
)
= (−ex) dx

Integrating gives (
exx4 + 1

)
w =

∫
−ex dx(

exx4 + 1
)
w = −ex + c1

Dividing both sides by the integrating factor µ = exx4 + 1 results in

w(x) = − ex
exx4 + 1 + c1

exx4 + 1

which simplifies to

w(x) = −ex + c1
exx4 + 1

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = −ex + c1
exx4 + 1

2010



Solving for y gives

y(x) =
√

(exx4 + 1) (−ex + c1)
exx4 + 1

y(x) = −
√

(exx4 + 1) (−ex + c1)
exx4 + 1

Summary
The solution(s) found are the following

(1)y =
√

(exx4 + 1) (−ex + c1)
exx4 + 1

(2)y = −
√
(exx4 + 1) (−ex + c1)

exx4 + 1

Figure 394: Slope field plot
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Verification of solutions

y =
√

(exx4 + 1) (−ex + c1)
exx4 + 1

Verified OK.

y = −
√
(exx4 + 1) (−ex + c1)

exx4 + 1

Verified OK.

6.24.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

2x4y ex + 2y
)
dy =

(
−ex

(
x4y2 + 4x3y2 + 1

))
dx(

ex
(
x4y2 + 4x3y2 + 1

))
dx+

(
2x4y ex + 2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = ex
(
x4y2 + 4x3y2 + 1

)
N(x, y) = 2x4y ex + 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
ex
(
x4y2 + 4x3y2 + 1

))
= 2 exy x3(x+ 4)

And
∂N

∂x
= ∂

∂x

(
2x4y ex + 2y

)
= 2 exy x3(x+ 4)

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
ex
(
x4y2 + 4x3y2 + 1

)
dx

(3)φ =
(
x4y2 + 1

)
ex + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2x4y ex + f ′(y)

But equation (2) says that ∂φ
∂y

= 2x4y ex + 2y. Therefore equation (4) becomes

(5)2x4y ex + 2y = 2x4y ex + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(2y) dy

f(y) = y2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
(
x4y2 + 1

)
ex + y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(
x4y2 + 1

)
ex + y2

Summary
The solution(s) found are the following

(1)
(
x4y2 + 1

)
ex + y2 = c1
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Figure 395: Slope field plot

Verification of solutions (
x4y2 + 1

)
ex + y2 = c1

Verified OK.

6.24.4 Maple step by step solution

Let’s solve
ex(x4y2 + 4x3y2 + 1) + (2x4y ex + 2y) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
ex(2x4y + 8y x3) = 8 exx3y + 2x4y ex

◦ Simplify
2 exy x3(x+ 4) = 2 exy x3(x+ 4)

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
ex(x4y2 + 4x3y2 + 1) dx+ f1(y)

• Evaluate integral
F (x, y) = (x4y2 + 1) ex + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
2x4y ex + 2y = 2x4y ex + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 2y

• Solve for f1(y)
f1(y) = y2

• Substitute f1(y) into equation for F (x, y)
F (x, y) = (x4y2 + 1) ex + y2

• Substitute F (x, y) into the solution of the ODE
(x4y2 + 1) ex + y2 = c1

• Solve for y{
y =

√
−(exx4+1)(−c1+ex)

exx4+1 , y = −
√

−(exx4+1)(−c1+ex)
exx4+1

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 64� �
dsolve((exp(x)*(x^4*y(x)^2+4*x^3*y(x)^2+1))+(2*x^4*y(x)*exp(x)+2*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
√
(exx4 + 1) (−ex + c1)

exx4 + 1

y(x) = −
√
(exx4 + 1) (−ex + c1)

exx4 + 1

3 Solution by Mathematica
Time used: 1.05 (sec). Leaf size: 64� �
DSolve[(Exp[x]*(x^4*y[x]^2+4*x^3*y[x]^2+1))+(2*x^4*y[x]*Exp[x]+2*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−2ex + c1√
2exx4 + 2

y(x) →
√
−2ex + c1√
2exx4 + 2
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6.25 problem 25
6.25.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2018
6.25.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2022

Internal problem ID [1054]
Internal file name [OUTPUT/1055_Sunday_June_05_2022_02_01_32_AM_69949432/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 25.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational]

x3y4 +
(
y3x4 + y

)
y′ = −x

6.25.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

y3x4 + y
)
dy =

(
−x3y4 − x

)
dx(

x3y4 + x
)
dx+

(
y3x4 + y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x3y4 + x

N(x, y) = y3x4 + y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x3y4 + x

)
= 4y3x3

And
∂N

∂x
= ∂

∂x

(
y3x4 + y

)
= 4y3x3

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x3y4 + x dx

(3)φ = (x2y4 + 1)2

4y4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2(x2y4 + 1)x2

y
− (x2y4 + 1)2

y5
+ f ′(y)

= x4y8 − 1
y5

+ f ′(y)

But equation (2) says that ∂φ
∂y

= y3x4 + y. Therefore equation (4) becomes

(5)y3x4 + y = x4y8 − 1
y5

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y6 + 1
y5

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y6 + 1
y5

)
dy

f(y) = y2

2 − 1
4y4 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = (x2y4 + 1)2

4y4 + y2

2 − 1
4y4 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(x2y4 + 1)2

4y4 + y2

2 − 1
4y4

Summary
The solution(s) found are the following

(1)(x2y4 + 1)2

4y4 + y2

2 − 1
4y4 = c1

Figure 396: Slope field plot

Verification of solutions

(x2y4 + 1)2

4y4 + y2

2 − 1
4y4 = c1

Verified OK.
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6.25.2 Maple step by step solution

Let’s solve
x3y4 + (y3x4 + y) y′ = −x

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
4y3x3 = 4y3x3

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(x3y4 + x) dx+ f1(y)

• Evaluate integral

F (x, y) =
(
x2y4+1

)2
4y4 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative

y3x4 + y = 2
(
x2y4+1

)
x2

y
−
(
x2y4+1

)2
y5

+ d
dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = y3x4 + y − 2

(
x2y4+1

)
x2

y
+
(
x2y4+1

)2
y5

• Solve for f1(y)

f1(y) = y2

2 − 1
4y4

2022



• Substitute f1(y) into equation for F (x, y)

F (x, y) =
(
x2y4+1

)2
4y4 + y2

2 − 1
4y4

• Substitute F (x, y) into the solution of the ODE(
x2y4+1

)2
4y4 + y2

2 − 1
4y4 = c1

• Solve for y{
y =

√
−1−

√
−2x6+4c1x4+1
x2 , y =

√
−1+

√
−2x6+4c1x4+1
x2 , y = −

√
−1−

√
−2x6+4c1x4+1
x2 , y = −

√
−1+

√
−2x6+4c1x4+1
x2

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 111� �
dsolve((x^3*y(x)^4+x)+(x^4*y(x)^3+y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
√

−1−
√
−2x6 − 4c1x4 + 1

x2

y(x) =
√

−1 +
√
−2x6 − 4c1x4 + 1

x2

y(x) = −
√
−1−

√
−2x6 − 4c1x4 + 1

x2

y(x) = −
√
−1 +

√
−2x6 − 4c1x4 + 1

x2
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3 Solution by Mathematica
Time used: 11.648 (sec). Leaf size: 135� �
DSolve[(x^3*y[x]^4+x)+(x^4*y[x]^3+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
−1 +

√
−2x6 + 4c1x4 + 1

x4

y(x) →

√
−1 +

√
−2x6 + 4c1x4 + 1

x4

y(x) → −

√
−1 +

√
−2x6 + 4c1x4 + 1

x4

y(x) →

√
−1 +

√
−2x6 + 4c1x4 + 1

x4
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6.26 problem 26
6.26.1 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 2025
6.26.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2027
6.26.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2030

Internal problem ID [1055]
Internal file name [OUTPUT/1056_Sunday_June_05_2022_02_01_34_AM_62171422/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 26.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType"

Maple gives the following as the ode type
[_exact , _rational , [_1st_order , `_with_symmetry_[F(x),G(x)]`],

[_Abel , `2nd type `, `class A`]]

2y + (2y + 2x) y′ = −3x2

6.26.1 Solving as differentialType ode

Writing the ode as

y′ = −3x2 − 2y
2y + 2x (1)

Which becomes

(2y) dy = (−2x) dy +
(
−3x2 − 2y

)
dx (2)

But the RHS is complete differential because

(−2x) dy +
(
−3x2 − 2y

)
dx = d

(
−x3 − 2yx

)
Hence (2) becomes

(2y) dy = d
(
−x3 − 2yx

)
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Integrating both sides gives gives these solutions

y = −x+
√

−x3 + x2 + c1 + c1

y = −x−
√

−x3 + x2 + c1 + c1

Summary
The solution(s) found are the following

(1)y = −x+
√

−x3 + x2 + c1 + c1

(2)y = −x−
√

−x3 + x2 + c1 + c1

Figure 397: Slope field plot

Verification of solutions

y = −x+
√
−x3 + x2 + c1 + c1

Verified OK.

y = −x−
√

−x3 + x2 + c1 + c1

Verified OK.
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6.26.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2x+ 2y) dy =
(
−3x2 − 2y

)
dx(

3x2 + 2y
)
dx+(2x+ 2y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3x2 + 2y
N(x, y) = 2x+ 2y
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
3x2 + 2y

)
= 2

And
∂N

∂x
= ∂

∂x
(2x+ 2y)

= 2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
3x2 + 2y dx

(3)φ = x
(
x2 + 2y

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2x+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2x+ 2y. Therefore equation (4) becomes

(5)2x+ 2y = 2x+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 2y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(2y) dy

f(y) = y2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x
(
x2 + 2y

)
+ y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x
(
x2 + 2y

)
+ y2

Summary
The solution(s) found are the following

(1)x
(
x2 + 2y

)
+ y2 = c1
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Figure 398: Slope field plot

Verification of solutions

x
(
x2 + 2y

)
+ y2 = c1

Verified OK.

6.26.3 Maple step by step solution

Let’s solve
2y + (2y + 2x) y′ = −3x2

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
2 = 2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(3x2 + 2y) dx+ f1(y)

• Evaluate integral
F (x, y) = x3 + 2yx+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
2x+ 2y = 2x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 2y

• Solve for f1(y)
f1(y) = y2

• Substitute f1(y) into equation for F (x, y)
F (x, y) = x3 + 2yx+ y2

• Substitute F (x, y) into the solution of the ODE
x3 + 2yx+ y2 = c1

• Solve for y{
y = −x−

√
−x3 + x2 + c1, y = −x+

√
−x3 + x2 + c1

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 45� �
dsolve((3*x^2+2*y(x))+(2*y(x)+2*x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −x−
√

−x3 + x2 − c1

y(x) = −x+
√

−x3 + x2 − c1

3 Solution by Mathematica
Time used: 0.131 (sec). Leaf size: 49� �
DSolve[(3*x^2+2*y[x])+(2*y[x]+2*x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x−
√

−x3 + x2 + c1

y(x) → −x+
√
−x3 + x2 + c1
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6.27 problem 27(a)
6.27.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2033
6.27.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2037

Internal problem ID [1056]
Internal file name [OUTPUT/1057_Sunday_June_05_2022_02_01_35_AM_45675956/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 27(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational]

x3y4 +
(
y3x4 + 3y

)
y′ = −2x

6.27.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

y3x4 + 3y
)
dy =

(
−x3y4 − 2x

)
dx(

x3y4 + 2x
)
dx+

(
y3x4 + 3y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x3y4 + 2x
N(x, y) = y3x4 + 3y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x3y4 + 2x

)
= 4y3x3

And
∂N

∂x
= ∂

∂x

(
y3x4 + 3y

)
= 4y3x3

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x3y4 + 2x dx

(3)φ = (x2y4 + 2)2

4y4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2(x2y4 + 2)x2

y
− (x2y4 + 2)2

y5
+ f ′(y)

= x4y8 − 4
y5

+ f ′(y)

But equation (2) says that ∂φ
∂y

= y3x4 + 3y. Therefore equation (4) becomes

(5)y3x4 + 3y = x4y8 − 4
y5

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 3y6 + 4
y5

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (3y6 + 4
y5

)
dy

f(y) = 3y2
2 − 1

y4
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = (x2y4 + 2)2

4y4 + 3y2
2 − 1

y4
+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(x2y4 + 2)2

4y4 + 3y2
2 − 1

y4

Summary
The solution(s) found are the following

(1)(x2y4 + 2)2

4y4 + 3y2
2 − 1

y4
= c1

Figure 399: Slope field plot

Verification of solutions

(x2y4 + 2)2

4y4 + 3y2
2 − 1

y4
= c1

Verified OK.
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6.27.2 Maple step by step solution

Let’s solve
x3y4 + (y3x4 + 3y) y′ = −2x

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
4y3x3 = 4y3x3

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(x3y4 + 2x) dx+ f1(y)

• Evaluate integral

F (x, y) =
(
x2y4+2

)2
4y4 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative

y3x4 + 3y = 2
(
x2y4+2

)
x2

y
−
(
x2y4+2

)2
y5

+ d
dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = y3x4 + 3y − 2

(
x2y4+2

)
x2

y
+
(
x2y4+2

)2
y5

• Solve for f1(y)

f1(y) = 3y2
2 − 1

y4
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• Substitute f1(y) into equation for F (x, y)

F (x, y) =
(
x2y4+2

)2
4y4 + 3y2

2 − 1
y4

• Substitute F (x, y) into the solution of the ODE(
x2y4+2

)2
4y4 + 3y2

2 − 1
y4

= c1

• Solve for y{
y =

√
−3−

√
−4x6+4c1x4+9
x2 , y =

√
−3+

√
−4x6+4c1x4+9
x2 , y = −

√
−3−

√
−4x6+4c1x4+9
x2 , y = −

√
−3+

√
−4x6+4c1x4+9
x2

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 111� �
dsolve((x^3*y(x)^4+2*x)+(x^4*y(x)^3+3*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
√

−3−
√
−4x6 − 4c1x4 + 9

x2

y(x) =
√

−3 +
√
−4x6 − 4c1x4 + 9

x2

y(x) = −
√
−3−

√
−4x6 − 4c1x4 + 9

x2

y(x) = −
√
−3 +

√
−4x6 − 4c1x4 + 9

x2
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3 Solution by Mathematica
Time used: 11.546 (sec). Leaf size: 135� �
DSolve[(x^3*y[x]^4+2*x)+(x^4*y[x]^3+3*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
−3 +

√
−4x6 + 4c1x4 + 9

x4

y(x) →

√
−3 +

√
−4x6 + 4c1x4 + 9

x4

y(x) → −

√
−3 +

√
−4x6 + 4c1x4 + 9

x4

y(x) →

√
−3 +

√
−4x6 + 4c1x4 + 9

x4
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6.28 problem 28(a)
6.28.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 2040
6.28.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2042
6.28.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2046
6.28.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2049
6.28.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2053

Internal problem ID [1057]
Internal file name [OUTPUT/1058_Sunday_June_05_2022_02_01_36_AM_99843060/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 28(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , _Bernoulli]

y2 + 2y′xy = −x2

6.28.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)2 x2 + 2(u′(x)x+ u(x))x2u(x) = −x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −3u2 + 1
2ux
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Where f(x) = − 1
2x and g(u) = 3u2+1

u
. Integrating both sides gives

1
3u2+1

u

du = − 1
2x dx

∫ 1
3u2+1

u

du =
∫

− 1
2x dx

ln (3u2 + 1)
6 = − ln (x)

2 + c2

Raising both side to exponential gives(
3u2 + 1

) 1
6 = e−

ln(x)
2 +c2

Which simplifies to (
3u2 + 1

) 1
6 = c3√

x

Which simplifies to (
3u(x)2 + 1

) 1
6 = c3ec2√

x

The solution is (
3u(x)2 + 1

) 1
6 = c3ec2√

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

3y2
x2 + 1

) 1
6

= c3ec2√
x(

x2 + 3y2
x2

) 1
6

= c3ec2√
x

Summary
The solution(s) found are the following

(1)
(
x2 + 3y2

x2

) 1
6

= c3ec2√
x
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Figure 400: Slope field plot

Verification of solutions (
x2 + 3y2

x2

) 1
6

= c3ec2√
x

Verified OK.

6.28.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x2 + y2

2xy
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 305: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
yx

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
yx

dy

Which results in

S = x y2

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2 + y2

2xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y2

2
Sy = yx

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x2

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R2

2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R3

6 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

xy2

2 = −x3

6 + c1

Which simplifies to

xy2

2 = −x3

6 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2+y2

2xy
dS
dR

= −R2

2

R = x

S = x y2

2

Summary
The solution(s) found are the following

(1)xy2

2 = −x3

6 + c1
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Figure 401: Slope field plot

Verification of solutions

xy2

2 = −x3

6 + c1

Verified OK.

6.28.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −x2 + y2

2xy
This is a Bernoulli ODE.

y′ = − 1
2xy −

x

2
1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − 1
2x

f1(x) = −x

2
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = − y2

2x − x

2 (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = −w(x)

2x − x

2
w′ = −w

x
− x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 1
x

q(x) = −x
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Hence the ode is

w′(x) + w(x)
x

= −x

The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes
d
dx(µw) = (µ) (−x)
d
dx(xw) = (x) (−x)

d(xw) =
(
−x2) dx

Integrating gives

xw =
∫

−x2 dx

xw = −x3

3 + c1

Dividing both sides by the integrating factor µ = x results in

w(x) = c1
x

− x2

3

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = c1
x

− x2

3
Solving for y gives

y(x) =
√
3
√
−x (x3 − 3c1)

3x

y(x) = −
√
3
√
−x (x3 − 3c1)

3x

Summary
The solution(s) found are the following

(1)y =
√
3
√
−x (x3 − 3c1)

3x

(2)y = −
√
3
√

−x (x3 − 3c1)
3x
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Figure 402: Slope field plot

Verification of solutions

y =
√
3
√

−x (x3 − 3c1)
3x

Verified OK.

y = −
√
3
√

−x (x3 − 3c1)
3x

Verified OK.

6.28.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2yx) dy =
(
−x2 − y2

)
dx(

x2 + y2
)
dx+(2yx) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2 + y2

N(x, y) = 2yx

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x2 + y2

)
= 2y
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And
∂N

∂x
= ∂

∂x
(2yx)

= 2y

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x2 + y2 dx

(3)φ = 1
3x

3 + x y2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2yx+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2yx. Therefore equation (4) becomes

(5)2yx = 2yx+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 1
3x

3 + x y2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1
3x

3 + x y2

Summary
The solution(s) found are the following

(1)x3

3 + xy2 = c1

Figure 403: Slope field plot

Verification of solutions

x3

3 + xy2 = c1

Verified OK.
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6.28.5 Maple step by step solution

Let’s solve
y2 + 2y′xy = −x2

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
2y = 2y

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(x2 + y2) dx+ f1(y)

• Evaluate integral
F (x, y) = x3

3 + x y2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
2yx = 2yx+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = 1
3x

3 + x y2

• Substitute F (x, y) into the solution of the ODE
1
3x

3 + x y2 = c1

• Solve for y{
y = −

√
3
√

x(−x3+3c1)
3x , y =

√
3
√

x(−x3+3c1)
3x

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 47� �
dsolve((x^2+y(x)^2)+(2*x*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −
√
3
√
−x (x3 − 3c1)

3x

y(x) =
√
3
√

−x (x3 − 3c1)
3x

3 Solution by Mathematica
Time used: 0.22 (sec). Leaf size: 60� �
DSolve[(x^2+y[x]^2)+(2*x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−x3 + 3c1√

3
√
x

y(x) →
√
−x3 + 3c1√

3
√
x
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6.29 problem 38
6.29.1 Solving as first order ode lie symmetry calculated ode . . . . . . 2055
6.29.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2063

Internal problem ID [1058]
Internal file name [OUTPUT/1059_Sunday_June_05_2022_02_01_38_AM_16945430/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 38.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[_rational , [_Abel , `2nd type `, `class B`]]

y′ + 2y
x

+ 2xy
x2 + 2x2y + 1 = 0

With initial conditions

[y(1) = −2]

6.29.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −2y(2y x2 + 2x2 + 1)
x (2y x2 + x2 + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + yxa5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + yxb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

2xb4 + yb5 + b2

− 2y(2y x2 + 2x2 + 1) (−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)
x (2y x2 + x2 + 1)

− 4y2(2y x2 + 2x2 + 1)2 (xa5 + 2ya6 + a3)
x2 (2y x2 + x2 + 1)2

−
(
− 2y(4yx+ 4x)
x (2y x2 + x2 + 1) +

2y(2y x2 + 2x2 + 1)
x2 (2y x2 + x2 + 1)

+ 2y(2y x2 + 2x2 + 1) (4yx+ 2x)
x (2y x2 + x2 + 1)2

)(
x2a4+yxa5+y2a6+xa2+ya3+a1

)
−
(
−2(2y x2 + 2x2 + 1)

x (2y x2 + x2 + 1) − 4xy
2y x2 + x2 + 1

+ 4y(2y x2 + 2x2 + 1)x
(2y x2 + x2 + 1)2

)(
x2b4 + yxb5 + y2b6 + xb2 + yb3 + b1

)
= 0

Putting the above in normal form gives

16x7y2b4 + 8x6y3a4 + 4x6y3b5 − 16x5y4a5 − 8x5y4b6 − 40x4y5a6 + 16x7yb4 + 12x6y2a4 + 12x6y2b2 − 32x5y3a5 − 16x5y3b6 − 24x4y4a3 − 76x4y4a6 + 6x7b4 + 4x6ya4 + 12x6yb2 + x6yb5 − 16x5y2a5 + 8x5y2b1 − 4x5y2b3 − 4x5y2b6 − 8x4y3a1 − 44x4y3a3 − 36x4y3a6 + 5x6b2 + 8x5yb1 + 16x5yb4 − 12x4y2a1 − 20x4y2a3 + 8x4y2a4 + 4x4y2b5 − 16x3y3a5 − 8x3y3b6 − 40x2y4a6 + 4x5b1 + 10x5b4 − 4x4ya1 + 10x4ya4 + 12x4yb2 + 2x4yb5 − 12x3y2a5 − 6x3y2b6 − 24x2y3a3 − 34x2y3a6 + 8x4b2 + 4x3ya2 + 8x3yb1 − 8x2y2a1 − 18x2y2a3 + 6x3b1 + 4x3b4 − 2x2ya1 + 2x2ya4 + yb5x
2 − 4x y2a5 − 2x y2b6 − 10y3a6 + 3b2x2 − 6y2a3 + 2xb1 − 2ya1

x2 (2y x2 + x2 + 1)2
= 0
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Setting the numerator to zero gives

(6E)

16x7y2b4 + 8x6y3a4 + 4x6y3b5 − 16x5y4a5 − 8x5y4b6 − 40x4y5a6
+ 16x7yb4 + 12x6y2a4 + 12x6y2b2 − 32x5y3a5 − 16x5y3b6
− 24x4y4a3 − 76x4y4a6 + 6x7b4 + 4x6ya4 + 12x6yb2 + x6yb5
− 16x5y2a5 + 8x5y2b1 − 4x5y2b3 − 4x5y2b6 − 8x4y3a1 − 44x4y3a3
− 36x4y3a6 + 5x6b2 + 8x5yb1 + 16x5yb4 − 12x4y2a1 − 20x4y2a3
+ 8x4y2a4 + 4x4y2b5 − 16x3y3a5 − 8x3y3b6 − 40x2y4a6 + 4x5b1
+ 10x5b4 − 4x4ya1 + 10x4ya4 + 12x4yb2 + 2x4yb5 − 12x3y2a5
− 6x3y2b6 − 24x2y3a3 − 34x2y3a6 + 8x4b2 + 4x3ya2 + 8x3yb1
− 8x2y2a1 − 18x2y2a3 + 6x3b1 + 4x3b4 − 2x2ya1 + 2x2ya4 + yb5x

2

− 4x y2a5 − 2x y2b6 − 10y3a6 + 3b2x2 − 6y2a3 + 2xb1 − 2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)

8a4v61v32 − 16a5v51v42 − 40a6v41v52 + 16b4v71v22 + 4b5v61v32 − 8b6v51v42
− 24a3v41v42 + 12a4v61v22 − 32a5v51v32 − 76a6v41v42 + 12b2v61v22
+ 16b4v71v2 − 16b6v51v32 − 8a1v41v32 − 44a3v41v32 + 4a4v61v2 − 16a5v51v22
− 36a6v41v32 + 8b1v51v22 + 12b2v61v2 − 4b3v51v22 + 6b4v71 + b5v

6
1v2

− 4b6v51v22 − 12a1v41v22 − 20a3v41v22 + 8a4v41v22 − 16a5v31v32 − 40a6v21v42
+ 8b1v51v2 + 5b2v61 + 16b4v51v2 + 4b5v41v22 − 8b6v31v32 − 4a1v41v2
− 24a3v21v32 + 10a4v41v2 − 12a5v31v22 − 34a6v21v32 + 4b1v51 + 12b2v41v2
+ 10b4v51 + 2b5v41v2 − 6b6v31v22 − 8a1v21v22 + 4a2v31v2 − 18a3v21v22
+ 8b1v31v2 + 8b2v41 − 2a1v21v2 + 2a4v21v2 − 4a5v1v22 − 10a6v32 + 6b1v31
+ 4b4v31 + b5v

2
1v2 − 2b6v1v22 − 6a3v22 + 3b2v21 − 2a1v2 + 2b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)

(8a4 + 4b5) v61v32 + (12a4 + 12b2) v61v22 + (4a4 + 12b2 + b5) v61v2
+ (−16a5 − 8b6) v51v42 + (−32a5 − 16b6) v51v32
+ (−16a5 + 8b1 − 4b3 − 4b6) v51v22 + (8b1 + 16b4) v51v2
+ (−24a3 − 76a6) v41v42 + (−8a1 − 44a3 − 36a6) v41v32
+ (−12a1 − 20a3 + 8a4 + 4b5) v41v22 + (−4a1 + 10a4 + 12b2 + 2b5) v41v2
+ (−16a5 − 8b6) v31v32 + (−12a5 − 6b6) v31v22 + (4a2 + 8b1) v31v2
+ (−24a3 − 34a6) v21v32 + (−8a1 − 18a3) v21v22 + (−2a1 +2a4 + b5) v21v2
+ (−4a5 − 2b6) v1v22 + (4b1 + 10b4) v51 + 6b4v71 + 5b2v61 + 8b2v41
− 10a6v32 − 6a3v22 + 3b2v21 − 2a1v2 + 2b1v1 − 40a6v41v52
+ 16b4v71v22 + 16b4v71v2 − 40a6v21v42 + (6b1 + 4b4) v31 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
−6a3 = 0
−40a6 = 0
−10a6 = 0

2b1 = 0
3b2 = 0
5b2 = 0
8b2 = 0
6b4 = 0
16b4 = 0

−8a1 − 18a3 = 0
4a2 + 8b1 = 0

−24a3 − 76a6 = 0
−24a3 − 34a6 = 0

8a4 + 4b5 = 0
12a4 + 12b2 = 0

−32a5 − 16b6 = 0
−16a5 − 8b6 = 0
−12a5 − 6b6 = 0
−4a5 − 2b6 = 0
4b1 + 10b4 = 0
6b1 + 4b4 = 0
8b1 + 16b4 = 0

−8a1 − 44a3 − 36a6 = 0
−2a1 + 2a4 + b5 = 0
4a4 + 12b2 + b5 = 0

−12a1 − 20a3 + 8a4 + 4b5 = 0
−4a1 + 10a4 + 12b2 + 2b5 = 0
−16a5 + 8b1 − 4b3 − 4b6 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
a4 = 0

a5 = −b6
2

a6 = 0
b1 = 0
b2 = 0
b3 = b6

b4 = 0
b5 = 0
b6 = b6

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −yx

2
η = y2 + y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y2 + y −
(
−2y(2y x2 + 2x2 + 1)

x (2y x2 + x2 + 1)

)(
−yx

2

)
= x2y2 + y x2 + y

2y x2 + x2 + 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2y2+y x2+y
2y x2+x2+1

dy

Which results in

S = ln
(
y
(
y x2 + x2 + 1

))
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2y(2y x2 + 2x2 + 1)
x (2y x2 + x2 + 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x(y + 1)
1 + (y + 1)x2

Sy =
1
y
+ x2

1 + (y + 1)x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= −2

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y) + ln
(
1 + (1 + y)x2) = −2 ln (x) + c1

Which simplifies to

ln (y) + ln
(
1 + (1 + y)x2) = −2 ln (x) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2y
(
2y x2+2x2+1

)
x(2y x2+x2+1)

dS
dR

= − 2
R

R = x

S = ln (y) + ln
(
1 + (y + 1)x2)

Initial conditions are used to solve for c1. Substituting x = 1 and y = −2 in the above
solution gives an equation to solve for the constant of integration.

−∞ = c1

Unable to solve for constant of integration. Warning: Unable to solve for constant of
integration.

Verification of solutions N/A
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6.29.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
2y x2 + x2 + 1

))
dy =

(
−2y

(
2y x2 + 2x2 + 1

))
dx(

2y
(
2y x2 + 2x2 + 1

))
dx+

(
x
(
2y x2 + x2 + 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2y
(
2y x2 + 2x2 + 1

)
N(x, y) = x

(
2y x2 + x2 + 1

)
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2y
(
2y x2 + 2x2 + 1

))
= 2 + (8y + 4)x2

And
∂N

∂x
= ∂

∂x

(
x
(
2y x2 + x2 + 1

))
= 1 + (6y + 3)x2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

(1 + 2y)x3 + x

((
8y x2 + 4x2 + 2

)
−
(
2y x2 + x2 + 1 + x(4yx+ 2x)

))
= 1

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

x
dx

The result of integrating gives

µ = eln(x)

= x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x
(
2y
(
2y x2 + 2x2 + 1

))
= 4
(
1
2 + (y + 1)x2

)
xy
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And

N = µN

= x
(
x
(
2y x2 + x2 + 1

))
= (1 + 2y)x4 + x2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

4
(
1
2 + (y + 1)x2

)
xy

)
+
(
(1 + 2y)x4 + x2) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
4
(
1
2 + (y + 1)x2

)
xy dx

(3)φ = (2y x2 + 2x2 + 1)2 y
4y + 4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 4(2y x2 + 2x2 + 1) y x2

4y + 4 + (2y x2 + 2x2 + 1)2

4y + 4 − 4(2y x2 + 2x2 + 1)2 y
(4y + 4)2

+ f ′(y)

=
1 + 8

(1
2 + y

)
(y + 1)2 x4 + 4(y + 1)2 x2

4 (y + 1)2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= (1 + 2y)x4 + x2. Therefore equation (4) becomes

(5)(1 + 2y)x4 + x2 =
1 + 8

(1
2 + y

)
(y + 1)2 x4 + 4(y + 1)2 x2

4 (y + 1)2
+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = − 1
4 (y + 1)2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− 1
4 (y + 1)2

)
dy

f(y) = 1
4y + 4 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = (2y x2 + 2x2 + 1)2 y
4y + 4 + 1

4y + 4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(2y x2 + 2x2 + 1)2 y

4y + 4 + 1
4y + 4

Initial conditions are used to solve for c1. Substituting x = 1 and y = −2 in the above
solution gives an equation to solve for the constant of integration.

1
4 = c1

c1 =
1
4

Substituting c1 found above in the general solution gives

(2y x2 + 2x2 + 1)2 y
4y + 4 + 1

4y + 4 = 1
4

Summary
The solution(s) found are the following

(1)1
4 +

(
y2 + y

)
x4 + x2y = 1

4

2066



Verification of solutions

1
4 +

(
y2 + y

)
x4 + x2y = 1

4

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
dsolve([diff(y(x),x)+2/x*y(x)= -(2*x*y(x))/(x^2+2*x^2*y(x)+1),y(1) = -2],y(x), singsol=all)� �

y(x) = −x2 − 1
x2

3 Solution by Mathematica
Time used: 0.694 (sec). Leaf size: 38� �
DSolve[{y'[x]+2/x*y[x]== -(2*x*y[x])/(x^2+2*x^2*y[x]+1),y[1]==-2},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

− 1
x2 −

√
x3 (x2 + 1)2

x7/2 − 1
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6.30 problem 39
6.30.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2068

Internal problem ID [1059]
Internal file name [OUTPUT/1060_Sunday_June_05_2022_02_01_39_AM_47280605/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 39.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational , [_Abel , `2nd type `, `class B`]]

y′ − 3y
x

− 2x4(4x3 − 3y)
3x5 + 3x3 + 2y = 0

With initial conditions

[y(1) = 1]

6.30.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
3x5 + 3x3 + 2y

))
dy =

(
8x8 + 3y x5 + 9y x3 + 6y2

)
dx(

−8x8 − 3y x5 − 9y x3 − 6y2
)
dx+

(
x
(
3x5 + 3x3 + 2y

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −8x8 − 3y x5 − 9y x3 − 6y2

N(x, y) = x
(
3x5 + 3x3 + 2y

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−8x8 − 3y x5 − 9y x3 − 6y2

)
= −3x5 − 9x3 − 12y

And
∂N

∂x
= ∂

∂x

(
x
(
3x5 + 3x3 + 2y

))
= 18x5 + 12x3 + 2y
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

3x6 + 3x4 + 2yx
((
−3x5 − 9x3 − 12y

)
−
(
3x5 + 3x3 + 2y + x

(
15x4 + 9x2)))

= −7
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 7

x
dx

The result of integrating gives

µ = e−7 ln(x)

= 1
x7

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x7

(
−8x8 − 3y x5 − 9y x3 − 6y2

)
= −8x8 − 3y x5 − 9y x3 − 6y2

x7

And

N = µN

= 1
x7

(
x
(
3x5 + 3x3 + 2y

))
= 3x5 + 3x3 + 2y

x6

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−8x8 − 3y x5 − 9y x3 − 6y2
x7

)
+
(
3x5 + 3x3 + 2y

x6

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−8x8 − 3y x5 − 9y x3 − 6y2

x7 dx

(3)φ = −4x2 + 3y
x

+ y2

x6 + 3y
x3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3

x
+ 2y

x6 + 3
x3 + f ′(y)

But equation (2) says that ∂φ
∂y

= 3x5+3x3+2y
x6 . Therefore equation (4) becomes

(5)3x5 + 3x3 + 2y
x6 = 3x5 + 3x3 + 2y

x6 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −4x2 + 3y
x

+ y2

x6 + 3y
x3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −4x2 + 3y
x

+ y2

x6 + 3y
x3
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Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

3 = c1

c1 = 3

Substituting c1 found above in the general solution gives

−4x2 + 3y
x

+ y2

x6 + 3y
x3 = 3

The above simplifies to

−4x8 − 3x6 + 3y x5 + 3y x3 + y2 = 0

Summary
The solution(s) found are the following

(1)−4x8 − 3x6 + 3yx5 + 3yx3 + y2 = 0
Verification of solutions

−4x8 − 3x6 + 3yx5 + 3yx3 + y2 = 0

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 30� �
dsolve([diff(y(x),x)-3/x*y(x)= (2*x^4*(4*x^3-3*y(x)))/(3*x^5+3*x^3+2*y(x)),y(1) = 1],y(x), singsol=all)� �

y(x) =
(
−3x2 +

√
9x4 + 34x2 + 21− 3

)
x3

2

3 Solution by Mathematica
Time used: 0.734 (sec). Leaf size: 49� �
DSolve[{y'[x]-3/x*y[x]== (2*x^4*(4*x^3-3*y[x]))/(3*x^5+3*x^3+2*y[x]),y[1]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
−3x5 − 3x3 +

√
1
x7

√
x (9x4 + 34x2 + 21)x6

)
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6.31 problem 40
6.31.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 2074
6.31.2 Solving as first order ode lie symmetry calculated ode . . . . . . 2075
6.31.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2083

Internal problem ID [1060]
Internal file name [OUTPUT/1061_Sunday_June_05_2022_02_01_41_AM_99865551/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number: 40.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_Abel , `2nd type `, `class B`]]

2yx+ y′ +
e−x2

(
3x+ 2 ex2

y
)

2x+ 3 ex2y
= 0

With initial conditions

[y(0) = −1]

6.31.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= −6 ex2
x y2 + 2y e−x2ex2 + 4y x2 + 3x e−x2

2x+ 3 ex2y

The x domain of f(x, y) when y = −1 isx <

√
2

2
√

− 1
LambertW

(_Z66,− 9
2
) ∨

√
2

2
√

− 1
LambertW

(_Z66,− 9
2
) < x
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But the point x0 = 0 is not inside this domain. Hence existence and uniqueness theorem
does not apply. There could be infinite number of solutions, or one solution or no solution
at all.

6.31.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −6 ex2
x y2 + 2y e−x2ex2 + 4y x2 + 3x e−x2

2x+ 3 ex2y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

(1E)ξ = x3a7 + y x2a8 + x y2a9 + y3a10 + x2a4 + yxa5 + y2a6 + xa2 + ya3 + a1

(2E)η = x3b7 + y x2b8 + x y2b9 + y3b10 + x2b4 + yxb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)3x2b7 + 2xyb8 + y2b9 + 2xb4 + yb5 + b2

−

(
6 ex2

x y2 + 2y e−x2ex2 + 4y x2 + 3x e−x2
)
(−3x2a7 + x2b8 − 2xya8 + 2xyb9 − y2a9 + 3y2b10 − 2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

2x+ 3 ex2y

−

(
6 ex2

x y2 + 2y e−x2ex2 + 4y x2 + 3x e−x2
)2

(x2a8 + 2xya9 + 3y2a10 + xa5 + 2ya6 + a3)

(2x+ 3 ex2y)2

−

−12 ex2
x2y2 + 6 ex2

y2 + 8yx+ 3 e−x2 − 6x2e−x2

2x+ 3 ex2y

+

(
6 ex2

x y2 + 2y e−x2ex2 + 4y x2 + 3x e−x2
)(

2 + 6x ex2
y
)

(2x+ 3 ex2y)2

(x3a7

+ y x2a8 + x y2a9 + y3a10 + x2a4 + yxa5 + y2a6 + xa2 + ya3 + a1
)

−

−12x ex2
y + 2 ex2e−x2 + 4x2

2x+ 3 ex2y

+
3
(
6 ex2

x y2 + 2y e−x2ex2 + 4y x2 + 3x e−x2
)
ex2

(2x+ 3 ex2y)2

(x3b7 + y x2b8

+ x y2b9 + y3b10 + x2b4 + yxb5 + y2b6 + xb2 + yb3 + b1
)
= 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, ex2
, e−2x2

, e−x2
, e2x2}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, ex
2 = v3, e−2x2 = v4, e−x2 = v5, e2x

2 = v6}

The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5, v6}

Equation (7E) now becomes

(8E)Expression too large to display

2077



Setting each coefficients in (8E) to zero gives the following equations to solve
a3 = 0
5a1 = 0

−12a3 = 0
−9a3 = 0
−12a4 = 0
54a4 = 0
60a4 = 0

−48a5 = 0
−36a5 = 0
−16a5 = 0
−9a5 = 0

−132a6 = 0
−96a6 = 0
−72a6 = 0
−60a6 = 0
−36a6 = 0
−32a6 = 0
−24a6 = 0
−18a6 = 0
−3a6 = 0
18a6 = 0

−12a7 = 0
−4a7 = 0
72a7 = 0
84a7 = 0

−48a8 = 0
−36a8 = 0
−16a8 = 0
−9a8 = 0
−96a9 = 0
−72a9 = 0
−60a9 = 0
−32a9 = 0
−18a9 = 0

−184a10 = 0
−144a10 = 0
−108a10 = 0
−84a10 = 0
−60a10 = 0
−48a10 = 0
−36a10 = 0
−27a10 = 0
−7a10 = 0
18a10 = 0
−5b1 = 0
−b2 = 0
9b2 = 0
12b2 = 0
8b4 = 0
18b4 = 0
24b4 = 0
8b7 = 0
18b7 = 0
24b7 = 0

18a1 + 9b5 = 0
6a2 − 6b3 = 0

18a2 − 18b3 = 0
36a2 + 18b8 = 0
18a3 + 9b9 = 0

−72a5 − 8b6 = 0
−6a5 − 12b6 = 0
6a5 − 12b6 = 0
12a5 − 24b6 = 0
14a5 − 31b6 = 0
36a5 − 18b6 = 0
12a8 − 12a3 = 0

−124a9 − 16b10 = 0
−18a9 − 18b10 = 0
−12a9 − 48b10 = 0
10a9 − 44b10 = 0
36a9 − 36b10 = 0

8b1 + 3b4 = 0
18b1 + 18b4 = 0
24b1 + 24b4 = 0
8b2 + 7b7 = 0

18b2 + 27b7 = 0
36b7 + 24b2 = 0

−12b9 − 36a3 = 0
−18b10 + 6a9 = 0

−28a1 + 31a4 − 14b5 = 0
−12a1 + 12a4 − 6b5 = 0
12a1 + 12a4 + 6b5 = 0

−20a2 + 44a7 − 10b8 = 0
−12a2 + 18a7 − 6b8 = 0
−80a3 + 27a8 − 27b9 = 0
−48a3 + 36a8 − 24b9 = 0
−16a3 − 64a8 − 8b9 = 0
54a8 − 18b9 − 36a3 = 0
18b8 + 18a7 + 36a2 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 = −b8
2

a3 = 0
a4 = 0
a5 = 0
a6 = 0
a7 = 0
a8 = 0
a9 = 0
a10 = 0
b1 = 0
b2 = 0

b3 = −b8
2

b4 = 0
b5 = 0
b6 = 0
b7 = 0
b8 = b8

b9 = 0
b10 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

2

η = y x2 − 1
2y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y x2 − 1
2y −

(
−6 ex2

x y2 + 2y e−x2ex2 + 4y x2 + 3x e−x2

2x+ 3 ex2y

)(
−x

2

)
= −3 ex2

y2 − 3x2e−x2 − 4yx
6 ex2y + 4x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−3 ex2y2−3x2e−x2−4yx
6 ex2y+4x

dy

Which results in

S = − ln
(
3 e2x2

y2 + 4x ex2
y + 3x2

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −6 ex2
x y2 + 2y e−x2ex2 + 4y x2 + 3x e−x2

2x+ 3 ex2y
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −12 e2x2
x y2 + (−8y x2 − 4y) ex2 − 6x

3 e2x2y2 + 4x ex2y + 3x2

Sy =
−6 e2x2

y − 4 ex2
x

3 e2x2y2 + 4x ex2y + 3x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln
(
3 e2x2

y2 + 4yx ex2 + 3x2
)
= c1

Which simplifies to

− ln
(
3 e2x2

y2 + 4yx ex2 + 3x2
)
= c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
−6 ex2x y2+2y e−x2ex2+4y x2+3x e−x2

2x+3 ex2y

dS
dR

= 0

R = x

S = − ln
(
3 e2x2

y2 + 4x ex2
y + 3x2

)

Initial conditions are used to solve for c1. Substituting x = 0 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

− ln (3) = c1

c1 = − ln (3)

Substituting c1 found above in the general solution gives

− ln
(
3 e2x2

y2 + 4x ex2
y + 3x2

)
= − ln (3)

Summary
The solution(s) found are the following

(1)− ln
(
3 e2x2

y2 + 4yx ex2 + 3x2
)
= − ln (3)

Verification of solutions

− ln
(
3 e2x2

y2 + 4yx ex2 + 3x2
)
= − ln (3)

Verified OK.
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6.31.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
2x+ 3 ex2

y
)
dy =

(
−6 ex2

x y2 − 2y e−x2ex2 − 4y x2 − 3x e−x2
)
dx(

6 ex2
x y2 + 2y e−x2ex2 + 4y x2 + 3x e−x2

)
dx+

(
2x+ 3 ex2

y
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 6 ex2
x y2 + 2y e−x2ex2 + 4y x2 + 3x e−x2

N(x, y) = 2x+ 3 ex2
y
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
6 ex2

x y2 + 2y e−x2ex2 + 4y x2 + 3x e−x2
)

= 12x ex2
y + 2 + 4x2

And
∂N

∂x
= ∂

∂x

(
2x+ 3 ex2

y
)

= 2 + 6x ex2
y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2x+ 3 ex2y

((
12x ex2

y + 2 ex2e−x2 + 4x2
)
−
(
2 + 6x ex2

y
))

= 2x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
2xdx

The result of integrating gives

µ = ex
2

= ex2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex2
(
6 ex2

x y2 + 2y e−x2ex2 + 4y x2 + 3x e−x2
)

= 6 e2x2
x y2 + 2 ex2

y
(
2x2 + 1

)
+ 3x
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And

N = µN

= ex2
(
2x+ 3 ex2

y
)

= 3 e2x2
y + 2 ex2

x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

6 e2x2
x y2 + 2 ex2

y
(
2x2 + 1

)
+ 3x

)
+
(
3 e2x2

y + 2 ex2
x
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
6 e2x2

x y2 + 2 ex2
y
(
2x2 + 1

)
+ 3x dx

(3)φ = 3x2

2 + 2x ex2
y + 3 e2x2

y2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3 e2x2

y + 2 ex2
x+ f ′(y)

But equation (2) says that ∂φ
∂y

= 3 e2x2
y + 2 ex2

x. Therefore equation (4) becomes

(5)3 e2x2
y + 2 ex2

x = 3 e2x2
y + 2 ex2

x+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 3x2

2 + 2x ex2
y + 3 e2x2

y2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
3x2

2 + 2x ex2
y + 3 e2x2

y2

2

Initial conditions are used to solve for c1. Substituting x = 0 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

3
2 = c1

c1 =
3
2

Substituting c1 found above in the general solution gives

3x2

2 + 2x ex2
y + 3 e2x2

y2

2 = 3
2

Summary
The solution(s) found are the following

(1)3x2

2 + 2yx ex2 + 3 e2x2
y2

2 = 3
2

Verification of solutions

3x2

2 + 2yx ex2 + 3 e2x2
y2

2 = 3
2

Verified OK.
The solution

− ln
(
3 e2x2

y2 + 4yx ex2 + 3x2
)
= − ln (3)
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can be simplified to
ln
(
3 e2x2

y2 + 4yx ex2 + 3x2
)
= ln (3)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.312 (sec). Leaf size: 36� �
dsolve([diff(y(x),x)+2*x*y(x)= -exp(-x^2)*(3*x+2*y(x)*exp(x^2))/(2*x+3*y(x)*exp(x^2)),y(0) = -1],y(x), singsol=all)� �

y(x) = −

(
2x ex2 +

√
e2x2 (−5x2 + 9)

)
e−2x2

3

3 Solution by Mathematica
Time used: 33.105 (sec). Leaf size: 44� �
DSolve[{y'[x]+2*x*y[x]== -Exp[-x^2]*(3*x+2*y[x]*Exp[x^2])/(2*x+3*y[x]*Exp[x^2]),y[0]==-1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
3e

−2x2
(
2ex2

x+
√

e2x2 (9− 5x2)
)
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7.1 problem 1(a)
7.1.1 Solving as first order ode lie symmetry calculated ode . . . . . . 2089
7.1.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2094

Internal problem ID [1061]
Internal file name [OUTPUT/1062_Sunday_June_05_2022_02_01_43_AM_33651986/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 1(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

y +
(
2x+ 1

y

)
y′ = 0

7.1.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y2

2yx+ 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
y2(b3 − a2)
2yx+ 1 − y4a3

(2yx+ 1)2
− 2y3(xa2 + ya3 + a1)

(2yx+ 1)2

−
(
− 2y
2yx+ 1 + 2y2x

(2yx+ 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

6x2y2b2 − 3y4a3 + 2x y2b1 − 2y3a1 + 6xyb2 + y2a2 + y2b3 + 2yb1 + b2

(2yx+ 1)2
= 0

Setting the numerator to zero gives

(6E)6x2y2b2 − 3y4a3 + 2x y2b1 − 2y3a1 + 6xyb2 + y2a2 + y2b3 + 2yb1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−3a3v42 + 6b2v21v22 − 2a1v32 + 2b1v1v22 + a2v
2
2 + 6b2v1v2 + b3v

2
2 + 2b1v2 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)6b2v21v22 + 2b1v1v22 + 6b2v1v2 − 3a3v42 − 2a1v32 + (a2 + b3) v22 + 2b1v2 + b2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−2a1 = 0
−3a3 = 0
2b1 = 0
6b2 = 0

a2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y2

2yx+ 1

)
(−x)

= x y2 + y

2yx+ 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x y2+y
2yx+1

dy

Which results in

S = ln (y(yx+ 1))

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y2

2yx+ 1
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

yx+ 1

Sy =
1
y
+ x

yx+ 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y) + ln (yx+ 1) = c1

Which simplifies to

ln (y) + ln (yx+ 1) = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y2

2yx+1
dS
dR

= 0

R = x

S = ln (y) + ln (yx+ 1)

Summary
The solution(s) found are the following

(1)ln (y) + ln (yx+ 1) = c1
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Figure 404: Slope field plot

Verification of solutions

ln (y) + ln (yx+ 1) = c1

Verified OK.

7.1.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2yx+ 1) dy =
(
−y2

)
dx(

y2
)
dx+(2yx+ 1) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y2

N(x, y) = 2yx+ 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y2
)

= 2y

And
∂N

∂x
= ∂

∂x
(2yx+ 1)

= 2y
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y2 dx

(3)φ = x y2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2yx+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2yx+ 1. Therefore equation (4) becomes

(5)2yx+ 1 = 2yx+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x y2 + y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x y2 + y

Summary
The solution(s) found are the following

(1)y + xy2 = c1

Figure 405: Slope field plot

Verification of solutions

y + xy2 = c1

Verified OK.

2097



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 39� �
dsolve(y(x)+(2*x+1/y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −1 +
√
4c1x+ 1
2x

y(x) = −1−
√
4c1x+ 1
2x

3 Solution by Mathematica
Time used: 0.321 (sec). Leaf size: 54� �
DSolve[y[x]+(2*x+1/y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1 +
√
1 + 4c1x
2x

y(x) → −1 +
√
1 + 4c1x
2x

y(x) → 0
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7.2 problem 2(a)
7.2.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2099
7.2.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 2101
7.2.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 2102
7.2.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2106
7.2.5 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2110
7.2.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2112

Internal problem ID [1062]
Internal file name [OUTPUT/1063_Sunday_June_05_2022_02_01_44_AM_71876857/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 2(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

−y2 + y′x2 = 0

7.2.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y2

x2
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Where f(x) = 1
x2 and g(y) = y2. Integrating both sides gives

1
y2

dy = 1
x2 dx∫ 1

y2
dy =

∫ 1
x2 dx

−1
y
= −1

x
+ c1

Which results in
y = − x

c1x− 1

Summary
The solution(s) found are the following

(1)y = − x

c1x− 1

Figure 406: Slope field plot
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Verification of solutions

y = − x

c1x− 1

Verified OK.

7.2.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

−u(x)2 x2 + (u′(x)x+ u(x))x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(u− 1)
x

Where f(x) = 1
x
and g(u) = u(u− 1). Integrating both sides gives

1
u (u− 1) du = 1

x
dx∫ 1

u (u− 1) du =
∫ 1

x
dx

− ln (u) + ln (u− 1) = ln (x) + c2

Raising both side to exponential gives

e− ln(u)+ln(u−1) = eln(x)+c2

Which simplifies to

u− 1
u

= c3x

Therefore the solution y is

y = xu

= − x

c3x− 1
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Summary
The solution(s) found are the following

(1)y = − x

c3x− 1

Figure 407: Slope field plot

Verification of solutions

y = − x

c3x− 1

Verified OK.

7.2.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2

x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 308: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x2dx

Which results in

S = −1
x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2

x2

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1
x
= −1

y
+ c1

Which simplifies to

−1
x
= −1

y
+ c1

Which gives

y = x

c1x+ 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2

x2
dS
dR

= 1
R2

R = y

S = −1
x
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Summary
The solution(s) found are the following

(1)y = x

c1x+ 1

Figure 408: Slope field plot

Verification of solutions

y = x

c1x+ 1

Verified OK.

7.2.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

1
y2

)
dy =

(
1
x2

)
dx(

− 1
x2

)
dx+

(
1
y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x2

N(x, y) = 1
y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− 1
x2

)
= 0
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And

∂N

∂x
= ∂

∂x

(
1
y2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x2 dx

(3)φ = 1
x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2
. Therefore equation (4) becomes

(5)1
y2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
y2

)
dy

f(y) = −1
y
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 1
x
− 1

y
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1
x
− 1

y

The solution becomes
y = − x

c1x− 1

Summary
The solution(s) found are the following

(1)y = − x

c1x− 1
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Figure 409: Slope field plot

Verification of solutions

y = − x

c1x− 1

Verified OK.

7.2.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y2

x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = 0, f1(x) = 0 and f2(x) = 1
x2 . Let

y = −u′

f2u

= −u′

u
x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2

x3

f1f2 = 0
f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

u′′(x)
x2 + 2u′(x)

x3 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 +
c2
x

The above shows that
u′(x) = − c2

x2

Using the above in (1) gives the solution

y = c2
c1 + c2

x

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = 1
c3 + 1

x

2111



Summary
The solution(s) found are the following

(1)y = 1
c3 + 1

x

Figure 410: Slope field plot

Verification of solutions

y = 1
c3 + 1

x

Verified OK.

7.2.6 Maple step by step solution

Let’s solve
−y2 + y′x2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
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y′

y2
= 1

x2

• Integrate both sides with respect to x∫
y′

y2
dx =

∫ 1
x2dx+ c1

• Evaluate integral
− 1

y
= − 1

x
+ c1

• Solve for y
y = − x

c1x−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(-y(x)^2+x^2*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x

c1x+ 1

3 Solution by Mathematica
Time used: 0.104 (sec). Leaf size: 21� �
DSolve[-y[x]^2+x^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

1− c1x
y(x) → 0
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7.3 problem 3
7.3.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2114
7.3.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2116
7.3.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 2117
7.3.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 2118
7.3.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2122
7.3.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2126

Internal problem ID [1063]
Internal file name [OUTPUT/1064_Sunday_June_05_2022_02_01_45_AM_39758295/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

−y′x+ y = 0

7.3.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y

x
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Where f(x) = 1
x
and g(y) = y. Integrating both sides gives

1
y
dy = 1

x
dx∫ 1

y
dy =

∫ 1
x
dx

ln (y) = ln (x) + c1

y = eln(x)+c1

= c1x

Summary
The solution(s) found are the following

(1)y = c1x

Figure 411: Slope field plot

Verification of solutions
y = c1x

Verified OK.
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7.3.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = 0

Hence the ode is

y′ − y

x
= 0

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dxµy = 0

d
dx

(y
x

)
= 0

Integrating gives
y

x
= c1

Dividing both sides by the integrating factor µ = 1
x
results in

y = c1x

Summary
The solution(s) found are the following

(1)y = c1x
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Figure 412: Slope field plot

Verification of solutions
y = c1x

Verified OK.

7.3.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

−(u′(x)x+ u(x))x+ u(x)x = 0

Integrating both sides gives

u(x) =
∫

0 dx

= c2

Therefore the solution y is

y = ux

= c2x
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Summary
The solution(s) found are the following

(1)y = c2x

Figure 413: Slope field plot

Verification of solutions
y = c2x

Verified OK.

7.3.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 311: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
dy

Which results in

S = y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2

Sy =
1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x
= c1

Which simplifies to
y

x
= c1

Which gives

y = c1x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
x

dS
dR

= 0

R = x

S = y

x

Summary
The solution(s) found are the following

(1)y = c1x
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Figure 414: Slope field plot

Verification of solutions
y = c1x

Verified OK.

7.3.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
. Therefore equation (4) becomes

(5)1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (y)− ln (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (y)− ln (x)

The solution becomes
y = x ec1

Summary
The solution(s) found are the following

(1)y = x ec1

Figure 415: Slope field plot

Verification of solutions

y = x ec1

Verified OK.
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7.3.6 Maple step by step solution

Let’s solve
−y′x+ y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 1
x
dx+ c1

• Evaluate integral
ln (y) = ln (x) + c1

• Solve for y
y = x ec1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 7� �
dsolve(y(x)-x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1x
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3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 14� �
DSolve[y[x]-x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x
y(x) → 0
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7.4 problem 4
7.4.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2128
7.4.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2130
7.4.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 2131
7.4.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 2133
7.4.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2137
7.4.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2141

Internal problem ID [1064]
Internal file name [OUTPUT/1065_Sunday_June_05_2022_02_01_46_AM_94882382/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

3x2y + 2x3y′ = 0

7.4.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −3y
2x
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Where f(x) = − 3
2x and g(y) = y. Integrating both sides gives

1
y
dy = − 3

2x dx∫ 1
y
dy =

∫
− 3
2x dx

ln (y) = −3 ln (x)
2 + c1

y = e−
3 ln(x)

2 +c1

= c1

x
3
2

Summary
The solution(s) found are the following

(1)y = c1

x
3
2

Figure 416: Slope field plot

Verification of solutions

y = c1

x
3
2

Verified OK.
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7.4.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 3
2x

q(x) = 0

Hence the ode is

y′ + 3y
2x = 0

The integrating factor µ is

µ = e
∫ 3

2xdx

= x
3
2

The ode becomes

d
dxµy = 0

d
dx

(
x

3
2y
)
= 0

Integrating gives

x
3
2y = c1

Dividing both sides by the integrating factor µ = x
3
2 results in

y = c1

x
3
2

Summary
The solution(s) found are the following

(1)y = c1

x
3
2
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Figure 417: Slope field plot

Verification of solutions

y = c1

x
3
2

Verified OK.

7.4.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

3x3u(x) + 2x3(u′(x)x+ u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −5u
2x

2131



Where f(x) = − 5
2x and g(u) = u. Integrating both sides gives

1
u
du = − 5

2x dx∫ 1
u
du =

∫
− 5
2x dx

ln (u) = −5 ln (x)
2 + c2

u = e−
5 ln(x)

2 +c2

= c2

x
5
2

Therefore the solution y is

y = xu

= c2

x
3
2

Summary
The solution(s) found are the following

(1)y = c2

x
3
2

Figure 418: Slope field plot
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Verification of solutions

y = c2

x
3
2

Verified OK.

7.4.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −3y
2x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 314: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x

3
2

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x
3
2

dy

Which results in

S = x
3
2y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3y
2x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3y
√
x

2
Sy = x

3
2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx
3
2 = c1

Which simplifies to

yx
3
2 = c1

Which gives

y = c1

x
3
2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 3y
2x

dS
dR

= 0

R = x

S = x
3
2y

Summary
The solution(s) found are the following

(1)y = c1

x
3
2
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Figure 419: Slope field plot

Verification of solutions

y = c1

x
3
2

Verified OK.

7.4.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 2
3y

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
− 2
3y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = − 2
3y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
− 2
3y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 2
3y . Therefore equation (4) becomes

(5)− 2
3y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 2
3y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− 2
3y

)
dy

f(y) = −2 ln (y)
3 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)− 2 ln (y)
3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)− 2 ln (y)
3

The solution becomes
y = e−

3 ln(x)
2 − 3c1

2

Summary
The solution(s) found are the following

(1)y = e−
3 ln(x)

2 − 3c1
2

Figure 420: Slope field plot
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Verification of solutions

y = e−
3 ln(x)

2 − 3c1
2

Verified OK.

7.4.6 Maple step by step solution

Let’s solve
3x2y + 2x3y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= − 3

2x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
− 3

2xdx+ c1

• Evaluate integral
ln (y) = −3 ln(x)

2 + c1

• Solve for y

y = e−
3 ln(x)

2 +c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve(3*x^2*y(x)+2*x^3*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1

x
3
2
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3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 18� �
DSolve[3*x^2*y[x]+2*x^3*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
x3/2

y(x) → 0
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7.5 problem 5
7.5.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 2143
7.5.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2144

Internal problem ID [1065]
Internal file name [OUTPUT/1066_Sunday_June_05_2022_02_01_47_AM_56885570/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

2y3 + 3y2y′ = 0

7.5.1 Solving as quadrature ode

Integrating both sides gives ∫
− 3
2ydy =

∫
dx

−3 ln (y)
2 = x+ c1

Raising both side to exponential gives

1
y

3
2
= ex+c1

Which simplifies to

1
y

3
2
= c2ex
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Summary
The solution(s) found are the following

(1)y = 1
(c2ex)

2
3

Figure 421: Slope field plot

Verification of solutions

y = 1
(c2ex)

2
3

Verified OK.

7.5.2 Maple step by step solution

Let’s solve
2y3 + 3y2y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
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y′

y
= −2

3

• Integrate both sides with respect to x∫
y′

y
dx =

∫
−2

3dx+ c1

• Evaluate integral
ln (y) = −2x

3 + c1

• Solve for y
y = e− 2x

3 +c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(2*y(x)^3+3*y(x)^2*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 0
y(x) = c1e−

2x
3

3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 25� �
DSolve[2*y[x]^3+3*y[x]^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 0
y(x) → c1e

−2x/3

y(x) → 0
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7.6 problem 6
7.6.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2146
7.6.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2148
7.6.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2152
7.6.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2157

Internal problem ID [1066]
Internal file name [OUTPUT/1067_Sunday_June_05_2022_02_01_48_AM_58527605/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

5yx+ 2y + 2y′x = −5

7.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −−5x− 2
2x

q(x) = − 5
2x

Hence the ode is

y′ − (−5x− 2) y
2x = − 5

2x
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The integrating factor µ is

µ = e
∫
−−5x−2

2x dx

= e 5x
2 +ln(x)

Which simplifies to

µ = x e 5x
2

The ode becomes

d
dx(µy) = (µ)

(
− 5
2x

)
d
dx

(
x e 5x

2 y
)
=
(
x e 5x

2

)(
− 5
2x

)
d
(
x e 5x

2 y
)
=
(
−5 e 5x

2

2

)
dx

Integrating gives

x e 5x
2 y =

∫
−5 e 5x

2

2 dx

x e 5x
2 y = −e 5x

2 + c1

Dividing both sides by the integrating factor µ = x e 5x
2 results in

y = −e− 5x
2 e 5x

2

x
+ c1e−

5x
2

x

which simplifies to

y = c1e−
5x
2 − 1
x

Summary
The solution(s) found are the following

(1)y = c1e−
5x
2 − 1
x
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Figure 422: Slope field plot

Verification of solutions

y = c1e−
5x
2 − 1
x

Verified OK.

7.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −5yx+ 2y + 5
2x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 318: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e− 5x

2 −ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e− 5x
2 −ln(x)

dy

Which results in

S = x e 5x
2 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −5yx+ 2y + 5
2x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = e 5x
2 y

(
5x
2 + 1

)
Sy = x e 5x

2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −5 e 5x

2

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −5 e 5R

2

2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −e 5R
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x e 5x
2 y = −e 5x

2 + c1

Which simplifies to

x e 5x
2 y = −e 5x

2 + c1

Which gives

y = −

(
e 5x

2 − c1
)
e− 5x

2

x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −5yx+2y+5
2x

dS
dR

= −5 e
5R
2

2

R = x

S = x e 5x
2 y
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Summary
The solution(s) found are the following

(1)y = −

(
e 5x

2 − c1
)
e− 5x

2

x

Figure 423: Slope field plot

Verification of solutions

y = −

(
e 5x

2 − c1
)
e− 5x

2

x

Verified OK.

7.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2x) dy = (−5yx− 2y − 5) dx
(5yx+ 2y + 5) dx+(2x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 5yx+ 2y + 5
N(x, y) = 2x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives
∂M

∂y
= ∂

∂y
(5yx+ 2y + 5)

= 5x+ 2

And
∂N

∂x
= ∂

∂x
(2x)

= 2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2x((5x+ 2)− (2))

= 5
2

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 5

2 dx

The result of integrating gives

µ = e
5x
2

= e 5x
2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e 5x
2 (5yx+ 2y + 5)

= (5 + (5x+ 2) y) e 5x
2

And

N = µN

= e 5x
2 (2x)

= 2x e 5x
2
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

(5 + (5x+ 2) y) e 5x
2

)
+
(
2x e 5x

2

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(5 + (5x+ 2) y) e 5x

2 dx

(3)φ = 2 e 5x
2 (yx+ 1) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2x e 5x

2 + f ′(y)

But equation (2) says that ∂φ
∂y

= 2x e 5x
2 . Therefore equation (4) becomes

(5)2x e 5x
2 = 2x e 5x

2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 2 e 5x
2 (yx+ 1) + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = 2 e 5x
2 (yx+ 1)

The solution becomes

y = −

(
2 e 5x

2 − c1
)
e− 5x

2

2x

Summary
The solution(s) found are the following

(1)y = −

(
2 e 5x

2 − c1
)
e− 5x

2

2x

Figure 424: Slope field plot

Verification of solutions

y = −

(
2 e 5x

2 − c1
)
e− 5x

2

2x

Verified OK.
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7.6.4 Maple step by step solution

Let’s solve
5yx+ 2y + 2y′x = −5

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − (5x+2)y

2x − 5
2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + (5x+2)y

2x = − 5
2x

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + (5x+2)y

2x

)
= −5µ(x)

2x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + (5x+2)y

2x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)(5x+2)

2x

• Solve to find the integrating factor
µ(x) = x e 5x

2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−5µ(x)

2x dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−5µ(x)

2x dx+ c1

• Solve for y

y =
∫
− 5µ(x)

2x dx+c1
µ(x)

• Substitute µ(x) = xe 5x
2

y =
∫
− 5 e

5x
2

2 dx+c1

x e
5x
2

• Evaluate the integrals on the rhs

y = −e
5x
2 +c1

x e
5x
2

2157



• Simplify

y = c1e−
5x
2 −1
x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve((5*x*y(x)+2*y(x)+5)+(2*x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = e− 5x
2 c1 − 1
x

3 Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 21� �
DSolve[(5*x*y[x]+2*y[x]+5)+(2*x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1 + c1e
−5x/2

x
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7.7 problem 7
7.7.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2159
7.7.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2161
7.7.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2165
7.7.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2170

Internal problem ID [1067]
Internal file name [OUTPUT/1068_Sunday_June_05_2022_02_01_49_AM_77231025/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

yx+ 2y + (x+ 1) y′ = −x− 1

7.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −−x− 2
x+ 1

q(x) = −1

Hence the ode is

y′ − (−x− 2) y
x+ 1 = −1
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The integrating factor µ is

µ = e
∫
−−x−2

x+1 dx

= ex+ln(x+1)

Which simplifies to
µ = (x+ 1) ex

The ode becomes

d
dx(µy) = (µ) (−1)

d
dx(e

xy(x+ 1)) = ((x+ 1) ex) (−1)

d(exy(x+ 1)) = (−(x+ 1) ex) dx

Integrating gives

exy(x+ 1) =
∫

−(x+ 1) ex dx

exy(x+ 1) = −x ex + c1

Dividing both sides by the integrating factor µ = (x+ 1) ex results in

y = −e−xx ex
x+ 1 + c1e−x

x+ 1

which simplifies to

y = c1e−x − x

x+ 1

Summary
The solution(s) found are the following

(1)y = c1e−x − x

x+ 1
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Figure 425: Slope field plot

Verification of solutions

y = c1e−x − x

x+ 1

Verified OK.

7.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −yx+ x+ 2y + 1
x+ 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 321: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−x−ln(x+1) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x−ln(x+1)dy

Which results in

S = exy(x+ 1)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −yx+ x+ 2y + 1
x+ 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = exy(2 + x)
Sy = (x+ 1) ex

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ex(−x− 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= eR(−R− 1)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R eR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

exy(x+ 1) = −x ex + c1

Which simplifies to

exy(x+ 1) = −x ex + c1

Which gives

y = −(x ex − c1) e−x

x+ 1
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −yx+x+2y+1
x+1

dS
dR

= eR(−R− 1)

R = x

S = exy(x+ 1)

Summary
The solution(s) found are the following

(1)y = −(x ex − c1) e−x

x+ 1
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Figure 426: Slope field plot

Verification of solutions

y = −(x ex − c1) e−x

x+ 1

Verified OK.

7.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x+ 1) dy = (−yx− x− 2y − 1) dx
(yx+ x+ 2y + 1) dx+(x+ 1) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = yx+ x+ 2y + 1
N(x, y) = x+ 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(yx+ x+ 2y + 1)

= 2 + x

And
∂N

∂x
= ∂

∂x
(x+ 1)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x+ 1((2 + x)− (1))

= 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
1 dx

The result of integrating gives

µ = ex

= ex

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex(yx+ x+ 2y + 1)
= ex(yx+ x+ 2y + 1)

And

N = µN

= ex(x+ 1)
= (x+ 1) ex

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(ex(yx+ x+ 2y + 1)) + ((x+ 1) ex) dydx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
ex(yx+ x+ 2y + 1) dx

(3)φ = (yx+ x+ y) ex + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= (x+ 1) ex + f ′(y)

But equation (2) says that ∂φ
∂y

= (x+ 1) ex. Therefore equation (4) becomes

(5)(x+ 1) ex = (x+ 1) ex + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (yx+ x+ y) ex + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (yx+ x+ y) ex
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The solution becomes

y = −(x ex − c1) e−x

x+ 1

Summary
The solution(s) found are the following

(1)y = −(x ex − c1) e−x

x+ 1

Figure 427: Slope field plot

Verification of solutions

y = −(x ex − c1) e−x

x+ 1

Verified OK.
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7.7.4 Maple step by step solution

Let’s solve
yx+ 2y + (x+ 1) y′ = −x− 1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −1− (2+x)y

x+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + (2+x)y

x+1 = −1

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + (2+x)y

x+1

)
= −µ(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + (2+x)y

x+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)(2+x)

x+1

• Solve to find the integrating factor
µ(x) = ex+ln(x+1)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−µ(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−µ(x) dx+ c1

• Solve for y

y =
∫
−µ(x)dx+c1

µ(x)

• Substitute µ(x) = ex+ln(x+1)

y =
∫
−ex+ln(x+1)dx+c1

ex+ln(x+1)

• Evaluate the integrals on the rhs

y = −x ex+ln(x+1)
x+1 +c1

ex+ln(x+1)

• Simplify
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y = c1e−x−x
x+1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
dsolve((x*y(x)+x+2*y(x)+1)+(x+1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = e−xc1 − x

x+ 1

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 23� �
DSolve[(x*y[x]+x+2*y[x]+1)+(x+1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x− c1e
−x

x+ 1
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7.8 problem 8
7.8.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 2172
7.8.2 Solving as first order ode lie symmetry calculated ode . . . . . . 2174
7.8.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2180

Internal problem ID [1068]
Internal file name [OUTPUT/1069_Sunday_June_05_2022_02_01_50_AM_54127861/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

27xy2 + 8y3 +
(
18x2y + 12xy2

)
y′ = 0

7.8.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

27x3u(x)2 + 8u(x)3 x3 +
(
18x3u(x) + 12x3u(x)2

)
(u′(x)x+ u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − 5u(4u+ 9)
6x (2u+ 3)
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Where f(x) = − 5
6x and g(u) = u(4u+9)

2u+3 . Integrating both sides gives

1
u(4u+9)
2u+3

du = − 5
6x dx

∫ 1
u(4u+9)
2u+3

du =
∫

− 5
6x dx

ln (4u+ 9)
6 + ln (u)

3 = −5 ln (x)
6 + c2

Raising both side to exponential gives

e
ln(4u+9)

6 + ln(u)
3 = e−

5 ln(x)
6 +c2

Which simplifies to

(4u+ 9)
1
6 u

1
3 = c3

x
5
6

The solution is
(4u(x) + 9)

1
6 u(x)

1
3 = c3

x
5
6

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

4y
x

+ 9
) 1

6 (y
x

) 1
3 = c3

x
5
6(

4y + 9x
x

) 1
6 (y

x

) 1
3 = c3

x
5
6

Summary
The solution(s) found are the following

(1)
(
4y + 9x

x

) 1
6 (y

x

) 1
3 = c3

x
5
6
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Figure 428: Slope field plot

Verification of solutions (
4y + 9x

x

) 1
6 (y

x

) 1
3 = c3

x
5
6

Verified OK.

7.8.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y(27x+ 8y)
6x (3x+ 2y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(27x+ 8y) (b3 − a2)

6x (3x+ 2y) − y2(27x+ 8y)2 a3
36x2 (3x+ 2y)2

−
(
− 9y
2x (3x+ 2y) +

y(27x+ 8y)
6x2 (3x+ 2y) +

y(27x+ 8y)
2x (3x+ 2y)2

)
(xa2 + ya3 + a1)

−
(
− 27x+ 8y
6 (3x+ 2y)x − 4y

3x (3x+ 2y) +
y(27x+ 8y)
3x (3x+ 2y)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

810x4b2 + 720x3yb2 + 180x2y2a2 − 1215x2y2a3 + 240x2y2b2 − 180x2y2b3 − 720x y3a3 − 160y4a3 + 486x3b1 − 486x2ya1 + 288x2yb1 − 288x y2a1 + 96x y2b1 − 96y3a1
36x2 (3x+ 2y)2

= 0

Setting the numerator to zero gives

(6E)810x4b2 + 720x3yb2 + 180x2y2a2 − 1215x2y2a3 + 240x2y2b2
− 180x2y2b3 − 720x y3a3 − 160y4a3 + 486x3b1 − 486x2ya1
+ 288x2yb1 − 288x y2a1 + 96x y2b1 − 96y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)180a2v21v22 − 1215a3v21v22 − 720a3v1v32 − 160a3v42 + 810b2v41
+ 720b2v31v2 + 240b2v21v22 − 180b3v21v22 − 486a1v21v2
− 288a1v1v22 − 96a1v32 + 486b1v31 + 288b1v21v2 + 96b1v1v22 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)810b2v41 + 720b2v31v2 + 486b1v31 + (180a2 − 1215a3 + 240b2 − 180b3) v21v22
+ (−486a1 + 288b1) v21v2 − 720a3v1v32
+ (−288a1 + 96b1) v1v22 − 160a3v42 − 96a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−96a1 = 0
−720a3 = 0
−160a3 = 0
486b1 = 0
720b2 = 0
810b2 = 0

−486a1 + 288b1 = 0
−288a1 + 96b1 = 0

180a2 − 1215a3 + 240b2 − 180b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y(27x+ 8y)
6x (3x+ 2y)

)
(x)

= 45yx+ 20y2
18x+ 12y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

45yx+20y2
18x+12y

dy

Which results in

S = 2 ln (y)
5 + ln (9x+ 4y)

5
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y(27x+ 8y)
6x (3x+ 2y)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 9
45x+ 20y

Sy =
18x+ 12y
45yx+ 20y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 2

5x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

5R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 ln (R)
5 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 ln (y)
5 + ln (4y + 9x)

5 = −2 ln (x)
5 + c1

Which simplifies to

2 ln (y)
5 + ln (4y + 9x)

5 = −2 ln (x)
5 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y(27x+8y)
6x(3x+2y)

dS
dR

= − 2
5R

R = x

S = 2 ln (y)
5 + ln (9x+ 4y)

5

Summary
The solution(s) found are the following

(1)2 ln (y)
5 + ln (4y + 9x)

5 = −2 ln (x)
5 + c1
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Figure 429: Slope field plot

Verification of solutions

2 ln (y)
5 + ln (4y + 9x)

5 = −2 ln (x)
5 + c1

Verified OK.

7.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
18y x2 + 12x y2

)
dy =

(
−27x y2 − 8y3

)
dx(

27x y2 + 8y3
)
dx+

(
18y x2 + 12x y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 27x y2 + 8y3

N(x, y) = 18y x2 + 12x y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
27x y2 + 8y3

)
= 54yx+ 24y2

And
∂N

∂x
= ∂

∂x

(
18y x2 + 12x y2

)
= 36yx+ 12y2
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

18y x2 + 12x y2
((
54yx+ 24y2

)
−
(
36yx+ 12y2

))
= 1

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

x
dx

The result of integrating gives

µ = eln(x)

= x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x
(
27x y2 + 8y3

)
= y2(27x+ 8y)x

And

N = µN

= x
(
18y x2 + 12x y2

)
= 6y x2(3x+ 2y)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

y2(27x+ 8y)x
)
+
(
6y x2(3x+ 2y)

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y2(27x+ 8y)x dx

(3)φ = y2x2(9x+ 4y) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2y x2(9x+ 4y) + 4x2y2 + f ′(y)

= 6y x2(3x+ 2y) + f ′(y)

But equation (2) says that ∂φ
∂y

= 6y x2(3x+ 2y). Therefore equation (4) becomes

(5)6y x2(3x+ 2y) = 6y x2(3x+ 2y) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y2x2(9x+ 4y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y2x2(9x+ 4y)
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Summary
The solution(s) found are the following

(1)y2x2(4y + 9x) = c1

Figure 430: Slope field plot

Verification of solutions

y2x2(4y + 9x) = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.344 (sec). Leaf size: 1355� �
dsolve((27*x*y(x)^2+8*y(x)^3)+(18*x^2*y(x)+12*x*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �
y(x) = 0

y(x) =
x
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 1
3

3c1x5 +
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 2
3

y(x) =
x
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 1
3

3c1x5 +
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 2
3

y(x) =
x
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 1
3

3c1x5 +
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 2
3

y(x) =
x
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 1
3

3c1x5 +
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 2
3

y(x) =
x
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 1
3

3c1x5 +
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 2
3

y(x) =

−
2x
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 1
3

i

(
−3c1x5 +

(
2c1x5 +

√
−27c31x15 + 4c21x10

) 2
3
)√

3 + 3c1x5 +
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 2
3

y(x) = −
2x
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 1
3

(
1− i

√
3
) (

2c1x5 +
√

−27c31x15 + 4c21x10
) 2

3 + 3c1
(
1 + i

√
3
)
x5

y(x) =

−
2x
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 1
3

i

(
−3c1x5 +

(
2c1x5 +

√
−27c31x15 + 4c21x10

) 2
3
)√

3 + 3c1x5 +
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 2
3

y(x) = −
2x
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 1
3

(
1− i

√
3
) (

2c1x5 +
√

−27c31x15 + 4c21x10
) 2

3 + 3c1
(
1 + i

√
3
)
x5

y(x) =

−
2x
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 1
3

i

(
−3c1x5 +

(
2c1x5 +

√
−27c31x15 + 4c21x10

) 2
3
)√

3 + 3c1x5 +
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 2
3

y(x) = −
2x
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 1
3

(
1− i

√
3
) (

2c1x5 +
√

−27c31x15 + 4c21x10
) 2

3 + 3c1
(
1 + i

√
3
)
x5

y(x) =

−
2x
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 1
3

i

(
−3c1x5 +

(
2c1x5 +

√
−27c31x15 + 4c21x10

) 2
3
)√

3 + 3c1x5 +
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 2
3

y(x) = −
2x
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 1
3

(
1− i

√
3
) (

2c1x5 +
√

−27c31x15 + 4c21x10
) 2

3 + 3c1
(
1 + i

√
3
)
x5

y(x) =

−
2x
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 1
3

i

(
−3c1x5 +

(
2c1x5 +

√
−27c31x15 + 4c21x10

) 2
3
)√

3 + 3c1x5 +
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 2
3

y(x) = −
2x
(
2c1x5 +

√
−27c31x15 + 4c21x10

) 1
3

(
1− i

√
3
) (

2c1x5 +
√

−27c31x15 + 4c21x10
) 2

3 + 3c1
(
1 + i

√
3
)
x5
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3 Solution by Mathematica
Time used: 59.109 (sec). Leaf size: 534� �
DSolve[(27*x*y[x]^2+8*y[x]^3)+(18*x^2*y[x]+12*x*y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 0

y(x) → 1
4

 9x2

3

√
−27x5 + 4

√
e6c1 (−27x5 + 4e6c1) + 8e6c1

x2

+
3

√
−27x5 + 4

√
e6c1 (−27x5 + 4e6c1) + 8e6c1

x2 − 3x



y(x) → 1
8

−
9
(
1 + i

√
3
)
x2

3

√
−27x5 + 4

√
e6c1 (−27x5 + 4e6c1) + 8e6c1

x2

+ i
(√

3 + i
)

3

√
−27x5 + 4

√
e6c1 (−27x5 + 4e6c1) + 8e6c1

x2 − 6x



y(x) → 1
8

 9i
(√

3 + i
)
x2

3

√
−27x5 + 4

√
e6c1 (−27x5 + 4e6c1) + 8e6c1

x2

−
(
1 + i

√
3
)

3

√
−27x5 + 4

√
e6c1 (−27x5 + 4e6c1) + 8e6c1

x2 − 6x


y(x) → 0

y(x) →
3
(

3
√
−x3 + x

)(
−2x+

(
1− i

√
3
) 3
√
−x3

)
8x

y(x) →
3
(

3
√
−x3 + x

)(
−2x+

(
1 + i

√
3
) 3
√
−x3

)
8x

y(x) → −
3
(
− 3
√
−x3x+ (−x3)2/3 + x2

)
4x
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7.9 problem 9
Internal problem ID [1069]
Internal file name [OUTPUT/1070_Sunday_June_05_2022_02_01_53_AM_17687407/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational , [_Abel , `2nd type `, `class B`]]

Unable to solve or complete the solution.

6xy2 + 2y +
(
12x2y + 12xy2

)
y′ = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 5� �
dsolve((6*x*y(x)^2+2*y(x))+(12*x^2*y(x)+12*x*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 0

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(6*x*y[x]^2+2*y[x])+(12*x^2*y[x]+12*x*y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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7.10 problem 10
7.10.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2191

Internal problem ID [1070]
Internal file name [OUTPUT/1071_Sunday_June_05_2022_02_01_55_AM_87646166/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x)*G(y) ,0]`]]

y2 +
(
xy2 + 6yx+ 1

y

)
y′ = 0

7.10.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x y2 + 6yx+ 1

y

)
dy =

(
−y2

)
dx

(
y2
)
dx+

(
x y2 + 6yx+ 1

y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y2

N(x, y) = x y2 + 6yx+ 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y2
)

= 2y
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And
∂N

∂x
= ∂

∂x

(
x y2 + 6yx+ 1

y

)
= y2 + 6y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= y

1 + y2 (y + 6)x
(
(2y)−

(
y2 + 6y

))
= − y2(y + 4)

1 + y2 (y + 6)x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y2
((
y2 + 6y

)
− (2y)

)
= y + 4

y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫ y+4

y
dy

The result of integrating gives

µ = ey+4 ln(y)

= y4ey

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= y4ey
(
y2
)

= y6ey
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And

N = µN

= y4ey
(
x y2 + 6yx+ 1

y

)
=
(
x y3 + 6x y2 + 1

)
y3ey

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

y6ey
)
+
((
x y3 + 6x y2 + 1

)
y3ey

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y6ey dx

(3)φ = y6eyx+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 6y5eyx+ y6eyx+ f ′(y)

= eyx y5(y + 6) + f ′(y)

But equation (2) says that ∂φ
∂y

= (x y3 + 6x y2 + 1) y3ey. Therefore equation (4) becomes

(5)
(
x y3 + 6x y2 + 1

)
y3ey = eyx y5(y + 6) + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = y3ey

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y3ey

)
dy

f(y) =
(
y3 − 3y2 + 6y − 6

)
ey + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = y6eyx+
(
y3 − 3y2 + 6y − 6

)
ey + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y6eyx+
(
y3 − 3y2 + 6y − 6

)
ey

Summary
The solution(s) found are the following

(1)y6eyx+
(
y3 − 3y2 + 6y − 6

)
ey = c1
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Figure 431: Slope field plot

Verification of solutions

y6eyx+
(
y3 − 3y2 + 6y − 6

)
ey = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 38� �
dsolve((y(x)^2)+(x*y(x)^2+3*x*y(x)+3*x*y(x)+1/y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

xy(x)6 + y(x)3 − 3y(x)2 − e−y(x)c1 + 6y(x)− 6
y (x)6

= 0

3 Solution by Mathematica
Time used: 0.2 (sec). Leaf size: 41� �
DSolve[(y[x]^2)+(x*y[x]^2+3*x*y[x]+3*x*y[x]+1/y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x = −y(x)3 − 3y(x)2 + 6y(x)− 6

y(x)6 + c1e
−y(x)

y(x)6 , y(x)
]
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7.11 problem 11
7.11.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2198

Internal problem ID [1071]
Internal file name [OUTPUT/1072_Sunday_June_05_2022_02_01_57_AM_89441240/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational , [_Abel , `2nd type `, `class B`]]

12yx3 + 24x2y2 +
(
9x4 + 32yx3 + 4y

)
y′ = 0

7.11.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

9x4 + 32y x3 + 4y
)
dy =

(
−12y x3 − 24x2y2

)
dx(

12y x3 + 24x2y2
)
dx+

(
9x4 + 32y x3 + 4y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 12y x3 + 24x2y2

N(x, y) = 9x4 + 32y x3 + 4y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
12y x3 + 24x2y2

)
= 12x2(x+ 4y)

And
∂N

∂x
= ∂

∂x

(
9x4 + 32y x3 + 4y

)
= 36x3 + 96y x2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

9x4 + 32y x3 + 4y
((
12x3 + 48y x2)− (36x3 + 96y x2))

= − 24x2(x+ 2y)
9x4 + 32y x3 + 4y
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

12y x2 (x+ 2y)
((
36x3 + 96y x2)− (12x3 + 48y x2))

= 2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫ 2

y
dy

The result of integrating gives

µ = e2 ln(y)

= y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= y2
(
12y x3 + 24x2y2

)
= 12y3x2(x+ 2y)

And

N = µN

= y2
(
9x4 + 32y x3 + 4y

)
=
(
32x3 + 4

)
y3 + 9x4y2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

12y3x2(x+ 2y)
)
+
((
32x3 + 4

)
y3 + 9x4y2

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
12y3x2(x+ 2y) dx

(3)φ = y3x3(3x+ 8y) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3y2x3(3x+ 8y) + 8y3x3 + f ′(y)

= x3y2(9x+ 32y) + f ′(y)

But equation (2) says that ∂φ
∂y

= (32x3 + 4) y3 +9x4y2. Therefore equation (4) becomes

(5)
(
32x3 + 4

)
y3 + 9x4y2 = x3y2(9x+ 32y) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 4y3

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
4y3
)
dy

f(y) = y4 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = y3x3(3x+ 8y) + y4 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y3x3(3x+ 8y) + y4

Summary
The solution(s) found are the following

(1)y3x3(3x+ 8y) + y4 = c1

Figure 432: Slope field plot

Verification of solutions

y3x3(3x+ 8y) + y4 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve((12*x^3*y(x)+24*x^2*y(x)^2)+(9*x^4+32*x^3*y(x)+4*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

3x4y(x)3 + 8x3y(x)4 + y(x)4 + c1 = 0
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3 Solution by Mathematica
Time used: 61.708 (sec). Leaf size: 1733� �
DSolve[(12*x^3*y[x]+24*x^2*y[x]^2)+(9*x^4+32*x^3*y[x]+4*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → − 3x4

32x3 + 4

+1
2

√√√√√√√ 9x8

4 (8x3 + 1)2
+

3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

3 3
√
2 (8x3 + 1)

− 4 3
√
2c1

3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

− 1
2

√√√√√√√√√√√√
9x8

2 (8x3 + 1)2
−

3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

3 3
√
2 (8x3 + 1)

+ 4 3
√
2c1

3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

− 27x12

4 (8x3 + 1)3

√√√√√√√ 9x8

4(8x3+1)2 +
3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

3
3
√
2(8x3+1)

− 4
3
√
2c1

3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

y(x) → − 3x4

32x3 + 4

+1
2

√√√√√√√ 9x8

4 (8x3 + 1)2
+

3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

3 3
√
2 (8x3 + 1)

− 4 3
√
2c1

3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

+1
2

√√√√√√√√√√√√
9x8

2 (8x3 + 1)2
−

3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

3 3
√
2 (8x3 + 1)

+ 4 3
√
2c1

3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

− 27x12

4 (8x3 + 1)3

√√√√√√√ 9x8

4(8x3+1)2 +
3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

3
3
√
2(8x3+1)

− 4
3
√
2c1

3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

y(x) → − 3x4

32x3 + 4

− 1
2

√√√√√√√ 9x8

4 (8x3 + 1)2
+

3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

3 3
√
2 (8x3 + 1)

− 4 3
√
2c1

3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

− 1
2

√√√√√√√√√√√√
9x8

2 (8x3 + 1)2
−

3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

3 3
√
2 (8x3 + 1)

+ 4 3
√
2c1

3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

+ 27x12

4 (8x3 + 1)3

√√√√√√√ 9x8

4(8x3+1)2 +
3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

3
3
√
2(8x3+1)

− 4
3
√
2c1

3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

y(x) → − 3x4

32x3 + 4

− 1
2

√√√√√√√ 9x8

4 (8x3 + 1)2
+

3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

3 3
√
2 (8x3 + 1)

− 4 3
√
2c1

3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

+1
2

√√√√√√√√√√√√
9x8

2 (8x3 + 1)2
−

3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

3 3
√
2 (8x3 + 1)

+ 4 3
√
2c1

3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

+ 27x12

4 (8x3 + 1)3

√√√√√√√ 9x8

4(8x3+1)2 +
3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8

3
3
√
2(8x3+1)

− 4
3
√
2c1

3

√√
59049c12x16 + 6912c13 (8x3 + 1)3 − 243c1x8
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7.12 problem 12
7.12.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2205
7.12.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2207
7.12.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 2208
7.12.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 2210
7.12.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2214
7.12.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2218

Internal problem ID [1072]
Internal file name [OUTPUT/1073_Sunday_June_05_2022_02_01_58_AM_30903516/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x2y + 4yx+ 2y +
(
x2 + x

)
y′ = 0

7.12.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y(x2 + 4x+ 2)
x (x+ 1)
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Where f(x) = −x2+4x+2
x(x+1) and g(y) = y. Integrating both sides gives

1
y
dy = −x2 + 4x+ 2

x (x+ 1) dx∫ 1
y
dy =

∫
−x2 + 4x+ 2

x (x+ 1) dx

ln (y) = −x− 2 ln (x)− ln (x+ 1) + c1

y = e−x−2 ln(x)−ln(x+1)+c1

= c1e−x−2 ln(x)−ln(x+1)

Which simplifies to

y = c1e−x

x2 (x+ 1)

Summary
The solution(s) found are the following

(1)y = c1e−x

x2 (x+ 1)

Figure 433: Slope field plot
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Verification of solutions

y = c1e−x

x2 (x+ 1)

Verified OK.

7.12.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −−x2 − 4x− 2
x (x+ 1)

q(x) = 0

Hence the ode is

y′ − (−x2 − 4x− 2) y
x (x+ 1) = 0

The integrating factor µ is

µ = e
∫
−−x2−4x−2

x(x+1) dx

= ex+2 ln(x)+ln(x+1)

Which simplifies to
µ = exx2(x+ 1)

The ode becomes
d
dxµy = 0

d
dx
(
exx2(x+ 1) y

)
= 0

Integrating gives

exx2(x+ 1) y = c1

Dividing both sides by the integrating factor µ = exx2(x+ 1) results in

y = c1e−x

x2 (x+ 1)
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Summary
The solution(s) found are the following

(1)y = c1e−x

x2 (x+ 1)

Figure 434: Slope field plot

Verification of solutions

y = c1e−x

x2 (x+ 1)

Verified OK.

7.12.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x3u(x) + 4u(x)x2 + 2u(x)x+
(
x2 + x

)
(u′(x)x+ u(x)) = 0
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In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(x2 + 5x+ 3)
x (x+ 1)

Where f(x) = −x2+5x+3
x(x+1) and g(u) = u. Integrating both sides gives

1
u
du = −x2 + 5x+ 3

x (x+ 1) dx∫ 1
u
du =

∫
−x2 + 5x+ 3

x (x+ 1) dx

ln (u) = −x− 3 ln (x)− ln (x+ 1) + c2

u = e−x−3 ln(x)−ln(x+1)+c2

= c2e−x−3 ln(x)−ln(x+1)

Which simplifies to

u(x) = c2e−x

x3 (x+ 1)

Therefore the solution y is

y = ux

= c2e−x

x2 (x+ 1)

Summary
The solution(s) found are the following

(1)y = c2e−x

x2 (x+ 1)
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Figure 435: Slope field plot

Verification of solutions

y = c2e−x

x2 (x+ 1)

Verified OK.

7.12.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y(x2 + 4x+ 2)
x (x+ 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 324: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−x−2 ln(x)−ln(x+1) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x−2 ln(x)−ln(x+1)dy

Which results in

S = exx2(x+ 1) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(x2 + 4x+ 2)
x (x+ 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = exyx

(
x2 + 4x+ 2

)
Sy = exx2(x+ 1)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

exx2(x+ 1) y = c1

Which simplifies to

exx2(x+ 1) y = c1

Which gives

y = c1e−x

x2 (x+ 1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
x2+4x+2

)
x(x+1)

dS
dR

= 0

R = x

S = exx2(x+ 1) y

Summary
The solution(s) found are the following

(1)y = c1e−x

x2 (x+ 1)

2213



Figure 436: Slope field plot

Verification of solutions

y = c1e−x

x2 (x+ 1)

Verified OK.

7.12.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−1
y

)
dy =

(
x2 + 4x+ 2
x (x+ 1)

)
dx(

−x2 + 4x+ 2
x (x+ 1)

)
dx+

(
−1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 + 4x+ 2
x (x+ 1)

N(x, y) = −1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2 + 4x+ 2

x (x+ 1)

)
= 0
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And
∂N

∂x
= ∂

∂x

(
−1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 + 4x+ 2

x (x+ 1) dx

(3)φ = −x− 2 ln (x)− ln (x+ 1) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y
. Therefore equation (4) becomes

(5)−1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x− 2 ln (x)− ln (x+ 1)− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x− 2 ln (x)− ln (x+ 1)− ln (y)

The solution becomes

y = e−x−c1

(x+ 1)x2

Summary
The solution(s) found are the following

(1)y = e−x−c1

(x+ 1)x2

Figure 437: Slope field plot
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Verification of solutions

y = e−x−c1

(x+ 1)x2

Verified OK.

7.12.6 Maple step by step solution

Let’s solve
x2y + 4yx+ 2y + (x2 + x) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= −x2+4x+2

x(x+1)

• Integrate both sides with respect to x∫
y′

y
dx =

∫
−x2+4x+2

x(x+1) dx+ c1

• Evaluate integral
ln (y) = −x− 2 ln (x)− ln (x+ 1) + c1

• Solve for y
y = e−x+c1

(x+1)x2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve((x^2*y(x)+4*x*y(x)+2*y(x))+(x^2+x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1e−x

(x+ 1)x2

3 Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 26� �
DSolve[(x^2*y[x]+4*x*y[x]+2*y[x])+(x^2+x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−x

x2(x+ 1)
y(x) → 0
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Internal problem ID [1073]
Internal file name [OUTPUT/1074_Sunday_June_05_2022_02_01_59_AM_95419976/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

−y +
(
x4 − x

)
y′ = 0

7.13.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y

x (x3 − 1)
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Where f(x) = 1
x(x3−1) and g(y) = y. Integrating both sides gives

1
y
dy = 1

x (x3 − 1) dx∫ 1
y
dy =

∫ 1
x (x3 − 1) dx

ln (y) = ln (x2 + x+ 1)
3 − ln (x) + ln (x− 1)

3 + c1

y = e
ln
(
x2+x+1

)
3 −ln(x)+ ln(x−1)

3 +c1

= c1e
ln
(
x2+x+1

)
3 −ln(x)+ ln(x−1)

3

Which simplifies to

y = c1(x2 + x+ 1)
1
3 (x− 1)

1
3

x

Summary
The solution(s) found are the following

(1)y = c1(x2 + x+ 1)
1
3 (x− 1)

1
3

x

Figure 438: Slope field plot
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Verification of solutions

y = c1(x2 + x+ 1)
1
3 (x− 1)

1
3

x

Verified OK.

7.13.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1
x4 − x

q(x) = 0

Hence the ode is

y′ − y

x4 − x
= 0

The integrating factor µ is

µ = e
∫
− 1

x4−x
dx

= e−
ln
(
x2+x+1

)
3 +ln(x)− ln(x−1)

3

Which simplifies to

µ = x

(x2 + x+ 1)
1
3 (x− 1)

1
3

The ode becomes
d
dxµy = 0

d
dx

(
xy

(x2 + x+ 1)
1
3 (x− 1)

1
3

)
= 0

Integrating gives
xy

(x2 + x+ 1)
1
3 (x− 1)

1
3
= c1
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Dividing both sides by the integrating factor µ = x

(x2+x+1)
1
3 (x−1)

1
3
results in

y = c1(x2 + x+ 1)
1
3 (x− 1)

1
3

x

Summary
The solution(s) found are the following

(1)y = c1(x2 + x+ 1)
1
3 (x− 1)

1
3

x

Figure 439: Slope field plot

Verification of solutions

y = c1(x2 + x+ 1)
1
3 (x− 1)

1
3

x

Verified OK.

2223



7.13.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

−u(x)x+
(
x4 − x

)
(u′(x)x+ u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u(x3 − 2)
x (x3 − 1)

Where f(x) = − x3−2
x(x3−1) and g(u) = u. Integrating both sides gives

1
u
du = − x3 − 2

x (x3 − 1) dx∫ 1
u
du =

∫
− x3 − 2
x (x3 − 1) dx

ln (u) = ln (x2 + x+ 1)
3 − 2 ln (x) + ln (x− 1)

3 + c2

u = e
ln
(
x2+x+1

)
3 −2 ln(x)+ ln(x−1)

3 +c2

= c2e
ln
(
x2+x+1

)
3 −2 ln(x)+ ln(x−1)

3

Which simplifies to

u(x) = c2(x2 + x+ 1)
1
3 (x− 1)

1
3

x2

Therefore the solution y is

y = ux

= c2(x2 + x+ 1)
1
3 (x− 1)

1
3

x

Summary
The solution(s) found are the following

(1)y = c2(x2 + x+ 1)
1
3 (x− 1)

1
3

x
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Figure 440: Slope field plot

Verification of solutions

y = c2(x2 + x+ 1)
1
3 (x− 1)

1
3

x

Verified OK.

7.13.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y

x (x3 − 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 327: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e
ln
(
x2+x+1

)
3 −ln(x)+ ln(x−1)

3 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
ln
(
x2+x+1

)
3 −ln(x)+ ln(x−1)

3

dy

Which results in

S = x e
ln

 1(
x2+x+1

) 1
3

+ln
(

1

(x−1)
1
3

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y

x (x3 − 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

(x2 + x+ 1)
4
3 (x− 1)

4
3

Sy =
x

(x2 + x+ 1)
1
3 (x− 1)

1
3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

xy

(x2 + x+ 1)
1
3 (x− 1)

1
3
= c1

Which simplifies to
xy

(x2 + x+ 1)
1
3 (x− 1)

1
3
= c1

Which gives

y = c1(x2 + x+ 1)
1
3 (x− 1)

1
3

x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
x(x3−1)

dS
dR

= 0

R = x

S = xy

(x2 + x+ 1)
1
3 (x− 1)

1
3

2228



Summary
The solution(s) found are the following

(1)y = c1(x2 + x+ 1)
1
3 (x− 1)

1
3

x

Figure 441: Slope field plot

Verification of solutions

y = c1(x2 + x+ 1)
1
3 (x− 1)

1
3

x

Verified OK.

7.13.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y

)
dy =

(
1

x (x3 − 1)

)
dx(

− 1
x (x3 − 1)

)
dx+

(
1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x (x3 − 1)

N(x, y) = 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x (x3 − 1)

)
= 0

And
∂N

∂x
= ∂

∂x

(
1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x (x3 − 1) dx

(3)φ = − ln (x2 + x+ 1)
3 + ln (x)− ln (x− 1)

3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
. Therefore equation (4) becomes

(5)1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x2 + x+ 1)
3 + ln (x)− ln (x− 1)

3 + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x2 + x+ 1)
3 + ln (x)− ln (x− 1)

3 + ln (y)

The solution becomes

y = e
ln
(
x2+x+1

)
3 + ln(x−1)

3 +c1

x

Summary
The solution(s) found are the following

(1)y = e
ln
(
x2+x+1

)
3 + ln(x−1)

3 +c1

x
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Figure 442: Slope field plot

Verification of solutions

y = e
ln
(
x2+x+1

)
3 + ln(x−1)

3 +c1

x

Verified OK.

7.13.6 Maple step by step solution

Let’s solve
−y + (x4 − x) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

x4−x

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 1
x4−x

dx+ c1
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• Evaluate integral

ln (y) = ln
(
x2+x+1

)
3 − ln (x) + ln(x−1)

3 + c1

• Solve for y

y = e
ln
(
x2+x+1

)
3 + ln(x−1)

3 +c1

x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 22� �
dsolve(-y(x)+(x^4-x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1(x− 1)
1
3 (x2 + x+ 1)

1
3

x

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 27� �
DSolve[-y[x]+(x^4-x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
3
√
1− x3

x
y(x) → 0
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7.14 problem 14
7.14.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2235

Internal problem ID [1074]
Internal file name [OUTPUT/1075_Sunday_June_05_2022_02_02_00_AM_37850167/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x)*G(y) ,0]`]]

cos (x) cos (y) + (cos (y) sin (x)− sin (y) sin (x) + y) y′ = 0

7.14.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(cos (y) sin (x)− sin (y) sin (x) + y) dy = (− cos (x) cos (y)) dx
(cos (x) cos (y)) dx+(cos (y) sin (x)− sin (y) sin (x) + y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = cos (x) cos (y)
N(x, y) = cos (y) sin (x)− sin (y) sin (x) + y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(cos (x) cos (y))

= − sin (y) cos (x)

And
∂N

∂x
= ∂

∂x
(cos (y) sin (x)− sin (y) sin (x) + y)

= cos (x) (− sin (y) + cos (y))

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

sin (x) (− sin (y) + cos (y)) + y
((− sin (y) cos (x))− (cos (x) cos (y)− sin (y) cos (x)))

= − cos (x) cos (y)
sin (x) (− sin (y) + cos (y)) + y
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= sec (y) sec (x) ((cos (x) cos (y)− sin (y) cos (x))− (− sin (y) cos (x)))
= 1

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
1 dy

The result of integrating gives

µ = ey

= ey

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= ey(cos (x) cos (y))
= cos (x) cos (y) ey

And

N = µN

= ey(cos (y) sin (x)− sin (y) sin (x) + y)
= (sin (x) (− sin (y) + cos (y)) + y) ey

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0

(cos (x) cos (y) ey) + ((sin (x) (− sin (y) + cos (y)) + y) ey) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
cos (x) cos (y) ey dx

(3)φ = sin (x) cos (y) ey + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − sin (x) sin (y) ey + sin (x) cos (y) ey + f ′(y)

= ey sin (x) (− sin (y) + cos (y)) + f ′(y)

But equation (2) says that ∂φ
∂y

= (sin (x) (− sin (y) + cos (y)) + y) ey. Therefore equation
(4) becomes

(5)(sin (x) (− sin (y) + cos (y)) + y) ey = ey sin (x) (− sin (y) + cos (y)) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = eyy

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(eyy) dy

f(y) = (y − 1) ey + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = sin (x) cos (y) ey + (y − 1) ey + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = sin (x) cos (y) ey + (y − 1) ey
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Summary
The solution(s) found are the following

(1)sin (x) cos (y) ey + (y − 1) ey = c1

Figure 443: Slope field plot

Verification of solutions

sin (x) cos (y) ey + (y − 1) ey = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 19� �
dsolve((cos(x)*cos(y(x)))+(sin(x)*cos(y(x))-sin(x)*sin(y(x))+y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

(sin (x) cos (y(x)) + y(x)− 1) ey(x) + c1 = 0

3 Solution by Mathematica
Time used: 0.218 (sec). Leaf size: 28� �
DSolve[(Cos[x]*Cos[y[x]])+(Sin[x]*Cos[y[x]]-Sin[x]*Sin[y[x]]+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
−2ey(x)(y(x)− 1)− 2ey(x) sin(x) cos(y(x)) = c1, y(x)

]

2240



7.15 problem 15
Internal problem ID [1075]
Internal file name [OUTPUT/1076_Sunday_June_05_2022_02_02_03_AM_16375660/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 15.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational]

Unable to solve or complete the solution.

2yx+ y2 +
(
2yx+ x2 − 2xy2 − 2xy3

)
y′ = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
7 Solution by Maple� �
dsolve((2*x*y(x)+y(x)^2)+(2*x*y(x)+x^2-2*x*y(x)^2-2*x*y(x)^3)*diff(y(x),x)=0,y(x), singsol=all)� �

No solution found
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7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(2*x*y[x]+y[x]^2)+(2*x*y[x]+x^2-2*x*y[x]^2-2*x*y[x]^3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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7.16 problem 16
7.16.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2244
7.16.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2246
7.16.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2250
7.16.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2254

Internal problem ID [1076]
Internal file name [OUTPUT/1077_Sunday_June_05_2022_02_02_05_AM_21785661/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y sin (y) + x(sin (y)− y cos (y)) y′ = 0

7.16.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y sin (y)
x (− sin (y) + y cos (y))

Where f(x) = 1
x
and g(y) = y sin(y)

− sin(y)+y cos(y) . Integrating both sides gives

1
y sin(y)

− sin(y)+y cos(y)

dy = 1
x
dx
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∫ 1
y sin(y)

− sin(y)+y cos(y)

dy =
∫ 1

x
dx

− ln (y) + ln (sin (y)) = ln (x) + c1

Raising both side to exponential gives

e− ln(y)+ln(sin(y)) = eln(x)+c1

Which simplifies to

sin (y)
y

= c2x

Summary
The solution(s) found are the following

(1)y = RootOf (_Zc2x− sin (_Z))

Figure 444: Slope field plot

Verification of solutions

y = RootOf (_Zc2x− sin (_Z))

Verified OK.
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7.16.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y sin (y)
x (− sin (y) + y cos (y))

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 330: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
dx

Which results in

S = ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y sin (y)
x (− sin (y) + y cos (y))
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 + cot (y) y

y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1 + cot (R)R

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + ln (sin (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) = − ln (y) + ln (sin (y)) + c1

Which simplifies to

ln (x) = − ln (y) + ln (sin (y)) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y sin(y)
x(− sin(y)+y cos(y))

dS
dR

= −1+cot(R)R
R

R = y

S = ln (x)

Summary
The solution(s) found are the following

(1)ln (x) = − ln (y) + ln (sin (y)) + c1
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Figure 445: Slope field plot

Verification of solutions

ln (x) = − ln (y) + ln (sin (y)) + c1

Verified OK.

7.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− sin (y) + y cos (y)

y sin (y)

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
− sin (y) + y cos (y)

y sin (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = − sin (y) + y cos (y)
y sin (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0

2251



And

∂N

∂x
= ∂

∂x

(
− sin (y) + y cos (y)

y sin (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − sin(y)+y cos(y)
y sin(y) . Therefore equation (4) becomes

(5)− sin (y) + y cos (y)
y sin (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −sin (y)− y cos (y)
y sin (y)

= −1 + cot (y) y
y
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Integrating the above w.r.t y results in∫
f ′(y) dy =

∫ (
−1 + cot (y) y

y

)
dy

f(y) = − ln (y) + ln (sin (y)) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)− ln (y) + ln (sin (y)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)− ln (y) + ln (sin (y))

Summary
The solution(s) found are the following

(1)− ln (x)− ln (y) + ln (sin (y)) = c1

Figure 446: Slope field plot
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Verification of solutions

− ln (x)− ln (y) + ln (sin (y)) = c1

Verified OK.

7.16.4 Maple step by step solution

Let’s solve
y sin (y) + x(sin (y)− y cos (y)) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(sin(y)−y cos(y))

y sin(y) = − 1
x

• Integrate both sides with respect to x∫ y′(sin(y)−y cos(y))
y sin(y) dx =

∫
− 1

x
dx+ c1

• Evaluate integral
ln (y)− ln (sin (y)) = − ln (x) + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 16� �
dsolve((y(x)*sin(y(x)))+(x*(sin(y(x))-y(x)*cos(y(x))))*diff(y(x),x)=0,y(x), singsol=all)� �

ln (x) + ln (y(x))− ln (sin (y(x))) + c1 = 0
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3 Solution by Mathematica
Time used: 0.569 (sec). Leaf size: 27� �
DSolve[(y[x]*Sin[y[x]])+(x*(Sin[y[x]]-y[x]*Cos[y[x]]))*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction[log(sin(#1))− log(#1)&][log(x) + c1]
y(x) → 0
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7.17 problem 18
7.17.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2256
7.17.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2257
7.17.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2260
7.17.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2263

Internal problem ID [1077]
Internal file name [OUTPUT/1078_Sunday_June_05_2022_02_02_06_AM_32538710/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 18.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

ay + bxy + (cx+ dxy) y′ = 0

7.17.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − y(bx+ a)
x (dy + c)

Where f(x) = − bx+a
x

and g(y) = y
dy+c

. Integrating both sides gives

1
y

dy+c

dy = −bx+ a

x
dx
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∫ 1
y

dy+c

dy =
∫

−bx+ a

x
dx

dy + c ln (y) = −bx− a ln (x) + c1

Which results in

y = e−
cLambertW

 d e−
bx+a ln(x)−c1

c
c

+a ln(x)+bx−c1

c

Summary
The solution(s) found are the following

(1)y = e−
cLambertW

 d e−
bx+a ln(x)−c1

c
c

+a ln(x)+bx−c1

c

Verification of solutions

y = e−
cLambertW

 d e−
bx+a ln(x)−c1

c
c

+a ln(x)+bx−c1

c

Verified OK.

7.17.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − y(bx+ a)
x (dy + c)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 333: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = − x

bx+ a

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− x
bx+a

dx

Which results in

S = −bx− a ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y(bx+ a)
x (dy + c)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = −bx− a

x
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= dy + c

y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= Rd+ c

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = Rd+ c ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−bx− a ln (x) = dy + c ln (y) + c1

Which simplifies to

−bx− a ln (x) = dy + c ln (y) + c1

Which gives

y = e−
a ln(x)+bx+cLambertW

 d e−
a ln(x)+bx+c1

c
c

+c1

c

Summary
The solution(s) found are the following

(1)y = e−
a ln(x)+bx+cLambertW

 d e−
a ln(x)+bx+c1

c
c

+c1

c

Verification of solutions

y = e−
a ln(x)+bx+cLambertW

 d e−
a ln(x)+bx+c1

c
c

+c1

c

Verified OK.

7.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

−dy + c

y

)
dy =

(
bx+ a

x

)
dx(

−bx+ a

x

)
dx+

(
−dy + c

y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −bx+ a

x

N(x, y) = −dy + c

y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−bx+ a

x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
−dy + c

y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−bx+ a

x
dx

(3)φ = −bx− a ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −dy+c
y

. Therefore equation (4) becomes

(5)−dy + c

y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −dy + c

y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−dy − c

y

)
dy

f(y) = −dy − c ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −bx− a ln (x)− dy − c ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −bx− a ln (x)− dy − c ln (y)

The solution becomes

y = e−
a ln(x)+bx+cLambertW

 d e−
a ln(x)+bx+c1

c
c

+c1

c

Summary
The solution(s) found are the following

(1)y = e−
a ln(x)+bx+cLambertW

 d e−
a ln(x)+bx+c1

c
c

+c1

c

Verification of solutions

y = e−
a ln(x)+bx+cLambertW

 d e−
a ln(x)+bx+c1

c
c

+c1

c

Verified OK.

7.17.4 Maple step by step solution

Let’s solve
ay + bxy + (cx+ dxy) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(dy+c)

y
= − bx+a

x

• Integrate both sides with respect to x
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∫ y′(dy+c)
y

dx =
∫
− bx+a

x
dx+ c1

• Evaluate integral
dy + c ln (y) = −bx− a ln (x) + c1

• Solve for y

y = e−
cLambertW

 d e−
bx+a ln(x)−c1

c
c

+a ln(x)+bx−c1

c

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 56� �
dsolve((a*y(x)+b*x*y(x))+(c*x+d*x*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x−a
c e

−bx−cLambertW

 d x
−a

c e
−bx−c1

c
c

−c1

c

3 Solution by Mathematica
Time used: 1.133 (sec). Leaf size: 42� �
DSolve[(a*y[x]+b*x*y[x])+(c*x+d*x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
cW

(
dx−a

c e
−bx+c1

c

c

)
d

y(x) → 0
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7.18 problem 19
Internal problem ID [1078]
Internal file name [OUTPUT/1079_Sunday_June_05_2022_02_02_07_AM_94834817/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational , [_Abel , `2nd type `, `class C`]]

Unable to solve or complete the solution.

3y3x2 − y2 + y + (−yx+ 2x) y′ = 0

Unable to determine ODE type.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 59� �
dsolve((3*x^2*y(x)^3-y(x)^2+y(x))+(-x*y(x)+2*x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 4
√
x
√

c1x+48x2+4
x

+ 2

y(x) = − 4
√
x
√

c1x+48x2+4
x

− 2

3 Solution by Mathematica
Time used: 0.776 (sec). Leaf size: 80� �
DSolve[(3*x^2*y[x]^3-y[x]^2+y[x])+(-x*y[x]+2*x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2

1 +
√
− 1

x2x
√
−12x2 − 4c1x− 1

y(x) → 2x
x+

√
−12x2−4c1x−1√

− 1
x2

y(x) → 0
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7.19 problem 20
7.19.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2267
7.19.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2269
7.19.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2273
7.19.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2277

Internal problem ID [1079]
Internal file name [OUTPUT/1080_Sunday_June_05_2022_02_02_08_AM_89452171/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 20.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

2y + 3
(
x2 + y3x2) y′ = 0

7.19.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − 2y
3x2 (y3 + 1)

Where f(x) = − 2
3x2 and g(y) = y

y3+1 . Integrating both sides gives

1
y

y3+1
dy = − 2

3x2 dx
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∫ 1
y

y3+1
dy =

∫
− 2
3x2 dx

y3

3 + ln (y) = 2
3x + c1

Which results in

y = e−
xLambertW

(
e
3c1x+2

x

)
−3c1x−2

3x

Summary
The solution(s) found are the following

(1)y = e−
xLambertW

(
e
3c1x+2

x

)
−3c1x−2

3x

Figure 447: Slope field plot

Verification of solutions

y = e−
xLambertW

(
e
3c1x+2

x

)
−3c1x−2

3x

Verified OK.
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7.19.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − 2y
3x2 (y3 + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 336: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = −3x2

2
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−3x2

2
dx

Which results in

S = 2
3x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 2y
3x2 (y3 + 1)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = − 2
3x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y3 + 1

y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R3 + 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R3

3 + ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2
3x = y3

3 + ln (y) + c1

Which simplifies to

2
3x = y3

3 + ln (y) + c1

Which gives

y = e−
xLambertW

(
e−

3c1x−2
x

)
+3c1x−2

3x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 2y
3x2(y3+1)

dS
dR

= R3+1
R

R = y

S = 2
3x

Summary
The solution(s) found are the following

(1)y = e−
xLambertW

(
e−

3c1x−2
x

)
+3c1x−2

3x
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Figure 448: Slope field plot

Verification of solutions

y = e−
xLambertW

(
e−

3c1x−2
x

)
+3c1x−2

3x

Verified OK.

7.19.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−3(y3 + 1)

2y

)
dy =

(
1
x2

)
dx(

− 1
x2

)
dx+

(
−3(y3 + 1)

2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x2

N(x, y) = −3(y3 + 1)
2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x2

)
= 0
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And

∂N

∂x
= ∂

∂x

(
−3(y3 + 1)

2y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x2 dx

(3)φ = 1
x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −3
(
y3+1

)
2y . Therefore equation (4) becomes

(5)−3(y3 + 1)
2y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −3(y3 + 1)
2y
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
−3y3 − 3

2y

)
dy

f(y) = −y3

2 − 3 ln (y)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 1
x
− y3

2 − 3 ln (y)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1
x
− y3

2 − 3 ln (y)
2

The solution becomes

y = e−
xLambertW

(
e−

2(c1x−1)
x

)
+2c1x−2

3x

Summary
The solution(s) found are the following

(1)y = e−
xLambertW

(
e−

2(c1x−1)
x

)
+2c1x−2

3x
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Figure 449: Slope field plot

Verification of solutions

y = e−
xLambertW

(
e−

2(c1x−1)
x

)
+2c1x−2

3x

Verified OK.

7.19.4 Maple step by step solution

Let’s solve
2y + 3(x2 + y3x2) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(1+y)

(
y2−y+1

)
y

= − 2
3x2

• Integrate both sides with respect to x∫ y′(1+y)
(
y2−y+1

)
y

dx =
∫
− 2

3x2dx+ c1
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• Evaluate integral
y3

3 + ln (y) = 2
3x + c1

• Solve for y

y = e−
xLambertW

(
e
3c1x+2

x

)
−3c1x−2

3x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 30� �
dsolve((2*y(x))+3*(x^2+x^2*y(x)^3)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = e−
xLambertW

(
e
−2c1x+2

x

)
+2c1x−2

3x

3 Solution by Mathematica
Time used: 4.79 (sec). Leaf size: 82� �
DSolve[(2*y[x])+3*(x^2+x^2*y[x]^3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3

√
W
(
e

2
x
+3c1

)
y(x) → − 3

√
−1 3

√
W
(
e

2
x
+3c1

)
y(x) → (−1)2/3 3

√
W
(
e

2
x
+3c1

)
y(x) → 0
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7.20 problem 21
7.20.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2279
7.20.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2281
7.20.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2282
7.20.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2287

Internal problem ID [1080]
Internal file name [OUTPUT/1081_Sunday_June_05_2022_02_02_10_AM_55863699/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 21.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

a cos (x) y − sin (x) y2 + (b cos (x) y − sin (x)xy) y′ = 0

7.20.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − sin (x)
b cos (x)− sin (x)x

q(x) = cos (x) a
sin (x)x− b cos (x)

Hence the ode is

y′ − sin (x) y
b cos (x)− sin (x)x = cos (x) a

sin (x)x− b cos (x)

2279



The integrating factor µ is
µ = e

∫
− sin(x)

b cos(x)−sin(x)xdx

The ode becomes

d
dx(µy) = (µ)

(
cos (x) a

sin (x)x− b cos (x)

)
d
dx

(
e
∫
− sin(x)

b cos(x)−sin(x)xdxy
)
=
(
e
∫
− sin(x)

b cos(x)−sin(x)xdx
)( cos (x) a

sin (x)x− b cos (x)

)
d
(
e
∫
− sin(x)

b cos(x)−sin(x)xdxy
)
=
(
cos (x) a e

∫ sin(x)
sin(x)x−b cos(x)dx

sin (x)x− b cos (x)

)
dx

Integrating gives

e
∫
− sin(x)

b cos(x)−sin(x)xdxy =
∫ cos (x) a e

∫ sin(x)
sin(x)x−b cos(x)dx

sin (x)x− b cos (x) dx

e
∫
− sin(x)

b cos(x)−sin(x)xdxy =
∫ cos (x) a e

∫ sin(x)
sin(x)x−b cos(x)dx

sin (x)x− b cos (x) dx+ c1

Dividing both sides by the integrating factor µ = e
∫
− sin(x)

b cos(x)−sin(x)xdx results in

y = e−
(∫ sin(x)

sin(x)x−b cos(x)dx
)(∫ cos (x) a e

∫ sin(x)
sin(x)x−b cos(x)dx

sin (x)x− b cos (x) dx

)
+ c1e−

(∫ sin(x)
sin(x)x−b cos(x)dx

)

which simplifies to

y = e−
(∫ sin(x)

sin(x)x−b cos(x)dx
)(

a

(∫ cos (x) e
∫ sin(x)

sin(x)x−b cos(x)dx

sin (x)x− b cos (x) dx

)
+ c1

)

Summary
The solution(s) found are the following

(1)y = e−
(∫ sin(x)

sin(x)x−b cos(x)dx
)(

a

(∫ cos (x) e
∫ sin(x)

sin(x)x−b cos(x)dx

sin (x)x− b cos (x) dx

)
+ c1

)
Verification of solutions

y = e−
(∫ sin(x)

sin(x)x−b cos(x)dx
)(

a

(∫ cos (x) e
∫ sin(x)

sin(x)x−b cos(x)dx

sin (x)x− b cos (x) dx

)
+ c1

)

Verified OK.
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7.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −− cos (x) a+ sin (x) y
sin (x)x− b cos (x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 339: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = e− ln(−ib+x)−
i

∫ − 4b
(ix+b)

(
ix e2ix+b e2ix−ix+b

) dx


2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e− ln(−ib+x)−
i

∫ − 4b
(ix+b)

(
ix e2ix+b e2ix−ix+b

) dx


2

dy

7.20.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(sin (x)x− b cos (x)) dy = (− sin (x) y + cos (x) a) dx
(− cos (x) a+ sin (x) y) dx+(sin (x)x− b cos (x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − cos (x) a+ sin (x) y
N(x, y) = sin (x)x− b cos (x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− cos (x) a+ sin (x) y)

= sin (x)

And
∂N

∂x
= ∂

∂x
(sin (x)x− b cos (x))

= x cos (x) + sin (x) + b sin (x)
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

sin (x)x− b cos (x)((sin (x))− (x cos (x) + sin (x) + b sin (x)))

= x cos (x) + b sin (x)
b cos (x)− sin (x)x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ x cos(x)+b sin(x)

b cos(x)−sin(x)x dx

The result of integrating gives

µ = e
−ix+

∫
− 2i(ib+x)

−ib e2ix+x e2ix−ib−x
dx

= e−ix+2
(∫

ix−b
(ib−x)e2ix+ib+x

dx
)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−ix+2
(∫

ix−b
(ib−x)e2ix+ib+x

dx
)
(− cos (x) a+ sin (x) y)

= (− cos (x) a+ sin (x) y) e−ix+2
(∫

ix−b
(ib−x)e2ix+ib+x

dx
)

And

N = µN

= e−ix+2
(∫

ix−b
(ib−x)e2ix+ib+x

dx
)
(sin (x)x− b cos (x))

= (sin (x)x− b cos (x)) e−ix+2
(∫

ix−b
(ib−x)e2ix+ib+x

dx
)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

(− cos (x) a+ sin (x) y) e−ix+2
(∫

ix−b
(ib−x)e2ix+ib+x

dx
))

+
(
(sin (x)x− b cos (x)) e−ix+2

(∫
ix−b

(ib−x)e2ix+ib+x
dx
)) dy

dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(− cos (x) a+ sin (x) y) e−ix+2

(∫
ix−b

(ib−x)e2ix+ib+x
dx
)
dx

(3)φ =
∫ x

(− cos (_a) a+ sin (_a) y) e−i_a+2
(∫ i_a−b

(ib−_a)e2i_a+ib+_ad_a
)
d_a+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
=
∫ x

sin (_a) e−i_a+2
(∫ i_a−b

(ib−_a)e2i_a+ib+_ad_a
)
d_a+ f ′(y)

=
∫ x

sin (_a) e−i_a+2
(∫ ib+_a

e2i_a(i_a+b)+b−i_ad_a
)
d_a+ f ′(y)

But equation (2) says that ∂φ
∂y

= (sin (x)x− b cos (x)) e−ix+2
(∫

ix−b
(ib−x)e2ix+ib+x

dx
)
. Therefore

equation (4) becomes

(5)(sin (x)x− b cos (x)) e−ix+2
(∫

ix−b
(ib−x)e2ix+ib+x

dx
)

=
∫ x

sin (_a) e−i_a+2
(∫ ib+_a

e2i_a(i_a+b)+b−i_ad_a
)
d_a+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = sin (x) e−ix+2
(∫

ix−b
(ib−x)e2ix+ib+x

dx
)
x− cos (x) e−ix+2

(∫
ix−b

(ib−x)e2ix+ib+x
dx
)
b

−
(∫ x

sin (_a) e−i_a+2
(∫ ib+_a

e2i_a(i_a+b)+b−i_ad_a
)
d_a

)
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Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
sin (x) e−ix+2

(∫
ix−b

(ib−x)e2ix+ib+x
dx
)
x− cos (x) e−ix+2

(∫
ix−b

(ib−x)e2ix+ib+x
dx
)
b

−
(∫ x

sin (_a) e−i_a+2
(∫ ib+_a

e2i_a(i_a+b)+b−i_ad_a
)
d_a

))
dy

f(y) =
∫ y

0

(
sin (x) e−ix+2

(∫
ix−b

(ib−x)e2ix+ib+x
dx
)
x− cos (x) e−ix+2

(∫
ix−b

(ib−x)e2ix+ib+x
dx
)
b

−
(∫ x

sin (_a) e−i_a+2
(∫ ib+_a

e2i_a(i_a+b)+b−i_ad_a
)
d_a

))
d_a+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
∫ x

(− cos (_a) a+ sin (_a) y) e−i_a+2
(∫ i_a−b

(ib−_a)e2i_a+ib+_ad_a
)
d_a

+
∫ y

0

(
sin (x) e−ix+2

(∫
ix−b

(ib−x)e2ix+ib+x
dx
)
x− cos (x) e−ix+2

(∫
ix−b

(ib−x)e2ix+ib+x
dx
)
b

−
(∫ x

sin (_a) e−i_a+2
(∫ ib+_a

e2i_a(i_a+b)+b−i_ad_a
)
d_a

))
d_a+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
∫ x

(− cos (_a) a+ sin (_a) y) e−i_a+2
(∫ i_a−b

(ib−_a)e2i_a+ib+_ad_a
)
d_a

+
∫ y

0

(
sin (x) e−ix+2

(∫
ix−b

(ib−x)e2ix+ib+x
dx
)
x− cos (x) e−ix+2

(∫
ix−b

(ib−x)e2ix+ib+x
dx
)
b

−
(∫ x

sin (_a) e−i_a+2
(∫ ib+_a

e2i_a(i_a+b)+b−i_ad_a
)
d_a

))
d_a

Summary
The solution(s) found are the following

(1)

∫ x

(− cos (_a) a+ sin (_a) y) e−i_a+2
(∫ i_a−b

(ib−_a)e2i_a+ib+_ad_a
)
d_a

+
∫ y

0

(
sin (x) e−ix+2

(∫
ix−b

(ib−x)e2ix+ib+x
dx
)
x− cos (x) e−ix+2

(∫
ix−b

(ib−x)e2ix+ib+x
dx
)
b

−
(∫ x

sin (_a) e−i_a+2
(∫ ib+_a

e2i_a(i_a+b)+b−i_ad_a
)
d_a

))
d_a = c1
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Verification of solutions∫ x

(− cos (_a) a+ sin (_a) y) e−i_a+2
(∫ i_a−b

(ib−_a)e2i_a+ib+_ad_a
)
d_a

+
∫ y

0

(
sin (x) e−ix+2

(∫
ix−b

(ib−x)e2ix+ib+x
dx
)
x− cos (x) e−ix+2

(∫
ix−b

(ib−x)e2ix+ib+x
dx
)
b

−
(∫ x

sin (_a) e−i_a+2
(∫ ib+_a

e2i_a(i_a+b)+b−i_ad_a
)
d_a

))
d_a = c1

Warning, solution could not be verified

7.20.4 Maple step by step solution

Let’s solve
a cos (x) y − sin (x) y2 + (b cos (x) y − sin (x)xy) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − sin(x)y

sin(x)x−b cos(x) +
cos(x)a

sin(x)x−b cos(x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + sin(x)y

sin(x)x−b cos(x) =
cos(x)a

sin(x)x−b cos(x)

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + sin(x)y

sin(x)x−b cos(x)

)
= µ(x) cos(x)a

sin(x)x−b cos(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + sin(x)y

sin(x)x−b cos(x)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) sin(x)

sin(x)x−b cos(x)

• Solve to find the integrating factor

µ(x) = e
∫ sin(x)

sin(x)x−b cos(x)dx

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x) cos(x)a
sin(x)x−b cos(x)dx+ c1

• Evaluate the integral on the lhs
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µ(x) y =
∫ µ(x) cos(x)a

sin(x)x−b cos(x)dx+ c1

• Solve for y

y =
∫ µ(x) cos(x)a

sin(x)x−b cos(x)dx+c1

µ(x)

• Substitute µ(x) = e
∫ sin(x)

sin(x)x−b cos(x)dx

y =
∫ cos(x)a e

∫ sin(x)
sin(x)x−b cos(x) dx

sin(x)x−b cos(x) dx+c1

e
∫ sin(x)

sin(x)x−b cos(x) dx

• Evaluate the integrals on the rhs

y =
∫ cos(x)a eln(−Ib+x)−

I

∫ 4b
(Ix+b)

(
Ix
(
eIx
)2

+b
(
eIx
)2

−Ix+b

) dx


2

sin(x)x−b cos(x) dx+c1

eln(−Ib+x)−

I

∫ 4b
(Ix+b)

(
Ix
(
eIx
)2

+b
(
eIx
)2

−Ix+b

) dx


2

• Simplify

y =

a

∫ (−Ib+x) cos(x)e

2 Ib

∫ 1
(Ib−x)

(
(Ib−x)e2 Ix+Ib+x

) dx


b cos(x)−sin(x)x dx

−c1

e
−2 Ib

∫ 1
(Ib−x)

(
(Ib−x)e2 Ix+Ib+x

) dx



Ib−x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 68� �
dsolve((a*cos(x)*y(x)-y(x)*sin(x)*y(x))+(b*cos(x)*y(x)-x*sin(x)*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 0

y(x) =
(
a

(∫ cos (x) e
∫ sin(x)

x sin(x)−cos(x)bdx

x sin (x)− cos (x) b dx

)
+ c1

)
e−
(∫ sin(x)

x sin(x)−cos(x)bdx
)
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3 Solution by Mathematica
Time used: 3.564 (sec). Leaf size: 106� �
DSolve[(a*Cos[x]*y[x]-y[x]*Sin[x]*y[x])+(b*Cos[x]*y[x]-x*Sin[x]*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 0

y(x) → exp
(∫ x

1

sin(K[1])
b cos(K[1])−K[1] sin(K[1])dK[1]

)∫ x

1

−
a exp

(
−
∫ K[2]
1

sin(K[1])
b cos(K[1])−K[1] sin(K[1])dK[1]

)
cos(K[2])

b cos(K[2])−K[2] sin(K[2]) dK[2] + c1


y(x) → 0
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7.21 problem 22
7.21.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2290
7.21.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 2292
7.21.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 2293
7.21.4 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 2295
7.21.5 Solving as first order ode lie symmetry lookup ode . . . . . . . 2296
7.21.6 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2300
7.21.7 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2304

Internal problem ID [1081]
Internal file name [OUTPUT/1082_Sunday_June_05_2022_02_02_12_AM_15469839/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 22.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"differentialType", "homogeneousTypeD2", "first_order_ode_lie_symme-
try_lookup"

Maple gives the following as the ode type
[_separable]

x4y4 + x5y3y′ = 0

7.21.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y

x
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Where f(x) = − 1
x
and g(y) = y. Integrating both sides gives

1
y
dy = −1

x
dx∫ 1

y
dy =

∫
−1
x
dx

ln (y) = − ln (x) + c1

y = e− ln(x)+c1

= c1
x

Summary
The solution(s) found are the following

(1)y = c1
x

Figure 450: Slope field plot

Verification of solutions

y = c1
x

Verified OK.
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7.21.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x

q(x) = 0

Hence the ode is

y′ + y

x
= 0

The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes

d
dxµy = 0
d
dx(yx) = 0

Integrating gives

yx = c1

Dividing both sides by the integrating factor µ = x results in

y = c1
x

Summary
The solution(s) found are the following

(1)y = c1
x
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Figure 451: Slope field plot

Verification of solutions

y = c1
x

Verified OK.

7.21.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x8u(x)4 + x8u(x)3 (u′(x)x+ u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2u
x
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Where f(x) = − 2
x
and g(u) = u. Integrating both sides gives

1
u
du = −2

x
dx∫ 1

u
du =

∫
−2
x
dx

ln (u) = −2 ln (x) + c2

u = e−2 ln(x)+c2

= c2
x2

Therefore the solution y is

y = xu

= c2
x

Summary
The solution(s) found are the following

(1)y = c2
x

Figure 452: Slope field plot
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Verification of solutions

y = c2
x

Verified OK.

7.21.4 Solving as differentialType ode

Writing the ode as

y′ = −y

x
(1)

Which becomes

0 = (−x) dy + (−y) dx (2)

But the RHS is complete differential because

(−x) dy + (−y) dx = d(−yx)

Hence (2) becomes

0 = d(−yx)

Integrating both sides gives gives these solutions

y = c1
x

+ c1

Summary
The solution(s) found are the following

(1)y = c1
x
+ c1

2295



Figure 453: Slope field plot

Verification of solutions

y = c1
x
+ c1

Verified OK.

7.21.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 342: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x

dy

Which results in

S = yx

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y

Sy = x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx = c1

Which simplifies to

yx = c1

Which gives

y = c1
x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y
x

dS
dR

= 0

R = x

S = yx

Summary
The solution(s) found are the following

(1)y = c1
x
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Figure 454: Slope field plot

Verification of solutions

y = c1
x

Verified OK.

7.21.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−1
y

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
−1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = −1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
−1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y
. Therefore equation (4) becomes

(5)−1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)− ln (y)

The solution becomes

y = e−c1

x

Summary
The solution(s) found are the following

(1)y = e−c1

x

Figure 455: Slope field plot
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Verification of solutions

y = e−c1

x

Verified OK.

7.21.7 Maple step by step solution

Let’s solve
x4y4 + x5y3y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= − 1

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
− 1

x
dx+ c1

• Evaluate integral
ln (y) = − ln (x) + c1

• Solve for y
y = ec1

x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve((x^4*y(x)^4)+(x^5*y(x)^3)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 0
y(x) = c1

x

3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 21� �
DSolve[(x^4*y[x]^4)+(x^5*y[x]^3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 0
y(x) → c1

x
y(x) → 0
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7.22 problem 23
7.22.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 2306
7.22.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 2308
7.22.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2312
7.22.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2316

Internal problem ID [1082]
Internal file name [OUTPUT/1083_Sunday_June_05_2022_02_02_13_AM_6047940/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 23.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y(x cos (x) + 2 sin (x)) + x(1 + y) y′ = 0

7.22.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y(x cos (x) + 2 sin (x))
x (y + 1)

Where f(x) = −x cos(x)+2 sin(x)
x

and g(y) = y
y+1 . Integrating both sides gives

1
y

y+1
dy = −x cos (x) + 2 sin (x)

x
dx
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∫ 1
y

y+1
dy =

∫
−x cos (x) + 2 sin (x)

x
dx

y + ln (y) = − sin (x)− 2 Si (x) + c1

Which results in

y = e−LambertW
(
e− sin(x)−2 Si(x)+c1

)
−sin(x)−2 Si(x)+c1

Summary
The solution(s) found are the following

(1)y = e−LambertW
(
e− sin(x)−2 Si(x)+c1

)
−sin(x)−2 Si(x)+c1

Figure 456: Slope field plot

Verification of solutions

y = e−LambertW
(
e− sin(x)−2 Si(x)+c1

)
−sin(x)−2 Si(x)+c1

Verified OK.
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7.22.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y(x cos (x) + 2 sin (x))
x (y + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 345: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = − x

x cos (x) + 2 sin (x)
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− x
x cos(x)+2 sin(x)

dx

Which results in

S = − sin (x)− 2 Si (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(x cos (x) + 2 sin (x))
x (y + 1)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = − cos (x)− 2 sin (x)
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y + 1

y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R + 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− sin (x)− 2 Si (x) = y + ln (y) + c1

Which simplifies to

− sin (x)− 2 Si (x) = y + ln (y) + c1

Which gives

y = e−LambertW
(
e− sin(x)−2 Si(x)−c1

)
−sin(x)−2 Si(x)−c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y(x cos(x)+2 sin(x))
x(y+1)

dS
dR

= R+1
R

R = y

S = − sin (x)− 2 Si (x)

Summary
The solution(s) found are the following

(1)y = e−LambertW
(
e− sin(x)−2 Si(x)−c1

)
−sin(x)−2 Si(x)−c1
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Figure 457: Slope field plot

Verification of solutions

y = e−LambertW
(
e− sin(x)−2 Si(x)−c1

)
−sin(x)−2 Si(x)−c1

Verified OK.

7.22.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−y + 1

y

)
dy =

(
x cos (x) + 2 sin (x)

x

)
dx(

−x cos (x) + 2 sin (x)
x

)
dx+

(
−y + 1

y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x cos (x) + 2 sin (x)
x

N(x, y) = −y + 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x cos (x) + 2 sin (x)

x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
−y + 1

y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x cos (x) + 2 sin (x)

x
dx

(3)φ = − sin (x)− 2 Si (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −y+1
y
. Therefore equation (4) becomes

(5)−y + 1
y

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y + 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−y − 1

y

)
dy

f(y) = −y − ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − sin (x)− 2 Si (x)− y − ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − sin (x)− 2 Si (x)− y − ln (y)

The solution becomes

y = e−LambertW
(
e− sin(x)−2 Si(x)−c1

)
−sin(x)−2 Si(x)−c1

Summary
The solution(s) found are the following

(1)y = e−LambertW
(
e− sin(x)−2 Si(x)−c1

)
−sin(x)−2 Si(x)−c1

Figure 458: Slope field plot

Verification of solutions

y = e−LambertW
(
e− sin(x)−2 Si(x)−c1

)
−sin(x)−2 Si(x)−c1

Verified OK.
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7.22.4 Maple step by step solution

Let’s solve
y(x cos (x) + 2 sin (x)) + x(1 + y) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(1+y)

y
= −x cos(x)+2 sin(x)

x

• Integrate both sides with respect to x∫ y′(1+y)
y

dx =
∫
−x cos(x)+2 sin(x)

x
dx+ c1

• Evaluate integral
y + ln (y) = − sin (x)− 2 Si(x) + c1

• Solve for y
y = e−LambertW

(
e− sin(x)−2 Si(x)+c1

)
−sin(x)−2 Si(x)+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 18� �
dsolve((y(x)*(x*cos(x)+2*sin(x)))+(x*(y(x)+1))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = LambertW
(
e− sin(x)−2 Si(x)−c1

)
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3 Solution by Mathematica
Time used: 2.869 (sec). Leaf size: 24� �
DSolve[(y[x]*(x*Cos[x]+2*Sin[x]))+(x*(y[x]+1))*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → W
(
e−2Si(x)−sin(x)+c1

)
y(x) → 0
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7.23 problem 24
7.23.1 Solving as first order ode lie symmetry calculated ode . . . . . . 2318
7.23.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2324

Internal problem ID [1083]
Internal file name [OUTPUT/1084_Sunday_June_05_2022_02_02_15_AM_67609577/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 24.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

y3x4 + y +
(
y2x5 − x

)
y′ = 0

7.23.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y(x4y2 + 1)
x (x4y2 − 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(x4y2 + 1) (b3 − a2)

x (x4y2 − 1) − y2(x4y2 + 1)2 a3
x2 (x4y2 − 1)2

−
(
− 4y3x2

x4y2 − 1 + y(x4y2 + 1)
x2 (x4y2 − 1) +

4y3(x4y2 + 1)x2

(x4y2 − 1)2
)
(xa2 + ya3 + a1)

−
(
− x4y2 + 1
x (x4y2 − 1) −

2y2x3

x4y2 − 1 + 2y2(x4y2 + 1)x3

(x4y2 − 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x10y4b2 − 2x8y6a3 + x9y4b1 − x8y5a1 − 6x6y2b2 − 8x5y3a2 − 4x5y3b3 − 10x4y4a3 − 4x5y2b1 − 8x4y3a1 − xb1 + ya1

(x4y2 − 1)2 x2

= 0

Setting the numerator to zero gives

(6E)2x10y4b2 − 2x8y6a3 + x9y4b1 − x8y5a1 − 6x6y2b2 − 8x5y3a2
− 4x5y3b3 − 10x4y4a3 − 4x5y2b1 − 8x4y3a1 − xb1 + ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a3v81v62 + 2b2v101 v42 − a1v
8
1v

5
2 + b1v

9
1v

4
2 − 8a2v51v32 − 10a3v41v42

− 6b2v61v22 − 4b3v51v32 − 8a1v41v32 − 4b1v51v22 + a1v2 − b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v101 v42 + b1v
9
1v

4
2 − 2a3v81v62 − a1v

8
1v

5
2 − 6b2v61v22 + (−8a2 − 4b3) v51v32

− 4b1v51v22 − 10a3v41v42 − 8a1v41v32 − b1v1 + a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0

−8a1 = 0
−a1 = 0

−10a3 = 0
−2a3 = 0
−4b1 = 0
−b1 = 0
−6b2 = 0
2b2 = 0

−8a2 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −2y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −2y −
(
− y(x4y2 + 1)
x (x4y2 − 1)

)
(x)

= −y3x4 + 3y
x4y2 − 1

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y3x4+3y
x4y2−1

dy

Which results in

S = − ln (y(x4y2 − 3))
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y(x4y2 + 1)
x (x4y2 − 1)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 4x3y2

3x4y2 − 9

Sy =
−x4y2 + 1
y (x4y2 − 3)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

3x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

3R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y)
3 − ln (x4y2 − 3)

3 = − ln (x)
3 + c1

Which simplifies to

− ln (y)
3 − ln (x4y2 − 3)

3 = − ln (x)
3 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
x4y2+1

)
x(x4y2−1)

dS
dR

= − 1
3R

R = x

S = − ln (y)
3 − ln (x4y2 − 3)

3

Summary
The solution(s) found are the following

(1)− ln (y)
3 − ln (x4y2 − 3)

3 = − ln (x)
3 + c1
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Figure 459: Slope field plot

Verification of solutions

− ln (y)
3 − ln (x4y2 − 3)

3 = − ln (x)
3 + c1

Verified OK.

7.23.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y2x5 − x

)
dy =

(
−y3x4 − y

)
dx(

y3x4 + y
)
dx+

(
y2x5 − x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y3x4 + y

N(x, y) = y2x5 − x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y3x4 + y

)
= 3x4y2 + 1

And
∂N

∂x
= ∂

∂x

(
y2x5 − x

)
= 5x4y2 − 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

y2x5 − x

((
3x4y2 + 1

)
−
(
5x4y2 − 1

))
= −2

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
y3x4 + y

)
= y3x4 + y

x2

And

N = µN

= 1
x2

(
y2x5 − x

)
= x4y2 − 1

x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

y3x4 + y

x2

)
+
(
x4y2 − 1

x

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y3x4 + y

x2 dx

(3)φ = y(x4y2 − 3)
3x + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x4y2 − 3

3x + 2x3y2

3 + f ′(y)

= x4y2 − 1
x

+ f ′(y)

But equation (2) says that ∂φ
∂y

= x4y2−1
x

. Therefore equation (4) becomes

(5)x4y2 − 1
x

= x4y2 − 1
x

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y(x4y2 − 3)
3x + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
y(x4y2 − 3)

3x

Summary
The solution(s) found are the following

(1)y(x4y2 − 3)
3x = c1

Figure 460: Slope field plot

Verification of solutions

y(x4y2 − 3)
3x = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 242� �
dsolve((x^4*y(x)^3+y(x))+(x^5*y(x)^2-x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =

(
4x3 + 4

√
x6 − 4c31

) 2
3 + 4c1

2x2
(
4x3 + 4

√
x6 − 4c31

) 1
3 √

c1

y(x) =
−i
(
4x3 + 4

√
x6 − 4c31

) 2
3 √3 + 4i

√
3 c1 −

(
4x3 + 4

√
x6 − 4c31

) 2
3 − 4c1

4x2
(
4x3 + 4

√
x6 − 4c31

) 1
3 √

c1

y(x) = −
−i
(
4x3 + 4

√
x6 − 4c31

) 2
3 √3 + 4i

√
3 c1 +

(
4x3 + 4

√
x6 − 4c31

) 2
3 + 4c1

4x2
(
4x3 + 4

√
x6 − 4c31

) 1
3 √

c1
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3 Solution by Mathematica
Time used: 39.244 (sec). Leaf size: 300� �
DSolve[(x^4*y[x]^3+y[x])+(x^5*y[x]^2-x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
2 +

3
√
2
(
3c1x9+

√
x12(−4+9c12x6)

)
2/3

x4

22/3 3
√

3c1x9 +
√

x12 (−4 + 9c12x6)

y(x) →
i
((√

3 + i
) (

6c1x9 + 2
√
x12 (−4 + 9c12x6)

)
2/3 − 2 3

√
2
(√

3− i
)
x4
)

4x4 3
√
3c1x9 +

√
x12 (−4 + 9c12x6)

y(x) →
2i 3
√
2
(√

3 + i
)
x4 +

(
−1− i

√
3
) (

6c1x9 + 2
√

x12 (−4 + 9c12x6)
)

2/3

4x4 3
√

3c1x9 +
√
x12 (−4 + 9c12x6)
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7.24 problem 25
7.24.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 2331
7.24.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2333

Internal problem ID [1084]
Internal file name [OUTPUT/1085_Sunday_June_05_2022_02_02_16_AM_22897266/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 25.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , [_Abel , `2nd type `, `

class B`]]

3yx+ 2y2 + y +
(
x2 + 2yx+ x+ 2y

)
y′ = 0

7.24.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

3u(x)x2 + 2u(x)2 x2 + u(x)x+
(
x2 + 2u(x)x2 + x+ 2u(x)x

)
(u′(x)x+ u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2u(1 + 2x) (u+ 1)
x (x+ 1) (2u+ 1)
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Where f(x) = −2(1+2x)
x(x+1) and g(u) = u(u+1)

2u+1 . Integrating both sides gives

1
u(u+1)
2u+1

du = −2(1 + 2x)
x (x+ 1) dx

∫ 1
u(u+1)
2u+1

du =
∫

−2(1 + 2x)
x (x+ 1) dx

ln (u(u+ 1)) = −2 ln (x(x+ 1)) + c2

Raising both side to exponential gives

u(u+ 1) = e−2 ln(x(x+1))+c2

Which simplifies to

u(u+ 1) = c3

x2 (x+ 1)2

Which simplifies to

u(x) (u(x) + 1) = c3ec2

x2 (x+ 1)2

The solution is

u(x) (u(x) + 1) = c3ec2

x2 (x+ 1)2

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y
(
1 + y

x

)
x

= c3ec2

x2 (x+ 1)2

y(x+ y)
x2 = c3ec2

x2 (x+ 1)2

Which simplifies to

y(x+ y) = c3ec2

(x+ 1)2

Summary
The solution(s) found are the following

(1)y(x+ y) = c3ec2

(x+ 1)2
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Figure 461: Slope field plot

Verification of solutions

y(x+ y) = c3ec2

(x+ 1)2

Verified OK.

7.24.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 + 2yx+ x+ 2y

)
dy =

(
−3yx− 2y2 − y

)
dx(

3yx+ 2y2 + y
)
dx+

(
x2 + 2yx+ x+ 2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3yx+ 2y2 + y

N(x, y) = x2 + 2yx+ x+ 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
3yx+ 2y2 + y

)
= 3x+ 4y + 1

And
∂N

∂x
= ∂

∂x

(
x2 + 2yx+ x+ 2y

)
= 2x+ 2y + 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

(x+ 1) (x+ 2y)((3x+ 4y + 1)− (2x+ 2y + 1))

= 1
x+ 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ 1

x+1 dx

The result of integrating gives

µ = eln(x+1)

= x+ 1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x+ 1
(
3yx+ 2y2 + y

)
= y(3x+ 2y + 1) (x+ 1)

And

N = µN

= x+ 1
(
x2 + 2yx+ x+ 2y

)
= (x+ 1)2 (x+ 2y)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(y(3x+ 2y + 1) (x+ 1)) +
(
(x+ 1)2 (x+ 2y)

) dy
dx = 0

2335



The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y(3x+ 2y + 1) (x+ 1) dx

(3)φ =
(
x2 + (2 + y)x+ 2y + 1

)
xy + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= (2 + x)xy +

(
x2 + (2 + y)x+ 2y + 1

)
x+ f ′(y)

=
(
x2 + (2y + 2)x+ 4y + 1

)
x+ f ′(y)

But equation (2) says that ∂φ
∂y

= (x+ 1)2 (x+ 2y). Therefore equation (4) becomes

(5)(x+ 1)2 (x+ 2y) =
(
x2 + (2y + 2)x+ 4y + 1

)
x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(2y) dy

f(y) = y2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
(
x2 + (2 + y)x+ 2y + 1

)
xy + y2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(
x2 + (2 + y)x+ 2y + 1

)
xy + y2

Summary
The solution(s) found are the following

(1)
(
x2 + (2 + y)x+ 2y + 1

)
xy + y2 = c1

Figure 462: Slope field plot

Verification of solutions (
x2 + (2 + y)x+ 2y + 1

)
xy + y2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 85� �
dsolve((3*x*y(x)+2*y(x)^2+y(x))+(x^2+2*x*y(x)+x+2*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
−
√

4 + x2 (x+ 1)2 c21 + (−x2 − x) c1
2c1 (x+ 1)

y(x) =

√
4 + x2 (x+ 1)2 c21 + (−x2 − x) c1

2c1 (x+ 1)

3 Solution by Mathematica
Time used: 14.424 (sec). Leaf size: 105� �
DSolve[(3*x*y[x]+2*y[x]^2+y[x])+(x^2+2*x*y[x]+x+2*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
−x−

√
x2 + 4ec1

(x+ 1)2

)

y(x) → 1
2

(
−x+

√
x2 + 4ec1

(x+ 1)2

)
y(x) → 1

2

(
−
√
x2 − x

)
y(x) → 1

2

(√
x2 − x

)
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7.25 problem 26
7.25.1 Solving as first order ode lie symmetry calculated ode . . . . . . 2339
7.25.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2345

Internal problem ID [1085]
Internal file name [OUTPUT/1086_Sunday_June_05_2022_02_02_18_AM_91680699/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 26.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

12yx+ 6y3 +
(
9x2 + 10xy2

)
y′ = 0

7.25.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − 6y(y2 + 2x)
x (10y2 + 9x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
6y(y2 + 2x) (b3 − a2)

x (10y2 + 9x) − 36y2(y2 + 2x)2 a3
x2 (10y2 + 9x)2

−
(
− 12y
(10y2 + 9x)x + 6y(y2 + 2x)

x2 (10y2 + 9x) +
54y(y2 + 2x)
x (10y2 + 9x)2

)
(xa2 + ya3 + a1)

−
(
− 6(y2 + 2x)
x (10y2 + 9x)−

12y2
x (10y2 + 9x) +

120y2(y2 + 2x)
x (10y2 + 9x)2

)
(xb2+yb3+b1) = 0

Putting the above in normal form gives

160x2y4b2 − 96y6a3 + 222x3y2b2 + 66x2y3a2 − 132x2y3b3 − 252x y4a3 + 60x y4b1 − 60y5a1 + 189x4b2 − 252x2y2a3 + 42x2y2b1 − 108x y3a1 + 108x3b1 − 108x2ya1

x2 (10y2 + 9x)2
= 0

Setting the numerator to zero gives

(6E)160x2y4b2 − 96y6a3 + 222x3y2b2 + 66x2y3a2 − 132x2y3b3
− 252x y4a3 + 60x y4b1 − 60y5a1 + 189x4b2 − 252x2y2a3
+ 42x2y2b1 − 108x y3a1 + 108x3b1 − 108x2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−96a3v62 + 160b2v21v42 − 60a1v52 + 66a2v21v32 − 252a3v1v42
+ 60b1v1v42 + 222b2v31v22 − 132b3v21v32 − 108a1v1v32 − 252a3v21v22
+ 42b1v21v22 + 189b2v41 − 108a1v21v2 + 108b1v31 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)189b2v41 + 222b2v31v22 + 108b1v31 + 160b2v21v42
+ (66a2 − 132b3) v21v32 + (−252a3 + 42b1) v21v22 − 108a1v21v2
+ (−252a3 + 60b1) v1v42 − 108a1v1v32 − 96a3v62 − 60a1v52 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−108a1 = 0
−60a1 = 0
−96a3 = 0
108b1 = 0
160b2 = 0
189b2 = 0
222b2 = 0

66a2 − 132b3 = 0
−252a3 + 42b1 = 0
−252a3 + 60b1 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− 6y(y2 + 2x)
x (10y2 + 9x)

)
(2x)

= 22y3 + 33yx
10y2 + 9x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

22y3+33yx
10y2+9x

dy

Which results in

S = 3 ln (y)
11 + ln (2y2 + 3x)

11
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 6y(y2 + 2x)
x (10y2 + 9x)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3
22y2 + 33x

Sy =
10y2 + 9x

22y3 + 33yx

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 3

11x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 3

11R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −3 ln (R)
11 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3 ln (y)
11 + ln (2y2 + 3x)

11 = −3 ln (x)
11 + c1

Which simplifies to

3 ln (y)
11 + ln (2y2 + 3x)

11 = −3 ln (x)
11 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 6y
(
y2+2x

)
x(10y2+9x)

dS
dR

= − 3
11R

R = x

S = 3 ln (y)
11 + ln (2y2 + 3x)

11

Summary
The solution(s) found are the following

(1)3 ln (y)
11 + ln (2y2 + 3x)

11 = −3 ln (x)
11 + c1
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Figure 463: Slope field plot

Verification of solutions

3 ln (y)
11 + ln (2y2 + 3x)

11 = −3 ln (x)
11 + c1

Verified OK.

7.25.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
10x y2 + 9x2) dy =

(
−6y3 − 12yx

)
dx(

6y3 + 12yx
)
dx+

(
10x y2 + 9x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 6y3 + 12yx
N(x, y) = 10x y2 + 9x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
6y3 + 12yx

)
= 18y2 + 12x

And
∂N

∂x
= ∂

∂x

(
10x y2 + 9x2)

= 10y2 + 18x

2346



Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

10x y2 + 9x2

((
18y2 + 12x

)
−
(
10y2 + 18x

))
= 8y2 − 6x

10x y2 + 9x2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

6y3 + 12yx
((
10y2 + 18x

)
−
(
18y2 + 12x

))
= −4y2 + 3x

3y3 + 6yx

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (10y2 + 18x)− (18y2 + 12x)
x (6y3 + 12yx)− y (10x y2 + 9x2)

= 2
yx

Replacing all powers of terms xy by t gives

R = 2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ ( 2

t

)
dt
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The result of integrating gives

µ = e2 ln(t)

= t2

Now t is replaced back with xy giving

µ = x2y2

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= x2y2
(
6y3 + 12yx

)
= 6x2y5 + 12y3x3

And

N = µN

= x2y2
(
10x y2 + 9x2)

= x3(10y2 + 9x
)
y2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

6x2y5 + 12y3x3)+ (x3(10y2 + 9x
)
y2
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
6x2y5 + 12y3x3 dx

(3)φ = y3x3(2y2 + 3x
)
+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3y2x3(2y2 + 3x

)
+ 4y4x3 + f ′(y)

= x3(10y2 + 9x
)
y2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x3(10y2 + 9x) y2. Therefore equation (4) becomes

(5)x3(10y2 + 9x
)
y2 = x3(10y2 + 9x

)
y2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y3x3(2y2 + 3x
)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y3x3(2y2 + 3x
)

Summary
The solution(s) found are the following

(1)y3x3(2y2 + 3x
)
= c1
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Figure 464: Slope field plot

Verification of solutions

y3x3(2y2 + 3x
)
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 35� �
dsolve((12*x*y(x)+6*y(x)^3)+(9*x^2+10*x*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

ln (x)− c1 +
6 ln

(
y(x)√

x

)
11 +

2 ln
(

2y(x)2+3x
x

)
11 = 0

3 Solution by Mathematica
Time used: 8.107 (sec). Leaf size: 151� �
DSolve[(12*x*y[x]+6*y[x]^3)+(9*x^2+10*x*y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → Root
[
2#15x3 + 3#13x4 − c1&, 1

]
y(x) → Root

[
2#15x3 + 3#13x4 − c1&, 2

]
y(x) → Root

[
2#15x3 + 3#13x4 − c1&, 3

]
y(x) → Root

[
2#15x3 + 3#13x4 − c1&, 4

]
y(x) → Root

[
2#15x3 + 3#13x4 − c1&, 5

]
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7.26 problem 27
7.26.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 2352
7.26.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 2356
7.26.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2360
7.26.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2365

Internal problem ID [1086]
Internal file name [OUTPUT/1087_Sunday_June_05_2022_02_02_20_AM_48374869/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 2, First order equations. Exact equations. Integrating factors. Section 2.6
Page 91
Problem number: 27.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exactWith-
IntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

3x2y2 + 2y + 2y′x = 0

7.26.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y(3y x2 + 2)
2x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 348: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x y2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x y2
dy

Which results in

S = − 1
yx

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(3y x2 + 2)
2x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
x2y

Sy =
1

x y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −3

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −3

2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −3R
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− 1
yx

= −3x
2 + c1

Which simplifies to

− 1
yx

= −3x
2 + c1

Which gives

y = − 2
x (−3x+ 2c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
3y x2+2

)
2x

dS
dR

= −3
2

R = x

S = − 1
yx
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Summary
The solution(s) found are the following

(1)y = − 2
x (−3x+ 2c1)

Figure 465: Slope field plot

Verification of solutions

y = − 2
x (−3x+ 2c1)

Verified OK.

7.26.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y(3y x2 + 2)
2x

This is a Bernoulli ODE.
y′ = −1

x
y − 3x

2 y2 (1)
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The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
x

f1(x) = −3x
2

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= − 1
yx

− 3x
2 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = −w(x)
x

− 3x
2

w′ = w

x
+ 3x

2 (7)

The above now is a linear ODE in w(x) which is now solved.

2357



Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −1
x

q(x) = 3x
2

Hence the ode is

w′(x)− w(x)
x

= 3x
2

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µw) = (µ)

(
3x
2

)
d
dx

(w
x

)
=
(
1
x

)(
3x
2

)
d
(w
x

)
= 3

2 dx

Integrating gives

w

x
=
∫ 3

2 dx

w

x
= 3x

2 + c1

Dividing both sides by the integrating factor µ = 1
x
results in

w(x) = 3
2x

2 + c1x

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= 3

2x
2 + c1x
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Or

y = 1
3
2x

2 + c1x

Which is simplified to
y = 2

x (3x+ 2c1)
Summary
The solution(s) found are the following

(1)y = 2
x (3x+ 2c1)

Figure 466: Slope field plot

Verification of solutions

y = 2
x (3x+ 2c1)

Verified OK.
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7.26.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2x) dy =
(
−3x2y2 − 2y

)
dx(

3x2y2 + 2y
)
dx+(2x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3x2y2 + 2y
N(x, y) = 2x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
3x2y2 + 2y

)
= 6y x2 + 2

And

∂N

∂x
= ∂

∂x
(2x)

= 2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2x
((
6y x2 + 2

)
− (2)

)
= 3yx

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

3x2y2 + 2y
(
(2)−

(
6y x2 + 2

))
= − 6x2

3y x2 + 2

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN
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R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (2)− (6y x2 + 2)
x (3x2y2 + 2y)− y (2x)

= − 2
yx

Replacing all powers of terms xy by t gives

R = −2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t

)
dt

The result of integrating gives

µ = e−2 ln(t)

= 1
t2

Now t is replaced back with xy giving

µ = 1
x2y2

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
x2y2

(
3x2y2 + 2y

)
= 3y x2 + 2

x2y

And

N = µN

= 1
x2y2

(2x)

= 2
x y2
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A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

3y x2 + 2
x2y

)
+
(

2
x y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 3y x2 + 2
x2y

dx

(3)φ = 3y x2 − 2
yx

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3x

y
− 3y x2 − 2

y2x
+ f ′(y)

= 2
x y2

+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2
x y2

. Therefore equation (4) becomes

(5)2
x y2

= 2
x y2

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 3y x2 − 2
yx

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
3y x2 − 2

yx

The solution becomes

y = − 2
(−3x+ c1)x

Summary
The solution(s) found are the following

(1)y = − 2
(−3x+ c1)x

Figure 467: Slope field plot
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Verification of solutions

y = − 2
(−3x+ c1)x

Verified OK.

7.26.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −y(3y x2 + 2)
2x

This is a Riccati ODE. Comparing the ODE to solve

y′ = −3x y2
2 − y

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = − 1
x
and f2(x) = −3x

2 . Let

y = −u′

f2u

= −u′

−3xu
2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = −3

2
f1f2 =

3
2

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

−3xu′′(x)
2 = 0

2365



Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1x+ c2

The above shows that
u′(x) = c1

Using the above in (1) gives the solution

y = 2c1
3x (c1x+ c2)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = 2c3
3x (c3x+ 1)

Summary
The solution(s) found are the following

(1)y = 2c3
3x (c3x+ 1)
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Figure 468: Slope field plot

Verification of solutions

y = 2c3
3x (c3x+ 1)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 18� �
dsolve((3*x^2*y(x)^2+2*y(x))+(2*x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 2
(3x+ 2c1)x

3 Solution by Mathematica
Time used: 0.146 (sec). Leaf size: 25� �
DSolve[(3*x^2*y[x]^2+2*y[x])+(2*x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2
3x2 + 2c1x

y(x) → 0
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8.1 problem 1
8.1.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 2370
8.1.2 Solving as second order linear constant coeff ode . . . . . . . . 2371
8.1.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2373
8.1.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2377

Internal problem ID [1087]
Internal file name [OUTPUT/1088_Sunday_June_05_2022_02_02_22_AM_25907932/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.1 Homogeneous linear equations.
Page 203
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ − 7y′ + 10y = 0

With initial conditions

[y(0) = −1, y′(0) = 1]

8.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −7
q(x) = 10

F = 0
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Hence the ode is

y′′ − 7y′ + 10y = 0

The domain of p(x) = −7 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 10 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

8.1.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = −7, C = 10. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 7λ eλx + 10 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 7λ+ 10 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −7, C = 10 into the above gives

λ1,2 =
7

(2) (1) ±
1

(2) (1)
√
−72 − (4) (1) (10)

= 7
2 ± 3

2
Hence

λ1 =
7
2 + 3

2

λ2 =
7
2 − 3

2
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Which simplifies to
λ1 = 5
λ2 = 2

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(5)x + c2e

(2)x

Or
y = c1e5x + c2e2x

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e5x + c2e2x (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −1 and
x = 0 in the above gives

−1 = c1 + c2 (1A)

Taking derivative of the solution gives

y′ = 5c1e5x + 2c2e2x

substituting y′ = 1 and x = 0 in the above gives

1 = 5c1 + 2c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 1
c2 = −2

Substituting these values back in above solution results in

y = e5x − 2 e2x
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Summary
The solution(s) found are the following

(1)y = e5x − 2 e2x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = e5x − 2 e2x

Verified OK.

8.1.3 Solving using Kovacic algorithm

Writing the ode as

y′′ − 7y′ + 10y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −7 (3)
C = 10

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 9
4 (6)

Comparing the above to (5) shows that

s = 9
t = 4

Therefore eq. (4) becomes

z′′(x) = 9z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 350: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 9
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e− 3x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−7
1 dx

= z1e
7x
2

= z1
(
e 7x

2

)
Which simplifies to

y1 = e2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−7

1 dx

(y1)2
dx

= y1

∫
e7x

(y1)2
dx

= y1

(
e3x
3

)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
e2x
)
+ c2

(
e2x
(
e3x
3

))

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e2x +
c2e5x
3 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −1 and
x = 0 in the above gives

−1 = c1 +
c2
3 (1A)

Taking derivative of the solution gives

y′ = 2c1e2x +
5c2e5x

3

substituting y′ = 1 and x = 0 in the above gives

1 = 2c1 +
5c2
3 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −2
c2 = 3

Substituting these values back in above solution results in

y = e5x − 2 e2x

Summary
The solution(s) found are the following

(1)y = e5x − 2 e2x
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = e5x − 2 e2x

Verified OK.

8.1.4 Maple step by step solution

Let’s solve[
y′′ − 7y′ + 10y = 0, y(0) = −1, y′

∣∣∣{x=0}
= 1
]

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of ODE
r2 − 7r + 10 = 0

• Factor the characteristic polynomial
(r − 2) (r − 5) = 0

• Roots of the characteristic polynomial
r = (2, 5)

• 1st solution of the ODE
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y1(x) = e2x

• 2nd solution of the ODE
y2(x) = e5x

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = c1e2x + c2e5x

� Check validity of solution y = c1e2x + c2e5x

◦ Use initial condition y(0) = −1
−1 = c1 + c2

◦ Compute derivative of the solution
y′ = 2c1e2x + 5c2e5x

◦ Use the initial condition y′
∣∣∣{x=0}

= 1

1 = 2c1 + 5c2
◦ Solve for c1 and c2

{c1 = −2, c2 = 1}
◦ Substitute constant values into general solution and simplify

y = e5x − 2 e2x

• Solution to the IVP
y = e5x − 2 e2x

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �

2378



3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 15� �
dsolve([diff(y(x),x$2)-7*diff(y(x),x)+10*y(x)=0,y(0) = -1, D(y)(0) = 1],y(x), singsol=all)� �

y(x) = e5x − 2 e2x

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 18� �
DSolve[{y''[x]-7*y'[x]+10*y[x]==0,{y[0]==-1,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e2x
(
e3x − 2

)
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8.2 problem 2c
8.2.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 2380
8.2.2 Solving as second order linear constant coeff ode . . . . . . . . 2381
8.2.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2383
8.2.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2387

Internal problem ID [1088]
Internal file name [OUTPUT/1089_Sunday_June_05_2022_02_02_23_AM_99410860/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.1 Homogeneous linear equations.
Page 203
Problem number: 2c.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ − 2y′ + 2y = 0

With initial conditions

[y(0) = 3, y′(0) = −2]

8.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −2
q(x) = 2

F = 0
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Hence the ode is

y′′ − 2y′ + 2y = 0

The domain of p(x) = −2 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 2 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

8.2.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = −2, C = 2. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 2λ eλx + 2 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 2λ+ 2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −2, C = 2 into the above gives

λ1,2 =
2

(2) (1) ±
1

(2) (1)
√
−22 − (4) (1) (2)

= 1± i

Hence

λ1 = 1 + i

λ2 = 1− i
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Which simplifies to
λ1 = 1 + i

λ2 = 1− i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 1 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = ex(c1 cos (x) + c2 sin (x))

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = ex(c1 cos (x) + c2 sin (x)) (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 3 and x = 0
in the above gives

3 = c1 (1A)

Taking derivative of the solution gives

y′ = ex(c1 cos (x) + c2 sin (x)) + ex(− sin (x) c1 + c2 cos (x))

substituting y′ = −2 and x = 0 in the above gives

−2 = c1 + c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 3
c2 = −5

Substituting these values back in above solution results in

y = ex(3 cos (x)− 5 sin (x))
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Summary
The solution(s) found are the following

(1)y = ex(3 cos (x)− 5 sin (x))

(a) Solution plot (b) Slope field plot

Verification of solutions

y = ex(3 cos (x)− 5 sin (x))

Verified OK.

8.2.3 Solving using Kovacic algorithm

Writing the ode as

y′′ − 2y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 352: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2
1 dx

= z1e
x

= z1(ex)

Which simplifies to
y1 = cos (x) ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2

1 dx

(y1)2
dx

= y1

∫
e2x

(y1)2
dx

= y1(tan (x))
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Therefore the solution is

y = c1y1 + c2y2

= c1(cos (x) ex) + c2(cos (x) ex(tan (x)))

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1 cos (x) ex + c2 sin (x) ex (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 3 and x = 0
in the above gives

3 = c1 (1A)

Taking derivative of the solution gives

y′ = −c1 sin (x) ex + c1 cos (x) ex + c2 cos (x) ex + c2 sin (x) ex

substituting y′ = −2 and x = 0 in the above gives

−2 = c1 + c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 3
c2 = −5

Substituting these values back in above solution results in

y = 3 cos (x) ex − 5 sin (x) ex

Which simplifies to
y = ex(3 cos (x)− 5 sin (x))

Summary
The solution(s) found are the following

(1)y = ex(3 cos (x)− 5 sin (x))
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = ex(3 cos (x)− 5 sin (x))

Verified OK.

8.2.4 Maple step by step solution

Let’s solve[
y′′ − 2y′ + 2y = 0, y(0) = 3, y′

∣∣∣{x=0}
= −2

]
• Highest derivative means the order of the ODE is 2

y′′

• Characteristic polynomial of ODE
r2 − 2r + 2 = 0

• Use quadratic formula to solve for r

r = 2±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (1− I, 1 + I)

• 1st solution of the ODE
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y1(x) = cos (x) ex

• 2nd solution of the ODE
y2(x) = sin (x) ex

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = c1 cos (x) ex + c2 sin (x) ex

� Check validity of solution y = c1 cos (x) ex + c2 sin (x) ex

◦ Use initial condition y(0) = 3
3 = c1

◦ Compute derivative of the solution
y′ = −c1 sin (x) ex + c1 cos (x) ex + c2 cos (x) ex + c2 sin (x) ex

◦ Use the initial condition y′
∣∣∣{x=0}

= −2

−2 = c1 + c2

◦ Solve for c1 and c2

{c1 = 3, c2 = −5}
◦ Substitute constant values into general solution and simplify

y = ex(3 cos (x)− 5 sin (x))
• Solution to the IVP

y = ex(3 cos (x)− 5 sin (x))

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 16� �
dsolve([diff(y(x),x$2)-2*diff(y(x),x)+2*y(x)=0,y(0) = 3, D(y)(0) = -2],y(x), singsol=all)� �

y(x) = ex(−5 sin (x) + 3 cos (x))

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 18� �
DSolve[{y''[x]-2*y'[x]+2*y[x]==0,{y[0]==3,y'[0]==-2}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(3 cos(x)− 5 sin(x))
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8.3 problem 2d
8.3.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 2390
8.3.2 Solving as second order linear constant coeff ode . . . . . . . . 2391
8.3.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2393
8.3.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2396

Internal problem ID [1089]
Internal file name [OUTPUT/1090_Sunday_June_05_2022_02_02_24_AM_12318990/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.1 Homogeneous linear equations.
Page 203
Problem number: 2d.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ − 2y′ + 2y = 0

With initial conditions

[y(0) = k0, y
′(0) = k1]

8.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −2
q(x) = 2

F = 0
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Hence the ode is

y′′ − 2y′ + 2y = 0

The domain of p(x) = −2 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 2 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

8.3.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = −2, C = 2. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 2λ eλx + 2 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 2λ+ 2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −2, C = 2 into the above gives

λ1,2 =
2

(2) (1) ±
1

(2) (1)
√
−22 − (4) (1) (2)

= 1± i

Hence

λ1 = 1 + i

λ2 = 1− i
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Which simplifies to
λ1 = 1 + i

λ2 = 1− i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 1 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = ex(c1 cos (x) + c2 sin (x))

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = ex(c1 cos (x) + c2 sin (x)) (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = k0 and x = 0
in the above gives

k0 = c1 (1A)

Taking derivative of the solution gives

y′ = ex(c1 cos (x) + c2 sin (x)) + ex(− sin (x) c1 + c2 cos (x))

substituting y′ = k1 and x = 0 in the above gives

k1 = c1 + c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = k0

c2 = k1 − k0

Substituting these values back in above solution results in

y = ex(k0 cos (x)− sin (x) k0 + sin (x) k1)
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Which simplifies to
y = ((k1 − k0) sin (x) + k0 cos (x)) ex

Summary
The solution(s) found are the following

(1)y = ((k1 − k0) sin (x) + k0 cos (x)) ex

Verification of solutions

y = ((k1 − k0) sin (x) + k0 cos (x)) ex

Verified OK.

8.3.3 Solving using Kovacic algorithm

Writing the ode as

y′′ − 2y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)
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Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 354: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]
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Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2
1 dx

= z1e
x

= z1(ex)

Which simplifies to
y1 = cos (x) ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2

1 dx

(y1)2
dx

= y1

∫
e2x

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(cos (x) ex) + c2(cos (x) ex(tan (x)))

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1 cos (x) ex + c2 sin (x) ex (1)
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Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = k0 and x = 0
in the above gives

k0 = c1 (1A)

Taking derivative of the solution gives

y′ = −c1 sin (x) ex + c1 cos (x) ex + c2 cos (x) ex + c2 sin (x) ex

substituting y′ = k1 and x = 0 in the above gives

k1 = c1 + c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = k0

c2 = k1 − k0

Substituting these values back in above solution results in

y = k0 cos (x) ex − sin (x) exk0 + sin (x) exk1

Which simplifies to
y = ((k1 − k0) sin (x) + k0 cos (x)) ex

Summary
The solution(s) found are the following

(1)y = ((k1 − k0) sin (x) + k0 cos (x)) ex

Verification of solutions

y = ((k1 − k0) sin (x) + k0 cos (x)) ex

Verified OK.

8.3.4 Maple step by step solution

Let’s solve[
y′′ − 2y′ + 2y = 0, y(0) = k0, y

′∣∣∣{x=0}
= k1

]
• Highest derivative means the order of the ODE is 2
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y′′

• Characteristic polynomial of ODE
r2 − 2r + 2 = 0

• Use quadratic formula to solve for r

r = 2±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (1− I, 1 + I)

• 1st solution of the ODE
y1(x) = cos (x) ex

• 2nd solution of the ODE
y2(x) = sin (x) ex

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = c1 cos (x) ex + c2 sin (x) ex

� Check validity of solution y = c1 cos (x) ex + c2 sin (x) ex

◦ Use initial condition y(0) = k0

k0 = c1

◦ Compute derivative of the solution
y′ = −c1 sin (x) ex + c1 cos (x) ex + c2 cos (x) ex + c2 sin (x) ex

◦ Use the initial condition y′
∣∣∣{x=0}

= k1

k1 = c1 + c2

◦ Solve for c1 and c2

{c1 = k0, c2 = k1 − k0}

◦ Substitute constant values into general solution and simplify
y = ((k1 − k0) sin (x) + k0 cos (x)) ex

• Solution to the IVP
y = ((k1 − k0) sin (x) + k0 cos (x)) ex
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 21� �
dsolve([diff(y(x),x$2)-2*diff(y(x),x)+2*y(x)=0,y(0) = k__0, D(y)(0) = k__1],y(x), singsol=all)� �

y(x) = ex((k1 − k0) sin (x) + k0 cos (x))

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 22� �
DSolve[{y''[x]-2*y'[x]+2*y[x]==0,{y[0]==k0,y'[0]==k1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex((k1− k0) sin(x) + k0 cos(x))

2398



8.4 problem 3c
8.4.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 2400
8.4.2 Solving as second order linear constant coeff ode . . . . . . . . 2400
8.4.3 Solving as linear second order ode solved by an integrating factor

ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2402
8.4.4 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2404
8.4.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2408

Internal problem ID [1090]
Internal file name [OUTPUT/1091_Sunday_June_05_2022_02_02_25_AM_83459772/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.1 Homogeneous linear equations.
Page 203
Problem number: 3c.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "linear_second_order_ode_solved_by_an_integrat-
ing_factor"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ − 2y′ + y = 0

With initial conditions

[y(0) = 7, y′(0) = 4]
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8.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −2
q(x) = 1

F = 0

Hence the ode is

y′′ − 2y′ + y = 0

The domain of p(x) = −2 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 1 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

8.4.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = −2, C = 1. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 2λ eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 2λ+ 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC
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Substituting A = 1, B = −2, C = 1 into the above gives

λ1,2 =
2

(2) (1) ±
1

(2) (1)

√
(−2)2 − (4) (1) (1)

= 1

Hence this is the case of a double root λ1,2 = −1. Therefore the solution is

y = c1ex + c2x ex (1)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1ex + c2x ex (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 7 and x = 0
in the above gives

7 = c1 (1A)

Taking derivative of the solution gives

y′ = c1ex + c2ex + c2x ex

substituting y′ = 4 and x = 0 in the above gives

4 = c1 + c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 7
c2 = −3

Substituting these values back in above solution results in

y = −3x ex + 7 ex

Which simplifies to
y = ex(7− 3x)

Summary
The solution(s) found are the following

(1)y = ex(7− 3x)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = ex(7− 3x)

Verified OK.

8.4.3 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = −2. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
−2 dx

= e−x

Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = 0(
e−xy

) ′′ = 0
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Integrating once gives (
e−xy

)′ = c1

Integrating again gives (
e−xy

)
= c1x+ c2

Hence the solution is

y = c1x+ c2
e−x

Or
y = c1x ex + c2ex

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1x ex + c2ex (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 7 and x = 0
in the above gives

7 = c2 (1A)

Taking derivative of the solution gives

y′ = c1ex + c1x ex + c2ex

substituting y′ = 4 and x = 0 in the above gives

4 = c1 + c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −3
c2 = 7

Substituting these values back in above solution results in

y = −3x ex + 7 ex

Which simplifies to
y = ex(7− 3x)
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Summary
The solution(s) found are the following

(1)y = ex(7− 3x)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = ex(7− 3x)

Verified OK.

8.4.4 Solving using Kovacic algorithm

Writing the ode as

y′′ − 2y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 356: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2
1 dx

= z1e
x

= z1(ex)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2

1 dx

(y1)2
dx

= y1

∫
e2x

(y1)2
dx

= y1(x)
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Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2(ex(x))

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1ex + c2x ex (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 7 and x = 0
in the above gives

7 = c1 (1A)

Taking derivative of the solution gives

y′ = c1ex + c2ex + c2x ex

substituting y′ = 4 and x = 0 in the above gives

4 = c1 + c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 7
c2 = −3

Substituting these values back in above solution results in

y = −3x ex + 7 ex

Which simplifies to
y = ex(7− 3x)

Summary
The solution(s) found are the following

(1)y = ex(7− 3x)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = ex(7− 3x)

Verified OK.

8.4.5 Maple step by step solution

Let’s solve[
y′′ − 2y′ + y = 0, y(0) = 7, y′

∣∣∣{x=0}
= 4
]

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of ODE
r2 − 2r + 1 = 0

• Factor the characteristic polynomial
(r − 1)2 = 0

• Root of the characteristic polynomial
r = 1

• 1st solution of the ODE
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y1(x) = ex

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x ex

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = c1ex + c2x ex

� Check validity of solution y = c1ex + c2xex

◦ Use initial condition y(0) = 7
7 = c1

◦ Compute derivative of the solution
y′ = c1ex + c2ex + c2x ex

◦ Use the initial condition y′
∣∣∣{x=0}

= 4

4 = c1 + c2

◦ Solve for c1 and c2

{c1 = 7, c2 = −3}
◦ Substitute constant values into general solution and simplify

y = ex(7− 3x)
• Solution to the IVP

y = ex(7− 3x)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 12� �
dsolve([diff(y(x),x$2)-2*diff(y(x),x)+y(x)=0,y(0) = 7, D(y)(0) = 4],y(x), singsol=all)� �

y(x) = ex(7− 3x)

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 14� �
DSolve[{y''[x]-2*y'[x]+y[x]==0,{y[0]==7,y'[0]==4}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(7− 3x)
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Internal problem ID [1091]
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Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.1 Homogeneous linear equations.
Page 203
Problem number: 3d.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "linear_second_order_ode_solved_by_an_integrat-
ing_factor"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ − 2y′ + y = 0

With initial conditions

[y(0) = k0, y
′(0) = k1]
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8.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −2
q(x) = 1

F = 0

Hence the ode is

y′′ − 2y′ + y = 0

The domain of p(x) = −2 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 1 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

8.5.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = −2, C = 1. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 2λ eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 2λ+ 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC
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Substituting A = 1, B = −2, C = 1 into the above gives

λ1,2 =
2

(2) (1) ±
1

(2) (1)

√
(−2)2 − (4) (1) (1)

= 1

Hence this is the case of a double root λ1,2 = −1. Therefore the solution is

y = c1ex + c2x ex (1)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1ex + c2x ex (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = k0 and x = 0
in the above gives

k0 = c1 (1A)

Taking derivative of the solution gives

y′ = c1ex + c2ex + c2x ex

substituting y′ = k1 and x = 0 in the above gives

k1 = c1 + c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = k0

c2 = k1 − k0

Substituting these values back in above solution results in

y = −x exk0 + x exk1 + k0ex

Which simplifies to
y = ex(−k0x+ k1x+ k0)

Summary
The solution(s) found are the following

(1)y = ex(−k0x+ k1x+ k0)
Verification of solutions

y = ex(−k0x+ k1x+ k0)

Verified OK.
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8.5.3 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = −2. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
−2 dx

= e−x

Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = 0(
e−xy

) ′′ = 0

Integrating once gives (
e−xy

)′ = c1

Integrating again gives (
e−xy

)
= c1x+ c2

Hence the solution is

y = c1x+ c2
e−x

Or
y = c1x ex + c2ex

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1x ex + c2ex (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = k0 and x = 0
in the above gives

k0 = c2 (1A)
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Taking derivative of the solution gives

y′ = c1ex + c1x ex + c2ex

substituting y′ = k1 and x = 0 in the above gives

k1 = c1 + c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = k1 − k0

c2 = k0

Substituting these values back in above solution results in

y = −x exk0 + x exk1 + k0ex

Which simplifies to
y = ex(−k0x+ k1x+ k0)

Summary
The solution(s) found are the following

(1)y = ex(−k0x+ k1x+ k0)
Verification of solutions

y = ex(−k0x+ k1x+ k0)

Verified OK.

8.5.4 Solving using Kovacic algorithm

Writing the ode as

y′′ − 2y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2 (3)
C = 1
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Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 358: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2
1 dx

= z1e
x

= z1(ex)
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Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2

1 dx

(y1)2
dx

= y1

∫
e2x

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2(ex(x))

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1ex + c2x ex (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = k0 and x = 0
in the above gives

k0 = c1 (1A)

Taking derivative of the solution gives

y′ = c1ex + c2ex + c2x ex

substituting y′ = k1 and x = 0 in the above gives

k1 = c1 + c2 (2A)
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Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = k0

c2 = k1 − k0

Substituting these values back in above solution results in

y = −x exk0 + x exk1 + k0ex

Which simplifies to
y = ex(−k0x+ k1x+ k0)

Summary
The solution(s) found are the following

(1)y = ex(−k0x+ k1x+ k0)
Verification of solutions

y = ex(−k0x+ k1x+ k0)

Verified OK.

8.5.5 Maple step by step solution

Let’s solve[
y′′ − 2y′ + y = 0, y(0) = k0, y

′∣∣∣{x=0}
= k1

]
• Highest derivative means the order of the ODE is 2

y′′

• Characteristic polynomial of ODE
r2 − 2r + 1 = 0

• Factor the characteristic polynomial
(r − 1)2 = 0

• Root of the characteristic polynomial
r = 1

• 1st solution of the ODE
y1(x) = ex
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• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x ex

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = c1ex + c2x ex

� Check validity of solution y = c1ex + c2xex

◦ Use initial condition y(0) = k0

k0 = c1

◦ Compute derivative of the solution
y′ = c1ex + c2ex + c2x ex

◦ Use the initial condition y′
∣∣∣{x=0}

= k1

k1 = c1 + c2

◦ Solve for c1 and c2

{c1 = k0, c2 = k1 − k0}

◦ Substitute constant values into general solution and simplify
y = ex(−k0x+ k1x+ k0)

• Solution to the IVP
y = ex(−k0x+ k1x+ k0)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 16� �
dsolve([diff(y(x),x$2)-2*diff(y(x),x)+y(x)=0,y(0) = k__0, D(y)(0) = k__1],y(x), singsol=all)� �

y(x) = −ex((x− 1) k0 − xk1)

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 18� �
DSolve[{y''[x]-2*y'[x]+y[x]==0,{y[0]==k0,y'[0]==k1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(k0(−x) + k0+ k1x)
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Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
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Page 203
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_change_of_vari-
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Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(
x2 − 1

)
y′′ + 4y′x+ 2y = 0

With initial conditions

[y(0) = −5, y′(0) = 1]
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8.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 4x
x2 − 1

q(x) = 2
x2 − 1

F = 0

Hence the ode is

y′′ + 4xy′
x2 − 1 + 2y

x2 − 1 = 0

The domain of p(x) = 4x
x2−1 is

{−∞ ≤ x < −1,−1 < x < 1, 1 < x ≤ ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 2
x2−1 is

{−∞ ≤ x < −1,−1 < x < 1, 1 < x ≤ ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

8.6.2 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = 4x
x2−1 . Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫ 4x

x2−1 dx

= x2 − 1
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Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = 0((
x2 − 1

)
y
) ′′ = 0

Integrating once gives ((
x2 − 1

)
y
)′ = c1

Integrating again gives ((
x2 − 1

)
y
)
= c1x+ c2

Hence the solution is

y = c1x+ c2
x2 − 1

Or
y = c1x

x2 − 1 + c2
x2 − 1

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1x

x2 − 1 + c2
x2 − 1 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −5 and
x = 0 in the above gives

−5 = −c2 (1A)

Taking derivative of the solution gives

y′ = − 2c1x2

(x2 − 1)2
+ c1

x2 − 1 − 2c2x
(x2 − 1)2

substituting y′ = 1 and x = 0 in the above gives

1 = −c1 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −1
c2 = 5
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Substituting these values back in above solution results in

y = − x− 5
x2 − 1

Summary
The solution(s) found are the following

(1)y = − x− 5
x2 − 1

Figure 476: Solution plot

Verification of solutions

y = − x− 5
x2 − 1

Verified OK.

8.6.3 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 4x
x2 − 1

q(x) = 2
x2 − 1
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Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= 2
x2 − 1 −

( 4x
x2−1

)′
2 −

( 4x
x2−1

)2
4

= 2
x2 − 1 −

(
4

x2−1 −
8x2

(x2−1)2

)
2 −

(
16x2

(x2−1)2

)
4

= 2
x2 − 1 −

(
2

x2 − 1 − 4x2

(x2 − 1)2
)
− 4x2

(x2 − 1)2

= 0

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ 4x

x2−1
2

= 1
x2 − 1 (5)

Hence (3) becomes

y = v(x)
x2 − 1 (4)

Applying this change of variable to the original ode results in

v′′(x) = 0

Which is now solved for v(x) Integrating twice gives the solution

v(x) = c1x+ c2

Now that v(x) is known, then

y = v(x) z(x)
= (c1x+ c2) (z(x)) (7)
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But from (5)

z(x) = 1
x2 − 1

Hence (7) becomes

y = c1x+ c2
x2 − 1

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1x+ c2
x2 − 1 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −5 and
x = 0 in the above gives

−5 = −c2 (1A)

Taking derivative of the solution gives

y′ = c1
x2 − 1 − 2(c1x+ c2)x

(x2 − 1)2

substituting y′ = 1 and x = 0 in the above gives

1 = −c1 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −1
c2 = 5

Substituting these values back in above solution results in

y = − x− 5
x2 − 1

Summary
The solution(s) found are the following

(1)y = − x− 5
x2 − 1
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Figure 477: Solution plot

Verification of solutions

y = − x− 5
x2 − 1

Verified OK.

8.6.4 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫ ((
x2 − 1

)
y′′ + 4y′x+ 2y

)
dx = 0

2yx+
(
x2 − 1

)
y′ = c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2x
x2 − 1

q(x) = c1
x2 − 1
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Hence the ode is

y′ + 2xy
x2 − 1 = c1

x2 − 1
The integrating factor µ is

µ = e
∫ 2x

x2−1dx

= eln(x−1)+ln(x+1)

Which simplifies to
µ = x2 − 1

The ode becomes
d
dx(µy) = (µ)

(
c1

x2 − 1

)
d
dx
((
x2 − 1

)
y
)
=
(
x2 − 1

)( c1
x2 − 1

)
d
((
x2 − 1

)
y
)
= c1 dx

Integrating gives (
x2 − 1

)
y =

∫
c1 dx(

x2 − 1
)
y = c1x+ c2

Dividing both sides by the integrating factor µ = x2 − 1 results in

y = c1x

x2 − 1 + c2
x2 − 1

which simplifies to

y = c1x+ c2
x2 − 1

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1x+ c2
x2 − 1 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −5 and
x = 0 in the above gives

−5 = −c2 (1A)
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Taking derivative of the solution gives

y′ = c1
x2 − 1 − 2(c1x+ c2)x

(x2 − 1)2

substituting y′ = 1 and x = 0 in the above gives

1 = −c1 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −1
c2 = 5

Substituting these values back in above solution results in

y = − x− 5
x2 − 1

Summary
The solution(s) found are the following

(1)y = − x− 5
x2 − 1

Figure 478: Solution plot

Verification of solutions

y = − x− 5
x2 − 1

Verified OK.
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8.6.5 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as (
x2 − 1

)
y′′ + 4y′x+ 2y = 0

Integrating both sides of the ODE w.r.t x gives∫ ((
x2 − 1

)
y′′ + 4y′x+ 2y

)
dx = 0

2yx+
(
x2 − 1

)
y′ = c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2x
x2 − 1

q(x) = c1
x2 − 1

Hence the ode is

y′ + 2xy
x2 − 1 = c1

x2 − 1
The integrating factor µ is

µ = e
∫ 2x

x2−1dx

= eln(x−1)+ln(x+1)

Which simplifies to
µ = x2 − 1

The ode becomes

d
dx(µy) = (µ)

(
c1

x2 − 1

)
d
dx
((
x2 − 1

)
y
)
=
(
x2 − 1

)( c1
x2 − 1

)
d
((
x2 − 1

)
y
)
= c1 dx
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Integrating gives (
x2 − 1

)
y =

∫
c1 dx(

x2 − 1
)
y = c1x+ c2

Dividing both sides by the integrating factor µ = x2 − 1 results in

y = c1x

x2 − 1 + c2
x2 − 1

which simplifies to

y = c1x+ c2
x2 − 1

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1x+ c2
x2 − 1 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −5 and
x = 0 in the above gives

−5 = −c2 (1A)

Taking derivative of the solution gives

y′ = c1
x2 − 1 − 2(c1x+ c2)x

(x2 − 1)2

substituting y′ = 1 and x = 0 in the above gives

1 = −c1 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −1
c2 = 5

Substituting these values back in above solution results in

y = − x− 5
x2 − 1
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Summary
The solution(s) found are the following

(1)y = − x− 5
x2 − 1

Figure 479: Solution plot

Verification of solutions

y = − x− 5
x2 − 1

Verified OK.

8.6.6 Solving using Kovacic algorithm

Writing the ode as (
x2 − 1

)
y′′ + 4y′x+ 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 1
B = 4x (3)
C = 2
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Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 360: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x

x2−1 dx

= z1e
− ln(x−1)−ln(x+1)

= z1

(
1

x2 − 1

)
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Which simplifies to

y1 =
1

x2 − 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 4x

x2−1 dx

(y1)2
dx

= y1

∫
e−2 ln(x−1)−2 ln(x+1)

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1

x2 − 1

)
+ c2

(
1

x2 − 1(x)
)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1
x2 − 1 + c2x

x2 − 1 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −5 and
x = 0 in the above gives

−5 = −c1 (1A)

Taking derivative of the solution gives

y′ = − 2c1x
(x2 − 1)2

+ c2
x2 − 1 − 2c2x2

(x2 − 1)2
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substituting y′ = 1 and x = 0 in the above gives

1 = −c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 5
c2 = −1

Substituting these values back in above solution results in

y = − x− 5
x2 − 1

Summary
The solution(s) found are the following

(1)y = − x− 5
x2 − 1

Figure 480: Solution plot

Verification of solutions

y = − x− 5
x2 − 1

Verified OK.
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8.6.7 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = x2 − 1
q(x) = 4x
r(x) = 2
s(x) = 0

Hence

p′′(x) = 2
q′(x) = 4

Therefore (1) becomes

2− (4) + (2) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

2yx+
(
x2 − 1

)
y′ = c1

We now have a first order ode to solve which is

2yx+
(
x2 − 1

)
y′ = c1

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)
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Where here

p(x) = 2x
x2 − 1

q(x) = c1
x2 − 1

Hence the ode is

y′ + 2xy
x2 − 1 = c1

x2 − 1

The integrating factor µ is

µ = e
∫ 2x

x2−1dx

= eln(x−1)+ln(x+1)

Which simplifies to
µ = x2 − 1

The ode becomes

d
dx(µy) = (µ)

(
c1

x2 − 1

)
d
dx
((
x2 − 1

)
y
)
=
(
x2 − 1

)( c1
x2 − 1

)
d
((
x2 − 1

)
y
)
= c1 dx

Integrating gives (
x2 − 1

)
y =

∫
c1 dx(

x2 − 1
)
y = c1x+ c2

Dividing both sides by the integrating factor µ = x2 − 1 results in

y = c1x

x2 − 1 + c2
x2 − 1

which simplifies to

y = c1x+ c2
x2 − 1

Initial conditions are used to solve for the constants of integration.
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Looking at the above solution

y = c1x+ c2
x2 − 1 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −5 and
x = 0 in the above gives

−5 = −c2 (1A)

Taking derivative of the solution gives

y′ = c1
x2 − 1 − 2(c1x+ c2)x

(x2 − 1)2

substituting y′ = 1 and x = 0 in the above gives

1 = −c1 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −1
c2 = 5

Substituting these values back in above solution results in

y = − x− 5
x2 − 1

Summary
The solution(s) found are the following

(1)y = − x− 5
x2 − 1
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Figure 481: Solution plot

Verification of solutions

y = − x− 5
x2 − 1

Verified OK.

8.6.8 Maple step by step solution

Let’s solve[
(x2 − 1) y′′ + 4y′x+ 2y = 0, y(0) = −5, y′

∣∣∣{x=0}
= 1
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − 4xy′

x2−1 −
2y

x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 4xy′

x2−1 +
2y

x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions
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[
P2(x) = 4x

x2−1 , P3(x) = 2
x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
(x2 − 1) y′′ + 4y′x+ 2y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (4u− 4)

(
d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions
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−2a0r(1 + r)u−1+r +
(

∞∑
k=0

(−2ak+1(k + r + 1) (k + r + 2) + ak(k + r + 2) (k + r + 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term in the series must be 0, giving the recursion relation
(k + r + 2) (k + r + 1) (−2ak+1 + ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

2

• Recursion relation for r = −1
ak+1 = ak

2

• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+1 = ak

2

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k−1 , ak+1 = ak
2

]
• Recursion relation for r = 0

ak+1 = ak
2

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

2

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k , ak+1 = ak
2

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x+ 1)k−1
)
+
(

∞∑
k=0

bk(x+ 1)k
)
, a1+k = ak

2 , b1+k = bk
2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 17� �
dsolve([(x^2-1)*diff(y(x),x$2)+4*x*diff(y(x),x)+2*y(x)=0,y(0) = -5, D(y)(0) = 1],y(x), singsol=all)� �

y(x) = −x+ 5
x2 − 1

3 Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 18� �
DSolve[{(x^2-1)*y''[x]+4*x*y'[x]+2*y[x]==0,{y[0]==-5,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 5− x

x2 − 1
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8.7 problem 10
8.7.1 Solving as second order linear constant coeff ode . . . . . . . . 2445
8.7.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2447
8.7.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2451

Internal problem ID [1093]
Internal file name [OUTPUT/1094_Sunday_June_05_2022_02_02_28_AM_99027787/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.1 Homogeneous linear equations.
Page 203
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ − 2y′ − 3y = 0

8.7.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
Where in the above A = 1, B = −2, C = −3. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 2λ eλx − 3 eλx = 0 (1)
Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 2λ− 3 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

2445



Substituting A = 1, B = −2, C = −3 into the above gives

λ1,2 =
2

(2) (1) ±
1

(2) (1)
√

−22 − (4) (1) (−3)

= 1± 2

Hence
λ1 = 1 + 2
λ2 = 1− 2

Which simplifies to
λ1 = 3
λ2 = −1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(3)x + c2e

(−1)x

Or
y = c1e3x + c2e−x

Summary
The solution(s) found are the following

(1)y = c1e3x + c2e−x

2446



Figure 482: Slope field plot

Verification of solutions

y = c1e3x + c2e−x

Verified OK.

8.7.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − 2y′ − 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2 (3)
C = −3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4
1 (6)

Comparing the above to (5) shows that

s = 4
t = 1

Therefore eq. (4) becomes

z′′(x) = 4z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 362: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 4 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−2x

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2
1 dx

= z1e
x

= z1(ex)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2

1 dx

(y1)2
dx

= y1

∫
e2x

(y1)2
dx

= y1

(
e4x
4

)

2449



Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x

(
e4x
4

))

Summary
The solution(s) found are the following

(1)y = c1e−x + c2e3x
4

Figure 483: Slope field plot

Verification of solutions

y = c1e−x + c2e3x
4

Verified OK.
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8.7.3 Maple step by step solution

Let’s solve
y′′ − 2y′ − 3y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of ODE
r2 − 2r − 3 = 0

• Factor the characteristic polynomial
(r + 1) (r − 3) = 0

• Roots of the characteristic polynomial
r = (−1, 3)

• 1st solution of the ODE
y1(x) = e−x

• 2nd solution of the ODE
y2(x) = e3x

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = c1e−x + c2e3x

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(diff(y(x),x$2)-2*diff(y(x),x)-3*y(x)=0,y(x), singsol=all)� �

y(x) = e−xc1 + c2e3x

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 22� �
DSolve[y''[x]-2*y'[x]-3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x
(
c2e

4x + c1
)
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8.8 problem 11
8.8.1 Solving as second order linear constant coeff ode . . . . . . . . 2453
8.8.2 Solving as linear second order ode solved by an integrating factor

ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2455
8.8.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2456
8.8.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2460

Internal problem ID [1094]
Internal file name [OUTPUT/1095_Sunday_June_05_2022_02_02_29_AM_8236561/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.1 Homogeneous linear equations.
Page 203
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "linear_second_order_ode_solved_by_an_integrat-
ing_factor"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ − 6y′ + 9y = 0

8.8.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = −6, C = 9. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 6λ eλx + 9 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 6λ+ 9 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −6, C = 9 into the above gives

λ1,2 =
6

(2) (1) ±
1

(2) (1)

√
(−6)2 − (4) (1) (9)

= 3

Hence this is the case of a double root λ1,2 = −3. Therefore the solution is

y = c1e3x + c2x e3x (1)
Summary
The solution(s) found are the following

(1)y = c1e3x + c2x e3x

Figure 484: Slope field plot

Verification of solutions

y = c1e3x + c2x e3x

Verified OK.
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8.8.2 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = −6. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
−6 dx

= e−3x

Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = 0(
e−3xy

) ′′ = 0

Integrating once gives (
e−3xy

)′ = c1

Integrating again gives (
e−3xy

)
= c1x+ c2

Hence the solution is

y = c1x+ c2
e−3x

Or
y = c1x e3x + c2e3x

Summary
The solution(s) found are the following

(1)y = c1x e3x + c2e3x
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Figure 485: Slope field plot

Verification of solutions

y = c1x e3x + c2e3x

Verified OK.

8.8.3 Solving using Kovacic algorithm

Writing the ode as

y′′ − 6y′ + 9y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −6 (3)
C = 9

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 364: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−6
1 dx

= z1e
3x

= z1
(
e3x
)

Which simplifies to
y1 = e3x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−6

1 dx

(y1)2
dx

= y1

∫
e6x

(y1)2
dx

= y1(x)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
e3x
)
+ c2

(
e3x(x)

)
Summary
The solution(s) found are the following

(1)y = c1e3x + c2x e3x

Figure 486: Slope field plot

Verification of solutions

y = c1e3x + c2x e3x

Verified OK.

2459



8.8.4 Maple step by step solution

Let’s solve
y′′ − 6y′ + 9y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of ODE
r2 − 6r + 9 = 0

• Factor the characteristic polynomial
(r − 3)2 = 0

• Root of the characteristic polynomial
r = 3

• 1st solution of the ODE
y1(x) = e3x

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x e3x

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = c1e3x + c2x e3x

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x$2)-6*diff(y(x),x)+9*y(x)=0,y(x), singsol=all)� �

y(x) = e3x(c2x+ c1)

3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 18� �
DSolve[y''[x]-6*y'[x]+9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e3x(c2x+ c1)
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8.9 problem 12
8.9.1 Solving as second order linear constant coeff ode . . . . . . . . 2462
8.9.2 Solving as linear second order ode solved by an integrating factor

ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2463
8.9.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2464
8.9.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2467

Internal problem ID [1095]
Internal file name [OUTPUT/1096_Sunday_June_05_2022_02_02_30_AM_94023835/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.1 Homogeneous linear equations.
Page 203
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "linear_second_order_ode_solved_by_an_integrat-
ing_factor"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ − 2ay′ + a2y = 0

8.9.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = −2a, C = a2. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 2aλ eλx + a2eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

a2 − 2aλ+ λ2 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −2a, C = a2 into the above gives

λ1,2 =
2a

(2) (1) ±
1

(2) (1)

√
(−2a)2 − (4) (1) (a2)

= a

Hence this is the case of a double root λ1,2 = −a. Therefore the solution is

y = c1eax + c2x eax (1)

Summary
The solution(s) found are the following

(1)y = c1eax + c2x eax

Verification of solutions

y = c1eax + c2x eax

Verified OK.

8.9.2 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = −2a. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
−2a dx

= e−ax

Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = 0(
e−axy

) ′′ = 0
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Integrating once gives (
e−axy

)′ = c1

Integrating again gives (
e−axy

)
= c1x+ c2

Hence the solution is

y = c1x+ c2
e−ax

Or
y = c1x eax + c2eax

Summary
The solution(s) found are the following

(1)y = c1x eax + c2eax

Verification of solutions

y = c1x eax + c2eax

Verified OK.

8.9.3 Solving using Kovacic algorithm

Writing the ode as

y′′ − 2ay′ + a2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2a (3)
C = a2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 366: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2a
1 dx

= z1e
ax

= z1(eax)

Which simplifies to
y1 = eax

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2a

1 dx

(y1)2
dx

= y1

∫
e2ax

(y1)2
dx

= y1(x)
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Therefore the solution is

y = c1y1 + c2y2

= c1(eax) + c2(eax(x))

Summary
The solution(s) found are the following

(1)y = c1eax + c2x eax

Verification of solutions

y = c1eax + c2x eax

Verified OK.

8.9.4 Maple step by step solution

Let’s solve
y′′ − 2ay′ + a2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of ODE
a2 − 2ar + r2 = 0

• Factor the characteristic polynomial
(a− r)2 = 0

• Root of the characteristic polynomial
r = a

• 1st solution of the ODE
y1(x) = eax

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x eax

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
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y = c1eax + c2x eax

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x$2)-2*a*diff(y(x),x)+a^2*y(x)=0,y(x), singsol=all)� �

y(x) = eax(c2x+ c1)

3 Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 18� �
DSolve[y''[x]-2*a*y'[x]+a^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → eax(c2x+ c1)
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Internal problem ID [1096]
Internal file name [OUTPUT/1097_Sunday_June_05_2022_02_02_30_AM_77015905/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.1 Homogeneous linear equations.
Page 203
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_eu-
ler_ode", "exact linear second order ode", "second_order_integrable_as_is",
"second_order_change_of_variable_on_x_method_1", "second_order_change_of_vari-
able_on_x_method_2", "second_order_change_of_variable_on_y_method_2",
"second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

x2y′′ + y′x− y = 0
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8.10.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be y = xr, then y′ = rxr−1 and
y′′ = r(r − 1)xr−2. Substituting these back into the given ODE gives

x2(r(r − 1))xr−2 + xrxr−1 − xr = 0

Simplifying gives
r(r − 1)xr + r xr − xr = 0

Since xr 6= 0 then dividing throughout by xr gives

r(r − 1) + r − 1 = 0

Or
r2 − 1 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = −1
r2 = 1

Since the roots are real and distinct, then the general solution is

y = c1y1 + c2y2

Where y1 = xr1 and y2 = xr2 . Hence

y = c1
x

+ c2x

Summary
The solution(s) found are the following

(1)y = c1
x
+ c2x

Verification of solutions

y = c1
x
+ c2x

Verified OK.
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8.10.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

x2y′′ + y′x− y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 1
x

q(x) = − 1
x2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫ 1

x
dx
)
dx

=
∫

e− ln(x) dx

=
∫ 1

x
dx

= ln (x) (6)
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Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
− 1

x2

1
x2

= −1 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ)− y(τ) = 0

The above ode is now solved for y(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay′′(τ) +By′(τ) + Cy(τ) = 0

Where in the above A = 1, B = 0, C = −1. Let the solution be y(τ) = eλτ . Substituting
this into the ODE gives

λ2eλτ − eλτ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

λ2 − 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−1)

= ±1

Hence
λ1 = +1
λ2 = −1
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Which simplifies to
λ1 = 1
λ2 = −1

Since roots are real and distinct, then the solution is

y(τ) = c1e
λ1τ + c2e

λ2τ

y(τ) = c1e
(1)τ + c2e

(−1)τ

Or
y(τ) = c1eτ + c2e−τ

The above solution is now transformed back to y using (6) which results in

y = c1x
2 + c2
x

Summary
The solution(s) found are the following

(1)y = c1x
2 + c2
x

Verification of solutions

y = c1x
2 + c2
x

Verified OK.

8.10.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

x2y′′ + y′x− y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 1
x

q(x) = − 1
x2

2473



Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
− 1

x2

c
(6)

τ ′′ = 1

c
√
− 1

x2 x3

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=

1
c
√

− 1
x2 x3

+ 1
x

√
− 1

x2

c(√
− 1

x2

c

)2

= 0

Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = c1 cos (cτ) + c2 sin (cτ)
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Now from (6)

τ =
∫ 1

c

√
q dx

=

∫ √
− 1

x2dx

c

=

√
− 1

x2 x ln (x)
c

Substituting the above into the solution obtained gives

y = (ic2 + c1)x2 − ic2 + c1
2x

Summary
The solution(s) found are the following

(1)y = (ic2 + c1)x2 − ic2 + c1
2x

Verification of solutions

y = (ic2 + c1)x2 − ic2 + c1
2x

Verified OK.

8.10.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

x2y′′ + y′x− y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 1
x

q(x) = − 1
x2

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)
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Let the coefficient of v(x) above be zero. Hence
n(n− 1)

x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives
n(n− 1)

x2 + n

x2 − 1
x2 = 0 (5)

Solving (5) for n gives

n = 1 (6)

Substituting this value in (3) gives

v′′(x) + 3v′(x)
x

= 0

v′′(x) + 3v′(x)
x

= 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) + 3u(x)
x

= 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −3u
x

Where f(x) = − 3
x
and g(u) = u. Integrating both sides gives

1
u
du = −3

x
dx∫ 1

u
du =

∫
−3
x
dx

ln (u) = −3 ln (x) + c1

u = e−3 ln(x)+c1

= c1
x3
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Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= − c1
2x2 + c2

Hence

y = v(x)xn

=
(
− c1
2x2 + c2

)
x

=
(
− c1
2x2 + c2

)
x

Summary
The solution(s) found are the following

(1)y =
(
− c1
2x2 + c2

)
x

Verification of solutions

y =
(
− c1
2x2 + c2

)
x

Verified OK.

8.10.5 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫ (
x2y′′ + y′x− y

)
dx = 0

y′x2 − yx = c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = c1
x2
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Hence the ode is

y′ − y

x
= c1

x2

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µy) = (µ)

( c1
x2

)
d
dx

(y
x

)
=
(
1
x

)( c1
x2

)
d
(y
x

)
=
( c1
x3

)
dx

Integrating gives

y

x
=
∫

c1
x3 dx

y

x
= − c1

2x2 + c2

Dividing both sides by the integrating factor µ = 1
x
results in

y = − c1
2x + c2x

Summary
The solution(s) found are the following

(1)y = − c1
2x + c2x

Verification of solutions

y = − c1
2x + c2x

Verified OK.
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8.10.6 Solving as second order ode non constant coeff transformation on
B ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = x2

B = x

C = −1
F = 0

The above shows that for this ode

AB′′ +BB′ + CB =
(
x2) (0) + (x) (1) + (−1) (x)

= 0
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Hence the ode in v given in (1) now simplifies to

x3v′′ +
(
3x2) v′ = 0

Now by applying v′ = u the above becomes

x2(u′(x)x+ 3u(x)) = 0

Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −3u
x

Where f(x) = − 3
x
and g(u) = u. Integrating both sides gives

1
u
du = −3

x
dx∫ 1

u
du =

∫
−3
x
dx

ln (u) = −3 ln (x) + c1

u = e−3 ln(x)+c1

= c1
x3

The ode for v now becomes

v′ = u

= c1
x3

Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1
x3 dx

= − c1
2x2 + c2

Therefore the solution is

y(x) = Bv

= (x)
(
− c1
2x2 + c2

)
=
(
− c1
2x2 + c2

)
x
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Summary
The solution(s) found are the following

(1)y =
(
− c1
2x2 + c2

)
x

Verification of solutions

y =
(
− c1
2x2 + c2

)
x

Verified OK.

8.10.7 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as
x2y′′ + y′x− y = 0

Integrating both sides of the ODE w.r.t x gives∫ (
x2y′′ + y′x− y

)
dx = 0

y′x2 − yx = c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = c1
x2

Hence the ode is

y′ − y

x
= c1

x2

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x
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The ode becomes
d
dx(µy) = (µ)

( c1
x2

)
d
dx

(y
x

)
=
(
1
x

)( c1
x2

)
d
(y
x

)
=
( c1
x3

)
dx

Integrating gives
y

x
=
∫

c1
x3 dx

y

x
= − c1

2x2 + c2

Dividing both sides by the integrating factor µ = 1
x
results in

y = − c1
2x + c2x

Summary
The solution(s) found are the following

(1)y = − c1
2x + c2x

Verification of solutions

y = − c1
2x + c2x

Verified OK.

8.10.8 Solving using Kovacic algorithm

Writing the ode as

x2y′′ + y′x− y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
4x2 (6)

Comparing the above to (5) shows that

s = 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(

3
4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 368: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= 3

4x2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2
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The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = −1
2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (0)

= − 1
2x

= − 1
2x
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Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x

)
(0) +

((
1
2x2

)
+
(
− 1
2x

)2

−
(

3
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

2xdx

= 1√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1

(
x2

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x

(
x2

2

))
Summary
The solution(s) found are the following

(1)y = c1
x
+ c2x

2
Verification of solutions

y = c1
x
+ c2x

2

Verified OK.

8.10.9 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = x2

q(x) = x

r(x) = −1
s(x) = 0
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Hence

p′′(x) = 2
q′(x) = 1

Therefore (1) becomes

2− (1) + (−1) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

y′x2 − yx = c1

We now have a first order ode to solve which is

y′x2 − yx = c1

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = c1
x2

Hence the ode is

y′ − y

x
= c1

x2

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x
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The ode becomes

d
dx(µy) = (µ)

( c1
x2

)
d
dx

(y
x

)
=
(
1
x

)( c1
x2

)
d
(y
x

)
=
( c1
x3

)
dx

Integrating gives

y

x
=
∫

c1
x3 dx

y

x
= − c1

2x2 + c2

Dividing both sides by the integrating factor µ = 1
x
results in

y = − c1
2x + c2x

Summary
The solution(s) found are the following

(1)y = − c1
2x + c2x

Verification of solutions

y = − c1
2x + c2x

Verified OK.

8.10.10 Maple step by step solution

Let’s solve
x2y′′ + y′x− y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −y′

x
+ y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x
− y

x2 = 0
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• Multiply by denominators of the ODE
x2y′′ + y′x− y = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

y′ =
(

d
dt
y(t)

)
t′(x)

◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE

x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
+ d

dt
y(t)− y(t) = 0

• Simplify
d2

dt2
y(t)− y(t) = 0

• Characteristic polynomial of ODE
r2 − 1 = 0

• Factor the characteristic polynomial
(r − 1) (r + 1) = 0

• Roots of the characteristic polynomial
r = (−1, 1)

• 1st solution of the ODE
y1(t) = e−t

• 2nd solution of the ODE
y2(t) = et

• General solution of the ODE
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y(t) = c1y1(t) + c2y2(t)
• Substitute in solutions

y(t) = c1e−t + c2et

• Change variables back using t = ln (x)
y = c1

x
+ c2x

• Simplify
y = c1

x
+ c2x

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

y(x) = c1x
2 + c2
x

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 16� �
DSolve[x^2*y''[x]+x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
x
+ c2x
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8.11.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be y = xr, then y′ = rxr−1 and
y′′ = r(r − 1)xr−2. Substituting these back into the given ODE gives

x2(r(r − 1))xr−2 − xrxr−1 + xr = 0

Simplifying gives
r(r − 1)xr − r xr + xr = 0

Since xr 6= 0 then dividing throughout by xr gives

r(r − 1)− r + 1 = 0

Or
r2 − 2r + 1 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = 1
r2 = 1

Since the roots are equal, then the general solution is

y = c1y1 + c2y2

Where y1 = xr and y2 = xr ln (x). Hence

y = c1x+ ln (x) c2x

Summary
The solution(s) found are the following

(1)y = c1x+ ln (x) c2x
Verification of solutions

y = c1x+ ln (x) c2x

Verified OK.
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8.11.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

x2y′′ − y′x+ y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −1
x

q(x) = 1
x2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫

− 1
x
dx
)
dx

=
∫

eln(x) dx

=
∫

xdx

= x2

2 (6)
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Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
1
x2

x2

= 1
x4 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + y(τ)

x4 = 0

But in terms of τ
1
x4 = 1

4τ 2

Hence the above ode becomes

d2

dτ 2
y(τ) + y(τ)

4τ 2 = 0

The above ode is now solved for y(τ). The ode can be written as

4
(

d2

dτ 2
y(τ)

)
τ 2 + y(τ) = 0

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be
y(τ) = τ r, then y′ = rτ r−1 and y′′ = r(r − 1)τ r−2. Substituting these back into the
given ODE gives

4τ 2(r(r − 1))τ r−2 + 0rτ r−1 + τ r = 0

Simplifying gives
4r(r − 1) τ r + 0 τ r + τ r = 0

Since τ r 6= 0 then dividing throughout by τ r gives

4r(r − 1) + 0 + 1 = 0

Or
4r2 − 4r + 1 = 0 (1)
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Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 =
1
2

r2 =
1
2

Since the roots are equal, then the general solution is

y(τ) = c1y1 + c2y2

Where y1 = τ r and y2 = τ r ln (τ). Hence

y(τ) = c1
√
τ + c2

√
τ ln (τ)

The above solution is now transformed back to y using (6) which results in

y = x
√
2 (c1 + 2c2 ln (x)− c2 ln (2))

2
Summary
The solution(s) found are the following

(1)y = x
√
2 (c1 + 2c2 ln (x)− c2 ln (2))

2
Verification of solutions

y = x
√
2 (c1 + 2c2 ln (x)− c2 ln (2))

2

Verified OK.

8.11.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

x2y′′ − y′x+ y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −1
x

q(x) = 1
x2
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Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
1
x2

c
(6)

τ ′′ = − 1

c
√

1
x2 x3

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=
− 1

c
√

1
x2 x3

− 1
x

√
1
x2

c(√
1
x2

c

)2

= −2c

Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ)− 2c

(
d

dτ
y(τ)

)
+ c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = ecτc1
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Now from (6)

τ =
∫ 1

c

√
q dx

=

∫ √ 1
x2dx

c

=

√
1
x2 x ln (x)

c

Substituting the above into the solution obtained gives

y = c1x

Summary
The solution(s) found are the following

(1)y = c1x

Verification of solutions
y = c1x

Verified OK.

8.11.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

x2y′′ − y′x+ y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −1
x

q(x) = 1
x2

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)
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Let the coefficient of v(x) above be zero. Hence
n(n− 1)

x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives
n(n− 1)

x2 − n

x2 + 1
x2 = 0 (5)

Solving (5) for n gives

n = 1 (6)

Substituting this value in (3) gives

v′′(x) + v′(x)
x

= 0

v′′(x) + v′(x)
x

= 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) + u(x)
x

= 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u

x

Where f(x) = − 1
x
and g(u) = u. Integrating both sides gives

1
u
du = −1

x
dx∫ 1

u
du =

∫
−1
x
dx

ln (u) = − ln (x) + c1

u = e− ln(x)+c1

= c1
x
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Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= c1 ln (x) + c2

Hence

y = v(x)xn

= (c1 ln (x) + c2)x
= (c1 ln (x) + c2)x

Summary
The solution(s) found are the following

(1)y = (c1 ln (x) + c2)x
Verification of solutions

y = (c1 ln (x) + c2)x

Verified OK.

8.11.5 Solving as second order ode non constant coeff transformation on
B ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)
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If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = x2

B = −x

C = 1
F = 0

The above shows that for this ode

AB′′ +BB′ + CB =
(
x2) (0) + (−x) (−1) + (1) (−x)

= 0

Hence the ode in v given in (1) now simplifies to

−x3v′′ +
(
−x2) v′ = 0

Now by applying v′ = u the above becomes

−x2(u′(x)x+ u(x)) = 0

Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u

x

Where f(x) = − 1
x
and g(u) = u. Integrating both sides gives

1
u
du = −1

x
dx∫ 1

u
du =

∫
−1
x
dx

ln (u) = − ln (x) + c1

u = e− ln(x)+c1

= c1
x
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The ode for v now becomes

v′ = u

= c1
x

Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1
x

dx

= c1 ln (x) + c2

Therefore the solution is

y(x) = Bv

= (−x) (c1 ln (x) + c2)
= −(c1 ln (x) + c2)x

Summary
The solution(s) found are the following

(1)y = −(c1 ln (x) + c2)x
Verification of solutions

y = −(c1 ln (x) + c2)x

Verified OK.

8.11.6 Solving using Kovacic algorithm

Writing the ode as

x2y′′ − y′x+ y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 370: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= − 1

4x2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2
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The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 1
2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x
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Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
x2 dx

= z1e
ln(x)

2

= z1
(√

x
)

Which simplifies to
y1 = x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−x

x2 dx

(y1)2
dx

= y1

∫
eln(x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(x) + c2(x(ln (x)))

Summary
The solution(s) found are the following

(1)y = c1x+ ln (x) c2x
Verification of solutions

y = c1x+ ln (x) c2x

Verified OK.

8.11.7 Maple step by step solution

Let’s solve
x2y′′ − y′x+ y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = y′

x
− y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − y′

x
+ y

x2 = 0

• Multiply by denominators of the ODE
x2y′′ − y′x+ y = 0

• Make a change of variables
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t = ln (x)
� Substitute the change of variables back into the ODE

◦ Calculate the 1st derivative of y with respect to x , using the chain rule
y′ =

(
d
dt
y(t)

)
t′(x)

◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE

x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
− d

dt
y(t) + y(t) = 0

• Simplify
d2

dt2
y(t)− 2 d

dt
y(t) + y(t) = 0

• Characteristic polynomial of ODE
r2 − 2r + 1 = 0

• Factor the characteristic polynomial
(r − 1)2 = 0

• Root of the characteristic polynomial
r = 1

• 1st solution of the ODE
y1(t) = et

• Repeated root, multiply y1(t) by t to ensure linear independence
y2(t) = t et

• General solution of the ODE
y(t) = c1y1(t) + c2y2(t)

• Substitute in solutions
y(t) = c1et + c2t et
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• Change variables back using t = ln (x)
y = c1x+ ln (x) c2x

• Simplify
y = x(c1 + c2 ln (x))

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) = x(c2 ln (x) + c1)

3 Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 15� �
DSolve[x^2*y''[x]-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(c2 log(x) + c1)
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8.12 problem 15
8.12.1 Solving as second order euler ode ode . . . . . . . . . . . . . . . 2510
8.12.2 Solving as second order change of variable on x method 2 ode . 2511
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Internal problem ID [1098]
Internal file name [OUTPUT/1099_Sunday_June_05_2022_02_02_32_AM_61347599/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.1 Homogeneous linear equations.
Page 203
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_eu-
ler_ode", "second_order_change_of_variable_on_x_method_2", "second_or-
der_change_of_variable_on_y_method_2"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

x2y′′ − (2a− 1)xy′ + a2y = 0

8.12.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be y = xr, then y′ = rxr−1 and
y′′ = r(r − 1)xr−2. Substituting these back into the given ODE gives

x2(r(r − 1))xr−2(−2a+ 1)xrxr−1 + a2xr = 0

Simplifying gives
r(r − 1)xr(−2a+ 1) r xr + a2xr = 0

Since xr 6= 0 then dividing throughout by xr gives

r(r − 1) (−2a+ 1) r + a2 = 0
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Or
a2 − 2ra+ r2 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = a

r2 = a

Since the roots are equal, then the general solution is

y = c1y1 + c2y2

Where y1 = xr and y2 = xr ln (x). Hence

y = c1x
a + c2x

a ln (x)

Summary
The solution(s) found are the following

(1)y = c1x
a + c2x

a ln (x)
Verification of solutions

y = c1x
a + c2x

a ln (x)

Verified OK.

8.12.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

x2y′′ + (−2ax+ x) y′ + a2y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −2a+ 1
x

q(x) = a2

x2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)
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Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫ −2a+1

x
dx
)
dx

=
∫

e(2a−1) ln(x) dx

=
∫

x2a−1dx

= x2a

2a (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
a2

x2

x4a−2

= a2x−4a (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + a2x−4ay(τ) = 0

But in terms of τ

a2x−4a = 1
4τ 2
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Hence the above ode becomes

d2

dτ 2
y(τ) + y(τ)

4τ 2 = 0

The above ode is now solved for y(τ). The ode can be written as

4
(

d2

dτ 2
y(τ)

)
τ 2 + y(τ) = 0

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be
y(τ) = τ r, then y′ = rτ r−1 and y′′ = r(r − 1)τ r−2. Substituting these back into the
given ODE gives

4τ 2(r(r − 1))τ r−2 + 0rτ r−1 + τ r = 0

Simplifying gives
4r(r − 1) τ r + 0 τ r + τ r = 0

Since τ r 6= 0 then dividing throughout by τ r gives

4r(r − 1) + 0 + 1 = 0

Or
4r2 − 4r + 1 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 =
1
2

r2 =
1
2

Since the roots are equal, then the general solution is

y(τ) = c1y1 + c2y2

Where y1 = τ r and y2 = τ r ln (τ). Hence

y(τ) = c1
√
τ + c2

√
τ ln (τ)

The above solution is now transformed back to y using (6) which results in

y =

√
2
√

x2a

a

(
c1 + c2 ln

(
x2a

a

)
− c2 ln (2)

)
2
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Summary
The solution(s) found are the following

(1)y =

√
2
√

x2a

a

(
c1 + c2 ln

(
x2a

a

)
− c2 ln (2)

)
2

Verification of solutions

y =

√
2
√

x2a

a

(
c1 + c2 ln

(
x2a

a

)
− c2 ln (2)

)
2

Verified OK.

8.12.3 Solving as second order change of variable on y method 2 ode

In normal form the ode

x2y′′ + (−2ax+ x) y′ + a2y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −2a+ 1
x

q(x) = a2

x2

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 + n(−2a+ 1)

x2 + a2

x2 = 0 (5)

Solving (5) for n gives

n = a (6)
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Substituting this value in (3) gives

v′′(x) +
(
2a
x

+ −2a+ 1
x

)
v′(x) = 0

v′′(x) + v′(x)
x

= 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) + u(x)
x

= 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u

x

Where f(x) = − 1
x
and g(u) = u. Integrating both sides gives

1
u
du = −1

x
dx∫ 1

u
du =

∫
−1
x
dx

ln (u) = − ln (x) + c1

u = e− ln(x)+c1

= c1
x

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= c1 ln (x) + c2
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Hence

y = v(x)xn

= (c1 ln (x) + c2)xa

= (c1 ln (x) + c2)xa

Summary
The solution(s) found are the following

(1)y = (c1 ln (x) + c2)xa

Verification of solutions

y = (c1 ln (x) + c2)xa

Verified OK.

8.12.4 Solving using Kovacic algorithm

Writing the ode as

x2y′′ + (−2ax+ x) y′ + a2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2ax+ x (3)
C = a2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 372: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2
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The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= − 1

4x2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = − 1
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 1
2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2ax+x

x2 dx

= z1e
(2a−1) ln(x)

2

= z1
(
xa− 1

2

)
Which simplifies to

y1 = xa

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2ax+x

x2 dx

(y1)2
dx

= y1

∫
e(2a−1) ln(x)

(y1)2
dx

= y1(ln (x))
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Therefore the solution is

y = c1y1 + c2y2

= c1(xa) + c2(xa(ln (x)))

Summary
The solution(s) found are the following

(1)y = c1x
a + c2x

a ln (x)
Verification of solutions

y = c1x
a + c2x

a ln (x)

Verified OK.

8.12.5 Maple step by step solution

Let’s solve
x2y′′ + (−2ax+ x) y′ + a2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −a2y
x2 + (2a−1)y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (2a−1)y′
x

+ a2y
x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2a−1
x

, P3(x) = a2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2a+ 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= a2

◦ x = 0is a regular singular point
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Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ − (2a− 1)xy′ + a2y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite DE with series expansions
◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite DE with series expansions
∞∑
k=0

ak(a− k − r)2 xk+r = 0

• a0cannot be 0 by assumption, giving the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
ak(a− k)2 = 0

• Recursion relation that defines series solution to ODE
ak = 0

• Recursion relation for r = 0
ak = 0

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(x^2*diff(y(x),x$2)-(2*a-1)*x*diff(y(x),x)+a^2*y(x)=0,y(x), singsol=all)� �

y(x) = (c2 ln (x) + c1)xa

3 Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 18� �
DSolve[x^2*y''[x]-(2*a-1)*x*y'[x]+a^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → xa(ac2 log(x) + c1)
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8.13 problem 16
8.13.1 Solving as second order change of variable on y method 1 ode . 2524
8.13.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 2527
8.13.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2528
8.13.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2531

Internal problem ID [1099]
Internal file name [OUTPUT/1100_Sunday_June_05_2022_02_02_33_AM_91454613/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.1 Homogeneous linear equations.
Page 203
Problem number: 16.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode",
"second_order_change_of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2y′′ − 4y′x+
(
−16x2 + 3

)
y = 0

8.13.1 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −1
x

q(x) = −16x2 + 3
4x2

2524



Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= −16x2 + 3
4x2 −

(
− 1

x

)′
2 −

(
− 1

x

)2
4

= −16x2 + 3
4x2 −

( 1
x2

)
2 −

( 1
x2

)
4

= −16x2 + 3
4x2 −

(
1
2x2

)
− 1

4x2

= −4

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ − 1

x
2

=
√
x (5)

Hence (3) becomes

y = v(x)
√
x (4)

Applying this change of variable to the original ode results in

4x 5
2 (v′′(x)− 4v(x)) = 0

Which is now solved for v(x) This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = −4. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2eλx − 4 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 4 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −4 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−4)

= ±2

Hence
λ1 = +2
λ2 = −2

Which simplifies to
λ1 = 2
λ2 = −2

Since roots are real and distinct, then the solution is

v(x) = c1e
λ1x + c2e

λ2x

v(x) = c1e
(2)x + c2e

(−2)x

Or
v(x) = c1e2x + c2e−2x

Now that v(x) is known, then

y = v(x) z(x)
=
(
c1e2x + c2e−2x) (z(x)) (7)

But from (5)

z(x) =
√
x

Hence (7) becomes

y =
(
c1e2x + c2e−2x)√x
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Summary
The solution(s) found are the following

(1)y =
(
c1e2x + c2e−2x)√x

Verification of solutions

y =
(
c1e2x + c2e−2x)√x

Verified OK.

8.13.2 Solving as second order bessel ode ode

Writing the ode as

x2y′′ − y′x+
(
−4x2 + 3

4

)
y = 0 (1)

Bessel ode has the form

x2y′′ + y′x+
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = 1
β = 2i

n = −1
2

γ = 1

Substituting all the above into (4) gives the solution as

y = c1x cosh (2x)√
π
√
ix

+ ic2x sinh (2x)√
π
√
ix

Summary
The solution(s) found are the following

(1)y = c1x cosh (2x)√
π
√
ix

+ ic2x sinh (2x)√
π
√
ix
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Verification of solutions

y = c1x cosh (2x)√
π
√
ix

+ ic2x sinh (2x)√
π
√
ix

Verified OK.

8.13.3 Solving using Kovacic algorithm

Writing the ode as

4x2y′′ − 4y′x+
(
−16x2 + 3

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −4x (3)
C = −16x2 + 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4
1 (6)

Comparing the above to (5) shows that

s = 4
t = 1
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Therefore eq. (4) becomes

z′′(x) = 4z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 374: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 4 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−2x
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
4x2 dx

= z1e
ln(x)

2

= z1
(√

x
)

Which simplifies to
y1 = e−2x√x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4x

4x2 dx

(y1)2
dx

= y1

∫
eln(x)

(y1)2
dx

= y1

(
e4x
4

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−2x√x

)
+ c2

(
e−2x√x

(
e4x
4

))

Summary
The solution(s) found are the following

(1)y = c1e−2x√x+ c2e2x
√
x

4
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Verification of solutions

y = c1e−2x√x+ c2e2x
√
x

4

Verified OK.

8.13.4 Maple step by step solution

Let’s solve
4x2y′′ − 4y′x+ (−16x2 + 3) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ =
(
16x2−3

)
y

4x2 + y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − y′

x
−
(
16x2−3

)
y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = − 1
x
, P3(x) = −16x2−3

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2y′′ − 4y′x+ (−16x2 + 3) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r
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� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−3 + 2r)xr + a1(1 + 2r) (−1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r − 1) (2k + 2r − 3)− 16ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

3
2

}
• Each term must be 0

a1(1 + 2r) (−1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
(
k + r − 1

2

) (
k + r − 3

2

)
ak − 16ak−2 = 0

• Shift index using k− >k + 2
4
(
k + 3

2 + r
) (

k + 1
2 + r

)
ak+2 − 16ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 16ak

(2k+3+2r)(2k+1+2r)

• Recursion relation for r = 1
2
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ak+2 = 16ak
(2k+4)(2k+2)

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 = 16ak
(2k+4)(2k+2) , a1 = 0

]
• Recursion relation for r = 3

2

ak+2 = 16ak
(2k+6)(2k+4)

• Solution for r = 3
2[

y =
∞∑
k=0

akx
k+ 3

2 , ak+2 = 16ak
(2k+6)(2k+4) , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+2 = 16ak

(2k+4)(2k+2) , a1 = 0, bk+2 = 16bk
(2k+6)(2k+4) , b1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 21� �
dsolve(4*x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+(3-16*x^2)*y(x)=0,y(x), singsol=all)� �

y(x) =
√
x (c1 sinh (2x) + c2 cosh (2x))
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3 Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 32� �
DSolve[4*x^2*y''[x]-4*x*y'[x]+(3-16*x^2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4e

−2x√x
(
c2e

4x + 4c1
)
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8.14 problem 17
8.14.1 Solving as second order change of variable on y method 2 ode . 2535
8.14.2 Solving as second order ode non constant coeff transformation

on B ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2538
8.14.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2540
8.14.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2546

Internal problem ID [1100]
Internal file name [OUTPUT/1101_Sunday_June_05_2022_02_02_34_AM_75601842/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.1 Homogeneous linear equations.
Page 203
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_y_method_2", "second_order_ode_non_constant_coeff_trans-
formation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(x− 1) y′′ − y′x+ y = 0

8.14.1 Solving as second order change of variable on y method 2 ode

In normal form the ode

(x− 1) y′′ − y′x+ y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = − x

x− 1
q(x) = 1

x− 1

2535



Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 − n

x− 1 + 1
x− 1 = 0 (5)

Solving (5) for n gives

n = 1 (6)

Substituting this value in (3) gives

v′′(x) +
(
2
x
− x

x− 1

)
v′(x) = 0

v′′(x) +
(
2
x
− x

x− 1

)
v′(x) = 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) +
(
2
x
− x

x− 1

)
u(x) = 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(x2 − 2x+ 2)
x (x− 1)
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Where f(x) = x2−2x+2
x(x−1) and g(u) = u. Integrating both sides gives

1
u
du = x2 − 2x+ 2

x (x− 1) dx∫ 1
u
du =

∫
x2 − 2x+ 2
x (x− 1) dx

ln (u) = x− 2 ln (x) + ln (x− 1) + c1

u = ex−2 ln(x)+ln(x−1)+c1

= c1ex−2 ln(x)+ln(x−1)

Which simplifies to

u(x) = c1

(
ex
x

− ex
x2

)

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= c1ex
x

+ c2

Hence

y = v(x)xn

=
(
c1ex
x

+ c2

)
x

= c1ex + c2x

Summary
The solution(s) found are the following

(1)y =
(
c1ex
x

+ c2

)
x

Verification of solutions

y =
(
c1ex
x

+ c2

)
x

Verified OK.
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8.14.2 Solving as second order ode non constant coeff transformation on
B ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = x− 1
B = −x

C = 1
F = 0

The above shows that for this ode

AB′′ +BB′ + CB = (x− 1) (0) + (−x) (−1) + (1) (−x)
= 0
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Hence the ode in v given in (1) now simplifies to

−x(x− 1) v′′ +
(
x2 − 2x+ 2

)
v′ = 0

Now by applying v′ = u the above becomes(
−x2 + x

)
u′(x) +

(
x2 − 2x+ 2

)
u(x) = 0

Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(x2 − 2x+ 2)
x (x− 1)

Where f(x) = x2−2x+2
x(x−1) and g(u) = u. Integrating both sides gives

1
u
du = x2 − 2x+ 2

x (x− 1) dx∫ 1
u
du =

∫
x2 − 2x+ 2
x (x− 1) dx

ln (u) = x− 2 ln (x) + ln (x− 1) + c1

u = ex−2 ln(x)+ln(x−1)+c1

= c1ex−2 ln(x)+ln(x−1)

Which simplifies to

u(x) = c1

(
ex
x

− ex
x2

)

The ode for v now becomes

v′ = u

= c1

(
ex
x

− ex
x2

)
Which is now solved for v. Integrating both sides gives

v(x) =
∫ (x− 1) c1ex

x2 dx

= c1ex
x

+ c2
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Therefore the solution is

y(x) = Bv

= (−x)
(
c1ex
x

+ c2

)
= −c1ex − c2x

Summary
The solution(s) found are the following

(1)y = −c1ex − c2x

Verification of solutions

y = −c1ex − c2x

Verified OK.

8.14.3 Solving using Kovacic algorithm

Writing the ode as

(x− 1) y′′ − y′x+ y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x− 1
B = −x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 6
4 (x− 1)2

(6)

Comparing the above to (5) shows that

s = x2 − 4x+ 6
t = 4(x− 1)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 6
4 (x− 1)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 376: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

2541



The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x− 1)2. There is a pole at x = 1 of order 2. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one
are met. Since there is a pole of order 2 then necessary conditions for case two are met.
Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

2 (x− 1) +
3

4 (x− 1)2

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decompo-

sition of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x + 1

x3 + 11
4x4 + 21

4x5 + 15
2x6 + 6

x7 − 117
16x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be

the coefficient in R of the term in x of degree of t minus one, divided by the leading
coefficient in t. Doing long division gives

r = s

t

= x2 − 4x+ 6
4x2 − 8x+ 4

= Q+ R

4x2 − 8x+ 4

=
(
1
4

)
+
(

−2x+ 5
4x2 − 8x+ 4

)
= 1

4 + −2x+ 5
4x2 − 8x+ 4

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be
found.

b =
(
−1
2

)
− (0)

= −1
2
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = x2 − 4x+ 6
4 (x− 1)2

pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α+

∞ = −1
2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2 (x− 1) +

(
1
2

)
= − 1

2 (x− 1) +
1
2

= −2 + x

2x− 2

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− 1) +

1
2

)
(0) +

((
1

2 (x− 1)2
)
+
(
− 1
2 (x− 1) +

1
2

)2

−
(
x2 − 4x+ 6
4 (x− 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−1)+

1
2

)
dx

= ex
2

√
x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
x−1 dx

= z1e
x
2+

ln(x−1)
2

= z1
(√

x− 1 ex
2
)
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Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x

x−1 dx

(y1)2
dx

= y1

∫
ex+ln(x−1)

(y1)2
dx

= y1
(
−x e−x

)
Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2
(
ex
(
−x e−x

))
Summary
The solution(s) found are the following

(1)y = c1ex − c2x

Verification of solutions

y = c1ex − c2x

Verified OK.

8.14.4 Maple step by step solution

Let’s solve
(x− 1) y′′ − y′x+ y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
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y′′ = − y
x−1 +

xy′

x−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − xy′

x−1 +
y

x−1 = 0

� Check to see if x0 = 1 is a regular singular point
◦ Define functions[

P2(x) = − x
x−1 , P3(x) = 1

x−1

]
◦ (x− 1) · P2(x) is analytic at x = 1

((x− 1) · P2(x))
∣∣∣∣
x=1

= −1

◦ (x− 1)2 · P3(x) is analytic at x = 1(
(x− 1)2 · P3(x)

) ∣∣∣∣
x=1

= 0

◦ x = 1is a regular singular point
Check to see if x0 = 1 is a regular singular point
x0 = 1

• Multiply by denominators
(x− 1) y′′ − y′x+ y = 0

• Change variables using x = u+ 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

2547



u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak+1(k + 1 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

k+1

]
• Revert the change of variables u = x− 1[

y =
∞∑
k=0

ak(x− 1)k , ak+1 = ak
k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

k+3

]
• Revert the change of variables u = x− 1[

y =
∞∑
k=0

ak(x− 1)k+2 , ak+1 = ak
k+3

]
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• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak(x− 1)k
)
+
(

∞∑
k=0

bk(x− 1)k+2
)
, a1+k = ak

1+k
, b1+k = bk

k+3

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 12� �
dsolve((x-1)*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) = c1x+ c2ex

3 Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 17� �
DSolve[(x-1)*y''[x]-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x − c2x
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8.15 problem 18
8.15.1 Solving as second order change of variable on y method 1 ode . 2550
8.15.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 2553
8.15.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2554
8.15.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2557

Internal problem ID [1101]
Internal file name [OUTPUT/1102_Sunday_June_05_2022_02_02_36_AM_24070805/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.1 Homogeneous linear equations.
Page 203
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode",
"second_order_change_of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − 2y′x+
(
x2 + 2

)
y = 0

8.15.1 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −2
x

q(x) = x2 + 2
x2
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Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= x2 + 2
x2 −

(
− 2

x

)′
2 −

(
− 2

x

)2
4

= x2 + 2
x2 −

( 2
x2

)
2 −

( 4
x2

)
4

= x2 + 2
x2 −

(
1
x2

)
− 1

x2

= 1

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ − 2

x
2

= x (5)

Hence (3) becomes

y = v(x)x (4)

Applying this change of variable to the original ode results in

x3(v′′(x) + v(x)) = 0

Which is now solved for v(x) This is second order with constant coefficients homogeneous
ODE. In standard form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = 1. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 1 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

v(x) = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
v(x) = e0(c1 cos (x) + c2 sin (x))

Or
v(x) = c1 cos (x) + c2 sin (x)

Now that v(x) is known, then

y = v(x) z(x)
= (c1 cos (x) + c2 sin (x)) (z(x)) (7)
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But from (5)

z(x) = x

Hence (7) becomes

y = (c1 cos (x) + c2 sin (x))x

Summary
The solution(s) found are the following

(1)y = (c1 cos (x) + c2 sin (x))x
Verification of solutions

y = (c1 cos (x) + c2 sin (x))x

Verified OK.

8.15.2 Solving as second order bessel ode ode

Writing the ode as

x2y′′ − 2y′x+
(
x2 + 2

)
y = 0 (1)

Bessel ode has the form

x2y′′ + y′x+
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = 3
2

β = 1

n = −1
2

γ = 1

2553



Substituting all the above into (4) gives the solution as

y = c1x
√
2 cos (x)√
π

+ c2x
√
2 sin (x)√
π

Summary
The solution(s) found are the following

(1)y = c1x
√
2 cos (x)√
π

+ c2x
√
2 sin (x)√
π

Verification of solutions

y = c1x
√
2 cos (x)√
π

+ c2x
√
2 sin (x)√
π

Verified OK.

8.15.3 Solving using Kovacic algorithm

Writing the ode as

x2y′′ − 2y′x+
(
x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x (3)
C = x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 378: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0
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There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2 dx

= z1e
ln(x)

= z1(x)

Which simplifies to
y1 = x cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x

x2 dx

(y1)2
dx

= y1

∫
e2 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(x cos (x)) + c2(x cos (x) (tan (x)))
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Summary
The solution(s) found are the following

(1)y = c1x cos (x) + c2 sin (x)x
Verification of solutions

y = c1x cos (x) + c2 sin (x)x

Verified OK.

8.15.4 Maple step by step solution

Let’s solve
x2y′′ − 2y′x+ (x2 + 2) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2+2

)
y

x2 + 2y′
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − 2y′
x
+
(
x2+2

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = − 2
x
, P3(x) = x2+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ − 2y′x+ (x2 + 2) y = 0
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• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r)xr + a1r(−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 1) (k + r − 2) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term must be 0
a1r(−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1) (k + r − 2) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 1 + r) (k + r) + ak = 0

• Recursion relation that defines series solution to ODE
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ak+2 = − ak
(k+1+r)(k+r)

• Recursion relation for r = 1
ak+2 = − ak

(k+2)(k+1)

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = − ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = 2
ak+2 = − ak

(k+3)(k+2)

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+2 = − ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
1+k

)
+
(

∞∑
k=0

bkx
k+2
)
, ak+2 = − ak

(k+2)(1+k) , a1 = 0, bk+2 = − bk
(k+3)(k+2) , b1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 15� �
dsolve(x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+(x^2+2)*y(x)=0,y(x), singsol=all)� �

y(x) = x(c1 sin (x) + c2 cos (x))
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3 Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 33� �
DSolve[x^2*y''[x]-2*x*y'[x]+(x^2+2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−ixx− 1

2ic2e
ixx
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8.16 problem 19
8.16.1 Solving as second order change of variable on y method 2 ode . 2561

Internal problem ID [1102]
Internal file name [OUTPUT/1103_Sunday_June_05_2022_02_02_37_AM_61910818/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.1 Homogeneous linear equations.
Page 203
Problem number: 19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_change_of_vari-
able_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2 sin (x) y′′ − 4x(x cos (x) + sin (x)) y′ + (2x cos (x) + 3 sin (x)) y = 0

8.16.1 Solving as second order change of variable on y method 2 ode

In normal form the ode

4x2 sin (x) y′′ − 4x(x cos (x) + sin (x)) y′ + (2x cos (x) + 3 sin (x)) y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −1− x cot (x)
x

q(x) = 2x cot (x) + 3
4x2

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)
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Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 + n(−1− x cot (x))

x2 + 2x cot (x) + 3
4x2 = 0 (5)

Solving (5) for n gives

n = 1
2 (6)

Substituting this value in (3) gives

v′′(x) +
(
1
x
+ −1− x cot (x)

x

)
v′(x) = 0

v′′(x)− cot (x) v′(x) = 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x)− cot (x)u(x) = 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)
= cot (x)u

Where f(x) = cot (x) and g(u) = u. Integrating both sides gives
1
u
du = cot (x) dx∫ 1

u
du =

∫
cot (x) dx

ln (u) = ln (sin (x)) + c1

u = eln(sin(x))+c1

= sin (x) c1
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Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= −c1 cos (x) + c2

Hence

y = v(x)xn

= (−c1 cos (x) + c2)
√
x

= (−c1 cos (x) + c2)
√
x

Summary
The solution(s) found are the following

(1)y = (−c1 cos (x) + c2)
√
x

Verification of solutions

y = (−c1 cos (x) + c2)
√
x

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful
Change of variables used:

[x = arccos(t)]
Linear ODE actually solved:

(2*arccos(t)*t+3*(-t^2+1)^(1/2))*u(t)+(-4*arccos(t)*t^2+4*arccos(t))*diff(u(t),t)+(-4*arccos(t)^2*(-t^2+1)^(1/2)*t^2+4*arccos(
<- change of variables successful`� �
3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 14� �
dsolve(4*x^2*sin(x)*diff(y(x),x$2)-4*x*(x*cos(x)+sin(x))*diff(y(x),x)+(2*x*cos(x)+3*sin(x))*y(x)=0,y(x), singsol=all)� �

y(x) =
√
x (c1 + c2 cos (x))

3 Solution by Mathematica
Time used: 0.356 (sec). Leaf size: 21� �
DSolve[4*x^2*Sin[x]*y''[x]-4*x*(x*Cos[x]+Sin[x])*y'[x]+(2*x*Cos[x]+3*Sin[x])*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
√

arccos(cos(x))(c2 cos(x) + c1)
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8.17 problem 20
8.17.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2565

Internal problem ID [1103]
Internal file name [OUTPUT/1104_Sunday_June_05_2022_02_02_39_AM_74431363/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.1 Homogeneous linear equations.
Page 203
Problem number: 20.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

Unable to solve or complete the solution.

(3x− 1) y′′ − (3x+ 2) y′ + (6x− 8) y = 0

8.17.1 Maple step by step solution

Let’s solve
(3x− 1) y′′ + (−3x− 2) y′ + (6x− 8) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −2(3x−4)y
3x−1 + (3x+2)y′

3x−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (3x+2)y′
3x−1 + 2(3x−4)y

3x−1 = 0

� Check to see if x0 = 1
3 is a regular singular point

◦ Define functions
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[
P2(x) = −3x+2

3x−1 , P3(x) = 2(3x−4)
3x−1

]
◦
(
x− 1

3

)
· P2(x) is analytic at x = 1

3((
x− 1

3

)
· P2(x)

) ∣∣∣∣
x= 1

3

= −1

◦
(
x− 1

3

)2 · P3(x) is analytic at x = 1
3((

x− 1
3

)2 · P3(x)
) ∣∣∣∣

x= 1
3

= 0

◦ x = 1
3 is a regular singular point

Check to see if x0 = 1
3 is a regular singular point

x0 = 1
3

• Multiply by denominators
(3x− 1) y′′ + (−3x− 2) y′ + (6x− 8) y = 0

• Change variables using x = u+ 1
3 so that the regular singular point is at u = 0

3u
(

d2

du2y(u)
)
+ (−3u− 3)

(
d
du
y(u)

)
+ (6u− 6) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion
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u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

3a0r(−2 + r)u−1+r + (3a1(1 + r) (−1 + r)− 3a0(2 + r))ur +
(

∞∑
k=1

(3ak+1(k + 1 + r) (k + r − 1)− 3ak(k + r + 2) + 6ak−1)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
3r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term must be 0
3a1(1 + r) (−1 + r)− 3a0(2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
3ak+1(k + 1 + r) (k + r − 1) + ak(−3k − 3r − 6) + 6ak−1 = 0

• Shift index using k− >k + 1
3ak+2(k + r + 2) (k + r) + ak+1(−3k − 9− 3r) + 6ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = kak+1+rak+1−2ak+3ak+1

(k+r+2)(k+r)

• Recursion relation for r = 0
ak+2 = kak+1−2ak+3ak+1

(k+2)k

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0
ak+2 = kak+1−2ak+3ak+1

(k+2)k

• Recursion relation for r = 2
ak+2 = kak+1−2ak+5ak+1

(k+4)(k+2)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+2 = kak+1−2ak+5ak+1

(k+4)(k+2) , 9a1 − 12a0 = 0
]

• Revert the change of variables u = x− 1
3
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[
y =

∞∑
k=0

ak
(
x− 1

3

)k+2
, ak+2 = kak+1−2ak+5ak+1

(k+4)(k+2) , 9a1 − 12a0 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Kummer successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 177� �
dsolve((3*x-1)*diff(y(x),x$2)-(3*x+2)*diff(y(x),x)+(6*x-8)*y(x)=0,y(x), singsol=all)� �
y(x) =

−
6615 e−

x
(
i
√

7−1
)

2
(
x− 1

3

)2(((−23x
35 + 296

735

)√
7 + ix− 248i

105

)
c1KummerM

(
1
2 −

5i
√
7

14 , 3, i
√
7 (3x−1)

3

)
−
((
−x

5 −
8

105

)√
7 + ix− 152i

105

)
c2KummerU

(
1
2 −

5i
√
7

14 , 3, i
√
7 (3x−1)

3

)
+ 2
(
i+ 3

√
7

49

)
c1KummerM

(
−1

2 −
5i
√
7

14 , 3, i
√
7 (3x−1)

3

)
+
(
i+ 5

√
7

7

)
KummerU

(
− 1

2−
5i

√
7

14 ,3, i
√

7 (3x−1)
3

)
c2

5

)
−225

√
7 + 21i
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3 Solution by Mathematica
Time used: 0.13 (sec). Leaf size: 109� �
DSolve[(3*x-1)*y''[x]-(3*x+2)*y'[x]+(6*x-8)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → 4e

1
6

(
1−i

√
7
)
(3x−1)(1− 3x)2

(
c1HypergeometricU

(
3
2 − 5i

2
√
7
, 3, 13i

√
7(3x− 1)

)
+ c2L

2
− 3

2+
5i

2
√
7

(
1
3i
√
7(3x− 1)

))
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8.18 problem 21
8.18.1 Solving as linear second order ode solved by an integrating factor

ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2571
8.18.2 Solving as second order change of variable on y method 1 ode . 2572
8.18.3 Solving as second order integrable as is ode . . . . . . . . . . . 2573
8.18.4 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2575
8.18.5 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2576
8.18.6 Solving as exact linear second order ode ode . . . . . . . . . . . 2579
8.18.7 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2581

Internal problem ID [1104]
Internal file name [OUTPUT/1105_Sunday_June_05_2022_02_02_42_AM_83625445/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.1 Homogeneous linear equations.
Page 203
Problem number: 21.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_change_of_vari-
able_on_y_method_1", "linear_second_order_ode_solved_by_an_inte-
grating_factor"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(
x2 − 4

)
y′′ + 4y′x+ 2y = 0
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8.18.1 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = 4x
x2−4 . Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫ 4x

x2−4 dx

= x2 − 4

Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = 0((
x2 − 4

)
y
) ′′ = 0

Integrating once gives ((
x2 − 4

)
y
)′ = c1

Integrating again gives ((
x2 − 4

)
y
)
= c1x+ c2

Hence the solution is

y = c1x+ c2
x2 − 4

Or
y = c1x

x2 − 4 + c2
x2 − 4

Summary
The solution(s) found are the following

(1)y = c1x

x2 − 4 + c2
x2 − 4

Verification of solutions

y = c1x

x2 − 4 + c2
x2 − 4

Verified OK.
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8.18.2 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 4x
x2 − 4

q(x) = 2
x2 − 4

Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= 2
x2 − 4 −

( 4x
x2−4

)′
2 −

( 4x
x2−4

)2
4

= 2
x2 − 4 −

(
4

x2−4 −
8x2

(x2−4)2

)
2 −

(
16x2

(x2−4)2

)
4

= 2
x2 − 4 −

(
2

x2 − 4 − 4x2

(x2 − 4)2
)
− 4x2

(x2 − 4)2

= 0

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ 4x

x2−4
2

= 1
x2 − 4 (5)

Hence (3) becomes

y = v(x)
x2 − 4 (4)
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Applying this change of variable to the original ode results in

v′′(x) = 0

Which is now solved for v(x) Integrating twice gives the solution

v(x) = c1x+ c2

Now that v(x) is known, then

y = v(x) z(x)
= (c1x+ c2) (z(x)) (7)

But from (5)

z(x) = 1
x2 − 4

Hence (7) becomes

y = c1x+ c2
x2 − 4

Summary
The solution(s) found are the following

(1)y = c1x+ c2
x2 − 4

Verification of solutions

y = c1x+ c2
x2 − 4

Verified OK.

8.18.3 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫ ((
x2 − 4

)
y′′ + 4y′x+ 2y

)
dx = 0

2yx+
(
x2 − 4

)
y′ = c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)
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Where here

p(x) = 2x
x2 − 4

q(x) = c1
x2 − 4

Hence the ode is

y′ + 2xy
x2 − 4 = c1

x2 − 4
The integrating factor µ is

µ = e
∫ 2x

x2−4dx

= x2 − 4

The ode becomes
d
dx(µy) = (µ)

(
c1

x2 − 4

)
d
dx
((
x2 − 4

)
y
)
=
(
x2 − 4

)( c1
x2 − 4

)
d
((
x2 − 4

)
y
)
= c1 dx

Integrating gives (
x2 − 4

)
y =

∫
c1 dx(

x2 − 4
)
y = c1x+ c2

Dividing both sides by the integrating factor µ = x2 − 4 results in

y = c1x

x2 − 4 + c2
x2 − 4

which simplifies to

y = c1x+ c2
x2 − 4

Summary
The solution(s) found are the following

(1)y = c1x+ c2
x2 − 4

Verification of solutions

y = c1x+ c2
x2 − 4

Verified OK.
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8.18.4 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as (
x2 − 4

)
y′′ + 4y′x+ 2y = 0

Integrating both sides of the ODE w.r.t x gives∫ ((
x2 − 4

)
y′′ + 4y′x+ 2y

)
dx = 0

2yx+
(
x2 − 4

)
y′ = c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2x
x2 − 4

q(x) = c1
x2 − 4

Hence the ode is

y′ + 2xy
x2 − 4 = c1

x2 − 4
The integrating factor µ is

µ = e
∫ 2x

x2−4dx

= x2 − 4

The ode becomes
d
dx(µy) = (µ)

(
c1

x2 − 4

)
d
dx
((
x2 − 4

)
y
)
=
(
x2 − 4

)( c1
x2 − 4

)
d
((
x2 − 4

)
y
)
= c1 dx

Integrating gives (
x2 − 4

)
y =

∫
c1 dx(

x2 − 4
)
y = c1x+ c2
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Dividing both sides by the integrating factor µ = x2 − 4 results in

y = c1x

x2 − 4 + c2
x2 − 4

which simplifies to

y = c1x+ c2
x2 − 4

Summary
The solution(s) found are the following

(1)y = c1x+ c2
x2 − 4

Verification of solutions

y = c1x+ c2
x2 − 4

Verified OK.

8.18.5 Solving using Kovacic algorithm

Writing the ode as (
x2 − 4

)
y′′ + 4y′x+ 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 4
B = 4x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 381: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞
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There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x

x2−4 dx

= z1e
− ln

(
x2−4

)

= z1

(
1

x2 − 4

)

Which simplifies to

y1 =
1

x2 − 4

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 4x

x2−4 dx

(y1)2
dx

= y1

∫
e−2 ln

(
x2−4

)
(y1)2

dx

= y1(x)

Therefore the solution is
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y = c1y1 + c2y2

= c1

(
1

x2 − 4

)
+ c2

(
1

x2 − 4(x)
)

Summary
The solution(s) found are the following

(1)y = c1
x2 − 4 + c2x

x2 − 4
Verification of solutions

y = c1
x2 − 4 + c2x

x2 − 4

Verified OK.

8.18.6 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = x2 − 4
q(x) = 4x
r(x) = 2
s(x) = 0

Hence

p′′(x) = 2
q′(x) = 4

Therefore (1) becomes

2− (4) + (2) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)
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Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

2yx+
(
x2 − 4

)
y′ = c1

We now have a first order ode to solve which is

2yx+
(
x2 − 4

)
y′ = c1

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2x
x2 − 4

q(x) = c1
x2 − 4

Hence the ode is

y′ + 2xy
x2 − 4 = c1

x2 − 4
The integrating factor µ is

µ = e
∫ 2x

x2−4dx

= x2 − 4

The ode becomes

d
dx(µy) = (µ)

(
c1

x2 − 4

)
d
dx
((
x2 − 4

)
y
)
=
(
x2 − 4

)( c1
x2 − 4

)
d
((
x2 − 4

)
y
)
= c1 dx

Integrating gives (
x2 − 4

)
y =

∫
c1 dx(

x2 − 4
)
y = c1x+ c2
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Dividing both sides by the integrating factor µ = x2 − 4 results in

y = c1x

x2 − 4 + c2
x2 − 4

which simplifies to

y = c1x+ c2
x2 − 4

Summary
The solution(s) found are the following

(1)y = c1x+ c2
x2 − 4

Verification of solutions

y = c1x+ c2
x2 − 4

Verified OK.

8.18.7 Maple step by step solution

Let’s solve
(x2 − 4) y′′ + 4y′x+ 2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − 4xy′

x2−4 −
2y

x2−4

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 4xy′

x2−4 +
2y

x2−4 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 4x
x2−4 , P3(x) = 2

x2−4

]
◦ (2 + x) · P2(x) is analytic at x = −2

((2 + x) · P2(x))
∣∣∣∣
x=−2

= 2

◦ (2 + x)2 · P3(x) is analytic at x = −2
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(
(2 + x)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators
(x2 − 4) y′′ + 4y′x+ 2y = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(u2 − 4u)
(

d2

du2y(u)
)
+ (4u− 8)

(
d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−4a0r(1 + r)u−1+r +
(

∞∑
k=0

(−4ak+1(k + r + 1) (k + r + 2) + ak(k + r + 2) (k + r + 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−4r(1 + r) = 0

• Values of r that satisfy the indicial equation
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r ∈ {−1, 0}
• Each term in the series must be 0, giving the recursion relation

(k + r + 2) (k + r + 1) (−4ak+1 + ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak
4

• Recursion relation for r = −1
ak+1 = ak

4

• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+1 = ak

4

]
• Revert the change of variables u = 2 + x[

y =
∞∑
k=0

ak(2 + x)k−1 , ak+1 = ak
4

]
• Recursion relation for r = 0

ak+1 = ak
4

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

4

]
• Revert the change of variables u = 2 + x[

y =
∞∑
k=0

ak(2 + x)k , ak+1 = ak
4

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(2 + x)k−1
)
+
(

∞∑
k=0

bk(2 + x)k
)
, a1+k = ak

4 , b1+k = bk
4

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 17� �
dsolve((x^2-4)*diff(y(x),x$2)+4*x*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)� �

y(x) = c1x+ c2
x2 − 4

3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 20� �
DSolve[(x^2-4)*y''[x]+4*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2x+ c1
x2 − 4
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8.19 problem 22
8.19.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2585

Internal problem ID [1105]
Internal file name [OUTPUT/1106_Sunday_June_05_2022_02_02_43_AM_82361730/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.1 Homogeneous linear equations.
Page 203
Problem number: 22.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

Unable to solve or complete the solution.

(1 + 2x) y′′ − 2
(
2x2 − 1

)
y′ − 4(x+ 1) y = 0

8.19.1 Maple step by step solution

Let’s solve
(1 + 2x) y′′ + (−4x2 + 2) y′ + (−4x− 4) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = 4(x+1)y
1+2x + 2

(
2x2−1

)
y′

1+2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − 2
(
2x2−1

)
y′

1+2x − 4(x+1)y
1+2x = 0

� Check to see if x0 = −1
2 is a regular singular point

◦ Define functions
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[
P2(x) = −2

(
2x2−1

)
1+2x , P3(x) = −4(x+1)

1+2x

]
◦
(
x+ 1

2

)
· P2(x) is analytic at x = −1

2((
x+ 1

2

)
· P2(x)

) ∣∣∣∣
x=− 1

2

= 1
2

◦
(
x+ 1

2

)2 · P3(x) is analytic at x = −1
2((

x+ 1
2

)2 · P3(x)
) ∣∣∣∣

x=− 1
2

= 0

◦ x = −1
2 is a regular singular point

Check to see if x0 = −1
2 is a regular singular point

x0 = −1
2

• Multiply by denominators
(1 + 2x) y′′ + (−4x2 + 2) y′ + (−4x− 4) y = 0

• Change variables using x = u− 1
2 so that the regular singular point is at u = 0

2u
(

d2

du2y(u)
)
+ (−4u2 + 4u+ 1)

(
d
du
y(u)

)
+ (−4u− 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion
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u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−1 + 2r)u−1+r + (a1(1 + r) (1 + 2r) + 2a0(−1 + 2r))ur +
(

∞∑
k=1

(ak+1(k + 1 + r) (2k + 1 + 2r) + 2ak(2k + 2r − 1)− 4ak−1(k + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term must be 0
a1(1 + r) (1 + 2r) + 2a0(−1 + 2r) = 0

• Each term in the series must be 0, giving the recursion relation
2(k + 1 + r)

(
k + 1

2 + r
)
ak+1 + (4ak − 4ak−1) k + (4ak − 4ak−1) r − 2ak = 0

• Shift index using k− >k + 1
2(k + 2 + r)

(
k + 3

2 + r
)
ak+2 + (4ak+1 − 4ak) (k + 1) + (4ak+1 − 4ak) r − 2ak+1 = 0

• Recursion relation that defines series solution to ODE

ak+2 = 2(2akk−2kak+1+2akr−2rak+1+2ak−ak+1)
(k+2+r)(2k+3+2r)

• Recursion relation for r = 0

ak+2 = 2(2akk−2kak+1+2ak−ak+1)
(k+2)(2k+3)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = 2(2akk−2kak+1+2ak−ak+1)

(k+2)(2k+3) , a1 − 2a0 = 0
]

• Revert the change of variables u = x+ 1
2[

y =
∞∑
k=0

ak
(
x+ 1

2

)k
, ak+2 = 2(2akk−2kak+1+2ak−ak+1)

(k+2)(2k+3) , a1 − 2a0 = 0
]

• Recursion relation for r = 1
2

ak+2 = 2(2akk−2kak+1+3ak−2ak+1)(
k+ 5

2
)
(2k+4)

• Solution for r = 1
2
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[
y(u) =

∞∑
k=0

aku
k+ 1

2 , ak+2 = 2(2akk−2kak+1+3ak−2ak+1)(
k+ 5

2
)
(2k+4) , 3a1 = 0

]
• Revert the change of variables u = x+ 1

2[
y =

∞∑
k=0

ak
(
x+ 1

2

)k+ 1
2 , ak+2 = 2(2akk−2kak+1+3ak−2ak+1)(

k+ 5
2
)
(2k+4) , 3a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak
(
x+ 1

2

)k)+
(

∞∑
k=0

bk
(
x+ 1

2

)k+ 1
2

)
, ak+2 = 2(2kak−2ka1+k+2ak−a1+k)

(k+2)(2k+3) , a1 − 2a0 = 0, bk+2 = 2(2kbk−2kb1+k+3bk−2b1+k)(
k+ 5

2
)
(2k+4) , 3b1 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0 `� �
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3 Solution by Maple
Time used: 0.187 (sec). Leaf size: 32� �
dsolve((2*x+1)*diff(y(x),x$2)-2*(2*x^2-1)*diff(y(x),x)-4*(x+1)*y(x)=0,y(x), singsol=all)� �
y(x) = c1HeunB

(
−1
2 ,−2,−1

2 , 3, x+ 1
2

)
+ c2HeunB

(
1
2 ,−2,−1

2 , 3, x+ 1
2

)√
4x+ 2

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(2*x+1)*y''[x]-2*(2*x^2-1)*y'[x]-4*(x+1)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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8.20 problem 23
8.20.1 Solving as second order change of variable on y method 2 ode . 2590
8.20.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2593
8.20.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2599

Internal problem ID [1106]
Internal file name [OUTPUT/1107_Sunday_June_05_2022_02_02_45_AM_46217271/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.1 Homogeneous linear equations.
Page 203
Problem number: 23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x2 − 2x

)
y′′ +

(
−x2 + 2

)
y′ + (2x− 2) y = 0

8.20.1 Solving as second order change of variable on y method 2 ode

In normal form the ode(
x2 − 2x

)
y′′ +

(
−x2 + 2

)
y′ + (2x− 2) y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −x2 + 2
x (−2 + x)

q(x) = 2x− 2
x (−2 + x)
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Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 + n(−x2 + 2)

x2 (−2 + x) +
2x− 2

x (−2 + x) = 0 (5)

Solving (5) for n gives

n = 2 (6)

Substituting this value in (3) gives

v′′(x) +
(
4
x
+ −x2 + 2

x (−2 + x)

)
v′(x) = 0

v′′(x) + (−x2 + 4x− 6) v′(x)
x (−2 + x) = 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) + (−x2 + 4x− 6)u(x)
x (−2 + x) = 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(x2 − 4x+ 6)
x (−2 + x)
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Where f(x) = x2−4x+6
x(−2+x) and g(u) = u. Integrating both sides gives

1
u
du = x2 − 4x+ 6

x (−2 + x) dx∫ 1
u
du =

∫
x2 − 4x+ 6
x (−2 + x) dx

ln (u) = x− 3 ln (x) + ln (−2 + x) + c1

u = ex−3 ln(x)+ln(−2+x)+c1

= c1ex−3 ln(x)+ln(−2+x)

Which simplifies to

u(x) = c1

(
−2 ex

x3 + ex
x2

)

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= exc1
x2 + c2

Hence

y = v(x)xn

=
(
exc1
x2 + c2

)
x2

= c2x
2 + c1ex

Summary
The solution(s) found are the following

(1)y =
(
exc1
x2 + c2

)
x2

Verification of solutions

y =
(
exc1
x2 + c2

)
x2

Verified OK.
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8.20.2 Solving using Kovacic algorithm

Writing the ode as (
x2 − 2x

)
y′′ +

(
−x2 + 2

)
y′ + (2x− 2) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2 − 2x
B = −x2 + 2 (3)
C = 2x− 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x4 − 8x3 + 24x2 − 24x+ 12
4 (x2 − 2x)2

(6)

Comparing the above to (5) shows that

s = x4 − 8x3 + 24x2 − 24x+ 12

t = 4
(
x2 − 2x

)2
Therefore eq. (4) becomes

z′′(x) =
(
x4 − 8x3 + 24x2 − 24x+ 12

4 (x2 − 2x)2
)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

2593



The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 384: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 4
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x2 − 2x)2. There is a pole at x = 0 of order 2. There is a pole at x = 2
of order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then
the necessary conditions for case one are met. Since there is a pole of order 2 then
necessary conditions for case two are met. Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

4 (−2 + x) +
3
4x2 − 3

4x + 3
4 (−2 + x)2
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For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
For the pole at x = 2 let b be the coefficient of 1

(−2+x)2 in the partial fractions decom-
position of r given above. Therefore b = 3

4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
x
+ 2

x3 + 11
x4 + 42

x5 + 132
x6 + 348

x7 + 711
x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)
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Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be

the coefficient in R of the term in x of degree of t minus one, divided by the leading
coefficient in t. Doing long division gives

r = s

t

= x4 − 8x3 + 24x2 − 24x+ 12
4x4 − 16x3 + 16x2

= Q+ R

4x4 − 16x3 + 16x2

=
(
1
4

)
+
(
−4x3 + 20x2 − 24x+ 12

4x4 − 16x3 + 16x2

)
= 1

4 + −4x3 + 20x2 − 24x+ 12
4x4 − 16x3 + 16x2

Since the degree of t is 4, then we see that the coefficient of the term x3 in the remainder
R is −4. Dividing this by leading coefficient in t which is 4 gives −1. Now b can be
found.

b = (−1)− (0)
= −1

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1
2

− 0
)

= −1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1
2

− 0
)

= 1
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The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = x4 − 8x3 + 24x2 − 24x+ 12
4 (x2 − 2x)2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

2 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α+

∞ = −1 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= − 1
2x − 1

2 (−2 + x) +
(
1
2

)
= − 1

2x − 1
2 (−2 + x) +

1
2

= − 1
2x − 1

−4 + 2x + 1
2
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Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x − 1

2 (−2 + x) +
1
2

)
(0) +

((
1
2x2 + 1

2 (−2 + x)2
)
+
(
− 1
2x − 1

2 (−2 + x) +
1
2

)2

−
(
x4 − 8x3 + 24x2 − 24x+ 12

4 (x2 − 2x)2
))

= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x−

1
2(−2+x)+

1
2

)
dx

= ex
2

√
x
√
−2 + x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2+2
x2−2x dx

= z1e
x
2+

ln(x)
2 + ln(−2+x)

2

= z1
(√

x
√
−2 + x ex

2
)

Which simplifies to

y1 =
ex
√
x
√
−2 + x√

x (−2 + x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−x2+2

x2−2x dx

(y1)2
dx

= y1

∫
ex+ln(x)+ln(−2+x)

(y1)2
dx

= y1
(
−x2e−x

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex
√
x
√
−2 + x√

x (−2 + x)

)
+ c2

(
ex
√
x
√
−2 + x√

x (−2 + x)
(
−x2e−x

))

Summary
The solution(s) found are the following

(1)y = c1ex
√
x
√
−2 + x√

x (−2 + x)
− c2x

5
2
√
−2 + x√

x (−2 + x)
Verification of solutions

y = c1ex
√
x
√
−2 + x√

x (−2 + x)
− c2x

5
2
√
−2 + x√

x (−2 + x)

Verified OK.

8.20.3 Maple step by step solution

Let’s solve
(x2 − 2x) y′′ + (−x2 + 2) y′ + (2x− 2) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ =
(
x2−2

)
y′

x(−2+x) −
2y(x−1)
x(−2+x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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y′′ −
(
x2−2

)
y′

x(−2+x) +
2y(x−1)
x(−2+x) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x2−2
x(−2+x) , P3(x) = 2(x−1)

x(−2+x)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x(−2 + x) + (−x2 + 2) y′ + (2x− 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 0..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..2
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xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−2a0r(−2 + r)x−1+r + (−2a1(1 + r) (−1 + r) + a0(1 + r) (−2 + r))xr +
(

∞∑
k=1

(−2ak+1(k + r + 1) (k + r − 1) + ak(k + r + 1) (k + r − 2)− ak−1(k − 3 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term must be 0
−2a1(1 + r) (−1 + r) + a0(1 + r) (−2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 2)− 2k2ak+1 + (−4rak+1 − ak−1) k − 2r2ak+1 − ak−1r + 3ak−1 + 2ak+1 = 0

• Shift index using k− >k + 1
ak+1(k + 2 + r) (k + r − 1)− 2(k + 1)2 ak+2 + (−4rak+2 − ak) (k + 1)− 2r2ak+2 − rak + 3ak + 2ak+2 = 0

• Recursion relation that defines series solution to ODE

ak+2 = k2ak+1+2krak+1+r2ak+1−kak+kak+1−rak+rak+1+2ak−2ak+1
2(k2+2kr+r2+2k+2r)

• Recursion relation for r = 0

ak+2 = k2ak+1−kak+kak+1+2ak−2ak+1
2(k2+2k)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0

ak+2 = k2ak+1−kak+kak+1+2ak−2ak+1
2(k2+2k)

• Recursion relation for r = 2

ak+2 = k2ak+1−kak+5kak+1+4ak+1
2(k2+6k+8)

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+2 = k2ak+1−kak+5kak+1+4ak+1

2(k2+6k+8) ,−6a1 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve((x^2-2*x)*diff(y(x),x$2)+(2-x^2)*diff(y(x),x)+(2*x-2)*y(x)=0,y(x), singsol=all)� �

y(x) = c1x
2 + c2ex

3 Solution by Mathematica
Time used: 0.091 (sec). Leaf size: 18� �
DSolve[(x^2-2*x)*y''[x]+(2-x^2)*y'[x]+(2*x-2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2x
2 + c1e

x
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9 Chapter 5 linear second order equations. Section
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9.1 problem 1
Internal problem ID [1107]
Internal file name [OUTPUT/1108_Sunday_June_05_2022_02_02_47_AM_67231871/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(1 + 2x) y′′ − 2y′ − (2x+ 3) y = (1 + 2x)2

Given that one solution of the ode is

y1 = e−x

This is second order nonhomogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1 + 2x,B = −2, C = −3− 2x, f(x) = 4
(
x+ 1

2

)2. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x) +By′(x) + Cy(x) = 0, and
yp is a particular solution to the inhomogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

(1 + 2x) y′′ − 2y′ + (−3− 2x) y = 0

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)
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Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = − 2
1 + 2x

Therefore

y2(x) = e−x

(∫
e−
(∫

− 2
1+2xdx

)
e2xdx

)
y2(x) = e−x

∫ 1 + 2x
e−2x , dx

y2(x) = e−x

(∫
(1 + 2x) e2xdx

)
y2(x) = e−xx e2x

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1e−x + c2e−xx e2x

Therefore the homogeneous solution yh is

yh = c1e−x + c2e−xx e2x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−x

y2 = e−xx e2x
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ e−x e−xx e2x
d
dx
(e−x) d

dx
(e−xx e2x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ e
−x e−xx e2x

−e−x e−xx e2x + e−xe2x

∣∣∣∣∣∣
Therefore

W =
(
e−x
) (

e−xx e2x + e−xe2x
)
−
(
e−xx e2x

) (
−e−x

)
Which simplifies to

W = 2 e−2xx e2x + e−2xe2x

Which simplifies to
W = 1 + 2x

Therefore Eq. (2) becomes

u1 = −
∫ 4 e−xx e2x

(
x+ 1

2

)2
(1 + 2x)2

dx

Which simplifies to

u1 = −
∫

x exdx

Hence
u1 = −(x− 1) ex
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And Eq. (3) becomes

u2 =
∫ 4 e−x

(
x+ 1

2

)2
(1 + 2x)2

dx

Which simplifies to

u2 =
∫

e−xdx

Hence
u2 = −e−x

Therefore the particular solution, from equation (1) is

yp(x) = −(x− 1) exe−x − e−2xx e2x

Which simplifies to
yp(x) = 1− 2x

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2e−xx e2x

)
+ (1− 2x)

Which simplifies to
y = c1e−x + c2x ex + 1− 2x

Summary
The solution(s) found are the following

(1)y = c1e−x + c2x ex + 1− 2x
Verification of solutions

y = c1e−x + c2x ex + 1− 2x

Verified OK.

2608



Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve([(2*x+1)*diff(y(x),x$2)-2*diff(y(x),x)-(2*x+3)*y(x)=(2*x+1)^2,exp(-x)],singsol=all)� �

y(x) = e−xc2 + x exc1 + 1− 2x

3 Solution by Mathematica
Time used: 0.126 (sec). Leaf size: 33� �
DSolve[(2*x+1)*y''[x]-2*y'[x]-(2*x+3)*y[x]==(2*x+1)^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−x− 1

2 + x
(
−2 + c2e

x+ 1
2

)
+ 1
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9.2 problem 2
Internal problem ID [1108]
Internal file name [OUTPUT/1109_Sunday_June_05_2022_02_02_48_AM_53418085/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_euler_ode", "exact linear second order ode", "second_order_integrable_as_is",
"second_order_change_of_variable_on_x_method_1", "second_order_change_of_vari-
able_on_x_method_2", "second_order_change_of_variable_on_y_method_2",
"second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _nonhomogeneous ]]

x2y′′ + y′x− y = 4
x2

Given that one solution of the ode is

y1 = x

This is second order nonhomogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = x,C = −1, f(x) = 4
x2 . Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x) +By′(x) + Cy(x) = 0, and
yp is a particular solution to the inhomogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ + y′x− y = 0
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Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = 1
x

Therefore

y2(x) = x

(∫ e−
(∫ 1

x
dx
)

x2 dx

)

y2(x) = x

∫ 1
x

x2 , dx

y2(x) = x

(∫ 1
x3dx

)
y2(x) = − 1

2x

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1x− c2
2x

Therefore the homogeneous solution yh is

yh = c1x− c2
2x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

2611



Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = − 1
2x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x − 1
2x

d
dx
(x) d

dx

(
− 1

2x

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣x − 1
2x

1 1
2x2

∣∣∣∣∣∣
Therefore

W = (x)
(

1
2x2

)
−
(
− 1
2x

)
(1)

Which simplifies to

W = 1
x

Which simplifies to

W = 1
x

Therefore Eq. (2) becomes

u1 = −
∫ − 2

x3

x
dx
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Which simplifies to

u1 = −
∫

− 2
x4dx

Hence

u1 = − 2
3x3

And Eq. (3) becomes

u2 =
∫ 4

x

x
dx

Which simplifies to

u2 =
∫ 4

x2dx

Hence

u2 = −4
x

Therefore the particular solution, from equation (1) is

yp(x) =
4
3x2

Therefore the general solution is

y = yh + yp

=
(
c1x− c2

2x

)
+
(

4
3x2

)
Summary
The solution(s) found are the following

(1)y = c1x− c2
2x + 4

3x2

Verification of solutions

y = c1x− c2
2x + 4

3x2

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve([x^2*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=4/x^2,x],singsol=all)� �

y(x) = c2x+ 4
3x2 + c1

x

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 23� �
DSolve[x^2*y''[x]+x*y'[x]-y[x]==4/x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 4
3x2 + c1

x
+ c2x
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9.3 problem 3
Internal problem ID [1109]
Internal file name [OUTPUT/1110_Sunday_June_05_2022_02_02_49_AM_42123006/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_euler_ode", "second_order_change_of_variable_on_x_method_1",
"second_order_change_of_variable_on_x_method_2", "second_order_change_of_vari-
able_on_y_method_2", "second_order_ode_non_constant_coeff_trans-
formation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − y′x+ y = x

Given that one solution of the ode is

y1 = x

This is second order nonhomogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = −x,C = 1, f(x) = x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x) +By′(x) + Cy(x) = 0, and
yp is a particular solution to the inhomogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ − y′x+ y = 0
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Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = −1
x

Therefore

y2(x) = x

(∫ e−
(∫

− 1
x
dx
)

x2 dx

)

y2(x) = x

∫
x

x2 , dx

y2(x) = x

(∫ 1
x
dx

)
y2(x) = x ln (x)

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1x+ ln (x) c2x

Therefore the homogeneous solution yh is

yh = c1x+ ln (x) c2x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = x ln (x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x x ln (x)
d
dx
(x) d

dx
(x ln (x))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x x ln (x)
1 ln (x) + 1

∣∣∣∣∣∣
Therefore

W = (x) (ln (x) + 1)− (x ln (x)) (1)

Which simplifies to
W = x

Which simplifies to
W = x

Therefore Eq. (2) becomes

u1 = −
∫ ln (x)x2

x3 dx
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Which simplifies to

u1 = −
∫ ln (x)

x
dx

Hence

u1 = − ln (x)2

2

And Eq. (3) becomes

u2 =
∫

x2

x3 dx

Which simplifies to

u2 =
∫ 1

x
dx

Hence
u2 = ln (x)

Therefore the particular solution, from equation (1) is

yp(x) =
x ln (x)2

2

Therefore the general solution is

y = yh + yp

= (c1x+ ln (x) c2x) +
(
x ln (x)2

2

)

Which simplifies to

y = x(c1 + c2 ln (x)) +
x ln (x)2

2
Summary
The solution(s) found are the following

(1)y = x(c1 + c2 ln (x)) +
x ln (x)2

2

2618



Verification of solutions

y = x(c1 + c2 ln (x)) +
x ln (x)2

2

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve([x^2*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=x,x],singsol=all)� �

y(x) = x

(
c2 + ln (x) c1 +

ln (x)2

2

)

3 Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 25� �
DSolve[x^2*y''[x]-x*y'[x]+y[x]==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2x
(
log2(x) + 2c2 log(x) + 2c1

)
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9.4 problem 4
9.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2624

Internal problem ID [1110]
Internal file name [OUTPUT/1111_Sunday_June_05_2022_02_02_51_AM_38112855/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − 3y′ + 2y = 1
1 + e−x

Given that one solution of the ode is

y1 = e2x

This is second order nonhomogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −3, C = 2, f(x) = 1
1+e−x . Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x) +By′(x) + Cy(x) = 0, and
yp is a particular solution to the inhomogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 3y′ + 2y = 0
Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)
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Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = −3

Therefore

y2(x) = e2x
(∫

e−
(∫

(−3)dx
)
e−4xdx

)

y2(x) = e2x
∫ e3x

e4x , dx

y2(x) = e2x
(∫

e−xdx

)
y2(x) = −e−xe2x

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1e2x − c2e−xe2x

Therefore the homogeneous solution yh is

yh = c1e2x − c2e−xe2x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e2x

y2 = −e−xe2x
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ e2x −e−xe2x
d
dx
(e2x) d

dx
(−e−xe2x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ e
2x −e−xe2x

2 e2x −e−xe2x

∣∣∣∣∣∣
Therefore

W =
(
e2x
) (

−e−xe2x
)
−
(
−e−xe2x

) (
2 e2x

)
Which simplifies to

W = e4xe−x

Which simplifies to
W = e3x

Therefore Eq. (2) becomes

u1 = −
∫ − e−xe2x

1+e−x

e3x dx

Which simplifies to

u1 = −
∫

− e−2x

1 + e−x
dx

Hence
u1 = −e−x − ln (ex) + ln (1 + ex)
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And Eq. (3) becomes

u2 =
∫ e2x

1+e−x

e3x dx

Which simplifies to

u2 =
∫ e−x

1 + e−x
dx

Hence
u2 = − ln

(
1 + e−x

)
Therefore the particular solution, from equation (1) is

yp(x) =
(
−e−x − ln (ex) + ln (1 + ex)

)
e2x + ln

(
1 + e−x

)
e−xe2x

Which simplifies to

yp(x) = ex
(
− ln (ex) ex + ln (1 + ex) ex + ln

(
1 + e−x

)
− 1
)

Therefore the general solution is

y = yh + yp

=
(
c1e2x − c2e−xe2x

)
+
(
ex
(
− ln (ex) ex + ln (1 + ex) ex + ln

(
1 + e−x

)
− 1
))

Which simplifies to

y = c1e2x − c2ex + ex
(
− ln (ex) ex + ln (1 + ex) ex + ln

(
1 + e−x

)
− 1
)

Summary
The solution(s) found are the following

(1)y = c1e2x − c2ex + ex
(
− ln (ex) ex + ln (1 + ex) ex + ln

(
1 + e−x

)
− 1
)

Verification of solutions

y = c1e2x − c2ex + ex
(
− ln (ex) ex + ln (1 + ex) ex + ln

(
1 + e−x

)
− 1
)

Verified OK.
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9.4.1 Maple step by step solution

Let’s solve
y′′ − 3y′ + 2y = 1

1+e−x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 3r + 2 = 0

• Factor the characteristic polynomial
(r − 1) (r − 2) = 0

• Roots of the characteristic polynomial
r = (1, 2)

• 1st solution of the homogeneous ODE
y1(x) = ex

• 2nd solution of the homogeneous ODE
y2(x) = e2x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1ex + c2e2x + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 1

1+e−x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 ex e2x

ex 2 e2x


◦ Compute Wronskian

W (y1(x) , y2(x)) = e3x

◦ Substitute functions into equation for yp(x)
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yp(x) = −ex
(∫ e−x

1+e−xdx
)
+ e2x

(∫ e−2x

1+e−xdx
)

◦ Compute integrals
yp(x) = ex(− ln (ex) ex + ln (1 + ex) ex + ln (1 + e−x)− 1)

• Substitute particular solution into general solution to ODE
y = c1ex + c2e2x + ex(− ln (ex) ex + ln (1 + ex) ex + ln (1 + e−x)− 1)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
dsolve([diff(y(x),x$2)-3*diff(y(x),x)+2*y(x)=1/(1+exp(-x)),exp(2*x)],singsol=all)� �

y(x) = ex(ln (1 + ex) (1 + ex) + (−1− ex) ln (ex) + exc1 + c2 − 1)

3 Solution by Mathematica
Time used: 0.078 (sec). Leaf size: 34� �
DSolve[y''[x]-3*y'[x]+2*y[x]==1/(1+Exp[-x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(2(ex + 1) arctanh(2ex + 1) + c2e
x − 1 + c1)
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9.5 problem 5
9.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2630

Internal problem ID [1111]
Internal file name [OUTPUT/1112_Sunday_June_05_2022_02_02_52_AM_61219485/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_linear_constant_coeff", "linear_second_order_ode_solved_by_an_in-
tegrating_factor"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − 2y′ + y = 7x 3
2 ex

Given that one solution of the ode is

y1 = ex

This is second order nonhomogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −2, C = 1, f(x) = 7x 3
2 ex. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x) +By′(x) + Cy(x) = 0, and
yp is a particular solution to the inhomogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 2y′ + y = 0
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Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = −2

Therefore

y2(x) = ex
(∫

e−
(∫

(−2)dx
)
e−2xdx

)

y2(x) = ex
∫ e2x

e2x , dx

y2(x) = ex
(∫

1dx
)

y2(x) = x ex

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1ex + c2x ex

Therefore the homogeneous solution yh is

yh = c1ex + c2x ex

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = ex

y2 = x ex

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ ex x ex
d
dx
(ex) d

dx
(x ex)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣e
x x ex

ex x ex + ex

∣∣∣∣∣∣
Therefore

W = (ex) (x ex + ex)− (x ex) (ex)

Which simplifies to
W = e2x

Which simplifies to
W = e2x

Therefore Eq. (2) becomes

u1 = −
∫ 7x 5

2 e2x
e2x dx
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Which simplifies to

u1 = −
∫

7x 5
2dx

Hence
u1 = −2x 7

2

And Eq. (3) becomes

u2 =
∫ 7 e2xx 3

2

e2x dx

Which simplifies to

u2 =
∫

7x 3
2dx

Hence

u2 =
14x 5

2

5

Therefore the particular solution, from equation (1) is

yp(x) =
4x 7

2 ex
5

Therefore the general solution is

y = yh + yp

= (c1ex + c2x ex) +
(
4x 7

2 ex
5

)

Which simplifies to

y = ex(c2x+ c1) +
4x 7

2 ex
5

Summary
The solution(s) found are the following

(1)y = ex(c2x+ c1) +
4x 7

2 ex
5
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Figure 487: Slope field plot

Verification of solutions

y = ex(c2x+ c1) +
4x 7

2 ex
5

Verified OK.

9.5.1 Maple step by step solution

Let’s solve
y′′ − 2y′ + y = 7x 3

2 ex

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 2r + 1 = 0

• Factor the characteristic polynomial
(r − 1)2 = 0

• Root of the characteristic polynomial
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r = 1
• 1st solution of the homogeneous ODE

y1(x) = ex

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x ex

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1ex + c2x ex + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 7x 3

2 ex
]

◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 ex x ex

ex x ex + ex


◦ Compute Wronskian

W (y1(x) , y2(x)) = e2x

◦ Substitute functions into equation for yp(x)

yp(x) = −7 ex
(
−
(∫

x
3
2dx
)
x+

∫
x

5
2dx
)

◦ Compute integrals

yp(x) = 4x
7
2 ex
5

• Substitute particular solution into general solution to ODE

y = c2x ex + c1ex + 4x
7
2 ex
5
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 17� �
dsolve([diff(y(x),x$2)-2*diff(y(x),x)+y(x)=7*x^(3/2)*exp(x),exp(x)],singsol=all)� �

y(x) = ex
(
c2 + c1x+ 4x 7

2

5

)

3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 29� �
DSolve[y''[x]-2*y'[x]+y[x]==7*x^(3/2)*Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
5e

x
(
4x7/2 + 5c2x+ 5c1

)
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9.6 problem 6
Internal problem ID [1112]
Internal file name [OUTPUT/1113_Sunday_June_05_2022_02_02_53_AM_88820714/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "linear_sec-
ond_order_ode_solved_by_an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

4x2y′′ +
(
−8x2 + 4x

)
y′ +

(
4x2 − 4x− 1

)
y = 4

√
x ex(4x+ 1)

Given that one solution of the ode is

y1 =
√
x ex

This is second order nonhomogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 4x2, B = −8x2 + 4x,C = 4x2 − 4x− 1, f(x) = −(−16x− 4) ex
√
x. Let the

solution be
y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x) +By′(x) + Cy(x) = 0, and
yp is a particular solution to the inhomogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

4x2y′′ +
(
−8x2 + 4x

)
y′ +

(
4x2 − 4x− 1

)
y = 0

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)
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Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = −8x2 + 4x
4x2

Therefore

y2(x) =
√
x ex

∫ e−
(∫ −8x2+4x

4x2 dx
)
e−2x

x
dx


y2(x) =

√
x ex

∫ e2x−ln(x)

x e2x , dx

y2(x) =
√
x ex

(∫ 1
x2dx

)
y2(x) = − ex√

x

Hence the solution is
y = c1y1(x) + c2y2(x)

=
√
x exc1 −

c2ex√
x

Therefore the homogeneous solution yh is

yh =
√
x exc1 −

c2ex√
x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
√
x ex

y2 = − ex√
x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
√
x ex − ex√

x

d
dx

(√
x ex

)
d
dx

(
− ex√

x

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣
√
x ex − ex√

x

ex
2
√
x
+
√
x ex ex

2x
3
2
− ex√

x

∣∣∣∣∣∣∣
Therefore

W =
(√

x ex
)( ex

2x 3
2
− ex√

x

)
−
(
− ex√

x

)(
ex

2
√
x
+
√
x ex

)

Which simplifies to

W = e2x
x

Which simplifies to

W = e2x
x
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Therefore Eq. (2) becomes

u1 = −
∫ e2x(−16x− 4)

4x e2x dx

Which simplifies to

u1 = −
∫

−4x− 1
x

dx

Hence
u1 = 4x+ ln (x)

And Eq. (3) becomes

u2 =
∫

−x e2x(−16x− 4)
4x e2x dx

Which simplifies to

u2 =
∫

(4x+ 1) dx

Hence
u2 = 2x2 + x

Therefore the particular solution, from equation (1) is

yp(x) = (4x+ ln (x))
√
x ex − (2x2 + x) ex√

x

Which simplifies to
yp(x) = ex

√
x (ln (x) + 2x− 1)

Therefore the general solution is

y = yh + yp

=
(√

x exc1 −
c2ex√
x

)
+
(
ex
√
x (ln (x) + 2x− 1)

)
Which simplifies to

y = ex(c1x− c2)√
x

+ ex
√
x (ln (x) + 2x− 1)
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Summary
The solution(s) found are the following

(1)y = ex(c1x− c2)√
x

+ ex
√
x (ln (x) + 2x− 1)

Verification of solutions

y = ex(c1x− c2)√
x

+ ex
√
x (ln (x) + 2x− 1)

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 26� �
dsolve([4*x^2*diff(y(x),x$2)+(4*x-8*x^2)*diff(y(x),x)+(4*x^2-4*x-1)*y(x)=4*x^(1/2)*exp(x)*(1+4*x),x^(1/2)*exp(x)],singsol=all)� �

y(x) = (x ln (x) + 2x2 + (c1 − 1)x+ c2) ex√
x
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3 Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 32� �
DSolve[4*x^2*y''[x]+(4*x-8*x^2)*y'[x]+(4*x^2-4*x-1)*y[x]==4*x^(1/2)*Exp[x]*(1+4*x),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(2x2 + x log(x) + (−1 + c2)x+ c1)√
x
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9.7 problem 7
9.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2643

Internal problem ID [1113]
Internal file name [OUTPUT/1114_Sunday_June_05_2022_02_02_54_AM_22826745/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − 2y′ + 2y = ex sec (x)

Given that one solution of the ode is

y1 = cos (x) ex

This is second order nonhomogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −2, C = 2, f(x) = ex sec (x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x) +By′(x) + Cy(x) = 0, and
yp is a particular solution to the inhomogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 2y′ + 2y = 0

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)
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Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = −2

Therefore

y2(x) = cos (x) ex
(∫ e−

(∫
(−2)dx

)
e−2x

cos (x)2
dx

)

y2(x) = cos (x) ex
∫ e2x

cos (x)2 e2x
, dx

y2(x) = cos (x) ex
(∫

sec (x)2 dx
)

y2(x) = cos (x) ex tan (x)

Hence the solution is

y = c1y1(x) + c2y2(x)

= cos (x) exc1 + c2 cos (x) ex tan (x)

Therefore the homogeneous solution yh is

yh = cos (x) exc1 + c2 cos (x) ex tan (x)

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (x) ex

y2 = cos (x) ex tan (x)
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ cos (x) ex cos (x) ex tan (x)
d
dx
(cos (x) ex) d

dx
(cos (x) ex tan (x))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ cos (x) ex cos (x) ex tan (x)
− sin (x) ex + cos (x) ex − sin (x) ex tan (x) + cos (x) ex tan (x) + cos (x) ex

(
1 + tan (x)2

)
∣∣∣∣∣∣

Therefore

W = (cos (x) ex)
(
− sin (x) ex tan (x) + cos (x) ex tan (x) + cos (x) ex

(
1 + tan (x)2

))
− (cos (x) ex tan (x)) (− sin (x) ex + cos (x) ex)

Which simplifies to
W = tan (x)2 e2x cos (x)2 + cos (x)2 e2x

Which simplifies to
W = e2x

Therefore Eq. (2) becomes

u1 = −
∫ cos (x) e2x tan (x) sec (x)

e2x dx

Which simplifies to

u1 = −
∫

tan (x) dx
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Hence
u1 = ln (cos (x))

And Eq. (3) becomes

u2 =
∫ cos (x) e2x sec (x)

e2x dx

Which simplifies to

u2 =
∫

1dx

Hence
u2 = x

Therefore the particular solution, from equation (1) is

yp(x) = ln (cos (x)) cos (x) ex + x cos (x) ex tan (x)

Which simplifies to

yp(x) = ex(ln (cos (x)) cos (x) + sin (x)x)

Therefore the general solution is

y = yh + yp

= (cos (x) exc1 + c2 cos (x) ex tan (x)) + (ex(ln (cos (x)) cos (x) + sin (x)x))

Which simplifies to

y = ex(c1 cos (x) + c2 sin (x)) + ex(ln (cos (x)) cos (x) + sin (x)x)

Summary
The solution(s) found are the following

(1)y = ex(c1 cos (x) + c2 sin (x)) + ex(ln (cos (x)) cos (x) + sin (x)x)
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Figure 488: Slope field plot

Verification of solutions

y = ex(c1 cos (x) + c2 sin (x)) + ex(ln (cos (x)) cos (x) + sin (x)x)

Verified OK.

9.7.1 Maple step by step solution

Let’s solve
y′′ − 2y′ + 2y = ex sec (x)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 2r + 2 = 0

• Use quadratic formula to solve for r

r = 2±
(√

−4
)

2

• Roots of the characteristic polynomial
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r = (1− I, 1 + I)
• 1st solution of the homogeneous ODE

y1(x) = cos (x) ex

• 2nd solution of the homogeneous ODE
y2(x) = sin (x) ex

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = cos (x) exc1 + ex sin (x) c2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = ex sec (x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 cos (x) ex sin (x) ex

− sin (x) ex + cos (x) ex cos (x) ex + sin (x) ex


◦ Compute Wronskian

W (y1(x) , y2(x)) = e2x

◦ Substitute functions into equation for yp(x)
yp(x) = −ex

(
cos (x)

(∫
tan (x) dx

)
− sin (x)

(∫
1dx
))

◦ Compute integrals
yp(x) = ex(ln (cos (x)) cos (x) + sin (x)x)

• Substitute particular solution into general solution to ODE
y = cos (x) exc1 + ex sin (x) c2 + ex(ln (cos (x)) cos (x) + sin (x)x)
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 25� �
dsolve([diff(y(x),x$2)-2*diff(y(x),x)+2*y(x)=exp(x)*sec(x),exp(x)*cos(x)],singsol=all)� �

y(x) = (− cos (x) ln (sec (x)) + cos (x) c1 + sin (x) (c2 + x)) ex

3 Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 26� �
DSolve[y''[x]-2*y'[x]+2*y[x]==Exp[x]*Sec[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex((x+ c1) sin(x) + cos(x)(log(cos(x)) + c2))
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9.8 problem 8
Internal problem ID [1114]
Internal file name [OUTPUT/1115_Sunday_June_05_2022_02_02_56_AM_84972689/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "linear_sec-
ond_order_ode_solved_by_an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 4y′x+
(
4x2 + 2

)
y = 8 e−x(2+x)

Given that one solution of the ode is

y1 = e−x2

This is second order nonhomogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 4x,C = 4x2 + 2, f(x) = 8 e−x(2+x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x) +By′(x) + Cy(x) = 0, and
yp is a particular solution to the inhomogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 4y′x+
(
4x2 + 2

)
y = 0

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)
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Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = 4x

Therefore

y2(x) = e−x2
(∫

e−
(∫

4xdx
)
e2x2

dx

)

y2(x) = e−x2
∫ e−2x2

e−2x2 , dx

y2(x) = e−x2
(∫

1dx
)

y2(x) = x e−x2

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1e−x2 + c2x e−x2

Therefore the homogeneous solution yh is

yh = c1e−x2 + c2x e−x2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−x2

y2 = x e−x2
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
e−x2

x e−x2

d
dx

(
e−x2

)
d
dx

(
x e−x2

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ e−x2
x e−x2

−2x e−x2 e−x2 − 2x2e−x2

∣∣∣∣∣∣
Therefore

W =
(
e−x2

)(
e−x2 − 2x2e−x2

)
−
(
x e−x2

)(
−2x e−x2

)
Which simplifies to

W = e−2x2

Which simplifies to

W = e−2x2

Therefore Eq. (2) becomes

u1 = −
∫ 8x e−x2e−x(2+x)

e−2x2 dx

Which simplifies to

u1 = −
∫

8 e−2xxdx
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Hence
u1 = 2(1 + 2x) e−2x

And Eq. (3) becomes

u2 =
∫ 8 e−x2e−x(2+x)

e−2x2 dx

Which simplifies to

u2 =
∫

8 e−2xdx

Hence
u2 = −4 e−2x

Which simplifies to
u1 = (4x+ 2) e−2x

u2 = −4 e−2x

Therefore the particular solution, from equation (1) is

yp(x) = (4x+ 2) e−2xe−x2 − 4 e−2xx e−x2

Which simplifies to
yp(x) = 2 e−x(2+x)

Therefore the general solution is

y = yh + yp

=
(
c1e−x2 + c2x e−x2

)
+
(
2 e−x(2+x))

Which simplifies to
y = e−x2(c2x+ c1) + 2 e−x(2+x)

Summary
The solution(s) found are the following

(1)y = e−x2(c2x+ c1) + 2 e−x(2+x)
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Verification of solutions

y = e−x2(c2x+ c1) + 2 e−x(2+x)

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 26� �
dsolve([diff(y(x),x$2)+4*x*diff(y(x),x)+(4*x^2+2)*y(x)=8*exp(-x*(x+2)),exp(-x^2)],singsol=all)� �

y(x) = (c1x+ c2) e−x2 + 2 e−x(2+x)

3 Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 29� �
DSolve[y''[x]+4*x*y'[x]+(4*x^2+2)*y[x]==8*Exp[-x*(x+2)],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x(x+2)(2 + e2x(c2x+ c1)
)
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9.9 problem 9
Internal problem ID [1115]
Internal file name [OUTPUT/1116_Sunday_June_05_2022_02_02_57_AM_23492223/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_euler_ode", "second_order_change_of_variable_on_x_method_1",
"second_order_change_of_variable_on_x_method_2", "second_order_change_of_vari-
able_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + y′x− 4y = −6x− 4

Given that one solution of the ode is

y1 = x2

This is second order nonhomogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = x,C = −4, f(x) = −6x− 4. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x) +By′(x) + Cy(x) = 0, and
yp is a particular solution to the inhomogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ + y′x− 4y = 0
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Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = 1
x

Therefore

y2(x) = x2

(∫ e−
(∫ 1

x
dx
)

x4 dx

)

y2(x) = x2
∫ 1

x

x4 , dx

y2(x) = x2
(∫ 1

x5dx

)
y2(x) = − 1

4x2

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1x
2 − c2

4x2

Therefore the homogeneous solution yh is

yh = c1x
2 − c2

4x2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x2

y2 = − 1
4x2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x2 − 1
4x2

d
dx
(x2) d

dx

(
− 1

4x2

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣x
2 − 1

4x2

2x 1
2x3

∣∣∣∣∣∣
Therefore

W =
(
x2)( 1

2x3

)
−
(
− 1
4x2

)
(2x)

Which simplifies to

W = 1
x

Which simplifies to

W = 1
x

2653



Therefore Eq. (2) becomes

u1 = −
∫ −−6x−4

4x2

x
dx

Which simplifies to

u1 = −
∫ 3x+ 2

2x3 dx

Hence

u1 =
3
2x + 1

2x2

And Eq. (3) becomes

u2 =
∫

x2(−6x− 4)
x

dx

Which simplifies to

u2 =
∫ (

−6x2 − 4x
)
dx

Hence
u2 = −2x3 − 2x2

Therefore the particular solution, from equation (1) is

yp(x) =
(

3
2x + 1

2x2

)
x2 − −2x3 − 2x2

4x2

Which simplifies to
yp(x) = 1 + 2x

Therefore the general solution is

y = yh + yp

=
(
c1x

2 − c2
4x2

)
+ (1 + 2x)

Summary
The solution(s) found are the following

(1)y = c1x
2 − c2

4x2 + 1 + 2x
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Verification of solutions

y = c1x
2 − c2

4x2 + 1 + 2x

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve([x^2*diff(y(x),x$2)+x*diff(y(x),x)-4*y(x)=-6*x-4,x^2],singsol=all)� �

y(x) = c2
x2 + c1x

2 + 2x+ 1

3 Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 22� �
DSolve[x^2*y''[x]+x*y'[x]-4*y[x]==-6*x-4,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2x
2 + c1

x2 + 2x+ 1
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9.10 problem 10
Internal problem ID [1116]
Internal file name [OUTPUT/1117_Sunday_June_05_2022_02_02_58_AM_90097776/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

x2y′′ + 2x(x− 1) y′ +
(
x2 − 2x+ 2

)
y = e2xx3

Given that one solution of the ode is

y1 = x e−x

This is second order nonhomogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = 2x2 − 2x,C = x2 − 2x+ 2, f(x) = e2xx3. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x) +By′(x) + Cy(x) = 0, and
yp is a particular solution to the inhomogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ +
(
2x2 − 2x

)
y′ +

(
x2 − 2x+ 2

)
y = 0

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)
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Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = 2x2 − 2x
x2

Therefore

y2(x) = x e−x

∫ e−
(∫ 2x2−2x

x2 dx
)
e2x

x2 dx


y2(x) = x e−x

∫ e−2x+2 ln(x)

x2e−2x , dx

y2(x) = x e−x

(∫
1dx
)

y2(x) = x2e−x

Hence the solution is
y = c1y1(x) + c2y2(x)

= x e−xc1 + c2x
2e−x

Therefore the homogeneous solution yh is

yh = x e−xc1 + c2x
2e−x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x e−x

y2 = x2e−x
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x e−x x2e−x

d
dx
(x e−x) d

dx
(x2e−x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ x e−x x2e−x

e−x − x e−x 2x e−x − x2e−x

∣∣∣∣∣∣
Therefore

W =
(
x e−x

) (
2x e−x − x2e−x

)
−
(
x2e−x

) (
e−x − x e−x

)
Which simplifies to

W = x2e−2x

Which simplifies to
W = x2e−2x

Therefore Eq. (2) becomes

u1 = −
∫

x5e−xe2x
x4e−2x dx

Which simplifies to

u1 = −
∫

x e3xdx

Hence

u1 = −(3x− 1) e3x
9

2658



And Eq. (3) becomes

u2 =
∫

x4e−xe2x
x4e−2x dx

Which simplifies to

u2 =
∫

e3xdx

Hence

u2 =
e3x
3

Therefore the particular solution, from equation (1) is

yp(x) = −(3x− 1) e3xx e−x

9 + e3xx2e−x

3

Which simplifies to

yp(x) =
x e2x
9

Therefore the general solution is

y = yh + yp

=
(
x e−xc1 + c2x

2e−x
)
+
(
x e2x
9

)
Which simplifies to

y = e−xx(c2x+ c1) +
x e2x
9

Summary
The solution(s) found are the following

(1)y = e−xx(c2x+ c1) +
x e2x
9

Verification of solutions

y = e−xx(c2x+ c1) +
x e2x
9

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 27� �
dsolve([x^2*diff(y(x),x$2)+2*x*(x-1)*diff(y(x),x)+(x^2-2*x+2)*y(x)=x^3*exp(2*x),x*exp(-x)],singsol=all)� �

y(x) = x(e2x + 9c1x e−x + 9 e−xc2)
9

3 Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 30� �
DSolve[x^2*y''[x]+2*x*(x-1)*y'[x]+(x^2-2*x+2)*y[x]==x^3*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
9e

−xx
(
e3x + 9(c2x+ c1)

)
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9.11 problem 11
Internal problem ID [1117]
Internal file name [OUTPUT/1118_Sunday_June_05_2022_02_03_00_AM_69233257/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

x2y′′ − x(2x− 1) y′ +
(
x2 − x− 1

)
y = x2ex

Given that one solution of the ode is

y1 = x ex

This is second order nonhomogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = −2x2 + x,C = x2 − x− 1, f(x) = x2ex. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x) +By′(x) + Cy(x) = 0, and
yp is a particular solution to the inhomogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ +
(
−2x2 + x

)
y′ +

(
x2 − x− 1

)
y = 0

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)
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Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = −2x2 + x

x2

Therefore

y2(x) = x ex
∫ e−

(∫ −2x2+x
x2 dx

)
e−2x

x2 dx


y2(x) = x ex

∫ e2x−ln(x)

x2e2x , dx

y2(x) = x ex
(∫ 1

x3dx

)
y2(x) = − ex

2x

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1x ex −
c2ex
2x

Therefore the homogeneous solution yh is

yh = c1x ex −
c2ex
2x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
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homogeneous ODE as
y1 = x ex

y2 = − ex
2x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x ex − ex
2x

d
dx
(x ex) d

dx

(
− ex

2x

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ x ex − ex
2x

x ex + ex − ex
2x + ex

2x2

∣∣∣∣∣∣
Therefore

W = (x ex)
(
− ex
2x + ex

2x2

)
−
(
− ex
2x

)
(x ex + ex)

Which simplifies to

W = e2x
x

Which simplifies to

W = e2x
x

Therefore Eq. (2) becomes

u1 = −
∫ −x e2x

2
x e2x dx
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Which simplifies to

u1 = −
∫

−1
2dx

Hence
u1 =

x

2

And Eq. (3) becomes

u2 =
∫ e2xx3

x e2x dx

Which simplifies to

u2 =
∫

x2dx

Hence

u2 =
x3

3

Therefore the particular solution, from equation (1) is

yp(x) =
x2ex
3

Therefore the general solution is

y = yh + yp

=
(
c1x ex −

c2ex
2x

)
+
(
x2ex
3

)
Summary
The solution(s) found are the following

(1)y = c1x ex −
c2ex
2x + x2ex

3
Verification of solutions

y = c1x ex −
c2ex
2x + x2ex

3

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 24� �
dsolve([x^2*diff(y(x),x$2)-x*(2*x-1)*diff(y(x),x)+(x^2-x-1)*y(x)=x^2*exp(x),x*exp(x)],singsol=all)� �

y(x) = ex(3c1x2 + x3 + 3c2)
3x

3 Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 32� �
DSolve[x^2*y''[x]-x*(2*x-1)*y'[x]+(x^2-x-1)*y[x]==x^2*Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(2x3 + 3c2x2 + 6c1)
6x
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9.12 problem 12
Internal problem ID [1118]
Internal file name [OUTPUT/1119_Sunday_June_05_2022_02_03_01_AM_77209729/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

(1− 2x) y′′ + 2y′ + (−3 + 2x) y =
(
4x2 − 4x+ 1

)
ex

Given that one solution of the ode is

y1 = ex

This is second order nonhomogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1− 2x,B = 2, C = −3 + 2x, f(x) = (2x− 1)2 ex. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x) +By′(x) + Cy(x) = 0, and
yp is a particular solution to the inhomogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

(1− 2x) y′′ + 2y′ + (−3 + 2x) y = 0

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)
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Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = 2
1− 2x

Therefore

y2(x) = ex
(∫

e−
(∫ 2

1−2xdx
)
e−2xdx

)
y2(x) = ex

∫ 1− 2x
e2x , dx

y2(x) = ex
(∫

(1− 2x) e−2xdx

)
y2(x) = exe−2xx

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1ex + c2exe−2xx

Therefore the homogeneous solution yh is

yh = c1ex + c2exe−2xx

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = ex

y2 = exe−2xx
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ ex exe−2xx

d
dx
(ex) d

dx
(exe−2xx)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣e
x exe−2xx

ex −exe−2xx+ e−2xex

∣∣∣∣∣∣
Therefore

W = (ex)
(
−exe−2xx+ e−2xex

)
−
(
exe−2xx

)
(ex)

Which simplifies to
W = −2 e−2xx e2x + e2xe−2x

Which simplifies to
W = 1− 2x

Therefore Eq. (2) becomes

u1 = −
∫ e2xe−2xx(2x− 1)2

(1− 2x)2
dx

Which simplifies to

u1 = −
∫

xdx
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Hence

u1 = −x2

2

And Eq. (3) becomes

u2 =
∫ e2x(2x− 1)2

(1− 2x)2
dx

Which simplifies to

u2 =
∫

e2xdx

Hence

u2 =
e2x
2

Therefore the particular solution, from equation (1) is

yp(x) = −x2ex
2 + e2xexe−2xx

2

Which simplifies to

yp(x) = −exx(x− 1)
2

Therefore the general solution is

y = yh + yp

=
(
c1ex + c2exe−2xx

)
+
(
−exx(x− 1)

2

)
Which simplifies to

y = c1ex + x e−xc2 −
exx(x− 1)

2
Summary
The solution(s) found are the following

(1)y = c1ex + x e−xc2 −
exx(x− 1)

2
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Verification of solutions

y = c1ex + x e−xc2 −
exx(x− 1)

2

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 26� �
dsolve([(1-2*x)*diff(y(x),x$2)+2*diff(y(x),x)+(2*x-3)*y(x)=(1-4*x+4*x^2)*exp(x),exp(x)],singsol=all)� �

y(x) = c1x e−x − ex(x2 − 2c2 − x)
2

3 Solution by Mathematica
Time used: 0.254 (sec). Leaf size: 77� �
DSolve[(1-2*x)*y''[x]+2*y'[x]+(2*x-3)*y[x]==(1-4*x+4*x^2)*Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2e

x(x− 1)x− c2e
1
2−x

√
1− 2xx√

2x− 1
+ c1e

x− 1
2
√
1− 2x√

2x− 1

2670



9.13 problem 13
Internal problem ID [1119]
Internal file name [OUTPUT/1120_Sunday_June_05_2022_02_03_02_AM_15823335/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_euler_ode", "second_order_change_of_variable_on_x_method_1",
"second_order_change_of_variable_on_x_method_2", "second_order_change_of_vari-
able_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − 3y′x+ 4y = 4x4

Given that one solution of the ode is

y1 = x2

This is second order nonhomogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = −3x,C = 4, f(x) = 4x4. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x) +By′(x) + Cy(x) = 0, and
yp is a particular solution to the inhomogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ − 3y′x+ 4y = 0
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Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = −3
x

Therefore

y2(x) = x2

(∫ e−
(∫

− 3
x
dx
)

x4 dx

)

y2(x) = x2
∫

x3

x4 , dx

y2(x) = x2
(∫ 1

x
dx

)
y2(x) = ln (x)x2

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1x
2 + c2 ln (x)x2

Therefore the homogeneous solution yh is

yh = c1x
2 + c2 ln (x)x2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x2

y2 = ln (x)x2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x2 ln (x)x2

d
dx
(x2) d

dx
(ln (x)x2)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x
2 ln (x)x2

2x x+ 2x ln (x)

∣∣∣∣∣∣
Therefore

W =
(
x2) (x+ 2x ln (x))−

(
ln (x)x2) (2x)

Which simplifies to
W = x3

Which simplifies to
W = x3

Therefore Eq. (2) becomes

u1 = −
∫ 4 ln (x)x6

x5 dx
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Which simplifies to

u1 = −
∫

4x ln (x) dx

Hence
u1 = −2 ln (x)x2 + x2

And Eq. (3) becomes

u2 =
∫ 4x6

x5 dx

Which simplifies to

u2 =
∫

4xdx

Hence
u2 = 2x2

Which simplifies to
u1 = x2(1− 2 ln (x))

u2 = 2x2

Therefore the particular solution, from equation (1) is

yp(x) = x4(1− 2 ln (x)) + 2x4 ln (x)

Which simplifies to
yp(x) = x4

Therefore the general solution is

y = yh + yp

=
(
c1x

2 + c2 ln (x)x2)+ (x4)
Which simplifies to

y = x2(c1 + c2 ln (x)) + x4
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Summary
The solution(s) found are the following

(1)y = x2(c1 + c2 ln (x)) + x4

Verification of solutions

y = x2(c1 + c2 ln (x)) + x4

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve([x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+4*y(x)=4*x^4,x^2],singsol=all)� �

y(x) = x2(ln (x) c1 + x2 + c2
)

3 Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 21� �
DSolve[x^2*y''[x]-3*x*y'[x]+4*y[x]==4*x^4,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2(x2 + 2c2 log(x) + c1
)
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9.14 problem 14
Internal problem ID [1120]
Internal file name [OUTPUT/1121_Sunday_June_05_2022_02_03_03_AM_94218790/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

2xy′′ + (4x+ 1) y′ + (1 + 2x) y = 3
√
x e−x

Given that one solution of the ode is

y1 = e−x

This is second order nonhomogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 2x,B = 4x+ 1, C = 1 + 2x, f(x) = 3
√
x e−x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x) +By′(x) + Cy(x) = 0, and
yp is a particular solution to the inhomogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

2xy′′ + (4x+ 1) y′ + (1 + 2x) y = 0

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)
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Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = 4x+ 1
2x

Therefore

y2(x) = e−x

(∫
e−
(∫ 4x+1

2x dx
)
e2xdx

)

y2(x) = e−x

∫ e−2x− ln(x)
2

e−2x , dx

y2(x) = e−x

(∫ 1√
x
dx

)
y2(x) = 2

√
x e−x

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1e−x + 2c2
√
x e−x

Therefore the homogeneous solution yh is

yh = c1e−x + 2c2
√
x e−x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−x

y2 = 2
√
x e−x
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ e−x 2
√
x e−x

d
dx
(e−x) d

dx

(
2
√
x e−x

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ e
−x 2

√
x e−x

−e−x e−x
√
x
− 2

√
x e−x

∣∣∣∣∣∣
Therefore

W =
(
e−x
)(e−x

√
x
− 2

√
x e−x

)
−
(
2
√
x e−x

) (
−e−x

)
Which simplifies to

W = e−2x
√
x

Which simplifies to

W = e−2x
√
x

Therefore Eq. (2) becomes

u1 = −
∫ 6 e−2xx

2 e−2x√x
dx

Which simplifies to

u1 = −
∫

3
√
xdx
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Hence
u1 = −2x 3

2

And Eq. (3) becomes

u2 =
∫ 3 e−2x√x

2 e−2x√x
dx

Which simplifies to

u2 =
∫ 3

2dx

Hence

u2 =
3x
2

Therefore the particular solution, from equation (1) is

yp(x) = x
3
2 e−x

Therefore the general solution is

y = yh + yp

=
(
c1e−x + 2c2

√
x e−x

)
+
(
x

3
2 e−x

)
Which simplifies to

y = e−x
(
c1 + 2

√
x c2
)
+ x

3
2 e−x

Summary
The solution(s) found are the following

(1)y = e−x
(
c1 + 2

√
x c2
)
+ x

3
2 e−x

Verification of solutions

y = e−x
(
c1 + 2

√
x c2
)
+ x

3
2 e−x

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 19� �
dsolve([2*x*diff(y(x),x$2)+(4*x+1)*diff(y(x),x)+(2*x+1)*y(x)=3*x^(1/2)*exp(-x),exp(-x)],singsol=all)� �

y(x) = e−x
(
c2 + c1

√
x+ x

3
2

)
3 Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 28� �
DSolve[2*x*y''[x]+(4*x+1)*y'[x]+(2*x+1)*y[x]==3*x^(1/2)*Exp[-x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x
(
x3/2 + 2c2

√
x+ c1

)
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9.15 problem 15
Internal problem ID [1121]
Internal file name [OUTPUT/1122_Sunday_June_05_2022_02_03_05_AM_27284816/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

xy′′ − (1 + 2x) y′ + (x+ 1) y = −e−x

Given that one solution of the ode is

y1 = ex

This is second order nonhomogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x,B = −1− 2x,C = x+ 1, f(x) = −e−x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x) +By′(x) + Cy(x) = 0, and
yp is a particular solution to the inhomogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

xy′′ + (−1− 2x) y′ + (x+ 1) y = 0

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)
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Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = −1− 2x
x

Therefore

y2(x) = ex
(∫

e−
(∫ −1−2x

x
dx
)
e−2xdx

)

y2(x) = ex
∫ e2x+ln(x)

e2x , dx

y2(x) = ex
(∫

xdx

)

y2(x) =
x2ex
2

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1ex +
c2x

2ex
2

Therefore the homogeneous solution yh is

yh = c1ex +
c2x

2ex
2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = ex

y2 =
x2ex
2
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
ex x2ex

2

d
dx
(ex) d

dx

(
x2ex
2

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣e
x x2ex

2

ex x ex + x2ex
2

∣∣∣∣∣∣
Therefore

W = (ex)
(
x ex + x2ex

2

)
−
(
x2ex
2

)
(ex)

Which simplifies to
W = x e2x

Which simplifies to
W = x e2x

Therefore Eq. (2) becomes

u1 = −
∫ −x2exe−x

2
x2e2x dx

Which simplifies to

u1 = −
∫

−e−2x

2 dx
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Hence

u1 = −e−2x

4

And Eq. (3) becomes

u2 =
∫

−e−xex
x2e2x dx

Which simplifies to

u2 =
∫

−e−2x

x2 dx

Hence

u2 =
e−2x

x
− 2 expIntegral1 (2x)

Which simplifies to

u1 = −e−2x

4

u2 =
−2 expIntegral1 (2x)x+ e−2x

x

Therefore the particular solution, from equation (1) is

yp(x) = −e−2xex
4 + (−2 expIntegral1 (2x)x+ e−2x)x ex

2

Which simplifies to

yp(x) = −ex expIntegral1 (2x)x2 + e−x(2x− 1)
4

Therefore the general solution is

y = yh + yp

=
(
c1ex +

c2x
2ex
2

)
+
(
−ex expIntegral1 (2x)x2 + e−x(2x− 1)

4

)
Which simplifies to

y = ex
(
c1 +

c2x
2

2

)
− ex expIntegral1 (2x)x2 + e−x(2x− 1)

4

2684



Summary
The solution(s) found are the following

(1)y = ex
(
c1 +

c2x
2

2

)
− ex expIntegral1 (2x)x2 + e−x(2x− 1)

4
Verification of solutions

y = ex
(
c1 +

c2x
2

2

)
− ex expIntegral1 (2x)x2 + e−x(2x− 1)

4

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 38� �
dsolve([x*diff(y(x),x$2)-(2*x+1)*diff(y(x),x)+(x+1)*y(x)=-exp(-x),exp(x)],singsol=all)� �

y(x) = − expIntegral1 (2x)x2ex + e−x(2x− 1)
4 + ex

(
c1x

2 + c2
)
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3 Solution by Mathematica
Time used: 0.073 (sec). Leaf size: 52� �
DSolve[x*y''[x]-(2*x+1)*y'[x]+(x+1)*y[x]==-Exp[-x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → exx2 ExpIntegralEi(−2x) + 1
4e

−x
(
2c2e2xx2 + 2x+ 4c1e2x − 1

)
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9.16 problem 16
Internal problem ID [1122]
Internal file name [OUTPUT/1123_Sunday_June_05_2022_02_03_06_AM_43908000/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 16.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_change_of_variable_on_y_method_1", "second_order_change_of_vari-
able_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

4x2y′′ − 4x(x+ 1) y′ + (2x+ 3) y = 4x 5
2 e2x

Given that one solution of the ode is

y1 =
√
x

This is second order nonhomogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 4x2, B = −4x2 − 4x,C = 2x+ 3, f(x) = 4x 5
2 e2x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x) +By′(x) + Cy(x) = 0, and
yp is a particular solution to the inhomogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

4x2y′′ +
(
−4x2 − 4x

)
y′ + (2x+ 3) y = 0

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)
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Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = −4x2 − 4x
4x2

Therefore

y2(x) =
√
x

∫ e−
(∫ −4x2−4x

4x2 dx
)

x
dx


y2(x) =

√
x

∫ ex+ln(x)

x
, dx

y2(x) =
√
x

(∫
exdx

)
y2(x) =

√
x ex

Hence the solution is
y = c1y1(x) + c2y2(x)

=
√
x c1 + c2

√
x ex

Therefore the homogeneous solution yh is

yh =
√
x c1 + c2

√
x ex

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
√
x

y2 =
√
x ex
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣
√
x

√
x ex

d
dx

(√
x
)

d
dx

(√
x ex

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣
√
x

√
x ex

1
2
√
x

ex
2
√
x
+
√
x ex

∣∣∣∣∣∣
Therefore

W =
(√

x
)( ex

2
√
x
+
√
x ex

)
−
(√

x ex
)( 1

2
√
x

)
Which simplifies to

W = x ex

Which simplifies to
W = x ex

Therefore Eq. (2) becomes

u1 = −
∫ 4x3exe2x

4 exx3 dx

Which simplifies to

u1 = −
∫

e2xdx

Hence

u1 = −e2x
2
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And Eq. (3) becomes

u2 =
∫ 4 e2xx3

4 exx3 dx

Which simplifies to

u2 =
∫

exdx

Hence
u2 = ex

Therefore the particular solution, from equation (1) is

yp(x) =
e2x

√
x

2

Which simplifies to

yp(x) =
e2x

√
x

2

Therefore the general solution is

y = yh + yp

=
(√

x c1 + c2
√
x ex

)
+
(
e2x

√
x

2

)
Which simplifies to

y = (c1 + c2ex)
√
x+ e2x

√
x

2
Summary
The solution(s) found are the following

(1)y = (c1 + c2ex)
√
x+ e2x

√
x

2
Verification of solutions

y = (c1 + c2ex)
√
x+ e2x

√
x

2

Verified OK.

2690



Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 20� �
dsolve([4*x^2*diff(y(x),x$2)-4*x*(x+1)*diff(y(x),x)+(2*x+3)*y(x)=4*x^(5/2)*exp(2*x),x^(1/2)],singsol=all)� �

y(x) =
(
c2 + exc1 +

e2x
2

)√
x

3 Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 31� �
DSolve[4*x^2*y''[x]-4*x*(x+1)*y'[x]+(2*x+3)*y[x]==4*x^(5/2)*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2
√
x
(
e2x + 2c2ex + 2c1

)
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9.17 problem 17
Internal problem ID [1123]
Internal file name [OUTPUT/1124_Sunday_June_05_2022_02_03_08_AM_68602730/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_euler_ode", "second_order_change_of_variable_on_x_method_1",
"second_order_change_of_variable_on_x_method_2", "second_order_change_of_vari-
able_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − 5y′x+ 8y = 4x2

Given that one solution of the ode is

y1 = x2

This is second order nonhomogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = −5x,C = 8, f(x) = 4x2. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x) +By′(x) + Cy(x) = 0, and
yp is a particular solution to the inhomogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ − 5y′x+ 8y = 0
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Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = −5
x

Therefore

y2(x) = x2

(∫ e−
(∫

− 5
x
dx
)

x4 dx

)

y2(x) = x2
∫

x5

x4 , dx

y2(x) = x2
(∫

xdx

)

y2(x) =
x4

2

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1x
2 + 1

2c2x
4

Therefore the homogeneous solution yh is

yh = c1x
2 + 1

2c2x
4

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x2

y2 =
x4

2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
x2 x4

2

d
dx
(x2) d

dx

(
x4

2

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣x
2 x4

2

2x 2x3

∣∣∣∣∣∣
Therefore

W =
(
x2) (2x3)− (x4

2

)
(2x)

Which simplifies to
W = x5

Which simplifies to
W = x5

Therefore Eq. (2) becomes

u1 = −
∫ 2x6

x7 dx
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Which simplifies to

u1 = −
∫ 2

x
dx

Hence
u1 = −2 ln (x)

And Eq. (3) becomes

u2 =
∫ 4x4

x7 dx

Which simplifies to

u2 =
∫ 4

x3dx

Hence

u2 = − 2
x2

Therefore the particular solution, from equation (1) is

yp(x) = −2 ln (x)x2 − x2

Which simplifies to
yp(x) = x2(−1− 2 ln (x))

Therefore the general solution is

y = yh + yp

=
(
c1x

2 + 1
2c2x

4
)
+
(
x2(−1− 2 ln (x))

)
Summary
The solution(s) found are the following

(1)y = c1x
2 + c2x

4

2 + x2(−1− 2 ln (x))

Verification of solutions

y = c1x
2 + c2x

4

2 + x2(−1− 2 ln (x))

Verified OK.

2695



Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
dsolve([x^2*diff(y(x),x$2)-5*x*diff(y(x),x)+8*y(x)=4*x^2,x^2],singsol=all)� �

y(x) = x2(c2x2 − 2 ln (x) + c1 − 1
)

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 23� �
DSolve[x^2*y''[x]-5*x*y'[x]+8*y[x]==4*x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2(c2x2 − 2 log(x)− 1 + c1
)
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9.18 problem 18
9.18.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2698

Internal problem ID [1124]
Internal file name [OUTPUT/1125_Sunday_June_05_2022_02_03_09_AM_23081873/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_change_of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ + (−2x+ 2) y′ + (−2 + x) y = 0

Given that one solution of the ode is

y1 = ex

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = −2x+ 2
x
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Therefore

y2(x) = ex
(∫

e−
(∫ −2x+2

x
dx
)
e−2xdx

)

y2(x) = ex
∫ e2x−2 ln(x)

e2x , dx

y2(x) = ex
(∫ 1

x2dx

)
y2(x) = −ex

x

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1ex −
c2ex
x

Summary
The solution(s) found are the following

(1)y = c1ex −
c2ex
x

Verification of solutions

y = c1ex −
c2ex
x

Verified OK.

9.18.1 Maple step by step solution

Let’s solve
y′′x+ (−2x+ 2) y′ + (−2 + x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (−2+x)y
x

+ 2(x−1)y′
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − 2(x−1)y′
x

+ (−2+x)y
x

= 0

2698



� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2(x−1)
x

, P3(x) = −2+x
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ (−2x+ 2) y′ + (−2 + x) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion
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x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + (a1(1 + r) (2 + r)− 2a0(1 + r))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (k + 2 + r)− 2ak(k + 1 + r) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r)− 2a0(1 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + 2 + r)− 2akk − 2akr − 2ak + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r)− 2ak+1(k + 1)− 2rak+1 − 2ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1+2rak+1−ak+4ak+1

(k+2+r)(k+3+r)

• Recursion relation for r = −1
ak+2 = 2kak+1−ak+2ak+1

(k+1)(k+2)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = 2kak+1−ak+2ak+1

(k+1)(k+2) , 0 = 0
]

• Recursion relation for r = 0
ak+2 = 2kak+1−ak+4ak+1

(k+2)(k+3)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = 2kak+1−ak+4ak+1

(k+2)(k+3) , 2a1 − 2a0 = 0
]

• Combine solutions and rename parameters
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[
y =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = 2ka1+k−ak+2a1+k

(1+k)(k+2) , 0 = 0, bk+2 = 2kb1+k−bk+4b1+k

(k+2)(k+3) , 2b1 − 2b0 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 15� �
dsolve([x*diff(y(x),x$2)+(2-2*x)*diff(y(x),x)+(x-2)*y(x)=0,exp(x)],singsol=all)� �

y(x) = ex(c1x+ c2)
x

3 Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 19� �
DSolve[x*y''[x]+(2-2*x)*y'[x]+(x-2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(c2x+ c1)
x
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9.19 problem 19
9.19.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2703

Internal problem ID [1125]
Internal file name [OUTPUT/1126_Sunday_June_05_2022_02_03_10_AM_52368277/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_euler_ode", "second_order_change_of_variable_on_x_method_1",
"second_order_change_of_variable_on_x_method_2", "second_order_change_of_vari-
able_on_y_method_1", "second_order_change_of_variable_on_y_method_2",
"linear_second_order_ode_solved_by_an_integrating_factor"

Maple gives the following as the ode type
[[_Emden , _Fowler], [_2nd_order , _linear , `_with_symmetry_ [0,F(

x)]`]]

x2y′′ − 4y′x+ 6y = 0

Given that one solution of the ode is

y1 = x2

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

2702



Looking at the ode to solve shows that

p(x) = −4
x

Therefore

y2(x) = x2

(∫ e−
(∫

− 4
x
dx
)

x4 dx

)

y2(x) = x2
∫

x4

x4 , dx

y2(x) = x2
(∫

1dx
)

y2(x) = x3

Hence the solution is
y = c1y1(x) + c2y2(x)

= c2x
3 + c1x

2

Summary
The solution(s) found are the following

(1)y = c2x
3 + c1x

2

Verification of solutions

y = c2x
3 + c1x

2

Verified OK.

9.19.1 Maple step by step solution

Let’s solve
x2y′′ − 4y′x+ 6y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 4y′

x
− 6y

x2
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 4y′

x
+ 6y

x2 = 0

• Multiply by denominators of the ODE
x2y′′ − 4y′x+ 6y = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

y′ =
(

d
dt
y(t)

)
t′(x)

◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE

x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
− 4 d

dt
y(t) + 6y(t) = 0

• Simplify
d2

dt2
y(t)− 5 d

dt
y(t) + 6y(t) = 0

• Characteristic polynomial of ODE
r2 − 5r + 6 = 0

• Factor the characteristic polynomial
(r − 2) (r − 3) = 0

• Roots of the characteristic polynomial
r = (2, 3)

• 1st solution of the ODE
y1(t) = e2t

• 2nd solution of the ODE
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y2(t) = e3t

• General solution of the ODE
y(t) = c1y1(t) + c2y2(t)

• Substitute in solutions
y(t) = c1e2t + c2e3t

• Change variables back using t = ln (x)
y = c2x

3 + c1x
2

• Simplify
y = x2(c2x+ c1)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 13� �
dsolve([x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+6*y(x)=0,x^2],singsol=all)� �

y(x) = x2(c1x+ c2)

3 Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 16� �
DSolve[x^2*y''[x]-4*x*y'[x]+6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2(c2x+ c1)
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9.20 problem 20
Internal problem ID [1126]
Internal file name [OUTPUT/1127_Sunday_June_05_2022_02_03_11_AM_7309673/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 20.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_change_of_variable_on_y_method_1", "second_order_ode_non_con-
stant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2 ln (x)2 y′′ − 2x ln (x) y′ + (2 + ln (x)) y = 0

Given that one solution of the ode is

y1 = ln (x)

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = − 2
x ln (x)
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Therefore

y2(x) = ln (x)

∫ e−
(∫

− 2
x ln(x)dx

)
ln (x)2

dx


y2(x) = ln (x)

∫ ln (x)2

ln (x)2
, dx

y2(x) = ln (x)
(∫

1dx
)

y2(x) = x ln (x)

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1 ln (x) + ln (x) c2x

Summary
The solution(s) found are the following

(1)y = c1 ln (x) + ln (x) c2x
Verification of solutions

y = c1 ln (x) + ln (x) c2x

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve([x^2*(ln(x))^2*diff(y(x),x$2)-2*x*ln(x)*diff(y(x),x)+(2+ln(x))*y(x)=0,ln(x)],singsol=all)� �

y(x) = ln (x) (c2x+ c1)

3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 15� �
DSolve[x^2*Log[x]^2*y''[x]-2*x*Log[x]*y'[x]+(2+Log[x])*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (c2x+ c1) log(x)
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9.21 problem 21
9.21.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2710

Internal problem ID [1127]
Internal file name [OUTPUT/1128_Sunday_June_05_2022_02_03_11_AM_90055498/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 21.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_bessel_ode", "second_order_change_of_variable_on_x_method_1",
"second_order_change_of_variable_on_x_method_2"

Maple gives the following as the ode type
[[_Emden , _Fowler], [_2nd_order , _linear , `_with_symmetry_ [0,F(

x)]`]]

4xy′′ + 2y′ + y = 0

Given that one solution of the ode is

y1 = sin
(√

x
)

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = 1
2x
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Therefore

y2(x) = sin
(√

x
)(∫ e−

(∫ 1
2xdx

)
sin
(√

x
)2dx

)

y2(x) = sin
(√

x
) ∫ 1√

x

sin
(√

x
)2 , dx

y2(x) = sin
(√

x
)(∫ csc

(√
x
)2

√
x

dx

)

y2(x) = −2 sin
(√

x
)
cot
(√

x
)

Hence the solution is

y = c1y1(x) + c2y2(x)

= sin
(√

x
)
c1 − 2c2 sin

(√
x
)
cot
(√

x
)

Summary
The solution(s) found are the following

(1)y = sin
(√

x
)
c1 − 2c2 sin

(√
x
)
cot
(√

x
)

Verification of solutions

y = sin
(√

x
)
c1 − 2c2 sin

(√
x
)
cot
(√

x
)

Verified OK.

9.21.1 Maple step by step solution

Let’s solve
4y′′x+ 2y′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

4x − y′

2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

2x + y
4x = 0
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� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
2x , P3(x) = 1

4x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4y′′x+ 2y′ + y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions
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2a0r(−1 + 2r)x−1+r +
(

∞∑
k=0

(2ak+1(k + 1 + r) (2k + 1 + 2r) + ak)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
4
(
k + 1

2 + r
)
(k + 1 + r) ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

2(2k+1+2r)(k+1+r)

• Recursion relation for r = 0
ak+1 = − ak

2(2k+1)(k+1)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − ak

2(2k+1)(k+1)

]
• Recursion relation for r = 1

2

ak+1 = − ak
2(2k+2)

(
k+ 3

2
)

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+1 = − ak
2(2k+2)

(
k+ 3

2
)
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, a1+k = − ak

2(2k+1)(1+k) , b1+k = − bk
2(2k+2)

(
k+ 3

2
)
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve([4*x*diff(y(x),x$2)+2*diff(y(x),x)+y(x)=0,sin(sqrt(x))],singsol=all)� �

y(x) = c1 sin
(√

x
)
+ c2 cos

(√
x
)

3 Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 24� �
DSolve[4*x*y''[x]+2*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 cos
(√

x
)
+ c2 sin

(√
x
)
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9.22 problem 22
9.22.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2715

Internal problem ID [1128]
Internal file name [OUTPUT/1129_Sunday_June_05_2022_02_03_12_AM_21078271/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 22.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ − (2 + 2x) y′ + (2 + x) y = 0

Given that one solution of the ode is

y1 = ex

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = −2x− 2
x
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Therefore

y2(x) = ex
(∫

e−
(∫ −2x−2

x
dx
)
e−2xdx

)

y2(x) = ex
∫ e2x+2 ln(x)

e2x , dx

y2(x) = ex
(∫

x2dx

)

y2(x) =
exx3

3

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1ex +
c2exx3

3

Summary
The solution(s) found are the following

(1)y = c1ex +
c2exx3

3
Verification of solutions

y = c1ex +
c2exx3

3

Verified OK.

9.22.1 Maple step by step solution

Let’s solve
y′′x+ (−2x− 2) y′ + (2 + x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (2+x)y
x

+ 2(x+1)y′
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − 2(x+1)y′
x

+ (2+x)y
x

= 0
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� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2(x+1)
x

, P3(x) = 2+x
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ (−2x− 2) y′ + (2 + x) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion
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x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−3 + r)x−1+r + (a1(1 + r) (−2 + r)− 2a0(−1 + r))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (k − 2 + r)− 2ak(k + r − 1) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 3}

• Each term must be 0
a1(1 + r) (−2 + r)− 2a0(−1 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k − 2 + r)− 2akk − 2akr + 2ak + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + r − 1)− 2ak+1(k + 1)− 2rak+1 + 2ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2kak+1+2rak+1−ak

(k+2+r)(k+r−1)

• Recursion relation for r = 0
ak+2 = 2kak+1−ak

(k+2)(k−1)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 1
ak+2 = 2kak+1−ak

(k+2)(k−1)

• Recursion relation for r = 3
ak+2 = 2kak+1−ak+6ak+1

(k+5)(k+2)

• Solution for r = 3[
y =

∞∑
k=0

akx
k+3, ak+2 = 2kak+1−ak+6ak+1

(k+5)(k+2) , 4a1 − 4a0 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve([x*diff(y(x),x$2)-(2*x+2)*diff(y(x),x)+(x+2)*y(x)=0,exp(x)],singsol=all)� �

y(x) = ex
(
c2x

3 + c1
)

3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 23� �
DSolve[x*y''[x]-(2*x+2)*y'[x]+(x+2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3e

x
(
c2x

3 + 3c1
)
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9.23 problem 23
9.23.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2720

Internal problem ID [1129]
Internal file name [OUTPUT/1130_Sunday_June_05_2022_02_03_13_AM_79199182/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_euler_ode", "second_order_change_of_variable_on_x_method_2",
"second_order_change_of_variable_on_y_method_2"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

x2y′′ − (2a− 1)xy′ + a2y = 0

Given that one solution of the ode is

y1 = xa

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = −2a+ 1
x
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Therefore

y2(x) = xa

(∫
e−
(∫ −2a+1

x
dx
)
x−2adx

)

y2(x) = xa

∫ e−(−2a+1) ln(x)

x2a , dx

y2(x) = xa

(∫ 1
x
dx

)
y2(x) = xa ln (x)

Hence the solution is
y = c1y1(x) + c2y2(x)

= xac1 + c2x
a ln (x)

Summary
The solution(s) found are the following

(1)y = xac1 + c2x
a ln (x)

Verification of solutions

y = xac1 + c2x
a ln (x)

Verified OK.

9.23.1 Maple step by step solution

Let’s solve
x2y′′ + (−2ax+ x) y′ + a2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −a2y
x2 + (2a−1)y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (2a−1)y′
x

+ a2y
x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions
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[
P2(x) = −2a−1

x
, P3(x) = a2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2a+ 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= a2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ − (2a− 1)xy′ + a2y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite DE with series expansions
◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite DE with series expansions
∞∑
k=0

ak(a− k − r)2 xk+r = 0

• a0cannot be 0 by assumption, giving the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
ak(a− k)2 = 0

• Recursion relation that defines series solution to ODE
ak = 0

• Recursion relation for r = 0
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ak = 0
• Solution for r = 0[

y =
∞∑
k=0

akx
k, ak = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve([x^2*diff(y(x),x$2)-(2*a-1)*x*diff(y(x),x)+a^2*y(x)=0,x^a],singsol=all)� �

y(x) = (c2 ln (x) + c1)xa

3 Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 18� �
DSolve[x^2*y''[x]-(2*a-1)*x*y'[x]+a^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → xa(ac2 log(x) + c1)
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9.24 problem 24
9.24.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2724

Internal problem ID [1130]
Internal file name [OUTPUT/1131_Sunday_June_05_2022_02_03_14_AM_34255493/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 24.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_bessel_ode", "second_order_change_of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − 2y′x+
(
x2 + 2

)
y = 0

Given that one solution of the ode is

y1 = sin (x)x

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = −2
x
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Therefore

y2(x) = sin (x)x
(∫ e−

(∫
− 2

x
dx
)

sin (x)2 x2
dx

)

y2(x) = sin (x)x
∫

x2

x2 sin (x)2
, dx

y2(x) = sin (x)x
(∫

csc (x)2 dx
)

y2(x) = − sin (x) cot (x)x

Hence the solution is
y = c1y1(x) + c2y2(x)

= sin (x)xc1 − c2 sin (x) cot (x)x

Summary
The solution(s) found are the following

(1)y = sin (x)xc1 − c2 sin (x) cot (x)x
Verification of solutions

y = sin (x)xc1 − c2 sin (x) cot (x)x

Verified OK.

9.24.1 Maple step by step solution

Let’s solve
x2y′′ − 2y′x+ (x2 + 2) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2+2

)
y

x2 + 2y′
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − 2y′
x
+
(
x2+2

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions
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[
P2(x) = − 2

x
, P3(x) = x2+2

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ − 2y′x+ (x2 + 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−2 + r)xr + a1r(−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 1) (k + r − 2) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(−1 + r) (−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {1, 2}
• Each term must be 0

a1r(−1 + r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(k + r − 1) (k + r − 2) + ak−2 = 0
• Shift index using k− >k + 2

ak+2(k + 1 + r) (k + r) + ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = − ak
(k+1+r)(k+r)

• Recursion relation for r = 1
ak+2 = − ak

(k+2)(k+1)

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = − ak

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = 2
ak+2 = − ak

(k+3)(k+2)

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+2 = − ak

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
1+k

)
+
(

∞∑
k=0

bkx
k+2
)
, ak+2 = − ak

(k+2)(1+k) , a1 = 0, bk+2 = − bk
(k+3)(k+2) , b1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 15� �
dsolve([x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+(x^2+2)*y(x)=0,x*sin(x)],singsol=all)� �

y(x) = x(c1 sin (x) + c2 cos (x))

3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 33� �
DSolve[x^2*y''[x]-2*x*y'[x]+(x^2+2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−ixx− 1

2ic2e
ixx
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9.25 problem 25
9.25.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2729

Internal problem ID [1131]
Internal file name [OUTPUT/1132_Sunday_June_05_2022_02_03_15_AM_56049452/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 25.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ − (4x+ 1) y′ + (4x+ 2) y = 0

Given that one solution of the ode is

y1 = e2x

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = −4x− 1
x
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Therefore

y2(x) = e2x
(∫

e−
(∫ −4x−1

x
dx
)
e−4xdx

)

y2(x) = e2x
∫ e4x+ln(x)

e4x , dx

y2(x) = e2x
(∫

xdx

)

y2(x) =
x2e2x
2

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1e2x +
c2x

2e2x
2

Summary
The solution(s) found are the following

(1)y = c1e2x +
c2x

2e2x
2

Verification of solutions

y = c1e2x +
c2x

2e2x
2

Verified OK.

9.25.1 Maple step by step solution

Let’s solve
y′′x+ (−4x− 1) y′ + (4x+ 2) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −2(1+2x)y
x

+ (4x+1)y′
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (4x+1)y′
x

+ 2(1+2x)y
x

= 0
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� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −4x+1
x

, P3(x) = 2(1+2x)
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ (−4x− 1) y′ + (4x+ 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion
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x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−2 + r)x−1+r + (a1(1 + r) (−1 + r)− 2a0(−1 + 2r))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (k + r − 1)− 2ak(2k + 2r − 1) + 4ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term must be 0
a1(1 + r) (−1 + r)− 2a0(−1 + 2r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r − 1) + ak(−4k − 4r + 2) + 4ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + r) + ak+1(−4k − 2− 4r) + 4ak = 0

• Recursion relation that defines series solution to ODE

ak+2 = 2(2kak+1+2rak+1−2ak+ak+1)
(k+2+r)(k+r)

• Recursion relation for r = 0

ak+2 = 2(2kak+1−2ak+ak+1)
(k+2)k

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0

ak+2 = 2(2kak+1−2ak+ak+1)
(k+2)k

• Recursion relation for r = 2

ak+2 = 2(2kak+1−2ak+5ak+1)
(k+4)(k+2)

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+2 = 2(2kak+1−2ak+5ak+1)

(k+4)(k+2) , 3a1 − 6a0 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve([x*diff(y(x),x$2)-(4*x+1)*diff(y(x),x)+(4*x+2)*y(x)=0,exp(2*x)],singsol=all)� �

y(x) = e2x
(
c2x

2 + c1
)

3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 25� �
DSolve[x*y''[x]-(4*x+1)*y'[x]+(4*x+2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

2x(c2x2 + 2c1
)
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9.26 problem 26
Internal problem ID [1132]
Internal file name [OUTPUT/1133_Sunday_June_05_2022_02_03_16_AM_33275409/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 26.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_change_of_variable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2 sin (x) y′′ − 4x(x cos (x) + sin (x)) y′ + (2x cos (x) + 3 sin (x)) y = 0

Given that one solution of the ode is

y1 =
√
x

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = −4x2 cos (x)− 4 sin (x)x
4 sin (x)x2
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Therefore

y2(x) =
√
x

∫ e
−
(∫ −4x2 cos(x)−4 sin(x)x

4 sin(x)x2 dx

)
x

dx


y2(x) =

√
x

∫ eln(sin(x))+ln(x)

x
, dx

y2(x) =
√
x

(∫
sin (x) dx

)
y2(x) = − cos (x)

√
x

Hence the solution is
y = c1y1(x) + c2y2(x)

=
√
x c1 − c2 cos (x)

√
x

Summary
The solution(s) found are the following

(1)y =
√
x c1 − c2 cos (x)

√
x

Verification of solutions

y =
√
x c1 − c2 cos (x)

√
x

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful
Change of variables used:

[x = arccos(t)]
Linear ODE actually solved:

(2*arccos(t)*t+3*(-t^2+1)^(1/2))*u(t)+(-4*arccos(t)*t^2+4*arccos(t))*diff(u(t),t)+(-4*arccos(t)^2*(-t^2+1)^(1/2)*t^2+4*arccos(
<- change of variables successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 14� �
dsolve([4*x^2*sin(x)*diff(y(x),x$2)-4*x*(x*cos(x)+sin(x))*diff(y(x),x)+(2*x*cos(x)+3*sin(x))*y(x)=0,sqrt(x)],singsol=all)� �

y(x) =
√
x (c1 + c2 cos (x))

3 Solution by Mathematica
Time used: 0.322 (sec). Leaf size: 21� �
DSolve[4*x^2*Sin[x]*y''[x]-4*x*(x*Cos[x]+Sin[x])*y'[x]+(2*x*Cos[x]+3*Sin[x])*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
√

arccos(cos(x))(c2 cos(x) + c1)
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9.27 problem 27
9.27.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2737

Internal problem ID [1133]
Internal file name [OUTPUT/1134_Sunday_June_05_2022_02_03_17_AM_32416935/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 27.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_bessel_ode", "second_order_change_of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2y′′ − 4y′x+
(
−16x2 + 3

)
y = 0

Given that one solution of the ode is

y1 = e2x
√
x

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = −1
x
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Therefore

y2(x) = e2x
√
x

(∫ e−
(∫

− 1
x
dx
)
e−4x

x
dx

)

y2(x) = e2x
√
x

∫
x

x e4x , dx

y2(x) = e2x
√
x

(∫
e−4xdx

)

y2(x) = −e2x
√
x e−4x

4

Hence the solution is
y = c1y1(x) + c2y2(x)

= e2x
√
x c1 −

c2e2x
√
x e−4x

4

Summary
The solution(s) found are the following

(1)y = e2x
√
x c1 −

c2e2x
√
x e−4x

4
Verification of solutions

y = e2x
√
x c1 −

c2e2x
√
x e−4x

4

Verified OK.

9.27.1 Maple step by step solution

Let’s solve
4x2y′′ − 4y′x+ (−16x2 + 3) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ =
(
16x2−3

)
y

4x2 + y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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y′′ − y′

x
−
(
16x2−3

)
y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = − 1
x
, P3(x) = −16x2−3

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2y′′ − 4y′x+ (−16x2 + 3) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions
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a0(−1 + 2r) (−3 + 2r)xr + a1(1 + 2r) (−1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r − 1) (2k + 2r − 3)− 16ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

3
2

}
• Each term must be 0

a1(1 + 2r) (−1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
(
k + r − 1

2

) (
k + r − 3

2

)
ak − 16ak−2 = 0

• Shift index using k− >k + 2
4
(
k + 3

2 + r
) (

k + 1
2 + r

)
ak+2 − 16ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 16ak

(2k+3+2r)(2k+1+2r)

• Recursion relation for r = 1
2

ak+2 = 16ak
(2k+4)(2k+2)

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 = 16ak
(2k+4)(2k+2) , a1 = 0

]
• Recursion relation for r = 3

2

ak+2 = 16ak
(2k+6)(2k+4)

• Solution for r = 3
2[

y =
∞∑
k=0

akx
k+ 3

2 , ak+2 = 16ak
(2k+6)(2k+4) , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+2 = 16ak

(2k+4)(2k+2) , a1 = 0, bk+2 = 16bk
(2k+6)(2k+4) , b1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 21� �
dsolve([4*x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+(3-16*x^2)*y(x)=0,sqrt(x)*exp(2*x)],singsol=all)� �

y(x) =
√
x (c1 sinh (2x) + c2 cosh (2x))

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 32� �
DSolve[4*x^2*y''[x]-4*x*y'[x]+(3-16*x^2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4e

−2x√x
(
c2e

4x + 4c1
)
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9.28 problem 28
9.28.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2742

Internal problem ID [1134]
Internal file name [OUTPUT/1135_Sunday_June_05_2022_02_03_18_AM_50290424/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 28.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_change_of_variable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(1 + 2x)xy′′ − 2
(
2x2 − 1

)
y′ − 4(x+ 1) y = 0

Given that one solution of the ode is

y1 =
1
x

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = −4x2 + 2
2x2 + x
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Therefore

y2(x) =
∫
e−
(∫ −4x2+2

2x2+x
dx
)
x2dx

x

y2(x) =
1
x

∫ e2x−2 ln(x)+ln(1+2x)

1
x2

, dx

y2(x) =
∫
(1 + 2x) e2xdx

x

y2(x) = e2x

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1
x
+ c2e2x

Summary
The solution(s) found are the following

(1)y = c1
x
+ c2e2x

Verification of solutions

y = c1
x
+ c2e2x

Verified OK.

9.28.1 Maple step by step solution

Let’s solve
(2x2 + x) y′′ + (−4x2 + 2) y′ + (−4x− 4) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = 4(x+1)y
(1+2x)x + 2

(
2x2−1

)
y′

(1+2x)x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − 2
(
2x2−1

)
y′

(1+2x)x − 4(x+1)y
(1+2x)x = 0
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� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −2
(
2x2−1

)
(1+2x)x , P3(x) = − 4(x+1)

(1+2x)x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
(1 + 2x)xy′′ + (−4x2 + 2) y′ + (−4x− 4) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 0..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..2
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xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + (a1(1 + r) (2 + r) + 2a0(1 + r) (−2 + r))xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 2 + r) + 2ak(k + r + 1) (k + r − 2)− 4ak−1(k + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r) + 2a0(1 + r) (−2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (k + 2 + r) + 2ak(k + r + 1) (k + r − 2)− 4ak−1(k + r) = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 3 + r) + 2ak+1(k + 2 + r) (k + r − 1)− 4ak(k + r + 1) = 0

• Recursion relation that defines series solution to ODE

ak+2 = −2
(
k2ak+1+2krak+1+r2ak+1−2kak+kak+1−2rak+rak+1−2ak−2ak+1

)
(k+2+r)(k+3+r)

• Recursion relation for r = −1

ak+2 = −2
(
k2ak+1−2kak−kak+1−2ak+1

)
(k+1)(k+2)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = −2

(
k2ak+1−2kak−kak+1−2ak+1

)
(k+1)(k+2) , 0 = 0

]
• Recursion relation for r = 0

ak+2 = −2
(
k2ak+1−2kak+kak+1−2ak−2ak+1

)
(k+2)(k+3)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = −2

(
k2ak+1−2kak+kak+1−2ak−2ak+1

)
(k+2)(k+3) , 2a1 − 4a0 = 0

]
• Combine solutions and rename parameters
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[
y =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = −2

(
k2a1+k−2kak−ka1+k−2a1+k

)
(1+k)(k+2) , 0 = 0, bk+2 = −2

(
k2b1+k−2kbk+kb1+k−2bk−2b1+k

)
(k+2)(k+3) , 2b1 − 4b0 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 17� �
dsolve([(2*x+1)*x*diff(y(x),x$2)-2*(2*x^2-1)*diff(y(x),x)-4*(x+1)*y(x)=0,1/x],singsol=all)� �

y(x) = c2e2xx+ c1
x

3 Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 28� �
DSolve[(2*x+1)*x*y''[x]-2*(2*x^2-1)*y'[x]-4*(x+1)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2e
2x+1x+ c1√

ex
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9.29 problem 29
9.29.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2747

Internal problem ID [1135]
Internal file name [OUTPUT/1136_Sunday_June_05_2022_02_03_18_AM_35042066/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 29.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_change_of_variable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x2 − 2x

)
y′′ +

(
−x2 + 2

)
y′ + (2x− 2) y = 0

Given that one solution of the ode is

y1 = ex

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = −x2 + 2
x2 − 2x
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Therefore

y2(x) = ex
(∫

e−
(∫ −x2+2

x2−2x dx
)
e−2xdx

)

y2(x) = ex
∫ ex+ln(x)+ln(−2+x)

e2x , dx

y2(x) = ex
(∫

x(−2 + x) e−xdx

)
y2(x) = −exx2e−x

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1ex − c2exx2e−x

Summary
The solution(s) found are the following

(1)y = c1ex − c2exx2e−x

Verification of solutions

y = c1ex − c2exx2e−x

Verified OK.

9.29.1 Maple step by step solution

Let’s solve
(x2 − 2x) y′′ + (−x2 + 2) y′ + (2x− 2) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ =
(
x2−2

)
y′

x(−2+x) −
2y(x−1)
x(−2+x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ −
(
x2−2

)
y′

x(−2+x) +
2y(x−1)
x(−2+x) = 0

� Check to see if x0 is a regular singular point
◦ Define functions
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[
P2(x) = − x2−2

x(−2+x) , P3(x) = 2(x−1)
x(−2+x)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x(−2 + x) + (−x2 + 2) y′ + (2x− 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 0..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..2

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m
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xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−2a0r(−2 + r)x−1+r + (−2a1(1 + r) (−1 + r) + a0(1 + r) (−2 + r))xr +
(

∞∑
k=1

(−2ak+1(k + r + 1) (k + r − 1) + ak(k + r + 1) (k + r − 2)− ak−1(k − 3 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term must be 0
−2a1(1 + r) (−1 + r) + a0(1 + r) (−2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 2)− 2k2ak+1 + (−4rak+1 − ak−1) k − 2r2ak+1 − ak−1r + 3ak−1 + 2ak+1 = 0

• Shift index using k− >k + 1
ak+1(k + 2 + r) (k + r − 1)− 2(k + 1)2 ak+2 + (−4rak+2 − ak) (k + 1)− 2r2ak+2 − rak + 3ak + 2ak+2 = 0

• Recursion relation that defines series solution to ODE

ak+2 = k2ak+1+2krak+1+r2ak+1−kak+kak+1−rak+rak+1+2ak−2ak+1
2(k2+2kr+r2+2k+2r)

• Recursion relation for r = 0

ak+2 = k2ak+1−kak+kak+1+2ak−2ak+1
2(k2+2k)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0

ak+2 = k2ak+1−kak+kak+1+2ak−2ak+1
2(k2+2k)

• Recursion relation for r = 2

ak+2 = k2ak+1−kak+5kak+1+4ak+1
2(k2+6k+8)

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+2 = k2ak+1−kak+5kak+1+4ak+1

2(k2+6k+8) ,−6a1 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve([(x^2-2*x)*diff(y(x),x$2)+(2-x^2)*diff(y(x),x)+(2*x-2)*y(x)=0,exp(x)],singsol=all)� �

y(x) = c1x
2 + c2ex

3 Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 18� �
DSolve[(x^2-2*x)*y''[x]+(2-x^2)*y'[x]+(2*x-2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2x
2 + c1e

x
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9.30 problem 30
9.30.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2752

Internal problem ID [1136]
Internal file name [OUTPUT/1137_Sunday_June_05_2022_02_03_19_AM_79319869/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 30.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ − (4x+ 1) y′ + (4x+ 2) y = 0

Given that one solution of the ode is

y1 = e2x

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = −4x− 1
x
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Therefore

y2(x) = e2x
(∫

e−
(∫ −4x−1

x
dx
)
e−4xdx

)

y2(x) = e2x
∫ e4x+ln(x)

e4x , dx

y2(x) = e2x
(∫

xdx

)

y2(x) =
x2e2x
2

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1e2x +
c2x

2e2x
2

Summary
The solution(s) found are the following

(1)y = c1e2x +
c2x

2e2x
2

Verification of solutions

y = c1e2x +
c2x

2e2x
2

Verified OK.

9.30.1 Maple step by step solution

Let’s solve
y′′x+ (−4x− 1) y′ + (4x+ 2) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −2(1+2x)y
x

+ (4x+1)y′
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (4x+1)y′
x

+ 2(1+2x)y
x

= 0

2752



� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −4x+1
x

, P3(x) = 2(1+2x)
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ (−4x− 1) y′ + (4x+ 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion
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x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−2 + r)x−1+r + (a1(1 + r) (−1 + r)− 2a0(−1 + 2r))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (k + r − 1)− 2ak(2k + 2r − 1) + 4ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term must be 0
a1(1 + r) (−1 + r)− 2a0(−1 + 2r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r − 1) + ak(−4k − 4r + 2) + 4ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + r) + ak+1(−4k − 2− 4r) + 4ak = 0

• Recursion relation that defines series solution to ODE

ak+2 = 2(2kak+1+2rak+1−2ak+ak+1)
(k+2+r)(k+r)

• Recursion relation for r = 0

ak+2 = 2(2kak+1−2ak+ak+1)
(k+2)k

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0

ak+2 = 2(2kak+1−2ak+ak+1)
(k+2)k

• Recursion relation for r = 2

ak+2 = 2(2kak+1−2ak+5ak+1)
(k+4)(k+2)

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+2 = 2(2kak+1−2ak+5ak+1)

(k+4)(k+2) , 3a1 − 6a0 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve([x*diff(y(x),x$2)-(4*x+1)*diff(y(x),x)+(4*x+2)*y(x)=0,exp(2*x)],singsol=all)� �

y(x) = e2x
(
c2x

2 + c1
)

3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 25� �
DSolve[x*y''[x]-(4*x+1)*y'[x]+(4*x+2)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

2x(c2x2 + 2c1
)
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9.31 problem 31
9.31.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 2756

Internal problem ID [1137]
Internal file name [OUTPUT/1138_Sunday_June_05_2022_02_03_20_AM_21604343/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 31.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_euler_ode", "second_order_change_of_variable_on_x_method_1",
"second_order_change_of_variable_on_x_method_2", "second_order_change_of_vari-
able_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − 3y′x+ 4y = 4x4

Given that one solution of the ode is

y1 = x2

With initial conditions

[y(−1) = 7, y′(−1) = −8]

9.31.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −3
x

q(x) = 4
x2

F = 4x2
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Hence the ode is

y′′ − 3y′
x

+ 4y
x2 = 4x2

The domain of p(x) = − 3
x
is

{x < 0∨ 0 < x}

And the point x0 = −1 is inside this domain. The domain of q(x) = 4
x2 is

{x < 0∨ 0 < x}

And the point x0 = −1 is also inside this domain. The domain of F = 4x2 is

{−∞ < x < ∞}

And the point x0 = −1 is also inside this domain. Hence solution exists and is unique.

This is second order nonhomogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = −3x,C = 4, f(x) = 4x4. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x) +By′(x) + Cy(x) = 0, and
yp is a particular solution to the inhomogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ − 3y′x+ 4y = 0

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = −3
x
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Therefore

y2(x) = x2

(∫ e−
(∫

− 3
x
dx
)

x4 dx

)

y2(x) = x2
∫

x3

x4 , dx

y2(x) = x2
(∫ 1

x
dx

)
y2(x) = ln (x)x2

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1x
2 + c2 ln (x)x2

Therefore the homogeneous solution yh is

yh = c1x
2 + c2 ln (x)x2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x2

y2 = ln (x)x2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x2 ln (x)x2

d
dx
(x2) d

dx
(ln (x)x2)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x
2 ln (x)x2

2x x+ 2x ln (x)

∣∣∣∣∣∣
Therefore

W =
(
x2) (x+ 2x ln (x))−

(
ln (x)x2) (2x)

Which simplifies to
W = x3

Which simplifies to
W = x3

Therefore Eq. (2) becomes

u1 = −
∫ 4 ln (x)x6

x5 dx

Which simplifies to

u1 = −
∫

4x ln (x) dx

Hence
u1 = −2 ln (x)x2 + x2

And Eq. (3) becomes

u2 =
∫ 4x6

x5 dx

Which simplifies to

u2 =
∫

4xdx
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Hence
u2 = 2x2

Which simplifies to
u1 = x2(1− 2 ln (x))

u2 = 2x2

Therefore the particular solution, from equation (1) is

yp(x) = x4(1− 2 ln (x)) + 2x4 ln (x)

Which simplifies to
yp(x) = x4

Therefore the general solution is

y = yh + yp

=
(
c1x

2 + c2 ln (x)x2)+ (x4)
Which simplifies to

y = x2(c1 + c2 ln (x)) + x4

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = x2(c1 + c2 ln (x)) + x4 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 7 and x = −1
in the above gives

7 = πc2i+ c1 + 1 (1A)

Taking derivative of the solution gives

y′ = 2x(c1 + c2 ln (x)) + c2x+ 4x3

substituting y′ = −8 and x = −1 in the above gives

−8 = −2πc2i− 2c1 − c2 − 4 (2A)
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Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 8iπ + 6
c2 = −8

Substituting these values back in above solution results in

y = 8ix2π + x4 − 8 ln (x)x2 + 6x2

Summary
The solution(s) found are the following

(1)y =
(
−8 ln (x) + 8iπ + x2 + 6

)
x2

Verification of solutions

y =
(
−8 ln (x) + 8iπ + x2 + 6

)
x2

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 21� �
dsolve([x^2*diff(diff(y(x),x),x)-3*x*diff(y(x),x)+4*y(x) = 4*x^4, x^2, y(-1) = 7, D(y)(-1) = -8], singsol=all)� �

y(x) =
(
8iπ + x2 − 8 ln (x) + 6

)
x2
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3 Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 37� �
DSolve[x^2*y''[x]-3*x*y'[x]+4*y[x]==4*x^2,{y[-1]==7,y'[-1]==8},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2(2 log2(x) + (−22− 4iπ) log(x)− 2π2 + 22iπ + 7
)
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9.32 problem 32
9.32.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 2763
9.32.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2766

Internal problem ID [1138]
Internal file name [OUTPUT/1139_Sunday_June_05_2022_02_03_21_AM_93815312/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 32.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(3x− 1) y′′ − (3x+ 2) y′ − (6x− 8) y = 0

Given that one solution of the ode is

y1 = e2x

With initial conditions

[y(0) = 2, y′(0) = 3]

9.32.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −3x− 2
3x− 1

q(x) = −6x+ 8
3x− 1

F = 0
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Hence the ode is

y′′ + (−3x− 2) y′
3x− 1 + (−6x+ 8) y

3x− 1 = 0

The domain of p(x) = −3x−2
3x−1 is

{
x <

1
3 ∨ 1

3 < x

}

And the point x0 = 0 is inside this domain. The domain of q(x) = −6x+8
3x−1 is

{
x <

1
3 ∨ 1

3 < x

}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = −3x− 2
3x− 1

Therefore

y2(x) = e2x
(∫

e−
(∫ −3x−2

3x−1 dx
)
e−4xdx

)

y2(x) = e2x
∫ ex+ln(3x−1)

e4x , dx

y2(x) = e2x
(∫

(3x− 1) e−3xdx

)
y2(x) = −e2xx e−3x
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Hence the solution is
y = c1y1(x) + c2y2(x)

= c1e2x − c2e2xx e−3x

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e2x − c2e2xx e−3x (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 2 and x = 0
in the above gives

2 = c1 (1A)

Taking derivative of the solution gives

y′ = 2c1e2x + c2e2xx e−3x − c2e2xe−3x

substituting y′ = 3 and x = 0 in the above gives

3 = 2c1 − c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 2
c2 = 1

Substituting these values back in above solution results in

y = −e2xx e−3x + 2 e2x

Which simplifies to
y = −x e−x + 2 e2x

Summary
The solution(s) found are the following

(1)y = −x e−x + 2 e2x
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Figure 489: Solution plot

Verification of solutions

y = −x e−x + 2 e2x

Verified OK.

9.32.2 Maple step by step solution

Let’s solve[
(3x− 1) y′′ + (−3x− 2) y′ + (−6x+ 8) y = 0, y(0) = 2, y′

∣∣∣{x=0}
= 3
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = 2(3x−4)y
3x−1 + (3x+2)y′

3x−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (3x+2)y′
3x−1 − 2(3x−4)y

3x−1 = 0

� Check to see if x0 = 1
3 is a regular singular point

◦ Define functions
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[
P2(x) = −3x+2

3x−1 , P3(x) = −2(3x−4)
3x−1

]
◦
(
x− 1

3

)
· P2(x) is analytic at x = 1

3((
x− 1

3

)
· P2(x)

) ∣∣∣∣
x= 1

3

= −1

◦
(
x− 1

3

)2 · P3(x) is analytic at x = 1
3((

x− 1
3

)2 · P3(x)
) ∣∣∣∣

x= 1
3

= 0

◦ x = 1
3 is a regular singular point

Check to see if x0 = 1
3 is a regular singular point

x0 = 1
3

• Multiply by denominators
(3x− 1) y′′ + (−3x− 2) y′ + (−6x+ 8) y = 0

• Change variables using x = u+ 1
3 so that the regular singular point is at u = 0

3u
(

d2

du2y(u)
)
+ (−3u− 3)

(
d
du
y(u)

)
+ (−6u+ 6) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion
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u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

3a0r(−2 + r)u−1+r + (3a1(1 + r) (−1 + r)− 3a0(−2 + r))ur +
(

∞∑
k=1

(3ak+1(k + 1 + r) (k + r − 1)− 3ak(k + r − 2)− 6ak−1)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
3r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term must be 0
3a1(1 + r) (−1 + r)− 3a0(−2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
3ak+1(k + 1 + r) (k + r − 1) + ak(−3k − 3r + 6)− 6ak−1 = 0

• Shift index using k− >k + 1
3ak+2(k + 2 + r) (k + r) + ak+1(−3k + 3− 3r)− 6ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = kak+1+rak+1+2ak−ak+1

(k+2+r)(k+r)

• Recursion relation for r = 0
ak+2 = kak+1+2ak−ak+1

(k+2)k

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0
ak+2 = kak+1+2ak−ak+1

(k+2)k

• Recursion relation for r = 2
ak+2 = kak+1+2ak+ak+1

(k+4)(k+2)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+2 = kak+1+2ak+ak+1

(k+4)(k+2) , 9a1 = 0
]

• Revert the change of variables u = x− 1
3
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[
y =

∞∑
k=0

ak
(
x− 1

3

)k+2
, ak+2 = kak+1+2ak+ak+1

(k+4)(k+2) , 9a1 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 18� �
dsolve([(3*x-1)*diff(diff(y(x),x),x)-(3*x+2)*diff(y(x),x)-(6*x-8)*y(x) = 0, exp(2*x), y(0) = 2, D(y)(0) = 3], singsol=all)� �

y(x) = 2 e2x − x e−x

3 Solution by Mathematica
Time used: 0.199 (sec). Leaf size: 21� �
DSolve[(3*x-1)*y''[x]-(3*x+2)*y'[x]-(6*x-8)*y[x]==0,{y[0]==2,y'[0]==3},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2e2x − e−xx
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9.33 problem 33
9.33.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 2770

Internal problem ID [1139]
Internal file name [OUTPUT/1140_Sunday_June_05_2022_02_03_23_AM_90044175/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 33.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_change_of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

(x+ 1)2 y′′ − 2(x+ 1) y′ −
(
x2 + 2x− 1

)
y = (x+ 1)3 ex

Given that one solution of the ode is

y1 = (x+ 1) ex

With initial conditions

[y(0) = 1, y′(0) = −1]

9.33.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −2x− 2
(x+ 1)2

q(x) = −x2 − 2x+ 1
(x+ 1)2

F = (x+ 1) ex

2770



Hence the ode is

y′′ + (−2x− 2) y′

(x+ 1)2
+ (−x2 − 2x+ 1) y

(x+ 1)2
= (x+ 1) ex

The domain of p(x) = −2x−2
(x+1)2 is

{x < −1∨−1 < x}

And the point x0 = 0 is inside this domain. The domain of q(x) = −x2−2x+1
(x+1)2 is

{x < −1∨−1 < x}

And the point x0 = 0 is also inside this domain. The domain of F = (x+ 1) ex is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

This is second order nonhomogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2 + 2x + 1, B = −2x − 2, C = −x2 − 2x + 1, f(x) = (x+ 1)3 ex. Let the
solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x) +By′(x) + Cy(x) = 0, and
yp is a particular solution to the inhomogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to(

x2 + 2x+ 1
)
y′′ + (−2x− 2) y′ +

(
−x2 − 2x+ 1

)
y = 0

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)
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Looking at the ode to solve shows that

p(x) = −2x− 2
x2 + 2x+ 1

Therefore

y2(x) = (x+ 1) ex
∫ e−

(∫ −2x−2
x2+2x+1dx

)
e−2x

(x+ 1)2
dx


y2(x) = (x+ 1) ex

∫ (x+ 1)2

(x+ 1)2 e2x
, dx

y2(x) = (x+ 1) ex
(∫

e−2xdx

)

y2(x) = −(x+ 1) exe−2x

2

Hence the solution is
y = c1y1(x) + c2y2(x)

= (x+ 1) exc1 −
c2(x+ 1) exe−2x

2

Therefore the homogeneous solution yh is

yh = (x+ 1) exc1 −
c2(x+ 1) exe−2x

2
The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = (x+ 1) ex

y2 = −(x+ 1) exe−2x

2
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
(x+ 1) ex − (x+1)exe−2x

2

d
dx
((x+ 1) ex) d

dx

(
− (x+1)exe−2x

2

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ (x+ 1) ex − (x+1)exe−2x

2

ex + (x+ 1) ex − e−2xex
2 + (x+1)exe−2x

2

∣∣∣∣∣∣
Therefore

W = ((x+ 1) ex)
(
−e−2xex

2 + (x+ 1) exe−2x

2

)
−
(
−(x+ 1) exe−2x

2

)
(ex + (x+ 1) ex)

Which simplifies to
W = e−2xe2xx2 + 2 e−2xx e2x + e2xe−2x

Which simplifies to
W = (x+ 1)2

Therefore Eq. (2) becomes

u1 = −
∫ − (x+1)4e2xe−2x

2

(x2 + 2x+ 1) (x+ 1)2
dx

Which simplifies to

u1 = −
∫

−1
2dx
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Hence
u1 =

x

2

And Eq. (3) becomes

u2 =
∫ (x+ 1)4 e2x

(x2 + 2x+ 1) (x+ 1)2
dx

Which simplifies to

u2 =
∫

e2xdx

Hence

u2 =
e2x
2

Therefore the particular solution, from equation (1) is

yp(x) =
x(x+ 1) ex

2 − e2x(x+ 1) exe−2x

4

Which simplifies to

yp(x) =
ex(2x2 + x− 1)

4

Therefore the general solution is

y = yh + yp

=
(
(x+ 1) exc1 −

c2(x+ 1) exe−2x

2

)
+
(
ex(2x2 + x− 1)

4

)
Which simplifies to

y = (x+ 1) (2c1ex − c2e−x)
2 + ex(2x2 + x− 1)

4

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = (x+ 1) (2c1ex − c2e−x)
2 + ex(2x2 + x− 1)

4 (1)
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Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1 and x = 0
in the above gives

1 = −1
4 + c1 −

c2
2 (1A)

Taking derivative of the solution gives

y′ = c1ex −
c2e−x

2 + (x+ 1) (2c1ex + c2e−x)
2 + ex(2x2 + x− 1)

4 + ex(4x+ 1)
4

substituting y′ = −1 and x = 0 in the above gives

−1 = 2c1 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −1
2

c2 = −7
2

Substituting these values back in above solution results in

y = 7x e−x

4 − x ex
4 + 7 e−x

4 − 3 ex
4 + x2ex

2

Which simplifies to

y = (2x ex − 3 ex + 7 e−x) (x+ 1)
4

Summary
The solution(s) found are the following

(1)y = (2x ex − 3 ex + 7 e−x) (x+ 1)
4
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Figure 490: Solution plot

Verification of solutions

y = (2x ex − 3 ex + 7 e−x) (x+ 1)
4

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 22� �
dsolve([(1+x)^2*diff(diff(y(x),x),x)-2*(1+x)*diff(y(x),x)-(x^2+2*x-1)*y(x) = (1+x)^3*exp(x), (1+x)*exp(x), y(0) = 1, D(y)(0) = -1], singsol=all)� �

y(x) = (x+ 1) (x ex − 5 sinh (x) + 2 cosh (x))
2

3 Solution by Mathematica
Time used: 21.262 (sec). Leaf size: 5749� �
DSolve[(x+1)^2*y''[x]-2*(x+1)*x*y'[x]-(x^2+2*x-1)*y[x]==(x+1)^3*Exp[x],{y[0]==1,y'[0]==-1},y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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9.34 problem 34
9.34.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 2778

Internal problem ID [1140]
Internal file name [OUTPUT/1141_Sunday_June_05_2022_02_03_24_AM_67262954/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 34.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_or-
der_euler_ode", "second_order_change_of_variable_on_x_method_2",
"second_order_change_of_variable_on_y_method_2", "second_order_ode_non_con-
stant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + 2y′x− 2y = x2

Given that one solution of the ode is

y1 = x

With initial conditions [
y(1) = 5

4 , y
′(1) = 3

2

]
9.34.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 2
x

q(x) = − 2
x2

F = 1
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Hence the ode is

y′′ + 2y′
x

− 2y
x2 = 1

The domain of p(x) = 2
x
is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The domain of q(x) = − 2
x2 is

{x < 0∨ 0 < x}

And the point x0 = 1 is also inside this domain. The domain of F = 1 is

{−∞ < x < ∞}

And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

This is second order nonhomogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = 2x,C = −2, f(x) = x2. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x) +By′(x) + Cy(x) = 0, and
yp is a particular solution to the inhomogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ + 2y′x− 2y = 0

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)

Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = 2
x
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Therefore

y2(x) = x

(∫ e−
(∫ 2

x
dx
)

x2 dx

)

y2(x) = x

∫ 1
x2

x2 , dx

y2(x) = x

(∫ 1
x4dx

)
y2(x) = − 1

3x2

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1x− c2
3x2

Therefore the homogeneous solution yh is

yh = c1x− c2
3x2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = − 1
3x2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x − 1
3x2

d
dx
(x) d

dx

(
− 1

3x2

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣x − 1
3x2

1 2
3x3

∣∣∣∣∣∣
Therefore

W = (x)
(

2
3x3

)
−
(
− 1
3x2

)
(1)

Which simplifies to

W = 1
x2

Which simplifies to

W = 1
x2

Therefore Eq. (2) becomes

u1 = −
∫ −1

3
1 dx

Which simplifies to

u1 = −
∫

−1
3dx

Hence
u1 =

x

3

And Eq. (3) becomes

u2 =
∫

x3

1 dx
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Which simplifies to

u2 =
∫

x3dx

Hence

u2 =
x4

4

Therefore the particular solution, from equation (1) is

yp(x) =
x2

4

Therefore the general solution is

y = yh + yp

=
(
c1x− c2

3x2

)
+
(
x2

4

)
Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1x− c2
3x2 + x2

4 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 5

4 and x = 1
in the above gives

5
4 = c1 −

c2
3 + 1

4 (1A)

Taking derivative of the solution gives

y′ = c1 +
2c2
3x3 + x

2
substituting y′ = 3

2 and x = 1 in the above gives

3
2 = c1 +

2c2
3 + 1

2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 1
c2 = 0
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Substituting these values back in above solution results in

y = x(x+ 4)
4

Summary
The solution(s) found are the following

(1)y = x(x+ 4)
4

Figure 491: Solution plot

Verification of solutions

y = x(x+ 4)
4

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 11� �
dsolve([x^2*diff(diff(y(x),x),x)+2*x*diff(y(x),x)-2*y(x) = x^2, x, y(1) = 5/4, D(y)(1) = 3/2], singsol=all)� �

y(x) = x+ 1
4x

2

3 Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 13� �
DSolve[x^2*y''[x]+2*x*y'[x]-2*y[x]==x^2,{y[1]==5/4,y'[1]==3/2},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4x(x+ 4)
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9.35 problem 35
9.35.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 2785

Internal problem ID [1141]
Internal file name [OUTPUT/1142_Sunday_June_05_2022_02_03_26_AM_72372577/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 35.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "exact
linear second order ode", "second_order_integrable_as_is", "second_or-
der_change_of_variable_on_y_method_1", "linear_second_order_ode_solved_by_an_in-
tegrating_factor"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _nonhomogeneous ]]

(
x2 − 4

)
y′′ + 4y′x+ 2y = 2 + x

Given that one solution of the ode is

y1 =
1

−2 + x

With initial conditions [
y(0) = −1

3 , y
′(0) = −1

]

9.35.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F
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Where here

p(x) = 4x
x2 − 4

q(x) = 2
x2 − 4

F = 2 + x

x2 − 4
Hence the ode is

y′′ + 4xy′
x2 − 4 + 2y

x2 − 4 = 2 + x

x2 − 4

The domain of p(x) = 4x
x2−4 is

{−∞ ≤ x < −2,−2 < x < 2, 2 < x ≤ ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 2
x2−4 is

{−∞ ≤ x < −2,−2 < x < 2, 2 < x ≤ ∞}

And the point x0 = 0 is also inside this domain. The domain of F = 2+x
x2−4 is

{−∞ ≤ x < −2,−2 < x < 2, 2 < x ≤ ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

This is second order nonhomogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2 − 4, B = 4x,C = 2, f(x) = 2 + x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x) +By′(x) + Cy(x) = 0, and
yp is a particular solution to the inhomogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to (

x2 − 4
)
y′′ + 4y′x+ 2y = 0

Given one basis solution y1(x), then the second basis solution is given by

y2(x) = y1

(∫ e−
(∫

pdx
)

y21
dx

)
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Where p(x) is the coefficient of y′ when the ode is written in the normal form

y′′ + p(x) y′ + q(x) y = f(x)

Looking at the ode to solve shows that

p(x) = 4x
x2 − 4

Therefore

y2(x) =
∫
e−
(∫ 4x

x2−4dx
)
(−2 + x)2 dx

−2 + x

y2(x) =
1

−2 + x

∫ 1
(x2−4)2

1
(−2+x)2

, dx

y2(x) =

∫ 1
(2+x)2dx

−2 + x

y2(x) = − 1
(−2 + x) (2 + x)

Hence the solution is
y = c1y1(x) + c2y2(x)

= c1
−2 + x

− c2
(−2 + x) (2 + x)

Therefore the homogeneous solution yh is

yh = c1
−2 + x

− c2
(−2 + x) (2 + x)

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
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homogeneous ODE as

y1 =
1

−2 + x

y2 = − 1
(−2 + x) (2 + x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
1

−2+x
− 1

(−2+x)(2+x)

d
dx

( 1
−2+x

)
d
dx

(
− 1

(−2+x)(2+x)

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣
1

−2+x
− 1

(−2+x)(2+x)

− 1
(−2+x)2

1
(−2+x)2(2+x) +

1
(−2+x)(2+x)2

∣∣∣∣∣∣∣
Therefore

W =
(

1
−2 + x

)(
1

(−2 + x)2 (2 + x)
+ 1

(−2 + x) (2 + x)2
)

−
(
− 1
(−2 + x) (2 + x)

)(
− 1
(−2 + x)2

)
Which simplifies to

W = 1
(−2 + x)2 (2 + x)2

Which simplifies to

W = 1
(−2 + x)2 (2 + x)2
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Therefore Eq. (2) becomes

u1 = −
∫ − 1

−2+x

x2−4
(−2+x)2(2+x)2

dx

Which simplifies to

u1 = −
∫

(−x− 2) dx

Hence

u1 =
1
2x

2 + 2x

And Eq. (3) becomes

u2 =
∫ 2+x

−2+x

x2−4
(−2+x)2(2+x)2

dx

Which simplifies to

u2 =
∫

(2 + x)2 dx

Hence

u2 =
(2 + x)3

3

Therefore the particular solution, from equation (1) is

yp(x) =
1
2x

2 + 2x
−2 + x

− (2 + x)2

3 (−2 + x)

Which simplifies to

yp(x) =
x2 + 4x− 8
−12 + 6x

Therefore the general solution is

y = yh + yp

=
(

c1
−2 + x

− c2
(−2 + x) (2 + x)

)
+
(
x2 + 4x− 8
−12 + 6x

)
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Which simplifies to
y = c1(2 + x)− c2

x2 − 4 + x2 + 4x− 8
−12 + 6x

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1(2 + x)− c2
x2 − 4 + x2 + 4x− 8

−12 + 6x (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −1

3 and
x = 0 in the above gives

−1
3 = c2

4 + 2
3 − c1

2 (1A)

Taking derivative of the solution gives

y′ = c1
x2 − 4 − 2(c1(2 + x)− c2)x

(x2 − 4)2
+ 2x+ 4

−12 + 6x − 6(x2 + 4x− 8)
(−12 + 6x)2

substituting y′ = −1 and x = 0 in the above gives

−1 = −c1
4 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 4
c2 = 4

Substituting these values back in above solution results in

y = x3 + 6x2 + 24x+ 8
6 (−2 + x) (2 + x)

Which simplifies to

y = x3 + 6x2 + 24x+ 8
6x2 − 24

Summary
The solution(s) found are the following

(1)y = x3 + 6x2 + 24x+ 8
6x2 − 24
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Figure 492: Solution plot

Verification of solutions

y = x3 + 6x2 + 24x+ 8
6x2 − 24

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 27� �
dsolve([(x^2-4)*diff(diff(y(x),x),x)+4*x*diff(y(x),x)+2*y(x) = 2+x, 1/(-2+x), y(0) = -1/3, D(y)(0) = -1], singsol=all)� �

y(x) = x3 + 6x2 + 24x+ 8
6x2 − 24
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3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 30� �
DSolve[(x^2-4)*y''[x]+4*x*y'[x]+2*y[x]==x+2,{y[1]==5/4,y'[1]==3/2},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2x3 − 12x2 + 54x+ 5
48− 12x2
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9.36 problem 38 part (a)
9.36.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 2793
9.36.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2794

Internal problem ID [1142]
Internal file name [OUTPUT/1143_Sunday_June_05_2022_02_03_27_AM_95477654/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 38 part (a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ + y2 = −k2

9.36.1 Solving as quadrature ode

Integrating both sides gives ∫ 1
−k2 − y2

dy = x+ c1

−
arctan

(
y
k

)
k

= x+ c1

Solving for y gives these solutions

y1 = − tan (c1k + kx) k

Summary
The solution(s) found are the following

(1)y = − tan (c1k + kx) k
Verification of solutions

y = − tan (c1k + kx) k

Verified OK.
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9.36.2 Maple step by step solution

Let’s solve
y′ + y2 = −k2

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

−y2−k2
= 1

• Integrate both sides with respect to x∫
y′

−y2−k2
dx =

∫
1dx+ c1

• Evaluate integral

−arctan
( y
k

)
k

= x+ c1

• Solve for y
y = − tan (c1k + kx) k

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 13� �
dsolve(diff(y(x),x)+y(x)^2+k^2=0,y(x), singsol=all)� �

y(x) = − tan (k(c1 + x)) k

3 Solution by Mathematica
Time used: 4.112 (sec). Leaf size: 35� �
DSolve[y'[x]+y[x]^2+k^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −k tan(k(x− c1))
y(x) → −ik
y(x) → ik
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9.37 problem 38 part (b)
9.37.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 2796
9.37.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2797

Internal problem ID [1143]
Internal file name [OUTPUT/1144_Sunday_June_05_2022_02_03_28_AM_82082756/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 38 part (b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ + y2 − 3y = −2

9.37.1 Solving as quadrature ode

Integrating both sides gives ∫ 1
−y2 + 3y − 2dy =

∫
dx

ln (y − 1)− ln (y − 2) = x+ c1

Raising both side to exponential gives

eln(y−1)−ln(y−2) = ex+c1

Which simplifies to
y − 1
y − 2 = c2ex

Summary
The solution(s) found are the following

(1)y = 2c2ex − 1
−1 + c2ex
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Figure 493: Slope field plot

Verification of solutions

y = 2c2ex − 1
−1 + c2ex

Verified OK.

9.37.2 Maple step by step solution

Let’s solve
y′ + y2 − 3y = −2

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

−y2+3y−2 = 1

• Integrate both sides with respect to x∫
y′

−y2+3y−2dx =
∫
1dx+ c1

• Evaluate integral
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ln (y − 1)− ln (y − 2) = x+ c1

• Solve for y
y = 2 ex+c1−1

ex+c1−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
dsolve(diff(y(x),x)+y(x)^2-3*y(x)+2=0,y(x), singsol=all)� �

y(x) = 2 exc1 − 1
exc1 − 1

3 Solution by Mathematica
Time used: 0.93 (sec). Leaf size: 40� �
DSolve[y'[x]+y[x]^2-3*y[x]+2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2ex − ec1

ex − ec1

y(x) → 1
y(x) → 2
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9.38 problem 38 part (c)
9.38.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 2799
9.38.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2801

Internal problem ID [1144]
Internal file name [OUTPUT/1145_Sunday_June_05_2022_02_03_29_AM_30770682/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 38 part (c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ + y2 + 5y = 6

9.38.1 Solving as quadrature ode

Integrating both sides gives ∫ 1
−y2 − 5y + 6dy =

∫
dx

ln (y + 6)
7 − ln (y − 1)

7 = x+ c1

The above can be written as(
1
7

)
(ln (y + 6)− ln (y − 1)) = x+ c1

ln (y + 6)− ln (y − 1) = (7) (x+ c1)
= 7x+ 7c1

Raising both side to exponential gives

eln(y+6)−ln(y−1) = 7c1e7x
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Which simplifies to

y + 6
y − 1 = c2e7x

Summary
The solution(s) found are the following

(1)y = c2e7x + 6
−1 + c2e7x

Figure 494: Slope field plot

Verification of solutions

y = c2e7x + 6
−1 + c2e7x

Verified OK.
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9.38.2 Maple step by step solution

Let’s solve
y′ + y2 + 5y = 6

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

−y2−5y+6 = 1

• Integrate both sides with respect to x∫
y′

−y2−5y+6dx =
∫
1dx+ c1

• Evaluate integral
ln(y+6)

7 − ln(y−1)
7 = x+ c1

• Solve for y
y = 6+e7x+7c1

e7x+7c1−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 23� �
dsolve(diff(y(x),x)+y(x)^2+5*y(x)-6=0,y(x), singsol=all)� �

y(x) = 6 + c1e7x
c1e7x − 1

3 Solution by Mathematica
Time used: 0.71 (sec). Leaf size: 46� �
DSolve[y'[x]+y[x]^2+5*y[x]-6==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e7x + 6e7c1
e7x − e7c1

y(x) → −6
y(x) → 1
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9.39 problem 38 part (d)
9.39.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 2803
9.39.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2805

Internal problem ID [1145]
Internal file name [OUTPUT/1146_Sunday_June_05_2022_02_03_31_AM_37228273/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 38 part (d).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ + y2 + 8y = −7

9.39.1 Solving as quadrature ode

Integrating both sides gives ∫ 1
−y2 − 8y − 7dy =

∫
dx

− ln (y + 1)
6 + ln (7 + y)

6 = x+ c1

The above can be written as(
−1
6

)
(ln (y + 1)− ln (7 + y)) = x+ c1

ln (y + 1)− ln (7 + y) = (−6) (x+ c1)
= −6x− 6c1

Raising both side to exponential gives

eln(y+1)−ln(7+y) = −6c1e−6x
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Which simplifies to

y + 1
7 + y

= c2e−6x

Summary
The solution(s) found are the following

(1)y = − 7c2e−6x − 1
−1 + c2e−6x

Figure 495: Slope field plot

Verification of solutions

y = − 7c2e−6x − 1
−1 + c2e−6x

Verified OK.
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9.39.2 Maple step by step solution

Let’s solve
y′ + y2 + 8y = −7

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

−y2−8y−7 = 1

• Integrate both sides with respect to x∫
y′

−y2−8y−7dx =
∫
1dx+ c1

• Evaluate integral
− ln(1+y)

6 + ln(7+y)
6 = x+ c1

• Solve for y
y = −−7+e6x+6c1

e6x+6c1−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 24� �
dsolve(diff(y(x),x)+y(x)^2+8*y(x)+7=0,y(x), singsol=all)� �

y(x) = 7− c1e6x
c1e6x − 1

3 Solution by Mathematica
Time used: 0.655 (sec). Leaf size: 47� �
DSolve[y'[x]+y[x]^2+8*y[x]+7==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −e6x − 7e6c1
e6x − e6c1

y(x) → −7
y(x) → −1
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9.40 problem 38 part (e)
9.40.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 2807
9.40.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2808

Internal problem ID [1146]
Internal file name [OUTPUT/1147_Sunday_June_05_2022_02_03_32_AM_85019389/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 38 part (e).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ + y2 + 14y = −50

9.40.1 Solving as quadrature ode

Integrating both sides gives∫ 1
−y2 − 14y − 50dy = x+ c1

− arctan (7 + y) = x+ c1

Solving for y gives these solutions

y1 = −7− tan (x+ c1)

Summary
The solution(s) found are the following

(1)y = −7− tan (x+ c1)
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Figure 496: Slope field plot

Verification of solutions

y = −7− tan (x+ c1)

Verified OK.

9.40.2 Maple step by step solution

Let’s solve
y′ + y2 + 14y = −50

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

−y2−14y−50 = 1

• Integrate both sides with respect to x∫
y′

−y2−14y−50dx =
∫
1dx+ c1

• Evaluate integral
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− arctan (7 + y) = x+ c1

• Solve for y
y = −7− tan (x+ c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 12� �
dsolve(diff(y(x),x)+y(x)^2+14*y(x)+50=0,y(x), singsol=all)� �

y(x) = −7− tan (c1 + x)

3 Solution by Mathematica
Time used: 0.553 (sec). Leaf size: 30� �
DSolve[y'[x]+y[x]^2+14*y[x]+50==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −7− tan(x− c1)
y(x) → −7− i
y(x) → −7 + i
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9.41 problem 38 part (f)
9.41.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 2810
9.41.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2812

Internal problem ID [1147]
Internal file name [OUTPUT/1148_Sunday_June_05_2022_02_03_33_AM_27793055/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 38 part (f).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

6y′ + 6y2 − y = 1

9.41.1 Solving as quadrature ode

Integrating both sides gives ∫ 1
−y2 + 1

6y +
1
6
dy =

∫
dx

−6 ln (−1 + 2y)
5 + 6 ln (3y + 1)

5 = x+ c1

The above can be written as(
−6
5

)
(ln (−1 + 2y)− ln (3y + 1)) = x+ c1

ln (−1 + 2y)− ln (3y + 1) =
(
−5
6

)
(x+ c1)

= −5x
6 − 5c1

6
Raising both side to exponential gives

eln(−1+2y)−ln(3y+1) = −5c1e−
5x
6

6
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Which simplifies to

−1 + 2y
3y + 1 = c2e−

5x
6

Summary
The solution(s) found are the following

(1)y = − c2e−
5x
6 + 1

−2 + 3c2e−
5x
6

Figure 497: Slope field plot

Verification of solutions

y = − c2e−
5x
6 + 1

−2 + 3c2e−
5x
6

Verified OK.
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9.41.2 Maple step by step solution

Let’s solve
6y′ + 6y2 − y = 1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

−y2+ y
6+

1
6
= 1

• Integrate both sides with respect to x∫
y′

−y2+ y
6+

1
6
dx =

∫
1dx+ c1

• Evaluate integral
−6 ln(2y−1)

5 + 6 ln(3y+1)
5 = x+ c1

• Solve for y

y = 1+e
5x
6 +5c1

6

2 e
5x
6 +5c1

6 −3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 24� �
dsolve(6*diff(y(x),x)+6*y(x)^2-y(x)-1=0,y(x), singsol=all)� �

y(x) = 1 + c1e
5x
6

2c1e
5x
6 − 3

3 Solution by Mathematica
Time used: 0.234 (sec). Leaf size: 56� �
DSolve[6*y'[x]+6*y[x]^2-y[x]-1==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e5x/6 − e5c1

2e5x/6 + 3e5c1

y(x) → −1
3

y(x) → 1
2
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9.42 problem 38 part (g)
9.42.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 2814
9.42.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2815

Internal problem ID [1148]
Internal file name [OUTPUT/1149_Sunday_June_05_2022_02_03_34_AM_91257170/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 38 part (g).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

36y′ + 36y2 − 12y = −1

9.42.1 Solving as quadrature ode

Integrating both sides gives ∫ 1
−y2 + 1

3y −
1
36
dy = x+ c1

6
6y − 1 = x+ c1

Solving for y gives these solutions

y1 =
c1 + x+ 6
6x+ 6c1

Summary
The solution(s) found are the following

(1)y = c1 + x+ 6
6x+ 6c1
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Figure 498: Slope field plot

Verification of solutions

y = c1 + x+ 6
6x+ 6c1

Verified OK.

9.42.2 Maple step by step solution

Let’s solve
36y′ + 36y2 − 12y = −1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

−y2+ y
3−

1
36

= 1

• Integrate both sides with respect to x∫
y′

−y2+ y
3−

1
36
dx =

∫
1dx+ c1

• Evaluate integral
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6
6y−1 = x+ c1

• Solve for y
y = c1+x+6

6(x+c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 18� �
dsolve(36*diff(y(x),x)+36*y(x)^2-12*y(x)+1=0,y(x), singsol=all)� �

y(x) = c1 + x+ 6
6x+ 6c1

3 Solution by Mathematica
Time used: 0.119 (sec). Leaf size: 30� �
DSolve[36*y'[x]+36*y[x]^2-12*y[x]+1==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x+ 6− 36c1
6x− 216c1

y(x) → 1
6
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9.43 problem 39 part(a)
9.43.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2817

Internal problem ID [1149]
Internal file name [OUTPUT/1150_Sunday_June_05_2022_02_03_35_AM_37748633/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 39 part(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x),G(x)]`],

_Riccati]

x2(y′ + y2
)
− x(2 + x) y = −x− 2

9.43.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −x2y2 − y x2 − 2yx+ x+ 2
x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = −y2 + y + 2y
x

− 1
x
− 2

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = −2+x
x2 , f1(x) = −−x2−2x

x2 and f2(x) = −1. Let

y = −u′

f2u

= −u′

−u
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 =
−x2 − 2x

x2

f 2
2 f0 = −2 + x

x2

Substituting the above terms back in equation (2) gives

−u′′(x)− (−x2 − 2x)u′(x)
x2 − (2 + x)u(x)

x2 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = x(c1 + c2ex)

The above shows that
u′(x) = (x+ 1) c2ex + c1

Using the above in (1) gives the solution

y = (x+ 1) c2ex + c1
x (c1 + c2ex)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = x ex + ex + c3
x (c3 + ex)

Summary
The solution(s) found are the following

(1)y = x ex + ex + c3
x (c3 + ex)
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Figure 499: Slope field plot

Verification of solutions

y = x ex + ex + c3
x (c3 + ex)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
found: 2 potential symmetries. Proceeding with integration step`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 26� �
dsolve(x^2*(diff(y(x),x)+y(x)^2)-x*(x+2)*y(x)+x+2=0,y(x), singsol=all)� �

y(x) = x ex + ex − c1
(−c1 + ex)x

3 Solution by Mathematica
Time used: 0.179 (sec). Leaf size: 49� �
DSolve[x^2*(y'[x]+y[x])-x*(x+2)+y[x]+x+2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e
1
x
−x

(∫ x

1

eK[1]− 1
K[1] (K[1]2 +K[1]− 2)

K[1]2 dK[1] + c1

)
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9.44 problem 39 part(b)
9.44.1 Solving as first order ode lie symmetry calculated ode . . . . . . 2821
9.44.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2827

Internal problem ID [1150]
Internal file name [OUTPUT/1151_Sunday_June_05_2022_02_03_37_AM_78391930/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 39 part(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _Riccati]

y′ + y2 + 4yx = −4x2 − 2

9.44.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −4x2 − 4yx− y2 − 2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
−4x2 − 4yx− y2 − 2

)
(b3 − a2)−

(
−4x2 − 4yx− y2 − 2

)2
a3

− (−8x− 4y) (xa2 + ya3 + a1)− (−4x− 2y) (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−16x4a3 − 32x3ya3 − 24x2y2a3 − 8x y3a3 − y4a3 + 12x2a2
− 16x2a3 + 4x2b2 − 4x2b3 + 8xya2 − 8xya3 + 2xyb2 + y2a2
+ y2b3 + 8xa1 + 4xb1 + 4ya1 + 2yb1 + 2a2 − 4a3 + b2 − 2b3 = 0

Setting the numerator to zero gives

(6E)−16x4a3 − 32x3ya3 − 24x2y2a3 − 8x y3a3 − y4a3 + 12x2a2
− 16x2a3 + 4x2b2 − 4x2b3 + 8xya2 − 8xya3 + 2xyb2 + y2a2
+ y2b3 + 8xa1 + 4xb1 + 4ya1 + 2yb1 + 2a2 − 4a3 + b2 − 2b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−16a3v41 − 32a3v31v2 − 24a3v21v22 − 8a3v1v32 − a3v
4
2 + 12a2v21 + 8a2v1v2

+ a2v
2
2 − 16a3v21 − 8a3v1v2 + 4b2v21 + 2b2v1v2 − 4b3v21 + b3v

2
2

+ 8a1v1 + 4a1v2 + 4b1v1 + 2b1v2 + 2a2 − 4a3 + b2 − 2b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)−16a3v41 − 32a3v31v2 − 24a3v21v22 + (12a2 − 16a3 + 4b2 − 4b3) v21
− 8a3v1v32 + (8a2 − 8a3 + 2b2) v1v2 + (8a1 + 4b1) v1 − a3v

4
2

+ (a2 + b3) v22 + (4a1 + 2b1) v2 + 2a2 − 4a3 + b2 − 2b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−32a3 = 0
−24a3 = 0
−16a3 = 0
−8a3 = 0
−a3 = 0

4a1 + 2b1 = 0
8a1 + 4b1 = 0
a2 + b3 = 0

8a2 − 8a3 + 2b2 = 0
2a2 − 4a3 + b2 − 2b3 = 0

12a2 − 16a3 + 4b2 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 = −b3

a3 = 0
b1 = −2a1
b2 = 4b3
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = −2
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ
= −2−

(
−4x2 − 4yx− y2 − 2

)
(1)

= 4x2 + 4yx+ y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

4x2 + 4yx+ y2
dy

Which results in

S = − 1
2x+ y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −4x2 − 4yx− y2 − 2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2
(2x+ y)2

Sy =
1

(2x+ y)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− 1
2x+ y

= −x+ c1

Which simplifies to

− 1
2x+ y

= −x+ c1

Which gives

y = −2c1x− 2x2 + 1
−x+ c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −4x2 − 4yx− y2 − 2 dS
dR

= −1

R = x

S = − 1
2x+ y

Summary
The solution(s) found are the following

(1)y = −2c1x− 2x2 + 1
−x+ c1
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Figure 500: Slope field plot

Verification of solutions

y = −2c1x− 2x2 + 1
−x+ c1

Verified OK.

9.44.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= −4x2 − 4yx− y2 − 2

This is a Riccati ODE. Comparing the ODE to solve

y′ = −4x2 − 4yx− y2 − 2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = −4x2 − 2, f1(x) = −4x and f2(x) = −1. Let

y = −u′

f2u

= −u′

−u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 4x
f 2
2 f0 = −4x2 − 2

Substituting the above terms back in equation (2) gives

−u′′(x)− 4xu′(x) +
(
−4x2 − 2

)
u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = e−x2(c2x+ c1)

The above shows that

u′(x) = e−x2(−2c2x2 − 2c1x+ c2
)

Using the above in (1) gives the solution

y = −2c2x2 − 2c1x+ c2
c2x+ c1

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −2c3x− 2x2 + 1
c3 + x
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Summary
The solution(s) found are the following

(1)y = −2c3x− 2x2 + 1
c3 + x

Figure 501: Slope field plot

Verification of solutions

y = −2c3x− 2x2 + 1
c3 + x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -2, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 23� �
dsolve(diff(y(x),x)+y(x)^2+4*x*y(x)+4*x^2+2=0,y(x), singsol=all)� �

y(x) = −2c1x+ 2x2 − 1
c1 − x

3 Solution by Mathematica
Time used: 0.129 (sec). Leaf size: 22� �
DSolve[y'[x]+y[x]^2+4*x*y[x]+4*x^2+2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2x+ 1
x+ c1

y(x) → −2x
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9.45 problem 39 part(c)
9.45.1 Solving as first order ode lie symmetry calculated ode . . . . . . 2831
9.45.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2839

Internal problem ID [1151]
Internal file name [OUTPUT/1152_Sunday_June_05_2022_02_03_38_AM_44514293/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 39 part(c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[_rational , _Riccati]

(1 + 2x)
(
y′ + y2

)
− 2y = 2x+ 3

9.45.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −2x y2 + y2 − 2x− 2y − 3
1 + 2x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

(1E)ξ = x3a7 + y x2a8 + x y2a9 + y3a10 + x2a4 + yxa5 + y2a6 + xa2 + ya3 + a1

(2E)η = x3b7 + y x2b8 + x y2b9 + y3b10 + x2b4 + yxb5 + y2b6 + xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}

Substituting equations (1E,2E) and ω into (A) gives

(5E)3x2b7 + 2xyb8 + y2b9 + 2xb4 + yb5 + b2

− (2x y2 + y2 − 2x− 2y − 3) (−3x2a7 + x2b8 − 2xya8 + 2xyb9 − y2a9 + 3y2b10 − 2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)
1 + 2x

− (2x y2 + y2 − 2x− 2y − 3)2 (x2a8 + 2xya9 + 3y2a10 + xa5 + 2ya6 + a3)
(1 + 2x)2

−
(
−2y2 − 2

1 + 2x + 4x y2 + 2y2 − 4x− 4y − 6
(1 + 2x)2

)(
x3a7 + y x2a8

+ x y2a9 + y3a10 + x2a4 + yxa5 + y2a6 + xa2 + ya3 + a1
)

+(4yx+ 2y − 2) (x3b7 + y x2b8 + x y2b9 + y3b10 + x2b4 + yxb5 + y2b6 + xb2 + yb3 + b1)
1 + 2x

= 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)Expression too large to display
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

(4b5 + 16a8 + 12a7 + 4b8 + 8a4 + 8a5) v22v31
+ (12a5 + 16a6 + 32a9 + 12a8) v32v21
+ (−a5 + 16a6 + 48a10 + 12a9 − 4b10 − 4a3) v42v1
+ (8b4 − 8a9 + 2b7 + 8b8 − 8a7 − 16a8 + 8b9 + 8b2) v2v31
+ (8a4 + 16a5 + 4b5 − 12a10 + 8b9 + 3a7 − 2a8
− 20a9 + b8 + 12b10 + 4a2 + 8a3 + 4b3) v22v21
+ (8a5 + 32a6 − 24a10 + 2a8 + 4a9 + 8b10 + 8a3) v32v1
+ (−4a4 − 12a5 − 8a6 + 2b4 + 4b5 + 8b6 − 24a8
+ 8b8 − 6a7 + 16b9 − 24a9 + 8b1 + 8b2) v2v21
+ (2a4 + 2a5 − 16a6 + b5 + 4b6 − 28a9 + 6b9
− 4a8 + 24b10 − 36a10 + 4a2 + 16a3 + 4b3) v22v1
+ (−4a4 − 24a6 + 16b6 − 16a5 + 4b5 − 6a8
+ 6b9 − 18a9 + 2b8 − 8a3 + 8b1 + 2b2) v2v1
+ (−4a8 − 4a5) v42v31 + (−8a9 − 8a6) v52v21
+ (8a8 + 12a7 + 4b8) v22v41 + (16a9 + 16a8) v32v31
+ (−a8 + 24a10 + 20a9 − 4b10 − 4a5 − 4a3) v42v21
+ (−2a9 + 24a10 − 8a6) v52v1 + (8b7 + 8b4) v2v41
+ 4a1 − 3a2 − 9a3 − 2b1 + b2 + 3b3
+(−8a4−4a5+8b8−12a8+4b4+4b5−20a7+10b7) v31
+ (3b7 − 4a2 − 4a3 +4b3 − 12a4 +6b4 − 9a7 +3b8 − 9a8
−12a5+8b5) v21 +(b9+a2+6a3+ b3−20a6+2b6−3a9
+ 9b10 − 27a10 − 2a5) v22 + (8b7 − 12a7 + 4b8 − 4a8) v41
+ (4a3 − 2a9 + a5 + 8a6 − 32a10 + 4b10) v32 + (−4a2
− 12a3 − 6a4 − 9a5 − 4b1 + 2b2 + 8b3 + 2b4 + 3b5) v1
+ (4a1 − 2a2 − 8a3 − 3a5 − 18a6 + 2b1 + b5 + 6b6) v2
+ (−2a6 + 12a10) v52 − 3v62a10 − 4v41v42a8
− 8v31v52a9 − 12v21v62a10 − 12v1v62a10 + 8v51v2b7
+ (8a6 − a3 + a9 − b10 + 10a10) v42 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−4a8 = 0
−8a9 = 0

−12a10 = 0
−3a10 = 0

8b7 = 0
−2a6 + 12a10 = 0
−4a8 − 4a5 = 0
−8a9 − 8a6 = 0
16a9 + 16a8 = 0

8b7 + 8b4 = 0
8a8 + 12a7 + 4b8 = 0

−2a9 + 24a10 − 8a6 = 0
12a5 + 16a6 + 32a9 + 12a8 = 0

8b7 − 12a7 + 4b8 − 4a8 = 0
8a6 − a3 + a9 − b10 + 10a10 = 0

4a1 − 3a2 − 9a3 − 2b1 + b2 + 3b3 = 0
4a3 − 2a9 + a5 + 8a6 − 32a10 + 4b10 = 0

−a5 + 16a6 + 48a10 + 12a9 − 4b10 − 4a3 = 0
−a8 + 24a10 + 20a9 − 4b10 − 4a5 − 4a3 = 0

4b5 + 16a8 + 12a7 + 4b8 + 8a4 + 8a5 = 0
8a5 + 32a6 − 24a10 + 2a8 + 4a9 + 8b10 + 8a3 = 0

4a1 − 2a2 − 8a3 − 3a5 − 18a6 + 2b1 + b5 + 6b6 = 0
−8a4 − 4a5 + 8b8 − 12a8 + 4b4 + 4b5 − 20a7 + 10b7 = 0

8b4 − 8a9 + 2b7 + 8b8 − 8a7 − 16a8 + 8b9 + 8b2 = 0
−4a2 − 12a3 − 6a4 − 9a5 − 4b1 + 2b2 + 8b3 + 2b4 + 3b5 = 0

b9 + a2 + 6a3 + b3 − 20a6 + 2b6 − 3a9 + 9b10 − 27a10 − 2a5 = 0
3b7 − 4a2 − 4a3 + 4b3 − 12a4 + 6b4 − 9a7 + 3b8 − 9a8 − 12a5 + 8b5 = 0

−4a4 − 24a6 + 16b6 − 16a5 + 4b5 − 6a8 + 6b9 − 18a9 + 2b8 − 8a3 + 8b1 + 2b2 = 0
−4a4 − 12a5 − 8a6 + 2b4 + 4b5 + 8b6 − 24a8 + 8b8 − 6a7 + 16b9 − 24a9 + 8b1 + 8b2 = 0
2a4 + 2a5 − 16a6 + b5 + 4b6 − 28a9 + 6b9 − 4a8 + 24b10 − 36a10 + 4a2 + 16a3 + 4b3 = 0
8a4 + 16a5 + 4b5 − 12a10 + 8b9 + 3a7 − 2a8 − 20a9 + b8 + 12b10 + 4a2 + 8a3 + 4b3 = 0
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Solving the above equations for the unknowns gives

a1 = −b9
2 − b10

a2 = −b9

a3 = −b10

a4 = 0
a5 = 0
a6 = 0
a7 = 0
a8 = 0
a9 = 0
a10 = 0

b1 = −3b9
2 + b10

b2 = −b9

b3 = −b9 − b10

b4 = 0
b5 = 0

b6 =
b9
2 − b10

b7 = 0
b8 = 0
b9 = b9

b10 = b10

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −y − 1

η = y3 − y2 − y + 1
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y3 − y2 − y + 1−
(
−2x y2 + y2 − 2x− 2y − 3

1 + 2x

)
(−y − 1)

= −4x y2 + 4x+ 4y + 4
1 + 2x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−4x y2+4x+4y+4
1+2x

dy

Which results in

S =
(
1
4 + x

2

)(
ln (y + 1)
1 + 2x − ln (yx− x− 1)

1 + 2x

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x y2 + y2 − 2x− 2y − 3
1 + 2x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y + 1
−4 + (4y − 4)x

Sy =
−1− 2x

4 (−1 + (y − 1)x) (y + 1)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (1 + y)
4 − ln (−1 + (y − 1)x)

4 = x

2 + c1

Which simplifies to

ln (1 + y)
4 − ln (−1 + (y − 1)x)

4 = x

2 + c1

Which gives

y = x e2x+4c1 + e2x+4c1 + 1
−1 + x e2x+4c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x y2+y2−2x−2y−3
1+2x

dS
dR

= 1
2

R = x

S = ln (y + 1)
4 − ln (−1 + (y − 1)x)

4

Summary
The solution(s) found are the following

(1)y = x e2x+4c1 + e2x+4c1 + 1
−1 + x e2x+4c1
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Figure 502: Slope field plot

Verification of solutions

y = x e2x+4c1 + e2x+4c1 + 1
−1 + x e2x+4c1

Verified OK.

9.45.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −2x y2 + y2 − 2x− 2y − 3
1 + 2x

This is a Riccati ODE. Comparing the ODE to solve

y′ = − 2x y2
1 + 2x − y2

1 + 2x + 2x
1 + 2x + 2y

1 + 2x + 3
1 + 2x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = −−3−2x
1+2x , f1(x) = 2

1+2x and f2(x) = −1. Let

y = −u′

f2u

= −u′

−u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = − 2
1 + 2x

f 2
2 f0 = −−3− 2x

1 + 2x

Substituting the above terms back in equation (2) gives

−u′′(x) + 2u′(x)
1 + 2x − (−3− 2x)u(x)

1 + 2x = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1e−x + c2x ex

The above shows that
u′(x) = −c1e−x + (x+ 1) c2ex

Using the above in (1) gives the solution

y = −c1e−x + (x+ 1) c2ex
c1e−x + c2x ex

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = x e2x + e2x − c3
x e2x + c3

2840



Summary
The solution(s) found are the following

(1)y = x e2x + e2x − c3
x e2x + c3

Figure 503: Slope field plot

Verification of solutions

y = x e2x + e2x − c3
x e2x + c3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

<- Riccati particular case Kamke (b) successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve((2*x+1)*(diff(y(x),x)+y(x)^2)-2*y(x)-(2*x+3)=0,y(x), singsol=all)� �

y(x) = e2xx+ e2x − c1
e2xx+ c1

3 Solution by Mathematica
Time used: 0.403 (sec). Leaf size: 41� �
DSolve[(2*x+1)*(y'[x]+y[x]^2)-2*y[x]-(2*x+3)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e2x+1(x+ 1)− c1
e2x+1x+ c1

y(x) → −1
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9.46 problem 39 part(d)
9.46.1 Solving as first order ode lie symmetry calculated ode . . . . . . 2843
9.46.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2851

Internal problem ID [1152]
Internal file name [OUTPUT/1153_Sunday_June_05_2022_02_03_39_AM_15976872/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 39 part(d).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[_rational , _Riccati]

(3x− 1)
(
y′ + y2

)
− y(3x+ 2) = 6x− 8

9.46.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −3x y2 − 3yx− y2 − 6x− 2y + 8
3x− 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

(1E)ξ = x3a7 + y x2a8 + x y2a9 + y3a10 + x2a4 + yxa5 + y2a6 + xa2 + ya3 + a1

(2E)η = x3b7 + y x2b8 + x y2b9 + y3b10 + x2b4 + yxb5 + y2b6 + xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}

Substituting equations (1E,2E) and ω into (A) gives

(5E)3x2b7 + 2xyb8 + y2b9 + 2xb4 + yb5 + b2

− (3x y2 − 3yx− y2 − 6x− 2y + 8) (−3x2a7 + x2b8 − 2xya8 + 2xyb9 − y2a9 + 3y2b10 − 2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)
3x− 1

− (3x y2 − 3yx− y2 − 6x− 2y + 8)2 (x2a8 + 2xya9 + 3y2a10 + xa5 + 2ya6 + a3)
(3x− 1)2

−
(
−3y2 − 3y − 6

3x− 1 + 9x y2 − 9yx− 3y2 − 18x− 6y + 24
(3x− 1)2

)(
x3a7

+ y x2a8 + x y2a9 + y3a10 + x2a4 + yxa5 + y2a6 + xa2 + ya3 + a1
)

+(6yx− 3x− 2y − 2) (x3b7 + y x2b8 + x y2b9 + y3b10 + x2b4 + yxb5 + y2b6 + xb2 + yb3 + b1)
3x− 1

= 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)Expression too large to display
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(24a8 + 54a9 + 18a5) v32v31 + (21a9 − 9b10 − a8 + 81a10 − 9a3 + 6a5 + 36a6) v42v21
+ (6a8 + 36a9 − 9a5) v42v31 + (12a9 + 54a10 − 18a6) v52v21
+ (18a10 − 2a9 + 12a6) v52v1 + (−36a8 − 12b7 − 27a7 + 18b4) v2v41
+ (−72a9 − 18a7 − 90a8 − 6b8 + 9b9 + 18a4 + 27a5 + 9b5) v22v31
+ (−108a10 − 16a8 − 153a9 + 18b10 + 18a3 + 15a5 + 54a6) v32v21
+ (−216a10 − a5 + 12a6 − 14a9 + 6b10 + 6a3) v42v1
+(−72a9+2b7− 18a4− 36a5− 12b4+18b8− 12a8+36b9+18b2) v2v31 +(−108a10− 12a4
− 81a5− 72a6− 6b5+9b6+9a2+27a3+9b3+12b9+3a7+15a8+30a9+ b8+54b10) v22v21
+ (72a10 − 10a5 − 144a6 + 6a3 + 2a8 + 30a9 + 6b10) v32v1 + (192a9 + 3a4 − 9a2 − 36a3
+ 18b1 − 12b2 + 6a7 − 60b9 + 6a5 − 72a6 + 2b4 + 9b5 + 36b6 + 74a8 − 12b8) v2v21
+(288a10−6a2−72a3−6b3+4a8−90b10+2a4+18a5+48a6+ b5+3b6+76a9−8b9) v22v1
+ (−128a9 + 6a2 + 24a3 − 12b1 + 2b2 + 2b8 − 16a8 + 16b9 + 4a4 + 192a6
− 60b6 + 44a5 − 6b5) v2v1 + (27a7 + 9b8 + 27a8) v22v41 − 18a1 − 8a2 − 64a3
+ 2b1 + b2 + 8b3 + 18v51v2b7 − 9v41v42a8 − 18v31v52a9 − 27v21v62a10 + 18v41v32a8
+ 18v1v62a10 − 3v62a10 − 9v51b7 + (24b7 − 54a7 + 18b8 − 36a8 − 9b4) v41
+ (−30b8 + 96a8 + 72a7 − 16b7 − 9b2 − 36a4 − 36a5 + 15b4 + 18b5) v31
+ (b9 − 8a9 + 24b10 − 192a10 + a2 + 21a3 + b3 + 2a5 + 46a6 − 2b6) v22
+(3b7−24a7+8b8−64a8−18a2−36a3−9b1+6b2+18b3+96a5−30b5+42a4−10b4) v21
+ (2a9 + 78a10 − 4b10 − 4a3 + a5 + 33a6) v32 + (a9 − b10 + 45a10 − a3 − 8a6) v42
+ (12a2 + 96a3 − 16a4 − 64a5 − 3b1 − 4b2 − 30b3 + 2b4 + 8b5) v1
+ (9a1 + 2a2 + 14a3 − 8a5 − 128a6 + 2b1 + b5 + 16b6) v2 + (−12a10 − 2a6) v52 = 0

(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve
−9a8 = 0
18a8 = 0

−18a9 = 0
−27a10 = 0
−3a10 = 0
18a10 = 0
−9b7 = 0
18b7 = 0

−12a10 − 2a6 = 0
27a7 + 9b8 + 27a8 = 0
6a8 + 36a9 − 9a5 = 0

24a8 + 54a9 + 18a5 = 0
12a9 + 54a10 − 18a6 = 0
18a10 − 2a9 + 12a6 = 0

−36a8 − 12b7 − 27a7 + 18b4 = 0
a9 − b10 + 45a10 − a3 − 8a6 = 0

24b7 − 54a7 + 18b8 − 36a8 − 9b4 = 0
−18a1 − 8a2 − 64a3 + 2b1 + b2 + 8b3 = 0
2a9 + 78a10 − 4b10 − 4a3 + a5 + 33a6 = 0

−216a10 − a5 + 12a6 − 14a9 + 6b10 + 6a3 = 0
21a9 − 9b10 − a8 + 81a10 − 9a3 + 6a5 + 36a6 = 0

−108a10 − 16a8 − 153a9 + 18b10 + 18a3 + 15a5 + 54a6 = 0
72a10 − 10a5 − 144a6 + 6a3 + 2a8 + 30a9 + 6b10 = 0

9a1 + 2a2 + 14a3 − 8a5 − 128a6 + 2b1 + b5 + 16b6 = 0
−72a9 − 18a7 − 90a8 − 6b8 + 9b9 + 18a4 + 27a5 + 9b5 = 0

12a2 + 96a3 − 16a4 − 64a5 − 3b1 − 4b2 − 30b3 + 2b4 + 8b5 = 0
−72a9 + 2b7 − 18a4 − 36a5 − 12b4 + 18b8 − 12a8 + 36b9 + 18b2 = 0
−30b8 + 96a8 + 72a7 − 16b7 − 9b2 − 36a4 − 36a5 + 15b4 + 18b5 = 0
b9 − 8a9 + 24b10 − 192a10 + a2 + 21a3 + b3 + 2a5 + 46a6 − 2b6 = 0

−128a9 + 6a2 + 24a3 − 12b1 + 2b2 + 2b8 − 16a8 + 16b9 + 4a4 + 192a6 − 60b6 + 44a5 − 6b5 = 0
288a10 − 6a2 − 72a3 − 6b3 + 4a8 − 90b10 + 2a4 + 18a5 + 48a6 + b5 + 3b6 + 76a9 − 8b9 = 0

3b7 − 24a7 + 8b8 − 64a8 − 18a2 − 36a3 − 9b1 + 6b2 + 18b3 + 96a5 − 30b5 + 42a4 − 10b4 = 0
192a9 + 3a4 − 9a2 − 36a3 + 18b1 − 12b2 + 6a7 − 60b9 + 6a5 − 72a6 + 2b4 + 9b5 + 36b6 + 74a8 − 12b8 = 0

−108a10 − 12a4 − 81a5 − 72a6 − 6b5 + 9b6 + 9a2 + 27a3 + 9b3 + 12b9 + 3a7 + 15a8 + 30a9 + b8 + 54b10 = 0
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Solving the above equations for the unknowns gives

a1 =
b9
3 + 2b10

a2 = −b9

a3 = −b10

a4 = 0
a5 = 0
a6 = 0
a7 = 0
a8 = 0
a9 = 0
a10 = 0

b1 =
8b9
3 − 2b10

b2 = −2b9

b3 = −2b9
3 − 3b10

b4 = 0
b5 = −b9

b6 = −b9
3

b7 = 0
b8 = 0
b9 = b9

b10 = b10

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −y + 2

η = y3 − 3y − 2
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y3 − 3y − 2−
(
−3x y2 − 3yx− y2 − 6x− 2y + 8

3x− 1

)
(−y + 2)

= 9x y2 − 9yx− 18x− 9y + 18
3x− 1

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

9x y2−9yx−18x−9y+18
3x−1

dy

Which results in

S =
(
x

3 − 1
9

)(
− ln (yx+ x− 1)

3x− 1 + ln (y − 2)
3x− 1

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3x y2 − 3yx− y2 − 6x− 2y + 8
3x− 1
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y − 1
−9 + (9y + 9)x

Sy =
3x− 1

9 (y − 2) (yx+ x− 1)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R

3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (yx+ x− 1)
9 + ln (y − 2)

9 = −x

3 + c1

Which simplifies to

− ln (yx+ x− 1)
9 + ln (y − 2)

9 = −x

3 + c1

Which gives

y = −x e−3x+9c1 − e−3x+9c1 + 2
−1 + x e−3x+9c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −3x y2−3yx−y2−6x−2y+8
3x−1

dS
dR

= −1
3

R = x

S = − ln (yx+ x− 1)
9 + ln (y − 2)

9

Summary
The solution(s) found are the following

(1)y = −x e−3x+9c1 − e−3x+9c1 + 2
−1 + x e−3x+9c1
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Figure 504: Slope field plot

Verification of solutions

y = −x e−3x+9c1 − e−3x+9c1 + 2
−1 + x e−3x+9c1

Verified OK.

9.46.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −3x y2 − 3yx− y2 − 6x− 2y + 8
3x− 1

This is a Riccati ODE. Comparing the ODE to solve

y′ = − 3x y2
3x− 1 + 3yx

3x− 1 + y2

3x− 1 + 6x
3x− 1 + 2y

3x− 1 − 8
3x− 1

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = −−6x+8
3x−1 , f1(x) = −−3x−2

3x−1 and f2(x) = −1. Let

y = −u′

f2u

= −u′

−u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 =
−3x− 2
3x− 1

f 2
2 f0 = −−6x+ 8

3x− 1

Substituting the above terms back in equation (2) gives

−u′′(x)− (−3x− 2)u′(x)
3x− 1 − (−6x+ 8)u(x)

3x− 1 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1e2x + x e−xc2

The above shows that
u′(x) = −c2(x− 1) e−x + 2c1e2x

Using the above in (1) gives the solution

y = −c2(x− 1) e−x + 2c1e2x
c1e2x + x e−xc2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = 2c3e3x − x+ 1
c3e3x + x
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Summary
The solution(s) found are the following

(1)y = 2c3e3x − x+ 1
c3e3x + x

Figure 505: Slope field plot

Verification of solutions

y = 2c3e3x − x+ 1
c3e3x + x

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
<- Abel AIR successful: ODE belongs to the 1F1 2-parameter class`� �

3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 31� �
dsolve((3*x-1)*(diff(y(x),x)+y(x)^2)-(3*x+2)*y(x)-6*x+8=0,y(x), singsol=all)� �

y(x) = −c1x+ 2 e3x−1 + c1
c1x+ e3x−1

3 Solution by Mathematica
Time used: 0.557 (sec). Leaf size: 41� �
DSolve[(3*x-1)*(y'[x]+y[x]^2)-(3*x+2)*y[x]-6*x+8==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2(−ex+ c1e
3x + e)

2ex+ c1e3x

y(x) → 2
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9.47 problem 39 part(e)
9.47.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2855

Internal problem ID [1153]
Internal file name [OUTPUT/1154_Sunday_June_05_2022_02_03_40_AM_94871224/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 39 part(e).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x),G(x)]`],

_Riccati]

x2(y′ + y2
)
+ yx = −x2 + 1

4

9.47.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −4x2y2 + 4x2 + 4yx− 1
4x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = −y2 − 1− y

x
+ 1

4x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = −4x2−1
4x2 , f1(x) = − 1

x
and f2(x) = −1. Let

y = −u′

f2u

= −u′

−u
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 =
1
x

f 2
2 f0 = −4x2 − 1

4x2

Substituting the above terms back in equation (2) gives

−u′′(x)− u′(x)
x

− (4x2 − 1)u(x)
4x2 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = sin (x) c1 + c2 cos (x)√
x

The above shows that

u′(x) =
(
c1x− c2

2

)
cos (x)−

(
c2x+ c1

2

)
sin (x)

x
3
2

Using the above in (1) gives the solution

y =
(
c1x− c2

2

)
cos (x)−

(
c2x+ c1

2

)
sin (x)

x (sin (x) c1 + c2 cos (x))

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
(2c3x− 1) cos (x)− 2

(
x+ c3

2

)
sin (x)

2 (c3 sin (x) + cos (x))x

Summary
The solution(s) found are the following

(1)y =
(2c3x− 1) cos (x)− 2

(
x+ c3

2

)
sin (x)

2 (c3 sin (x) + cos (x))x
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Figure 506: Slope field plot

Verification of solutions

y =
(2c3x− 1) cos (x)− 2

(
x+ c3

2

)
sin (x)

2 (c3 sin (x) + cos (x))x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

<- Riccati particular polynomial solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 46� �
dsolve(x^2*(diff(y(x),x)+y(x)^2)+x*y(x)+x^2-1/4=0,y(x), singsol=all)� �

y(x) = −4c1x− e−2ix − 2ie−2ixx− 2ic1
2x (e−2ix + 2ic1)

3 Solution by Mathematica
Time used: 0.377 (sec). Leaf size: 22� �
DSolve[x^2*(y'[x]+y[x]^2)+x*y[x]+x^2-1/4==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1
2x − tan(x− c1)
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9.48 problem 39 part(f)
9.48.1 Solving as first order ode lie symmetry calculated ode . . . . . . 2859
9.48.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 2865
9.48.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 2871

Internal problem ID [1154]
Internal file name [OUTPUT/1155_Sunday_June_05_2022_02_03_42_AM_21891696/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 39 part(f).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Riccati]

x2(y′ + y2
)
− 7yx = −7

9.48.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x2y2 − 7yx+ 7
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 −

(x2y2 − 7yx+ 7) (b3 − a2)
x2 − (x2y2 − 7yx+ 7)2 a3

x4

−
(
−2x y2 − 7y

x2 + 2x2y2 − 14yx+ 14
x3

)
(xa2 + ya3 + a1)

+ (2y x2 − 7x) (xb2 + yb3 + b1)
x2 = 0

Putting the above in normal form gives

−x4y4a3 + 2x5yb2 + x4y2a2 + x4y2b3 + 14x3y3a3 + 2x4yb1 − 6b2x4 − 56x2y2a3 − 7x3b1 + 7x2ya1 − 7x2a2 − 7x2b3 + 84xya3 − 14xa1 − 49a3
x4

= 0

Setting the numerator to zero gives

(6E)−x4y4a3 + 2x5yb2 + x4y2a2 + x4y2b3 + 14x3y3a3 + 2x4yb1 − 6b2x4

− 56x2y2a3 − 7x3b1 + 7x2ya1 − 7x2a2 − 7x2b3 + 84xya3 − 14xa1 − 49a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a3v
4
1v

4
2 + a2v

4
1v

2
2 + 14a3v31v32 + 2b2v51v2 + b3v

4
1v

2
2 + 2b1v41v2 − 56a3v21v22

− 6b2v41 + 7a1v21v2 − 7b1v31 − 7a2v21 + 84a3v1v2 − 7b3v21 − 14a1v1 − 49a3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v51v2 − a3v
4
1v

4
2 + (a2 + b3) v41v22 + 2b1v41v2 − 6b2v41 + 14a3v31v32 − 7b1v31

− 56a3v21v22 + 7a1v21v2 + (−7a2 − 7b3) v21 + 84a3v1v2 − 14a1v1 − 49a3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−14a1 = 0
7a1 = 0

−56a3 = 0
−49a3 = 0
−a3 = 0
14a3 = 0
84a3 = 0
−7b1 = 0
2b1 = 0

−6b2 = 0
2b2 = 0

−7a2 − 7b3 = 0
a2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−x2y2 − 7yx+ 7

x2

)
(−x)

= −x2y2 + 8yx− 7
x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2y2+8yx−7
x

dy

Which results in

S = − ln (yx− 7)
6 + ln (yx− 1)

6
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2y2 − 7yx+ 7
x2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

(yx− 1) (yx− 7)
Sy = − x

(yx− 1) (yx− 7)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (yx− 7)
6 + ln (yx− 1)

6 = ln (x) + c1

Which simplifies to

− ln (yx− 7)
6 + ln (yx− 1)

6 = ln (x) + c1

Which gives

y = 7x6e6c1 − 1
x (x6e6c1 − 1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2y2−7yx+7
x2

dS
dR

= 1
R

R = x

S = − ln (yx− 7)
6 + ln (yx− 1)

6

Summary
The solution(s) found are the following

(1)y = 7x6e6c1 − 1
x (x6e6c1 − 1)
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Figure 507: Slope field plot

Verification of solutions

y = 7x6e6c1 − 1
x (x6e6c1 − 1)

Verified OK.

9.48.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2) dy =

(
−x2y2 + 7yx− 7

)
dx(

x2y2 − 7yx+ 7
)
dx+

(
x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2y2 − 7yx+ 7
N(x, y) = x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x2y2 − 7yx+ 7

)
= 2y x2 − 7x

And
∂N

∂x
= ∂

∂x

(
x2)

= 2x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2

((
2y x2 − 7x

)
− (2x)

)
= 2yx− 9

x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

x2y2 − 7yx+ 7
(
(2x)−

(
2y x2 − 7x

))
= −2y x2 + 9x

x2y2 − 7yx+ 7

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (2x)− (2y x2 − 7x)
x (x2y2 − 7yx+ 7)− y (x2)

= −2yx+ 9
x2y2 − 8yx+ 7

Replacing all powers of terms xy by t gives

R = −2t+ 9
t2 − 8t+ 7

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ ( −2t+9

t2−8t+7

)
dt
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The result of integrating gives

µ = e−
7 ln(t−1)

6 − 5 ln(t−7)
6

= 1
(t− 1)

7
6 (t− 7)

5
6

Now t is replaced back with xy giving

µ = 1
(yx− 1)

7
6 (yx− 7)

5
6

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
(yx− 1)

7
6 (yx− 7)

5
6

(
x2y2 − 7yx+ 7

)
= x2y2 − 7yx+ 7

(yx− 1)
7
6 (yx− 7)

5
6

And

N = µN

= 1
(yx− 1)

7
6 (yx− 7)

5
6

(
x2)

= x2

(yx− 1)
7
6 (yx− 7)

5
6

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

x2y2 − 7yx+ 7
(yx− 1)

7
6 (yx− 7)

5
6

)
+
(

x2

(yx− 1)
7
6 (yx− 7)

5
6

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x2y2 − 7yx+ 7

(yx− 1)
7
6 (yx− 7)

5
6
dx

(3)φ = (yx− 7)
1
6 x

(yx− 1)
1
6

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −(yx− 7)

1
6 x2

6 (yx− 1)
7
6
+ x2

6 (yx− 1)
1
6 (yx− 7)

5
6
+ f ′(y)

= x2

(yx− 1)
7
6 (yx− 7)

5
6
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x2

(yx−1)
7
6 (yx−7)

5
6
. Therefore equation (4) becomes

(5)x2

(yx− 1)
7
6 (yx− 7)

5
6
= x2

(yx− 1)
7
6 (yx− 7)

5
6
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (yx− 7)
1
6 x

(yx− 1)
1
6

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(yx− 7)

1
6 x

(yx− 1)
1
6
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The solution becomes

y = c61 − 7x6

(c61 − x6)x

Summary
The solution(s) found are the following

(1)y = c61 − 7x6

(c61 − x6)x

Figure 508: Slope field plot

Verification of solutions

y = c61 − 7x6

(c61 − x6)x

Verified OK.
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9.48.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −x2y2 − 7yx+ 7
x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = −y2 + 7y
x

− 7
x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = − 7
x2 , f1(x) = 7

x
and f2(x) = −1. Let

y = −u′

f2u

= −u′

−u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = −7
x

f 2
2 f0 = − 7

x2

Substituting the above terms back in equation (2) gives

−u′′(x) + 7u′(x)
x

− 7u(x)
x2 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = x
(
c1x

6 + c2
)
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The above shows that
u′(x) = 7c1x6 + c2

Using the above in (1) gives the solution

y = 7c1x6 + c2
x (c1x6 + c2)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = 7c3x6 + 1
x (c3x6 + 1)

Summary
The solution(s) found are the following

(1)y = 7c3x6 + 1
x (c3x6 + 1)

Figure 509: Slope field plot
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Verification of solutions

y = 7c3x6 + 1
x (c3x6 + 1)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.375 (sec). Leaf size: 24� �
dsolve(x^2*(diff(y(x),x)+y(x)^2)-7*x*y(x)+7=0,y(x), singsol=all)� �

y(x) = −7x6 + c1
x (−x6 + c1)

3 Solution by Mathematica
Time used: 0.186 (sec). Leaf size: 34� �
DSolve[x^2*(y'[x]+y[x]^2)-7*x*y[x]+7==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 7x6 − 6c1
x7 − 6c1x

y(x) → 1
x
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Internal problem ID [1155]
Internal file name [OUTPUT/1156_Sunday_June_05_2022_02_03_44_AM_59119923/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 9y = tan (3x)

10.1.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = 9, f(x) = tan (3x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 9y = 0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 0, C = 9. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + 9 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 9 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 9 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (9)

= ±3i

Hence

λ1 = +3i
λ2 = −3i

Which simplifies to
λ1 = 3i
λ2 = −3i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 3. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e0(c1 cos (3x) + c2 sin (3x))

Or
y = c1 cos (3x) + c2 sin (3x)
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Therefore the homogeneous solution yh is

yh = c1 cos (3x) + c2 sin (3x)

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (3x)

y2 = sin (3x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ cos (3x) sin (3x)
d
dx
(cos (3x)) d

dx
(sin (3x))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ cos (3x) sin (3x)
−3 sin (3x) 3 cos (3x)

∣∣∣∣∣∣
Therefore

W = (cos (3x)) (3 cos (3x))− (sin (3x)) (−3 sin (3x))
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Which simplifies to
W = 3 cos (3x)2 + 3 sin (3x)2

Which simplifies to
W = 3

Therefore Eq. (2) becomes

u1 = −
∫ sin (3x) tan (3x)

3 dx

Which simplifies to

u1 = −
∫ sin (3x) tan (3x)

3 dx

Hence

u1 =
sin (3x)

9 − ln (sec (3x) + tan (3x))
9

And Eq. (3) becomes

u2 =
∫ cos (3x) tan (3x)

3 dx

Which simplifies to

u2 =
∫ sin (3x)

3 dx

Hence

u2 = −cos (3x)
9

Therefore the particular solution, from equation (1) is

yp(x) =
(
sin (3x)

9 − ln (sec (3x) + tan (3x))
9

)
cos (3x)− cos (3x) sin (3x)

9

Which simplifies to

yp(x) = −cos (3x) ln (sec (3x) + tan (3x))
9
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Therefore the general solution is

y = yh + yp

= (c1 cos (3x) + c2 sin (3x)) +
(
−cos (3x) ln (sec (3x) + tan (3x))

9

)

Summary
The solution(s) found are the following

(1)y = c1 cos (3x) + c2 sin (3x)−
cos (3x) ln (sec (3x) + tan (3x))

9

Figure 510: Slope field plot

Verification of solutions

y = c1 cos (3x) + c2 sin (3x)−
cos (3x) ln (sec (3x) + tan (3x))

9

Verified OK.
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10.1.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + 9y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 9

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −9
1 (6)

Comparing the above to (5) shows that

s = −9
t = 1

Therefore eq. (4) becomes

z′′(x) = −9z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 408: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −9 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (3x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx
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Since B = 0 then the above reduces to

y1 = z1

= cos (3x)

Which simplifies to
y1 = cos (3x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= cos (3x)
∫ 1

cos (3x)2
dx

= cos (3x)
(
tan (3x)

3

)

Therefore the solution is

y = c1y1 + c2y2

= c1(cos (3x)) + c2

(
cos (3x)

(
tan (3x)

3

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 9y = 0
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The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 cos (3x) +
c2 sin (3x)

3

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (3x)

y2 =
sin (3x)

3

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
cos (3x) sin(3x)

3

d
dx
(cos (3x)) d

dx

(
sin(3x)

3

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ cos (3x) sin(3x)
3

−3 sin (3x) cos (3x)

∣∣∣∣∣∣
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Therefore

W = (cos (3x)) (cos (3x))−
(
sin (3x)

3

)
(−3 sin (3x))

Which simplifies to
W = cos (3x)2 + sin (3x)2

Which simplifies to
W = 1

Therefore Eq. (2) becomes

u1 = −
∫ sin(3x) tan(3x)

3
1 dx

Which simplifies to

u1 = −
∫ sin (3x) tan (3x)

3 dx

Hence

u1 =
sin (3x)

9 − ln (sec (3x) + tan (3x))
9

And Eq. (3) becomes

u2 =
∫ cos (3x) tan (3x)

1 dx

Which simplifies to

u2 =
∫

sin (3x) dx

Hence

u2 = −cos (3x)
3

Therefore the particular solution, from equation (1) is

yp(x) =
(
sin (3x)

9 − ln (sec (3x) + tan (3x))
9

)
cos (3x)− cos (3x) sin (3x)

9
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Which simplifies to

yp(x) = −cos (3x) ln (sec (3x) + tan (3x))
9

Therefore the general solution is

y = yh + yp

=
(
c1 cos (3x) +

c2 sin (3x)
3

)
+
(
−cos (3x) ln (sec (3x) + tan (3x))

9

)
Summary
The solution(s) found are the following

(1)y = c1 cos (3x) +
c2 sin (3x)

3 − cos (3x) ln (sec (3x) + tan (3x))
9

Figure 511: Slope field plot

Verification of solutions

y = c1 cos (3x) +
c2 sin (3x)

3 − cos (3x) ln (sec (3x) + tan (3x))
9

Verified OK.
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10.1.3 Maple step by step solution

Let’s solve
y′′ + 9y = tan (3x)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 9 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−36
)

2

• Roots of the characteristic polynomial
r = (−3 I, 3 I)

• 1st solution of the homogeneous ODE
y1(x) = cos (3x)

• 2nd solution of the homogeneous ODE
y2(x) = sin (3x)

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1 cos (3x) + c2 sin (3x) + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = tan (3x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 cos (3x) sin (3x)
−3 sin (3x) 3 cos (3x)


◦ Compute Wronskian

W (y1(x) , y2(x)) = 3
◦ Substitute functions into equation for yp(x)
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yp(x) = − cos(3x)
(∫

sin(3x) tan(3x)dx
)

3 + sin(3x)
(∫

sin(3x)dx
)

3

◦ Compute integrals
yp(x) = − cos(3x) ln(sec(3x)+tan(3x))

9

• Substitute particular solution into general solution to ODE
y = c1 cos (3x) + c2 sin (3x)− cos(3x) ln(sec(3x)+tan(3x))

9

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 33� �
dsolve(diff(y(x),x$2)+9*y(x)=tan(3*x),y(x), singsol=all)� �

y(x) = sin (3x) c2 + cos (3x) c1 −
cos (3x) ln (sec (3x) + tan (3x))

9

3 Solution by Mathematica
Time used: 0.053 (sec). Leaf size: 33� �
DSolve[y''[x]+9*y[x]==Tan[3*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
9 cos(3x)arctanh(sin(3x)) + c1 cos(3x) + c2 sin(3x)
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10.2 problem 2
10.2.1 Solving as second order linear constant coeff ode . . . . . . . . 2888
10.2.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2893
10.2.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2899

Internal problem ID [1156]
Internal file name [OUTPUT/1157_Sunday_June_05_2022_02_03_45_AM_2739520/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 4y = sin (2x) sec (2x)2

10.2.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = 4, f(x) = tan (2x) sec (2x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 4y = 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 0, C = 4. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + 4 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 4 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 4 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (4)

= ±2i

Hence

λ1 = +2i
λ2 = −2i

Which simplifies to
λ1 = 2i
λ2 = −2i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 2. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e0(c1 cos (2x) + c2 sin (2x))
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Or
y = c1 cos (2x) + c2 sin (2x)

Therefore the homogeneous solution yh is

yh = c1 cos (2x) + c2 sin (2x)

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (2x)

y2 = sin (2x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ cos (2x) sin (2x)
d
dx
(cos (2x)) d

dx
(sin (2x))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ cos (2x) sin (2x)
−2 sin (2x) 2 cos (2x)

∣∣∣∣∣∣
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Therefore
W = (cos (2x)) (2 cos (2x))− (sin (2x)) (−2 sin (2x))

Which simplifies to
W = 2 cos (2x)2 + 2 sin (2x)2

Which simplifies to
W = 2

Therefore Eq. (2) becomes

u1 = −
∫ sin (2x) tan (2x) sec (2x)

2 dx

Which simplifies to

u1 = −
∫ tan (2x)2

2 dx

Hence

u1 = −tan (2x)
4 + x

2

And Eq. (3) becomes

u2 =
∫ cos (2x) tan (2x) sec (2x)

2 dx

Which simplifies to

u2 =
∫ tan (2x)

2 dx

Hence

u2 =
ln
(
1 + tan (2x)2

)
8

Which simplifies to

u1 = −tan (2x)
4 + x

2

u2 =
ln
(
sec (2x)2

)
8
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Therefore the particular solution, from equation (1) is

yp(x) =
(
−tan (2x)

4 + x

2

)
cos (2x) +

ln
(
sec (2x)2

)
sin (2x)

8

Which simplifies to

yp(x) =
ln
(
sec (2x)2

)
sin (2x)

8 − sin (2x)
4 + x cos (2x)

2

Therefore the general solution is

y = yh + yp

= (c1 cos (2x) + c2 sin (2x)) +
(
ln
(
sec (2x)2

)
sin (2x)

8 − sin (2x)
4 + x cos (2x)

2

)

Summary
The solution(s) found are the following

(1)y = c1 cos (2x) + c2 sin (2x) +
ln
(
sec (2x)2

)
sin (2x)

8 − sin (2x)
4 + x cos (2x)

2

Figure 512: Slope field plot
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Verification of solutions

y = c1 cos (2x) + c2 sin (2x) +
ln
(
sec (2x)2

)
sin (2x)

8 − sin (2x)
4 + x cos (2x)

2

Verified OK.

10.2.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + 4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4
1 (6)

Comparing the above to (5) shows that

s = −4
t = 1
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Therefore eq. (4) becomes

z′′(x) = −4z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 410: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −4 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (2x)
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= cos (2x)

Which simplifies to
y1 = cos (2x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= cos (2x)
∫ 1

cos (2x)2
dx

= cos (2x)
(
tan (2x)

2

)

Therefore the solution is

y = c1y1 + c2y2

= c1(cos (2x)) + c2

(
cos (2x)

(
tan (2x)

2

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 4y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 cos (2x) +
c2 sin (2x)

2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (2x)

y2 =
sin (2x)

2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
cos (2x) sin(2x)

2

d
dx
(cos (2x)) d

dx

(
sin(2x)

2

)
∣∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣ cos (2x) sin(2x)
2

−2 sin (2x) cos (2x)

∣∣∣∣∣∣
Therefore

W = (cos (2x)) (cos (2x))−
(
sin (2x)

2

)
(−2 sin (2x))

Which simplifies to
W = cos (2x)2 + sin (2x)2

Which simplifies to
W = 1

Therefore Eq. (2) becomes

u1 = −
∫ sin(2x) tan(2x) sec(2x)

2
1 dx

Which simplifies to

u1 = −
∫ tan (2x)2

2 dx

Hence

u1 = −tan (2x)
4 + x

2

And Eq. (3) becomes

u2 =
∫ cos (2x) tan (2x) sec (2x)

1 dx

Which simplifies to

u2 =
∫

tan (2x) dx

Hence

u2 =
ln
(
1 + tan (2x)2

)
4
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Which simplifies to

u1 = −tan (2x)
4 + x

2

u2 =
ln
(
sec (2x)2

)
4

Therefore the particular solution, from equation (1) is

yp(x) =
(
−tan (2x)

4 + x

2

)
cos (2x) +

ln
(
sec (2x)2

)
sin (2x)

8

Which simplifies to

yp(x) =
ln
(
sec (2x)2

)
sin (2x)

8 − sin (2x)
4 + x cos (2x)

2

Therefore the general solution is

y = yh + yp

=
(
c1 cos (2x) +

c2 sin (2x)
2

)
+
(
ln
(
sec (2x)2

)
sin (2x)

8 − sin (2x)
4 + x cos (2x)

2

)

Summary
The solution(s) found are the following

(1)y = c1 cos (2x) +
c2 sin (2x)

2 +
ln
(
sec (2x)2

)
sin (2x)

8 − sin (2x)
4 + x cos (2x)

2
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Figure 513: Slope field plot

Verification of solutions

y = c1 cos (2x) +
c2 sin (2x)

2 +
ln
(
sec (2x)2

)
sin (2x)

8 − sin (2x)
4 + x cos (2x)

2

Verified OK.

10.2.3 Maple step by step solution

Let’s solve
y′′ + 4y = tan (2x) sec (2x)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 4 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−16
)

2

• Roots of the characteristic polynomial
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r = (−2 I, 2 I)
• 1st solution of the homogeneous ODE

y1(x) = cos (2x)
• 2nd solution of the homogeneous ODE

y2(x) = sin (2x)
• General solution of the ODE

y = c1y1(x) + c2y2(x) + yp(x)
• Substitute in solutions of the homogeneous ODE

y = c1 cos (2x) + c2 sin (2x) + yp(x)
� Find a particular solution yp(x) of the ODE

◦ Use variation of parameters to find yp here f(x) is the forcing function[
yp(x) = −y1(x)

(∫ y2(x)f(x)
W (y1(x),y2(x))dx

)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = tan (2x) sec (2x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 cos (2x) sin (2x)
−2 sin (2x) 2 cos (2x)


◦ Compute Wronskian

W (y1(x) , y2(x)) = 2
◦ Substitute functions into equation for yp(x)

yp(x) = −
cos(2x)

(∫
tan(2x)2dx

)
2 + sin(2x)

(∫
tan(2x)dx

)
2

◦ Compute integrals

yp(x) =
ln
(
sec(2x)2

)
sin(2x)

8 − sin(2x)
4 + x cos(2x)

2

• Substitute particular solution into general solution to ODE

y = c1 cos (2x) + c2 sin (2x) +
ln
(
sec(2x)2

)
sin(2x)

8 − sin(2x)
4 + x cos(2x)

2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 38� �
dsolve(diff(y(x),x$2)+4*y(x)=sin(2*x)*sec(2*x)^2,y(x), singsol=all)� �

y(x) = ln (sec (2x)) sin (2x)
4 + (4c2 − 1) sin (2x)

4 + cos (2x) (2c1 + x)
2

3 Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 33� �
DSolve[y''[x]+4*y[x]==Sin[2*x]*Sec[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (−x+ c1) cos(2x) + sin(x) cos(x)(2 log(cos(x))− 1 + 2c2)
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10.3 problem 3
10.3.1 Solving as second order linear constant coeff ode . . . . . . . . 2902
10.3.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2906
10.3.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2911

Internal problem ID [1157]
Internal file name [OUTPUT/1158_Sunday_June_05_2022_02_03_46_AM_98592241/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − 3y′ + 2y = 4
1 + e−x

10.3.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −3, C = 2, f(x) = 4
1+e−x . Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 3y′ + 2y = 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = −3, C = 2. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 3λ eλx + 2 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 3λ+ 2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −3, C = 2 into the above gives

λ1,2 =
3

(2) (1) ±
1

(2) (1)
√
−32 − (4) (1) (2)

= 3
2 ± 1

2

Hence

λ1 =
3
2 + 1

2

λ2 =
3
2 − 1

2

Which simplifies to
λ1 = 2
λ2 = 1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(2)x + c2e

(1)x

Or
y = c1e2x + c2ex
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Therefore the homogeneous solution yh is

yh = c1e2x + c2ex

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e2x

y2 = ex

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ e2x ex
d
dx
(e2x) d

dx
(ex)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ e
2x ex

2 e2x ex

∣∣∣∣∣∣
Therefore

W =
(
e2x
)
(ex)− (ex)

(
2 e2x

)
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Which simplifies to
W = −exe2x

Which simplifies to
W = −e3x

Therefore Eq. (2) becomes

u1 = −
∫ 4 ex

1+e−x

−e3x dx

Which simplifies to

u1 = −
∫

− 4 e−2x

1 + e−x
dx

Hence
u1 = −4 e−x − 4 ln (ex) + 4 ln (1 + ex)

And Eq. (3) becomes

u2 =
∫ 4 e2x

1+e−x

−e3x dx

Which simplifies to

u2 =
∫

− 4 e−x

1 + e−x
dx

Hence
u2 = 4 ln

(
1 + e−x

)
Therefore the particular solution, from equation (1) is

yp(x) =
(
−4 e−x − 4 ln (ex) + 4 ln (1 + ex)

)
e2x + 4 ln

(
1 + e−x

)
ex

Therefore the general solution is

y = yh + yp

=
(
c1e2x + c2ex

)
+
((
−4 e−x − 4 ln (ex) + 4 ln (1 + ex)

)
e2x + 4 ln

(
1 + e−x

)
ex
)

2905



Summary
The solution(s) found are the following

(1)y = c1e2x + c2ex +
(
−4 e−x − 4 ln (ex) + 4 ln (1 + ex)

)
e2x + 4 ln

(
1 + e−x

)
ex

Verification of solutions

y = c1e2x + c2ex +
(
−4 e−x − 4 ln (ex) + 4 ln (1 + ex)

)
e2x + 4 ln

(
1 + e−x

)
ex

Verified OK.

10.3.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − 3y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −3 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4
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Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 412: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]
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Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−3
1 dx

= z1e
3x
2

= z1
(
e 3x

2

)
Which simplifies to

y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−3

1 dx

(y1)2
dx

= y1

∫
e3x

(y1)2
dx

= y1(ex)

Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2(ex(ex))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 3y′ + 2y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1ex + c2e2x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = ex

y2 = e2x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ ex e2x
d
dx
(ex) d

dx
(e2x)

∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣e
x e2x

ex 2 e2x

∣∣∣∣∣∣
Therefore

W = (ex)
(
2 e2x

)
−
(
e2x
)
(ex)

Which simplifies to
W = exe2x

Which simplifies to
W = e3x

Therefore Eq. (2) becomes

u1 = −
∫ 4 e2x

1+e−x

e3x dx

Which simplifies to

u1 = −
∫ 4 e−x

1 + e−x
dx

Hence
u1 = 4 ln

(
1 + e−x

)
And Eq. (3) becomes

u2 =
∫ 4 ex

1+e−x

e3x dx

Which simplifies to

u2 =
∫ 4 e−2x

1 + e−x
dx

Hence
u2 = −4 e−x − 4 ln (ex) + 4 ln (1 + ex)

Therefore the particular solution, from equation (1) is

yp(x) =
(
−4 e−x − 4 ln (ex) + 4 ln (1 + ex)

)
e2x + 4 ln

(
1 + e−x

)
ex
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Therefore the general solution is

y = yh + yp

=
(
c1ex + c2e2x

)
+
((
−4 e−x − 4 ln (ex) + 4 ln (1 + ex)

)
e2x + 4 ln

(
1 + e−x

)
ex
)

Summary
The solution(s) found are the following

(1)y = c1ex + c2e2x +
(
−4 e−x − 4 ln (ex) + 4 ln (1 + ex)

)
e2x + 4 ln

(
1 + e−x

)
ex

Verification of solutions

y = c1ex + c2e2x +
(
−4 e−x − 4 ln (ex) + 4 ln (1 + ex)

)
e2x + 4 ln

(
1 + e−x

)
ex

Verified OK.

10.3.3 Maple step by step solution

Let’s solve
y′′ − 3y′ + 2y = 4

1+e−x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 3r + 2 = 0

• Factor the characteristic polynomial
(r − 1) (r − 2) = 0

• Roots of the characteristic polynomial
r = (1, 2)

• 1st solution of the homogeneous ODE
y1(x) = ex

• 2nd solution of the homogeneous ODE
y2(x) = e2x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
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y = c1ex + c2e2x + yp(x)
� Find a particular solution yp(x) of the ODE

◦ Use variation of parameters to find yp here f(x) is the forcing function[
yp(x) = −y1(x)

(∫ y2(x)f(x)
W (y1(x),y2(x))dx

)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 4

1+e−x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 ex e2x

ex 2 e2x


◦ Compute Wronskian

W (y1(x) , y2(x)) = e3x

◦ Substitute functions into equation for yp(x)

yp(x) = −4 ex
(∫ e−x

1+e−xdx
)
+ 4 e2x

(∫ e−2x

1+e−xdx
)

◦ Compute integrals
yp(x) = −4 ex(ln (ex) ex − ln (1 + ex) ex − ln (1 + e−x) + 1)

• Substitute particular solution into general solution to ODE
y = c1ex + c2e2x − 4 ex(ln (ex) ex − ln (1 + ex) ex − ln (1 + e−x) + 1)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 36� �
dsolve(diff(y(x),x$2)-3*diff(y(x),x)+2*y(x)=4/(1+exp(-x)),y(x), singsol=all)� �

y(x) = ex((4 ex + 4) ln (1 + ex) + (−4 ex − 4) ln (ex) + exc1 + c2 − 4)
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3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 34� �
DSolve[y''[x]-3*y'[x]+2*y[x]==4/(1+Exp[-x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(8(ex + 1) arctanh(2ex + 1) + c2e
x − 4 + c1)
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10.4 problem 4
10.4.1 Solving as second order linear constant coeff ode . . . . . . . . 2914
10.4.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2918
10.4.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2924

Internal problem ID [1158]
Internal file name [OUTPUT/1159_Sunday_June_05_2022_02_03_48_AM_99963137/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − 2y′ + 2y = 3 ex sec (x)

10.4.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −2, C = 2, f(x) = 3 ex sec (x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 2y′ + 2y = 0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = −2, C = 2. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 2λ eλx + 2 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 2λ+ 2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −2, C = 2 into the above gives

λ1,2 =
2

(2) (1) ±
1

(2) (1)
√
−22 − (4) (1) (2)

= 1± i

Hence

λ1 = 1 + i

λ2 = 1− i

Which simplifies to
λ1 = 1 + i

λ2 = 1− i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 1 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = ex(c1 cos (x) + c2 sin (x))

Therefore the homogeneous solution yh is

yh = ex(c1 cos (x) + c2 sin (x))
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The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (x) ex

y2 = sin (x) ex

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ cos (x) ex sin (x) ex
d
dx
(cos (x) ex) d

dx
(sin (x) ex)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ cos (x) ex sin (x) ex

− sin (x) ex + cos (x) ex cos (x) ex + sin (x) ex

∣∣∣∣∣∣
Therefore

W = (cos (x) ex) (cos (x) ex + sin (x) ex)− (sin (x) ex) (− sin (x) ex + cos (x) ex)

Which simplifies to
W = e2x cos (x)2 + e2x sin (x)2
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Which simplifies to
W = e2x

Therefore Eq. (2) becomes

u1 = −
∫ 3 sin (x) e2x sec (x)

e2x dx

Which simplifies to

u1 = −
∫

3 tan (x) dx

Hence
u1 = 3 ln (cos (x))

And Eq. (3) becomes

u2 =
∫ 3 cos (x) e2x sec (x)

e2x dx

Which simplifies to

u2 =
∫

3dx

Hence
u2 = 3x

Therefore the particular solution, from equation (1) is

yp(x) = 3 ln (cos (x)) cos (x) ex + 3 ex sin (x)x

Which simplifies to

yp(x) = 3 ex(ln (cos (x)) cos (x) + sin (x)x)

Therefore the general solution is

y = yh + yp

= (ex(c1 cos (x) + c2 sin (x))) + (3 ex(ln (cos (x)) cos (x) + sin (x)x))
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Summary
The solution(s) found are the following

(1)y = ex(c1 cos (x) + c2 sin (x)) + 3 ex(ln (cos (x)) cos (x) + sin (x)x)

Figure 514: Slope field plot

Verification of solutions

y = ex(c1 cos (x) + c2 sin (x)) + 3 ex(ln (cos (x)) cos (x) + sin (x)x)

Verified OK.

10.4.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − 2y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2 (3)
C = 2
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Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 414: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2
1 dx

= z1e
x

= z1(ex)
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Which simplifies to
y1 = cos (x) ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2

1 dx

(y1)2
dx

= y1

∫
e2x

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(cos (x) ex) + c2(cos (x) ex(tan (x)))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 2y′ + 2y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = ex cos (x) c1 + ex sin (x) c2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (x) ex

y2 = sin (x) ex

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ cos (x) ex sin (x) ex
d
dx
(cos (x) ex) d

dx
(sin (x) ex)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ cos (x) ex sin (x) ex

− sin (x) ex + cos (x) ex cos (x) ex + sin (x) ex

∣∣∣∣∣∣
Therefore

W = (cos (x) ex) (cos (x) ex + sin (x) ex)− (sin (x) ex) (− sin (x) ex + cos (x) ex)

Which simplifies to
W = e2x cos (x)2 + e2x sin (x)2

Which simplifies to
W = e2x

Therefore Eq. (2) becomes

u1 = −
∫ 3 sin (x) e2x sec (x)

e2x dx
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Which simplifies to

u1 = −
∫

3 tan (x) dx

Hence
u1 = 3 ln (cos (x))

And Eq. (3) becomes

u2 =
∫ 3 cos (x) e2x sec (x)

e2x dx

Which simplifies to

u2 =
∫

3dx

Hence
u2 = 3x

Therefore the particular solution, from equation (1) is

yp(x) = 3 ln (cos (x)) cos (x) ex + 3 ex sin (x)x

Which simplifies to

yp(x) = 3 ex(ln (cos (x)) cos (x) + sin (x)x)

Therefore the general solution is

y = yh + yp

= (ex cos (x) c1 + ex sin (x) c2) + (3 ex(ln (cos (x)) cos (x) + sin (x)x))

Which simplifies to

y = ex(c1 cos (x) + c2 sin (x)) + 3 ex(ln (cos (x)) cos (x) + sin (x)x)

Summary
The solution(s) found are the following

(1)y = ex(c1 cos (x) + c2 sin (x)) + 3 ex(ln (cos (x)) cos (x) + sin (x)x)
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Figure 515: Slope field plot

Verification of solutions

y = ex(c1 cos (x) + c2 sin (x)) + 3 ex(ln (cos (x)) cos (x) + sin (x)x)

Verified OK.

10.4.3 Maple step by step solution

Let’s solve
y′′ − 2y′ + 2y = 3 ex sec (x)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 2r + 2 = 0

• Use quadratic formula to solve for r

r = 2±
(√

−4
)

2

• Roots of the characteristic polynomial
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r = (1− I, 1 + I)
• 1st solution of the homogeneous ODE

y1(x) = cos (x) ex

• 2nd solution of the homogeneous ODE
y2(x) = sin (x) ex

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = ex cos (x) c1 + ex sin (x) c2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 3 ex sec (x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 cos (x) ex sin (x) ex

− sin (x) ex + cos (x) ex cos (x) ex + sin (x) ex


◦ Compute Wronskian

W (y1(x) , y2(x)) = e2x

◦ Substitute functions into equation for yp(x)
yp(x) = −3 ex

(
cos (x)

(∫
tan (x) dx

)
− sin (x)

(∫
1dx
))

◦ Compute integrals
yp(x) = 3 ex(ln (cos (x)) cos (x) + sin (x)x)

• Substitute particular solution into general solution to ODE
y = ex cos (x) c1 + ex sin (x) c2 + 3 ex(ln (cos (x)) cos (x) + sin (x)x)
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 28� �
dsolve(diff(y(x),x$2)-2*diff(y(x),x)+2*y(x)=3*exp(x)*sec(x),y(x), singsol=all)� �

y(x) = ex(sin (x) c2 + cos (x) c1 + 3x sin (x)− 3 cos (x) ln (sec (x)))

3 Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 30� �
DSolve[y''[x]-2*y'[x]+2*y[x]==3*Exp[x]*Sec[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex((3x+ c1) sin(x) + cos(x)(3 log(cos(x)) + c2))
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10.5 problem 5
10.5.1 Solving as second order linear constant coeff ode . . . . . . . . 2927
10.5.2 Solving as linear second order ode solved by an integrating factor

ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2931
10.5.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2933
10.5.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2939

Internal problem ID [1159]
Internal file name [OUTPUT/1160_Sunday_June_05_2022_02_03_49_AM_43898604/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "linear_second_order_ode_solved_by_an_integrat-
ing_factor"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − 2y′ + y = 14x 3
2 ex

10.5.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −2, C = 1, f(x) = 14x 3
2 ex. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 2y′ + y = 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = −2, C = 1. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 2λ eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 2λ+ 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −2, C = 1 into the above gives

λ1,2 =
2

(2) (1) ±
1

(2) (1)

√
(−2)2 − (4) (1) (1)

= 1

Hence this is the case of a double root λ1,2 = −1. Therefore the solution is

y = c1ex + c2x ex (1)

Therefore the homogeneous solution yh is

yh = c1ex + c2x ex

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = ex

y2 = x ex
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ ex x ex
d
dx
(ex) d

dx
(x ex)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣e
x x ex

ex x ex + ex

∣∣∣∣∣∣
Therefore

W = (ex) (x ex + ex)− (x ex) (ex)

Which simplifies to
W = e2x

Which simplifies to
W = e2x

Therefore Eq. (2) becomes

u1 = −
∫ 14x 5

2 e2x
e2x dx

Which simplifies to

u1 = −
∫

14x 5
2dx

Hence
u1 = −4x 7

2
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And Eq. (3) becomes

u2 =
∫ 14 e2xx 3

2

e2x dx

Which simplifies to

u2 =
∫

14x 3
2dx

Hence

u2 =
28x 5

2

5

Therefore the particular solution, from equation (1) is

yp(x) =
8x 7

2 ex
5

Therefore the general solution is

y = yh + yp

= (c1ex + c2x ex) +
(
8x 7

2 ex
5

)

Which simplifies to

y = ex(c2x+ c1) +
8x 7

2 ex
5

Summary
The solution(s) found are the following

(1)y = ex(c2x+ c1) +
8x 7

2 ex
5
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Figure 516: Slope field plot

Verification of solutions

y = ex(c2x+ c1) +
8x 7

2 ex
5

Verified OK.

10.5.2 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = −2. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
−2 dx

= e−x
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Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = 14 e−xx
3
2 ex(

e−xy
) ′′ = 14 e−xx

3
2 ex

Integrating once gives (
e−xy

)′ = 28x 5
2

5 + c1

Integrating again gives (
e−xy

)
= c1x+ 8x 7

2

5 + c2

Hence the solution is

y =
c1x+ 8x

7
2

5 + c2
e−x

Or

y = 8x 7
2 ex
5 + c1x ex + c2ex

Summary
The solution(s) found are the following

(1)y = 8x 7
2 ex
5 + c1x ex + c2ex
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Figure 517: Slope field plot

Verification of solutions

y = 8x 7
2 ex
5 + c1x ex + c2ex

Verified OK.

10.5.3 Solving using Kovacic algorithm

Writing the ode as

y′′ − 2y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 416: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2
1 dx

= z1e
x

= z1(ex)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2

1 dx

(y1)2
dx

= y1

∫
e2x

(y1)2
dx

= y1(x)
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Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2(ex(x))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 2y′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1ex + c2x ex

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = ex

y2 = x ex

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ ex x ex
d
dx
(ex) d

dx
(x ex)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣e
x x ex

ex x ex + ex

∣∣∣∣∣∣
Therefore

W = (ex) (x ex + ex)− (x ex) (ex)

Which simplifies to
W = e2x

Which simplifies to
W = e2x

Therefore Eq. (2) becomes

u1 = −
∫ 14x 5

2 e2x
e2x dx

Which simplifies to

u1 = −
∫

14x 5
2dx

Hence
u1 = −4x 7

2

And Eq. (3) becomes

u2 =
∫ 14 e2xx 3

2

e2x dx

Which simplifies to

u2 =
∫

14x 3
2dx
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Hence

u2 =
28x 5

2

5

Therefore the particular solution, from equation (1) is

yp(x) =
8x 7

2 ex
5

Therefore the general solution is

y = yh + yp

= (c1ex + c2x ex) +
(
8x 7

2 ex
5

)

Which simplifies to

y = ex(c2x+ c1) +
8x 7

2 ex
5

Summary
The solution(s) found are the following

(1)y = ex(c2x+ c1) +
8x 7

2 ex
5
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Figure 518: Slope field plot

Verification of solutions

y = ex(c2x+ c1) +
8x 7

2 ex
5

Verified OK.

10.5.4 Maple step by step solution

Let’s solve
y′′ − 2y′ + y = 14x 3

2 ex

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 2r + 1 = 0

• Factor the characteristic polynomial
(r − 1)2 = 0

• Root of the characteristic polynomial
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r = 1
• 1st solution of the homogeneous ODE

y1(x) = ex

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x ex

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1ex + c2x ex + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 14x 3

2 ex
]

◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 ex x ex

ex x ex + ex


◦ Compute Wronskian

W (y1(x) , y2(x)) = e2x

◦ Substitute functions into equation for yp(x)

yp(x) = −14 ex
(
−
(∫

x
3
2dx
)
x+

∫
x

5
2dx
)

◦ Compute integrals

yp(x) = 8x
7
2 ex
5

• Substitute particular solution into general solution to ODE

y = c2x ex + c1ex + 8x
7
2 ex
5
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(diff(y(x),x$2)-2*diff(y(x),x)+y(x)=14*x^(3/2)*exp(x),y(x), singsol=all)� �

y(x) = ex
(
c2 + c1x+ 8x 7

2

5

)

3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 29� �
DSolve[y''[x]-2*y'[x]+y[x]==14*x^(3/2)*Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
5e

x
(
8x7/2 + 5c2x+ 5c1

)
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10.6 problem 6
10.6.1 Solving as second order linear constant coeff ode . . . . . . . . 2942
10.6.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2946
10.6.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 2952

Internal problem ID [1160]
Internal file name [OUTPUT/1161_Sunday_June_05_2022_02_03_50_AM_15784279/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − y = 4 e−x

1− e−2x

10.6.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = −1, f(x) = − 4 e−x

−1+e−2x . Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − y = 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 0, C = −1. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−1)

= ±1

Hence
λ1 = +1
λ2 = −1

Which simplifies to
λ1 = 1
λ2 = −1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(1)x + c2e

(−1)x

Or
y = c1ex + c2e−x

Therefore the homogeneous solution yh is

yh = c1ex + c2e−x
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The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = ex

y2 = e−x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ ex e−x

d
dx
(ex) d

dx
(e−x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣e
x e−x

ex −e−x

∣∣∣∣∣∣
Therefore

W = (ex)
(
−e−x

)
−
(
e−x
)
(ex)

Which simplifies to
W = −2 e−xex
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Which simplifies to
W = −2

Therefore Eq. (2) becomes

u1 = −
∫ − 4 e−2x

−1+e−2x

−2 dx

Which simplifies to

u1 = −
∫ 2 e−2x

−1 + e−2xdx

Hence
u1 = ln

(
−1 + e−2x)

And Eq. (3) becomes

u2 =
∫ − 4 exe−x

−1+e−2x

−2 dx

Which simplifies to

u2 =
∫ 2

−1 + e−2xdx

Hence
u2 = ln

(
e−2x)− ln

(
−1 + e−2x)

Therefore the particular solution, from equation (1) is

yp(x) = ln
(
−1 + e−2x) ex + (ln (e−2x)− ln

(
−1 + e−2x)) e−x

Which simplifies to

yp(x) =
(
ex − e−x

)
ln
(
−1 + e−2x)+ e−x ln

(
e−2x)

Therefore the general solution is

y = yh + yp

=
(
c1ex + c2e−x

)
+
((
ex − e−x

)
ln
(
−1 + e−2x)+ e−x ln

(
e−2x))
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Summary
The solution(s) found are the following

(1)y = c1ex + c2e−x +
(
ex − e−x

)
ln
(
−1 + e−2x)+ e−x ln

(
e−2x)

Figure 519: Slope field plot

Verification of solutions

y = c1ex + c2e−x +
(
ex − e−x

)
ln
(
−1 + e−2x)+ e−x ln

(
e−2x)

Verified OK.

10.6.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = −1
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Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(x) = z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

2947



Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 418: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= e−x
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Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= e−x

∫ 1
e−2x dx

= e−x

(
e2x
2

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x

(
e2x
2

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x + c2ex
2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
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parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−x

y2 =
ex
2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ e−x ex
2

d
dx
(e−x) d

dx

( ex
2

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ e
−x ex

2

−e−x ex
2

∣∣∣∣∣∣
Therefore

W =
(
e−x
)(ex

2

)
−
(
ex
2

)(
−e−x

)
Which simplifies to

W = e−xex
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Which simplifies to
W = 1

Therefore Eq. (2) becomes

u1 = −
∫ − 2 exe−x

−1+e−2x

1 dx

Which simplifies to

u1 = −
∫

− 2
−1 + e−2xdx

Hence
u1 = ln

(
e−2x)− ln

(
−1 + e−2x)

And Eq. (3) becomes

u2 =
∫ − 4 e−2x

−1+e−2x

1 dx

Which simplifies to

u2 =
∫

− 4 e−2x

−1 + e−2xdx

Hence
u2 = 2 ln

(
−1 + e−2x)

Therefore the particular solution, from equation (1) is

yp(x) = ln
(
−1 + e−2x) ex + (ln (e−2x)− ln

(
−1 + e−2x)) e−x

Which simplifies to

yp(x) =
(
ex − e−x

)
ln
(
−1 + e−2x)+ e−x ln

(
e−2x)

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2ex

2

)
+
((
ex − e−x

)
ln
(
−1 + e−2x)+ e−x ln

(
e−2x))
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Summary
The solution(s) found are the following

(1)y = c1e−x + c2ex
2 +

(
ex − e−x

)
ln
(
−1 + e−2x)+ e−x ln

(
e−2x)

Figure 520: Slope field plot

Verification of solutions

y = c1e−x + c2ex
2 +

(
ex − e−x

)
ln
(
−1 + e−2x)+ e−x ln

(
e−2x)

Verified OK.

10.6.3 Maple step by step solution

Let’s solve
y′′ − y = − 4 e−x

−1+e−2x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
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r2 − 1 = 0
• Factor the characteristic polynomial

(r − 1) (r + 1) = 0
• Roots of the characteristic polynomial

r = (−1, 1)
• 1st solution of the homogeneous ODE

y1(x) = e−x

• 2nd solution of the homogeneous ODE
y2(x) = ex

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−x + c2ex + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = − 4 e−x

−1+e−2x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x ex

−e−x ex


◦ Compute Wronskian

W (y1(x) , y2(x)) = 2
◦ Substitute functions into equation for yp(x)

yp(x) = 2 e−x
(∫ 1

−1+e−2xdx
)
− 2 ex

(∫ e−2x

−1+e−2xdx
)

◦ Compute integrals
yp(x) = (ex − e−x) ln (−1 + e−2x) + e−x ln (e−2x)

• Substitute particular solution into general solution to ODE
y = c1e−x + c2ex + (ex − e−x) ln (−1 + e−2x) + e−x ln (e−2x)
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 50� �
dsolve(diff(y(x),x$2)-y(x)=4*exp(-x)/(1-exp(-2*x)),y(x), singsol=all)� �

y(x) = ln
(
1− e−2x) ex + e−x ln

(
e−2x)− e−x ln

(
−1 + e−2x)+ c2ex + e−xc1

3 Solution by Mathematica
Time used: 0.121 (sec). Leaf size: 67� �
DSolve[y''[x]-y[x]==4*Exp[-x]/(1-Exp[-2*x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x
(
−2e2x log (ex) +

(
e2x − 1

)
log (ex − 1) + e2x log (ex + 1)− log (ex + 1)

+ c1e
2x + c2

)
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10.7 problem 7
10.7.1 Solving as second order euler ode ode . . . . . . . . . . . . . . . 2956
10.7.2 Solving as second order change of variable on x method 2 ode . 2959
10.7.3 Solving as second order change of variable on x method 1 ode . 2964
10.7.4 Solving as second order change of variable on y method 2 ode . 2969
10.7.5 Solving as second order integrable as is ode . . . . . . . . . . . 2974
10.7.6 Solving as second order ode non constant coeff transformation

on B ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2975
10.7.7 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2980
10.7.8 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2981
10.7.9 Solving as exact linear second order ode ode . . . . . . . . . . . 2989

Internal problem ID [1161]
Internal file name [OUTPUT/1162_Sunday_June_05_2022_02_03_52_AM_43594281/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_eu-
ler_ode", "exact linear second order ode", "second_order_integrable_as_is",
"second_order_change_of_variable_on_x_method_1", "second_order_change_of_vari-
able_on_x_method_2", "second_order_change_of_variable_on_y_method_2",
"second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _nonhomogeneous ]]

x2y′′ + y′x− y = 2x2 + 2
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10.7.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = x,C = −1, f(x) = 2x2 + 2. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ + y′x− y = 0

This is Euler second order ODE. Let the solution be y = xr, then y′ = rxr−1 and
y′′ = r(r − 1)xr−2. Substituting these back into the given ODE gives

x2(r(r − 1))xr−2 + xrxr−1 − xr = 0

Simplifying gives
r(r − 1)xr + r xr − xr = 0

Since xr 6= 0 then dividing throughout by xr gives

r(r − 1) + r − 1 = 0

Or
r2 − 1 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = −1
r2 = 1

Since the roots are real and distinct, then the general solution is

y = c1y1 + c2y2

Where y1 = xr1 and y2 = xr2 . Hence

y = c1
x

+ c2x

Next, we find the particular solution to the ODE

x2y′′ + y′x− y = 2x2 + 2
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The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
1
x

y2 = x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣
1
x

x

d
dx

( 1
x

)
d
dx
(x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣
1
x

x

− 1
x2 1

∣∣∣∣∣∣
Therefore

W =
(
1
x

)
(1)− (x)

(
− 1
x2

)
Which simplifies to

W = 2
x
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Which simplifies to

W = 2
x

Therefore Eq. (2) becomes

u1 = −
∫

x(2x2 + 2)
2x dx

Which simplifies to

u1 = −
∫ (

x2 + 1
)
dx

Hence

u1 = −1
3x

3 − x

And Eq. (3) becomes

u2 =
∫ 2x2+2

x

2x dx

Which simplifies to

u2 =
∫

x2 + 1
x2 dx

Hence

u2 = x− 1
x

Therefore the particular solution, from equation (1) is

yp(x) =
−1

3x
3 − x

x
+
(
x− 1

x

)
x

Which simplifies to

yp(x) =
2x2

3 − 2
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Therefore the general solution is

y = yh + yp

= 2x2

3 − 2 + c1
x

+ c2x

Summary
The solution(s) found are the following

(1)y = 2x2

3 − 2 + c1
x
+ c2x

Verification of solutions

y = 2x2

3 − 2 + c1
x
+ c2x

Verified OK.

10.7.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ + y′x− y = 0

In normal form the ode

x2y′′ + y′x− y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 1
x

q(x) = − 1
x2
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Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫ 1

x
dx
)
dx

=
∫

e− ln(x) dx

=
∫ 1

x
dx

= ln (x) (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
− 1

x2

1
x2

= −1 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ)− y(τ) = 0
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The above ode is now solved for y(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay′′(τ) +By′(τ) + Cy(τ) = 0

Where in the above A = 1, B = 0, C = −1. Let the solution be y(τ) = eλτ . Substituting
this into the ODE gives

λ2eλτ − eλτ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

λ2 − 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−1)

= ±1

Hence
λ1 = +1
λ2 = −1

Which simplifies to
λ1 = 1
λ2 = −1

Since roots are real and distinct, then the solution is

y(τ) = c1e
λ1τ + c2e

λ2τ

y(τ) = c1e
(1)τ + c2e

(−1)τ

Or
y(τ) = c1eτ + c2e−τ
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The above solution is now transformed back to y using (6) which results in

y = c1x
2 + c2
x

Therefore the homogeneous solution yh is

yh = c1x
2 + c2
x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 =
1
x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x 1
x

d
dx
(x) d

dx

( 1
x

)
∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣x
1
x

1 − 1
x2

∣∣∣∣∣∣
Therefore

W = (x)
(
− 1
x2

)
−
(
1
x

)
(1)

Which simplifies to

W = −2
x

Which simplifies to

W = −2
x

Therefore Eq. (2) becomes

u1 = −
∫ 2x2+2

x

−2x dx

Which simplifies to

u1 = −
∫

−x2 − 1
x2 dx

Hence

u1 = x− 1
x

And Eq. (3) becomes

u2 =
∫

x(2x2 + 2)
−2x dx

Which simplifies to

u2 =
∫ (

−x2 − 1
)
dx

Hence

u2 = −1
3x

3 − x
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Therefore the particular solution, from equation (1) is

yp(x) =
−1

3x
3 − x

x
+
(
x− 1

x

)
x

Which simplifies to

yp(x) =
2x2

3 − 2

Therefore the general solution is

y = yh + yp

=
(
c1x

2 + c2
x

)
+
(
2x2

3 − 2
)

Summary
The solution(s) found are the following

(1)y = c1x
2 + c2
x

+ 2x2

3 − 2

Verification of solutions

y = c1x
2 + c2
x

+ 2x2

3 − 2

Verified OK.

10.7.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = x,C = −1, f(x) = 2x2 + 2. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ + y′x− y = 0
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In normal form the ode

x2y′′ + y′x− y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 1
x

q(x) = − 1
x2

Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
− 1

x2

c
(6)

τ ′′ = 1

c
√
− 1

x2 x3

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=

1
c
√

− 1
x2 x3

+ 1
x

√
− 1

x2

c(√
− 1

x2

c

)2

= 0
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Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = c1 cos (cτ) + c2 sin (cτ)

Now from (6)

τ =
∫ 1

c

√
q dx

=

∫ √
− 1

x2dx

c

=

√
− 1

x2 x ln (x)
c

Substituting the above into the solution obtained gives

y = (ic2 + c1)x2 − ic2 + c1
2x

Now the particular solution to this ODE is found

x2y′′ + y′x− y = 2x2 + 2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 =
1
x
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x 1
x

d
dx
(x) d

dx

( 1
x

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣x
1
x

1 − 1
x2

∣∣∣∣∣∣
Therefore

W = (x)
(
− 1
x2

)
−
(
1
x

)
(1)

Which simplifies to

W = −2
x

Which simplifies to

W = −2
x

Therefore Eq. (2) becomes

u1 = −
∫ 2x2+2

x

−2x dx

Which simplifies to

u1 = −
∫

−x2 − 1
x2 dx
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Hence

u1 = x− 1
x

And Eq. (3) becomes

u2 =
∫

x(2x2 + 2)
−2x dx

Which simplifies to

u2 =
∫ (

−x2 − 1
)
dx

Hence

u2 = −1
3x

3 − x

Therefore the particular solution, from equation (1) is

yp(x) =
−1

3x
3 − x

x
+
(
x− 1

x

)
x

Which simplifies to

yp(x) =
2x2

3 − 2

Therefore the general solution is

y = yh + yp

=
(
(ic2 + c1)x2 − ic2 + c1

2x

)
+
(
2x2

3 − 2
)

= 2x2

3 − 2 + (ic2 + c1)x2 − ic2 + c1
2x

Which simplifies to

y = 3c2x2i+ 3c1x2 + 4x3 − 3ic2 + 3c1 − 12x
6x

2968



Summary
The solution(s) found are the following

(1)y = 3c2x2i+ 3c1x2 + 4x3 − 3ic2 + 3c1 − 12x
6x

Verification of solutions

y = 3c2x2i+ 3c1x2 + 4x3 − 3ic2 + 3c1 − 12x
6x

Verified OK.

10.7.4 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = x,C = −1, f(x) = 2x2 + 2. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ + y′x− y = 0

In normal form the ode

x2y′′ + y′x− y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 1
x

q(x) = − 1
x2

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)
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Let the coefficient of v(x) above be zero. Hence
n(n− 1)

x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives
n(n− 1)

x2 + n

x2 − 1
x2 = 0 (5)

Solving (5) for n gives

n = 1 (6)

Substituting this value in (3) gives

v′′(x) + 3v′(x)
x

= 0

v′′(x) + 3v′(x)
x

= 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) + 3u(x)
x

= 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −3u
x

Where f(x) = − 3
x
and g(u) = u. Integrating both sides gives

1
u
du = −3

x
dx∫ 1

u
du =

∫
−3
x
dx

ln (u) = −3 ln (x) + c1

u = e−3 ln(x)+c1

= c1
x3
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Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= − c1
2x2 + c2

Hence

y = v(x)xn

=
(
− c1
2x2 + c2

)
x

=
(
− c1
2x2 + c2

)
x

Now the particular solution to this ODE is found

x2y′′ + y′x− y = 2x2 + 2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 =
1
x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x 1
x

d
dx
(x) d

dx

( 1
x

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣x
1
x

1 − 1
x2

∣∣∣∣∣∣
Therefore

W = (x)
(
− 1
x2

)
−
(
1
x

)
(1)

Which simplifies to

W = −2
x

Which simplifies to

W = −2
x

Therefore Eq. (2) becomes

u1 = −
∫ 2x2+2

x

−2x dx

Which simplifies to

u1 = −
∫

−x2 − 1
x2 dx

Hence

u1 = x− 1
x

And Eq. (3) becomes

u2 =
∫

x(2x2 + 2)
−2x dx
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Which simplifies to

u2 =
∫ (

−x2 − 1
)
dx

Hence

u2 = −1
3x

3 − x

Therefore the particular solution, from equation (1) is

yp(x) =
−1

3x
3 − x

x
+
(
x− 1

x

)
x

Which simplifies to

yp(x) =
2x2

3 − 2

Therefore the general solution is

y = yh + yp

=
((

− c1
2x2 + c2

)
x
)
+
(
2x2

3 − 2
)

= 2x2

3 − 2 +
(
− c1
2x2 + c2

)
x

Which simplifies to

y = −−6c2x2 − 4x3 + 3c1 + 12x
6x

Summary
The solution(s) found are the following

(1)y = −−6c2x2 − 4x3 + 3c1 + 12x
6x

Verification of solutions

y = −−6c2x2 − 4x3 + 3c1 + 12x
6x

Verified OK.
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10.7.5 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫ (
x2y′′ + y′x− y

)
dx =

∫ (
2x2 + 2

)
dx

y′x2 − yx = 2
3x

3 + 2x+ c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = 2x3 + 3c1 + 6x
3x2

Hence the ode is

y′ − y

x
= 2x3 + 3c1 + 6x

3x2

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µy) = (µ)

(
2x3 + 3c1 + 6x

3x2

)
d
dx

(y
x

)
=
(
1
x

)(
2x3 + 3c1 + 6x

3x2

)
d
(y
x

)
=
(
2x3 + 3c1 + 6x

3x3

)
dx

Integrating gives

y

x
=
∫ 2x3 + 3c1 + 6x

3x3 dx

y

x
= 2x

3 − 2
x
− c1

2x2 + c2
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Dividing both sides by the integrating factor µ = 1
x
results in

y = x

(
2x
3 − 2

x
− c1

2x2

)
+ c2x

Summary
The solution(s) found are the following

(1)y = x

(
2x
3 − 2

x
− c1

2x2

)
+ c2x

Verification of solutions

y = x

(
2x
3 − 2

x
− c1

2x2

)
+ c2x

Verified OK.

10.7.6 Solving as second order ode non constant coeff transformation on
B ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0
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The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = x2

B = x

C = −1
F = 2x2 + 2

The above shows that for this ode

AB′′ +BB′ + CB =
(
x2) (0) + (x) (1) + (−1) (x)

= 0

Hence the ode in v given in (1) now simplifies to

x3v′′ +
(
3x2) v′ = 0

Now by applying v′ = u the above becomes

x2(u′(x)x+ 3u(x)) = 0

Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −3u
x

Where f(x) = − 3
x
and g(u) = u. Integrating both sides gives

1
u
du = −3

x
dx∫ 1

u
du =

∫
−3
x
dx

ln (u) = −3 ln (x) + c1

u = e−3 ln(x)+c1

= c1
x3
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The ode for v now becomes

v′ = u

= c1
x3

Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1
x3 dx

= − c1
2x2 + c2

Therefore the homogeneous solution is

yh(x) = Bv

= (x)
(
− c1
2x2 + c2

)
=
(
− c1
2x2 + c2

)
x

And now the particular solution yp(x) will be found. The particular solution yp can be
found using either the method of undetermined coefficients, or the method of variation
of parameters. The method of variation of parameters will be used as it is more general
and can be used when the coefficients of the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 =
1
x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x 1
x

d
dx
(x) d

dx

( 1
x

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣x
1
x

1 − 1
x2

∣∣∣∣∣∣
Therefore

W = (x)
(
− 1
x2

)
−
(
1
x

)
(1)

Which simplifies to

W = −2
x

Which simplifies to

W = −2
x

Therefore Eq. (2) becomes

u1 = −
∫ 2x2+2

x

−2x dx

Which simplifies to

u1 = −
∫

−x2 − 1
x2 dx

Hence

u1 = x− 1
x

And Eq. (3) becomes

u2 =
∫

x(2x2 + 2)
−2x dx
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Which simplifies to

u2 =
∫ (

−x2 − 1
)
dx

Hence

u2 = −1
3x

3 − x

Therefore the particular solution, from equation (1) is

yp(x) =
−1

3x
3 − x

x
+
(
x− 1

x

)
x

Which simplifies to

yp(x) =
2x2

3 − 2

Hence the complete solution is

y(x) = yh + yp

=
((

− c1
2x2 + c2

)
x
)
+
(
2x2

3 − 2
)

= 6c2x2 + 4x3 − 3c1 − 12x
6x

Summary
The solution(s) found are the following

(1)y = 6c2x2 + 4x3 − 3c1 − 12x
6x

Verification of solutions

y = 6c2x2 + 4x3 − 3c1 − 12x
6x

Verified OK.
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10.7.7 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as
x2y′′ + y′x− y = 2x2 + 2

Integrating both sides of the ODE w.r.t x gives∫ (
x2y′′ + y′x− y

)
dx =

∫ (
2x2 + 2

)
dx

y′x2 − yx = 2
3x

3 + 2x+ c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = 2x3 + 3c1 + 6x
3x2

Hence the ode is

y′ − y

x
= 2x3 + 3c1 + 6x

3x2

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µy) = (µ)

(
2x3 + 3c1 + 6x

3x2

)
d
dx

(y
x

)
=
(
1
x

)(
2x3 + 3c1 + 6x

3x2

)
d
(y
x

)
=
(
2x3 + 3c1 + 6x

3x3

)
dx
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Integrating gives

y

x
=
∫ 2x3 + 3c1 + 6x

3x3 dx

y

x
= 2x

3 − 2
x
− c1

2x2 + c2

Dividing both sides by the integrating factor µ = 1
x
results in

y = x

(
2x
3 − 2

x
− c1

2x2

)
+ c2x

Summary
The solution(s) found are the following

(1)y = x

(
2x
3 − 2

x
− c1

2x2

)
+ c2x

Verification of solutions

y = x

(
2x
3 − 2

x
− c1

2x2

)
+ c2x

Verified OK.

10.7.8 Solving using Kovacic algorithm

Writing the ode as

x2y′′ + y′x− y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
4x2 (6)

Comparing the above to (5) shows that

s = 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(

3
4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 420: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= 3

4x2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2
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The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = −1
2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (0)

= − 1
2x

= − 1
2x
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Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x

)
(0) +

((
1
2x2

)
+
(
− 1
2x

)2

−
(

3
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

2xdx

= 1√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1

(
x2

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x

(
x2

2

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

x2y′′ + y′x− y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1
x
+ c2x

2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
1
x

y2 =
x

2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣
1
x

x
2

d
dx

( 1
x

)
d
dx

(
x
2

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣
1
x

x
2

− 1
x2

1
2

∣∣∣∣∣∣
Therefore

W =
(
1
x

)(
1
2

)
−
(x
2

)(
− 1
x2

)

Which simplifies to

W = 1
x

Which simplifies to

W = 1
x
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Therefore Eq. (2) becomes

u1 = −
∫ x

(
2x2+2

)
2
x

dx

Which simplifies to

u1 = −
∫ (

x2 + 1
)
dx

Hence

u1 = −1
3x

3 − x

And Eq. (3) becomes

u2 =
∫ 2x2+2

x

x
dx

Which simplifies to

u2 =
∫ 2x2 + 2

x2 dx

Hence

u2 = 2x− 2
x

Therefore the particular solution, from equation (1) is

yp(x) =
−1

3x
3 − x

x
+
(
2x− 2

x

)
x

2

Which simplifies to

yp(x) =
2x2

3 − 2

Therefore the general solution is

y = yh + yp

=
(c1
x
+ c2x

2

)
+
(
2x2

3 − 2
)
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Summary
The solution(s) found are the following

(1)y = c1
x
+ c2x

2 + 2x2

3 − 2

Verification of solutions

y = c1
x
+ c2x

2 + 2x2

3 − 2

Verified OK.

10.7.9 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = x2

q(x) = x

r(x) = −1
s(x) = 2x2 + 2

Hence

p′′(x) = 2
q′(x) = 1

Therefore (1) becomes

2− (1) + (−1) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx
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Substituting the above values for p, q, r, s gives

y′x2 − yx =
∫

2x2 + 2 dx

We now have a first order ode to solve which is

y′x2 − yx = 2
3x

3 + 2x+ c1

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = 2x3 + 3c1 + 6x
3x2

Hence the ode is

y′ − y

x
= 2x3 + 3c1 + 6x

3x2

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µy) = (µ)

(
2x3 + 3c1 + 6x

3x2

)
d
dx

(y
x

)
=
(
1
x

)(
2x3 + 3c1 + 6x

3x2

)
d
(y
x

)
=
(
2x3 + 3c1 + 6x

3x3

)
dx

Integrating gives

y

x
=
∫ 2x3 + 3c1 + 6x

3x3 dx

y

x
= 2x

3 − 2
x
− c1

2x2 + c2
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Dividing both sides by the integrating factor µ = 1
x
results in

y = x

(
2x
3 − 2

x
− c1

2x2

)
+ c2x

Summary
The solution(s) found are the following

(1)y = x

(
2x
3 − 2

x
− c1

2x2

)
+ c2x

Verification of solutions

y = x

(
2x
3 − 2

x
− c1

2x2

)
+ c2x

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 19� �
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=2*x^2+2,y(x), singsol=all)� �

y(x) = c2x+ 2x2

3 + c1
x

− 2

3 Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 24� �
DSolve[x^2*y''[x]+x*y'[x]-y[x]==2*x^2+2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x2

3 + c2x+ c1
x

− 2
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10.8 problem 8
Internal problem ID [1162]
Internal file name [OUTPUT/1163_Sunday_June_05_2022_02_03_53_AM_77332042/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

Unable to solve or complete the solution.

x2y′′ + (−2x+ 2) y′ + (−2 + x) y = e2x
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying to convert to an ODE of Bessel type

trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati

trying Riccati sub-methods:
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]

--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 5`� �
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7 Solution by Maple� �
dsolve(x^2*diff(y(x),x$2)+(2-2*x)*diff(y(x),x)+(x-2)*y(x)=exp(2*x),y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[x^2*y''[x]+(2-2*x)*y'[x]+(x-2)*y[x]==Exp[2*x],y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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10.9 problem 9
10.9.1 Solving as linear second order ode solved by an integrating factor

ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2995
10.9.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 2997

Internal problem ID [1163]
Internal file name [OUTPUT/1164_Sunday_June_05_2022_02_03_55_AM_6679980/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "linear_second_or-
der_ode_solved_by_an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

4x2y′′ +
(
−8x2 + 4x

)
y′ +

(
4x2 − 4x− 1

)
y = 4

√
x ex

10.9.1 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = 1−2x
x

. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫ 1−2x

x
dx

=
√
x e−x
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Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = e−xex
x(√

x e−xy
) ′′ = e−xex

x

Integrating once gives (√
x e−xy

)′ = ln (x) + c1

Integrating again gives (√
x e−xy

)
= x(ln (x) + c1 − 1) + c2

Hence the solution is

y = x(ln (x) + c1 − 1) + c2√
x e−x

Or

y = c1
√
x ex +

√
x ex ln (x) + c2ex√

x
−

√
x ex

Summary
The solution(s) found are the following

(1)y = c1
√
x ex +

√
x ex ln (x) + c2ex√

x
−

√
x ex

Verification of solutions

y = c1
√
x ex +

√
x ex ln (x) + c2ex√

x
−

√
x ex

Verified OK.
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10.9.2 Solving using Kovacic algorithm

Writing the ode as

4x2y′′ +
(
−8x2 + 4x

)
y′ +

(
4x2 − 4x− 1

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −8x2 + 4x (3)
C = 4x2 − 4x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 421: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx
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= z1e
−
∫ 1

2
−8x2+4x

4x2 dx

= z1e
x− ln(x)

2

= z1

(
ex√
x

)

Which simplifies to

y1 =
ex√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−8x2+4x

4x2 dx

(y1)2
dx

= y1

∫
e2x−ln(x)

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex√
x

)
+ c2

(
ex√
x
(x)
)

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

4x2y′′ +
(
−8x2 + 4x

)
y′ +

(
4x2 − 4x− 1

)
y = 0
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The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1ex√
x

+ c2
√
x ex

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
ex√
x

y2 =
√
x ex

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
ex√
x

√
x ex

d
dx

(
ex√
x

)
d
dx

(√
x ex

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣
ex√
x

√
x ex

− ex

2x
3
2
+ ex√

x
ex
2
√
x
+
√
x ex

∣∣∣∣∣∣∣
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Therefore

W =
(

ex√
x

)(
ex

2
√
x
+
√
x ex

)
−
(√

x ex
)(

− ex

2x 3
2
+ ex√

x

)

Which simplifies to

W = e2x
x

Which simplifies to

W = e2x
x

Therefore Eq. (2) becomes

u1 = −
∫ 4x e2x

4x e2x dx

Which simplifies to

u1 = −
∫

1dx

Hence
u1 = −x

And Eq. (3) becomes

u2 =
∫ 4 e2x

4x e2x dx

Which simplifies to

u2 =
∫ 1

x
dx

Hence
u2 = ln (x)

Therefore the particular solution, from equation (1) is

yp(x) =
√
x ex ln (x)−

√
x ex
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Which simplifies to
yp(x) =

√
x ex(ln (x)− 1)

Therefore the general solution is

y = yh + yp

=
(
c1ex√
x

+ c2
√
x ex

)
+
(√

x ex(ln (x)− 1)
)

Which simplifies to

y = ex(c2x+ c1)√
x

+
√
x ex(ln (x)− 1)

Summary
The solution(s) found are the following

(1)y = ex(c2x+ c1)√
x

+
√
x ex(ln (x)− 1)

Verification of solutions

y = ex(c2x+ c1)√
x

+
√
x ex(ln (x)− 1)

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 21� �
dsolve(4*x^2*diff(y(x),x$2)+(4*x-8*x^2)*diff(y(x),x)+(4*x^2-4*x-1)*y(x)=4*x^(1/2)*exp(x),y(x), singsol=all)� �

y(x) = ex(x ln (x) + (c1 − 1)x+ c2)√
x

3 Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 27� �
DSolve[4*x^2*y''[x]+(4*x-8*x^2)*y'[x]+(4*x^2-4*x-1)*y[x]==4*x^(1/2)*Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(x log(x) + (−1 + c2)x+ c1)√
x
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10.10 problem 10
10.10.1 Solving as linear second order ode solved by an integrating factor

ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3004
10.10.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 3005

Internal problem ID [1164]
Internal file name [OUTPUT/1165_Sunday_June_05_2022_02_03_56_AM_13240388/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "linear_second_or-
der_ode_solved_by_an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 4y′x+
(
4x2 + 2

)
y = 4 e−x(2+x)

10.10.1 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = 4x. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
4x dx

= ex2
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Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = 4 ex2e−x(2+x)(
ex2

y
)

′′ = 4 ex2e−x(2+x)

Integrating once gives (
ex2

y
)′

= −2 e−2x + c1

Integrating again gives (
ex2

y
)
= c1x+ e−2x + c2

Hence the solution is

y = c1x+ e−2x + c2
ex2

Or
y = c1x e−x2 + c2e−x2 + e−x2e−2x

Summary
The solution(s) found are the following

(1)y = c1x e−x2 + c2e−x2 + e−x2e−2x

Verification of solutions

y = c1x e−x2 + c2e−x2 + e−x2e−2x

Verified OK.

10.10.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + 4y′x+
(
4x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 4x (3)
C = 4x2 + 2
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Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 422: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x
1 dx

= z1e
−x2

= z1
(
e−x2

)

3007



Which simplifies to

y1 = e−x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 4x

1 dx

(y1)2
dx

= y1

∫
e−2x2

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

)
+ c2

(
e−x2(x)

)

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 4y′x+
(
4x2 + 2

)
y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x2 + c2x e−x2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
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parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−x2

y2 = x e−x2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
e−x2

x e−x2

d
dx

(
e−x2

)
d
dx

(
x e−x2

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ e−x2
x e−x2

−2x e−x2 e−x2 − 2x2e−x2

∣∣∣∣∣∣
Therefore

W =
(
e−x2

)(
e−x2 − 2x2e−x2

)
−
(
x e−x2

)(
−2x e−x2

)
Which simplifies to

W = e−2x2
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Which simplifies to

W = e−2x2

Therefore Eq. (2) becomes

u1 = −
∫ 4x e−x2e−x(2+x)

e−2x2 dx

Which simplifies to

u1 = −
∫

4 e−2xxdx

Hence
u1 = (1 + 2x) e−2x

And Eq. (3) becomes

u2 =
∫ 4 e−x2e−x(2+x)

e−2x2 dx

Which simplifies to

u2 =
∫

4 e−2xdx

Hence
u2 = −2 e−2x

Therefore the particular solution, from equation (1) is

yp(x) = (1 + 2x) e−2xe−x2 − 2 e−2xx e−x2

Which simplifies to
yp(x) = e−x(2+x)

Therefore the general solution is

y = yh + yp

=
(
c1e−x2 + c2x e−x2

)
+
(
e−x(2+x))
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Which simplifies to

y = e−x2(c2x+ c1) + e−x(2+x)

Summary
The solution(s) found are the following

(1)y = e−x2(c2x+ c1) + e−x(2+x)

Verification of solutions

y = e−x2(c2x+ c1) + e−x(2+x)

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 24� �
dsolve(diff(y(x),x$2)+4*x*diff(y(x),x)+(4*x^2+2)*y(x)=4*exp(-x*(x+2)),y(x), singsol=all)� �

y(x) = (c1x+ c2) e−x2 + e−x(2+x)
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3 Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 27� �
DSolve[4*x^2*y''[x]+(4*x-8*x^2)*y'[x]+(4*x^2-4*x-1)*y[x]==4*x^(1/2)*Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(x log(x) + (−1 + c2)x+ c1)√
x
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10.11 problem 11
10.11.1 Solving as second order euler ode ode . . . . . . . . . . . . . . . 3014
10.11.2 Solving as linear second order ode solved by an integrating factor

ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3017
10.11.3 Solving as second order change of variable on x method 2 ode . 3018
10.11.4 Solving as second order change of variable on x method 1 ode . 3023
10.11.5 Solving as second order change of variable on y method 1 ode . 3027
10.11.6 Solving as second order change of variable on y method 2 ode . 3032
10.11.7 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 3036

Internal problem ID [1165]
Internal file name [OUTPUT/1166_Sunday_June_05_2022_02_03_57_AM_75415380/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_eu-
ler_ode", "second_order_change_of_variable_on_x_method_1", "second_or-
der_change_of_variable_on_x_method_2", "second_order_change_of_vari-
able_on_y_method_1", "second_order_change_of_variable_on_y_method_2",
"linear_second_order_ode_solved_by_an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − 4y′x+ 6y = x
5
2
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10.11.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = −4x,C = 6, f(x) = x
5
2 . Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ − 4y′x+ 6y = 0

This is Euler second order ODE. Let the solution be y = xr, then y′ = rxr−1 and
y′′ = r(r − 1)xr−2. Substituting these back into the given ODE gives

x2(r(r − 1))xr−2 − 4xrxr−1 + 6xr = 0

Simplifying gives
r(r − 1)xr − 4r xr + 6xr = 0

Since xr 6= 0 then dividing throughout by xr gives

r(r − 1)− 4r + 6 = 0

Or
r2 − 5r + 6 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = 2
r2 = 3

Since the roots are real and distinct, then the general solution is

y = c1y1 + c2y2

Where y1 = xr1 and y2 = xr2 . Hence

y = c2x
3 + c1x

2

Next, we find the particular solution to the ODE

x2y′′ − 4y′x+ 6y = x
5
2
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The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x2

y2 = x3

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x2 x3

d
dx
(x2) d

dx
(x3)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x
2 x3

2x 3x2

∣∣∣∣∣∣
Therefore

W =
(
x2) (3x2)− (x3) (2x)

Which simplifies to
W = x4

3015



Which simplifies to
W = x4

Therefore Eq. (2) becomes

u1 = −
∫

x
11
2

x6 dx

Which simplifies to

u1 = −
∫ 1√

x
dx

Hence
u1 = −2

√
x

And Eq. (3) becomes

u2 =
∫

x
9
2

x6 dx

Which simplifies to

u2 =
∫ 1

x
3
2
dx

Hence

u2 = − 2√
x

Therefore the particular solution, from equation (1) is

yp(x) = −4x 5
2

Therefore the general solution is

y = yh + yp

= −4x 5
2 + c2x

3 + c1x
2

Summary
The solution(s) found are the following

(1)y = −4x 5
2 + c2x

3 + c1x
2
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Verification of solutions

y = −4x 5
2 + c2x

3 + c1x
2

Verified OK.

10.11.2 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = − 4
x
. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
− 4

x
dx

= 1
x2

Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = 1
x

3
2( y

x2

)
′′ = 1

x
3
2

Integrating once gives ( y

x2

)′
= − 2√

x
+ c1

Integrating again gives ( y

x2

)
= c1x− 4

√
x+ c2

Hence the solution is

y = c1x− 4
√
x+ c2

1
x2

Or
y = c1x

3 + c2x
2 − 4x 5

2
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Summary
The solution(s) found are the following

(1)y = c1x
3 + c2x

2 − 4x 5
2

Verification of solutions

y = c1x
3 + c2x

2 − 4x 5
2

Verified OK.

10.11.3 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ − 4y′x+ 6y = 0

In normal form the ode

x2y′′ − 4y′x+ 6y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −4
x

q(x) = 6
x2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

3018



Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫

− 4
x
dx
)
dx

=
∫

e4 ln(x) dx

=
∫

x4dx

= x5

5 (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
6
x2

x8

= 6
x10 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + 6y(τ)

x10 = 0

But in terms of τ
6
x10 = 6

25τ 2

Hence the above ode becomes
d2

dτ 2
y(τ) + 6y(τ)

25τ 2 = 0

The above ode is now solved for y(τ). The ode can be written as

25
(

d2

dτ 2
y(τ)

)
τ 2 + 6y(τ) = 0
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Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be
y(τ) = τ r, then y′ = rτ r−1 and y′′ = r(r − 1)τ r−2. Substituting these back into the
given ODE gives

25τ 2(r(r − 1))τ r−2 + 0rτ r−1 + 6τ r = 0

Simplifying gives
25r(r − 1) τ r + 0 τ r + 6τ r = 0

Since τ r 6= 0 then dividing throughout by τ r gives

25r(r − 1) + 0 + 6 = 0

Or
25r2 − 25r + 6 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 =
2
5

r2 =
3
5

Since the roots are real and distinct, then the general solution is

y(τ) = c1y1 + c2y2

Where y1 = τ r1 and y2 = τ r2 . Hence

y(τ) = c1τ
2
5 + c2τ

3
5

The above solution is now transformed back to y using (6) which results in

y = c15
3
5 (x5)

2
5

5 + c25
2
5 (x5)

3
5

5
Therefore the homogeneous solution yh is

yh = c15
3
5 (x5)

2
5

5 + c25
2
5 (x5)

3
5

5

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
(
x5) 2

5

y2 =
(
x5) 3

5

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
(x5)

2
5 (x5)

3
5

d
dx

(
(x5)

2
5
)

d
dx

(
(x5)

3
5
)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣
(x5)

2
5 (x5)

3
5

2x4

(x5)
3
5

3x4

(x5)
2
5

∣∣∣∣∣∣∣
Therefore

W =
((

x5) 2
5
)( 3x4

(x5)
2
5

)
−
((

x5) 3
5
)( 2x4

(x5)
3
5

)

Which simplifies to
W = x4

Which simplifies to
W = x4
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Therefore Eq. (2) becomes

u1 = −
∫ (x5)

3
5 x

5
2

x6 dx

Which simplifies to

u1 = −
∫ (x5)

3
5

x
7
2

dx

Hence

u1 = −2(x5)
3
5

x
5
2

And Eq. (3) becomes

u2 =
∫ (x5)

2
5 x

5
2

x6 dx

Which simplifies to

u2 =
∫ (x5)

2
5

x
7
2

dx

Hence

u2 = −2(x5)
2
5

x
5
2

Therefore the particular solution, from equation (1) is

yp(x) = −4x 5
2

Therefore the general solution is

y = yh + yp

=
(
c15

3
5 (x5)

2
5

5 + c25
2
5 (x5)

3
5

5

)
+
(
−4x 5

2

)
Summary
The solution(s) found are the following

(1)y = c15
3
5 (x5)

2
5

5 + c25
2
5 (x5)

3
5

5 − 4x 5
2
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Verification of solutions

y = c15
3
5 (x5)

2
5

5 + c25
2
5 (x5)

3
5

5 − 4x 5
2

Verified OK.

10.11.4 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = −4x,C = 6, f(x) = x
5
2 . Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ − 4y′x+ 6y = 0

In normal form the ode

x2y′′ − 4y′x+ 6y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −4
x

q(x) = 6
x2

Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)
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Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
6
√

1
x2

c
(6)

τ ′′ = −
√
6

c
√

1
x2 x3

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=
−

√
6

c
√

1
x2 x3

− 4
x

√
6
√

1
x2

c(√
6
√

1
x2

c

)2

= −5c
√
6

6

Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ)−

5c
√
6
(

d
dτ
y(τ)

)
6 + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = e 5
√

6 cτ
12

(
c1 cosh

(√
6 cτ
12

)
+ ic2 sinh

(√
6 cτ
12

))

Now from (6)

τ =
∫ 1

c

√
q dx

=

∫ √
6
√

1
x2dx

c

=

√
6
√

1
x2 x ln (x)
c
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Substituting the above into the solution obtained gives

y = x
5
2

(
c1 cosh

(
ln (x)
2

)
+ ic2 sinh

(
ln (x)
2

))

Now the particular solution to this ODE is found

x2y′′ − 4y′x+ 6y = x
5
2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
(
x5) 2

5

y2 =
(
x5) 3

5

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
(x5)

2
5 (x5)

3
5

d
dx

(
(x5)

2
5
)

d
dx

(
(x5)

3
5
)
∣∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣∣
(x5)

2
5 (x5)

3
5

2x4

(x5)
3
5

3x4

(x5)
2
5

∣∣∣∣∣∣∣
Therefore

W =
((

x5) 2
5
)( 3x4

(x5)
2
5

)
−
((

x5) 3
5
)( 2x4

(x5)
3
5

)

Which simplifies to
W = x4

Which simplifies to
W = x4

Therefore Eq. (2) becomes

u1 = −
∫ (x5)

3
5 x

5
2

x6 dx

Which simplifies to

u1 = −
∫ (x5)

3
5

x
7
2

dx

Hence

u1 = −2(x5)
3
5

x
5
2

And Eq. (3) becomes

u2 =
∫ (x5)

2
5 x

5
2

x6 dx

Which simplifies to

u2 =
∫ (x5)

2
5

x
7
2

dx

Hence

u2 = −2(x5)
2
5

x
5
2
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Therefore the particular solution, from equation (1) is

yp(x) = −4x 5
2

Therefore the general solution is

y = yh + yp

=
(
x

5
2

(
c1 cosh

(
ln (x)
2

)
+ ic2 sinh

(
ln (x)
2

)))
+
(
−4x 5

2

)
= −4x 5

2 + x
5
2

(
c1 cosh

(
ln (x)
2

)
+ ic2 sinh

(
ln (x)
2

))

Which simplifies to

y = x
5
2

(
−4 + c1 cosh

(
ln (x)
2

)
+ ic2 sinh

(
ln (x)
2

))

Summary
The solution(s) found are the following

(1)y = x
5
2

(
−4 + c1 cosh

(
ln (x)
2

)
+ ic2 sinh

(
ln (x)
2

))
Verification of solutions

y = x
5
2

(
−4 + c1 cosh

(
ln (x)
2

)
+ ic2 sinh

(
ln (x)
2

))
Verified OK.

10.11.5 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ − 4y′x+ 6y = 0
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In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −4
x

q(x) = 6
x2

Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= 6
x2 −

(
− 4

x

)′
2 −

(
− 4

x

)2
4

= 6
x2 −

( 4
x2

)
2 −

( 16
x2

)
4

= 6
x2 −

(
2
x2

)
− 4

x2

= 0

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ − 4

x
2

= x2 (5)

Hence (3) becomes

y = v(x)x2 (4)

Applying this change of variable to the original ode results in

x
3
2v′′(x) = 1
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Which is now solved for v(x) Simplyfing the ode gives

v′′(x) = 1
x

3
2

Integrating once gives
v′(x) = − 2√

x
+ c1

Integrating again gives
v(x) = −4

√
x+ c1x+ c2

Now that v(x) is known, then

y = v(x) z(x)
=
(
c1x− 4

√
x+ c2

)
(z(x)) (7)

But from (5)

z(x) = x2

Hence (7) becomes

y =
(
c1x− 4

√
x+ c2

)
x2

Therefore the homogeneous solution yh is

yh =
(
c1x− 4

√
x+ c2

)
x2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
(
x5) 2

5

y2 =
(
x5) 3

5
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
(x5)

2
5 (x5)

3
5

d
dx

(
(x5)

2
5
)

d
dx

(
(x5)

3
5
)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣
(x5)

2
5 (x5)

3
5

2x4

(x5)
3
5

3x4

(x5)
2
5

∣∣∣∣∣∣∣
Therefore

W =
((

x5) 2
5
)( 3x4

(x5)
2
5

)
−
((

x5) 3
5
)( 2x4

(x5)
3
5

)

Which simplifies to
W = x4

Which simplifies to
W = x4

Therefore Eq. (2) becomes

u1 = −
∫ (x5)

3
5 x

5
2

x6 dx

Which simplifies to

u1 = −
∫ (x5)

3
5

x
7
2

dx
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Hence

u1 = −2(x5)
3
5

x
5
2

And Eq. (3) becomes

u2 =
∫ (x5)

2
5 x

5
2

x6 dx

Which simplifies to

u2 =
∫ (x5)

2
5

x
7
2

dx

Hence

u2 = −2(x5)
2
5

x
5
2

Therefore the particular solution, from equation (1) is

yp(x) = −4x 5
2

Therefore the general solution is

y = yh + yp

=
((
c1x− 4

√
x+ c2

)
x2)+ (−4x 5

2

)
Summary
The solution(s) found are the following

(1)y =
(
c1x− 4

√
x+ c2

)
x2 − 4x 5

2

Verification of solutions

y =
(
c1x− 4

√
x+ c2

)
x2 − 4x 5

2

Verified OK.
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10.11.6 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = −4x,C = 6, f(x) = x
5
2 . Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ − 4y′x+ 6y = 0

In normal form the ode

x2y′′ − 4y′x+ 6y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −4
x

q(x) = 6
x2

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 − 4n

x2 + 6
x2 = 0 (5)
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Solving (5) for n gives

n = 3 (6)

Substituting this value in (3) gives

v′′(x) + 2v′(x)
x

= 0

v′′(x) + 2v′(x)
x

= 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) + 2u(x)
x

= 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2u
x

Where f(x) = − 2
x
and g(u) = u. Integrating both sides gives

1
u
du = −2

x
dx∫ 1

u
du =

∫
−2
x
dx

ln (u) = −2 ln (x) + c1

u = e−2 ln(x)+c1

= c1
x2

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= −c1
x

+ c2
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Hence

y = v(x)xn

=
(
−c1

x
+ c2

)
x3

= (c2x− c1)x2

Now the particular solution to this ODE is found

x2y′′ − 4y′x+ 6y = x
5
2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x2

y2 = x3

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x2 x3

d
dx
(x2) d

dx
(x3)

∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣x
2 x3

2x 3x2

∣∣∣∣∣∣
Therefore

W =
(
x2) (3x2)− (x3) (2x)

Which simplifies to
W = x4

Which simplifies to
W = x4

Therefore Eq. (2) becomes

u1 = −
∫

x
11
2

x6 dx

Which simplifies to

u1 = −
∫ 1√

x
dx

Hence
u1 = −2

√
x

And Eq. (3) becomes

u2 =
∫

x
9
2

x6 dx

Which simplifies to

u2 =
∫ 1

x
3
2
dx

Hence

u2 = − 2√
x
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Therefore the particular solution, from equation (1) is

yp(x) = −4x 5
2

Therefore the general solution is

y = yh + yp

=
((

−c1
x
+ c2

)
x3
)
+
(
−4x 5

2

)
= −4x 5

2 +
(
−c1

x
+ c2

)
x3

Which simplifies to

y = −4x 5
2 + c2x

3 − c1x
2

Summary
The solution(s) found are the following

(1)y = −4x 5
2 + c2x

3 − c1x
2

Verification of solutions

y = −4x 5
2 + c2x

3 − c1x
2

Verified OK.

10.11.7 Solving using Kovacic algorithm

Writing the ode as

x2y′′ − 4y′x+ 6y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −4x (3)
C = 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

3036



Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 423: Necessary conditions for each Kovacic case

3037



The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
x2 dx

= z1e
2 ln(x)

= z1
(
x2)

Which simplifies to
y1 = x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4x

x2 dx

(y1)2
dx

= y1

∫
e4 ln(x)

(y1)2
dx

= y1(x)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2)+ c2

(
x2(x)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

x2y′′ − 4y′x+ 6y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c2x
3 + c1x

2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x2

y2 = x3

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x2 x3

d
dx
(x2) d

dx
(x3)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x
2 x3

2x 3x2

∣∣∣∣∣∣
Therefore

W =
(
x2) (3x2)− (x3) (2x)

Which simplifies to
W = x4

Which simplifies to
W = x4

Therefore Eq. (2) becomes

u1 = −
∫

x
11
2

x6 dx

Which simplifies to

u1 = −
∫ 1√

x
dx

Hence
u1 = −2

√
x

And Eq. (3) becomes

u2 =
∫

x
9
2

x6 dx

Which simplifies to

u2 =
∫ 1

x
3
2
dx
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Hence

u2 = − 2√
x

Therefore the particular solution, from equation (1) is

yp(x) = −4x 5
2

Therefore the general solution is

y = yh + yp

=
(
c2x

3 + c1x
2)+ (−4x 5

2

)
Which simplifies to

y = x2(c2x+ c1)− 4x 5
2

Summary
The solution(s) found are the following

(1)y = x2(c2x+ c1)− 4x 5
2

Verification of solutions

y = x2(c2x+ c1)− 4x 5
2

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful

<- solving first the homogeneous part of the ODE successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
dsolve(x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+6*y(x)=x^(5/2),y(x), singsol=all)� �

y(x) = c2x
3 + c1x

2 − 4x 5
2

3 Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 23� �
DSolve[x^2*y''[x]-4*x*y'[x]+6*y[x]==x^(5/2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2(−4
√
x+ c2x+ c1

)
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10.12.2 Solving as second order change of variable on x method 2 ode . 3047
10.12.3 Solving as second order change of variable on x method 1 ode . 3052
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Internal problem ID [1166]
Internal file name [OUTPUT/1167_Sunday_June_05_2022_02_03_58_AM_19511484/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_eu-
ler_ode", "second_order_change_of_variable_on_x_method_1", "second_or-
der_change_of_variable_on_x_method_2", "second_order_change_of_vari-
able_on_y_method_2", "second_order_ode_non_constant_coeff_trans-
formation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − 3y′x+ 3y = 2 sin (x)x4
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10.12.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = −3x,C = 3, f(x) = 2 sin (x)x4. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ − 3y′x+ 3y = 0

This is Euler second order ODE. Let the solution be y = xr, then y′ = rxr−1 and
y′′ = r(r − 1)xr−2. Substituting these back into the given ODE gives

x2(r(r − 1))xr−2 − 3xrxr−1 + 3xr = 0

Simplifying gives
r(r − 1)xr − 3r xr + 3xr = 0

Since xr 6= 0 then dividing throughout by xr gives

r(r − 1)− 3r + 3 = 0

Or
r2 − 4r + 3 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = 1
r2 = 3

Since the roots are real and distinct, then the general solution is

y = c1y1 + c2y2

Where y1 = xr1 and y2 = xr2 . Hence

y = c2x
3 + c1x

Next, we find the particular solution to the ODE

x2y′′ − 3y′x+ 3y = 2 sin (x)x4
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The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = x3

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x x3

d
dx
(x) d

dx
(x3)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x x3

1 3x2

∣∣∣∣∣∣
Therefore

W = (x)
(
3x2)− (x3) (1)

Which simplifies to
W = 2x3
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Which simplifies to
W = 2x3

Therefore Eq. (2) becomes

u1 = −
∫ 2x7 sin (x)

2x5 dx

Which simplifies to

u1 = −
∫

sin (x)x2dx

Hence
u1 = x2 cos (x)− 2 cos (x)− 2 sin (x)x

And Eq. (3) becomes

u2 =
∫ 2x5 sin (x)

2x5 dx

Which simplifies to

u2 =
∫

sin (x) dx

Hence
u2 = − cos (x)

Therefore the particular solution, from equation (1) is

yp(x) =
(
x2 cos (x)− 2 cos (x)− 2 sin (x)x

)
x− x3 cos (x)

Which simplifies to
yp(x) = −2x(sin (x)x+ cos (x))

Therefore the general solution is

y = yh + yp

=
(
c2x

2 − 2 sin (x)x− 2 cos (x) + c1
)
x
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Summary
The solution(s) found are the following

(1)y =
(
c2x

2 − 2 sin (x)x− 2 cos (x) + c1
)
x

Verification of solutions

y =
(
c2x

2 − 2 sin (x)x− 2 cos (x) + c1
)
x

Verified OK.

10.12.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ − 3y′x+ 3y = 0

In normal form the ode

x2y′′ − 3y′x+ 3y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −3
x

q(x) = 3
x2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)
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Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫

− 3
x
dx
)
dx

=
∫

e3 ln(x) dx

=
∫

x3dx

= x4

4 (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
3
x2

x6

= 3
x8 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + 3y(τ)

x8 = 0

But in terms of τ
3
x8 = 3

16τ 2

Hence the above ode becomes
d2

dτ 2
y(τ) + 3y(τ)

16τ 2 = 0

The above ode is now solved for y(τ). The ode can be written as

16
(

d2

dτ 2
y(τ)

)
τ 2 + 3y(τ) = 0
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Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be
y(τ) = τ r, then y′ = rτ r−1 and y′′ = r(r − 1)τ r−2. Substituting these back into the
given ODE gives

16τ 2(r(r − 1))τ r−2 + 0rτ r−1 + 3τ r = 0

Simplifying gives
16r(r − 1) τ r + 0 τ r + 3τ r = 0

Since τ r 6= 0 then dividing throughout by τ r gives

16r(r − 1) + 0 + 3 = 0

Or
16r2 − 16r + 3 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 =
1
4

r2 =
3
4

Since the roots are real and distinct, then the general solution is

y(τ) = c1y1 + c2y2

Where y1 = τ r1 and y2 = τ r2 . Hence

y(τ) = c1τ
1
4 + c2τ

3
4

The above solution is now transformed back to y using (6) which results in

y =

√
2 (x4)

1
4
(
c2
√
x4 + 2c1

)
4

Therefore the homogeneous solution yh is

yh =

√
2 (x4)

1
4
(
c2
√
x4 + 2c1

)
4

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
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parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
(
x4) 1

4

y2 =
(
x4) 3

4

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
(x4)

1
4 (x4)

3
4

d
dx

(
(x4)

1
4
)

d
dx

(
(x4)

3
4
)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣
(x4)

1
4 (x4)

3
4

x3

(x4)
3
4

3x3

(x4)
1
4

∣∣∣∣∣∣∣
Therefore

W =
((

x4) 1
4
)( 3x3

(x4)
1
4

)
−
((

x4) 3
4
)( x3

(x4)
3
4

)

Which simplifies to
W = 2x3
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Which simplifies to
W = 2x3

Therefore Eq. (2) becomes

u1 = −
∫ 2(x4)

3
4 sin (x)x4

2x5 dx

Which simplifies to

u1 = −
∫ (x4)

3
4 sin (x)
x

dx

Hence

u1 =
(x4)

3
4 (x2 − 2) cos (x)

x3 − 2(x4)
3
4 sin (x)
x2

And Eq. (3) becomes

u2 =
∫ 2(x4)

1
4 sin (x)x4

2x5 dx

Which simplifies to

u2 =
∫ (x4)

1
4 sin (x)
x

dx

Hence

u2 = −(x4)
1
4 cos (x)
x

Which simplifies to

u1 =
(x2 cos (x)− 2 cos (x)− 2 sin (x)x) (x4)

3
4

x3

u2 = −(x4)
1
4 cos (x)
x

Therefore the particular solution, from equation (1) is

yp(x) =
(
x2 cos (x)− 2 cos (x)− 2 sin (x)x

)
x− x3 cos (x)
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Which simplifies to
yp(x) = −2x(sin (x)x+ cos (x))

Therefore the general solution is

y = yh + yp

=

√
2 (x4)

1
4
(
c2
√
x4 + 2c1

)
4

+ (−2x(sin (x)x+ cos (x)))

Summary
The solution(s) found are the following

(1)y =

√
2 (x4)

1
4
(
c2
√
x4 + 2c1

)
4 − 2x(sin (x)x+ cos (x))

Verification of solutions

y =

√
2 (x4)

1
4
(
c2
√
x4 + 2c1

)
4 − 2x(sin (x)x+ cos (x))

Verified OK.

10.12.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = −3x,C = 3, f(x) = 2 sin (x)x4. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ − 3y′x+ 3y = 0

In normal form the ode

x2y′′ − 3y′x+ 3y = 0 (1)
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Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −3
x

q(x) = 3
x2

Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
3
√

1
x2

c
(6)

τ ′′ = −
√
3

c
√

1
x2 x3

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=
−

√
3

c
√

1
x2 x3

− 3
x

√
3
√

1
x2

c(√
3
√

1
x2

c

)2

= −4c
√
3

3
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Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ)−

4c
√
3
(

d
dτ
y(τ)

)
3 + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = e 2
√

3 cτ
3

(
c1 cosh

(√
3 cτ
3

)
+ ic2 sinh

(√
3 cτ
3

))
Now from (6)

τ =
∫ 1

c

√
q dx

=

∫ √
3
√

1
x2dx

c

=

√
3
√

1
x2 x ln (x)
c

Substituting the above into the solution obtained gives

y = ((ic2 + c1)x2 − ic2 + c1)x
2

Now the particular solution to this ODE is found

x2y′′ − 3y′x+ 3y = 2 sin (x)x4

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
(
x4) 1

4

y2 =
(
x4) 3

4
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
(x4)

1
4 (x4)

3
4

d
dx

(
(x4)

1
4
)

d
dx

(
(x4)

3
4
)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣
(x4)

1
4 (x4)

3
4

x3

(x4)
3
4

3x3

(x4)
1
4

∣∣∣∣∣∣∣
Therefore

W =
((

x4) 1
4
)( 3x3

(x4)
1
4

)
−
((

x4) 3
4
)( x3

(x4)
3
4

)

Which simplifies to
W = 2x3

Which simplifies to
W = 2x3

Therefore Eq. (2) becomes

u1 = −
∫ 2(x4)

3
4 sin (x)x4

2x5 dx

Which simplifies to

u1 = −
∫ (x4)

3
4 sin (x)
x

dx
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Hence

u1 =
(x4)

3
4 (x2 − 2) cos (x)

x3 − 2(x4)
3
4 sin (x)
x2

And Eq. (3) becomes

u2 =
∫ 2(x4)

1
4 sin (x)x4

2x5 dx

Which simplifies to

u2 =
∫ (x4)

1
4 sin (x)
x

dx

Hence

u2 = −(x4)
1
4 cos (x)
x

Which simplifies to

u1 =
(x2 cos (x)− 2 cos (x)− 2 sin (x)x) (x4)

3
4

x3

u2 = −(x4)
1
4 cos (x)
x

Therefore the particular solution, from equation (1) is

yp(x) =
(
x2 cos (x)− 2 cos (x)− 2 sin (x)x

)
x− x3 cos (x)

Which simplifies to
yp(x) = −2x(sin (x)x+ cos (x))

Therefore the general solution is

y = yh + yp

=
(
((ic2 + c1)x2 − ic2 + c1)x

2

)
+ (−2x(sin (x)x+ cos (x)))

= −2x(sin (x)x+ cos (x)) + ((ic2 + c1)x2 − ic2 + c1)x
2
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Which simplifies to

y = (−4 cos (x)− 4 sin (x)x+ (ic2 + c1)x2 − ic2 + c1)x
2

Summary
The solution(s) found are the following

(1)y = (−4 cos (x)− 4 sin (x)x+ (ic2 + c1)x2 − ic2 + c1)x
2

Verification of solutions

y = (−4 cos (x)− 4 sin (x)x+ (ic2 + c1)x2 − ic2 + c1)x
2

Verified OK.

10.12.4 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = −3x,C = 3, f(x) = 2 sin (x)x4. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ − 3y′x+ 3y = 0

In normal form the ode

x2y′′ − 3y′x+ 3y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −3
x

q(x) = 3
x2

3057



Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 − 3n

x2 + 3
x2 = 0 (5)

Solving (5) for n gives

n = 3 (6)

Substituting this value in (3) gives

v′′(x) + 3v′(x)
x

= 0

v′′(x) + 3v′(x)
x

= 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) + 3u(x)
x

= 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −3u
x
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Where f(x) = − 3
x
and g(u) = u. Integrating both sides gives

1
u
du = −3

x
dx∫ 1

u
du =

∫
−3
x
dx

ln (u) = −3 ln (x) + c1

u = e−3 ln(x)+c1

= c1
x3

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= − c1
2x2 + c2

Hence

y = v(x)xn

=
(
− c1
2x2 + c2

)
x3

= c2x
3 − 1

2c1x

Now the particular solution to this ODE is found

x2y′′ − 3y′x+ 3y = 2 sin (x)x4

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = x3
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x x3

d
dx
(x) d

dx
(x3)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x x3

1 3x2

∣∣∣∣∣∣
Therefore

W = (x)
(
3x2)− (x3) (1)

Which simplifies to
W = 2x3

Which simplifies to
W = 2x3

Therefore Eq. (2) becomes

u1 = −
∫ 2x7 sin (x)

2x5 dx

Which simplifies to

u1 = −
∫

sin (x)x2dx

Hence
u1 = x2 cos (x)− 2 cos (x)− 2 sin (x)x
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And Eq. (3) becomes

u2 =
∫ 2x5 sin (x)

2x5 dx

Which simplifies to

u2 =
∫

sin (x) dx

Hence
u2 = − cos (x)

Therefore the particular solution, from equation (1) is

yp(x) =
(
x2 cos (x)− 2 cos (x)− 2 sin (x)x

)
x− x3 cos (x)

Which simplifies to
yp(x) = −2x(sin (x)x+ cos (x))

Therefore the general solution is

y = yh + yp

=
((

− c1
2x2 + c2

)
x3
)
+ (−2x(sin (x)x+ cos (x)))

= −2x(sin (x)x+ cos (x)) +
(
− c1
2x2 + c2

)
x3

Which simplifies to

y = x
(
−2 sin (x)x− 2 cos (x)− c1

2 + c2x
2
)

Summary
The solution(s) found are the following

(1)y = x
(
−2 sin (x)x− 2 cos (x)− c1

2 + c2x
2
)

Verification of solutions

y = x
(
−2 sin (x)x− 2 cos (x)− c1

2 + c2x
2
)

Verified OK.
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10.12.5 Solving as second order ode non constant coeff transformation on
B ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = x2

B = −3x
C = 3
F = 2 sin (x)x4

The above shows that for this ode

AB′′ +BB′ + CB =
(
x2) (0) + (−3x) (−3) + (3) (−3x)

= 0
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Hence the ode in v given in (1) now simplifies to

−3x3v′′ +
(
3x2) v′ = 0

Now by applying v′ = u the above becomes

−3x2(u′(x)x− u(x)) = 0

Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u

x

Where f(x) = 1
x
and g(u) = u. Integrating both sides gives

1
u
du = 1

x
dx∫ 1

u
du =

∫ 1
x
dx

ln (u) = ln (x) + c1

u = eln(x)+c1

= c1x

The ode for v now becomes

v′ = u

= c1x

Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1x dx

= c1x
2

2 + c2

Therefore the homogeneous solution is

yh(x) = Bv

= (−3x)
(
c1x

2

2 + c2

)
= −3x(c1x2 + 2c2)

2
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And now the particular solution yp(x) will be found. The particular solution yp can be
found using either the method of undetermined coefficients, or the method of variation
of parameters. The method of variation of parameters will be used as it is more general
and can be used when the coefficients of the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = x3

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x x3

d
dx
(x) d

dx
(x3)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x x3

1 3x2

∣∣∣∣∣∣
Therefore

W = (x)
(
3x2)− (x3) (1)

Which simplifies to
W = 2x3
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Which simplifies to
W = 2x3

Therefore Eq. (2) becomes

u1 = −
∫ 2x7 sin (x)

2x5 dx

Which simplifies to

u1 = −
∫

sin (x)x2dx

Hence
u1 = x2 cos (x)− 2 cos (x)− 2 sin (x)x

And Eq. (3) becomes

u2 =
∫ 2x5 sin (x)

2x5 dx

Which simplifies to

u2 =
∫

sin (x) dx

Hence
u2 = − cos (x)

Therefore the particular solution, from equation (1) is

yp(x) =
(
x2 cos (x)− 2 cos (x)− 2 sin (x)x

)
x− x3 cos (x)

Which simplifies to
yp(x) = −2x(sin (x)x+ cos (x))

Hence the complete solution is

y(x) = yh + yp

=
(
−3x(c1x2 + 2c2)

2

)
+ (−2x(sin (x)x+ cos (x)))

= x

(
−3c1x2

2 − 3c2 − 2 sin (x)x− 2 cos (x)
)
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Summary
The solution(s) found are the following

(1)y = x

(
−3c1x2

2 − 3c2 − 2 sin (x)x− 2 cos (x)
)

Verification of solutions

y = x

(
−3c1x2

2 − 3c2 − 2 sin (x)x− 2 cos (x)
)

Verified OK.

10.12.6 Solving using Kovacic algorithm

Writing the ode as

x2y′′ − 3y′x+ 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −3x (3)
C = 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
4x2 (6)
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Comparing the above to (5) shows that

s = 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(

3
4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 424: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
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larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= 3

4x2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2
The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2
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Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = −1
2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (0)

= − 1
2x

= − 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)
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Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x

)
(0) +

((
1
2x2

)
+
(
− 1
2x

)2

−
(

3
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

2xdx

= 1√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−3x
x2 dx

= z1e
3 ln(x)

2

= z1
(
x

3
2

)
Which simplifies to

y1 = x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−3x

x2 dx

(y1)2
dx

= y1

∫
e3 ln(x)

(y1)2
dx

= y1

(
x2

2

)
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Therefore the solution is

y = c1y1 + c2y2

= c1(x) + c2

(
x

(
x2

2

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

x2y′′ − 3y′x+ 3y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1x+ 1
2c2x

3

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 =
x3

2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
x x3

2

d
dx
(x) d

dx

(
x3

2

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣x
x3

2

1 3x2

2

∣∣∣∣∣∣
Therefore

W = (x)
(
3x2

2

)
−
(
x3

2

)
(1)

Which simplifies to
W = x3

Which simplifies to
W = x3

Therefore Eq. (2) becomes

u1 = −
∫

x7 sin (x)
x5 dx

Which simplifies to

u1 = −
∫

sin (x)x2dx

Hence
u1 = x2 cos (x)− 2 cos (x)− 2 sin (x)x

And Eq. (3) becomes

u2 =
∫ 2x5 sin (x)

x5 dx
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Which simplifies to

u2 =
∫

2 sin (x) dx

Hence
u2 = −2 cos (x)

Therefore the particular solution, from equation (1) is

yp(x) =
(
x2 cos (x)− 2 cos (x)− 2 sin (x)x

)
x− x3 cos (x)

Which simplifies to
yp(x) = −2x(sin (x)x+ cos (x))

Therefore the general solution is

y = yh + yp

=
(
c1x+ 1

2c2x
3
)
+ (−2x(sin (x)x+ cos (x)))

Summary
The solution(s) found are the following

(1)y = c1x+ c2x
3

2 − 2x(sin (x)x+ cos (x))

Verification of solutions

y = c1x+ c2x
3

2 − 2x(sin (x)x+ cos (x))

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`� �

3073



3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 25� �
dsolve(x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+3*y(x)=2*x^4*sin(x),y(x), singsol=all)� �

y(x) = (c1x2 − 4x sin (x)− 4 cos (x) + 2c2)x
2

3 Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 25� �
DSolve[x^2*y''[x]-3*x*y'[x]+3*y[x]==2*x^4*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x
(
c2x

2 − 2x sin(x)− 2 cos(x) + c1
)
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10.13 problem 13
10.13.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 3075

Internal problem ID [1167]
Internal file name [OUTPUT/1168_Sunday_June_05_2022_02_03_59_AM_11180758/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

(1 + 2x) y′′ − 2y′ − (2x+ 3) y = (1 + 2x)2 e−x

10.13.1 Solving using Kovacic algorithm

Writing the ode as

(1 + 2x) y′′ − 2y′ + (−3− 2x) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1 + 2x
B = −2 (3)
C = −3− 2x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x2 + 8x+ 6
(1 + 2x)2

(6)

Comparing the above to (5) shows that

s = 4x2 + 8x+ 6
t = (1 + 2x)2

Therefore eq. (4) becomes

z′′(x) =
(
4x2 + 8x+ 6
(1 + 2x)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 425: Necessary conditions for each Kovacic case

3076



The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = (1 + 2x)2. There is a pole at x = −1

2 of order 2. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one
are met. Since there is a pole of order 2 then necessary conditions for case two are met.
Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1 + 3
4
(
x+ 1

2

)2 + 1
x+ 1

2

For the pole at x = −1
2 let b be the coefficient of 1(

x+ 1
2
)2 in the partial fractions decom-

position of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1 + 1

2x − 1
4x3 + 11

32x4 − 21
64x5 + 15

64x6 − 3
32x7 − 117

2048x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = 1

This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be

the coefficient in R of the term in x of degree of t minus one, divided by the leading
coefficient in t. Doing long division gives

r = s

t

= 4x2 + 8x+ 6
4x2 + 4x+ 1

= Q+ R

4x2 + 4x+ 1

= (1) +
(

4x+ 5
4x2 + 4x+ 1

)
= 1 + 4x+ 5

4x2 + 4x+ 1
Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is 4. Dividing this by leading coefficient in t which is 4 gives 1. Now b can be found.

b = (1)− (0)
= 1
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Hence

[
√
r]∞ = 1

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
1
1 − 0

)
= 1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−1
1 − 0

)
= −1

2

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 4x2 + 8x+ 6
(1 + 2x)2

pole c location pole order [
√
r]c α+

c α−
c

−1
2 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1 1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = −1
2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2
(
x+ 1

2

) + (−) (1)

= − 1
2
(
x+ 1

2

) − 1

= −2(x+ 1)
1 + 2x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2
(
x+ 1

2

) − 1
)
(0) +

( 1
2
(
x+ 1

2

)2
)

+
(
− 1
2
(
x+ 1

2

) − 1
)2

−
(
4x2 + 8x+ 6
(1 + 2x)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2
(
x+1

2
)−1

)
dx

= e−x

√
1 + 2x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2

1+2x dx

= z1e
ln(1+2x)

2

= z1
(√

1 + 2x
)
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Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −2

1+2x dx

(y1)2
dx

= y1

∫
eln(1+2x)

(y1)2
dx

= y1
(
x e2x

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x
(
x e2x

))
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

(1 + 2x) y′′ − 2y′ + (−3− 2x) y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x + c2x ex

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
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parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−x

y2 = x ex

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ e−x x ex
d
dx
(e−x) d

dx
(x ex)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ e
−x x ex

−e−x x ex + ex

∣∣∣∣∣∣
Therefore

W =
(
e−x
)
(x ex + ex)− (x ex)

(
−e−x

)
Which simplifies to

W = 2x exe−x + e−xex

Which simplifies to
W = 1 + 2x

3082



Therefore Eq. (2) becomes

u1 = −
∫

x ex(1 + 2x)2 e−x

(1 + 2x)2
dx

Which simplifies to

u1 = −
∫

xdx

Hence

u1 = −x2

2

And Eq. (3) becomes

u2 =
∫ e−2x(1 + 2x)2

(1 + 2x)2
dx

Which simplifies to

u2 =
∫

e−2xdx

Hence

u2 = −e−2x

2

Therefore the particular solution, from equation (1) is

yp(x) = −x2e−x

2 − e−2xx ex
2

Which simplifies to

yp(x) = −e−xx(x+ 1)
2

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2x ex

)
+
(
−e−xx(x+ 1)

2

)
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Summary
The solution(s) found are the following

(1)y = c1e−x + c2x ex −
e−xx(x+ 1)

2
Verification of solutions

y = c1e−x + c2x ex −
e−xx(x+ 1)

2

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 28� �
dsolve((2*x+1)*diff(y(x),x$2)-2*diff(y(x),x)-(2*x+3)*y(x)=(2*x+1)^2*exp(-x),y(x), singsol=all)� �

y(x) = (−x2 + 2c2 − x) e−x

2 + x exc1
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3 Solution by Mathematica
Time used: 0.084 (sec). Leaf size: 42� �
DSolve[(2*x+1)*y''[x]-2*y'[x]-(2*x+3)*y[x]==(2*x+1)^2*Exp[-x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2e

−xx(x+ 1) + c1e
−x− 1

2 + c2e
x+ 1

2x
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10.14 problem 14
10.14.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 3086

Internal problem ID [1168]
Internal file name [OUTPUT/1169_Sunday_June_05_2022_02_04_02_AM_60845432/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

2xy′′ + 2y′ + 2y = sin
(√

x
)

10.14.1 Solving as second order bessel ode ode

Writing the ode as

x2y′′ + y′x+ yx =
x sin

(√
x
)

2 (1)

Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE and yp is a particular solution to
the non-homogeneous ODE. Bessel ode has the form

x2y′′ + y′x+
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)
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With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = 0
β = 2
n = 0

γ = 1
2

Substituting all the above into (4) gives the solution as

y = c1 BesselJ
(
0, 2

√
x
)
+ c2 BesselY

(
0, 2

√
x
)

Therefore the homogeneous solution yh is

yh = c1 BesselJ
(
0, 2

√
x
)
+ c2 BesselY

(
0, 2

√
x
)

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = BesselJ
(
0, 2

√
x
)

y2 = BesselY
(
0, 2

√
x
)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ BesselJ
(
0, 2

√
x
)

BesselY
(
0, 2

√
x
)

d
dx

(
BesselJ

(
0, 2

√
x
))

d
dx

(
BesselY

(
0, 2

√
x
))
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣
BesselJ

(
0, 2

√
x
)

BesselY
(
0, 2

√
x
)

−BesselJ
(
1,2

√
x
)

√
x

−BesselY
(
1,2

√
x
)

√
x

∣∣∣∣∣∣
Therefore

W =
(
BesselJ

(
0, 2

√
x
))(

−
BesselY

(
1, 2

√
x
)

√
x

)

−
(
BesselY

(
0, 2

√
x
))(

−
BesselJ

(
1, 2

√
x
)

√
x

)

Which simplifies to

W = −
BesselJ

(
0, 2

√
x
)
BesselY

(
1, 2

√
x
)
− BesselY

(
0, 2

√
x
)
BesselJ

(
1, 2

√
x
)

√
x

Which simplifies to

W = 1
xπ

Therefore Eq. (2) becomes

u1 = −
∫ BesselY

(
0,2

√
x
)
x sin

(√
x
)

2
x
π

dx

Which simplifies to

u1 = −
∫ BesselY

(
0, 2

√
x
)
sin
(√

x
)
π

2 dx

Hence

u1 = −

(∫ x

0

BesselY
(
0, 2

√
α
)
sin
(√

α
)
π

2 dα

)
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And Eq. (3) becomes

u2 =
∫ BesselJ

(
0,2

√
x
)
x sin

(√
x
)

2
x
π

dx

Which simplifies to

u2 =
∫ BesselJ

(
0, 2

√
x
)
sin
(√

x
)
π

2 dx

Hence

u2 =
∫ x

0

BesselJ
(
0, 2

√
α
)
sin
(√

α
)
π

2 dα

Which simplifies to

u1 = −
π
(∫ x

0 BesselY
(
0, 2

√
α
)
sin
(√

α
)
dα
)

2

u2 =
π
(∫ x

0 BesselJ
(
0, 2

√
α
)
sin
(√

α
)
dα
)

2

Therefore the particular solution, from equation (1) is

yp(x) = −
π
(∫ x

0 BesselY
(
0, 2

√
α
)
sin
(√

α
)
dα
)
BesselJ

(
0, 2

√
x
)

2

+
π
(∫ x

0 BesselJ
(
0, 2

√
α
)
sin
(√

α
)
dα
)
BesselY

(
0, 2

√
x
)

2

Which simplifies to

yp(x) =

−
π
((∫ x

0 BesselY
(
0, 2

√
α
)
sin
(√

α
)
dα
)
BesselJ

(
0, 2

√
x
)
−
(∫ x

0 BesselJ
(
0, 2

√
α
)
sin
(√

α
)
dα
)
BesselY

(
0, 2

√
x
))

2

Therefore the general solution is

y = yh + yp

=
(
c1 BesselJ

(
0, 2

√
x
)
+ c2 BesselY

(
0, 2

√
x
))

+
(
−
π
((∫ x

0 BesselY
(
0, 2

√
α
)
sin
(√

α
)
dα
)
BesselJ

(
0, 2

√
x
)
−
(∫ x

0 BesselJ
(
0, 2

√
α
)
sin
(√

α
)
dα
)
BesselY

(
0, 2

√
x
))

2

)
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Summary
The solution(s) found are the following

(1)y = c1 BesselJ
(
0, 2

√
x
)
+ c2 BesselY

(
0, 2

√
x
)

−
π
((∫ x

0 BesselY
(
0, 2

√
α
)
sin
(√

α
)
dα
)
BesselJ

(
0, 2

√
x
)
−
(∫ x

0 BesselJ
(
0, 2

√
α
)
sin
(√

α
)
dα
)
BesselY

(
0, 2

√
x
))

2
Verification of solutions

y = c1 BesselJ
(
0, 2

√
x
)
+ c2 BesselY

(
0, 2

√
x
)

−
π
((∫ x

0 BesselY
(
0, 2

√
α
)
sin
(√

α
)
dα
)
BesselJ

(
0, 2

√
x
)
−
(∫ x

0 BesselJ
(
0, 2

√
α
)
sin
(√

α
)
dα
)
BesselY

(
0, 2

√
x
))

2

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful
<- solving first the homogeneous part of the ODE successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 71� �
dsolve(2*x*diff(y(x),x$2)+2*diff(y(x),x)+2*y(x)=sin(sqrt(x)),y(x), singsol=all)� �

y(x) = BesselJ
(
0, 2

√
x
)
c2 + BesselY

(
0, 2

√
x
)
c1

+
π
(∫

BesselJ
(
0, 2

√
x
)
sin
(√

x
)
dx
)
BesselY

(
0, 2

√
x
)

2

−
π
(∫

BesselY
(
0, 2

√
x
)
sin
(√

x
)
dx
)
BesselJ

(
0, 2

√
x
)

2

3 Solution by Mathematica
Time used: 11.396 (sec). Leaf size: 110� �
DSolve[2*x*y''[x]+2*y'[x]+2*y[x]==Sin[Sqrt[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → BesselJ
(
0, 2

√
x
) ∫ x

1
−1
2πBesselY

(
0, 2
√

K[1]
)
sin
(√

K[1]
)
dK[1]

+ 2BesselY
(
0, 2

√
x
) ∫ x

1

1
4πBesselJ

(
0, 2
√

K[2]
)
sin
(√

K[2]
)
dK[2]

+ c1 BesselJ
(
0, 2

√
x
)
+ 2c2 BesselY

(
0, 2

√
x
)
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10.15 problem 15
10.15.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 3092

Internal problem ID [1169]
Internal file name [OUTPUT/1170_Sunday_June_05_2022_02_04_03_AM_35419903/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

xy′′ − (2 + 2x) y′ + (2 + x) y = 6 exx3

10.15.1 Solving using Kovacic algorithm

Writing the ode as

xy′′ + (−2x− 2) y′ + (2 + x) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = −2x− 2 (3)
C = 2 + x

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2
x2 (6)

Comparing the above to (5) shows that

s = 2
t = x2

Therefore eq. (4) becomes

z′′(x) =
(

2
x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 426: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= 2

x2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1
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The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = −1 then

d = α−
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (0)

= −1
x

= −1
x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x

)
(0) +

((
1
x2

)
+
(
−1
x

)2

−
(

2
x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

x
dx

= 1
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x−2

x
dx

= z1e
x+ln(x)

= z1(x ex)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x−2

x
dx

(y1)2
dx

= y1

∫
e2x+2 ln(x)

(y1)2
dx

= y1

(
x3

3

)
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Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
x3

3

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

xy′′ + (−2x− 2) y′ + (2 + x) y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1ex +
c2exx3

3

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = ex

y2 =
exx3

3

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
ex exx3

3

d
dx
(ex) d

dx

(
exx3

3

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣e
x exx3

3

ex exx3

3 + x2ex

∣∣∣∣∣∣
Therefore

W = (ex)
(
exx3

3 + x2ex
)
−
(
exx3

3

)
(ex)

Which simplifies to
W = x2e2x

Which simplifies to
W = x2e2x

Therefore Eq. (2) becomes

u1 = −
∫ 2 e2xx6

e2xx3 dx

Which simplifies to

u1 = −
∫

2x3dx

Hence

u1 = −x4

2

And Eq. (3) becomes

u2 =
∫ 6 e2xx3

e2xx3 dx
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Which simplifies to

u2 =
∫

6dx

Hence
u2 = 6x

Therefore the particular solution, from equation (1) is

yp(x) =
3 exx4

2

Therefore the general solution is

y = yh + yp

=
(
c1ex +

c2exx3

3

)
+
(
3 exx4

2

)

Which simplifies to

y = ex
(
c1 +

c2x
3

3

)
+ 3 exx4

2

Summary
The solution(s) found are the following

(1)y = ex
(
c1 +

c2x
3

3

)
+ 3 exx4

2
Verification of solutions

y = ex
(
c1 +

c2x
3

3

)
+ 3 exx4

2

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 19� �
dsolve(x*diff(y(x),x$2)-(2*x+2)*diff(y(x),x)+(x+2)*y(x)=6*x^3*exp(x),y(x), singsol=all)� �

y(x) = ex
(
c2 + c1x

3 + 3
2x

4
)

3 Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 29� �
DSolve[x*y''[x]-(2*x+2)*y'[x]+(x+2)*y[x]==6*x^3*Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
6e

x
(
9x4 + 2c2x3 + 6c1

)
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10.16 problem 16
10.16.1 Solving as second order euler ode ode . . . . . . . . . . . . . . . 3101
10.16.2 Solving as second order change of variable on x method 2 ode . 3105
10.16.3 Solving as second order change of variable on y method 2 ode . 3111
10.16.4 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 3116

Internal problem ID [1170]
Internal file name [OUTPUT/1171_Sunday_June_05_2022_02_04_04_AM_62651681/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 16.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_eu-
ler_ode", "second_order_change_of_variable_on_x_method_2", "second_or-
der_change_of_variable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − (2a− 1)xy′ + a2y = x1+a

10.16.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = (−2a+ 1)x,C = a2, f(x) = x1+a. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ + (−2a+ 1) y′x+ a2y = 0
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This is Euler second order ODE. Let the solution be y = xr, then y′ = rxr−1 and
y′′ = r(r − 1)xr−2. Substituting these back into the given ODE gives

x2(r(r − 1))xr−2(−2a+ 1)xrxr−1 + a2xr = 0

Simplifying gives
r(r − 1)xr(−2a+ 1) r xr + a2xr = 0

Since xr 6= 0 then dividing throughout by xr gives

r(r − 1) (−2a+ 1) r + a2 = 0

Or
a2 − 2ra+ r2 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = a

r2 = a

Since the roots are equal, then the general solution is

y = c1y1 + c2y2

Where y1 = xr and y2 = xr ln (x). Hence

y = c1x
a + c2x

a ln (x)

Next, we find the particular solution to the ODE

x2y′′ + (−2a+ 1) y′x+ a2y = x1+a

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = xa

y2 = xa ln (x)
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ xa xa ln (x)
d
dx
(xa) d

dx
(xa ln (x))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ x
a xa ln (x)

xaa
x

xaa ln(x)
x

+ xa

x

∣∣∣∣∣∣
Therefore

W = (xa)
(
xaa ln (x)

x
+ xa

x

)
− (xa ln (x))

(
xaa

x

)

Which simplifies to

W = x2a

x

Which simplifies to
W = x2a−1

Therefore Eq. (2) becomes

u1 = −
∫

xa ln (x)x1+a

x2x2a−1 dx

Which simplifies to

u1 = −
∫

ln (x) dx
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Hence
u1 = −x ln (x) + x

And Eq. (3) becomes

u2 =
∫

xax1+a

x2x2a−1 dx

Which simplifies to

u2 =
∫

1dx

Hence
u2 = x

Therefore the particular solution, from equation (1) is

yp(x) = (−x ln (x) + x)xa + xxa ln (x)

Which simplifies to
yp(x) = x1+a

Therefore the general solution is

y = yh + yp

= xa(x+ c1 + c2 ln (x))

Summary
The solution(s) found are the following

(1)y = xa(x+ c1 + c2 ln (x))
Verification of solutions

y = xa(x+ c1 + c2 ln (x))

Verified OK.
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10.16.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ + (−2ax+ x) y′ + a2y = 0

In normal form the ode

x2y′′ + (−2ax+ x) y′ + a2y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −2a+ 1
x

q(x) = a2

x2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0
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This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫ −2a+1

x
dx
)
dx

=
∫

e(2a−1) ln(x) dx

=
∫

x2a−1dx

= x2a

2a (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
a2

x2

x4a−2

= a2x−4a (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + a2x−4ay(τ) = 0

But in terms of τ

a2x−4a = 1
4τ 2

Hence the above ode becomes
d2

dτ 2
y(τ) + y(τ)

4τ 2 = 0

The above ode is now solved for y(τ). The ode can be written as

4
(

d2

dτ 2
y(τ)

)
τ 2 + y(τ) = 0

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be
y(τ) = τ r, then y′ = rτ r−1 and y′′ = r(r − 1)τ r−2. Substituting these back into the
given ODE gives

4τ 2(r(r − 1))τ r−2 + 0rτ r−1 + τ r = 0
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Simplifying gives
4r(r − 1) τ r + 0 τ r + τ r = 0

Since τ r 6= 0 then dividing throughout by τ r gives

4r(r − 1) + 0 + 1 = 0

Or
4r2 − 4r + 1 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 =
1
2

r2 =
1
2

Since the roots are equal, then the general solution is

y(τ) = c1y1 + c2y2

Where y1 = τ r and y2 = τ r ln (τ). Hence

y(τ) = c1
√
τ + c2

√
τ ln (τ)

The above solution is now transformed back to y using (6) which results in

y =

√
2
√

x2a

a

(
c1 + c2 ln

(
x2a

a

)
− c2 ln (2)

)
2

Therefore the homogeneous solution yh is

yh =

√
2
√

x2a

a

(
c1 + c2 ln

(
x2a

a

)
− c2 ln (2)

)
2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
√

x2a

a

y2 =

√
2
√

x2a

a
ln
(

x2a

a

)
2 −

√
2
√

x2a

a
ln (2)

2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣∣∣∣

√
x2a

a

√
2
√

x2a
a

ln
(

x2a
a

)
2 −

√
2
√

x2a
a

ln(2)
2

d
dx

(√
x2a

a

)
d
dx

(√
2
√

x2a
a

ln
(

x2a
a

)
2 −

√
2
√

x2a
a

ln(2)
2

)
∣∣∣∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣∣∣
√

x2a

a

√
2
√

x2a
a

ln
(

x2a
a

)
2 −

√
2
√

x2a
a

ln(2)
2

x2a√
x2a
a

x

√
2 ln

(
x2a
a

)
x2a

2
√

x2a
a

x
+

√
2
√

x2a
a

a

x
−

√
2 ln(2)x2a

2
√

x2a
a

x

∣∣∣∣∣∣∣∣∣
Therefore

W =
(√

x2a

a

)√
2 ln

(
x2a

a

)
x2a

2
√

x2a

a
x

+

√
2
√

x2a

a
a

x
−

√
2 ln (2) x2a

2
√

x2a

a
x


−


√
2
√

x2a

a
ln
(

x2a

a

)
2 −

√
2
√

x2a

a
ln (2)

2


 x2a√

x2a

a
x
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Which simplifies to

W =
√
2x2a

x

Which simplifies to

W = x2a−1√2

Therefore Eq. (2) becomes

u1 = −
∫
(√

2
√

x2a
a

ln
(

x2a
a

)
2 −

√
2
√

x2a
a

ln(2)
2

)
x1+a

x2x2a−1
√
2

dx

Which simplifies to

u1 = −
∫

−
x−a
√

x2a

a

(
− ln

(
x2a

a

)
+ ln (2)

)
2 dx

Hence

u1 = −

∫ x

0
−
α−a

√
α2a

a

(
− ln

(
α2a

a

)
+ ln (2)

)
2 dα


And Eq. (3) becomes

u2 =
∫ √

x2a

a
x1+a

x2x2a−1
√
2
dx

Which simplifies to

u2 =
∫ √

2x−a
√

x2a

a

2 dx

Hence

u2 =

√
2x−a

√
x2a

a
x

2
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Which simplifies to

u1 =

(∫ x

0 α−a
√

α2a

a

(
− ln

(
α2a

a

)
+ ln (2)

)
dα

)
2

u2 =
x1−a

√
2
√

x2a

a

2

Therefore the particular solution, from equation (1) is

yp(x) =

(∫ x

0 α−a
√

α2a

a

(
− ln

(
α2a

a

)
+ ln (2)

)
dα

)√
x2a

a

2

+
x1−a

√
2
√

x2a

a

(√
2
√

x2a
a

ln
(

x2a
a

)
2 −

√
2
√

x2a
a

ln(2)
2

)
2

Which simplifies to

yp(x) =

(∫ x

0 α−a
√

α2a

a

(
− ln

(
α2a

a

)
+ ln (2)

)
dα

)√
x2a

a
a−

(
− ln

(
x2a

a

)
+ ln (2)

)
x1+a

2a

Therefore the general solution is

y = yh + yp

=


√
2
√

x2a

a

(
c1 + c2 ln

(
x2a

a

)
− c2 ln (2)

)
2



+


(∫ x

0 α−a
√

α2a

a

(
− ln

(
α2a

a

)
+ ln (2)

)
dα

)√
x2a

a
a−

(
− ln

(
x2a

a

)
+ ln (2)

)
x1+a

2a
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Summary
The solution(s) found are the following

y =

√
2
√

x2a

a

(
c1 + c2 ln

(
x2a

a

)
− c2 ln (2)

)
2

+

(∫ x

0 α−a
√

α2a

a

(
− ln

(
α2a

a

)
+ ln (2)

)
dα

)√
x2a

a
a−

(
− ln

(
x2a

a

)
+ ln (2)

)
x1+a

2a
(1)

Verification of solutions

y =

√
2
√

x2a

a

(
c1 + c2 ln

(
x2a

a

)
− c2 ln (2)

)
2

+

(∫ x

0 α−a
√

α2a

a

(
− ln

(
α2a

a

)
+ ln (2)

)
dα

)√
x2a

a
a−

(
− ln

(
x2a

a

)
+ ln (2)

)
x1+a

2a

Verified OK.

10.16.3 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = −2ax+ x,C = a2, f(x) = x1+a. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ + (−2ax+ x) y′ + a2y = 0

In normal form the ode

x2y′′ + (−2ax+ x) y′ + a2y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)
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Where

p(x) = −2a+ 1
x

q(x) = a2

x2

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 + n(−2a+ 1)

x2 + a2

x2 = 0 (5)

Solving (5) for n gives

n = a (6)

Substituting this value in (3) gives

v′′(x) +
(
2a
x

+ −2a+ 1
x

)
v′(x) = 0

v′′(x) + v′(x)
x

= 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) + u(x)
x

= 0 (8)
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The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u

x

Where f(x) = − 1
x
and g(u) = u. Integrating both sides gives

1
u
du = −1

x
dx∫ 1

u
du =

∫
−1
x
dx

ln (u) = − ln (x) + c1

u = e− ln(x)+c1

= c1
x

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= c1 ln (x) + c2

Hence

y = v(x)xn

= (c1 ln (x) + c2)xa

= (c1 ln (x) + c2)xa

Now the particular solution to this ODE is found

x2y′′ + (−2ax+ x) y′ + a2y = x1+a

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = xa

y2 = xa ln (x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ xa xa ln (x)
d
dx
(xa) d

dx
(xa ln (x))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ x
a xa ln (x)

xaa
x

xaa ln(x)
x

+ xa

x

∣∣∣∣∣∣
Therefore

W = (xa)
(
xaa ln (x)

x
+ xa

x

)
− (xa ln (x))

(
xaa

x

)
Which simplifies to

W = x2a

x

Which simplifies to
W = x2a−1

Therefore Eq. (2) becomes

u1 = −
∫

xa ln (x)x1+a

x2x2a−1 dx
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Which simplifies to

u1 = −
∫

ln (x) dx

Hence
u1 = −x ln (x) + x

And Eq. (3) becomes

u2 =
∫

xax1+a

x2x2a−1 dx

Which simplifies to

u2 =
∫

1dx

Hence
u2 = x

Therefore the particular solution, from equation (1) is

yp(x) = (−x ln (x) + x)xa + xxa ln (x)

Which simplifies to
yp(x) = x1+a

Therefore the general solution is

y = yh + yp

= ((c1 ln (x) + c2)xa) +
(
x1+a

)
= x1+a + (c1 ln (x) + c2)xa

Which simplifies to
y = xa(x+ c1 ln (x) + c2)

Summary
The solution(s) found are the following

(1)y = xa(x+ c1 ln (x) + c2)
Verification of solutions

y = xa(x+ c1 ln (x) + c2)

Verified OK.
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10.16.4 Solving using Kovacic algorithm

Writing the ode as

x2y′′ + (−2ax+ x) y′ + a2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2ax+ x (3)
C = a2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 427: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2
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For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= − 1

4x2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.

3118



Trying α−
∞ = 1

2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2ax+x

x2 dx

= z1e
(2a−1) ln(x)

2

= z1
(
xa− 1

2

)
Which simplifies to

y1 = xa

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2ax+x

x2 dx

(y1)2
dx

= y1

∫
e(2a−1) ln(x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(xa) + c2(xa(ln (x)))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

x2y′′ + (−2ax+ x) y′ + a2y = 0
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The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1x
a + c2x

a ln (x)

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = xa

y2 = xa ln (x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ xa xa ln (x)
d
dx
(xa) d

dx
(xa ln (x))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ x
a xa ln (x)

xaa
x

xaa ln(x)
x

+ xa

x

∣∣∣∣∣∣
Therefore

W = (xa)
(
xaa ln (x)

x
+ xa

x

)
− (xa ln (x))

(
xaa

x

)
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Which simplifies to

W = x2a

x

Which simplifies to
W = x2a−1

Therefore Eq. (2) becomes

u1 = −
∫

xa ln (x)x1+a

x2x2a−1 dx

Which simplifies to

u1 = −
∫

ln (x) dx

Hence
u1 = −x ln (x) + x

And Eq. (3) becomes

u2 =
∫

xax1+a

x2x2a−1 dx

Which simplifies to

u2 =
∫

1dx

Hence
u2 = x

Therefore the particular solution, from equation (1) is

yp(x) = (−x ln (x) + x)xa + xxa ln (x)

Which simplifies to
yp(x) = x1+a
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Therefore the general solution is

y = yh + yp

= (c1xa + c2x
a ln (x)) +

(
x1+a

)
Which simplifies to

y = (c1 + c2 ln (x))xa + x1+a

Summary
The solution(s) found are the following

(1)y = (c1 + c2 ln (x))xa + x1+a

Verification of solutions

y = (c1 + c2 ln (x))xa + x1+a

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 15� �
dsolve(x^2*diff(y(x),x$2)-(2*a-1)*x*diff(y(x),x)+a^2*y(x)=x^(a+1),y(x), singsol=all)� �

y(x) = xa(c2 + ln (x) c1 + x)
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3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 19� �
DSolve[x^2*y''[x]-(2*a-1)*x*y'[x]+a^2*y[x]==x^(a+1),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → xa(ac2 log(x) + x+ c1)
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10.17 problem 17
10.17.1 Solving as second order change of variable on y method 1 ode . 3125
10.17.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 3132
10.17.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 3136

Internal problem ID [1171]
Internal file name [OUTPUT/1172_Sunday_June_05_2022_02_04_06_AM_52712814/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode",
"second_order_change_of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

x2y′′ − 2y′x+
(
x2 + 2

)
y = x3 cos (x)

10.17.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ − 2y′x+
(
x2 + 2

)
y = 0

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)

3125



Where

p(x) = −2
x

q(x) = x2 + 2
x2

Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= x2 + 2
x2 −

(
− 2

x

)′
2 −

(
− 2

x

)2
4

= x2 + 2
x2 −

( 2
x2

)
2 −

( 4
x2

)
4

= x2 + 2
x2 −

(
1
x2

)
− 1

x2

= 1

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ − 2

x
2

= x (5)

Hence (3) becomes

y = v(x)x (4)

Applying this change of variable to the original ode results in

v(x) + v′′(x) = cos (x)

Which is now solved for v(x) This is second order non-homogeneous ODE. In standard
form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = f(x)
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Where A = 1, B = 0, C = 1, f(x) = cos (x). Let the solution be

v(x) = vh + vp

Where vh is the solution to the homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = 0, and vp
is a particular solution to the non-homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = f(x).
vh is the solution to

v(x) + v′′(x) = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = 1. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ
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Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

v(x) = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
v(x) = e0(c1 cos (x) + c2 sin (x))

Or
v(x) = c1 cos (x) + c2 sin (x)

Therefore the homogeneous solution vh is

vh = c1 cos (x) + c2 sin (x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

cos (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) , sin (x)}

Since cos (x) is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x cos (x) , sin (x)x}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

vp = A1x cos (x) + A2 sin (x)x

The unknowns {A1, A2} are found by substituting the above trial solution vp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−2A1 sin (x) + 2A2 cos (x) = cos (x)
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Solving for the unknowns by comparing coefficients results in[
A1 = 0, A2 =

1
2

]
Substituting the above back in the above trial solution vp, gives the particular solution

vp =
sin (x)x

2

Therefore the general solution is

v = vh + vp

= (c1 cos (x) + c2 sin (x)) +
(
sin (x)x

2

)

Now that v(x) is known, then

y = v(x) z(x)

=
(
c1 cos (x) + c2 sin (x) +

sin (x)x
2

)
(z(x)) (7)

But from (5)

z(x) = x

Hence (7) becomes

y =
(
c1 cos (x) + c2 sin (x) +

sin (x)x
2

)
x

Therefore the homogeneous solution yh is

yh =
(
c1 cos (x) + c2 sin (x) +

sin (x)x
2

)
x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x cos (x)

y2 = sin (x)x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x cos (x) sin (x)x
d
dx
(x cos (x)) d

dx
(sin (x)x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ x cos (x) sin (x)x
cos (x)− sin (x)x x cos (x) + sin (x)

∣∣∣∣∣∣
Therefore

W = (x cos (x)) (x cos (x) + sin (x))− (sin (x)x) (cos (x)− sin (x)x)

Which simplifies to
W = cos (x)2 x2 + x2 sin (x)2

Which simplifies to
W = x2

Therefore Eq. (2) becomes

u1 = −
∫ sin (x)x4 cos (x)

x4 dx
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Which simplifies to

u1 = −
∫ sin (2x)

2 dx

Hence

u1 =
cos (2x)

4

And Eq. (3) becomes

u2 =
∫

x4 cos (x)2

x4 dx

Which simplifies to

u2 =
∫

cos (x)2 dx

Hence

u2 =
cos (x) sin (x)

2 + x

2

Which simplifies to

u1 =
cos (2x)

4

u2 =
sin (2x)

4 + x

2

Therefore the particular solution, from equation (1) is

yp(x) =
cos (2x)x cos (x)

4 +
(
sin (2x)

4 + x

2

)
sin (x)x

Which simplifies to

yp(x) =
sin (x)x2

2 + x cos (x)
4

Therefore the general solution is

y = yh + yp

=
((

c1 cos (x) + c2 sin (x) +
sin (x)x

2

)
x

)
+
(
sin (x)x2

2 + x cos (x)
4

)
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Summary
The solution(s) found are the following

(1)y =
(
c1 cos (x) + c2 sin (x) +

sin (x)x
2

)
x+ sin (x)x2

2 + x cos (x)
4

Verification of solutions

y =
(
c1 cos (x) + c2 sin (x) +

sin (x)x
2

)
x+ sin (x)x2

2 + x cos (x)
4

Verified OK.

10.17.2 Solving as second order bessel ode ode

Writing the ode as

x2y′′ − 2y′x+
(
x2 + 2

)
y = x3 cos (x) (1)

Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE and yp is a particular solution to
the non-homogeneous ODE. Bessel ode has the form

x2y′′ + y′x+
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = 3
2

β = 1

n = −1
2

γ = 1
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Substituting all the above into (4) gives the solution as

y = c1x
√
2 cos (x)√
π

+ c2x
√
2 sin (x)√
π

Therefore the homogeneous solution yh is

yh = c1x
√
2 cos (x)√
π

+ c2x
√
2 sin (x)√
π

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x cos (x)

y2 = sin (x)x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x cos (x) sin (x)x
d
dx
(x cos (x)) d

dx
(sin (x)x)

∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣ x cos (x) sin (x)x
cos (x)− sin (x)x x cos (x) + sin (x)

∣∣∣∣∣∣
Therefore

W = (x cos (x)) (x cos (x) + sin (x))− (sin (x)x) (cos (x)− sin (x)x)

Which simplifies to
W = cos (x)2 x2 + x2 sin (x)2

Which simplifies to
W = x2

Therefore Eq. (2) becomes

u1 = −
∫ sin (x)x4 cos (x)

x4 dx

Which simplifies to

u1 = −
∫ sin (2x)

2 dx

Hence

u1 =
cos (2x)

4

And Eq. (3) becomes

u2 =
∫

x4 cos (x)2

x4 dx

Which simplifies to

u2 =
∫

cos (x)2 dx

Hence

u2 =
cos (x) sin (x)

2 + x

2
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Which simplifies to

u1 =
cos (2x)

4

u2 =
sin (2x)

4 + x

2

Therefore the particular solution, from equation (1) is

yp(x) =
cos (2x)x cos (x)

4 +
(
sin (2x)

4 + x

2

)
sin (x)x

Which simplifies to

yp(x) =
sin (x)x2

2 + x cos (x)
4

Therefore the general solution is

y = yh + yp

=
(
c1x

√
2 cos (x)√
π

+ c2x
√
2 sin (x)√
π

)
+
(
sin (x)x2

2 + x cos (x)
4

)

Summary
The solution(s) found are the following

(1)y = c1x
√
2 cos (x)√
π

+ c2x
√
2 sin (x)√
π

+ sin (x)x2

2 + x cos (x)
4

Verification of solutions

y = c1x
√
2 cos (x)√
π

+ c2x
√
2 sin (x)√
π

+ sin (x)x2

2 + x cos (x)
4

Verified OK.
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10.17.3 Solving using Kovacic algorithm

Writing the ode as

x2y′′ − 2y′x+
(
x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x (3)
C = x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 428: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2 dx

3137



= z1e
ln(x)

= z1(x)

Which simplifies to
y1 = x cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x

x2 dx

(y1)2
dx

= y1

∫
e2 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(x cos (x)) + c2(x cos (x) (tan (x)))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

x2y′′ − 2y′x+
(
x2 + 2

)
y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1x cos (x) + c2 sin (x)x
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The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x cos (x)

y2 = sin (x)x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x cos (x) sin (x)x
d
dx
(x cos (x)) d

dx
(sin (x)x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ x cos (x) sin (x)x
cos (x)− sin (x)x x cos (x) + sin (x)

∣∣∣∣∣∣
Therefore

W = (x cos (x)) (x cos (x) + sin (x))− (sin (x)x) (cos (x)− sin (x)x)

Which simplifies to
W = cos (x)2 x2 + x2 sin (x)2
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Which simplifies to
W = x2

Therefore Eq. (2) becomes

u1 = −
∫ sin (x)x4 cos (x)

x4 dx

Which simplifies to

u1 = −
∫ sin (2x)

2 dx

Hence

u1 =
cos (2x)

4

And Eq. (3) becomes

u2 =
∫

x4 cos (x)2

x4 dx

Which simplifies to

u2 =
∫

cos (x)2 dx

Hence

u2 =
cos (x) sin (x)

2 + x

2

Which simplifies to

u1 =
cos (2x)

4

u2 =
sin (2x)

4 + x

2

Therefore the particular solution, from equation (1) is

yp(x) =
cos (2x)x cos (x)

4 +
(
sin (2x)

4 + x

2

)
sin (x)x
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Which simplifies to

yp(x) =
sin (x)x2

2 + x cos (x)
4

Therefore the general solution is

y = yh + yp

= (c1x cos (x) + c2 sin (x)x) +
(
sin (x)x2

2 + x cos (x)
4

)

Summary
The solution(s) found are the following

(1)y = c1x cos (x) + c2 sin (x)x+ sin (x)x2

2 + x cos (x)
4

Verification of solutions

y = c1x cos (x) + c2 sin (x)x+ sin (x)x2

2 + x cos (x)
4

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 21� �
dsolve(x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+(x^2+2)*y(x)=x^3*cos(x),y(x), singsol=all)� �

y(x) = ((x+ 2c2) sin (x) + 2 cos (x) c1)x
2

3 Solution by Mathematica
Time used: 0.066 (sec). Leaf size: 49� �
DSolve[x^2*y''[x]-2*x*y'[x]+(x^2+2)*y[x]==x^3*Cos[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
8e

−ixx
(
2ix+ e2ix(−2ix+ 1− 4ic2) + 1 + 8c1

)
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10.18 problem 18
10.18.1 Solving as second order change of variable on x method 2 ode . 3143
10.18.2 Solving as second order change of variable on x method 1 ode . 3148
10.18.3 Solving as second order bessel ode ode . . . . . . . . . . . . . . 3153
10.18.4 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 3156

Internal problem ID [1172]
Internal file name [OUTPUT/1173_Sunday_June_05_2022_02_04_07_AM_2082207/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode",
"second_order_change_of_variable_on_x_method_1", "second_order_change_of_vari-
able_on_x_method_2"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

xy′′ − y′ − 4yx3 = 8x5

10.18.1 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

xy′′ − y′ − 4yx3 = 0

In normal form the ode

xy′′ − y′ − 4yx3 = 0 (1)
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Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −1
x

q(x) = −4x2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫

− 1
x
dx
)
dx

=
∫

eln(x) dx

=
∫

xdx

= x2

2 (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

= −4x2

x2

= −4 (7)
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Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ)− 4y(τ) = 0

The above ode is now solved for y(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay′′(τ) +By′(τ) + Cy(τ) = 0

Where in the above A = 1, B = 0, C = −4. Let the solution be y(τ) = eλτ . Substituting
this into the ODE gives

λ2eλτ − 4 eλτ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

λ2 − 4 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −4 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−4)

= ±2

Hence
λ1 = +2
λ2 = −2

Which simplifies to
λ1 = 2
λ2 = −2

Since roots are real and distinct, then the solution is

y(τ) = c1e
λ1τ + c2e

λ2τ

y(τ) = c1e
(2)τ + c2e

(−2)τ
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Or
y(τ) = c1e2τ + c2e−2τ

The above solution is now transformed back to y using (6) which results in

y = c1ex
2 + c2e−x2

Therefore the homogeneous solution yh is

yh = c1ex
2 + c2e−x2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−x2

y2 = ex2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
e−x2 ex2

d
dx

(
e−x2

)
d
dx

(
ex2
)
∣∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣ e−x2 ex2

−2x e−x2 2 ex2
x

∣∣∣∣∣∣
Therefore

W =
(
e−x2

)(
2 ex2

x
)
−
(
ex2
)(

−2x e−x2
)

Which simplifies to
W = 4x

Which simplifies to
W = 4x

Therefore Eq. (2) becomes

u1 = −
∫ 8 ex2

x5

4x2 dx

Which simplifies to

u1 = −
∫

2 ex2
x3dx

Hence
u1 = −

(
x2 − 1

)
ex2

And Eq. (3) becomes

u2 =
∫ 8 e−x2

x5

4x2 dx

Which simplifies to

u2 =
∫

2x3e−x2
dx

Hence
u2 = −

(
x2 + 1

)
e−x2
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Which simplifies to

u1 =
(
−x2 + 1

)
ex2

u2 = −
(
x2 + 1

)
e−x2

Therefore the particular solution, from equation (1) is

yp(x) = −x2 + 1−
(
x2 + 1

)
e−x2ex2

Which simplifies to
yp(x) = −2x2

Therefore the general solution is

y = yh + yp

=
(
c1ex

2 + c2e−x2
)
+
(
−2x2)

Summary
The solution(s) found are the following

(1)y = c1ex
2 + c2e−x2 − 2x2

Verification of solutions

y = c1ex
2 + c2e−x2 − 2x2

Verified OK.

10.18.2 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x,B = −1, C = −4x3, f(x) = 8x5. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

xy′′ − y′ − 4yx3 = 0
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In normal form the ode

xy′′ − y′ − 4yx3 = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −1
x

q(x) = −4x2

Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

= 2
√
−x2

c
(6)

τ ′′ = − 2x
c
√
−x2

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=
− 2x

c
√
−x2 − 1

x
2
√
−x2

c(
2
√
−x2

c

)2
= 0
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Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = c1 cos (cτ) + c2 sin (cτ)

Now from (6)

τ =
∫ 1

c

√
q dx

=
∫
2
√
−x2dx

c

= x
√
−x2

c

Substituting the above into the solution obtained gives

y = c1 cosh
(
x2)+ ic2 sinh

(
x2)

Now the particular solution to this ODE is found

xy′′ − y′ − 4yx3 = 8x5

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−x2

y2 = ex2
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
e−x2 ex2

d
dx

(
e−x2

)
d
dx

(
ex2
)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ e−x2 ex2

−2x e−x2 2 ex2
x

∣∣∣∣∣∣
Therefore

W =
(
e−x2

)(
2 ex2

x
)
−
(
ex2
)(

−2x e−x2
)

Which simplifies to
W = 4x

Which simplifies to
W = 4x

Therefore Eq. (2) becomes

u1 = −
∫ 8 ex2

x5

4x2 dx

Which simplifies to

u1 = −
∫

2 ex2
x3dx

Hence
u1 = −

(
x2 − 1

)
ex2
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And Eq. (3) becomes

u2 =
∫ 8 e−x2

x5

4x2 dx

Which simplifies to

u2 =
∫

2x3e−x2
dx

Hence
u2 = −

(
x2 + 1

)
e−x2

Which simplifies to

u1 =
(
−x2 + 1

)
ex2

u2 = −
(
x2 + 1

)
e−x2

Therefore the particular solution, from equation (1) is

yp(x) = −x2 + 1−
(
x2 + 1

)
e−x2ex2

Which simplifies to
yp(x) = −2x2

Therefore the general solution is

y = yh + yp

=
(
c1 cosh

(
x2)+ ic2 sinh

(
x2))+ (−2x2)

= −2x2 + c1 cosh
(
x2)+ ic2 sinh

(
x2)

Which simplifies to
y = −2x2 + c1 cosh

(
x2)+ ic2 sinh

(
x2)

Summary
The solution(s) found are the following

(1)y = −2x2 + c1 cosh
(
x2)+ ic2 sinh

(
x2)

Verification of solutions

y = −2x2 + c1 cosh
(
x2)+ ic2 sinh

(
x2)

Verified OK.
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10.18.3 Solving as second order bessel ode ode

Writing the ode as

x2y′′ − y′x− 4yx4 = 8x6 (1)

Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE and yp is a particular solution to
the non-homogeneous ODE. Bessel ode has the form

x2y′′ + y′x+
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = 1
β = i

n = 1
2

γ = 2

Substituting all the above into (4) gives the solution as

y = ic1x
√
2 sinh (x2)

√
π
√
ix2

− c2x
√
2 cosh (x2)

√
π
√
ix2

Therefore the homogeneous solution yh is

yh = ic1x
√
2 sinh (x2)

√
π
√
ix2

− c2x
√
2 cosh (x2)

√
π
√
ix2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
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parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−x2

y2 = ex2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
e−x2 ex2

d
dx

(
e−x2

)
d
dx

(
ex2
)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ e−x2 ex2

−2x e−x2 2 ex2
x

∣∣∣∣∣∣
Therefore

W =
(
e−x2

)(
2 ex2

x
)
−
(
ex2
)(

−2x e−x2
)

Which simplifies to
W = 4x

Which simplifies to
W = 4x
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Therefore Eq. (2) becomes

u1 = −
∫ 8 ex2

x6

4x3 dx

Which simplifies to

u1 = −
∫

2 ex2
x3dx

Hence
u1 = −

(
x2 − 1

)
ex2

And Eq. (3) becomes

u2 =
∫ 8 e−x2

x6

4x3 dx

Which simplifies to

u2 =
∫

2x3e−x2
dx

Hence
u2 = −

(
x2 + 1

)
e−x2

Which simplifies to

u1 =
(
−x2 + 1

)
ex2

u2 = −
(
x2 + 1

)
e−x2

Therefore the particular solution, from equation (1) is

yp(x) = −x2 + 1−
(
x2 + 1

)
e−x2ex2

Which simplifies to
yp(x) = −2x2

Therefore the general solution is

y = yh + yp

=
(
ic1x

√
2 sinh (x2)

√
π
√
ix2

− c2x
√
2 cosh (x2)

√
π
√
ix2

)
+
(
−2x2)
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Summary
The solution(s) found are the following

(1)y = ic1x
√
2 sinh (x2)

√
π
√
ix2

− c2x
√
2 cosh (x2)

√
π
√
ix2

− 2x2

Verification of solutions

y = ic1x
√
2 sinh (x2)

√
π
√
ix2

− c2x
√
2 cosh (x2)

√
π
√
ix2

− 2x2

Verified OK.

10.18.4 Solving using Kovacic algorithm

Writing the ode as

xy′′ − y′ − 4yx3 = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = −1 (3)
C = −4x3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 16x4 + 3
4x2 (6)
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Comparing the above to (5) shows that

s = 16x4 + 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
16x4 + 3

4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 429: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 4
= −2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
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larger than 2 and the order at ∞ is −2 then the necessary conditions for case one are
met. Since there is a pole of order 2 then necessary conditions for case two are met.
Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 4x2 + 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = −2 then

v = −Or(∞)
2 = 2

2 = 1

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
1∑

i=0

aix
i (8)

Let a be the coefficient of xv = x1 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 2x+ 3

16x3−
9

1024x7+
27

32768x11−
405

4194304x15+
1701

134217728x19−
15309

8589934592x23+
72171

274877906944x27+. . .

(9)
Comparing Eq. (9) with Eq. (8) shows that

a = 2

3158



From Eq. (9) the sum up to v = 1 gives

[
√
r]∞ =

1∑
i=0

aix
i

= 2x (10)

Now we need to find b, where b be the coefficient of xv−1 = x0 = 1 in r minus the
coefficient of same term but in

(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = 4x2

This shows that the coefficient of 1 in the above is 0. Now we need to find the coefficient
of 1 in r. How this is done depends on if v = 0 or not. Since v = 1 which is not zero,
then starting r = s

t
, we do long division and write this in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be
the coefficient this term in the quotient. Doing long division gives

r = s

t

= 16x4 + 3
4x2

= Q+ R

4x2

=
(
4x2)+ ( 3

4x2

)
= 4x2 + 3

4x2

We see that the coefficient of the term x in the quotient is 0. Now b can be found.

b = (0)− (0)
= 0

Hence

[
√
r]∞ = 2x

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
0
2 − 1

)
= −1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−0
2 − 1

)
= −1

2
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The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 16x4 + 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

−2 2x −1
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = −1
2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (2x)

= − 1
2x − 2x

= − 1
2x − 2x
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Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x − 2x

)
(0) +

((
1
2x2 − 2

)
+
(
− 1
2x − 2x

)2

−
(
16x4 + 3

4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2x−2x

)
dx

= e−x2

√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−1
x

dx

= z1e
ln(x)

2

= z1
(√

x
)

Which simplifies to

y1 = e−x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

3161



Substituting gives

y2 = y1

∫
e
∫
−−1

x
dx

(y1)2
dx

= y1

∫
eln(x)

(y1)2
dx

= y1

(
e2x2

4

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x2

)
+ c2

(
e−x2

(
e2x2

4

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

xy′′ − y′ − 4yx3 = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x2 + c2ex
2

4

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−x2

y2 =
ex2

4

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
e−x2 ex2

4

d
dx

(
e−x2

)
d
dx

(
ex2

4

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣
e−x2 ex2

4

−2x e−x2 ex2x
2

∣∣∣∣∣∣∣
Therefore

W =
(
e−x2

)(ex2
x

2

)
−

(
ex2

4

)(
−2x e−x2

)

Which simplifies to

W = e−x2ex2
x

Which simplifies to
W = x
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Therefore Eq. (2) becomes

u1 = −
∫ 2 ex2

x5

x2 dx

Which simplifies to

u1 = −
∫

2 ex2
x3dx

Hence
u1 = −

(
x2 − 1

)
ex2

And Eq. (3) becomes

u2 =
∫ 8 e−x2

x5

x2 dx

Which simplifies to

u2 =
∫

8x3e−x2
dx

Hence
u2 = −4

(
x2 + 1

)
e−x2

Which simplifies to

u1 =
(
−x2 + 1

)
ex2

u2 = −4
(
x2 + 1

)
e−x2

Therefore the particular solution, from equation (1) is

yp(x) =
(
−x2 + 1

)
ex2e−x2 −

(
x2 + 1

)
e−x2ex2

Which simplifies to
yp(x) = −2x2

Therefore the general solution is

y = yh + yp

=
(
c1e−x2 + c2ex

2

4

)
+
(
−2x2)
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Summary
The solution(s) found are the following

(1)y = c1e−x2 + c2ex
2

4 − 2x2

Verification of solutions

y = c1e−x2 + c2ex
2

4 − 2x2

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 22� �
dsolve(x*diff(y(x),x$2)-diff(y(x),x)-4*x^3*y(x)=8*x^5,y(x), singsol=all)� �

y(x) = sinh
(
x2) c2 + cosh

(
x2) c1 − 2x2

3 Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 28� �
DSolve[x*y''[x]-y'[x]-4*x^3*y[x]==8*x^5,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2x2 + c1 cosh
(
x2)+ ic2 sinh

(
x2)
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10.19 problem 19
Internal problem ID [1173]
Internal file name [OUTPUT/1174_Sunday_June_05_2022_02_04_09_AM_30580542/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

Unable to solve or complete the solution.

sin (x) y′′ + (2 sin (x)− cos (x)) y′ + (− cos (x) + sin (x)) y = e−x
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
trying symmetries linear in x and y(x)
-> Try solving first the homogeneous part of the ODE

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful
Change of variables used:

[x = arccos(t)]
Linear ODE actually solved:

((-t^2+1)^(1/2)-t)*u(t)+(2*t^2-2)*diff(u(t),t)+(-t^2+1)^(3/2)*diff(diff(u(t),t),t) = 0
<- change of variables successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.093 (sec). Leaf size: 58� �
dsolve(sin(x)*diff(y(x),x$2)+(2*sin(x)-cos(x))*diff(y(x),x)+(sin(x)-cos(x))*y(x)=exp(-x),y(x), singsol=all)� �

y(x) = −earcsin(cos(x))
((∫

csc (x)2 e− arcsin(cos(x))−xdx

)
cos (x)− cos (x) c1

−
(∫

cot (x) csc (x) e− arcsin(cos(x))−xdx

)
− c2

)
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3 Solution by Mathematica
Time used: 0.809 (sec). Leaf size: 121� �
DSolve[Sin[x]*y''[x]+(2*Sin[x]-Cos[x])*y'[x]+(Sin[x]-Cos[x])*y[x]==Exp[-x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

sin2(x) exp
(
− arccos(cos(x))− 4 arctan

( √
sin2(x)

cos(x) + 1

)

+ 4 cot−1

(
cos(x) + 1√

sin2(x)

))

+ c2 cos(x) exp
(
2
(
cot−1

(
cos(x) + 1√

sin2(x)

)
− 2 arctan

( √
sin2(x)

cos(x) + 1

)))

+ c1e
−2 cot−1

(
cos(x)+1√

sin2(x)

)
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10.20 problem 20
10.20.1 Solving as second order change of variable on y method 1 ode . 3169
10.20.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 3176
10.20.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 3179

Internal problem ID [1174]
Internal file name [OUTPUT/1175_Sunday_June_05_2022_02_04_13_AM_47362518/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 20.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode",
"second_order_change_of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

4x2y′′ − 4y′x+
(
−16x2 + 3

)
y = 8x 5

2

10.20.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

4x2y′′ − 4y′x+
(
−16x2 + 3

)
y = 0

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)
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Where

p(x) = −1
x

q(x) = −16x2 + 3
4x2

Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= −16x2 + 3
4x2 −

(
− 1

x

)′
2 −

(
− 1

x

)2
4

= −16x2 + 3
4x2 −

( 1
x2

)
2 −

( 1
x2

)
4

= −16x2 + 3
4x2 −

(
1
2x2

)
− 1

4x2

= −4

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ − 1

x
2

=
√
x (5)

Hence (3) becomes

y = v(x)
√
x (4)

Applying this change of variable to the original ode results in

v′′(x)− 4v(x) = 2

Which is now solved for v(x) This is second order non-homogeneous ODE. In standard
form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = f(x)
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Where A = 1, B = 0, C = −4, f(x) = 2. Let the solution be

v(x) = vh + vp

Where vh is the solution to the homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = 0, and vp
is a particular solution to the non-homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = f(x).
vh is the solution to

v′′(x)− 4v(x) = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = −4. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2eλx − 4 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 4 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −4 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−4)

= ±2

Hence
λ1 = +2
λ2 = −2

Which simplifies to
λ1 = 2
λ2 = −2

Since roots are real and distinct, then the solution is

v(x) = c1e
λ1x + c2e

λ2x

v(x) = c1e
(2)x + c2e

(−2)x
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Or
v(x) = c1e2x + c2e−2x

Therefore the homogeneous solution vh is

vh = c1e2x + c2e−2x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier is

{e−2x, e2x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

vp = A1

The unknowns {A1} are found by substituting the above trial solution vp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

−4A1 = 2

Solving for the unknowns by comparing coefficients results in[
A1 = −1

2

]
Substituting the above back in the above trial solution vp, gives the particular solution

vp = −1
2
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Therefore the general solution is

v = vh + vp

=
(
c1e2x + c2e−2x)+ (−1

2

)

Now that v(x) is known, then

y = v(x) z(x)

=
(
c1e2x + c2e−2x − 1

2

)
(z(x)) (7)

But from (5)

z(x) =
√
x

Hence (7) becomes

y =
(
c1e2x + c2e−2x − 1

2

)√
x

Therefore the homogeneous solution yh is

yh =
(
c1e2x + c2e−2x − 1

2

)√
x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e2x
√
x

y2 = e−2x√x
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ e2x
√
x e−2x√x

d
dx

(
e2x

√
x
)

d
dx

(
e−2x√x

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ e2x
√
x e−2x√x

2 e2x
√
x+ e2x

2
√
x

−2 e−2x√x+ e−2x

2
√
x

∣∣∣∣∣∣
Therefore

W =
(
e2x

√
x
)(

−2 e−2x√x+ e−2x

2
√
x

)
−
(
e−2x√x

)(
2 e2x

√
x+ e2x

2
√
x

)

Which simplifies to
W = −4 e2xx e−2x

Which simplifies to
W = −4x

Therefore Eq. (2) becomes

u1 = −
∫ 8 e−2xx3

−16x3 dx

Which simplifies to

u1 = −
∫

−e−2x

2 dx
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Hence

u1 = −e−2x

4

And Eq. (3) becomes

u2 =
∫ 8 e2xx3

−16x3 dx

Which simplifies to

u2 =
∫

−e2x
2 dx

Hence

u2 = −e2x
4

Therefore the particular solution, from equation (1) is

yp(x) = −e−2xe2x
√
x

2

Which simplifies to

yp(x) = −
√
x

2

Therefore the general solution is

y = yh + yp

=
((

c1e2x + c2e−2x − 1
2

)√
x

)
+
(
−
√
x

2

)
Summary
The solution(s) found are the following

(1)y =
(
c1e2x + c2e−2x − 1

2

)√
x−

√
x

2
Verification of solutions

y =
(
c1e2x + c2e−2x − 1

2

)√
x−

√
x

2

Verified OK.
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10.20.2 Solving as second order bessel ode ode

Writing the ode as

x2y′′ − y′x+
(
−4x2 + 3

4

)
y = 2x 5

2 (1)

Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE and yp is a particular solution to
the non-homogeneous ODE. Bessel ode has the form

x2y′′ + y′x+
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = 1
β = 2i

n = −1
2

γ = 1

Substituting all the above into (4) gives the solution as

y = c1x cosh (2x)√
π
√
ix

+ ic2x sinh (2x)√
π
√
ix

Therefore the homogeneous solution yh is

yh = c1x cosh (2x)√
π
√
ix

+ ic2x sinh (2x)√
π
√
ix

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
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parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e2x
√
x

y2 = e−2x√x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ e2x
√
x e−2x√x

d
dx

(
e2x

√
x
)

d
dx

(
e−2x√x

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ e2x
√
x e−2x√x

2 e2x
√
x+ e2x

2
√
x

−2 e−2x√x+ e−2x

2
√
x

∣∣∣∣∣∣
Therefore

W =
(
e2x

√
x
)(

−2 e−2x√x+ e−2x

2
√
x

)
−
(
e−2x√x

)(
2 e2x

√
x+ e2x

2
√
x

)

Which simplifies to
W = −4 e2xx e−2x
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Which simplifies to
W = −4x

Therefore Eq. (2) becomes

u1 = −
∫ 2 e−2xx3

−4x3 dx

Which simplifies to

u1 = −
∫

−e−2x

2 dx

Hence

u1 = −e−2x

4

And Eq. (3) becomes

u2 =
∫ 2 e2xx3

−4x3 dx

Which simplifies to

u2 =
∫

−e2x
2 dx

Hence

u2 = −e2x
4

Therefore the particular solution, from equation (1) is

yp(x) = −e−2xe2x
√
x

2

Which simplifies to

yp(x) = −
√
x

2

Therefore the general solution is

y = yh + yp

=
(
c1x cosh (2x)√

π
√
ix

+ ic2x sinh (2x)√
π
√
ix

)
+
(
−
√
x

2

)
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Summary
The solution(s) found are the following

(1)y = c1x cosh (2x)√
π
√
ix

+ ic2x sinh (2x)√
π
√
ix

−
√
x

2
Verification of solutions

y = c1x cosh (2x)√
π
√
ix

+ ic2x sinh (2x)√
π
√
ix

−
√
x

2

Verified OK.

10.20.3 Solving using Kovacic algorithm

Writing the ode as

4x2y′′ − 4y′x+
(
−16x2 + 3

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −4x (3)
C = −16x2 + 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4
1 (6)
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Comparing the above to (5) shows that

s = 4
t = 1

Therefore eq. (4) becomes

z′′(x) = 4z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 430: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]
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Since r = 4 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−2x

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
4x2 dx

= z1e
ln(x)

2

= z1
(√

x
)

Which simplifies to
y1 = e−2x√x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4x

4x2 dx

(y1)2
dx

= y1

∫
eln(x)

(y1)2
dx

= y1

(
e4x
4

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−2x√x

)
+ c2

(
e−2x√x

(
e4x
4

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

4x2y′′ − 4y′x+
(
−16x2 + 3

)
y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−2x√x+ c2e2x
√
x

4

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−2x√x

y2 =
e2x

√
x

4

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
e−2x√x e2x

√
x

4

d
dx

(
e−2x√x

)
d
dx

(
e2x

√
x

4

)
∣∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣
e−2x√x e2x

√
x

4

−2 e−2x√x+ e−2x

2
√
x

e2x
√
x

2 + e2x
8
√
x

∣∣∣∣∣∣
Therefore

W =
(
e−2x√x

)(e2x
√
x

2 + e2x
8
√
x

)
−
(
e2x

√
x

4

)(
−2 e−2x√x+ e−2x

2
√
x

)

Which simplifies to
W = e2xx e−2x

Which simplifies to
W = x

Therefore Eq. (2) becomes

u1 = −
∫ 2 e2xx3

4x3 dx

Which simplifies to

u1 = −
∫ e2x

2 dx

Hence

u1 = −e2x
4

And Eq. (3) becomes

u2 =
∫ 8 e−2xx3

4x3 dx

Which simplifies to

u2 =
∫

2 e−2xdx

Hence
u2 = −e−2x
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Therefore the particular solution, from equation (1) is

yp(x) = −e−2xe2x
√
x

2

Which simplifies to

yp(x) = −
√
x

2

Therefore the general solution is

y = yh + yp

=
(
c1e−2x√x+ c2e2x

√
x

4

)
+
(
−
√
x

2

)

Summary
The solution(s) found are the following

(1)y = c1e−2x√x+ c2e2x
√
x

4 −
√
x

2
Verification of solutions

y = c1e−2x√x+ c2e2x
√
x

4 −
√
x

2

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 22� �
dsolve(4*x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+(3-16*x^2)*y(x)=8*x^(5/2),y(x), singsol=all)� �

y(x) =
√
x

(
−1
2 + sinh (2x) c2 + cosh (2x) c1

)
3 Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 39� �
DSolve[4*x^2*y''[x]-4*x*y'[x]+(3-16*x^2)*y[x]==8*x^(5/2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4e

−2x√x
(
−2e2x + c2e

4x + 4c1
)
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10.21 problem 21
10.21.1 Solving as second order change of variable on y method 1 ode . 3186
10.21.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 3193
10.21.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 3196

Internal problem ID [1175]
Internal file name [OUTPUT/1176_Sunday_June_05_2022_02_04_14_AM_97933508/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 21.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode",
"second_order_change_of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

4x2y′′ − 4y′x+
(
4x2 + 3

)
y = x

7
2

10.21.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

4x2y′′ − 4y′x+
(
4x2 + 3

)
y = 0

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)
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Where

p(x) = −1
x

q(x) = 4x2 + 3
4x2

Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= 4x2 + 3
4x2 −

(
− 1

x

)′
2 −

(
− 1

x

)2
4

= 4x2 + 3
4x2 −

( 1
x2

)
2 −

( 1
x2

)
4

= 4x2 + 3
4x2 −

(
1
2x2

)
− 1

4x2

= 1

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ − 1

x
2

=
√
x (5)

Hence (3) becomes

y = v(x)
√
x (4)

Applying this change of variable to the original ode results in

4v′′(x) + 4v(x) = x

Which is now solved for v(x) This is second order non-homogeneous ODE. In standard
form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = f(x)
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Where A = 4, B = 0, C = 4, f(x) = x. Let the solution be

v(x) = vh + vp

Where vh is the solution to the homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = 0, and vp
is a particular solution to the non-homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = f(x).
vh is the solution to

4v′′(x) + 4v(x) = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 4, B = 0, C = 4. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

4λ2eλx + 4 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

4λ2 + 4 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 4, B = 0, C = 4 into the above gives

λ1,2 =
0

(2) (4) ±
1

(2) (4)
√

02 − (4) (4) (4)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ
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Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

v(x) = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
v(x) = e0(c1 cos (x) + c2 sin (x))

Or
v(x) = c1 cos (x) + c2 sin (x)

Therefore the homogeneous solution vh is

vh = c1 cos (x) + c2 sin (x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) , sin (x)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

vp = A2x+ A1

The unknowns {A1, A2} are found by substituting the above trial solution vp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

4A2x+ 4A1 = x

Solving for the unknowns by comparing coefficients results in[
A1 = 0, A2 =

1
4

]
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Substituting the above back in the above trial solution vp, gives the particular solution

vp =
x

4

Therefore the general solution is

v = vh + vp

= (c1 cos (x) + c2 sin (x)) +
(x
4

)
Now that v(x) is known, then

y = v(x) z(x)

=
(
c1 cos (x) + c2 sin (x) +

x

4

)
(z(x)) (7)

But from (5)

z(x) =
√
x

Hence (7) becomes

y =
(
c1 cos (x) + c2 sin (x) +

x

4

)√
x

Therefore the homogeneous solution yh is

yh =
(
c1 cos (x) + c2 sin (x) +

x

4

)√
x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (x)
√
x

y2 = sin (x)
√
x
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ cos (x)
√
x sin (x)

√
x

d
dx

(
cos (x)

√
x
)

d
dx

(
sin (x)

√
x
)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ cos (x)
√
x sin (x)

√
x

− sin (x)
√
x+ cos(x)

2
√
x

cos (x)
√
x+ sin(x)

2
√
x

∣∣∣∣∣∣
Therefore

W =
(
cos (x)

√
x
)(

cos (x)
√
x+ sin (x)

2
√
x

)
−
(
sin (x)

√
x
)(

− sin (x)
√
x+ cos (x)

2
√
x

)

Which simplifies to
W = x

(
cos (x)2 + sin (x)2

)
Which simplifies to

W = x

Therefore Eq. (2) becomes

u1 = −
∫ sin (x)x4

4x3 dx

Which simplifies to

u1 = −
∫ sin (x)x

4 dx
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Hence

u1 = −sin (x)
4 + x cos (x)

4

And Eq. (3) becomes

u2 =
∫

x4 cos (x)
4x3 dx

Which simplifies to

u2 =
∫

x cos (x)
4 dx

Hence

u2 =
cos (x)

4 + sin (x)x
4

Therefore the particular solution, from equation (1) is

yp(x) =
(
−sin (x)

4 + x cos (x)
4

)
cos (x)

√
x+

(
cos (x)

4 + sin (x)x
4

)
sin (x)

√
x

Which simplifies to

yp(x) =
x

3
2

4

Therefore the general solution is

y = yh + yp

=
((

c1 cos (x) + c2 sin (x) +
x

4

)√
x
)
+
(
x

3
2

4

)

Summary
The solution(s) found are the following

(1)y =
(
c1 cos (x) + c2 sin (x) +

x

4

)√
x+ x

3
2

4
Verification of solutions

y =
(
c1 cos (x) + c2 sin (x) +

x

4

)√
x+ x

3
2

4

Verified OK.
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10.21.2 Solving as second order bessel ode ode

Writing the ode as

x2y′′ − y′x+
(
x2 + 3

4

)
y = x

7
2

4 (1)

Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE and yp is a particular solution to
the non-homogeneous ODE. Bessel ode has the form

x2y′′ + y′x+
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = 1
β = 1

n = −1
2

γ = 1

Substituting all the above into (4) gives the solution as

y = c1
√
x
√
2 cos (x)√
π

+ c2
√
x
√
2 sin (x)√
π

Therefore the homogeneous solution yh is

yh = c1
√
x
√
2 cos (x)√
π

+ c2
√
x
√
2 sin (x)√
π

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
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parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (x)
√
x

y2 = sin (x)
√
x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ cos (x)
√
x sin (x)

√
x

d
dx

(
cos (x)

√
x
)

d
dx

(
sin (x)

√
x
)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ cos (x)
√
x sin (x)

√
x

− sin (x)
√
x+ cos(x)

2
√
x

cos (x)
√
x+ sin(x)

2
√
x

∣∣∣∣∣∣
Therefore

W =
(
cos (x)

√
x
)(

cos (x)
√
x+ sin (x)

2
√
x

)
−
(
sin (x)

√
x
)(

− sin (x)
√
x+ cos (x)

2
√
x

)

Which simplifies to
W = x

(
cos (x)2 + sin (x)2

)
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Which simplifies to
W = x

Therefore Eq. (2) becomes

u1 = −
∫ sin(x)x4

4
x3 dx

Which simplifies to

u1 = −
∫ sin (x)x

4 dx

Hence

u1 = −sin (x)
4 + x cos (x)

4

And Eq. (3) becomes

u2 =
∫ x4 cos(x)

4
x3 dx

Which simplifies to

u2 =
∫

x cos (x)
4 dx

Hence

u2 =
cos (x)

4 + sin (x)x
4

Therefore the particular solution, from equation (1) is

yp(x) =
(
−sin (x)

4 + x cos (x)
4

)
cos (x)

√
x+

(
cos (x)

4 + sin (x)x
4

)
sin (x)

√
x

Which simplifies to

yp(x) =
x

3
2

4
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Therefore the general solution is

y = yh + yp

=
(
c1
√
x
√
2 cos (x)√
π

+ c2
√
x
√
2 sin (x)√
π

)
+
(
x

3
2

4

)

Summary
The solution(s) found are the following

(1)y = c1
√
x
√
2 cos (x)√
π

+ c2
√
x
√
2 sin (x)√
π

+ x
3
2

4
Verification of solutions

y = c1
√
x
√
2 cos (x)√
π

+ c2
√
x
√
2 sin (x)√
π

+ x
3
2

4

Verified OK.

10.21.3 Solving using Kovacic algorithm

Writing the ode as

4x2y′′ − 4y′x+
(
4x2 + 3

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −4x (3)
C = 4x2 + 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 431: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0
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There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
4x2 dx

= z1e
ln(x)

2

= z1
(√

x
)

Which simplifies to
y1 = cos (x)

√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4x

4x2 dx

(y1)2
dx

= y1

∫
eln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1
(
cos (x)

√
x
)
+ c2

(
cos (x)

√
x(tan (x))

)
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This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

4x2y′′ − 4y′x+
(
4x2 + 3

)
y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh =
√
x cos (x) c1 +

√
x sin (x) c2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (x)
√
x

y2 = sin (x)
√
x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ cos (x)
√
x sin (x)

√
x

d
dx

(
cos (x)

√
x
)

d
dx

(
sin (x)

√
x
)
∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣ cos (x)
√
x sin (x)

√
x

− sin (x)
√
x+ cos(x)

2
√
x

cos (x)
√
x+ sin(x)

2
√
x

∣∣∣∣∣∣
Therefore

W =
(
cos (x)

√
x
)(

cos (x)
√
x+ sin (x)

2
√
x

)
−
(
sin (x)

√
x
)(

− sin (x)
√
x+ cos (x)

2
√
x

)

Which simplifies to
W = x

(
cos (x)2 + sin (x)2

)
Which simplifies to

W = x

Therefore Eq. (2) becomes

u1 = −
∫ sin (x)x4

4x3 dx

Which simplifies to

u1 = −
∫ sin (x)x

4 dx

Hence

u1 = −sin (x)
4 + x cos (x)

4

And Eq. (3) becomes

u2 =
∫

x4 cos (x)
4x3 dx

Which simplifies to

u2 =
∫

x cos (x)
4 dx

Hence

u2 =
cos (x)

4 + sin (x)x
4
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Therefore the particular solution, from equation (1) is

yp(x) =
(
−sin (x)

4 + x cos (x)
4

)
cos (x)

√
x+

(
cos (x)

4 + sin (x)x
4

)
sin (x)

√
x

Which simplifies to

yp(x) =
x

3
2

4

Therefore the general solution is

y = yh + yp

=
(√

x cos (x) c1 +
√
x sin (x) c2

)
+
(
x

3
2

4

)

Which simplifies to

y =
√
x (c1 cos (x) + c2 sin (x)) +

x
3
2

4

Summary
The solution(s) found are the following

(1)y =
√
x (c1 cos (x) + c2 sin (x)) +

x
3
2

4
Verification of solutions

y =
√
x (c1 cos (x) + c2 sin (x)) +

x
3
2

4

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 21� �
dsolve(4*x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+(4*x^2+3)*y(x)=x^(7/2),y(x), singsol=all)� �

y(x) =
√
x (x+ 4 sin (x) c2 + 4 cos (x) c1)

4

3 Solution by Mathematica
Time used: 0.075 (sec). Leaf size: 48� �
DSolve[4*x^2*y''[x]-4*x*y'[x]+(4*x^2+3)*y[x]==x^(7/2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4e

−ix
√
x
(
eixx− 2ic2e2ix + 4c1

)
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10.22 problem 22
10.22.1 Solving as second order change of variable on y method 1 ode . 3203
10.22.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 3209
10.22.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 3213

Internal problem ID [1176]
Internal file name [OUTPUT/1177_Sunday_June_05_2022_02_04_15_AM_70243093/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 22.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode",
"second_order_change_of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

x2y′′ − 2y′x−
(
x2 − 2

)
y = 3x4

10.22.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ − 2y′x+
(
−x2 + 2

)
y = 0

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)
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Where

p(x) = −2
x

q(x) = −x2 + 2
x2

Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= −x2 + 2
x2 −

(
− 2

x

)′
2 −

(
− 2

x

)2
4

= −x2 + 2
x2 −

( 2
x2

)
2 −

( 4
x2

)
4

= −x2 + 2
x2 −

(
1
x2

)
− 1

x2

= −1

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ − 2

x
2

= x (5)

Hence (3) becomes

y = v(x)x (4)

Applying this change of variable to the original ode results in

−v(x) + v′′(x) = 3x

Which is now solved for v(x) This is second order non-homogeneous ODE. In standard
form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = f(x)
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Where A = 1, B = 0, C = −1, f(x) = 3x. Let the solution be

v(x) = vh + vp

Where vh is the solution to the homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = 0, and vp
is a particular solution to the non-homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = f(x).
vh is the solution to

−v(x) + v′′(x) = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = −1. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2eλx − eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−1)

= ±1

Hence
λ1 = +1
λ2 = −1

Which simplifies to
λ1 = 1
λ2 = −1

Since roots are real and distinct, then the solution is

v(x) = c1e
λ1x + c2e

λ2x

v(x) = c1e
(1)x + c2e

(−1)x
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Or
v(x) = c1ex + c2e−x

Therefore the homogeneous solution vh is

vh = c1ex + c2e−x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is

{ex, e−x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

vp = A2x+ A1

The unknowns {A1, A2} are found by substituting the above trial solution vp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−A2x− A1 = 3x

Solving for the unknowns by comparing coefficients results in

[A1 = 0, A2 = −3]

Substituting the above back in the above trial solution vp, gives the particular solution

vp = −3x

Therefore the general solution is

v = vh + vp

=
(
c1ex + c2e−x

)
+ (−3x)
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Now that v(x) is known, then

y = v(x) z(x)
=
(
c1ex + c2e−x − 3x

)
(z(x)) (7)

But from (5)

z(x) = x

Hence (7) becomes

y =
(
c1ex + c2e−x − 3x

)
x

Therefore the homogeneous solution yh is

yh =
(
c1ex + c2e−x − 3x

)
x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x ex

y2 = x e−x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x ex x e−x

d
dx
(x ex) d

dx
(x e−x)

∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣ x ex x e−x

x ex + ex e−x − x e−x

∣∣∣∣∣∣
Therefore

W = (x ex)
(
e−x − x e−x

)
−
(
x e−x

)
(x ex + ex)

Which simplifies to
W = −2 exe−xx2

Which simplifies to
W = −2x2

Therefore Eq. (2) becomes

u1 = −
∫ 3x5e−x

−2x4 dx

Which simplifies to

u1 = −
∫

−3x e−x

2 dx

Hence

u1 = −3(x+ 1) e−x

2

And Eq. (3) becomes

u2 =
∫ 3 exx5

−2x4 dx

Which simplifies to

u2 =
∫

−3x ex
2 dx

Hence

u2 = −3(x− 1) ex
2
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Therefore the particular solution, from equation (1) is

yp(x) = −3(x+ 1) e−xx ex
2 − 3(x− 1) exx e−x

2

Which simplifies to
yp(x) = −3x2

Therefore the general solution is

y = yh + yp

=
((
c1ex + c2e−x − 3x

)
x
)
+
(
−3x2)

Summary
The solution(s) found are the following

(1)y =
(
c1ex + c2e−x − 3x

)
x− 3x2

Verification of solutions

y =
(
c1ex + c2e−x − 3x

)
x− 3x2

Verified OK.

10.22.2 Solving as second order bessel ode ode

Writing the ode as

x2y′′ − 2y′x+
(
−x2 + 2

)
y = 3x4 (1)

Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE and yp is a particular solution to
the non-homogeneous ODE. Bessel ode has the form

x2y′′ + y′x+
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)
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With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = 3
2

β = i

n = −1
2

γ = 1

Substituting all the above into (4) gives the solution as

y = c1x
3
2
√
2 cosh (x)

√
π
√
ix

+ ic2x
3
2
√
2 sinh (x)

√
π
√
ix

Therefore the homogeneous solution yh is

yh = c1x
3
2
√
2 cosh (x)

√
π
√
ix

+ ic2x
3
2
√
2 sinh (x)

√
π
√
ix

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x ex

y2 = x e−x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

3210



Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x ex x e−x

d
dx
(x ex) d

dx
(x e−x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ x ex x e−x

x ex + ex e−x − x e−x

∣∣∣∣∣∣
Therefore

W = (x ex)
(
e−x − x e−x

)
−
(
x e−x

)
(x ex + ex)

Which simplifies to
W = −2 exe−xx2

Which simplifies to
W = −2x2

Therefore Eq. (2) becomes

u1 = −
∫ 3x5e−x

−2x4 dx

Which simplifies to

u1 = −
∫

−3x e−x

2 dx

Hence

u1 = −3(x+ 1) e−x

2

And Eq. (3) becomes

u2 =
∫ 3 exx5

−2x4 dx
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Which simplifies to

u2 =
∫

−3x ex
2 dx

Hence

u2 = −3(x− 1) ex
2

Therefore the particular solution, from equation (1) is

yp(x) = −3(x+ 1) e−xx ex
2 − 3(x− 1) exx e−x

2

Which simplifies to
yp(x) = −3x2

Therefore the general solution is

y = yh + yp

=
(
c1x

3
2
√
2 cosh (x)

√
π
√
ix

+ ic2x
3
2
√
2 sinh (x)

√
π
√
ix

)
+
(
−3x2)

Summary
The solution(s) found are the following

(1)y = c1x
3
2
√
2 cosh (x)

√
π
√
ix

+ ic2x
3
2
√
2 sinh (x)

√
π
√
ix

− 3x2

Verification of solutions

y = c1x
3
2
√
2 cosh (x)

√
π
√
ix

+ ic2x
3
2
√
2 sinh (x)

√
π
√
ix

− 3x2

Verified OK.
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10.22.3 Solving using Kovacic algorithm

Writing the ode as

x2y′′ − 2y′x+
(
−x2 + 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x (3)
C = −x2 + 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(x) = z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 432: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x
x2 dx
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= z1e
ln(x)

= z1(x)

Which simplifies to
y1 = x e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x

x2 dx

(y1)2
dx

= y1

∫
e2 ln(x)

(y1)2
dx

= y1

(
e2x
2

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
x e−x

)
+ c2

(
x e−x

(
e2x
2

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

x2y′′ − 2y′x+
(
−x2 + 2

)
y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = x e−xc1 +
c2x ex
2
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The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x e−x

y2 =
x ex
2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x e−x x ex
2

d
dx
(x e−x) d

dx

(
x ex
2

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ x e−x x ex
2

e−x − x e−x x ex
2 + ex

2

∣∣∣∣∣∣
Therefore

W =
(
x e−x

)(x ex
2 + ex

2

)
−
(
x ex
2

)(
e−x − x e−x

)
Which simplifies to

W = exe−xx2
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Which simplifies to
W = x2

Therefore Eq. (2) becomes

u1 = −
∫ 3 exx5

2
x4 dx

Which simplifies to

u1 = −
∫ 3x ex

2 dx

Hence

u1 = −3(x− 1) ex
2

And Eq. (3) becomes

u2 =
∫ 3x5e−x

x4 dx

Which simplifies to

u2 =
∫

3x e−xdx

Hence
u2 = −3(x+ 1) e−x

Therefore the particular solution, from equation (1) is

yp(x) = −3(x+ 1) e−xx ex
2 − 3(x− 1) exx e−x

2

Which simplifies to
yp(x) = −3x2

Therefore the general solution is

y = yh + yp

=
(
x e−xc1 +

c2x ex
2

)
+
(
−3x2)
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Summary
The solution(s) found are the following

(1)y = x e−xc1 +
c2x ex
2 − 3x2

Verification of solutions

y = x e−xc1 +
c2x ex
2 − 3x2

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
dsolve(x^2*diff(y(x),x$2)-2*x*diff(y(x),x)-(x^2-2)*y(x)=3*x^4,y(x), singsol=all)� �

y(x) = sinh (x)xc2 + cosh (x)xc1 − 3x2
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3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 29� �
DSolve[x^2*y''[x]-2*x*y'[x]-(x^2-2)*y[x]==3*x^4,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2x
(
−6x+ 2c1e−x + c2e

x
)
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10.23 problem 23
10.23.1 Solving as second order change of variable on y method 1 ode . 3220
10.23.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 3224

Internal problem ID [1177]
Internal file name [OUTPUT/1178_Sunday_June_05_2022_02_04_17_AM_99613705/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

x2y′′ − 2x(x+ 1) y′ +
(
x2 + 2x+ 2

)
y = exx3

10.23.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ +
(
−2x2 − 2x

)
y′ +

(
x2 + 2x+ 2

)
y = 0

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)
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Where

p(x) = −2x2 − 2x
x2

q(x) = x2 + 2x+ 2
x2

Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= x2 + 2x+ 2
x2 −

(
−2x2−2x

x2

)′
2 −

(
−2x2−2x

x2

)2
4

= x2 + 2x+ 2
x2 −

(
−2−4x

x2 − 2
(
−2x2−2x

)
x3

)
2 −

( (
−2x2−2x

)2
x4

)
4

= x2 + 2x+ 2
x2 −

(
−2− 4x

2x2 − −2x2 − 2x
x3

)
− (−2x2 − 2x)2

4x4

= 0

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ −2x2−2x

x2
2

= x ex (5)

Hence (3) becomes

y = v(x)x ex (4)

Applying this change of variable to the original ode results in

v′′(x) = 1

Which is now solved for v(x) The ODE can be written as

v′′(x) = 1
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Integrating once gives
v′(x) = x+ c1

Integrating again gives
v(x) = x2

2 + c1x+ c2

Now that v(x) is known, then

y = v(x) z(x)

=
(
1
2x

2 + c1x+ c2

)
(z(x)) (7)

But from (5)

z(x) = x ex

Hence (7) becomes

y =
(
1
2x

2 + c1x+ c2

)
x ex

Therefore the homogeneous solution yh is

yh =
(
1
2x

2 + c1x+ c2

)
x ex

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x ex

y2 = x2ex

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x ex x2ex
d
dx
(x ex) d

dx
(x2ex)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ x ex x2ex

x ex + ex 2x ex + x2ex

∣∣∣∣∣∣
Therefore

W = (x ex)
(
2x ex + x2ex

)
−
(
x2ex

)
(x ex + ex)

Which simplifies to
W = x2e2x

Which simplifies to
W = x2e2x

Therefore Eq. (2) becomes

u1 = −
∫

x5e2x
e2xx4 dx

Which simplifies to

u1 = −
∫

xdx

Hence

u1 = −x2

2

And Eq. (3) becomes

u2 =
∫ e2xx4

e2xx4 dx
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Which simplifies to

u2 =
∫

1dx

Hence
u2 = x

Therefore the particular solution, from equation (1) is

yp(x) =
exx3

2

Therefore the general solution is

y = yh + yp

=
((

1
2x

2 + c1x+ c2

)
x ex

)
+
(
exx3

2

)
Summary
The solution(s) found are the following

(1)y =
(
1
2x

2 + c1x+ c2

)
x ex + exx3

2
Verification of solutions

y =
(
1
2x

2 + c1x+ c2

)
x ex + exx3

2

Verified OK.

10.23.2 Solving using Kovacic algorithm

Writing the ode as

x2y′′ +
(
−2x2 − 2x

)
y′ +

(
x2 + 2x+ 2

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x2 − 2x (3)
C = x2 + 2x+ 2
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Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 433: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x2−2x

x2 dx

= z1e
x+ln(x)

= z1(x ex)
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Which simplifies to
y1 = x ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x2−2x

x2 dx

(y1)2
dx

= y1

∫
e2x+2 ln(x)

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1(x ex) + c2(x ex(x))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

x2y′′ +
(
−2x2 − 2x

)
y′ +

(
x2 + 2x+ 2

)
y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1x ex + c2x
2ex

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
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parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x ex

y2 = x2ex

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x ex x2ex
d
dx
(x ex) d

dx
(x2ex)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ x ex x2ex

x ex + ex 2x ex + x2ex

∣∣∣∣∣∣
Therefore

W = (x ex)
(
2x ex + x2ex

)
−
(
x2ex

)
(x ex + ex)

Which simplifies to
W = x2e2x

Which simplifies to
W = x2e2x
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Therefore Eq. (2) becomes

u1 = −
∫

x5e2x
e2xx4 dx

Which simplifies to

u1 = −
∫

xdx

Hence

u1 = −x2

2

And Eq. (3) becomes

u2 =
∫ e2xx4

e2xx4 dx

Which simplifies to

u2 =
∫

1dx

Hence
u2 = x

Therefore the particular solution, from equation (1) is

yp(x) =
exx3

2

Therefore the general solution is

y = yh + yp

=
(
c1x ex + c2x

2ex
)
+
(
exx3

2

)

Which simplifies to

y = exx(c2x+ c1) +
exx3

2
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Summary
The solution(s) found are the following

(1)y = exx(c2x+ c1) +
exx3

2
Verification of solutions

y = exx(c2x+ c1) +
exx3

2

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
dsolve(x^2*diff(y(x),x$2)-2*x*(x+1)*diff(y(x),x)+(x^2+2*x+2)*y(x)=x^3*exp(x),y(x), singsol=all)� �

y(x) = exx(2c1x+ x2 + 2c2)
2
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3 Solution by Mathematica
Time used: 0.867 (sec). Leaf size: 227� �
DSolve[x^2*y''[x]-2*x*y'[x]+(x^2+2*x+2)*y[x]==x^3*Exp[x],y[x],x,IncludeSingularSolutions -> True]� �
y(x) → eixx

(
HypergeometricU(−i, 0,−2ix)

∫ x

1

− ie(1−i)K[1]L−1
i (−2iK[1])

4Hypergeometric1F1(1− i, 2,−2iK[1]) HypergeometricU(1− i, 1,−2iK[1])K[1]− 2HypergeometricU(−i, 0,−2iK[1]) LaguerreL(−1 + i,−2iK[1])dK[1]

+L−1
i (−2ix)

∫ x

1

ie(1−i)K[2] HypergeometricU(−i, 0,−2iK[2])
4Hypergeometric1F1(1− i, 2,−2iK[2]) HypergeometricU(1− i, 1,−2iK[2])K[2]− 2HypergeometricU(−i, 0,−2iK[2]) LaguerreL(−1 + i,−2iK[2])dK[2]

+ c1HypergeometricU(−i, 0,−2ix) + c2L
−1
i (−2ix)

)
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10.24 problem 24
10.24.1 Solving as second order euler ode ode . . . . . . . . . . . . . . . 3233
10.24.2 Solving as second order change of variable on x method 2 ode . 3236
10.24.3 Solving as second order change of variable on y method 2 ode . 3241
10.24.4 Solving as second order integrable as is ode . . . . . . . . . . . 3246
10.24.5 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3248
10.24.6 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 3249
10.24.7 Solving as exact linear second order ode ode . . . . . . . . . . . 3257

Internal problem ID [1178]
Internal file name [OUTPUT/1179_Sunday_June_05_2022_02_04_18_AM_69533080/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 24.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_eu-
ler_ode", "exact linear second order ode", "second_order_integrable_as_is",
"second_order_change_of_variable_on_x_method_2", "second_order_change_of_vari-
able_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _nonhomogeneous ]]

x2y′′ − y′x− 3y = x
3
2
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10.24.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = −x,C = −3, f(x) = x
3
2 . Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ − y′x− 3y = 0

This is Euler second order ODE. Let the solution be y = xr, then y′ = rxr−1 and
y′′ = r(r − 1)xr−2. Substituting these back into the given ODE gives

x2(r(r − 1))xr−2 − xrxr−1 − 3xr = 0

Simplifying gives
r(r − 1)xr − r xr − 3xr = 0

Since xr 6= 0 then dividing throughout by xr gives

r(r − 1)− r − 3 = 0

Or
r2 − 2r − 3 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = −1
r2 = 3

Since the roots are real and distinct, then the general solution is

y = c1y1 + c2y2

Where y1 = xr1 and y2 = xr2 . Hence

y = c1
x

+ c2x
3

Next, we find the particular solution to the ODE

x2y′′ − y′x− 3y = x
3
2
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The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
1
x

y2 = x3

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣
1
x

x3

d
dx

( 1
x

)
d
dx
(x3)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣
1
x

x3

− 1
x2 3x2

∣∣∣∣∣∣
Therefore

W =
(
1
x

)(
3x2)− (x3)(− 1

x2

)
Which simplifies to

W = 4x
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Which simplifies to
W = 4x

Therefore Eq. (2) becomes

u1 = −
∫

x
9
2

4x3 dx

Which simplifies to

u1 = −
∫

x
3
2

4 dx

Hence

u1 = −x
5
2

10

And Eq. (3) becomes

u2 =
∫ √

x

4x3 dx

Which simplifies to

u2 =
∫ 1

4x 5
2
dx

Hence

u2 = − 1
6x 3

2

Therefore the particular solution, from equation (1) is

yp(x) = −4x 3
2

15

Therefore the general solution is

y = yh + yp

= −4x 3
2

15 + c1
x

+ c2x
3
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Summary
The solution(s) found are the following

(1)y = −4x 3
2

15 + c1
x
+ c2x

3

Verification of solutions

y = −4x 3
2

15 + c1
x
+ c2x

3

Verified OK.

10.24.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ − y′x− 3y = 0

In normal form the ode

x2y′′ − y′x− 3y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −1
x

q(x) = − 3
x2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)
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Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫

− 1
x
dx
)
dx

=
∫

eln(x) dx

=
∫

xdx

= x2

2 (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
− 3

x2

x2

= − 3
x4 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ)− 3y(τ)

x4 = 0

But in terms of τ

− 3
x4 = − 3

4τ 2
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Hence the above ode becomes

d2

dτ 2
y(τ)− 3y(τ)

4τ 2 = 0

The above ode is now solved for y(τ). The ode can be written as

4
(

d2

dτ 2
y(τ)

)
τ 2 − 3y(τ) = 0

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be
y(τ) = τ r, then y′ = rτ r−1 and y′′ = r(r − 1)τ r−2. Substituting these back into the
given ODE gives

4τ 2(r(r − 1))τ r−2 + 0rτ r−1 − 3τ r = 0

Simplifying gives
4r(r − 1) τ r + 0 τ r − 3τ r = 0

Since τ r 6= 0 then dividing throughout by τ r gives

4r(r − 1) + 0− 3 = 0

Or
4r2 − 4r − 3 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = −1
2

r2 =
3
2

Since the roots are real and distinct, then the general solution is

y(τ) = c1y1 + c2y2

Where y1 = τ r1 and y2 = τ r2 . Hence

y(τ) = c1√
τ
+ c2τ

3
2

The above solution is now transformed back to y using (6) which results in

y =
√
2 (c2x4 + 4c1)

4x
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Therefore the homogeneous solution yh is

yh =
√
2 (c2x4 + 4c1)

4x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
1
x

y2 = x3

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣
1
x

x3

d
dx

( 1
x

)
d
dx
(x3)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣
1
x

x3

− 1
x2 3x2

∣∣∣∣∣∣
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Therefore

W =
(
1
x

)(
3x2)− (x3)(− 1

x2

)

Which simplifies to
W = 4x

Which simplifies to
W = 4x

Therefore Eq. (2) becomes

u1 = −
∫

x
9
2

4x3 dx

Which simplifies to

u1 = −
∫

x
3
2

4 dx

Hence

u1 = −x
5
2

10

And Eq. (3) becomes

u2 =
∫ √

x

4x3 dx

Which simplifies to

u2 =
∫ 1

4x 5
2
dx

Hence

u2 = − 1
6x 3

2

Therefore the particular solution, from equation (1) is

yp(x) = −4x 3
2

15
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Therefore the general solution is

y = yh + yp

=
(√

2 (c2x4 + 4c1)
4x

)
+
(
−4x 3

2

15

)

Summary
The solution(s) found are the following

(1)y =
√
2 (c2x4 + 4c1)

4x − 4x 3
2

15
Verification of solutions

y =
√
2 (c2x4 + 4c1)

4x − 4x 3
2

15

Verified OK.

10.24.3 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = −x,C = −3, f(x) = x
3
2 . Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ − y′x− 3y = 0

In normal form the ode

x2y′′ − y′x− 3y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)
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Where

p(x) = −1
x

q(x) = − 3
x2

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 − n

x2 − 3
x2 = 0 (5)

Solving (5) for n gives

n = 3 (6)

Substituting this value in (3) gives

v′′(x) + 5v′(x)
x

= 0

v′′(x) + 5v′(x)
x

= 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) + 5u(x)
x

= 0 (8)
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The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −5u
x

Where f(x) = − 5
x
and g(u) = u. Integrating both sides gives

1
u
du = −5

x
dx∫ 1

u
du =

∫
−5
x
dx

ln (u) = −5 ln (x) + c1

u = e−5 ln(x)+c1

= c1
x5

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= − c1
4x4 + c2

Hence

y = v(x)xn

=
(
− c1
4x4 + c2

)
x3

= 4c2x4 − c1
4x

Now the particular solution to this ODE is found

x2y′′ − y′x− 3y = x
3
2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
1
x

y2 = x3

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣
1
x

x3

d
dx

( 1
x

)
d
dx
(x3)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣
1
x

x3

− 1
x2 3x2

∣∣∣∣∣∣
Therefore

W =
(
1
x

)(
3x2)− (x3)(− 1

x2

)
Which simplifies to

W = 4x

Which simplifies to
W = 4x

Therefore Eq. (2) becomes

u1 = −
∫

x
9
2

4x3 dx
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Which simplifies to

u1 = −
∫

x
3
2

4 dx

Hence

u1 = −x
5
2

10

And Eq. (3) becomes

u2 =
∫ √

x

4x3 dx

Which simplifies to

u2 =
∫ 1

4x 5
2
dx

Hence

u2 = − 1
6x 3

2

Therefore the particular solution, from equation (1) is

yp(x) = −4x 3
2

15

Therefore the general solution is

y = yh + yp

=
((

− c1
4x4 + c2

)
x3
)
+
(
−4x 3

2

15

)

= −4x 3
2

15 +
(
− c1
4x4 + c2

)
x3

Which simplifies to

y = −−60c2x4 + 16x 5
2 + 15c1

60x
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Summary
The solution(s) found are the following

(1)y = −−60c2x4 + 16x 5
2 + 15c1

60x
Verification of solutions

y = −−60c2x4 + 16x 5
2 + 15c1

60x

Verified OK.

10.24.4 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫ (
x2y′′ − y′x− 3y

)
dx =

∫
x

3
2dx

y′x2 − 3yx = 2x 5
2

5 + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −3
x

q(x) = 2x 5
2 + 5c1
5x2

Hence the ode is

y′ − 3y
x

= 2x 5
2 + 5c1
5x2

The integrating factor µ is

µ = e
∫
− 3

x
dx

= 1
x3
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The ode becomes

d
dx(µy) = (µ)

(
2x 5

2 + 5c1
5x2

)
d
dx

( y

x3

)
=
(

1
x3

)(
2x 5

2 + 5c1
5x2

)

d
( y

x3

)
=
(
2x 5

2 + 5c1
5x5

)
dx

Integrating gives

y

x3 =
∫ 2x 5

2 + 5c1
5x5 dx

y

x3 = − 4
15x 3

2
− c1

4x4 + c2

Dividing both sides by the integrating factor µ = 1
x3 results in

y = x3
(
− 4
15x 3

2
− c1

4x4

)
+ c2x

3

which simplifies to

y = x3
(
− 4
15x 3

2
− c1

4x4 + c2

)
Summary
The solution(s) found are the following

(1)y = x3
(
− 4
15x 3

2
− c1

4x4 + c2

)
Verification of solutions

y = x3
(
− 4
15x 3

2
− c1

4x4 + c2

)
Verified OK.
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10.24.5 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as

x2y′′ − y′x− 3y = x
3
2

Integrating both sides of the ODE w.r.t x gives∫ (
x2y′′ − y′x− 3y

)
dx =

∫
x

3
2dx

y′x2 − 3yx = 2x 5
2

5 + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −3
x

q(x) = 2x 5
2 + 5c1
5x2

Hence the ode is

y′ − 3y
x

= 2x 5
2 + 5c1
5x2

The integrating factor µ is

µ = e
∫
− 3

x
dx

= 1
x3

The ode becomes

d
dx(µy) = (µ)

(
2x 5

2 + 5c1
5x2

)
d
dx

( y

x3

)
=
(

1
x3

)(
2x 5

2 + 5c1
5x2

)

d
( y

x3

)
=
(
2x 5

2 + 5c1
5x5

)
dx
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Integrating gives

y

x3 =
∫ 2x 5

2 + 5c1
5x5 dx

y

x3 = − 4
15x 3

2
− c1

4x4 + c2

Dividing both sides by the integrating factor µ = 1
x3 results in

y = x3
(
− 4
15x 3

2
− c1

4x4

)
+ c2x

3

which simplifies to

y = x3
(
− 4
15x 3

2
− c1

4x4 + c2

)
Summary
The solution(s) found are the following

(1)y = x3
(
− 4
15x 3

2
− c1

4x4 + c2

)
Verification of solutions

y = x3
(
− 4
15x 3

2
− c1

4x4 + c2

)
Verified OK.

10.24.6 Solving using Kovacic algorithm

Writing the ode as

x2y′′ − y′x− 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x (3)
C = −3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 15
4x2 (6)

Comparing the above to (5) shows that

s = 15
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(

15
4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 434: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 15
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 15
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 5

2
α−
c = 1

2 −
√
1 + 4b = −3

2
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= 15

4x2

Since the gcd(s, t) = 1. This gives b = 15
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 5

2
α−
∞ = 1

2 −
√
1 + 4b = −3

2
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The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 15
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 5
2 −3

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 5
2 −3

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = −3
2 then

d = α−
∞ −

(
α−
c1

)
= −3

2 −
(
−3
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 3
2x + (−) (0)

= − 3
2x

= − 3
2x
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Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 3
2x

)
(0) +

((
3
2x2

)
+
(
− 3
2x

)2

−
(

15
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 3

2xdx

= 1
x

3
2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
x2 dx

= z1e
ln(x)

2

= z1
(√

x
)

Which simplifies to

y1 =
1
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−x

x2 dx

(y1)2
dx

= y1

∫
eln(x)

(y1)2
dx

= y1

(
x4

4

)
Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x

)
+ c2

(
1
x

(
x4

4

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

x2y′′ − y′x− 3y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1
x
+ c2x

3

4

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
1
x

y2 =
x3

4

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
1
x

x3

4

d
dx

( 1
x

)
d
dx

(
x3

4

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣
1
x

x3

4

− 1
x2

3x2

4

∣∣∣∣∣∣
Therefore

W =
(
1
x

)(
3x2

4

)
−
(
x3

4

)(
− 1
x2

)

Which simplifies to
W = x

Which simplifies to
W = x
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Therefore Eq. (2) becomes

u1 = −
∫ x

9
2
4
x3 dx

Which simplifies to

u1 = −
∫

x
3
2

4 dx

Hence

u1 = −x
5
2

10

And Eq. (3) becomes

u2 =
∫ √

x

x3 dx

Which simplifies to

u2 =
∫ 1

x
5
2
dx

Hence

u2 = − 2
3x 3

2

Therefore the particular solution, from equation (1) is

yp(x) = −4x 3
2

15

Therefore the general solution is

y = yh + yp

=
(
c1
x
+ c2x

3

4

)
+
(
−4x 3

2

15

)

Summary
The solution(s) found are the following

(1)y = c1
x
+ c2x

3

4 − 4x 3
2

15
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Verification of solutions

y = c1
x
+ c2x

3

4 − 4x 3
2

15

Verified OK.

10.24.7 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = x2

q(x) = −x

r(x) = −3
s(x) = x

3
2

Hence

p′′(x) = 2
q′(x) = −1

Therefore (1) becomes

2− (−1) + (−3) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

y′x2 − 3yx =
∫

x
3
2 dx
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We now have a first order ode to solve which is

y′x2 − 3yx = 2x 5
2

5 + c1

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −3
x

q(x) = 2x 5
2 + 5c1
5x2

Hence the ode is

y′ − 3y
x

= 2x 5
2 + 5c1
5x2

The integrating factor µ is

µ = e
∫
− 3

x
dx

= 1
x3

The ode becomes

d
dx(µy) = (µ)

(
2x 5

2 + 5c1
5x2

)
d
dx

( y

x3

)
=
(

1
x3

)(
2x 5

2 + 5c1
5x2

)

d
( y

x3

)
=
(
2x 5

2 + 5c1
5x5

)
dx

Integrating gives

y

x3 =
∫ 2x 5

2 + 5c1
5x5 dx

y

x3 = − 4
15x 3

2
− c1

4x4 + c2
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Dividing both sides by the integrating factor µ = 1
x3 results in

y = x3
(
− 4
15x 3

2
− c1

4x4

)
+ c2x

3

which simplifies to

y = x3
(
− 4
15x 3

2
− c1

4x4 + c2

)
Summary
The solution(s) found are the following

(1)y = x3
(
− 4
15x 3

2
− c1

4x4 + c2

)
Verification of solutions

y = x3
(
− 4
15x 3

2
− c1

4x4 + c2

)
Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)-3*y(x)=x^(3/2),y(x), singsol=all)� �

y(x) = 15c2x4 − 4x 5
2 + 15c1

15x
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3 Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 27� �
DSolve[x^2*y''[x]-x*y'[x]-3*y[x]==x^(3/2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −4x3/2

15 + c2x
3 + c1

x
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10.25 problem 25
10.25.1 Solving as second order change of variable on y method 1 ode . 3261
10.25.2 Solving as second order change of variable on y method 2 ode . 3268
10.25.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 3272

Internal problem ID [1179]
Internal file name [OUTPUT/1180_Sunday_June_05_2022_02_04_19_AM_23808311/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 25.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_y_method_1", "second_order_change_of_variable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

x2y′′ − x(x+ 4) y′ + 2y(x+ 3) = exx4

10.25.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ +
(
−x2 − 4x

)
y′ + (2x+ 6) y = 0

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)
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Where

p(x) = −x2 − 4x
x2

q(x) = 2x+ 6
x2

Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= 2x+ 6
x2 −

(
−x2−4x

x2

)′
2 −

(
−x2−4x

x2

)2
4

= 2x+ 6
x2 −

(
−2x−4

x2 − 2
(
−x2−4x

)
x3

)
2 −

( (
−x2−4x

)2
x4

)
4

= 2x+ 6
x2 −

(
−2x− 4

2x2 − −x2 − 4x
x3

)
− (−x2 − 4x)2

4x4

= −1
4

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ −x2−4x

x2
2

= x2ex
2 (5)

Hence (3) becomes

y = v(x)x2ex
2 (4)

Applying this change of variable to the original ode results in

ex
2 (4v′′(x)− v(x)) = 4 ex

Which is now solved for v(x) Simplyfing the ode gives

v′′(x)− v(x)
4 = ex

2
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This is second order non-homogeneous ODE. In standard form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = f(x)

Where A = 1, B = 0, C = −1
4 , f(x) = ex

2 . Let the solution be

v(x) = vh + vp

Where vh is the solution to the homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = 0, and vp
is a particular solution to the non-homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = f(x).
vh is the solution to

v′′(x)− v(x)
4 = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = −1
4 . Let the solution be v(x) = eλx. Substituting

this into the ODE gives

λ2eλx − eλx
4 = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 1
4 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −1
4 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)

√
02 − (4) (1)

(
−1
4

)
= ±1

2

Hence

λ1 = +1
2

λ2 = −1
2
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Which simplifies to

λ1 =
1
2

λ2 = −1
2

Since roots are real and distinct, then the solution is

v(x) = c1e
λ1x + c2e

λ2x

v(x) = c1e
( 1
2
)
x + c2e

(
− 1

2
)
x

Or
v(x) = c1e

x
2 + c2e−

x
2

Therefore the homogeneous solution vh is

vh = c1e
x
2 + c2e−

x
2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

ex
2

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is [{

ex
2
}]

While the set of the basis functions for the homogeneous solution found earlier is{
e−x

2 , ex
2
}

Since ex
2 is duplicated in the UC_set, then this basis is multiplied by extra x. The

UC_set becomes [{
ex

2x
}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

vp = A1e
x
2x
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The unknowns {A1} are found by substituting the above trial solution vp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A1e
x
2 = ex

2

Solving for the unknowns by comparing coefficients results in

[A1 = 1]

Substituting the above back in the above trial solution vp, gives the particular solution

vp = ex
2x

Therefore the general solution is

v = vh + vp

=
(
c1e

x
2 + c2e−

x
2
)
+
(
ex

2x
)

Now that v(x) is known, then

y = v(x) z(x)
=
(
c1e

x
2 + c2e−

x
2 + ex

2x
)
(z(x)) (7)

But from (5)

z(x) = x2ex
2

Hence (7) becomes

y =
(
c1e

x
2 + c2e−

x
2 + ex

2x
)
x2ex

2

Therefore the homogeneous solution yh is

yh =
(
c1e

x
2 + c2e−

x
2 + ex

2x
)
x2ex

2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x2ex

y2 = e−x
2x2ex

2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x2ex e−x
2x2ex

2

d
dx
(x2ex) d

dx

(
e−x

2x2ex
2
)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ x2ex e−x
2x2ex

2

2x ex + x2ex 2 e−x
2x ex

2

∣∣∣∣∣∣
Therefore

W =
(
x2ex

) (
2 e−x

2x ex
2
)
−
(
e−x

2x2ex
2
) (

2x ex + x2ex
)

Which simplifies to

W = −e 3x
2 e−x

2x4

Which simplifies to
W = −exx4

Therefore Eq. (2) becomes

u1 = −
∫ e−x

2x6ex
2 ex

−x6ex dx
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Which simplifies to

u1 = −
∫

(−1) dx

Hence
u1 = x

And Eq. (3) becomes

u2 =
∫ (ex)2 x6

−x6ex dx

Which simplifies to

u2 =
∫

−exdx

Hence
u2 = −ex

Therefore the particular solution, from equation (1) is

yp(x) = exx3 − exe−x
2x2ex

2

Which simplifies to
yp(x) = exx2(x− 1)

Therefore the general solution is

y = yh + yp

=
((
c1e

x
2 + c2e−

x
2 + ex

2x
)
x2ex

2
)
+
(
exx2(x− 1)

)
Which simplifies to

y = ((x+ c1) ex + c2)x2 + exx2(x− 1)

Summary
The solution(s) found are the following

(1)y = ((x+ c1) ex + c2)x2 + exx2(x− 1)
Verification of solutions

y = ((x+ c1) ex + c2)x2 + exx2(x− 1)

Verified OK.
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10.25.2 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = −x2 − 4x,C = 2x+ 6, f(x) = exx4. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ +
(
−x2 − 4x

)
y′ + (2x+ 6) y = 0

In normal form the ode

x2y′′ +
(
−x2 − 4x

)
y′ + (2x+ 6) y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −x− 4
x

q(x) = 2x+ 6
x2

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 + n(−x− 4)

x2 + 2x+ 6
x2 = 0 (5)
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Solving (5) for n gives

n = 2 (6)

Substituting this value in (3) gives

v′′(x) +
(
4
x
+ −x− 4

x

)
v′(x) = 0

v′′(x)− v′(x) = 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x)− u(x) = 0 (8)

The above is now solved for u(x). Integrating both sides gives∫ 1
u
du = x+ c1

ln (u) = x+ c1

u = ex+c1

u = c1ex

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= c1ex + c2

Hence

y = v(x)xn

= (c1ex + c2)x2

= (c1ex + c2)x2
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Now the particular solution to this ODE is found

x2y′′ +
(
−x2 − 4x

)
y′ + (2x+ 6) y = exx4

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x2

y2 = x2ex

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x2 x2ex
d
dx
(x2) d

dx
(x2ex)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x
2 x2ex

2x 2x ex + x2ex

∣∣∣∣∣∣
Therefore

W =
(
x2) (2x ex + x2ex

)
−
(
x2ex

)
(2x)
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Which simplifies to
W = exx4

Which simplifies to
W = exx4

Therefore Eq. (2) becomes

u1 = −
∫ e2xx6

x6ex dx

Which simplifies to

u1 = −
∫

exdx

Hence
u1 = −ex

And Eq. (3) becomes

u2 =
∫

x6ex
x6ex dx

Which simplifies to

u2 =
∫

1dx

Hence
u2 = x

Therefore the particular solution, from equation (1) is

yp(x) = exx3 − x2ex

Which simplifies to
yp(x) = exx2(x− 1)
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Therefore the general solution is

y = yh + yp

=
(
(c1ex + c2)x2)+ (exx2(x− 1)

)
= exx2(x− 1) + (c1ex + c2)x2

Which simplifies to
y = ((x+ c1 − 1) ex + c2)x2

Summary
The solution(s) found are the following

(1)y = ((x+ c1 − 1) ex + c2)x2

Verification of solutions

y = ((x+ c1 − 1) ex + c2)x2

Verified OK.

10.25.3 Solving using Kovacic algorithm

Writing the ode as

x2y′′ +
(
−x2 − 4x

)
y′ + (2x+ 6) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x2 − 4x (3)
C = 2x+ 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4

Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 435: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2−4x

x2 dx

= z1e
x
2+2 ln(x)

= z1
(
x2ex

2
)

Which simplifies to
y1 = x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2−4x

x2 dx

(y1)2
dx

= y1

∫
ex+4 ln(x)

(y1)2
dx

= y1(ex)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2)+ c2

(
x2(ex)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

x2y′′ +
(
−x2 − 4x

)
y′ + (2x+ 6) y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1x
2 + c2x

2ex

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x2

y2 = x2ex

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x2 x2ex
d
dx
(x2) d

dx
(x2ex)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x
2 x2ex

2x 2x ex + x2ex

∣∣∣∣∣∣
Therefore

W =
(
x2) (2x ex + x2ex

)
−
(
x2ex

)
(2x)

Which simplifies to
W = exx4

Which simplifies to
W = exx4

Therefore Eq. (2) becomes

u1 = −
∫ e2xx6

x6ex dx

Which simplifies to

u1 = −
∫

exdx

Hence
u1 = −ex

And Eq. (3) becomes

u2 =
∫

x6ex
x6ex dx

Which simplifies to

u2 =
∫

1dx
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Hence
u2 = x

Therefore the particular solution, from equation (1) is

yp(x) = exx3 − x2ex

Which simplifies to
yp(x) = exx2(x− 1)

Therefore the general solution is

y = yh + yp

=
(
c1x

2 + c2x
2ex
)
+
(
exx2(x− 1)

)
Which simplifies to

y = x2(c1 + c2ex) + exx2(x− 1)

Summary
The solution(s) found are the following

(1)y = x2(c1 + c2ex) + exx2(x− 1)
Verification of solutions

y = x2(c1 + c2ex) + exx2(x− 1)

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful

<- solving first the homogeneous part of the ODE successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 16� �
dsolve(x^2*diff(y(x),x$2)-x*(x+4)*diff(y(x),x)+2*(x+3)*y(x)=x^4*exp(x),y(x), singsol=all)� �

y(x) = ((c2 + x) ex + c1)x2

3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 21� �
DSolve[x^2*y''[x]-x*(x+4)*y'[x]+2*(x+3)*y[x]==x^4*Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2(ex(x− 1 + c2) + c1)
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10.26 problem 26
10.26.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 3279
10.26.2 Solving as second order ode lagrange adjoint equation method ode3284

Internal problem ID [1180]
Internal file name [OUTPUT/1181_Sunday_June_05_2022_02_04_21_AM_43398011/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 26.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

x2y′′ − 2x(2 + x) y′ +
(
x2 + 4x+ 6

)
y = 2x ex

10.26.1 Solving using Kovacic algorithm

Writing the ode as

x2y′′ +
(
−2x2 − 4x

)
y′ +

(
x2 + 4x+ 6

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −2x2 − 4x (3)
C = x2 + 4x+ 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 436: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x2−4x

x2 dx

= z1e
x+2 ln(x)

= z1
(
x2ex

)
Which simplifies to

y1 = x2ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x2−4x

x2 dx

(y1)2
dx

= y1

∫
e2x+4 ln(x)

(y1)2
dx

= y1(x)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2ex

)
+ c2

(
x2ex(x)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

x2y′′ +
(
−2x2 − 4x

)
y′ +

(
x2 + 4x+ 6

)
y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = x2exc1 + c2exx3

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x2ex

y2 = exx3

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x2ex exx3

d
dx
(x2ex) d

dx
(exx3)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ x2ex exx3

2x ex + x2ex exx3 + 3x2ex

∣∣∣∣∣∣
Therefore

W =
(
x2ex

) (
exx3 + 3x2ex

)
−
(
exx3) (2x ex + x2ex

)
Which simplifies to

W = e2xx4

Which simplifies to
W = e2xx4

Therefore Eq. (2) becomes

u1 = −
∫ 2 e2xx4

e2xx6 dx

Which simplifies to

u1 = −
∫ 2

x2dx

Hence

u1 =
2
x

And Eq. (3) becomes

u2 =
∫ 2 e2xx3

e2xx6 dx

Which simplifies to

u2 =
∫ 2

x3dx
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Hence

u2 = − 1
x2

Therefore the particular solution, from equation (1) is

yp(x) = x ex

Therefore the general solution is

y = yh + yp

=
(
x2exc1 + c2exx3)+ (x ex)

Which simplifies to
y = exx2(c2x+ c1) + x ex

Summary
The solution(s) found are the following

(1)y = exx2(c2x+ c1) + x ex

Verification of solutions

y = exx2(c2x+ c1) + x ex

Verified OK.

10.26.2 Solving as second order ode lagrange adjoint equation method ode

In normal form the ode

x2y′′ +
(
−2x2 − 4x

)
y′ +

(
x2 + 4x+ 6

)
y = 2x ex (1)

Becomes

y′′ + p(x) y′ + q(x) y = r(x) (2)

Where

p(x) = −2x− 4
x

q(x) = x2 + 4x+ 6
x2

r(x) = 2 ex
x
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The Lagrange adjoint ode is given by

ξ
′′ − (ξ p)′ + ξq = 0

ξ
′′ −

(
(−2x− 4) ξ(x)

x

)′

+
(
(x2 + 4x+ 6) ξ(x)

x2

)
= 0

ξ′′(x)− (−2x− 4) ξ′(x)
x

+
(
2
x
+ −2x− 4

x2 + x2 + 4x+ 6
x2

)
ξ(x) = 0

Which is solved for ξ(x). In normal form the given ode is written as

ξ′′(x) + p(x) ξ′(x) + q(x) ξ(x) = 0 (2)

Where

p(x) = 2x2 + 4x
x2

q(x) = x2 + 4x+ 2
x2

Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= x2 + 4x+ 2
x2 −

(
2x2+4x

x2

)′
2 −

(
2x2+4x

x2

)2
4

= x2 + 4x+ 2
x2 −

(
4x+4
x2 − 2

(
2x2+4x

)
x3

)
2 −

( (
2x2+4x

)2
x4

)
4

= x2 + 4x+ 2
x2 −

(
4x+ 4
2x2 − 2x2 + 4x

x3

)
− (2x2 + 4x)2

4x4

= 0

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

ξ(x) = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ 2x2+4x

x2
2

= e−x

x2 (5)
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Hence (3) becomes

ξ(x) = v(x) e−x

x2 (4)

Applying this change of variable to the original ode results in

v′′(x) e−x = 0

Which is now solved for v(x) Integrating twice gives the solution

v(x) = c1x+ c2

Now that v(x) is known, then

ξ(x) = v(x) z(x)
= (c1x+ c2) (z(x)) (7)

But from (5)

z(x) = e−x

x2

Hence (7) becomes

ξ(x) = (c1x+ c2) e−x

x2

The original ode (2) now reduces to first order ode

ξ(x) y′ − yξ′(x) + ξ(x) p(x) y =
∫

ξ(x) r(x) dx

y′ + y

(
p(x)− ξ′(x)

ξ (x)

)
=
∫
ξ(x) r(x) dx

ξ (x)

y′ + y

−2x− 4
x

−

(
c3e−x

x2 − 2(c3x+c2)e−x

x3 − (c3x+c2)e−x

x2

)
x2ex

c3x+ c2

 = −ex(2c3x+ c2)
c3x+ c2

Which is now a first order ode. This is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −c3x
2 + (c2 + 3c3)x+ 2c2

x (c3x+ c2)

q(x) = (−2c3x− c2) ex
c3x+ c2
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Hence the ode is

y′ − (c3x2 + (c2 + 3c3)x+ 2c2) y
x (c3x+ c2)

= (−2c3x− c2) ex
c3x+ c2

The integrating factor µ is

µ = e
∫
− c3x

2+(c2+3c3)x+2c2
x(c3x+c2)

dx

= e−x−2 ln(x)−ln(c3x+c2)

Which simplifies to

µ = e−x

x2 (c3x+ c2)

The ode becomes

d
dx(µy) = (µ)

(
(−2c3x− c2) ex

c3x+ c2

)
d
dx

(
e−xy

x2 (c3x+ c2)

)
=
(

e−x

x2 (c3x+ c2)

)(
(−2c3x− c2) ex

c3x+ c2

)
d
(

e−xy

x2 (c3x+ c2)

)
=
(

−2c3x− c2

x2 (c3x+ c2)2
)

dx

Integrating gives

e−xy

x2 (c3x+ c2)
=
∫

−2c3x− c2

x2 (c3x+ c2)2
dx

e−xy

x2 (c3x+ c2)
= − c3

c2 (c3x+ c2)
+ 1

c2x
+ c3

Dividing both sides by the integrating factor µ = e−x

x2(c3x+c2) results in

y = x2(c3x+ c2) ex
(
− c3
c2 (c3x+ c2)

+ 1
c2x

)
+ c3x

2(c3x+ c2) ex

which simplifies to

y = exx
(
c23x

2 + c2c3x+ 1
)

Hence, the solution found using Lagrange adjoint equation method is

y = exc2c3x2 + x ex
(
c23x

2 + 1
)
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Summary
The solution(s) found are the following

(1)y = exc2c3x2 + x ex
(
c23x

2 + 1
)

Verification of solutions

y = exc2c3x2 + x ex
(
c23x

2 + 1
)

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 18� �
dsolve(x^2*diff(y(x),x$2)-2*x*(x+2)*diff(y(x),x)+(x^2+4*x+6)*y(x)=2*x*exp(x),y(x), singsol=all)� �

y(x) = exx
(
c1x

2 + c2x+ 1
)
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3 Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 22� �
DSolve[x^2*y''[x]-2*x*(x+2)*y'[x]+(x^2+4*x+6)*y[x]==2*x*Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → exx
(
c2x

2 + c1x+ 1
)
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10.27 problem 27
10.27.1 Solving as second order change of variable on y method 1 ode . 3290
10.27.2 Solving as second order bessel ode ode . . . . . . . . . . . . . . 3297
10.27.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 3300

Internal problem ID [1181]
Internal file name [OUTPUT/1182_Sunday_June_05_2022_02_04_22_AM_92007663/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 27.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode",
"second_order_change_of_variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

x2y′′ − 4y′x+
(
x2 + 6

)
y = x4

10.27.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ − 4y′x+
(
x2 + 6

)
y = 0

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)
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Where

p(x) = −4
x

q(x) = x2 + 6
x2

Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= x2 + 6
x2 −

(
− 4

x

)′
2 −

(
− 4

x

)2
4

= x2 + 6
x2 −

( 4
x2

)
2 −

( 16
x2

)
4

= x2 + 6
x2 −

(
2
x2

)
− 4

x2

= 1

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ − 4

x
2

= x2 (5)

Hence (3) becomes

y = v(x)x2 (4)

Applying this change of variable to the original ode results in

v′′(x) + v(x) = 1

Which is now solved for v(x) This is second order non-homogeneous ODE. In standard
form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = f(x)
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Where A = 1, B = 0, C = 1, f(x) = 1. Let the solution be

v(x) = vh + vp

Where vh is the solution to the homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = 0, and vp
is a particular solution to the non-homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = f(x).
vh is the solution to

v′′(x) + v(x) = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = 1. Let the solution be v(x) = eλx. Substituting
this into the ODE gives

λ2eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (1)

= ±i

Hence

λ1 = +i

λ2 = −i

Which simplifies to
λ1 = i

λ2 = −i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ
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Where α = 0 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

v(x) = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
v(x) = e0(c1 cos (x) + c2 sin (x))

Or
v(x) = c1 cos (x) + c2 sin (x)

Therefore the homogeneous solution vh is

vh = c1 cos (x) + c2 sin (x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) , sin (x)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

vp = A1

The unknowns {A1} are found by substituting the above trial solution vp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A1 = 1

Solving for the unknowns by comparing coefficients results in

[A1 = 1]
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Substituting the above back in the above trial solution vp, gives the particular solution

vp = 1

Therefore the general solution is

v = vh + vp

= (c1 cos (x) + c2 sin (x)) + (1)

Now that v(x) is known, then

y = v(x) z(x)
= (c1 cos (x) + c2 sin (x) + 1) (z(x)) (7)

But from (5)

z(x) = x2

Hence (7) becomes

y = (c1 cos (x) + c2 sin (x) + 1) x2

Therefore the homogeneous solution yh is

yh = (c1 cos (x) + c2 sin (x) + 1)x2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x2 cos (x)

y2 = sin (x)x2
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x2 cos (x) sin (x)x2

d
dx
(x2 cos (x)) d

dx
(sin (x)x2)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ x2 cos (x) sin (x)x2

2x cos (x)− sin (x)x2 x2 cos (x) + 2 sin (x)x

∣∣∣∣∣∣
Therefore

W =
(
x2 cos (x)

) (
x2 cos (x) + 2 sin (x)x

)
−
(
sin (x)x2) (2x cos (x)− sin (x)x2)

Which simplifies to
W = cos (x)2 x4 + sin (x)2 x4

Which simplifies to
W = x4

Therefore Eq. (2) becomes

u1 = −
∫ sin (x)x6

x6 dx

Which simplifies to

u1 = −
∫

sin (x) dx

Hence
u1 = cos (x)

3295



And Eq. (3) becomes

u2 =
∫

x6 cos (x)
x6 dx

Which simplifies to

u2 =
∫

cos (x) dx

Hence
u2 = sin (x)

Therefore the particular solution, from equation (1) is

yp(x) = cos (x)2 x2 + x2 sin (x)2

Which simplifies to
yp(x) = x2

Therefore the general solution is

y = yh + yp

=
(
(c1 cos (x) + c2 sin (x) + 1)x2)+ (x2)

Summary
The solution(s) found are the following

(1)y = (c1 cos (x) + c2 sin (x) + 1)x2 + x2

Verification of solutions

y = (c1 cos (x) + c2 sin (x) + 1)x2 + x2

Verified OK.
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10.27.2 Solving as second order bessel ode ode

Writing the ode as

x2y′′ − 4y′x+
(
x2 + 6

)
y = x4 (1)

Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE and yp is a particular solution to
the non-homogeneous ODE. Bessel ode has the form

x2y′′ + y′x+
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)

Comparing (3) to (1) and solving for α, β, n, γ gives

α = 5
2

β = 1

n = −1
2

γ = 1

Substituting all the above into (4) gives the solution as

y = c1x
2√2 cos (x)√

π
+ c2x

2√2 sin (x)√
π

Therefore the homogeneous solution yh is

yh = c1x
2√2 cos (x)√

π
+ c2x

2√2 sin (x)√
π

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
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parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x2 cos (x)

y2 = sin (x)x2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x2 cos (x) sin (x)x2

d
dx
(x2 cos (x)) d

dx
(sin (x)x2)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ x2 cos (x) sin (x)x2

2x cos (x)− sin (x)x2 x2 cos (x) + 2 sin (x)x

∣∣∣∣∣∣
Therefore

W =
(
x2 cos (x)

) (
x2 cos (x) + 2 sin (x)x

)
−
(
sin (x)x2) (2x cos (x)− sin (x)x2)

Which simplifies to
W = cos (x)2 x4 + sin (x)2 x4

Which simplifies to
W = x4
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Therefore Eq. (2) becomes

u1 = −
∫ sin (x)x6

x6 dx

Which simplifies to

u1 = −
∫

sin (x) dx

Hence
u1 = cos (x)

And Eq. (3) becomes

u2 =
∫

x6 cos (x)
x6 dx

Which simplifies to

u2 =
∫

cos (x) dx

Hence
u2 = sin (x)

Therefore the particular solution, from equation (1) is

yp(x) = cos (x)2 x2 + x2 sin (x)2

Which simplifies to
yp(x) = x2

Therefore the general solution is

y = yh + yp

=
(
c1x

2√2 cos (x)√
π

+ c2x
2√2 sin (x)√

π

)
+
(
x2)

Summary
The solution(s) found are the following

(1)y = c1x
2√2 cos (x)√

π
+ c2x

2√2 sin (x)√
π

+ x2
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Verification of solutions

y = c1x
2√2 cos (x)√

π
+ c2x

2√2 sin (x)√
π

+ x2

Verified OK.

10.27.3 Solving using Kovacic algorithm

Writing the ode as

x2y′′ − 4y′x+
(
x2 + 6

)
y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −4x (3)
C = x2 + 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1
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Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 437: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x
x2 dx

= z1e
2 ln(x)

= z1
(
x2)

Which simplifies to
y1 = x2 cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4x

x2 dx

(y1)2
dx

= y1

∫
e4 ln(x)

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1
(
x2 cos (x)

)
+ c2

(
x2 cos (x) (tan (x))

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

x2y′′ − 4y′x+
(
x2 + 6

)
y = 0
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The homogeneous solution is found using the Kovacic algorithm which results in

yh = cos (x)x2c1 + sin (x)x2c2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x2 cos (x)

y2 = sin (x)x2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x2 cos (x) sin (x)x2

d
dx
(x2 cos (x)) d

dx
(sin (x)x2)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ x2 cos (x) sin (x)x2

2x cos (x)− sin (x)x2 x2 cos (x) + 2 sin (x)x

∣∣∣∣∣∣
Therefore

W =
(
x2 cos (x)

) (
x2 cos (x) + 2 sin (x)x

)
−
(
sin (x)x2) (2x cos (x)− sin (x)x2)
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Which simplifies to
W = cos (x)2 x4 + sin (x)2 x4

Which simplifies to
W = x4

Therefore Eq. (2) becomes

u1 = −
∫ sin (x)x6

x6 dx

Which simplifies to

u1 = −
∫

sin (x) dx

Hence
u1 = cos (x)

And Eq. (3) becomes

u2 =
∫

x6 cos (x)
x6 dx

Which simplifies to

u2 =
∫

cos (x) dx

Hence
u2 = sin (x)

Therefore the particular solution, from equation (1) is

yp(x) = cos (x)2 x2 + x2 sin (x)2

Which simplifies to
yp(x) = x2
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Therefore the general solution is

y = yh + yp

=
(
cos (x)x2c1 + sin (x)x2c2

)
+
(
x2)

Which simplifies to
y = x2(c1 cos (x) + c2 sin (x)) + x2

Summary
The solution(s) found are the following

(1)y = x2(c1 cos (x) + c2 sin (x)) + x2

Verification of solutions

y = x2(c1 cos (x) + c2 sin (x)) + x2

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 18� �
dsolve(x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+(x^2+6)*y(x)=x^4,y(x), singsol=all)� �

y(x) = x2(1 + sin (x) c2 + cos (x) c1)

3 Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 38� �
DSolve[x^2*y''[x]-4*x*y'[x]+(x^2+6)*y[x]==x^4,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2x

2(2c1e−ix − ic2e
ix + 2

)
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10.28 problem 28
10.28.1 Solving as second order change of variable on y method 2 ode . 3307
10.28.2 Solving as second order ode non constant coeff transformation

on B ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3312
10.28.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 3317

Internal problem ID [1182]
Internal file name [OUTPUT/1183_Sunday_June_05_2022_02_04_23_AM_76507277/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 28.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_y_method_2", "second_order_ode_non_constant_coeff_trans-
formation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(x− 1) y′′ − y′x+ y = 2(x− 1)2 ex

10.28.1 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x− 1, B = −x,C = 1, f(x) = 2(x− 1)2 ex. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

(x− 1) y′′ − y′x+ y = 0
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In normal form the ode

(x− 1) y′′ − y′x+ y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = − x

x− 1
q(x) = 1

x− 1

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 − n

x− 1 + 1
x− 1 = 0 (5)

Solving (5) for n gives

n = 1 (6)

Substituting this value in (3) gives

v′′(x) +
(
2
x
− x

x− 1

)
v′(x) = 0

v′′(x) +
(
2
x
− x

x− 1

)
v′(x) = 0 (7)

Using the substitution

u(x) = v′(x)
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Then (7) becomes

u′(x) +
(
2
x
− x

x− 1

)
u(x) = 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(x2 − 2x+ 2)
x (x− 1)

Where f(x) = x2−2x+2
x(x−1) and g(u) = u. Integrating both sides gives

1
u
du = x2 − 2x+ 2

x (x− 1) dx∫ 1
u
du =

∫
x2 − 2x+ 2
x (x− 1) dx

ln (u) = x− 2 ln (x) + ln (x− 1) + c1

u = ex−2 ln(x)+ln(x−1)+c1

= c1ex−2 ln(x)+ln(x−1)

Which simplifies to

u(x) = c1

(
ex
x

− ex
x2

)
Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= c1ex
x

+ c2

Hence

y = v(x)xn

=
(
c1ex
x

+ c2

)
x

= c1ex + c2x
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Now the particular solution to this ODE is found

(x− 1) y′′ − y′x+ y = 2(x− 1)2 ex

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = ex

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x ex
d
dx
(x) d

dx
(ex)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x ex

1 ex

∣∣∣∣∣∣
Therefore

W = (x) (ex)− (ex) (1)
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Which simplifies to
W = x ex − ex

Which simplifies to
W = (x− 1) ex

Therefore Eq. (2) becomes

u1 = −
∫ 2(x− 1)2 e2x

(x− 1)2 ex
dx

Which simplifies to

u1 = −
∫

2 exdx

Hence
u1 = −2 ex

And Eq. (3) becomes

u2 =
∫ 2x(x− 1)2 ex

(x− 1)2 ex
dx

Which simplifies to

u2 =
∫

2xdx

Hence
u2 = x2

Therefore the particular solution, from equation (1) is

yp(x) = −2x ex + x2ex

Which simplifies to
yp(x) = x(−2 + x) ex
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Therefore the general solution is

y = yh + yp

=
((

c1ex
x

+ c2

)
x

)
+ (x(−2 + x) ex)

= x(−2 + x) ex +
(
c1ex
x

+ c2

)
x

Which simplifies to
y =

(
x2 + c1 − 2x

)
ex + c2x

Summary
The solution(s) found are the following

(1)y =
(
x2 + c1 − 2x

)
ex + c2x

Verification of solutions

y =
(
x2 + c1 − 2x

)
ex + c2x

Verified OK.

10.28.2 Solving as second order ode non constant coeff transformation on
B ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)
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If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = x− 1
B = −x

C = 1
F = 2(x− 1)2 ex

The above shows that for this ode

AB′′ +BB′ + CB = (x− 1) (0) + (−x) (−1) + (1) (−x)
= 0

Hence the ode in v given in (1) now simplifies to

−x(x− 1) v′′ +
(
x2 − 2x+ 2

)
v′ = 0

Now by applying v′ = u the above becomes(
−x2 + x

)
u′(x) +

(
x2 − 2x+ 2

)
u(x) = 0

Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(x2 − 2x+ 2)
x (x− 1)
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Where f(x) = x2−2x+2
x(x−1) and g(u) = u. Integrating both sides gives

1
u
du = x2 − 2x+ 2

x (x− 1) dx∫ 1
u
du =

∫
x2 − 2x+ 2
x (x− 1) dx

ln (u) = x− 2 ln (x) + ln (x− 1) + c1

u = ex−2 ln(x)+ln(x−1)+c1

= c1ex−2 ln(x)+ln(x−1)

Which simplifies to

u(x) = c1

(
ex
x

− ex
x2

)

The ode for v now becomes

v′ = u

= c1

(
ex
x

− ex
x2

)
Which is now solved for v. Integrating both sides gives

v(x) =
∫ (x− 1) c1ex

x2 dx

= c1ex
x

+ c2

Therefore the homogeneous solution is

yh(x) = Bv

= (−x)
(
c1ex
x

+ c2

)
= −c1ex − c2x

And now the particular solution yp(x) will be found. The particular solution yp can be
found using either the method of undetermined coefficients, or the method of variation
of parameters. The method of variation of parameters will be used as it is more general
and can be used when the coefficients of the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 = ex

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x ex
d
dx
(x) d

dx
(ex)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x ex

1 ex

∣∣∣∣∣∣
Therefore

W = (x) (ex)− (ex) (1)

Which simplifies to
W = x ex − ex

Which simplifies to
W = (x− 1) ex

Therefore Eq. (2) becomes

u1 = −
∫ 2(x− 1)2 e2x

(x− 1)2 ex
dx
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Which simplifies to

u1 = −
∫

2 exdx

Hence
u1 = −2 ex

And Eq. (3) becomes

u2 =
∫ 2x(x− 1)2 ex

(x− 1)2 ex
dx

Which simplifies to

u2 =
∫

2xdx

Hence
u2 = x2

Therefore the particular solution, from equation (1) is

yp(x) = −2x ex + x2ex

Which simplifies to
yp(x) = x(−2 + x) ex

Hence the complete solution is

y(x) = yh + yp

= (−c1ex − c2x) + (x(−2 + x) ex)
=
(
x2 − c1 − 2x

)
ex − c2x

Summary
The solution(s) found are the following

(1)y =
(
x2 − c1 − 2x

)
ex − c2x

Verification of solutions

y =
(
x2 − c1 − 2x

)
ex − c2x

Verified OK.
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10.28.3 Solving using Kovacic algorithm

Writing the ode as

(x− 1) y′′ − y′x+ y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x− 1
B = −x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = x2 − 4x+ 6
4 (x− 1)2

(6)

Comparing the above to (5) shows that

s = x2 − 4x+ 6
t = 4(x− 1)2

Therefore eq. (4) becomes

z′′(x) =
(
x2 − 4x+ 6
4 (x− 1)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 438: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(x− 1)2. There is a pole at x = 1 of order 2. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one
are met. Since there is a pole of order 2 then necessary conditions for case two are met.
Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 1
4 − 1

2 (x− 1) +
3

4 (x− 1)2
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For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decompo-

sition of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 − 1
2x + 1

x3 + 11
4x4 + 21

4x5 + 15
2x6 + 6

x7 − 117
16x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = 1

4
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This shows that the coefficient of 1
x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be

the coefficient in R of the term in x of degree of t minus one, divided by the leading
coefficient in t. Doing long division gives

r = s

t

= x2 − 4x+ 6
4x2 − 8x+ 4

= Q+ R

4x2 − 8x+ 4

=
(
1
4

)
+
(

−2x+ 5
4x2 − 8x+ 4

)
= 1

4 + −2x+ 5
4x2 − 8x+ 4

Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −2. Dividing this by leading coefficient in t which is 4 gives −1

2 . Now b can be
found.

b =
(
−1
2

)
− (0)

= −1
2

Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = x2 − 4x+ 6
4 (x− 1)2
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pole c location pole order [
√
r]c α+

c α−
c

1 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α+

∞ = −1
2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2 (x− 1) +

(
1
2

)
= − 1

2 (x− 1) +
1
2

= −2 + x

2x− 2

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2 (x− 1) +

1
2

)
(0) +

((
1

2 (x− 1)2
)
+
(
− 1
2 (x− 1) +

1
2

)2

−
(
x2 − 4x+ 6
4 (x− 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2(x−1)+

1
2

)
dx

= ex
2

√
x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
x−1 dx

= z1e
x
2+

ln(x−1)
2

= z1
(√

x− 1 ex
2
)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− −x

x−1 dx

(y1)2
dx

= y1

∫
ex+ln(x−1)

(y1)2
dx

= y1
(
−x e−x

)
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Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2
(
ex
(
−x e−x

))
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

(x− 1) y′′ − y′x+ y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1ex − c2x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = ex

y2 = −x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ ex −x

d
dx
(ex) d

dx
(−x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣e
x −x

ex −1

∣∣∣∣∣∣
Therefore

W = (ex) (−1)− (−x) (ex)

Which simplifies to
W = x ex − ex

Which simplifies to
W = (x− 1) ex

Therefore Eq. (2) becomes

u1 = −
∫

−2x(x− 1)2 ex

(x− 1)2 ex
dx

Which simplifies to

u1 = −
∫

−2xdx

Hence
u1 = x2

And Eq. (3) becomes

u2 =
∫ 2(x− 1)2 e2x

(x− 1)2 ex
dx
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Which simplifies to

u2 =
∫

2 exdx

Hence
u2 = 2 ex

Therefore the particular solution, from equation (1) is

yp(x) = −2x ex + x2ex

Which simplifies to
yp(x) = x(−2 + x) ex

Therefore the general solution is

y = yh + yp

= (c1ex − c2x) + (x(−2 + x) ex)

Summary
The solution(s) found are the following

(1)y = c1ex − c2x+ x(−2 + x) ex

Verification of solutions

y = c1ex − c2x+ x(−2 + x) ex

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 19� �
dsolve((x-1)*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=2*(x-1)^2*exp(x),y(x), singsol=all)� �

y(x) =
(
x2 + c1 − 2x

)
ex + c2x

3 Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 24� �
DSolve[(x-1)*y''[x]-x*y'[x]+y[x]==2*(x-1)^2*Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex
(
x2 − 2x+ c1

)
− c2x
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10.29 problem 29
10.29.1 Solving as second order change of variable on y method 1 ode . 3327
10.29.2 Solving as second order change of variable on y method 2 ode . 3334
10.29.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 3339

Internal problem ID [1183]
Internal file name [OUTPUT/1184_Sunday_June_05_2022_02_04_25_AM_71535634/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 29.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_y_method_1", "second_order_change_of_variable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

4x2y′′ − 4x(x+ 1) y′ + (2x+ 3) y = x
5
2 ex

10.29.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

4x2y′′ +
(
−4x2 − 4x

)
y′ + (2x+ 3) y = 0

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)
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Where

p(x) = −4x2 − 4x
4x2

q(x) = 2x+ 3
4x2

Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= 2x+ 3
4x2 −

(
−4x2−4x

4x2

)′
2 −

(
−4x2−4x

4x2

)2
4

= 2x+ 3
4x2 −

(
−8x−4
4x2 − −4x2−4x

2x3

)
2 −

( (
−4x2−4x

)2
16x4

)
4

= 2x+ 3
4x2 −

(
−8x− 4

8x2 − −4x2 − 4x
4x3

)
− (−4x2 − 4x)2

64x4

= −1
4

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ −4x2−4x

4x2
2

=
√
x ex

2 (5)

Hence (3) becomes

y = v(x)
√
x ex

2 (4)

Applying this change of variable to the original ode results in

ex
2 (4v′′(x)− v(x)) = ex

Which is now solved for v(x) Simplyfing the ode gives

v′′(x)− v(x)
4 = ex

2

4
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This is second order non-homogeneous ODE. In standard form the ODE is

Av′′(x) +Bv′(x) + Cv(x) = f(x)

Where A = 1, B = 0, C = −1
4 , f(x) =

e
x
2
4 . Let the solution be

v(x) = vh + vp

Where vh is the solution to the homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = 0, and vp
is a particular solution to the non-homogeneous ODE Av′′(x)+Bv′(x)+Cv(x) = f(x).
vh is the solution to

v′′(x)− v(x)
4 = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Av′′(x) +Bv′(x) + Cv(x) = 0

Where in the above A = 1, B = 0, C = −1
4 . Let the solution be v(x) = eλx. Substituting

this into the ODE gives

λ2eλx − eλx
4 = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 1
4 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −1
4 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)

√
02 − (4) (1)

(
−1
4

)
= ±1

2

Hence

λ1 = +1
2

λ2 = −1
2
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Which simplifies to

λ1 =
1
2

λ2 = −1
2

Since roots are real and distinct, then the solution is

v(x) = c1e
λ1x + c2e

λ2x

v(x) = c1e
( 1
2
)
x + c2e

(
− 1

2
)
x

Or
v(x) = c1e

x
2 + c2e−

x
2

Therefore the homogeneous solution vh is

vh = c1e
x
2 + c2e−

x
2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

ex
2

4

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is [{

ex
2
}]

While the set of the basis functions for the homogeneous solution found earlier is{
e−x

2 , ex
2
}

Since ex
2 is duplicated in the UC_set, then this basis is multiplied by extra x. The

UC_set becomes [{
ex

2x
}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

vp = A1e
x
2x
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The unknowns {A1} are found by substituting the above trial solution vp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A1e
x
2 = ex

2

4

Solving for the unknowns by comparing coefficients results in[
A1 =

1
4

]
Substituting the above back in the above trial solution vp, gives the particular solution

vp =
ex

2x

4

Therefore the general solution is

v = vh + vp

=
(
c1e

x
2 + c2e−

x
2
)
+
(
ex

2x

4

)

Now that v(x) is known, then

y = v(x) z(x)

=
(
c1e

x
2 + c2e−

x
2 + ex

2x

4

)
(z(x)) (7)

But from (5)

z(x) =
√
x ex

2

Hence (7) becomes

y =
(
c1e

x
2 + c2e−

x
2 + ex

2x

4

)√
x ex

2

Therefore the homogeneous solution yh is

yh =
(
c1e

x
2 + c2e−

x
2 + ex

2x

4

)√
x ex

2
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The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
√
x ex

y2 = e−x
2
√
x ex

2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣
√
x ex e−x

2
√
x ex

2

d
dx

(√
x ex

)
d
dx

(
e−x

2
√
x ex

2
)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣
√
x ex e−x

2
√
x ex

2

√
x ex + ex

2
√
x

e−
x
2 e

x
2

2
√
x

∣∣∣∣∣∣
Therefore

W =
(√

x ex
)(e−x

2 ex
2

2
√
x

)
−
(
e−x

2
√
x ex

2
)(√

x ex + ex
2
√
x

)
Which simplifies to

W = −e 3x
2 e−x

2x
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Which simplifies to
W = −x ex

Therefore Eq. (2) becomes

u1 = −
∫ e−x

2x3ex
2 ex

−4 exx3 dx

Which simplifies to

u1 = −
∫

−1
4dx

Hence
u1 =

x

4

And Eq. (3) becomes

u2 =
∫ (ex)2 x3

−4 exx3 dx

Which simplifies to

u2 =
∫

−ex
4 dx

Hence

u2 = −ex
4

Therefore the particular solution, from equation (1) is

yp(x) =
x

3
2 ex
4 − exe−x

2
√
x ex

2

4

Which simplifies to

yp(x) =
ex
√
x (x− 1)
4

Therefore the general solution is

y = yh + yp

=
((

c1e
x
2 + c2e−

x
2 + ex

2x

4

)√
x ex

2

)
+
(
ex
√
x (x− 1)
4

)
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Which simplifies to

y = ((x+ 4c1) ex + 4c2)
√
x

4 + ex
√
x (x− 1)
4

Summary
The solution(s) found are the following

(1)y = ((x+ 4c1) ex + 4c2)
√
x

4 + ex
√
x (x− 1)
4

Verification of solutions

y = ((x+ 4c1) ex + 4c2)
√
x

4 + ex
√
x (x− 1)
4

Verified OK.

10.29.2 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 4x2, B = −4x2 − 4x,C = 2x+ 3, f(x) = x
5
2 ex. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

4x2y′′ +
(
−4x2 − 4x

)
y′ + (2x+ 3) y = 0

In normal form the ode

4x2y′′ +
(
−4x2 − 4x

)
y′ + (2x+ 3) y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)
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Where

p(x) = −x− 1
x

q(x) = 2x+ 3
4x2

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence
n(n− 1)

x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives
n(n− 1)

x2 + n(−x− 1)
x2 + 2x+ 3

4x2 = 0 (5)

Solving (5) for n gives

n = 1
2 (6)

Substituting this value in (3) gives

v′′(x) +
(
1
x
+ −x− 1

x

)
v′(x) = 0

v′′(x)− v′(x) = 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x)− u(x) = 0 (8)

The above is now solved for u(x). Integrating both sides gives∫ 1
u
du = x+ c1

ln (u) = x+ c1

u = ex+c1

u = c1ex
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Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= c1ex + c2

Hence

y = v(x)xn

= (c1ex + c2)
√
x

= (c1ex + c2)
√
x

Now the particular solution to this ODE is found

4x2y′′ +
(
−4x2 − 4x

)
y′ + (2x+ 3) y = x

5
2 ex

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
√
x

y2 =
√
x ex

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣
√
x

√
x ex

d
dx

(√
x
)

d
dx

(√
x ex

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣
√
x

√
x ex

1
2
√
x

√
x ex + ex

2
√
x

∣∣∣∣∣∣
Therefore

W =
(√

x
)(√

x ex + ex
2
√
x

)
−
(√

x ex
)( 1

2
√
x

)

Which simplifies to
W = x ex

Which simplifies to
W = x ex

Therefore Eq. (2) becomes

u1 = −
∫ e2xx3

4 exx3 dx

Which simplifies to

u1 = −
∫ ex

4 dx

Hence

u1 = −ex
4

And Eq. (3) becomes

u2 =
∫ exx3

4 exx3 dx
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Which simplifies to

u2 =
∫ 1

4dx

Hence
u2 =

x

4

Therefore the particular solution, from equation (1) is

yp(x) =
x

3
2 ex
4 −

√
x ex
4

Which simplifies to

yp(x) =
ex
√
x (x− 1)
4

Therefore the general solution is

y = yh + yp

=
(
(c1ex + c2)

√
x
)
+
(
ex
√
x (x− 1)
4

)

= ex
√
x (x− 1)
4 + (c1ex + c2)

√
x

Which simplifies to

y =
√
x ((x+ 4c1 − 1) ex + 4c2)

4

Summary
The solution(s) found are the following

(1)y =
√
x ((x+ 4c1 − 1) ex + 4c2)

4
Verification of solutions

y =
√
x ((x+ 4c1 − 1) ex + 4c2)

4

Verified OK.
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10.29.3 Solving using Kovacic algorithm

Writing the ode as

4x2y′′ +
(
−4x2 − 4x

)
y′ + (2x+ 3) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 4x2

B = −4x2 − 4x (3)
C = 2x+ 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4

Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 439: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx
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= z1e
−
∫ 1

2
−4x2−4x

4x2 dx

= z1e
x
2+

ln(x)
2

= z1
(√

x ex
2
)

Which simplifies to
y1 =

√
x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4x2−4x

4x2 dx

(y1)2
dx

= y1

∫
ex+ln(x)

(y1)2
dx

= y1(ex)

Therefore the solution is

y = c1y1 + c2y2

= c1
(√

x
)
+ c2

(√
x(ex)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

4x2y′′ +
(
−4x2 − 4x

)
y′ + (2x+ 3) y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh =
√
x c1 + c2

√
x ex
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The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
√
x

y2 =
√
x ex

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣
√
x

√
x ex

d
dx

(√
x
)

d
dx

(√
x ex

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣
√
x

√
x ex

1
2
√
x

√
x ex + ex

2
√
x

∣∣∣∣∣∣
Therefore

W =
(√

x
)(√

x ex + ex
2
√
x

)
−
(√

x ex
)( 1

2
√
x

)

Which simplifies to
W = x ex
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Which simplifies to
W = x ex

Therefore Eq. (2) becomes

u1 = −
∫ e2xx3

4 exx3 dx

Which simplifies to

u1 = −
∫ ex

4 dx

Hence

u1 = −ex
4

And Eq. (3) becomes

u2 =
∫ exx3

4 exx3 dx

Which simplifies to

u2 =
∫ 1

4dx

Hence
u2 =

x

4

Therefore the particular solution, from equation (1) is

yp(x) =
x

3
2 ex
4 −

√
x ex
4

Which simplifies to

yp(x) =
ex
√
x (x− 1)
4

Therefore the general solution is

y = yh + yp

=
(√

x c1 + c2
√
x ex

)
+
(
ex
√
x (x− 1)
4

)
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Which simplifies to

y = (c1 + c2ex)
√
x+ ex

√
x (x− 1)
4

Summary
The solution(s) found are the following

(1)y = (c1 + c2ex)
√
x+ ex

√
x (x− 1)
4

Verification of solutions

y = (c1 + c2ex)
√
x+ ex

√
x (x− 1)
4

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 21� �
dsolve(4*x^2*diff(y(x),x$2)-4*x*(x+1)*diff(y(x),x)+(2*x+3)*y(x)=x^(5/2)*exp(x),y(x), singsol=all)� �

y(x) =
√
x ((x+ 4c1) ex + 4c2)

4

3 Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 30� �
DSolve[4*x^2*y''[x]-4*x*(x+1)*y'[x]+(2*x+3)*y[x]==x^(5/2)*Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4
√
x(ex(x− 1 + 4c2) + 4c1)
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10.30 problem 30
10.30.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 3346
10.30.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 3347

Internal problem ID [1184]
Internal file name [OUTPUT/1185_Sunday_June_05_2022_02_04_27_AM_59910487/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 30.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

(3x− 1) y′′ − (3x+ 2) y′ − (6x− 8) y = (3x− 1)2 e2x

With initial conditions

[y(0) = 1, y′(0) = 2]

10.30.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −3x− 2
3x− 1

q(x) = −6x+ 8
3x− 1

F = (3x− 1) e2x
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Hence the ode is

y′′ + (−3x− 2) y′
3x− 1 + (−6x+ 8) y

3x− 1 = (3x− 1) e2x

The domain of p(x) = −3x−2
3x−1 is

{
x <

1
3 ∨ 1

3 < x

}

And the point x0 = 0 is inside this domain. The domain of q(x) = −6x+8
3x−1 is

{
x <

1
3 ∨ 1

3 < x

}

And the point x0 = 0 is also inside this domain. The domain of F = (3x− 1) e2x is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

10.30.2 Solving using Kovacic algorithm

Writing the ode as

(3x− 1) y′′ + (−3x− 2) y′ + (−6x+ 8) y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3x− 1
B = −3x− 2 (3)
C = −6x+ 8

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 81x2 − 108x+ 54
4 (3x− 1)2

(6)

Comparing the above to (5) shows that

s = 81x2 − 108x+ 54
t = 4(3x− 1)2

Therefore eq. (4) becomes

z′′(x) =
(
81x2 − 108x+ 54

4 (3x− 1)2
)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 440: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 2
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4(3x− 1)2. There is a pole at x = 1

3 of order 2. Since there is no odd order
pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one
are met. Since there is a pole of order 2 then necessary conditions for case two are met.
Therefore

L = [1, 2]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 9
4 + 3

4
(
x− 1

3

)2 − 3
2
(
x− 1

3

)
For the pole at x = 1

3 let b be the coefficient of 1(
x− 1

3
)2 in the partial fractions decompo-

sition of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)
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Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 3

2 − 1
2x + 1

9x3 + 11
108x4 + 7

108x5 + 5
162x6 + 2

243x7 − 13
3888x8 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 3
2

From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 3
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = 9

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be

the coefficient in R of the term in x of degree of t minus one, divided by the leading
coefficient in t. Doing long division gives

r = s

t

= 81x2 − 108x+ 54
36x2 − 24x+ 4

= Q+ R

36x2 − 24x+ 4

=
(
9
4

)
+
(

−54x+ 45
36x2 − 24x+ 4

)
= 9

4 + −54x+ 45
36x2 − 24x+ 4

3350



Since the degree of t is 2, then we see that the coefficient of the term x in the remainder
R is −54. Dividing this by leading coefficient in t which is 36 gives −3

2 . Now b can be
found.

b =
(
−3
2

)
− (0)

= −3
2

Hence

[
√
r]∞ = 3

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−3
2

3
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−3

2
3
2

− 0
)

= 1
2

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 81x2 − 108x+ 54
4 (3x− 1)2

pole c location pole order [
√
r]c α+

c α−
c

1
3 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 3
2 −1

2
1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α+

∞ = −1
2 then

d = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0
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Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 1
2
(
x− 1

3

) + (3
2

)
= − 1

2
(
x− 1

3

) + 3
2

= 9x− 6
6x− 2

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2
(
x− 1

3

) + 3
2

)
(0) +

( 1
2
(
x− 1

3

)2
)

+
(
− 1
2
(
x− 1

3

) + 3
2

)2

−
(
81x2 − 108x+ 54

4 (3x− 1)2
) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ (

− 1
2
(
x− 1

3
)+ 3

2

)
dx

= e 3x
2

√
3x− 1
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−3x−2
3x−1 dx

= z1e
x
2+

ln(3x−1)
2

= z1
(
ex

2
√
3x− 1

)
Which simplifies to

y1 = e2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−3x−2

3x−1 dx

(y1)2
dx

= y1

∫
ex+ln(3x−1)

(y1)2
dx

= y1
(
−x e−3x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e2x
)
+ c2

(
e2x
(
−x e−3x))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

(3x− 1) y′′ + (−3x− 2) y′ + (−6x+ 8) y = 0
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The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e2x − x e−xc2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e2x

y2 = −x e−x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ e2x −x e−x

d
dx
(e2x) d

dx
(−x e−x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ e
2x −x e−x

2 e2x −e−x + x e−x

∣∣∣∣∣∣
Therefore

W =
(
e2x
) (

−e−x + x e−x
)
−
(
−x e−x

) (
2 e2x

)
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Which simplifies to
W = 3x e−xe2x − e2xe−x

Which simplifies to
W = (3x− 1) ex

Therefore Eq. (2) becomes

u1 = −
∫

−x e−x(3x− 1)2 e2x

(3x− 1)2 ex
dx

Which simplifies to

u1 = −
∫

−xdx

Hence

u1 =
x2

2

And Eq. (3) becomes

u2 =
∫ e4x(3x− 1)2

(3x− 1)2 ex
dx

Which simplifies to

u2 =
∫

e3xdx

Hence

u2 =
e3x
3

Therefore the particular solution, from equation (1) is

yp(x) =
x2e2x
2 − e3xx e−x

3

Which simplifies to

yp(x) =
e2xx(3x− 2)

6
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Therefore the general solution is

y = yh + yp

=
(
c1e2x − x e−xc2

)
+
(
e2xx(3x− 2)

6

)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e2x − x e−xc2 +
e2xx(3x− 2)

6 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1 and x = 0
in the above gives

1 = c1 (1A)

Taking derivative of the solution gives

y′ = 2c1e2x − c2e−x + x e−xc2 +
e2xx(3x− 2)

3 + e2x(3x− 2)
6 + x e2x

2
substituting y′ = 2 and x = 0 in the above gives

2 = 2c1 − c2 −
1
3 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 1

c2 = −1
3

Substituting these values back in above solution results in

y = e2x + x e−x

3 + x2e2x
2 − x e2x

3
Which simplifies to

y = (3x2 − 2x+ 6) e2x
6 + x e−x

3

Summary
The solution(s) found are the following

(1)y = (3x2 − 2x+ 6) e2x
6 + x e−x

3
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Figure 521: Solution plot

Verification of solutions

y = (3x2 − 2x+ 6) e2x
6 + x e−x

3

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 28� �
dsolve([(3*x-1)*diff(y(x),x$2)-(3*x+2)*diff(y(x),x)-(6*x-8)*y(x)=(3*x-1)^2*exp(2*x),y(0) = 1, D(y)(0) = 2],y(x), singsol=all)� �

y(x) = (3x2 − 2x+ 6) e2x
6 + x e−x

3

3 Solution by Mathematica
Time used: 0.13 (sec). Leaf size: 34� �
DSolve[{(3*x-1)*y''[x]-(3*x+2)*y'[x]-(6*x-8)*y[x]==(3*x-1)^2*Exp[2*x],{y[0]==1,y'[0]==2}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
6e

−x
(
e3x
(
3x2 − 2x+ 6

)
+ 2x

)
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Internal problem ID [1185]
Internal file name [OUTPUT/1186_Sunday_June_05_2022_02_04_29_AM_25254914/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 31.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_vari-
able_on_x_method_2", "linear_second_order_ode_solved_by_an_inte-
grating_factor", "second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(x− 1)2 y′′ − 2(x− 1) y′ + 2y = (x− 1)2

With initial conditions

[y(0) = 3, y′(0) = −6]
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10.31.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −2x+ 2
(x− 1)2

q(x) = 2
(x− 1)2

F = 1

Hence the ode is

y′′ + (−2x+ 2) y′

(x− 1)2
+ 2y

(x− 1)2
= 1

The domain of p(x) = −2x+2
(x−1)2 is

{x < 1∨ 1 < x}

And the point x0 = 0 is inside this domain. The domain of q(x) = 2
(x−1)2 is

{x < 1∨ 1 < x}

And the point x0 = 0 is also inside this domain. The domain of F = 1 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

10.31.2 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)
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Where p(x) = − 2
x−1 . Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
− 2

x−1 dx

= 1
x− 1

Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = 1
x− 1(

y

x− 1

)
′′ = 1

x− 1

Integrating once gives (
y

x− 1

)′

= ln (x− 1) + c1

Integrating again gives(
y

x− 1

)
= ln (x− 1) (x− 1) + 1 + (c1 − 1)x+ c2

Hence the solution is

y = ln (x− 1) (x− 1) + 1 + (c1 − 1)x+ c2
1

x−1

Or

y = x2 ln (x− 1)− x2 − 2x ln (x− 1) +
(
x2 − x

)
c1 + (x− 1) c2 + 2x+ ln (x− 1)− 1

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = x2 ln (x− 1)− x2 − 2x ln (x− 1) +
(
x2 − x

)
c1 + (x− 1) c2 + 2x+ ln (x− 1)− 1

(1)
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Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 3 and x = 0
in the above gives

3 = iπ − c2 − 1 (1A)

Taking derivative of the solution gives

y′ = 2x ln (x− 1) + x2

x− 1 − 2x− 2 ln (x− 1)− 2x
x− 1 + (2x− 1) c1 + c2 + 2 + 1

x− 1

substituting y′ = −6 and x = 0 in the above gives

−6 = −2iπ − c1 + c2 + 1 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −iπ + 3
c2 = iπ − 4

Substituting these values back in above solution results in

y = x2 ln (x− 1) + 2x2 − 2x ln (x− 1)− 5x− ix2π + 2ixπ − iπ + 3 + ln (x− 1)

Summary
The solution(s) found are the following

(1)y = −((1− x) ln (x− 1) + ixπ − iπ − 2x+ 3) (x− 1)
Verification of solutions

y = −((1− x) ln (x− 1) + ixπ − iπ − 2x+ 3) (x− 1)

Verified OK.

10.31.3 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

(x− 1)2 y′′ + (−2x+ 2) y′ + 2y = 0
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In normal form the ode

(x− 1)2 y′′ + (−2x+ 2) y′ + 2y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 2
1− x

q(x) = 2
(x− 1)2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫ 2

1−x
dx
)
dx

=
∫

e2 ln(1−x) dx

=
∫

(x− 1)2 dx

= (x− 1)3

3 (6)
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Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
2

(x−1)2

(x− 1)4

= 2
(x− 1)6

(7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + 2y(τ)

(x− 1)6
= 0

But in terms of τ
2

(x− 1)6
= 2

9τ 2

Hence the above ode becomes

d2

dτ 2
y(τ) + 2y(τ)

9τ 2 = 0

The above ode is now solved for y(τ). The ode can be written as

9
(

d2

dτ 2
y(τ)

)
τ 2 + 2y(τ) = 0

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be
y(τ) = τ r, then y′ = rτ r−1 and y′′ = r(r − 1)τ r−2. Substituting these back into the
given ODE gives

9τ 2(r(r − 1))τ r−2 + 0rτ r−1 + 2τ r = 0

Simplifying gives
9r(r − 1) τ r + 0 τ r + 2τ r = 0

Since τ r 6= 0 then dividing throughout by τ r gives

9r(r − 1) + 0 + 2 = 0

Or
9r2 − 9r + 2 = 0 (1)
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Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 =
1
3

r2 =
2
3

Since the roots are real and distinct, then the general solution is

y(τ) = c1y1 + c2y2

Where y1 = τ r1 and y2 = τ r2 . Hence

y(τ) = c1τ
1
3 + c2τ

2
3

The above solution is now transformed back to y using (6) which results in

y =
c13

2
3
(
(x− 1)3

) 1
3

3 +
c23

1
3
(
(x− 1)3

) 2
3

3
Therefore the homogeneous solution yh is

yh =
c13

2
3
(
(x− 1)3

) 1
3

3 +
c23

1
3
(
(x− 1)3

) 2
3

3

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
(
x3 − 3x2 + 3x− 1

) 1
3

y2 =
(
x3 − 3x2 + 3x− 1

) 2
3

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
(x3 − 3x2 + 3x− 1)

1
3 (x3 − 3x2 + 3x− 1)

2
3

d
dx

(
(x3 − 3x2 + 3x− 1)

1
3
)

d
dx

(
(x3 − 3x2 + 3x− 1)

2
3
)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣
(x3 − 3x2 + 3x− 1)

1
3 (x3 − 3x2 + 3x− 1)

2
3

3x2−6x+3
3(x3−3x2+3x−1)

2
3

2x2−4x+2
(x3−3x2+3x−1)

1
3

∣∣∣∣∣∣∣
Therefore

W =
((

x3 − 3x2 + 3x− 1
) 1

3
)( 2x2 − 4x+ 2

(x3 − 3x2 + 3x− 1)
1
3

)

−
((

x3 − 3x2 + 3x− 1
) 2

3
)( 3x2 − 6x+ 3

3 (x3 − 3x2 + 3x− 1)
2
3

)

Which simplifies to
W = x2 − 2x+ 1

Which simplifies to
W = (x− 1)2

Therefore Eq. (2) becomes

u1 = −
∫ (x3 − 3x2 + 3x− 1)

2
3 (x− 1)2

(x− 1)4
dx

Which simplifies to

u1 = −
∫ (

(x− 1)3
) 2

3

(x− 1)2
dx

Hence

u1 = −
(
(x− 1)3

) 2
3 x

(x− 1)2
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And Eq. (3) becomes

u2 =
∫ (x3 − 3x2 + 3x− 1)

1
3 (x− 1)2

(x− 1)4
dx

Which simplifies to

u2 =
∫ (

(x− 1)3
) 1

3

(x− 1)2
dx

Hence

u2 =
(
(x− 1)3

) 1
3 ln (x− 1)

x− 1

Therefore the particular solution, from equation (1) is

yp(x)

= −
(
(x− 1)3

) 2
3 x(x3 − 3x2 + 3x− 1)

1
3

(x− 1)2
+
(
(x− 1)3

) 1
3 ln (x− 1) (x3 − 3x2 + 3x− 1)

2
3

x− 1

Which simplifies to

yp(x) = (x− 1) (ln (x− 1) (x− 1)− x)

Therefore the general solution is

y = yh + yp

=

c13
2
3
(
(x− 1)3

) 1
3

3 +
c23

1
3
(
(x− 1)3

) 2
3

3

+ ((x− 1) (ln (x− 1) (x− 1)− x))

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y =
c13

2
3
(
(x− 1)3

) 1
3

3 +
c23

1
3
(
(x− 1)3

) 2
3

3 + (x− 1) (ln (x− 1) (x− 1)− x) (1)

3367



Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 3 and x = 0
in the above gives

3 = 3 2
3 c1
6 + i3 1

6 c1
2 − 3 1

3 c2
6 + i3 5

6 c2
6 + iπ (1A)

Taking derivative of the solution gives

y′ = c13
2
3 (x− 1)2

3
(
(x− 1)3

) 2
3
+ 2c23

1
3 (x− 1)2

3
(
(x− 1)3

) 1
3
+ 2 ln (x− 1) (x− 1)− x

substituting y′ = −6 and x = 0 in the above gives

−6 = −3 2
3 c1
6 − i3 1

6 c1
2 + 3 1

3 c2
3 − i3 5

6 c2
3 − 2iπ (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 0

c2 = −6(3i+ π)
3 5

6 + i3 1
3

Substituting these values back in above solution results in

y = 3 5
6 ln (x− 1)x2 − 2 3 5

6 ln (x− 1)x− 3 5
6x2 + 3 5

6 ln (x− 1) + 3 5
6x+ i3 1

3 ln (x− 1)x2 − 2i3 1
3 ln (x− 1)x− 6i3 1

3 (x3 − 3x2 + 3x− 1)
2
3 − i3 1

3x2 − 2 3 1
3π(x3 − 3x2 + 3x− 1)

2
3 + i3 1

3 ln (x− 1) + i3 1
3x

3 5
6 + i3 1

3

Summary
The solution(s) found are the following

(1)y =
−6
(
i+ π

3

)
3 1

3
(
(x− 1)3

) 2
3 + (ln (x− 1) (x− 1)− x)

(
3 5

6 + i3 1
3

)
(x− 1)

3 5
6 + i3 1

3

Verification of solutions

y =
−6
(
i+ π

3

)
3 1

3
(
(x− 1)3

) 2
3 + (ln (x− 1) (x− 1)− x)

(
3 5

6 + i3 1
3

)
(x− 1)

3 5
6 + i3 1

3

Verified OK.

3368



10.31.4 Solving as second order ode non constant coeff transformation on
B ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = (x− 1)2

B = −2x+ 2
C = 2
F = (x− 1)2

The above shows that for this ode

AB′′ +BB′ + CB =
(
(x− 1)2

)
(0) + (−2x+ 2) (−2) + (2) (−2x+ 2)

= 0
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Hence the ode in v given in (1) now simplifies to

−2(x− 1)3 v′′ + (0) v′ = 0

Now by applying v′ = u the above becomes

−2(x− 1)3 u′(x) = 0

Which is now solved for u. Integrating both sides gives

u(x) =
∫

0 dx

= c1

The ode for v now becomes

v′ = u

= c1

Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1 dx

= c1x+ c2

Therefore the homogeneous solution is

yh(x) = Bv

= (−2x+ 2) (c1x+ c2)
= −2(x− 1) (c1x+ c2)

And now the particular solution yp(x) will be found. The particular solution yp can be
found using either the method of undetermined coefficients, or the method of variation
of parameters. The method of variation of parameters will be used as it is more general
and can be used when the coefficients of the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = −2x+ 2

y2 = −2x2 + 2x
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ −2x+ 2 −2x2 + 2x
d
dx
(−2x+ 2) d

dx
(−2x2 + 2x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣−2x+ 2 −2x2 + 2x
−2 −4x+ 2

∣∣∣∣∣∣
Therefore

W = (−2x+ 2) (−4x+ 2)−
(
−2x2 + 2x

)
(−2)

Which simplifies to
W = 4x2 − 8x+ 4

Which simplifies to
W = 4(x− 1)2

Therefore Eq. (2) becomes

u1 = −
∫ (−2x2 + 2x) (x− 1)2

4 (x− 1)4
dx

Which simplifies to

u1 = −
∫

− x

2x− 2dx
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Hence

u1 =
x

2 + ln (x− 1)
2

And Eq. (3) becomes

u2 =
∫ (x− 1)2 (−2x+ 2)

4 (x− 1)4
dx

Which simplifies to

u2 =
∫

− 1
2x− 2dx

Hence

u2 = − ln (x− 1)
2

Therefore the particular solution, from equation (1) is

yp(x) =
(
x

2 + ln (x− 1)
2

)
(−2x+ 2)− ln (x− 1) (−2x2 + 2x)

2

Which simplifies to

yp(x) = (x− 1) (ln (x− 1) (x− 1)− x)

Hence the complete solution is

y(x) = yh + yp

= (−2(x− 1) (c1x+ c2)) + ((x− 1) (ln (x− 1) (x− 1)− x))
= (x− 1)2 ln (x− 1)− (x− 1) (2c1x+ 2c2 + x)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = (x− 1)2 ln (x− 1)− (x− 1) (2c1x+ 2c2 + x) (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 3 and x = 0
in the above gives

3 = iπ + 2c2 (1A)
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Taking derivative of the solution gives

y′ = 2 ln (x− 1) (x− 1)− 1− 2c1x− 2c2 − (x− 1) (2c1 + 1)

substituting y′ = −6 and x = 0 in the above gives

−6 = −2iπ + 2c1 − 2c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −3
2 + iπ

2
c2 =

3
2 − iπ

2
Substituting these values back in above solution results in

y = x2 ln (x− 1) + 2x2 − 2x ln (x− 1)− 5x− ix2π + 2ixπ − iπ + 3 + ln (x− 1)

Summary
The solution(s) found are the following

(1)y = −((1− x) ln (x− 1) + ixπ − iπ − 2x+ 3) (x− 1)
Verification of solutions

y = −((1− x) ln (x− 1) + ixπ − iπ − 2x+ 3) (x− 1)

Verified OK.

10.31.5 Solving using Kovacic algorithm

Writing the ode as

(x− 1)2 y′′ + (−2x+ 2) y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = (x− 1)2

B = −2x+ 2 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 441: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2x+2
(x−1)2

dx

= z1e
ln(x−1)

= z1(x− 1)

Which simplifies to
y1 = x− 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2x+2

(x−1)2
dx

(y1)2
dx

= y1

∫
e2 ln(x−1)

(y1)2
dx

= y1(x)
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Therefore the solution is

y = c1y1 + c2y2

= c1(x− 1) + c2(x− 1(x))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

(x− 1)2 y′′ + (−2x+ 2) y′ + 2y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1(x− 1) + c2x(x− 1)

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x− 1

y2 = x(x− 1)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x− 1 x(x− 1)
d
dx
(x− 1) d

dx
(x(x− 1))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣x− 1 x(x− 1)
1 2x− 1

∣∣∣∣∣∣
Therefore

W = (x− 1) (2x− 1)− (x(x− 1)) (1)

Which simplifies to
W = x2 − 2x+ 1

Which simplifies to
W = (x− 1)2

Therefore Eq. (2) becomes

u1 = −
∫

x(x− 1)3

(x− 1)4
dx

Which simplifies to

u1 = −
∫

x

x− 1dx

Hence
u1 = −x− ln (x− 1)

And Eq. (3) becomes

u2 =
∫ (x− 1)3

(x− 1)4
dx

Which simplifies to

u2 =
∫ 1

x− 1dx
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Hence
u2 = ln (x− 1)

Therefore the particular solution, from equation (1) is

yp(x) = (−x− ln (x− 1)) (x− 1) + ln (x− 1)x(x− 1)

Which simplifies to

yp(x) = (x− 1) (ln (x− 1) (x− 1)− x)

Therefore the general solution is

y = yh + yp

= (c1(x− 1) + c2x(x− 1)) + ((x− 1) (ln (x− 1) (x− 1)− x))

Which simplifies to

y = (x− 1) (c2x+ c1) + (x− 1) (ln (x− 1) (x− 1)− x)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = (x− 1) (c2x+ c1) + (x− 1) (ln (x− 1) (x− 1)− x) (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 3 and x = 0
in the above gives

3 = iπ − c1 (1A)

Taking derivative of the solution gives

y′ = c2x+ c1 + (x− 1) c2 + 2 ln (x− 1) (x− 1)− x

substituting y′ = −6 and x = 0 in the above gives

−6 = −2iπ + c1 − c2 (2A)
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Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = iπ − 3
c2 = −iπ + 3

Substituting these values back in above solution results in

y = x2 ln (x− 1) + 2x2 − 2x ln (x− 1)− 5x− ix2π + 2ixπ − iπ + 3 + ln (x− 1)

Summary
The solution(s) found are the following

(1)y = −((1− x) ln (x− 1) + ixπ − iπ − 2x+ 3) (x− 1)
Verification of solutions

y = −((1− x) ln (x− 1) + ixπ − iπ − 2x+ 3) (x− 1)

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 33� �
dsolve([(x-1)^2*diff(y(x),x$2)-2*(x-1)*diff(y(x),x)+2*y(x)=(x-1)^2,y(0) = 3, D(y)(0) = -6],y(x), singsol=all)� �

y(x) = (−iπx+ iπ + ln (x− 1)x− ln (x− 1) + 2x− 3) (x− 1)
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3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 30� �
DSolve[{(x-1)^2*y''[x]-2*(x-1)*y'[x]+2*y[x]==(x-1)^2,{y[0]==3,y'[0]==-6}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (x− 1)(−iπ(x− 1) + 2x+ (x− 1) log(x− 1)− 3)
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10.32 problem 32
10.32.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 3381

Internal problem ID [1186]
Internal file name [OUTPUT/1187_Sunday_June_05_2022_02_04_30_AM_23388380/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 32.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

Unable to solve or complete the solution.

(x− 1)2 y′′ −
(
x2 − 1

)
y′ + (x− 1)3 y = (x− 1)3 ex

With initial conditions

[y(0) = 4, y′(0) = −6]

10.32.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −x2 + 1
(x− 1)2

q(x) = x− 1
F = (x− 1) ex
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Hence the ode is

y′′ + (−x2 + 1) y′

(x− 1)2
+ y(x− 1) = (x− 1) ex

The domain of p(x) = −x2+1
(x−1)2 is

{x < 1∨ 1 < x}

And the point x0 = 0 is inside this domain. The domain of q(x) = x− 1 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. The domain of F = (x− 1) ex is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying to convert to an ODE of Bessel type

trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati

trying Riccati sub-methods:
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]

--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 5`� �
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7 Solution by Maple� �
dsolve([(x-1)^2*diff(y(x),x$2)-(x^2-1)*diff(y(x),x)+(x-1)^3*y(x)=(x-1)^3*exp(x),y(0) = 4, D(y)(0) = -6],y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[{(x-1)^2*y''[x]-(x^2-1)*y'[x]+(x-1)^3*y[x]==(x-1)^3*Exp[x],{y[0]==4,y'[0]==-6}},y[x],x,IncludeSingularSolutions -> True]� �
Not solved

3384



10.33 problem 33
10.33.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 3386
10.33.2 Solving as second order integrable as is ode . . . . . . . . . . . 3386
10.33.3 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3389
10.33.4 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 3393
10.33.5 Solving as exact linear second order ode ode . . . . . . . . . . . 3404

Internal problem ID [1187]
Internal file name [OUTPUT/1188_Sunday_June_05_2022_02_04_33_AM_77966869/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 33.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second
order ode", "second_order_integrable_as_is"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _nonhomogeneous ]]

(x− 1)2 y′′ + 4y′x+ 2y = 2x

With initial conditions

[y(0) = 0, y′(0) = −2]
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10.33.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 4x
(x− 1)2

q(x) = 2
(x− 1)2

F = 2x
(x− 1)2

Hence the ode is

y′′ + 4xy′

(x− 1)2
+ 2y

(x− 1)2
= 2x

(x− 1)2

The domain of p(x) = 4x
(x−1)2 is

{x < 1∨ 1 < x}

And the point x0 = 0 is inside this domain. The domain of q(x) = 2
(x−1)2 is

{x < 1∨ 1 < x}

And the point x0 = 0 is also inside this domain. The domain of F = 2x
(x−1)2 is

{x < 1∨ 1 < x}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

10.33.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫ (
(x− 1)2 y′′ + 4y′x+ 2y

)
dx =

∫
2xdx

(2 + 2x) y +
(
x2 − 2x+ 1

)
y′ = x2 + c1

Which is now solved for y.
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Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −−2x− 2
(x− 1)2

q(x) = x2 + c1

(x− 1)2

Hence the ode is

y′ − (−2x− 2) y
(x− 1)2

= x2 + c1

(x− 1)2

The integrating factor µ is

µ = e
∫
−−2x−2

(x−1)2
dx

= e2 ln(x−1)− 4
x−1

Which simplifies to

µ = (x− 1)2 e−
4

x−1

The ode becomes

d
dx(µy) = (µ)

(
x2 + c1

(x− 1)2
)

d
dx

(
(x− 1)2 e−

4
x−1y

)
=
(
(x− 1)2 e−

4
x−1

)( x2 + c1

(x− 1)2
)

d
(
(x− 1)2 e−

4
x−1y

)
=
((

x2 + c1
)
e−

4
x−1

)
dx

Integrating gives

(x− 1)2 e−
4

x−1y =
∫ (

x2 + c1
)
e−

4
x−1 dx

(x− 1)2 e−
4

x−1y = −e−
4

x−1 (x− 1)
3 +

4 expIntegral1
( 4
x−1

)
3 + 4c1

(
e−

4
x−1 (x− 1)

4 − expIntegral1
(

4
x− 1

))
+ (x− 1)2 e−

4
x−1

3 + (x− 1)3 e−
4

x−1

3 + c2

Dividing both sides by the integrating factor µ = (x− 1)2 e−
4

x−1 results in

y =
e

4
x−1

(
− e−

4
x−1 (x−1)

3 +
4 expIntegral1

(
4

x−1

)
3 + 4c1

(
e−

4
x−1 (x−1)

4 − expIntegral1
( 4
x−1

))
+ (x−1)2e−

4
x−1

3 + (x−1)3e−
4

x−1

3

)
(x− 1)2

+ c2e
4

x−1

(x− 1)2
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which simplifies to

y =
(−12c1 + 4) e

4
x−1 expIntegral1

( 4
x−1

)
+ 3c2e

4
x−1 + (x− 1) (x2 + 3c1 − x− 1)

3 (x− 1)2

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y =
(−12c1 + 4) e

4
x−1 expIntegral1

( 4
x−1

)
+ 3c2e

4
x−1 + (x− 1) (x2 + 3c1 − x− 1)

3 (x− 1)2
(1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 0
in the above gives

0 = 1
3 + 4(−3c1 + 1) e−4 expIntegral1 (−4)

3 + c2e−4 − c1 (1A)

Taking derivative of the solution gives

y′ =
−

4(−12c1+4)e
4

x−1 expIntegral1
(

4
x−1

)
(x−1)2 + (−12c1+4)e

4
x−1 e−

4
x−1

x−1 − 12c2e
4

x−1

(x−1)2 + x2 + 3c1 − x− 1 + (x− 1) (2x− 1)

3 (x− 1)2
−

2
(
(−12c1 + 4) e

4
x−1 expIntegral1

( 4
x−1

)
+ 3c2e

4
x−1 + (x− 1) (x2 + 3c1 − x− 1)

)
3 (x− 1)3

substituting y′ = −2 and x = 0 in the above gives

−2 = −2
3 + 8(3c1 − 1) e−4 expIntegral1 (−4)

3 − 2c2e−4 + 3c1 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −2

c2 = −28 expIntegral1 (−4)
3 − 7 e4

3

Substituting these values back in above solution results in

y =
x3 + 28 expIntegral1

( 4
x−1

)
e

4
x−1 − 28 e

4
x−1 expIntegral1 (−4)− 7 e

4x
x−1 − 2x2 − 6x+ 7

3x2 − 6x+ 3

Which simplifies to

y=
x3 + 28 expIntegral1

( 4
x−1

)
e

4
x−1 − 28 e

4
x−1 expIntegral1 (−4)− 7 e

4x
x−1 − 2x2 − 6x+ 7

3 (x− 1)2
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Summary
The solution(s) found are the following
y

=
x3 + 28 expIntegral1

( 4
x−1

)
e

4
x−1 − 28 e

4
x−1 expIntegral1 (−4)− 7 e

4x
x−1 − 2x2 − 6x+ 7

3 (x− 1)2
(1)

Figure 522: Solution plot

Verification of solutions

y=
x3 + 28 expIntegral1

( 4
x−1

)
e

4
x−1 − 28 e

4
x−1 expIntegral1 (−4)− 7 e

4x
x−1 − 2x2 − 6x+ 7

3 (x− 1)2

Verified OK.

10.33.3 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as
(x− 1)2 y′′ + 4y′x+ 2y = 2x
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Integrating both sides of the ODE w.r.t x gives∫ (
(x− 1)2 y′′ + 4y′x+ 2y

)
dx =

∫
2xdx

(2 + 2x) y +
(
x2 − 2x+ 1

)
y′ = x2 + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −−2x− 2
(x− 1)2

q(x) = x2 + c1

(x− 1)2

Hence the ode is

y′ − (−2x− 2) y
(x− 1)2

= x2 + c1

(x− 1)2

The integrating factor µ is

µ = e
∫
−−2x−2

(x−1)2
dx

= e2 ln(x−1)− 4
x−1

Which simplifies to

µ = (x− 1)2 e−
4

x−1

The ode becomes
d
dx(µy) = (µ)

(
x2 + c1

(x− 1)2
)

d
dx

(
(x− 1)2 e−

4
x−1y

)
=
(
(x− 1)2 e−

4
x−1

)( x2 + c1

(x− 1)2
)

d
(
(x− 1)2 e−

4
x−1y

)
=
((

x2 + c1
)
e−

4
x−1

)
dx

Integrating gives

(x− 1)2 e−
4

x−1y =
∫ (

x2 + c1
)
e−

4
x−1 dx

(x− 1)2 e−
4

x−1y = −e−
4

x−1 (x− 1)
3 +

4 expIntegral1
( 4
x−1

)
3 + 4c1

(
e−

4
x−1 (x− 1)

4 − expIntegral1
(

4
x− 1

))
+ (x− 1)2 e−

4
x−1

3 + (x− 1)3 e−
4

x−1

3 + c2
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Dividing both sides by the integrating factor µ = (x− 1)2 e−
4

x−1 results in

y =
e

4
x−1

(
− e−

4
x−1 (x−1)

3 +
4 expIntegral1

(
4

x−1

)
3 + 4c1

(
e−

4
x−1 (x−1)

4 − expIntegral1
( 4
x−1

))
+ (x−1)2e−

4
x−1

3 + (x−1)3e−
4

x−1

3

)
(x− 1)2

+ c2e
4

x−1

(x− 1)2

which simplifies to

y =
(−12c1 + 4) e

4
x−1 expIntegral1

( 4
x−1

)
+ 3c2e

4
x−1 + (x− 1) (x2 + 3c1 − x− 1)

3 (x− 1)2

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y =
(−12c1 + 4) e

4
x−1 expIntegral1

( 4
x−1

)
+ 3c2e

4
x−1 + (x− 1) (x2 + 3c1 − x− 1)

3 (x− 1)2
(1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 0
in the above gives

0 = 1
3 + 4(−3c1 + 1) e−4 expIntegral1 (−4)

3 + c2e−4 − c1 (1A)

Taking derivative of the solution gives

y′ =
−

4(−12c1+4)e
4

x−1 expIntegral1
(

4
x−1

)
(x−1)2 + (−12c1+4)e

4
x−1 e−

4
x−1

x−1 − 12c2e
4

x−1

(x−1)2 + x2 + 3c1 − x− 1 + (x− 1) (2x− 1)

3 (x− 1)2
−

2
(
(−12c1 + 4) e

4
x−1 expIntegral1

( 4
x−1

)
+ 3c2e

4
x−1 + (x− 1) (x2 + 3c1 − x− 1)

)
3 (x− 1)3

substituting y′ = −2 and x = 0 in the above gives

−2 = −2
3 + 8(3c1 − 1) e−4 expIntegral1 (−4)

3 − 2c2e−4 + 3c1 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −2

c2 = −28 expIntegral1 (−4)
3 − 7 e4

3
Substituting these values back in above solution results in

y =
x3 + 28 expIntegral1

( 4
x−1

)
e

4
x−1 − 28 e

4
x−1 expIntegral1 (−4)− 7 e

4x
x−1 − 2x2 − 6x+ 7

3x2 − 6x+ 3
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Which simplifies to

y=
x3 + 28 expIntegral1

( 4
x−1

)
e

4
x−1 − 28 e

4
x−1 expIntegral1 (−4)− 7 e

4x
x−1 − 2x2 − 6x+ 7

3 (x− 1)2

Summary
The solution(s) found are the following
y

=
x3 + 28 expIntegral1

( 4
x−1

)
e

4
x−1 − 28 e

4
x−1 expIntegral1 (−4)− 7 e

4x
x−1 − 2x2 − 6x+ 7

3 (x− 1)2
(1)

Figure 523: Solution plot

Verification of solutions

y=
x3 + 28 expIntegral1

( 4
x−1

)
e

4
x−1 − 28 e

4
x−1 expIntegral1 (−4)− 7 e

4x
x−1 − 2x2 − 6x+ 7

3 (x− 1)2

Verified OK.
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10.33.4 Solving using Kovacic algorithm

Writing the ode as

(x− 1)2 y′′ + 4y′x+ 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = (x− 1)2

B = 4x (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4x
(x− 1)4

(6)

Comparing the above to (5) shows that

s = 4x
t = (x− 1)4

Therefore eq. (4) becomes

z′′(x) =
(

4x
(x− 1)4

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 442: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 4− 1
= 3

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = (x− 1)4. There is a pole at x = 1 of order 4. Since there is no odd order
pole larger than 2 and the order at ∞ is 3 then the necessary conditions for case one
are met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at higher order poles of order 2v≥4 (must be even order for case one).Then
for each pole c, [

√
r]c is the sum of terms 1

(x−c)i for 2 ≤ i ≤ v in the Laurent series
expansion of

√
r expanded around each pole c. Hence

[
√
r]c =

v∑
2

ai
(x− c)i (1B)
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Let a be the coefficient of the term 1
(x−c)v in the above where v is the pole order divided

by 2. Let b be the coefficient of 1
(x−c)v+1 in r minus the coefficient of 1

(x−c)v+1 in [
√
r]c.

Then

α+
c = 1

2

(
b

a
+ v

)
α−
c = 1

2

(
− b

a
+ v

)
The partial fraction decomposition of r is

r = 4
(x− 1)3

+ 4
(x− 1)4

There is pole in r at x = 1 of order 4, hence v = 2. Expanding
√
r as Laurent series

about this pole c = 1 gives

[
√
r]c ≈

2
(x− 1)2

+ 1
x− 1 − 3

8 + x

8 − 5(x− 1)2

64 + 7(x− 1)3

128 + . . . (2B)

Using eq. (1B), taking the sum up to v = 2 the above becomes

[
√
r]c =

2
(x− 1)2

(3B)

The above shows that the coefficient of 1
(x−1)2 is

a = 2

Now we need to find b. let b be the coefficient of the term 1
(x−c)v+1 in r minus the

coefficient of the same term but in the sum [
√
r]c found in eq. (3B). Here c is current

pole which is c = 1. This term becomes 1
(x−1)3 . The coefficient of this term in the sum

[
√
r]c is seen to be 0 and the coefficient of this term r is found from the partial fraction

decomposition from above to be 4. Therefore

b = (4)− (0)
= 4

Hence

[
√
r]c =

2
(x− 1)2

α+
c = 1

2

(
b

a
+ v

)
= 1

2

(
4
2 + 2

)
= 2

α−
c = 1

2

(
− b

a
+ v

)
= 1

2

(
−4
2 + 2

)
= 0
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Since the order of r at ∞ is 3 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 4x
(x− 1)4

pole c location pole order [
√
r]c α+

c α−
c

1 4 2
(x−1)2 2 0

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

3 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α+

∞ = 0 then

d = α+
∞ −

(
α−
c1

)
= 0− (0)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= − 2
(x− 1)2

+ (0)

= − 2
(x− 1)2

= − 2
(x− 1)2

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 2
(x− 1)2

)
(0) +

((
4

(x− 1)3
)
+
(
− 2
(x− 1)2

)2

−
(

4x
(x− 1)4

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 2

(x−1)2
dx

= e
2

x−1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4x

(x−1)2
dx

= z1e
−2 ln(x−1)+ 2

x−1

= z1

(
e

2
x−1

(x− 1)2

)
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Which simplifies to

y1 =
e

4
x−1

(x− 1)2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 4x

(x−1)2
dx

(y1)2
dx

= y1

∫
e−4 ln(x−1)+ 4

x−1

(y1)2
dx

= y1

(
e−

4
x−1 (x− 1)− 4 expIntegral1

(
4

x− 1

))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
e

4
x−1

(x− 1)2

)
+ c2

(
e

4
x−1

(x− 1)2
(
e−

4
x−1 (x− 1)− 4 expIntegral1

(
4

x− 1

)))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

(x− 1)2 y′′ + 4y′x+ 2y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e
4

x−1

(x− 1)2
+

c2
(
−4 expIntegral1

( 4
x−1

)
e

4
x−1 + x− 1

)
(x− 1)2
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The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
e

4
x−1

(x− 1)2

y2 =
−4 expIntegral1

( 4
x−1

)
e

4
x−1 + x− 1

(x− 1)2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣∣∣∣
e

4
x−1

(x−1)2
−4 expIntegral1

(
4

x−1

)
e

4
x−1+x−1

(x−1)2

d
dx

(
e

4
x−1

(x−1)2

)
d
dx

(
−4 expIntegral1

(
4

x−1

)
e

4
x−1+x−1

(x−1)2

)
∣∣∣∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣∣∣∣∣
e

4
x−1

(x−1)2
−4 expIntegral1

(
4

x−1

)
e

4
x−1+x−1

(x−1)2

− 2 e
4

x−1

(x−1)3 −
4 e

4
x−1

(x−1)4
− 4 e

− 4
x−1 e

4
x−1

x−1 +
16 expIntegral1

(
4

x−1
)
e

4
x−1

(x−1)2
+1

(x−1)2 −
2
(
−4 expIntegral1

(
4

x−1

)
e

4
x−1+x−1

)
(x−1)3

∣∣∣∣∣∣∣∣∣∣
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Therefore

W =
(

e
4

x−1

(x− 1)2

)−4 e−
4

x−1 e
4

x−1

x−1 +
16 expIntegral1

(
4

x−1

)
e

4
x−1

(x−1)2 + 1

(x− 1)2

−
2
(
−4 expIntegral1

( 4
x−1

)
e

4
x−1 + x− 1

)
(x− 1)3


−

(
−4 expIntegral1

( 4
x−1

)
e

4
x−1 + x− 1

(x− 1)2

)(
− 2 e

4
x−1

(x− 1)3
− 4 e

4
x−1

(x− 1)4

)

Which simplifies to

W = −
e

4
x−1

(
4 e−

4
x−1 e

4
x−1 − x− 3

)
(x− 1)5

Which simplifies to

W = e
4

x−1

(x− 1)4

Therefore Eq. (2) becomes

u1 = −
∫ 2

(
−4 expIntegral1

(
4

x−1

)
e

4
x−1+x−1

)
x

(x−1)2

e
4

x−1

(x−1)2

dx

Which simplifies to

u1 = −
∫

2
(
e−

4
x−1 (x− 1)− 4 expIntegral1

(
4

x− 1

))
xdx

Hence

u1 =−2 e−
4

x−1x3

3 + e−
4

x−1x2

3 +4 expIntegral1
(

4
x− 1

)
x2+e−

4
x−1

3 +
4 expIntegral1

( 4
x−1

)
3
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And Eq. (3) becomes

u2 =
∫ 2 e

4
x−1 x

(x−1)2

e
4

x−1

(x−1)2

dx

Which simplifies to

u2 =
∫

2xdx

Hence
u2 = x2

Which simplifies to

u1 =
4(3x2 + 1) expIntegral1

( 4
x−1

)
3 + (−2x3 + x2 + 1) e−

4
x−1

3
u2 = x2

Therefore the particular solution, from equation (1) is

yp(x) =

(
4
(
3x2+1

)
expIntegral1

(
4

x−1

)
3 +

(
−2x3+x2+1

)
e−

4
x−1

3

)
e

4
x−1

(x− 1)2

+
x2
(
−4 expIntegral1

( 4
x−1

)
e

4
x−1 + x− 1

)
(x− 1)2

Which simplifies to

yp(x) =
x3 − 2x2 + 4 expIntegral1

( 4
x−1

)
e

4
x−1 + 1

3 (x− 1)2

Therefore the general solution is

y = yh + yp

=

 c1e
4

x−1

(x− 1)2
+

c2
(
−4 expIntegral1

( 4
x−1

)
e

4
x−1 + x− 1

)
(x− 1)2


+
(
x3 − 2x2 + 4 expIntegral1

( 4
x−1

)
e

4
x−1 + 1

3 (x− 1)2

)
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Which simplifies to

y =
−4 e

4
x−1 expIntegral1

( 4
x−1

)
c2 + e

4
x−1 c1 + (x− 1) c2

(x− 1)2

+
x3 − 2x2 + 4 expIntegral1

( 4
x−1

)
e

4
x−1 + 1

3 (x− 1)2

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y =
−4 e

4
x−1 expIntegral1

( 4
x−1

)
c2 + e

4
x−1 c1 + (x− 1) c2

(x− 1)2
+

x3 − 2x2 + 4 expIntegral1
( 4
x−1

)
e

4
x−1 + 1

3 (x− 1)2

(1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 0
in the above gives

0 = 1
3 + 4(−3c2 + 1) e−4 expIntegral1 (−4)

3 + e−4c1 − c2 (1A)

Taking derivative of the solution gives

y′ =
16 e

4
x−1 expIntegral1

(
4

x−1

)
c2

(x−1)2 − 4 e
4

x−1 e−
4

x−1 c2
x−1 − 4c1e

4
x−1

(x−1)2 + c2

(x− 1)2
−

2
(
−4 e

4
x−1 expIntegral1

( 4
x−1

)
c2 + e

4
x−1 c1 + (x− 1) c2

)
(x− 1)3

+
3x2 − 4x+ 4 e−

4
x−1 e

4
x−1

x−1 −
16 expIntegral1

(
4

x−1

)
e

4
x−1

(x−1)2

3 (x− 1)2
−

2
(
x3 − 2x2 + 4 expIntegral1

( 4
x−1

)
e

4
x−1 + 1

)
3 (x− 1)3

substituting y′ = −2 and x = 0 in the above gives

−2 = −2
3 + 8(3c2 − 1) e−4 expIntegral1 (−4)

3 − 2 e−4c1 + 3c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −28 expIntegral1 (−4)
3 − 7 e4

3
c2 = −2

Substituting these values back in above solution results in

y =
x3 + 28 expIntegral1

( 4
x−1

)
e

4
x−1 − 28 e

4
x−1 expIntegral1 (−4)− 7 e

4x
x−1 − 2x2 − 6x+ 7

3x2 − 6x+ 3
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Which simplifies to

y=
x3 + 28 expIntegral1

( 4
x−1

)
e

4
x−1 − 28 e

4
x−1 expIntegral1 (−4)− 7 e

4x
x−1 − 2x2 − 6x+ 7

3 (x− 1)2

Summary
The solution(s) found are the following
y

=
x3 + 28 expIntegral1

( 4
x−1

)
e

4
x−1 − 28 e

4
x−1 expIntegral1 (−4)− 7 e

4x
x−1 − 2x2 − 6x+ 7

3 (x− 1)2
(1)

Figure 524: Solution plot

Verification of solutions

y=
x3 + 28 expIntegral1

( 4
x−1

)
e

4
x−1 − 28 e

4
x−1 expIntegral1 (−4)− 7 e

4x
x−1 − 2x2 − 6x+ 7

3 (x− 1)2

Verified OK.
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10.33.5 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = (x− 1)2

q(x) = 4x
r(x) = 2
s(x) = 2x

Hence

p′′(x) = 2
q′(x) = 4

Therefore (1) becomes

2− (4) + (2) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

(x− 1)2 y′ + (2 + 2x) y =
∫

2x dx

We now have a first order ode to solve which is

(x− 1)2 y′ + (2 + 2x) y = x2 + c1

3404



Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −−2x− 2
(x− 1)2

q(x) = x2 + c1

(x− 1)2

Hence the ode is

y′ − (−2x− 2) y
(x− 1)2

= x2 + c1

(x− 1)2

The integrating factor µ is

µ = e
∫
−−2x−2

(x−1)2
dx

= e2 ln(x−1)− 4
x−1

Which simplifies to

µ = (x− 1)2 e−
4

x−1

The ode becomes

d
dx(µy) = (µ)

(
x2 + c1

(x− 1)2
)

d
dx

(
(x− 1)2 e−

4
x−1y

)
=
(
(x− 1)2 e−

4
x−1

)( x2 + c1

(x− 1)2
)

d
(
(x− 1)2 e−

4
x−1y

)
=
((

x2 + c1
)
e−

4
x−1

)
dx

Integrating gives

(x− 1)2 e−
4

x−1y =
∫ (

x2 + c1
)
e−

4
x−1 dx

(x− 1)2 e−
4

x−1y = −e−
4

x−1 (x− 1)
3 +

4 expIntegral1
( 4
x−1

)
3 + 4c1

(
e−

4
x−1 (x− 1)

4 − expIntegral1
(

4
x− 1

))
+ (x− 1)2 e−

4
x−1

3 + (x− 1)3 e−
4

x−1

3 + c2

Dividing both sides by the integrating factor µ = (x− 1)2 e−
4

x−1 results in

y =
e

4
x−1

(
− e−

4
x−1 (x−1)

3 +
4 expIntegral1

(
4

x−1

)
3 + 4c1

(
e−

4
x−1 (x−1)

4 − expIntegral1
( 4
x−1

))
+ (x−1)2e−

4
x−1

3 + (x−1)3e−
4

x−1

3

)
(x− 1)2

+ c2e
4

x−1

(x− 1)2
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which simplifies to

y =
(−12c1 + 4) e

4
x−1 expIntegral1

( 4
x−1

)
+ 3c2e

4
x−1 + (x− 1) (x2 + 3c1 − x− 1)

3 (x− 1)2

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y =
(−12c1 + 4) e

4
x−1 expIntegral1

( 4
x−1

)
+ 3c2e

4
x−1 + (x− 1) (x2 + 3c1 − x− 1)

3 (x− 1)2
(1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 0
in the above gives

0 = 1
3 + 4(−3c1 + 1) e−4 expIntegral1 (−4)

3 + c2e−4 − c1 (1A)

Taking derivative of the solution gives

y′ =
−

4(−12c1+4)e
4

x−1 expIntegral1
(

4
x−1

)
(x−1)2 + (−12c1+4)e

4
x−1 e−

4
x−1

x−1 − 12c2e
4

x−1

(x−1)2 + x2 + 3c1 − x− 1 + (x− 1) (2x− 1)

3 (x− 1)2
−

2
(
(−12c1 + 4) e

4
x−1 expIntegral1

( 4
x−1

)
+ 3c2e

4
x−1 + (x− 1) (x2 + 3c1 − x− 1)

)
3 (x− 1)3

substituting y′ = −2 and x = 0 in the above gives

−2 = −2
3 + 8(3c1 − 1) e−4 expIntegral1 (−4)

3 − 2c2e−4 + 3c1 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −2

c2 = −28 expIntegral1 (−4)
3 − 7 e4

3

Substituting these values back in above solution results in

y =
x3 + 28 expIntegral1

( 4
x−1

)
e

4
x−1 − 28 e

4
x−1 expIntegral1 (−4)− 7 e

4x
x−1 − 2x2 − 6x+ 7

3x2 − 6x+ 3

Which simplifies to

y=
x3 + 28 expIntegral1

( 4
x−1

)
e

4
x−1 − 28 e

4
x−1 expIntegral1 (−4)− 7 e

4x
x−1 − 2x2 − 6x+ 7

3 (x− 1)2
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Summary
The solution(s) found are the following
y

=
x3 + 28 expIntegral1

( 4
x−1

)
e

4
x−1 − 28 e

4
x−1 expIntegral1 (−4)− 7 e

4x
x−1 − 2x2 − 6x+ 7

3 (x− 1)2
(1)

Figure 525: Solution plot

Verification of solutions

y=
x3 + 28 expIntegral1

( 4
x−1

)
e

4
x−1 − 28 e

4
x−1 expIntegral1 (−4)− 7 e

4x
x−1 − 2x2 − 6x+ 7

3 (x− 1)2

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`� �
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3 Solution by Maple
Time used: 0.141 (sec). Leaf size: 67� �
dsolve([(x-1)^2*diff(y(x),x$2)+4*x*diff(y(x),x)+2*y(x)=2*x,y(0) = 0, D(y)(0) = -2],y(x), singsol=all)� �
y(x)=

x3 − 28 e
4

x−1 expIntegral1 (−4)− 7 e
4x
x−1 + 28 e

4
x−1 expIntegral1

( 4
x−1

)
− 2x2 − 6x+ 7

3 (x− 1)2

3 Solution by Mathematica
Time used: 0.242 (sec). Leaf size: 71� �
DSolve[{(x-1)^2*y''[x]+4*x*y'[x]+2*y[x]==2*x,{y[0]==0,y'[0]==-2}},y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
−28e

4
x−1 ExpIntegralEi

(
− 4

x−1

)
+ 28ExpIntegralEi(4)e

4
x−1 + x3 − 2x2 − 6x− 7e

4x
x−1 + 7

3(x− 1)2
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Internal problem ID [1188]
Internal file name [OUTPUT/1189_Sunday_June_05_2022_02_04_39_AM_5592745/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 34.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_eu-
ler_ode", "second_order_change_of_variable_on_x_method_2", "second_or-
der_change_of_variable_on_y_method_2", "second_order_ode_non_con-
stant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + 2y′x− 2y = −2x2

With initial conditions

[y(1) = 1, y′(1) = −1]
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10.34.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 2
x

q(x) = − 2
x2

F = −2

Hence the ode is

y′′ + 2y′
x

− 2y
x2 = −2

The domain of p(x) = 2
x
is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The domain of q(x) = − 2
x2 is

{x < 0∨ 0 < x}

And the point x0 = 1 is also inside this domain. The domain of F = −2 is

{−∞ < x < ∞}

And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

10.34.2 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = 2x,C = −2, f(x) = −2x2. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ + 2y′x− 2y = 0
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This is Euler second order ODE. Let the solution be y = xr, then y′ = rxr−1 and
y′′ = r(r − 1)xr−2. Substituting these back into the given ODE gives

x2(r(r − 1))xr−2 + 2xrxr−1 − 2xr = 0

Simplifying gives
r(r − 1)xr + 2r xr − 2xr = 0

Since xr 6= 0 then dividing throughout by xr gives

r(r − 1) + 2r − 2 = 0

Or
r2 + r − 2 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = −2
r2 = 1

Since the roots are real and distinct, then the general solution is

y = c1y1 + c2y2

Where y1 = xr1 and y2 = xr2 . Hence

y = c1
x2 + c2x

Next, we find the particular solution to the ODE

x2y′′ + 2y′x− 2y = −2x2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
1
x2

y2 = x
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣
1
x2 x

d
dx

( 1
x2

)
d
dx
(x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣
1
x2 x

− 2
x3 1

∣∣∣∣∣∣
Therefore

W =
(

1
x2

)
(1)− (x)

(
− 2
x3

)

Which simplifies to

W = 3
x2

Which simplifies to

W = 3
x2

Therefore Eq. (2) becomes

u1 = −
∫

−2x3

3 dx

Which simplifies to

u1 = −
∫

−2x3

3 dx
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Hence

u1 =
x4

6

And Eq. (3) becomes

u2 =
∫

−2
3 dx

Which simplifies to

u2 =
∫

−2
3dx

Hence

u2 = −2x
3

Therefore the particular solution, from equation (1) is

yp(x) = −x2

2

Therefore the general solution is

y = yh + yp

= −x2

2 + c1
x2 + c2x

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = −x2

2 + c1
x2 + c2x (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1 and x = 1
in the above gives

1 = c1 + c2 −
1
2 (1A)

Taking derivative of the solution gives

y′ = −x− 2c1
x3 + c2
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substituting y′ = −1 and x = 1 in the above gives

−1 = −2c1 + c2 − 1 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 =
1
2

c2 = 1

Substituting these values back in above solution results in

y = −x4 − 2x3 − 1
2x2

Summary
The solution(s) found are the following

(1)y = −x4 − 2x3 − 1
2x2

Figure 526: Solution plot

Verification of solutions

y = −x4 − 2x3 − 1
2x2

Verified OK.
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10.34.3 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

x2y′′ + 2y′x− 2y = 0

In normal form the ode

x2y′′ + 2y′x− 2y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 2
x

q(x) = − 2
x2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0
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This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫ 2

x
dx
)
dx

=
∫

e−2 ln(x) dx

=
∫ 1

x2dx

= −1
x

(6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
− 2

x2

1
x4

= −2x2 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ)− 2x2y(τ) = 0

But in terms of τ

−2x2 = − 2
τ 2

Hence the above ode becomes
d2

dτ 2
y(τ)− 2y(τ)

τ 2
= 0

The above ode is now solved for y(τ). The ode can be written as(
d2

dτ 2
y(τ)

)
τ 2 − 2y(τ) = 0

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be
y(τ) = τ r, then y′ = rτ r−1 and y′′ = r(r − 1)τ r−2. Substituting these back into the
given ODE gives

τ 2(r(r − 1))τ r−2 + 0rτ r−1 − 2τ r = 0
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Simplifying gives
r(r − 1) τ r + 0 τ r − 2τ r = 0

Since τ r 6= 0 then dividing throughout by τ r gives

r(r − 1) + 0− 2 = 0

Or
r2 − r − 2 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = −1
r2 = 2

Since the roots are real and distinct, then the general solution is

y(τ) = c1y1 + c2y2

Where y1 = τ r1 and y2 = τ r2 . Hence

y(τ) = c1
τ
+ c2τ

2

The above solution is now transformed back to y using (6) which results in

y = −c1x
3 + c2
x2

Therefore the homogeneous solution yh is

yh = −c1x
3 + c2
x2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 =
1
x2
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ x 1
x2

d
dx
(x) d

dx

( 1
x2

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣x
1
x2

1 − 2
x3

∣∣∣∣∣∣
Therefore

W = (x)
(
− 2
x3

)
−
(

1
x2

)
(1)

Which simplifies to

W = − 3
x2

Which simplifies to

W = − 3
x2

Therefore Eq. (2) becomes

u1 = −
∫

−2
−3 dx

Which simplifies to

u1 = −
∫ 2

3dx
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Hence

u1 = −2x
3

And Eq. (3) becomes

u2 =
∫

−2x3

−3 dx

Which simplifies to

u2 =
∫ 2x3

3 dx

Hence

u2 =
x4

6

Therefore the particular solution, from equation (1) is

yp(x) = −x2

2

Therefore the general solution is

y = yh + yp

=
(
−c1x

3 + c2
x2

)
+
(
−x2

2

)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = −c1x
3 + c2
x2 − x2

2 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1 and x = 1
in the above gives

1 = −c1 + c2 −
1
2 (1A)
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Taking derivative of the solution gives

y′ = −3c1 −
2(−c1x

3 + c2)
x3 − x

substituting y′ = −1 and x = 1 in the above gives

−1 = −c1 − 2c2 − 1 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −1

c2 =
1
2

Substituting these values back in above solution results in

y = −x4 − 2x3 − 1
2x2

Summary
The solution(s) found are the following

(1)y = −x4 − 2x3 − 1
2x2

Figure 527: Solution plot

Verification of solutions

y = −x4 − 2x3 − 1
2x2

Verified OK.

3420



10.34.4 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = x2, B = 2x,C = −2, f(x) = −2x2. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
Solving for yh from

x2y′′ + 2y′x− 2y = 0

In normal form the ode

x2y′′ + 2y′x− 2y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 2
x

q(x) = − 2
x2

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 + 2n

x2 − 2
x2 = 0 (5)
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Solving (5) for n gives

n = 1 (6)

Substituting this value in (3) gives

v′′(x) + 4v′(x)
x

= 0

v′′(x) + 4v′(x)
x

= 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) + 4u(x)
x

= 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −4u
x

Where f(x) = − 4
x
and g(u) = u. Integrating both sides gives

1
u
du = −4

x
dx∫ 1

u
du =

∫
−4
x
dx

ln (u) = −4 ln (x) + c1

u = e−4 ln(x)+c1

= c1
x4

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= − c1
3x3 + c2
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Hence

y = v(x)xn

=
(
− c1
3x3 + c2

)
x

=
(
− c1
3x3 + c2

)
x

Now the particular solution to this ODE is found

x2y′′ + 2y′x− 2y = −2x2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 =
1
x2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x 1
x2

d
dx
(x) d

dx

( 1
x2

)
∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣x
1
x2

1 − 2
x3

∣∣∣∣∣∣
Therefore

W = (x)
(
− 2
x3

)
−
(

1
x2

)
(1)

Which simplifies to

W = − 3
x2

Which simplifies to

W = − 3
x2

Therefore Eq. (2) becomes

u1 = −
∫

−2
−3 dx

Which simplifies to

u1 = −
∫ 2

3dx

Hence

u1 = −2x
3

And Eq. (3) becomes

u2 =
∫

−2x3

−3 dx

Which simplifies to

u2 =
∫ 2x3

3 dx

Hence

u2 =
x4

6
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Therefore the particular solution, from equation (1) is

yp(x) = −x2

2

Therefore the general solution is

y = yh + yp

=
((

− c1
3x3 + c2

)
x
)
+
(
−x2

2

)

= −x2

2 +
(
− c1
3x3 + c2

)
x

Which simplifies to

y = −−6c2x3 + 3x4 + 2c1
6x2

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = −−6c2x3 + 3x4 + 2c1
6x2 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1 and x = 1
in the above gives

1 = −c1
3 + c2 −

1
2 (1A)

Taking derivative of the solution gives

y′ = −6c2x3 + 3x4 + 2c1
3x3 − −18c2x2 + 12x3

6x2

substituting y′ = −1 and x = 1 in the above gives

−1 = 2c1
3 + c2 − 1 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −3
2

c2 = 1
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Substituting these values back in above solution results in

y = −x4 − 2x3 − 1
2x2

Summary
The solution(s) found are the following

(1)y = −x4 − 2x3 − 1
2x2

Figure 528: Solution plot

Verification of solutions

y = −x4 − 2x3 − 1
2x2

Verified OK.

10.34.5 Solving as second order ode non constant coeff transformation on
B ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv
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This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = x2

B = 2x
C = −2
F = −2x2

The above shows that for this ode

AB′′ +BB′ + CB =
(
x2) (0) + (2x) (2) + (−2) (2x)

= 0

Hence the ode in v given in (1) now simplifies to

2x3v′′ +
(
8x2) v′ = 0

Now by applying v′ = u the above becomes

2x2(u′(x)x+ 4u(x)) = 0
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Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −4u
x

Where f(x) = − 4
x
and g(u) = u. Integrating both sides gives

1
u
du = −4

x
dx∫ 1

u
du =

∫
−4
x
dx

ln (u) = −4 ln (x) + c1

u = e−4 ln(x)+c1

= c1
x4

The ode for v now becomes

v′ = u

= c1
x4

Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1
x4 dx

= − c1
3x3 + c2

Therefore the homogeneous solution is

yh(x) = Bv

= (2x)
(
− c1
3x3 + c2

)
= 6c2x3 − 2c1

3x2

And now the particular solution yp(x) will be found. The particular solution yp can be
found using either the method of undetermined coefficients, or the method of variation
of parameters. The method of variation of parameters will be used as it is more general
and can be used when the coefficients of the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

3428



Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = x

y2 =
1
x2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ x 1
x2

d
dx
(x) d

dx

( 1
x2

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣x
1
x2

1 − 2
x3

∣∣∣∣∣∣
Therefore

W = (x)
(
− 2
x3

)
−
(

1
x2

)
(1)

Which simplifies to

W = − 3
x2

Which simplifies to

W = − 3
x2

Therefore Eq. (2) becomes

u1 = −
∫

−2
−3 dx
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Which simplifies to

u1 = −
∫ 2

3dx

Hence

u1 = −2x
3

And Eq. (3) becomes

u2 =
∫

−2x3

−3 dx

Which simplifies to

u2 =
∫ 2x3

3 dx

Hence

u2 =
x4

6

Therefore the particular solution, from equation (1) is

yp(x) = −x2

2

Hence the complete solution is

y(x) = yh + yp

=
(
6c2x3 − 2c1

3x2

)
+
(
−x2

2

)
= 12c2x3 − 3x4 − 4c1

6x2

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = 12c2x3 − 3x4 − 4c1
6x2 (1)
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Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1 and x = 1
in the above gives

1 = −2c1
3 + 2c2 −

1
2 (1A)

Taking derivative of the solution gives

y′ = 36c2x2 − 12x3

6x2 − 12c2x3 − 3x4 − 4c1
3x3

substituting y′ = −1 and x = 1 in the above gives

−1 = 4c1
3 + 2c2 − 1 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −3
4

c2 =
1
2

Substituting these values back in above solution results in

y = −x4 − 2x3 − 1
2x2

Summary
The solution(s) found are the following

(1)y = −x4 − 2x3 − 1
2x2
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Figure 529: Solution plot

Verification of solutions

y = −x4 − 2x3 − 1
2x2

Verified OK.

10.34.6 Solving using Kovacic algorithm

Writing the ode as

x2y′′ + 2y′x− 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = 2x (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2
x2 (6)

Comparing the above to (5) shows that

s = 2
t = x2

Therefore eq. (4) becomes

z′′(x) =
(

2
x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 443: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= 2

x2

Since the gcd(s, t) = 1. This gives b = 2. Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 2

α−
∞ = 1

2 −
√
1 + 4b = −1
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The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 2
x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 2 −1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = −1 then

d = α−
∞ −

(
α−
c1

)
= −1− (−1)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= −1
x
+ (−) (0)

= −1
x

= −1
x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
−1
x

)
(0) +

((
1
x2

)
+
(
−1
x

)2

−
(

2
x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

x
dx

= 1
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x
x2 dx

= z1e
− ln(x)

= z1

(
1
x

)
Which simplifies to

y1 =
1
x2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x

x2 dx

(y1)2
dx

= y1

∫
e−2 ln(x)

(y1)2
dx

= y1

(
x3

3

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x2

)
+ c2

(
1
x2

(
x3

3

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

x2y′′ + 2y′x− 2y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1
x2 + c2x

3

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
1
x2

y2 =
x

3

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣
1
x2

x
3

d
dx

( 1
x2

)
d
dx

(
x
3

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣
1
x2

x
3

− 2
x3

1
3

∣∣∣∣∣∣
Therefore

W =
(

1
x2

)(
1
3

)
−
(x
3

)(
− 2
x3

)

Which simplifies to

W = 1
x2

Which simplifies to

W = 1
x2

Therefore Eq. (2) becomes

u1 = −
∫ −2x3

3
1 dx

Which simplifies to

u1 = −
∫

−2x3

3 dx

Hence

u1 =
x4

6

And Eq. (3) becomes

u2 =
∫

−2
1 dx
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Which simplifies to

u2 =
∫

(−2) dx

Hence
u2 = −2x

Therefore the particular solution, from equation (1) is

yp(x) = −x2

2

Therefore the general solution is

y = yh + yp

=
( c1
x2 + c2x

3

)
+
(
−x2

2

)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1
x2 + c2x

3 − x2

2 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1 and x = 1
in the above gives

1 = c1 +
c2
3 − 1

2 (1A)

Taking derivative of the solution gives

y′ = −2c1
x3 + c2

3 − x

substituting y′ = −1 and x = 1 in the above gives

−1 = −2c1 +
c2
3 − 1 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 =
1
2

c2 = 3
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Substituting these values back in above solution results in

y = −x4 − 2x3 − 1
2x2

Summary
The solution(s) found are the following

(1)y = −x4 − 2x3 − 1
2x2

Figure 530: Solution plot

Verification of solutions

y = −x4 − 2x3 − 1
2x2

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 16� �
dsolve([x^2*diff(y(x),x$2)+2*x*diff(y(x),x)-2*y(x)=-2*x^2,y(1) = 1, D(y)(1) = -1],y(x), singsol=all)� �

y(x) = 1
2x2 + x− x2

2

3 Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 21� �
DSolve[{x^2*y''[x]+2*x*y'[x]-2*y[x]==-2*x^2,{y[1]==1,y'[1]==-1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x2

2 + 1
2x2 + x
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10.35 problem 35
10.35.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 3443
10.35.2 Solving as second order integrable as is ode . . . . . . . . . . . 3444
10.35.3 Solving as second order ode non constant coeff transformation

on B ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3446
10.35.4 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3452
10.35.5 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 3455
10.35.6 Solving as exact linear second order ode ode . . . . . . . . . . . 3465

Internal problem ID [1189]
Internal file name [OUTPUT/1190_Sunday_June_05_2022_02_04_40_AM_39778088/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.7 Variation of Parameters. Page
262
Problem number: 35.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_ode_non_constant_co-
eff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _nonhomogeneous ]]

(x+ 1) (2x+ 3) y′′ + 2(2 + x) y′ − 2y = (2x+ 3)2

With initial conditions

[y(0) = 0, y′(0) = 0]
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10.35.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 2x+ 4
2x2 + 5x+ 3

q(x) = − 2
2x2 + 5x+ 3

F =
4
(
x+ 3

2

)2
2x2 + 5x+ 3

Hence the ode is

y′′ + (2x+ 4) y′
2x2 + 5x+ 3 − 2y

2x2 + 5x+ 3 =
4
(
x+ 3

2

)2
2x2 + 5x+ 3

The domain of p(x) = 2x+4
2x2+5x+3 is

{
−∞ ≤ x < −1,−1 < x < −3

2 ,−
3
2 < x ≤ ∞

}

And the point x0 = 0 is inside this domain. The domain of q(x) = − 2
2x2+5x+3 is

{
−∞ ≤ x < −1,−1 < x < −3

2 ,−
3
2 < x ≤ ∞

}

And the point x0 = 0 is also inside this domain. The domain of F = 4
(
x+ 3

2
)2

2x2+5x+3 is

{
−∞ ≤ x < −1,−1 < x < −3

2 ,−
3
2 < x ≤ ∞

}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.
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10.35.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫ (
y′′
(
2x2 + 5x+ 3

)
+ (2x+ 4) y′ − 2y

)
dx =

∫
4
(
x+ 3

2

)2

dx

(−1− 2x) y +
(
2x2 + 5x+ 3

)
y′ =

4
(
x+ 3

2

)3
3 + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1 + 2x
2x2 + 5x+ 3

q(x) = 8x3 + 36x2 + 6c1 + 54x+ 27
12x2 + 30x+ 18

Hence the ode is

y′ − (1 + 2x) y
2x2 + 5x+ 3 = 8x3 + 36x2 + 6c1 + 54x+ 27

12x2 + 30x+ 18

The integrating factor µ is

µ = e
∫
− 1+2x

2x2+5x+3dx

= e−2 ln(2x+3)+ln(x+1)

Which simplifies to

µ = x+ 1
(2x+ 3)2

The ode becomes

d
dx(µy) = (µ)

(
8x3 + 36x2 + 6c1 + 54x+ 27

12x2 + 30x+ 18

)
d
dx

(
(x+ 1) y
(2x+ 3)2

)
=
(

x+ 1
(2x+ 3)2

)(
8x3 + 36x2 + 6c1 + 54x+ 27

12x2 + 30x+ 18

)
d
(
(x+ 1) y
(2x+ 3)2

)
=
(
8x3 + 36x2 + 6c1 + 54x+ 27

6 (2x+ 3)3
)

dx
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Integrating gives

(x+ 1) y
(2x+ 3)2

=
∫ 8x3 + 36x2 + 6c1 + 54x+ 27

6 (2x+ 3)3
dx

(x+ 1) y
(2x+ 3)2

= x

6 − c1

4 (2x+ 3)2
+ c2

Dividing both sides by the integrating factor µ = x+1
(2x+3)2 results in

y =
(2x+ 3)2

(
x
6 −

c1
4(2x+3)2

)
x+ 1 + c2(2x+ 3)2

x+ 1

which simplifies to

y = 8x3 + (48c2 + 24)x2 + (144c2 + 18)x− 3c1 + 108c2
12x+ 12

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = 8x3 + (48c2 + 24)x2 + (144c2 + 18)x− 3c1 + 108c2
12x+ 12 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 0
in the above gives

0 = −c1
4 + 9c2 (1A)

Taking derivative of the solution gives

y′ = 24x2 + 2(48c2 + 24)x+ 144c2 + 18
12x+ 12 − 12(8x3 + (48c2 + 24)x2 + (144c2 + 18)x− 3c1 + 108c2)

(12x+ 12)2

substituting y′ = 0 and x = 0 in the above gives

0 = c1
4 + 3c2 +

3
2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −9
2

c2 = −1
8
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Substituting these values back in above solution results in

y = x2(4x+ 9)
6x+ 6

Summary
The solution(s) found are the following

(1)y = x2(4x+ 9)
6x+ 6

Figure 531: Solution plot

Verification of solutions

y = x2(4x+ 9)
6x+ 6

Verified OK.

10.35.3 Solving as second order ode non constant coeff transformation on
B ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv
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This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = 2x2 + 5x+ 3
B = 2x+ 4
C = −2

F = 4
(
x+ 3

2

)2

The above shows that for this ode

AB′′ +BB′ + CB =
(
2x2 + 5x+ 3

)
(0) + (2x+ 4) (2) + (−2) (2x+ 4)

= 0

Hence the ode in v given in (1) now simplifies to

4x3 + 18x2 + 26x+ 12v′′ +
(
12x2 + 36x+ 28

)
v′ = 0

Now by applying v′ = u the above becomes(
4x3 + 18x2 + 26x+ 12

)
u′(x) + 12

(
x2 + 3x+ 7

3

)
u(x) = 0
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Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − 2u(3x2 + 9x+ 7)
2x3 + 9x2 + 13x+ 6

Where f(x) = − 2
(
3x2+9x+7

)
2x3+9x2+13x+6 and g(u) = u. Integrating both sides gives

1
u
du = − 2(3x2 + 9x+ 7)

2x3 + 9x2 + 13x+ 6 dx∫ 1
u
du =

∫
− 2(3x2 + 9x+ 7)
2x3 + 9x2 + 13x+ 6 dx

ln (u) = ln (2x+ 3)− 2 ln (x+ 1)− 2 ln (2 + x) + c1

u = eln(2x+3)−2 ln(x+1)−2 ln(2+x)+c1

= c1eln(2x+3)−2 ln(x+1)−2 ln(2+x)

Which simplifies to

u(x) = c1

(
2x

(x+ 1)2 (2 + x)2
+ 3

(x+ 1)2 (2 + x)2
)

The ode for v now becomes

v′ = u

= c1

(
2x

(x+ 1)2 (2 + x)2
+ 3

(x+ 1)2 (2 + x)2
)

Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1(2x+ 3)
(x+ 1)2 (2 + x)2

dx

= c1

(
1

2 + x
− 1

x+ 1

)
+ c2

Therefore the homogeneous solution is

yh(x) = Bv

= (2x+ 4)
(
c1

(
1

2 + x
− 1

x+ 1

)
+ c2

)
= (2x2 + 6x+ 4) c2 − 2c1

x+ 1
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And now the particular solution yp(x) will be found. The particular solution yp can be
found using either the method of undetermined coefficients, or the method of variation
of parameters. The method of variation of parameters will be used as it is more general
and can be used when the coefficients of the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
1

x+ 1

y2 =
2x2

x+ 1 + 6x
x+ 1 + 4

x+ 1

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
1

x+1
2x2

x+1 +
6x
x+1 +

4
x+1

d
dx

( 1
x+1

)
d
dx

(
2x2

x+1 +
6x
x+1 +

4
x+1

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣
1

x+1
2x2

x+1 +
6x
x+1 +

4
x+1

− 1
(x+1)2

4x
x+1 −

2x2

(x+1)2 −
6x

(x+1)2 +
6

x+1 −
4

(x+1)2

∣∣∣∣∣∣
Therefore

W =
(

1
x+ 1

)(
4x

x+ 1 − 2x2

(x+ 1)2
− 6x

(x+ 1)2
+ 6

x+ 1 − 4
(x+ 1)2

)
−
(

2x2

x+ 1 + 6x
x+ 1 + 4

x+ 1

)(
− 1
(x+ 1)2

)
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Which simplifies to

W = 4x+ 6
(x+ 1)2

Which simplifies to

W = 4x+ 6
(x+ 1)2

Therefore Eq. (2) becomes

u1 = −
∫ 4

(
2x2

x+1 +
6x
x+1 +

4
x+1

) (
x+ 3

2

)2
(2x2+5x+3)(4x+6)

(x+1)2
dx

Which simplifies to

u1 = −
∫

(2 + x) (x+ 1) dx

Hence

u1 = −1
3x

3 − 3
2x

2 − 2x

And Eq. (3) becomes

u2 =
∫ 4

(
x+ 3

2
)2

x+1
(2x2+5x+3)(4x+6)

(x+1)2
dx

Which simplifies to

u2 =
∫ 1

2dx

Hence
u2 =

x

2

Which simplifies to

u1 = −
(
x2 + 9

2x+ 6
)
x

3

u2 =
x

2
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Therefore the particular solution, from equation (1) is

yp(x) = −
(
x2 + 9

2x+ 6
)
x

3 (x+ 1) +
x
(

2x2

x+1 +
6x
x+1 +

4
x+1

)
2

Which simplifies to

yp(x) =
x2(4x+ 9)
6x+ 6

Hence the complete solution is

y(x) = yh + yp

=
(
(2x2 + 6x+ 4) c2 − 2c1

x+ 1

)
+
(
x2(4x+ 9)
6x+ 6

)
= 4x3 + (12c2 + 9)x2 + 36c2x− 12c1 + 24c2

6x+ 6

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = 4x3 + (12c2 + 9)x2 + 36c2x− 12c1 + 24c2
6x+ 6 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 0
in the above gives

0 = −2c1 + 4c2 (1A)

Taking derivative of the solution gives

y′ = 12x2 + 2(12c2 + 9)x+ 36c2
6x+ 6 − 6(4x3 + (12c2 + 9)x2 + 36c2x− 12c1 + 24c2)

(6x+ 6)2

substituting y′ = 0 and x = 0 in the above gives

0 = 2c1 + 2c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 0
c2 = 0
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Substituting these values back in above solution results in

y = x2(4x+ 9)
6x+ 6

Summary
The solution(s) found are the following

(1)y = x2(4x+ 9)
6x+ 6

Figure 532: Solution plot

Verification of solutions

y = x2(4x+ 9)
6x+ 6

Verified OK.

10.35.4 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as

y′′
(
2x2 + 5x+ 3

)
+ (2x+ 4) y′ − 2y = 4

(
x+ 3

2

)2
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Integrating both sides of the ODE w.r.t x gives∫ (
y′′
(
2x2 + 5x+ 3

)
+ (2x+ 4) y′ − 2y

)
dx =

∫
4
(
x+ 3

2

)2

dx

(−1− 2x) y +
(
2x2 + 5x+ 3

)
y′ =

4
(
x+ 3

2

)3
3 + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1 + 2x
2x2 + 5x+ 3

q(x) = 8x3 + 36x2 + 6c1 + 54x+ 27
12x2 + 30x+ 18

Hence the ode is

y′ − (1 + 2x) y
2x2 + 5x+ 3 = 8x3 + 36x2 + 6c1 + 54x+ 27

12x2 + 30x+ 18

The integrating factor µ is

µ = e
∫
− 1+2x

2x2+5x+3dx

= e−2 ln(2x+3)+ln(x+1)

Which simplifies to

µ = x+ 1
(2x+ 3)2

The ode becomes

d
dx(µy) = (µ)

(
8x3 + 36x2 + 6c1 + 54x+ 27

12x2 + 30x+ 18

)
d
dx

(
(x+ 1) y
(2x+ 3)2

)
=
(

x+ 1
(2x+ 3)2

)(
8x3 + 36x2 + 6c1 + 54x+ 27

12x2 + 30x+ 18

)
d
(
(x+ 1) y
(2x+ 3)2

)
=
(
8x3 + 36x2 + 6c1 + 54x+ 27

6 (2x+ 3)3
)

dx
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Integrating gives

(x+ 1) y
(2x+ 3)2

=
∫ 8x3 + 36x2 + 6c1 + 54x+ 27

6 (2x+ 3)3
dx

(x+ 1) y
(2x+ 3)2

= x

6 − c1

4 (2x+ 3)2
+ c2

Dividing both sides by the integrating factor µ = x+1
(2x+3)2 results in

y =
(2x+ 3)2

(
x
6 −

c1
4(2x+3)2

)
x+ 1 + c2(2x+ 3)2

x+ 1

which simplifies to

y = 8x3 + (48c2 + 24)x2 + (144c2 + 18)x− 3c1 + 108c2
12x+ 12

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = 8x3 + (48c2 + 24)x2 + (144c2 + 18)x− 3c1 + 108c2
12x+ 12 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 0
in the above gives

0 = −c1
4 + 9c2 (1A)

Taking derivative of the solution gives

y′ = 24x2 + 2(48c2 + 24)x+ 144c2 + 18
12x+ 12 − 12(8x3 + (48c2 + 24)x2 + (144c2 + 18)x− 3c1 + 108c2)

(12x+ 12)2

substituting y′ = 0 and x = 0 in the above gives

0 = c1
4 + 3c2 +

3
2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −9
2

c2 = −1
8
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Substituting these values back in above solution results in

y = x2(4x+ 9)
6x+ 6

Summary
The solution(s) found are the following

(1)y = x2(4x+ 9)
6x+ 6

Figure 533: Solution plot

Verification of solutions

y = x2(4x+ 9)
6x+ 6

Verified OK.

10.35.5 Solving using Kovacic algorithm

Writing the ode as

y′′
(
2x2 + 5x+ 3

)
+ (2x+ 4) y′ − 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)
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Comparing (1) and (2) shows that

A = 2x2 + 5x+ 3
B = 2x+ 4 (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
(2x+ 3)2

(6)

Comparing the above to (5) shows that

s = 3
t = (2x+ 3)2

Therefore eq. (4) becomes

z′′(x) =
(

3
(2x+ 3)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 444: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = (2x+ 3)2. There is a pole at x = −3

2 of order 2. Since there is no odd
order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case
one are met. Since there is a pole of order 2 then necessary conditions for case two are
met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary
conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4
(
x+ 3

2

)2
For the pole at x = −3

2 let b be the coefficient of 1(
x+ 3

2
)2 in the partial fractions decom-
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position of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= 3

(2x+ 3)2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 3
(2x+ 3)2

pole c location pole order [
√
r]c α+

c α−
c

−3
2 2 0 3

2 −1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
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Trying α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2
(
x+ 3

2

) + (−) (0)

= − 1
2
(
x+ 3

2

)
= − 1

2x+ 3
Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2
(
x+ 3

2

)) (0) +

( 1
2
(
x+ 3

2

)2
)

+
(
− 1
2
(
x+ 3

2

))2

−
(

3
(2x+ 3)2

) = 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

2
(
x+3

2
)dx

= 1√
2x+ 3
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2x+4

2x2+5x+3 dx

= z1e
ln(2x+3)

2 −ln(x+1)

= z1

(√
2x+ 3
x+ 1

)

Which simplifies to

y1 =
1

x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2x+4

2x2+5x+3 dx

(y1)2
dx

= y1

∫
eln(2x+3)−2 ln(x+1)

(y1)2
dx

= y1(x(x+ 3))

Therefore the solution is

y = c1y1 + c2y2

= c1

(
1

x+ 1

)
+ c2

(
1

x+ 1(x(x+ 3))
)

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′
(
2x2 + 5x+ 3

)
+ (2x+ 4) y′ − 2y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1
x+ 1 + c2x(x+ 3)

x+ 1

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
1

x+ 1

y2 =
x(x+ 3)
x+ 1

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
1

x+1
x(x+3)
x+1

d
dx

( 1
x+1

)
d
dx

(
x(x+3)
x+1

)
∣∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣
1

x+1
x(x+3)
x+1

− 1
(x+1)2 −x(x+3)

(x+1)2 + x+3
x+1 +

x
x+1

∣∣∣∣∣∣
Therefore

W =
(

1
x+ 1

)(
−x(x+ 3)
(x+ 1)2

+ x+ 3
x+ 1 + x

x+ 1

)
−
(
x(x+ 3)
x+ 1

)(
− 1
(x+ 1)2

)

Which simplifies to

W = 2x+ 3
(x+ 1)2

Which simplifies to

W = 2x+ 3
(x+ 1)2

Therefore Eq. (2) becomes

u1 = −
∫ 4x(x+3)

(
x+ 3

2
)2

x+1
(2x2+5x+3)(2x+3)

(x+1)2
dx

Which simplifies to

u1 = −
∫

x(x+ 3) dx

Hence

u1 = −1
3x

3 − 3
2x

2

And Eq. (3) becomes

u2 =
∫ 4

(
x+ 3

2
)2

x+1
(2x2+5x+3)(2x+3)

(x+1)2
dx

Which simplifies to

u2 =
∫

1dx
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Hence
u2 = x

Therefore the particular solution, from equation (1) is

yp(x) =
−1

3x
3 − 3

2x
2

x+ 1 + x2(x+ 3)
x+ 1

Which simplifies to

yp(x) =
x2(4x+ 9)
6x+ 6

Therefore the general solution is

y = yh + yp

=
(

c1
x+ 1 + c2x(x+ 3)

x+ 1

)
+
(
x2(4x+ 9)
6x+ 6

)

Which simplifies to

y = c2x
2 + 3c2x+ c1
x+ 1 + x2(4x+ 9)

6x+ 6

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c2x
2 + 3c2x+ c1
x+ 1 + x2(4x+ 9)

6x+ 6 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 0
in the above gives

0 = c1 (1A)

Taking derivative of the solution gives

y′ = 2c2x+ 3c2
x+ 1 − c2x

2 + 3c2x+ c1

(x+ 1)2
+ 2x(4x+ 9)

6x+ 6 + 4x2

6x+ 6 − 6x2(4x+ 9)
(6x+ 6)2

substituting y′ = 0 and x = 0 in the above gives

0 = −c1 + 3c2 (2A)
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Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 0
c2 = 0

Substituting these values back in above solution results in

y = x2(4x+ 9)
6x+ 6

Summary
The solution(s) found are the following

(1)y = x2(4x+ 9)
6x+ 6

Figure 534: Solution plot

Verification of solutions

y = x2(4x+ 9)
6x+ 6

Verified OK.
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10.35.6 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = 2x2 + 5x+ 3
q(x) = 2x+ 4
r(x) = −2

s(x) = 4
(
x+ 3

2

)2

Hence

p′′(x) = 4
q′(x) = 2

Therefore (1) becomes

4− (2) + (−2) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

(−1− 2x) y +
(
2x2 + 5x+ 3

)
y′ =

∫
4
(
x+ 3

2

)2

dx

We now have a first order ode to solve which is

(−1− 2x) y +
(
2x2 + 5x+ 3

)
y′ =

4
(
x+ 3

2

)3
3 + c1
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Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1 + 2x
2x2 + 5x+ 3

q(x) = 8x3 + 36x2 + 6c1 + 54x+ 27
12x2 + 30x+ 18

Hence the ode is

y′ − (1 + 2x) y
2x2 + 5x+ 3 = 8x3 + 36x2 + 6c1 + 54x+ 27

12x2 + 30x+ 18
The integrating factor µ is

µ = e
∫
− 1+2x

2x2+5x+3dx

= e−2 ln(2x+3)+ln(x+1)

Which simplifies to

µ = x+ 1
(2x+ 3)2

The ode becomes

d
dx(µy) = (µ)

(
8x3 + 36x2 + 6c1 + 54x+ 27

12x2 + 30x+ 18

)
d
dx

(
(x+ 1) y
(2x+ 3)2

)
=
(

x+ 1
(2x+ 3)2

)(
8x3 + 36x2 + 6c1 + 54x+ 27

12x2 + 30x+ 18

)
d
(
(x+ 1) y
(2x+ 3)2

)
=
(
8x3 + 36x2 + 6c1 + 54x+ 27

6 (2x+ 3)3
)

dx

Integrating gives

(x+ 1) y
(2x+ 3)2

=
∫ 8x3 + 36x2 + 6c1 + 54x+ 27

6 (2x+ 3)3
dx

(x+ 1) y
(2x+ 3)2

= x

6 − c1

4 (2x+ 3)2
+ c2

Dividing both sides by the integrating factor µ = x+1
(2x+3)2 results in

y =
(2x+ 3)2

(
x
6 −

c1
4(2x+3)2

)
x+ 1 + c2(2x+ 3)2

x+ 1
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which simplifies to

y = 8x3 + (48c2 + 24)x2 + (144c2 + 18)x− 3c1 + 108c2
12x+ 12

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = 8x3 + (48c2 + 24)x2 + (144c2 + 18)x− 3c1 + 108c2
12x+ 12 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 0
in the above gives

0 = −c1
4 + 9c2 (1A)

Taking derivative of the solution gives

y′ = 24x2 + 2(48c2 + 24)x+ 144c2 + 18
12x+ 12 − 12(8x3 + (48c2 + 24)x2 + (144c2 + 18)x− 3c1 + 108c2)

(12x+ 12)2

substituting y′ = 0 and x = 0 in the above gives

0 = c1
4 + 3c2 +

3
2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −9
2

c2 = −1
8

Substituting these values back in above solution results in

y = x2(4x+ 9)
6x+ 6

Summary
The solution(s) found are the following

(1)y = x2(4x+ 9)
6x+ 6
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Figure 535: Solution plot

Verification of solutions

y = x2(4x+ 9)
6x+ 6

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 20� �
dsolve([(x+1)*(2*x+3)*diff(y(x),x$2)+2*(x+2)*diff(y(x),x)-2*y(x)=(2*x+3)^2,y(0) = 0, D(y)(0) = 0],y(x), singsol=all)� �

y(x) = x2(4x+ 9)
6x+ 6
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3 Solution by Mathematica
Time used: 0.694 (sec). Leaf size: 22� �
DSolve[{(x+1)*(2*x+3)*y''[x]+2*(x+2)*y'[x]-2*y[x]==(2*x+3)^2,{y[0]==0,y'[0]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2(4x+ 9)
6(x+ 1)
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11.1 problem 11
11.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3478

Internal problem ID [1190]
Internal file name [OUTPUT/1191_Sunday_June_05_2022_02_04_42_AM_34872227/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.1 Exercises. Page 318
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(2 + x) y′′ + y′x+ 3y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (785)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (786)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...

3472



And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −3y + y′x

2 + x

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (x2 − 3x− 8) y′ + 3(x+ 1) y
(2 + x)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (−x2 + 8x+ 8) y′ − 3y(x− 4)
(2 + x)2

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (x2 − 13x+ 12) y′ + 3y(x− 9)
(2 + x)2

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (−x3 + 16x2 − 16x− 104) y′ − 3y(x2 − 12x− 8)
(2 + x)3

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −3y(0)
2

F1 =
3y(0)
4 − 2y′(0)

F2 = 3y(0) + 2y′(0)

F3 = −27y(0)
4 + 3y′(0)

F4 = 3y(0)− 13y′(0)
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 3

4x
2 + 1

8x
3 + 1

8x
4 − 9

160x
5 + 1

240x
6
)
y(0)

+
(
x− 1

3x
3 + 1

12x
4 + 1

40x
5 − 13

720x
6
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(2 + x) y′′ + y′x+ 3y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(2 + x)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

nanx
n−1

)
x+ 3

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to(
∞∑
n=2

nxn−1an(n− 1)
)
+
(

∞∑
n=2

2n(n− 1) anxn−2

)
+
(

∞∑
n=1

nanx
n

)
+
(

∞∑
n=0

3anxn

)
= 0

(2)

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

nxn−1an(n− 1) =
∞∑
n=1

(n+ 1) an+1nxn

∞∑
n =2

2n(n− 1) anxn−2 =
∞∑
n=0

2(n+ 2) an+2(n+ 1)xn
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=1

(n+ 1) an+1nxn

)
+
(

∞∑
n=0

2(n+ 2) an+2(n+ 1)xn

)

+
(

∞∑
n=1

nanx
n

)
+
(

∞∑
n=0

3anxn

)
= 0

n = 0 gives
4a2 + 3a0 = 0

a2 = −3a0
4

For 1 ≤ n, the recurrence equation is

(4)(n+ 1) an+1n+ 2(n+ 2) an+2(n+ 1) + nan + 3an = 0

Solving for an+2, gives

(5)

an+2 = −n2an+1 + nan + nan+1 + 3an
2 (n+ 2) (n+ 1)

= − (n+ 3) an
2 (n+ 2) (n+ 1) −

(n2 + n) an+1

2 (n+ 2) (n+ 1)

For n = 1 the recurrence equation gives

2a2 + 12a3 + 4a1 = 0

Which after substituting the earlier terms found becomes

a3 =
a0
8 − a1

3

For n = 2 the recurrence equation gives

6a3 + 24a4 + 5a2 = 0
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Which after substituting the earlier terms found becomes

a4 =
a0
8 + a1

12

For n = 3 the recurrence equation gives

12a4 + 40a5 + 6a3 = 0

Which after substituting the earlier terms found becomes

a5 = −9a0
160 + a1

40

For n = 4 the recurrence equation gives

20a5 + 60a6 + 7a4 = 0

Which after substituting the earlier terms found becomes

a6 =
a0
240 − 13a1

720

For n = 5 the recurrence equation gives

30a6 + 84a7 + 8a5 = 0

Which after substituting the earlier terms found becomes

a7 =
13a0
3360 + 41a1

10080

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 3a0x2

4 +
(a0
8 − a1

3

)
x3 +

(a0
8 + a1

12

)
x4 +

(
−9a0
160 + a1

40

)
x5 + . . .
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Collecting terms, the solution becomes

(3)y =
(
1− 3

4x
2 + 1

8x
3 + 1

8x
4 − 9

160x
5
)
a0 +

(
x− 1

3x
3 + 1

12x
4 + 1

40x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 3

4x
2 + 1

8x
3 + 1

8x
4 − 9

160x
5
)
c1 +

(
x− 1

3x
3 + 1

12x
4 + 1

40x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)
y =

(
1− 3

4x
2 + 1

8x
3 + 1

8x
4 − 9

160x
5 + 1

240x
6
)
y(0)

+
(
x− 1

3x
3 + 1

12x
4 + 1

40x
5 − 13

720x
6
)
y′(0) +O

(
x6)

(2)y =
(
1− 3

4x
2 + 1

8x
3 + 1

8x
4 − 9

160x
5
)
c1 +

(
x− 1

3x
3 + 1

12x
4 + 1

40x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 3

4x
2 + 1

8x
3 + 1

8x
4 − 9

160x
5 + 1

240x
6
)
y(0)

+
(
x− 1

3x
3 + 1

12x
4 + 1

40x
5 − 13

720x
6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 3

4x
2 + 1

8x
3 + 1

8x
4 − 9

160x
5
)
c1 +

(
x− 1

3x
3 + 1

12x
4 + 1

40x
5
)
c2 +O

(
x6)

Verified OK.

11.1.1 Maple step by step solution

Let’s solve
(2 + x) y′′ + y′x+ 3y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
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y′′ = − 3y
2+x

− xy′

2+x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + xy′

2+x
+ 3y

2+x
= 0

� Check to see if x0 = −2 is a regular singular point
◦ Define functions[

P2(x) = x
2+x

, P3(x) = 3
2+x

]
◦ (2 + x) · P2(x) is analytic at x = −2

((2 + x) · P2(x))
∣∣∣∣
x=−2

= −2

◦ (2 + x)2 · P3(x) is analytic at x = −2(
(2 + x)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 = −2 is a regular singular point
x0 = −2

• Multiply by denominators
(2 + x) y′′ + y′x+ 3y = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (u− 2)

(
d
du
y(u)

)
+ 3y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion
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u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−3 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k − 2 + r) + ak(k + r + 3))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 3}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k − 2 + r) + ak(k + r + 3) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r+3)

(k+1+r)(k−2+r)

• Recursion relation for r = 0
ak+1 = − ak(k+3)

(k+1)(k−2)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 2
ak+1 = − ak(k+3)

(k+1)(k−2)

• Recursion relation for r = 3
ak+1 = − ak(k+6)

(k+4)(k+1)

• Solution for r = 3[
y(u) =

∞∑
k=0

aku
k+3, ak+1 = − ak(k+6)

(k+4)(k+1)

]
• Revert the change of variables u = 2 + x[

y =
∞∑
k=0

ak(2 + x)k+3 , ak+1 = − ak(k+6)
(k+4)(k+1)

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 49� �
Order:=6;
dsolve((2+x)*diff(y(x),x$2)+x*diff(y(x),x)+3*y(x)=0,y(x),type='series',x=0);� �
y(x) =

(
1− 3

4x
2+1

8x
3+1

8x
4− 9

160x
5
)
y(0)+

(
x− 1

3x
3+ 1

12x
4+ 1

40x
5
)
D(y) (0)+O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 63� �
AsymptoticDSolveValue[(2+x)*y''[x]+x*y'[x]+3*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x5

40 + x4

12 − x3

3 + x

)
+ c1

(
−9x5

160 + x4

8 + x3

8 − 3x2

4 + 1
)
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11.2 problem 12
Internal problem ID [1191]
Internal file name [OUTPUT/1192_Sunday_June_05_2022_02_04_43_AM_4731487/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.1 Exercises. Page 318
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
3x2 + 1

)
y′′ + 3y′x2 − 2y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (788)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (789)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −3y′x2 − 2y
3x2 + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (9x4 + 6x2 − 6x+ 2) y′ − 6x(2 + x) y
(3x2 + 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(−27x6 − 36x4 − 18x3 + 42x2 − 24x− 6) y′ + 18

(
x4 + 2x3 + 20

3 x
2 − 4

3x− 4
9

)
y

(3x2 + 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(81x8 + 162x6 + 216x5 + 414x4 − 612x3 + 420x2 + 168x− 32) y′ − 54

(
x6 + 2x5 + 22

3 x
4 + 26x3 − 92

9 x
2 − 56

9 x+ 2
3

)
y

(3x2 + 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(−243x10 − 648x8 − 1296x7 − 4428x6 − 6480x5 + 10260x4 − 6804x3 − 4824x2 + 1944x+ 132) y′ + 162

(
x8 + 2x7 + 8x6 + 30x5 + 1186

9 x4 − 236
3 x3 − 1738

27 x2 + 128
9 x+ 136

81

)
y

(3x2 + 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 2y(0)
F1 = 2y′(0)
F2 = −8y(0)− 6y′(0)
F3 = −36y(0)− 32y′(0)
F4 = 272y(0) + 132y′(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1+x2− 1

3x
4− 3

10x
5+ 17

45x
6
)
y(0)+

(
x+ 1

3x
3− 1

4x
4− 4

15x
5+ 11

60x
6
)
y′(0)+O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

3x2 + 1
)
y′′ + 3y′x2 − 2y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
3x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ 3
(

∞∑
n=1

nanx
n−1

)
x2 − 2

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to(
∞∑
n=2

3xnann(n−1)
)
+
(

∞∑
n=2

n(n−1) anxn−2

)
+
(

∞∑
n=1

3nx1+nan

)
+

∞∑
n =0

(−2anxn) = 0

(2)

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =1

3nx1+nan =
∞∑
n=2

3(n− 1) an−1x
n
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

3xnann(n− 1)
)

+
(

∞∑
n=0

(n+ 2) an+2(1 + n)xn

)

+
(

∞∑
n=2

3(n− 1) an−1x
n

)
+

∞∑
n =0

(−2anxn) = 0

n = 0 gives
2a2 − 2a0 = 0

a2 = a0

n = 1 gives
6a3 − 2a1 = 0

Which after substituting earlier equations, simplifies to

a3 =
a1
3

For 2 ≤ n, the recurrence equation is

(4)3nan(n− 1) + (n+ 2) an+2(1 + n) + 3(n− 1) an−1 − 2an = 0

Solving for an+2, gives

(5)

an+2 = −3n2an − 3nan + 3nan−1 − 2an − 3an−1

(n+ 2) (1 + n)

= −(3n2 − 3n− 2) an
(n+ 2) (1 + n) − (3n− 3) an−1

(n+ 2) (1 + n)

For n = 2 the recurrence equation gives

4a2 + 12a4 + 3a1 = 0
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Which after substituting the earlier terms found becomes

a4 = −a0
3 − a1

4

For n = 3 the recurrence equation gives

16a3 + 20a5 + 6a2 = 0

Which after substituting the earlier terms found becomes

a5 = −4a1
15 − 3a0

10

For n = 4 the recurrence equation gives

34a4 + 30a6 + 9a3 = 0

Which after substituting the earlier terms found becomes

a6 =
17a0
45 + 11a1

60

For n = 5 the recurrence equation gives

58a5 + 42a7 + 12a4 = 0

Which after substituting the earlier terms found becomes

a7 =
277a1
630 + 107a0

210

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ a0x
2 + a1x

3

3 +
(
−a0

3 − a1
4

)
x4 +

(
−4a1

15 − 3a0
10

)
x5 + . . .

3488



Collecting terms, the solution becomes

(3)y =
(
1 + x2 − 1

3x
4 − 3

10x
5
)
a0 +

(
x+ 1

3x
3 − 1

4x
4 − 4

15x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1 + x2 − 1

3x
4 − 3

10x
5
)
c1 +

(
x+ 1

3x
3 − 1

4x
4 − 4

15x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)
y =

(
1 + x2 − 1

3x
4 − 3

10x
5 + 17

45x
6
)
y(0)

+
(
x+ 1

3x
3 − 1

4x
4 − 4

15x
5 + 11

60x
6
)
y′(0) +O

(
x6)

(2)y =
(
1 + x2 − 1

3x
4 − 3

10x
5
)
c1 +

(
x+ 1

3x
3 − 1

4x
4 − 4

15x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1+x2− 1

3x
4− 3

10x
5+ 17

45x
6
)
y(0)+

(
x+ 1

3x
3− 1

4x
4− 4

15x
5+ 11

60x
6
)
y′(0)+O

(
x6)

Verified OK.

y =
(
1 + x2 − 1

3x
4 − 3

10x
5
)
c1 +

(
x+ 1

3x
3 − 1

4x
4 − 4

15x
5
)
c2 +O

(
x6)

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0 `� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 42� �
Order:=6;
dsolve((1+3*x^2)*diff(y(x),x$2)+3*x^2*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);� �
y(x) =

(
1 + x2 − 1

3x
4 − 3

10x
5
)
y(0) +

(
x+ 1

3x
3 − 1

4x
4 − 4

15x
5
)
D(y) (0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 52� �
AsymptoticDSolveValue[(1+3*x^2)*y''[x]+3*x^2*y'[x]-2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
−4x5

15 − x4

4 + x3

3 + x

)
+ c1

(
−3x5

10 − x4

3 + x2 + 1
)
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11.3 problem 13
Internal problem ID [1192]
Internal file name [OUTPUT/1193_Sunday_June_05_2022_02_04_45_AM_35783344/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.1 Exercises. Page 318
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
2x2 + 1

)
y′′ + (−3x+ 2) y′ + 4y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (791)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (792)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
3y′x− 2y′ − 4y

2x2 + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (−5x2 − 4x+ 3) y′ + 4(2 + x) y
(2x2 + 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (13x3 + 38x2 − 13x− 2) y′ − 4y(x2 + 12x+ 2)
(2x2 + 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(−47x4 − 312x3 + 34x2 + 72x− 17) y′ − 20

(
x3 − 82

5 x
2 − 7x+ 2

)
y

(2x2 + 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(195x5 + 2934x4 + 390x3 − 1548x2 + 285x+ 66) y′ + 388y

(
x4 − 672

97 x
3 − 539

97 x
2 + 252

97 x+ 52
97

)
(2x2 + 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −4y(0)− 2y′(0)
F1 = 8y(0) + 3y′(0)
F2 = −8y(0)− 2y′(0)
F3 = −40y(0)− 17y′(0)
F4 = 208y(0) + 66y′(0)
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 2x2 + 4

3x
3 − 1

3x
4 − 1

3x
5 + 13

45x
6
)
y(0)

+
(
x− x2 + 1

2x
3 − 1

12x
4 − 17

120x
5 + 11

120x
6
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

2x2 + 1
)
y′′ + (−3x+ 2) y′ + 4y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
2x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ (−3x+ 2)

(
∞∑
n=1

nanx
n−1

)
+ 4
(

∞∑
n=0

anx
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

2xnann(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)

+
∞∑

n =1

(−3nanxn) +
(

∞∑
n=1

2nanxn−1

)
+
(

∞∑
n=0

4anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
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power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =1

2nanxn−1 =
∞∑
n=0

2(n+ 1) an+1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

2xnann(n− 1)
)

+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
∞∑

n =1

(−3nanxn) +
(

∞∑
n=0

2(n+ 1) an+1x
n

)
+
(

∞∑
n=0

4anxn

)
= 0

n = 0 gives
2a2 + 2a1 + 4a0 = 0

a2 = −2a0 − a1

n = 1 gives
6a3 + a1 + 4a2 = 0

Which after substituting earlier equations, simplifies to

a3 =
4a0
3 + a1

2

For 2 ≤ n, the recurrence equation is

(4)2nan(n− 1) + (n+ 2) an+2(n+ 1)− 3nan + 2(n+ 1) an+1 + 4an = 0

Solving for an+2, gives

(5)

an+2 = −2n2an − 5nan + 2nan+1 + 4an + 2an+1

(n+ 2) (n+ 1)

= −(2n2 − 5n+ 4) an
(n+ 2) (n+ 1) − (2n+ 2) an+1

(n+ 2) (n+ 1)
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For n = 2 the recurrence equation gives

2a2 + 12a4 + 6a3 = 0

Which after substituting the earlier terms found becomes

a4 = −a0
3 − a1

12

For n = 3 the recurrence equation gives

7a3 + 20a5 + 8a4 = 0

Which after substituting the earlier terms found becomes

a5 = −a0
3 − 17a1

120

For n = 4 the recurrence equation gives

16a4 + 30a6 + 10a5 = 0

Which after substituting the earlier terms found becomes

a6 =
13a0
45 + 11a1

120

For n = 5 the recurrence equation gives

29a5 + 42a7 + 12a6 = 0

Which after substituting the earlier terms found becomes

a7 =
31a0
210 + 361a1

5040

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .
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Substituting the values for an found above, the solution becomes

y= a0+a1x+(−2a0−a1)x2+
(
4a0
3 + a1

2

)
x3+

(
−a0

3 − a1
12

)
x4+

(
−a0

3 − 17a1
120

)
x5+ . . .

Collecting terms, the solution becomes

(3)y =
(
1−2x2+ 4

3x
3− 1

3x
4− 1

3x
5
)
a0+

(
x−x2+ 1

2x
3− 1

12x
4− 17

120x
5
)
a1+O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 2x2 + 4

3x
3 − 1

3x
4 − 1

3x
5
)
c1 +

(
x− x2 + 1

2x
3 − 1

12x
4 − 17

120x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)
y =

(
1− 2x2 + 4

3x
3 − 1

3x
4 − 1

3x
5 + 13

45x
6
)
y(0)

+
(
x− x2 + 1

2x
3 − 1

12x
4 − 17

120x
5 + 11

120x
6
)
y′(0) +O

(
x6)

(2)y =
(
1− 2x2 + 4

3x
3 − 1

3x
4 − 1

3x
5
)
c1 +

(
x− x2 + 1

2x
3 − 1

12x
4 − 17

120x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 2x2 + 4

3x
3 − 1

3x
4 − 1

3x
5 + 13

45x
6
)
y(0)

+
(
x− x2 + 1

2x
3 − 1

12x
4 − 17

120x
5 + 11

120x
6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 2x2 + 4

3x
3 − 1

3x
4 − 1

3x
5
)
c1 +

(
x− x2 + 1

2x
3 − 1

12x
4 − 17

120x
5
)
c2 +O

(
x6)

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 54� �
Order:=6;
dsolve((1+2*x^2)*diff(y(x),x$2)+(2-3*x)*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 2x2 + 4

3x
3 − 1

3x
4 − 1

3x
5
)
y(0)

+
(
x− x2 + 1

2x
3 − 1

12x
4 − 17

120x
5
)
D(y) (0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 66� �
AsymptoticDSolveValue[(1+2*x^2)*y''[x]+(2-3*x)*y'[x]+4*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
−x5

3 − x4

3 + 4x3

3 − 2x2 + 1
)
+ c2

(
−17x5

120 − x4

12 + x3

2 − x2 + x

)
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11.4 problem 14
Internal problem ID [1193]
Internal file name [OUTPUT/1194_Sunday_June_05_2022_02_04_46_AM_81043293/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.1 Exercises. Page 318
Problem number: 14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x2 + 1

)
y′′ + (2− x) y′ + 3y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (794)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (795)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
y′x− 2y′ − 3y

x2 + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −3y′x2 + 3yx+ 2y′ + 6y
(x2 + 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (6x3 + 12x2 − 9x+ 2) y′ + (−24x− 3) y
(x2 + 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(−12x4 − 72x3 + 27x2 + 8x− 16) y′ − 18

(
x3 − 14

3 x
2 − 5

2x+ 5
3

)
y

(x2 + 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(18x5 + 396x4 − 12x3 − 264x2 + 195x+ 10) y′ + 126

(
x4 − 16

7 x
3 − 25

7 x
2 + 64

21x+ 31
42

)
y

(x2 + 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −3y(0)− 2y′(0)
F1 = 6y(0) + 2y′(0)
F2 = −3y(0) + 2y′(0)
F3 = −30y(0)− 16y′(0)
F4 = 93y(0) + 10y′(0)
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 3

2x
2 + x3 − 1

8x
4 − 1

4x
5 + 31

240x
6
)
y(0)

+
(
x− x2 + 1

3x
3 + 1

12x
4 − 2

15x
5 + 1

72x
6
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 + 1
)
y′′ + (2− x) y′ + 3y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ (2− x)

(
∞∑
n=1

nanx
n−1

)
+ 3
(

∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)

+
(

∞∑
n=1

2nanxn−1

)
+

∞∑
n =1

(−nanx
n) +

(
∞∑
n=0

3anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the

3506



power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =1

2nanxn−1 =
∞∑
n=0

2(n+ 1) an+1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
(

∞∑
n=0

2(n+ 1) an+1x
n

)
+

∞∑
n =1

(−nanx
n) +

(
∞∑
n=0

3anxn

)
= 0

n = 0 gives
2a2 + 2a1 + 3a0 = 0

a2 = −3a0
2 − a1

n = 1 gives
6a3 + 4a2 + 2a1 = 0

Which after substituting earlier equations, simplifies to

a3 = a0 +
a1
3

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1) + (n+ 2) an+2(n+ 1) + 2(n+ 1) an+1 − nan + 3an = 0

Solving for an+2, gives

(5)

an+2 = −n2an − 2nan + 2nan+1 + 3an + 2an+1

(n+ 2) (n+ 1)

= −(n2 − 2n+ 3) an
(n+ 2) (n+ 1) − (2n+ 2) an+1

(n+ 2) (n+ 1)
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For n = 2 the recurrence equation gives

3a2 + 12a4 + 6a3 = 0

Which after substituting the earlier terms found becomes

a4 = −a0
8 + a1

12

For n = 3 the recurrence equation gives

6a3 + 20a5 + 8a4 = 0

Which after substituting the earlier terms found becomes

a5 = −a0
4 − 2a1

15

For n = 4 the recurrence equation gives

11a4 + 30a6 + 10a5 = 0

Which after substituting the earlier terms found becomes

a6 =
31a0
240 + a1

72

For n = 5 the recurrence equation gives

18a5 + 42a7 + 12a6 = 0

Which after substituting the earlier terms found becomes

a7 =
59a0
840 + 67a1

1260

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .
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Substituting the values for an found above, the solution becomes

y = a0+a1x+
(
−3a0

2 −a1

)
x2+

(
a0+

a1
3

)
x3+

(
−a0

8 + a1
12

)
x4+

(
−a0

4 − 2a1
15

)
x5+ . . .

Collecting terms, the solution becomes

(3)y =
(
1− 3

2x
2 + x3 − 1

8x
4 − 1

4x
5
)
a0 +

(
x− x2 + 1

3x
3 + 1

12x
4 − 2

15x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 3

2x
2 + x3 − 1

8x
4 − 1

4x
5
)
c1 +

(
x− x2 + 1

3x
3 + 1

12x
4 − 2

15x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)
y =

(
1− 3

2x
2 + x3 − 1

8x
4 − 1

4x
5 + 31

240x
6
)
y(0)

+
(
x− x2 + 1

3x
3 + 1

12x
4 − 2

15x
5 + 1

72x
6
)
y′(0) +O

(
x6)

(2)y =
(
1− 3

2x
2 + x3 − 1

8x
4 − 1

4x
5
)
c1 +

(
x− x2 + 1

3x
3 + 1

12x
4 − 2

15x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 3

2x
2 + x3 − 1

8x
4 − 1

4x
5 + 31

240x
6
)
y(0)

+
(
x− x2 + 1

3x
3 + 1

12x
4 − 2

15x
5 + 1

72x
6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 3

2x
2 + x3 − 1

8x
4 − 1

4x
5
)
c1 +

(
x− x2 + 1

3x
3 + 1

12x
4 − 2

15x
5
)
c2 +O

(
x6)

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 52� �
Order:=6;
dsolve((1+x^2)*diff(y(x),x$2)+(2-x)*diff(y(x),x)+3*y(x)=0,y(x),type='series',x=0);� �
y(x)=

(
1− 3

2x
2+x3− 1

8x
4− 1

4x
5
)
y(0)+

(
x−x2+1

3x
3+ 1

12x
4− 2

15x
5
)
D(y) (0)+O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 64� �
AsymptoticDSolveValue[(1+x^2)*y''[x]+(2-x)*y'[x]+3*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
−x5

4 − x4

8 + x3 − 3x2

2 + 1
)
+ c2

(
−2x5

15 + x4

12 + x3

3 − x2 + x

)
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11.5 problem 15
Internal problem ID [1194]
Internal file name [OUTPUT/1195_Sunday_June_05_2022_02_04_47_AM_50425243/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.1 Exercises. Page 318
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
3x2 + 1

)
y′′ − 2y′x+ 4y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (797)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (798)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
2y′x− 4y
3x2 + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −14y′x2 + 16yx− 2y′

(3x2 + 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 104x3y′ − 88x2y + 8y′x+ 24y
(3x2 + 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= 32(−31x4 + 6x2 + 1) y′ + 640(x3 − x) y
(3x2 + 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (11840x5 − 8320x3 − 960x) y′ + (−5632x4 + 14592x2 − 768) y
(3x2 + 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −4y(0)
F1 = −2y′(0)
F2 = 24y(0)
F3 = 32y′(0)
F4 = −768y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 2x2 + x4 − 16

15x
6
)
y(0) +

(
x− 1

3x
3 + 4

15x
5
)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

3x2 + 1
)
y′′ − 2y′x+ 4y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
3x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
− 2
(

∞∑
n=1

nanx
n−1

)
x+ 4

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to(
∞∑
n=2

3xnann(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(−2nanxn) +
(

∞∑
n=0

4anxn

)
= 0

(2)

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

3xnann(n− 1)
)

+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
∞∑

n =1

(−2nanxn) +
(

∞∑
n=0

4anxn

)
= 0
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n = 0 gives
2a2 + 4a0 = 0

a2 = −2a0

n = 1 gives
6a3 + 2a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −a1
3

For 2 ≤ n, the recurrence equation is

(4)3nan(n− 1) + (n+ 2) an+2(n+ 1)− 2nan + 4an = 0

Solving for an+2, gives

(5)an+2 = −an(3n2 − 5n+ 4)
(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

6a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = a0

For n = 3 the recurrence equation gives

16a3 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 =
4a1
15
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For n = 4 the recurrence equation gives

32a4 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = −16a0
15

For n = 5 the recurrence equation gives

54a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = −12a1
35

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 2a0x2 − 1
3a1x

3 + a0x
4 + 4

15a1x
5 + . . .

Collecting terms, the solution becomes

(3)y =
(
x4 − 2x2 + 1

)
a0 +

(
x− 1

3x
3 + 4

15x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
x4 − 2x2 + 1

)
c1 +

(
x− 1

3x
3 + 4

15x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− 2x2 + x4 − 16

15x
6
)
y(0) +

(
x− 1

3x
3 + 4

15x
5
)
y′(0) +O

(
x6)

(2)y =
(
x4 − 2x2 + 1

)
c1 +

(
x− 1

3x
3 + 4

15x
5
)
c2 +O

(
x6)
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Verification of solutions

y =
(
1− 2x2 + x4 − 16

15x
6
)
y(0) +

(
x− 1

3x
3 + 4

15x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
x4 − 2x2 + 1

)
c1 +

(
x− 1

3x
3 + 4

15x
5
)
c2 +O

(
x6)

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Legendre successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 32� �
Order:=6;
dsolve((1+3*x^2)*diff(y(x),x$2)-2*x*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
x4 − 2x2 + 1

)
y(0) +

(
x− 1

3x
3 + 4

15x
5
)
D(y) (0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 36� �
AsymptoticDSolveValue[(1+3*x^2)*y''[x]-2*x*y'[x]+4*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
4x5

15 − x3

3 + x

)
+ c1

(
x4 − 2x2 + 1

)
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11.6 problem 16
11.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3528

Internal problem ID [1195]
Internal file name [OUTPUT/1196_Sunday_June_05_2022_02_04_49_AM_56123841/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.1 Exercises. Page 318
Problem number: 16.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ + (2x+ 4) y′ + (2 + x) y = 0

With the expansion point for the power series method at x = −1.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x+ 1

The ode is converted to be in terms of the new independent variable t. This results in(
d2

dt2
y(t)

)
(−1 + t) + (2t+ 2)

(
d

dt
y(t)

)
+ (t+ 1) y(t) = 0

With its expansion point and initial conditions now at t = 0. The transformed ODE
is now solved. Solving ode using Taylor series method. This gives review on how the
Taylor series method works for solving second order ode.
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Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (800)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (801)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
y(t) t+ 2t

(
d
dt
y(t)

)
+ y(t) + 2 d

dt
y(t)

−1 + t

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(3t2 + 8t+ 9)

(
d
dt
y(t)

)
+ 2y(t) (t2 + 2t+ 2)

(−1 + t)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(−4t3 − 20t2 − 48t− 48)

(
d
dt
y(t)

)
− 3
(
t3 + 11

3 t
2 + 25

3 t+ 7
)
y(t)

(−1 + t)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(5t4 + 40t3 + 154t2 + 332t+ 309)

(
d
dt
y(t)

)
+ 4y(t) (t4 + 6t3 + 22t2 + 42t+ 34)

(−1 + t)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(−6t5 − 70t4 − 384t3 − 1320t2 − 2618t− 2322)

(
d
dt
y(t)

)
− 5y(t)

(
t5 + 9t4 + 234

5 t3 + 734
5 t2 + 1321

5 t+ 1021
5

)
(−1 + t)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = y(0) + 2y′(0)
F1 = 4y(0) + 9y′(0)
F2 = 21y(0) + 48y′(0)
F3 = 136y(0) + 309y′(0)
F4 = 1021y(0) + 2322y′(0)
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Substituting all the above in (7) and simplifying gives the solution as

y(t) =
(
1 + 1

2t
2 + 2

3t
3 + 7

8t
4 + 17

15t
5 + 1021

720 t6
)
y(0)

+
(
t+ t2 + 3

2t
3 + 2t4 + 103

40 t5 + 129
40 t6

)
y′(0) +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

d2

dt2
y(t)

)
(−1 + t) + (2t+ 2)

(
d

dt
y(t)

)
+ (t+ 1) y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)
(−1 + t) + (2t+ 2)

(
∞∑
n=1

nant
n−1

)
+ (t+ 1)

(
∞∑
n=0

ant
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

n tn−1an(n− 1)
)

+
∞∑

n =2

(
−n(n− 1) antn−2)+( ∞∑

n=1

2nantn
)

+
(

∞∑
n=1

2nantn−1

)
+
(

∞∑
n=0

t1+nan

)
+
(

∞∑
n=0

ant
n

)
= 0

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
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power and the corresponding index gives

∞∑
n =2

n tn−1an(n− 1) =
∞∑
n=1

(1 + n) a1+nn tn

∞∑
n =2

(
−n(n− 1) antn−2) = ∞∑

n=0

(−(n+ 2) an+2(1 + n) tn)

∞∑
n =1

2nantn−1 =
∞∑
n=0

2(1 + n) a1+nt
n

∞∑
n =0

t1+nan =
∞∑
n=1

an−1t
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=1

(1 + n) a1+nn tn

)
+

∞∑
n =0

(−(n+ 2) an+2(1 + n) tn) +
(

∞∑
n=1

2nantn
)

+
(

∞∑
n=0

2(1 + n) a1+nt
n

)
+
(

∞∑
n=1

an−1t
n

)
+
(

∞∑
n=0

ant
n

)
= 0

n = 0 gives
−2a2 + 2a1 + a0 = 0

a2 =
a0
2 + a1

For 1 ≤ n, the recurrence equation is

(4)(1 + n) a1+nn− (n+ 2) an+2(1 + n) + 2nan + 2(1 + n) a1+n + an−1 + an = 0

Solving for an+2, gives

(5)

an+2 =
n2a1+n + 2nan + 3na1+n + an + 2a1+n + an−1

(n+ 2) (1 + n)

= (2n+ 1) an
(n+ 2) (1 + n) +

(n2 + 3n+ 2) a1+n

(n+ 2) (1 + n) + an−1

(n+ 2) (1 + n)
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For n = 1 the recurrence equation gives

6a2 − 6a3 + 3a1 + a0 = 0

Which after substituting the earlier terms found becomes

a3 =
2a0
3 + 3a1

2

For n = 2 the recurrence equation gives

12a3 − 12a4 + 5a2 + a1 = 0

Which after substituting the earlier terms found becomes

a4 =
7a0
8 + 2a1

For n = 3 the recurrence equation gives

20a4 − 20a5 + 7a3 + a2 = 0

Which after substituting the earlier terms found becomes

a5 =
17a0
15 + 103a1

40

For n = 4 the recurrence equation gives

30a5 − 30a6 + 9a4 + a3 = 0

Which after substituting the earlier terms found becomes

a6 =
1021a0
720 + 129a1

40

For n = 5 the recurrence equation gives

42a6 − 42a7 + 11a5 + a4 = 0
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Which after substituting the earlier terms found becomes

a7 =
243a0
140 + 6631a1

1680

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0+ a1t+
(a0
2 + a1

)
t2+

(
2a0
3 + 3a1

2

)
t3+

(
7a0
8 +2a1

)
t4+

(
17a0
15 + 103a1

40

)
t5

+ . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1 + 1

2t
2 + 2

3t
3 + 7

8t
4 + 17

15t
5
)
a0 +

(
t+ t2 + 3

2t
3 + 2t4 + 103

40 t5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1 + 1

2t
2 + 2

3t
3 + 7

8t
4 + 17

15t
5
)
c1 +

(
t+ t2 + 3

2t
3 + 2t4 + 103

40 t5
)
c2 +O

(
t6
)

Replacing t in the above with the original independent variable xsusing t = x+1 results
in

y =
(
1 + (x+ 1)2

2 + 2(x+ 1)3

3 + 7(x+ 1)4

8 + 17(x+ 1)5

15 + 1021(x+ 1)6

720

)
y(−1)

+
(
x+ 1+ (x+ 1)2 + 3(x+ 1)3

2 + 2(x+ 1)4 + 103(x+ 1)5

40 + 129(x+ 1)6

40

)
y′(−1)

+O
(
(x+ 1)6

)
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Summary
The solution(s) found are the following

(1)

y =
(
1 + (x+ 1)2

2 + 2(x+ 1)3

3 + 7(x+ 1)4

8 + 17(x+ 1)5

15 + 1021(x+ 1)6

720

)
y(−1)

+
(
x+1+(x+1)2+ 3(x+ 1)3

2 +2(x+1)4+ 103(x+ 1)5

40 + 129(x+ 1)6

40

)
y′(−1)

+O
(
(x+ 1)6

)
Verification of solutions

y =
(
1 + (x+ 1)2

2 + 2(x+ 1)3

3 + 7(x+ 1)4

8 + 17(x+ 1)5

15 + 1021(x+ 1)6

720

)
y(−1)

+
(
x+ 1+ (x+ 1)2 + 3(x+ 1)3

2 + 2(x+ 1)4 + 103(x+ 1)5

40 + 129(x+ 1)6

40

)
y′(−1)

+O
(
(x+ 1)6

)
Verified OK.

11.6.1 Maple step by step solution

Let’s solve
y′′x+ (2x+ 4) y′ + (2 + x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (2+x)y
x

− 2(2+x)y′
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2(2+x)y′
x

+ (2+x)y
x

= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2(2+x)
x

, P3(x) = 2+x
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ (2x+ 4) y′ + (2 + x) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(3 + r)x−1+r + (a1(1 + r) (4 + r) + 2a0(1 + r))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (k + 4 + r) + 2ak(k + 1 + r) + ak−1)xk+r

)
= 0
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• a0cannot be 0 by assumption, giving the indicial equation
r(3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3, 0}

• Each term must be 0
a1(1 + r) (4 + r) + 2a0(1 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + 4 + r) + 2akk + 2akr + 2ak + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 5 + r) + 2ak+1(k + 1) + 2rak+1 + 2ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2kak+1+2rak+1+ak+4ak+1

(k+2+r)(k+5+r)

• Recursion relation for r = −3
ak+2 = −2kak+1+ak−2ak+1

(k−1)(k+2)

• Series not valid for r = −3 , division by 0 in the recursion relation at k = 1
ak+2 = −2kak+1+ak−2ak+1

(k−1)(k+2)

• Recursion relation for r = 0
ak+2 = −2kak+1+ak+4ak+1

(k+2)(k+5)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = −2kak+1+ak+4ak+1

(k+2)(k+5) , 4a1 + 2a0 = 0
]

3530



Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 52� �
Order:=6;
dsolve(x*diff(y(x),x$2)+(4+2*x)*diff(y(x),x)+(2+x)*y(x)=0,y(x),type='series',x=-1);� �
y(x) =

(
1 + (x+ 1)2

2 + 2(x+ 1)3

3 + 7(x+ 1)4

8 + 17(x+ 1)5

15

)
y(−1)

+
(
x+1+ (x+1)2 + 3(x+ 1)3

2 + 2(x+1)4 + 103(x+ 1)5

40

)
D(y) (−1)+O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 81� �
AsymptoticDSolveValue[(x)*y''[x]+(4+2*x)*y'[x]+(2+x)*y[x]==0,y[x],{x,-1,5}]� �

y(x) → c1

(
17
15(x+ 1)5 + 7

8(x+ 1)4 + 2
3(x+ 1)3 + 1

2(x+ 1)2 + 1
)

+ c2

(
103
40 (x+ 1)5 + 2(x+ 1)4 + 3

2(x+ 1)3 + (x+ 1)2 + x+ 1
)
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11.7 problem 17
11.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3541

Internal problem ID [1196]
Internal file name [OUTPUT/1197_Sunday_June_05_2022_02_04_50_AM_23712595/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.1 Exercises. Page 318
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

x2y′′ + 2y′x− 3yx = 0

With the expansion point for the power series method at x = 2.

The ODE is
x2y′′ + 2y′x− 3yx = 0

Or
x(xy′′ − 3y + 2y′) = 0

For x 6= 0 the above simplifies to

xy′′ − 3y + 2y′ = 0

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = −2 + x
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The ode is converted to be in terms of the new independent variable t. This results in

(2 + t)2
(

d2

dt2
y(t)

)
+ 2(2 + t)

(
d

dt
y(t)

)
− 3(2 + t) y(t) = 0

With its expansion point and initial conditions now at t = 0. The transformed ODE
is now solved. Solving ode using Taylor series method. This gives review on how the
Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (803)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (804)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
2 d
dt
y(t)− 3y(t)
2 + t

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(3t+ 12)

(
d
dt
y(t)

)
− 9y(t)

(2 + t)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(−18t− 60)

(
d
dt
y(t)

)
+ 9y(t) (t+ 6)

(2 + t)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(9t2 + 144t+ 372)

(
d
dt
y(t)

)
+ (−72t− 324) y(t)

(2 + t)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(−108t2 − 1152t− 2592)

(
d
dt
y(t)

)
+ 27y(t) (t2 + 24t+ 84)

(2 + t)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = y(0) and
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y′(0) = y′(0) gives

F0 = −y′(0) + 3y(0)
2

F1 = −9y(0)
4 + 3y′(0)

F2 =
27y(0)

4 − 15y′(0)
2

F3 = −81y(0)
4 + 93y′(0)

4

F4 =
567y(0)

8 − 81y′(0)

Substituting all the above in (7) and simplifying gives the solution as

y(t) =
(
1 + 3

4t
2 − 3

8t
3 + 9

32t
4 − 27

160t
5 + 63

640t
6
)
y(0)

+
(
t− 1

2t
2 + 1

2t
3 − 5

16t
4 + 31

160t
5 − 9

80t
6
)
y′(0) +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(
t2 + 4t+ 4

)( d2

dt2
y(t)

)
+ (2t+ 4)

(
d

dt
y(t)

)
+ (−3t− 6) y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives

(
t2 + 4t+ 4

)( ∞∑
n=2

n(n− 1) antn−2

)
+ (2t+ 4)

(
∞∑
n=1

nant
n−1

)
+ (−3t− 6)

(
∞∑
n=0

ant
n

)
= 0

(1)
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Which simplifies to

(2)

(
∞∑
n=2

tnann(n− 1)
)

+
(

∞∑
n=2

4n tn−1an(n− 1)
)

+
(

∞∑
n=2

4n(n− 1) antn−2

)

+
(

∞∑
n=1

2nantn
)

+
(

∞∑
n=1

4nantn−1

)
+

∞∑
n =0

(
−3t1+nan

)
+

∞∑
n =0

(−6antn) = 0

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

4n tn−1an(n− 1) =
∞∑
n=1

4(1 + n) a1+nn tn

∞∑
n =2

4n(n− 1) antn−2 =
∞∑
n=0

4(n+ 2) an+2(1 + n) tn

∞∑
n =1

4nantn−1 =
∞∑
n=0

4(1 + n) a1+nt
n

∞∑
n =0

(
−3t1+nan

)
=

∞∑
n=1

(−3an−1t
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=2

tnann(n−1)
)
+
(

∞∑
n=1

4(1+n) a1+nn tn

)
+
(

∞∑
n=0

4(n+2) an+2(1+n) tn
)

+
(

∞∑
n=1

2nantn
)
+
(

∞∑
n=0

4(1+n) a1+nt
n

)
+

∞∑
n =1

(−3an−1t
n)+

∞∑
n =0

(−6antn) = 0

n = 0 gives
8a2 + 4a1 − 6a0 = 0

a2 =
3a0
4 − a1

2
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n = 1 gives
16a2 + 24a3 − 4a1 − 3a0 = 0

Which after substituting earlier equations, simplifies to

a3 = −3a0
8 + a1

2

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1) + 4(1 + n) a1+nn+ 4(n+ 2) an+2(1 + n)
+ 2nan + 4(1 + n) a1+n − 3an−1 − 6an = 0

Solving for an+2, gives

(5)

an+2 = −n2an + 4n2a1+n + nan + 8na1+n − 6an + 4a1+n − 3an−1

4 (n+ 2) (1 + n)

= − (n2 + n− 6) an
4 (n+ 2) (1 + n) −

(4n2 + 8n+ 4) a1+n

4 (n+ 2) (1 + n) + 3an−1

4 (n+ 2) (1 + n)

For n = 2 the recurrence equation gives

36a3 + 48a4 − 3a1 = 0

Which after substituting the earlier terms found becomes

a4 =
9a0
32 − 5a1

16

For n = 3 the recurrence equation gives

6a3 + 64a4 + 80a5 − 3a2 = 0

Which after substituting the earlier terms found becomes

a5 = −27a0
160 + 31a1

160

For n = 4 the recurrence equation gives

14a4 + 100a5 + 120a6 − 3a3 = 0
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Which after substituting the earlier terms found becomes

a6 =
63a0
640 − 9a1

80

For n = 5 the recurrence equation gives

24a5 + 144a6 + 168a7 − 3a4 = 0

Which after substituting the earlier terms found becomes

a7 = −99a0
1792 + 283a1

4480

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t+
(
3a0
4 − a1

2

)
t2 +

(
−3a0

8 + a1
2

)
t3

+
(
9a0
32 − 5a1

16

)
t4 +

(
−27a0

160 + 31a1
160

)
t5 + . . .

Collecting terms, the solution becomes

y(t) =
(
1+ 3

4t
2 − 3

8t
3 + 9

32t
4 − 27

160t
5
)
a0 +

(
t− 1

2t
2 + 1

2t
3 − 5

16t
4 + 31

160t
5
)
a1 +O

(
t6
)

(3)

At t = 0 the solution above becomes

y(t) =
(
1+ 3

4t
2 − 3

8t
3 + 9

32t
4 − 27

160t
5
)
c1 +

(
t− 1

2t
2 + 1

2t
3 − 5

16t
4 + 31

160t
5
)
c2 +O

(
t6
)
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Replacing t in the above with the original independent variable xsusing t = −2 + x

results in

y =
(
1+ 3(−2 + x)2

4 − 3(−2 + x)3

8 + 9(−2 + x)4

32 − 27(−2 + x)5

160 + 63(−2 + x)6

640

)
y(2)

+
(
−2 + x− (−2 + x)2

2 + (−2 + x)3

2 − 5(−2 + x)4

16 + 31(−2 + x)5

160

− 9(−2 + x)6

80

)
y′(2) +O

(
(−2 + x)6

)
Summary
The solution(s) found are the following

(1)

y =
(
1 + 3(−2 + x)2

4 − 3(−2 + x)3

8 + 9(−2 + x)4

32 − 27(−2 + x)5

160

+ 63(−2 + x)6

640

)
y(2) +

(
−2 + x− (−2 + x)2

2 + (−2 + x)3

2 − 5(−2 + x)4

16

+ 31(−2 + x)5

160 − 9(−2 + x)6

80

)
y′(2) +O

(
(−2 + x)6

)
Verification of solutions

y =
(
1+ 3(−2 + x)2

4 − 3(−2 + x)3

8 + 9(−2 + x)4

32 − 27(−2 + x)5

160 + 63(−2 + x)6

640

)
y(2)

+
(
−2 + x− (−2 + x)2

2 + (−2 + x)3

2 − 5(−2 + x)4

16 + 31(−2 + x)5

160

− 9(−2 + x)6

80

)
y′(2) +O

(
(−2 + x)6

)
Verified OK.
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11.7.1 Maple step by step solution

Let’s solve
x2y′′ + 2y′x− 3yx = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 3y

x
− 2y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2y′

x
− 3y

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = − 3

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x− 3y + 2y′ = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
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y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + 2 + r)− 3ak)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + 2 + r)− 3ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = 3ak

(k+1+r)(k+2+r)

• Recursion relation for r = −1
ak+1 = 3ak

k(k+1)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+1 = 3ak

k(k+1)

]
• Recursion relation for r = 0

ak+1 = 3ak
(k+1)(k+2)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = 3ak

(k+1)(k+2)

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, a1+k = 3ak

k(1+k) , b1+k = 3bk
(1+k)(k+2)

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 54� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+2*x*diff(y(x),x)-3*x*y(x)=0,y(x),type='series',x=2);� �
y(x) =

(
1 + 3(−2 + x)2

4 − 3(−2 + x)3

8 + 9(−2 + x)4

32 − 27(−2 + x)5

160

)
y(2)

+
(
−2 + x− (−2 + x)2

2 + (−2 + x)3

2 − 5(−2 + x)4

16 + 31(−2 + x)5

160

)
D(y) (2)

+O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 87� �
AsymptoticDSolveValue[x^2*y''[x]+2*x*y'[x]-3*x*y[x]==0,y[x],{x,2,5}]� �

y(x) → c1

(
− 27
160(x− 2)5 + 9

32(x− 2)4 − 3
8(x− 2)3 + 3

4(x− 2)2 + 1
)

+ c2

(
31
160(x− 2)5 − 5

16(x− 2)4 + 1
2(x− 2)3 − 1

2(x− 2)2 + x− 2
)
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11.8 problem 18
11.8.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 3544

Internal problem ID [1197]
Internal file name [OUTPUT/1198_Sunday_June_05_2022_02_04_52_AM_23130848/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.1 Exercises. Page 318
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

(2− x) y′′ + 2y = 0

With initial conditions

[y(0) = a0, y
′(0) = a1]

With the expansion point for the power series method at x = 0.

11.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 0

q(x) = 2
2− x

F = 0
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Hence the ode is

y′′ + 2y
2− x

= 0

The domain of p(x) = 0 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 2
2−x

is

{x < 2∨ 2 < x}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (806)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (807)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
2y

−2 + x

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (−4 + 2x) y′ − 2y
(−2 + x)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (−4x+ 8) y′ + 4y(x− 1)
(−2 + x)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (4x2 − 4x− 8) y′ + (−16x+ 20) y
(−2 + x)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (−24x2 + 48x) y′ + 8y(x2 + 5x− 8)
(−2 + x)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = a0 and
y′(0) = a1 gives

F0 = −a0

F1 = −a0
2 − a1

F2 =
a0
2 − a1

F3 =
5a0
4 − a1

2
F4 = 2a0
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Substituting all the above in (7) and simplifying gives the solution as

y = xa1 + a0 −
a0x

2

2 − x3a0
12 − x3a1

6 + x4a0
48 − x4a1

24 + x5a0
96 − x5a1

240 + a0x
6

360 +O
(
x6)

y = xa1 + a0 −
a0x

2

2 − x3a0
12 − x3a1

6 + x4a0
48 − x4a1

24 + x5a0
96 − x5a1

240 + a0x
6

360 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(2− x) y′′ + 2y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(2− x)
(

∞∑
n=2

n(n− 1) anxn−2

)
+ 2
(

∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)
∞∑

n =2

(
−nxn−1an(n− 1)

)
+
(

∞∑
n=2

2n(n− 1) anxn−2

)
+
(

∞∑
n=0

2anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

(
−nxn−1an(n− 1)

)
=

∞∑
n=1

(−(n+ 1) an+1nxn)

∞∑
n =2

2n(n− 1) anxn−2 =
∞∑
n=0

2(n+ 2) an+2(n+ 1)xn
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
∞∑

n =1

(−(n+ 1) an+1nxn) +
(

∞∑
n=0

2(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=0

2anxn

)
= 0

n = 0 gives
4a2 + 2a0 = 0

a2 = −a0
2

For 1 ≤ n, the recurrence equation is

(4)−(n+ 1) an+1n+ 2(n+ 2) an+2(n+ 1) + 2an = 0

Solving for an+2, gives

(5)

an+2 =
n2an+1 + nan+1 − 2an

2 (n+ 2) (n+ 1)

= − an
(n+ 2) (n+ 1) +

(n2 + n) an+1

2 (n+ 2) (n+ 1)

For n = 1 the recurrence equation gives

−2a2 + 12a3 + 2a1 = 0

Which after substituting the earlier terms found becomes

a3 = −a0
12 − a1

6

For n = 2 the recurrence equation gives

−6a3 + 24a4 + 2a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
48 − a1

24
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For n = 3 the recurrence equation gives

−12a4 + 40a5 + 2a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a0
96 − a1

240

For n = 4 the recurrence equation gives

−20a5 + 60a6 + 2a4 = 0

Which after substituting the earlier terms found becomes

a6 =
a0
360

For n = 5 the recurrence equation gives

−30a6 + 84a7 + 2a5 = 0

Which after substituting the earlier terms found becomes

a7 =
a0

1344 + a1
10080

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− a0x
2

2 +
(
−a0
12 − a1

6

)
x3 +

(a0
48 − a1

24

)
x4 +

(a0
96 − a1

240

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

2x
2− 1

12x
3+ 1

48x
4+ 1

96x
5
)
a0+

(
x− 1

6x
3− 1

24x
4− 1

240x
5
)
a1+O

(
x6)
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At x = 0 the solution above becomes

y =
(
1− 1

2x
2 − 1

12x
3 + 1

48x
4 + 1

96x
5
)
c1 +

(
x− 1

6x
3 − 1

24x
4 − 1

240x
5
)
c2 +O

(
x6)

y = a0 −
a0x

2

2 − x3a0
12 + x4a0

48 + x5a0
96 + xa1 −

x3a1
6 − x4a1

24 − x5a1
240 +O

(
x6)

Summary
The solution(s) found are the following

(1)y = xa1 + a0 −
a0x

2

2 − x3a0
12 − x3a1

6 + x4a0
48 − x4a1

24 + x5a0
96 − x5a1

240 + a0x
6

360 +O
(
x6)
(2)y = a0 −

a0x
2

2 − x3a0
12 + x4a0

48 + x5a0
96 + xa1 −

x3a1
6 − x4a1

24 − x5a1
240 +O

(
x6)

Verification of solutions

y = xa1 + a0 −
a0x

2

2 − x3a0
12 − x3a1

6 + x4a0
48 − x4a1

24 + x5a0
96 − x5a1

240 + a0x
6

360 +O
(
x6)

Verified OK.

y = a0 −
a0x

2

2 − x3a0
12 + x4a0

48 + x5a0
96 + xa1 −

x3a1
6 − x4a1

24 − x5a1
240 +O

(
x6)

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 40� �
Order:=6;
dsolve([(2-x)*diff(y(x),x$2)+2*y(x)=0,y(0) = a__0, D(y)(0) = a__1],y(x),type='series',x=0);� �
y(x) = a0 + a1x−

1
2a0x

2 +
(
−a1

6 − a0
12

)
x3 +

(a0
48 − a1

24

)
x4 +

(
− a1
240 + a0

96

)
x5 +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 79� �
AsymptoticDSolveValue[{(2-x)*y''[x]+2*y[x]==0,{y[0]==a0,y'[0]==a1}},y[x],{x,0,5}]� �

y(x) → 1
20x

5
(
1
6

(
a0
2 + a1

)
+ a0

8 − a1
4

)
+ 1

12x
4
(
a0
4 − a1

2

)
+ 1

6x
3
(
−a0

2 − a1
)
− a0x2

2 + a0+ a1x
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11.9 problem 19
11.9.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 3555
11.9.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3564

Internal problem ID [1198]
Internal file name [OUTPUT/1199_Sunday_June_05_2022_02_04_53_AM_91201647/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.1 Exercises. Page 318
Problem number: 19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(x+ 1) y′′ + 2(x− 1)2 y′ + 3y = 0

With initial conditions

[y(1) = a0, y
′(1) = a1]

With the expansion point for the power series method at x = 1.

11.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 2(x− 1)2

x+ 1
q(x) = 3

x+ 1
F = 0
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Hence the ode is

y′′ + 2(x− 1)2 y′
x+ 1 + 3y

x+ 1 = 0

The domain of p(x) = 2(x−1)2
x+1 is

{x < −1∨−1 < x}

And the point x0 = 1 is inside this domain. The domain of q(x) = 3
x+1 is

{x < −1∨−1 < x}

And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x− 1

The ode is converted to be in terms of the new independent variable t. This results in(
d2

dt2
y(t)

)
(2 + t) + 2

(
d

dt
y(t)

)
t2 + 3y(t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = a0

y′(0) = a1

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (809)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (810)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
2
(

d
dt
y(t)

)
t2 + 3y(t)

2 + t

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(4t4 − 2t2 − 11t− 6)

(
d
dt
y(t)

)
+ (6t2 + 3) y(t)

(2 + t)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(−8t6 + 12t4 + 60t3 + 24t2 + 6t− 4)

(
d
dt
y(t)

)
− 12

(
t4 − 1

2t
2 − 19

4 t− 1
)
y(t)

(2 + t)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(16t8 − 48t6 − 228t5 − 60t4 + 90t3 + 413t2 + 210t+ 48)

(
d
dt
y(t)

)
+ 24

(
t6 − 2t4 − 23

2 t
3 − 13

4 t
2 − 9

2t+
15
4

)
y(t)

(2 + t)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(−32t10 + 160t8 + 736t7 + 72t6 − 1032t5 − 3478t4 − 1620t3 − 646t2 + 896t+ 408)

(
d
dt
y(t)

)
− 48

(
t8 − 4t6 − 81

4 t
5 − 15

4 t
4 + 63

8 t
3 + 913

16 t
2 + 103

8 t+ 15
)
y(t)

(2 + t)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = a0 and
y′(0) = a1 gives

F0 = −3a0
2

F1 =
3a0
4 − 3a1

2
F2 =

3a0
2 − a1

2
F3 =

45a0
8 + 3a1

F4 = −45a0
2 + 51a1

4
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Substituting all the above in (7) and simplifying gives the solution as

y(t) = ta1+a0−
3a0t2
4 + t3a0

8 − t3a1
4 + t4a0

16 − t4a1
48 + 3t5a0

64 + t5a1
40 − t6a0

32 + 17t6a1
960 +O

(
t6
)

y(t) = ta1+a0−
3a0t2
4 + t3a0

8 − t3a1
4 + t4a0

16 − t4a1
48 + 3t5a0

64 + t5a1
40 − t6a0

32 + 17t6a1
960 +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

d2

dt2
y(t)

)
(2 + t) + 2

(
d

dt
y(t)

)
t2 + 3y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)
(2 + t) + 2

(
∞∑
n=1

nant
n−1

)
t2 + 3

(
∞∑
n=0

ant
n

)
= 0 (1)

Which simplifies to(
∞∑
n=2

n tn−1an(n−1)
)
+
(

∞∑
n=2

2n(n−1) antn−2

)
+
(

∞∑
n=1

2n t1+nan

)
+
(

∞∑
n=0

3antn
)

= 0

(2)

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
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power and the corresponding index gives

∞∑
n =2

n tn−1an(n− 1) =
∞∑
n=1

(1 + n) a1+nn tn

∞∑
n =2

2n(n− 1) antn−2 =
∞∑
n=0

2(n+ 2) an+2(1 + n) tn

∞∑
n =1

2n t1+nan =
∞∑
n=2

2(n− 1) an−1t
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=1

(1 + n) a1+nn tn

)
+
(

∞∑
n=0

2(n+ 2) an+2(1 + n) tn
)

+
(

∞∑
n=2

2(n− 1) an−1t
n

)
+
(

∞∑
n=0

3antn
)

= 0

n = 0 gives
4a2 + 3a0 = 0

a2 = −3a0
4

n = 1 gives
2a2 + 12a3 + 3a1 = 0

Which after substituting earlier equations, simplifies to

a3 =
a0
8 − a1

4

For 2 ≤ n, the recurrence equation is

(4)(1 + n) a1+nn+ 2(n+ 2) an+2(1 + n) + 2(n− 1) an−1 + 3an = 0
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Solving for an+2, gives

(5)

an+2 = −n2a1+n + na1+n + 2nan−1 + 3an − 2an−1

2 (n+ 2) (1 + n)

= − 3an
2 (n+ 2) (1 + n) −

(n2 + n) a1+n

2 (n+ 2) (1 + n) −
(2n− 2) an−1

2 (n+ 2) (1 + n)

For n = 2 the recurrence equation gives

6a3 + 24a4 + 2a1 + 3a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
16 − a1

48

For n = 3 the recurrence equation gives

12a4 + 40a5 + 4a2 + 3a3 = 0

Which after substituting the earlier terms found becomes

a5 =
3a0
64 + a1

40

For n = 4 the recurrence equation gives

20a5 + 60a6 + 6a3 + 3a4 = 0

Which after substituting the earlier terms found becomes

a6 = −a0
32 + 17a1

960

For n = 5 the recurrence equation gives

30a6 + 84a7 + 8a4 + 3a5 = 0

Which after substituting the earlier terms found becomes

a7 =
19a0
5376 − 211a1

40320
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And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t−
3a0t2
4 +

(a0
8 − a1

4

)
t3 +

(a0
16 − a1

48

)
t4 +

(
3a0
64 + a1

40

)
t5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− 3

4t
2 + 1

8t
3 + 1

16t
4 + 3

64t
5
)
a0 +

(
t− 1

4t
3 − 1

48t
4 + 1

40t
5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1− 3

4t
2 + 1

8t
3 + 1

16t
4 + 3

64t
5
)
c1 +

(
t− 1

4t
3 − 1

48t
4 + 1

40t
5
)
c2 +O

(
t6
)

y(t) = a0 −
3a0t2
4 + t3a0

8 + t4a0
16 + 3t5a0

64 + ta1 −
t3a1
4 − t4a1

48 + t5a1
40 +O

(
t6
)

Replacing t in the above with the original independent variable xsusing t = x−1 results
in

y = (x−1) a1+a0−
3a0(x− 1)2

4 + (x− 1)3 a0
8 − (x− 1)3 a1

4 + (x− 1)4 a0
16 − (x− 1)4 a1

48

+ 3(x− 1)5 a0
64 + (x− 1)5 a1

40 − (x− 1)6 a0
32 + 17(x− 1)6 a1

960 +O
(
(x− 1)6

)
Summary
The solution(s) found are the following

(1)

y = (x− 1) a1 + a0 −
3a0(x− 1)2

4 + (x− 1)3 a0
8 − (x− 1)3 a1

4

+ (x− 1)4 a0
16 − (x− 1)4 a1

48 + 3(x− 1)5 a0
64 + (x− 1)5 a1

40

− (x− 1)6 a0
32 + 17(x− 1)6 a1

960 +O
(
(x− 1)6

)
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Verification of solutions

y = (x−1) a1+a0−
3a0(x− 1)2

4 + (x− 1)3 a0
8 − (x− 1)3 a1

4 + (x− 1)4 a0
16 − (x− 1)4 a1

48

+ 3(x− 1)5 a0
64 + (x− 1)5 a1

40 − (x− 1)6 a0
32 + 17(x− 1)6 a1

960 +O
(
(x− 1)6

)
Verified OK.

11.9.2 Maple step by step solution

Let’s solve[
(x+ 1) y′′ + 2(x− 1)2 y′ + 3y = 0, y(1) = a0, y

′∣∣∣{x=1}
= a1

]
• Highest derivative means the order of the ODE is 2

y′′

• Isolate 2nd derivative

y′′ = − 3y
x+1 −

2(x−1)2y′
x+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2(x−1)2y′
x+1 + 3y

x+1 = 0

� Check to see if x0 = −1 is a regular singular point
◦ Define functions[

P2(x) = 2(x−1)2
x+1 , P3(x) = 3

x+1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 8

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 = −1 is a regular singular point
x0 = −1

• Multiply by denominators
(x+ 1) y′′ + 2(x− 1)2 y′ + 3y = 0
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• Change variables using x = u− 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (2u2 − 8u+ 8)

(
d
du
y(u)

)
+ 3y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(7 + r)u−1+r + (a1(1 + r) (8 + r)− a0(−3 + 8r))ur +
(

∞∑
k=1

(ak+1(k + 1 + r) (k + 8 + r)− ak(8k + 8r − 3) + 2ak−1(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(7 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−7, 0}

• Each term must be 0
a1(1 + r) (8 + r)− a0(−3 + 8r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + 8 + r) + (−8ak + 2ak−1) k + (−8ak + 2ak−1) r + 3ak − 2ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 9 + r) + (−8ak+1 + 2ak) (k + 1) + (−8ak+1 + 2ak) r + 3ak+1 − 2ak = 0
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• Recursion relation that defines series solution to ODE
ak+2 = −2akk−8kak+1+2akr−8rak+1−5ak+1

(k+2+r)(k+9+r)

• Recursion relation for r = −7
ak+2 = −2akk−8kak+1−14ak+51ak+1

(k−5)(k+2)

• Series not valid for r = −7 , division by 0 in the recursion relation at k = 5
ak+2 = −2akk−8kak+1−14ak+51ak+1

(k−5)(k+2)

• Recursion relation for r = 0
ak+2 = −2akk−8kak+1−5ak+1

(k+2)(k+9)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −2akk−8kak+1−5ak+1

(k+2)(k+9) , 8a1 + 3a0 = 0
]

• Revert the change of variables u = x+ 1[
y =

∞∑
k=0

ak(x+ 1)k , ak+2 = −2akk−8kak+1−5ak+1
(k+2)(k+9) , 8a1 + 3a0 = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0 `� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 40� �
Order:=6;
dsolve([(1+x)*diff(y(x),x$2)+2*(x-1)^2*diff(y(x),x)+3*y(x)=0,y(1) = a__0, D(y)(1) = a__1],y(x),type='series',x=1);� �

y(x) = a0 + a1(x− 1)− 3
4a0(x− 1)2 +

(a0
8 − a1

4

)
(x− 1)3

+
(a0
16 − a1

48

)
(x− 1)4 +

(
3a0
64 + a1

40

)
(x− 1)5 +O

(
(x− 1)6

)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 95� �
AsymptoticDSolveValue[{(1+x)*y''[x]+2*(x-1)^2*y'[x]+3*y[x]==0,{y[1]==a0,y'[1]==a1}},y[x],{x,1,5}]� �

y(x) → 1
20(x− 1)5

(
1
4

(
3a1
2 − 3a0

4

)
+ 9a0

8 + a1
8

)
+ 1

12(x− 1)4
(
3a0
4 − a1

4

)
+ 1

6(x− 1)3
(
3a0
4 − 3a1

2

)
− 3

4a0(x− 1)2 + a0+ a1(x− 1)
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11.10 problem 21
Internal problem ID [1199]
Internal file name [OUTPUT/1200_Sunday_June_05_2022_02_04_55_AM_17975047/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.1 Exercises. Page 318
Problem number: 21.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(1− x) y′′ + x(x+ 4) y′ + (2− x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−x3 + x2) y′′ + (x2 + 4x
)
y′ + (2− x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − x+ 4
x (x− 1)

q(x) = −2 + x

x2 (x− 1)
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Table 449: Table p(x), q(x) singularites.

p(x) = − x+4
x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

q(x) = −2+x
x2(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x2(x− 1) +
(
x2 + 4x

)
y′ + (2− x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2(x− 1)

+
(
x2 + 4x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (2− x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−x1+n+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

x1+n+ran(n+ r)
)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
(

∞∑
n=0

2anxn+r

)
+

∞∑
n =0

(
−x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−x1+n+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−an−1(n+ r − 1) (n+ r − 2)xn+r

)
∞∑

n =0

x1+n+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r

∞∑
n =0

(
−x1+n+ran

)
=

∞∑
n=1

(
−an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =1

(
−an−1(n+ r−1) (n+ r−2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r−1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
(

∞∑
n=0

2anxn+r

)
+

∞∑
n =1

(
−an−1x

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 4xn+ran(n+ r) + 2anxn+r = 0
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When n = 0 the above becomes

xra0r(−1 + r) + 4xra0r + 2a0xr = 0

Or
(xrr(−1 + r) + 4xrr + 2xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 + 3r + 2

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 + 3r + 2 = 0

Solving for r gives the roots of the indicial equation as

r1 = −1
r2 = −2

Since a0 6= 0 then the indicial equation becomes(
r2 + 3r + 2

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =

∞∑
n=0

anx
n

x

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x2

Or

y1(x) =
∞∑
n=0

anx
n−1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−2

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)−an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
+ an−1(n+ r − 1) + 4an(n+ r) + 2an − an−1 = 0

Solving for an from recursive equation (4) gives

an = an−1(n2 + 2nr + r2 − 4n− 4r + 4)
n2 + 2nr + r2 + 3n+ 3r + 2 (4)

Which for the root r = −1 becomes

an = an−1(n− 3)2

n (1 + n) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
(−1 + r)2

r2 + 5r + 6
Which for the root r = −1 becomes

a1 = 2

And the table now becomes

n an,r an

a0 1 1

a1
(−1+r)2
r2+5r+6 2

For n = 2, using the above recursive equation gives

a2 =
r2(−1 + r)2

(r + 3)2 (r + 2) (r + 4)
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Which for the root r = −1 becomes

a2 =
1
3

And the table now becomes

n an,r an

a0 1 1

a1
(−1+r)2
r2+5r+6 2

a2
r2(−1+r)2

(r+3)2(r+2)(r+4)
1
3

For n = 3, using the above recursive equation gives

a3 =
(−1 + r)2 r2(r + 1)2

(r + 3)2 (r + 2) (r + 4)2 (r + 5)

Which for the root r = −1 becomes

a3 = 0

And the table now becomes

n an,r an

a0 1 1

a1
(−1+r)2
r2+5r+6 2

a2
r2(−1+r)2

(r+3)2(r+2)(r+4)
1
3

a3
(−1+r)2r2(r+1)2

(r+3)2(r+2)(r+4)2(r+5) 0

For n = 4, using the above recursive equation gives

a4 =
(r + 2) (−1 + r)2 r2(r + 1)2

(r + 6) (r + 5)2 (r + 4)2 (r + 3)2

Which for the root r = −1 becomes

a4 = 0

And the table now becomes
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n an,r an

a0 1 1

a1
(−1+r)2
r2+5r+6 2

a2
r2(−1+r)2

(r+3)2(r+2)(r+4)
1
3

a3
(−1+r)2r2(r+1)2

(r+3)2(r+2)(r+4)2(r+5) 0

a4
(r+2)(−1+r)2r2(r+1)2

(r+6)(r+5)2(r+4)2(r+3)2 0

For n = 5, using the above recursive equation gives

a5 =
(r + 2) (−1 + r)2 r2(r + 1)2

(r + 7) (r + 6)2 (r + 4)2 (r + 5)2

Which for the root r = −1 becomes

a5 = 0

And the table now becomes

n an,r an

a0 1 1

a1
(−1+r)2
r2+5r+6 2

a2
r2(−1+r)2

(r+3)2(r+2)(r+4)
1
3

a3
(−1+r)2r2(r+1)2

(r+3)2(r+2)(r+4)2(r+5) 0

a4
(r+2)(−1+r)2r2(r+1)2

(r+6)(r+5)2(r+4)2(r+3)2 0

a5
(r+2)(−1+r)2r2(r+1)2

(r+7)(r+6)2(r+4)2(r+5)2 0

Using the above table, then the solution y1(x) is

y1(x) =
1
x

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
1 + 2x+ x2

3 +O(x6)
x

Now the second solution y2(x) is found. Let

r1 − r2 = N
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Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= (−1 + r)2

r2 + 5r + 6

Therefore

lim
r→r2

(−1 + r)2

r2 + 5r + 6 = lim
r→−2

(−1 + r)2

r2 + 5r + 6
= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode −y′′x2(x− 1) + (x2 + 4x) y′ + (2− x) y = 0
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gives

−

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x2(x− 1)

+
(
x2 + 4x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+ (2− x)
(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
−y′′1(x)x2(x− 1) +

(
x2 + 4x

)
y′1(x) + (2− x) y1(x)

)
ln (x)

−
(
2y′1(x)

x
− y1(x)

x2

)
x2(x− 1) + (x2 + 4x) y1(x)

x

)
C

−

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x2(x− 1)

+
(
x2 + 4x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ (2− x)

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

−y′′1(x)x2(x− 1) +
(
x2 + 4x

)
y′1(x) + (2− x) y1(x) = 0

Eq (7) simplifes to

(8)

(
−
(
2y′1(x)

x
− y1(x)

x2

)
x2(x− 1) + (x2 + 4x) y1(x)

x

)
C

−

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x2(x− 1)

+
(
x2 + 4x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ (2− x)

(
∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
−2x(x− 1)

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)

+ (2x+ 3)
(

∞∑
n=0

anx
n+r1

))
C

+
(
−x3 + x2)( ∞∑

n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)

+
(
x2 + 4x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

− (−2 + x)
(

∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = −1 and r2 = −2 then the above becomes

(10)

(
−2x(x− 1)

(
∞∑
n=0

xn−2an(n− 1)
)

+ (2x+ 3)
(

∞∑
n=0

anx
n−1

))
C

+
(
−x3 + x2)( ∞∑

n=0

x−4+nbn(n− 2) (n− 3)
)

+
(
x2 + 4x

)( ∞∑
n=0

xn−3bn(n− 2)
)

− (−2 + x)
(

∞∑
n=0

bnx
n−2

)
= 0

Which simplifies to

(2A)

∞∑
n =0

(−2C xnan(n− 1)) +
(

∞∑
n=0

2C xn−1an(n− 1)
)

+
(

∞∑
n=0

2Canx
n

)

+
(

∞∑
n=0

3C xn−1an

)
+

∞∑
n =0

(
−bnx

n−1(n− 2) (n− 3)
)

+
(

∞∑
n=0

xn−2bn
(
n2 − 5n+ 6

))
+
(

∞∑
n=0

xn−1bn(n− 2)
)

+
(

∞∑
n=0

4xn−2bn(n− 2)
)

+
(

∞∑
n=0

2bnxn−2

)
+

∞∑
n =0

(
−xn−1bn

)
= 0

The next step is to make all powers of x be n − 2 in each summation term. Going
over each summation term above with power of x in it which is not already xn−2 and
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adjusting the power and the corresponding index gives

∞∑
n =0

(−2C xnan(n− 1)) =
∞∑
n=2

(
−2Can−2(n− 3)xn−2)

∞∑
n =0

2C xn−1an(n− 1) =
∞∑
n=1

2Can−1(n− 2)xn−2

∞∑
n =0

2Canx
n =

∞∑
n=2

2Can−2x
n−2

∞∑
n =0

3C xn−1an =
∞∑
n=1

3Can−1x
n−2

∞∑
n =0

(
−bnx

n−1(n− 2) (n− 3)
)
=

∞∑
n=1

(
−bn−1(−4 + n) (n− 3)xn−2)

∞∑
n =0

xn−1bn(n− 2) =
∞∑
n=1

bn−1(n− 3)xn−2

∞∑
n =0

(
−xn−1bn

)
=

∞∑
n=1

(
−bn−1x

n−2)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 2.

(2B)

∞∑
n =2

(
−2Can−2(n− 3)xn−2)+( ∞∑

n=1

2Can−1(n− 2)xn−2

)

+
(

∞∑
n=2

2Can−2x
n−2

)
+
(

∞∑
n=1

3Can−1x
n−2

)

+
∞∑

n =1

(
−bn−1(−4 + n) (n− 3)xn−2)+( ∞∑

n=0

xn−2bn
(
n2 − 5n+ 6

))

+
(

∞∑
n=1

bn−1(n− 3)xn−2

)
+
(

∞∑
n=0

4xn−2bn(n− 2)
)

+
(

∞∑
n=0

2bnxn−2

)
+

∞∑
n =1

(
−bn−1x

n−2) = 0

3579



For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

C − 9 = 0

Which is solved for C. Solving for C gives

C = 9

For n = 2, Eq (2B) gives

(4a0 + 3a1)C − 4b1 + 2b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

90 + 2b2 = 0

Solving the above for b2 gives
b2 = −45

For n = 3, Eq (2B) gives

(2a1 + 5a2)C − b2 + 6b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

96 + 6b3 = 0

Solving the above for b3 gives
b3 = −16

For n = 4, Eq (2B) gives
7Ca3 + 12b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

12b4 = 0

Solving the above for b4 gives
b4 = 0

For n = 5, Eq (2B) gives

(−2a3 + 9a4)C − b4 + 20b5 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

20b5 = 0
Solving the above for b5 gives

b5 = 0
Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = 9 and all bn, then the second solution becomes

y2(x) = 9
(
1 + 2x+ x2

3 +O(x6)
x

)
ln (x) + 1− 45x2 − 16x3 +O(x6)

x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
1 + 2x+ x2

3 +O(x6)
)

x

+ c2

(
9
(
1 + 2x+ x2

3 +O(x6)
x

)
ln (x) + 1− 45x2 − 16x3 +O(x6)

x2

)

Hence the final solution is
y = yh

=
c1
(
1 + 2x+ x2

3 +O(x6)
)

x

+ c2

9
(
1 + 2x+ x2

3 +O(x6)
)
ln (x)

x
+ 1− 45x2 − 16x3 +O(x6)

x2


Summary
The solution(s) found are the following

(1)
y =

c1
(
1 + 2x+ x2

3 +O(x6)
)

x

+ c2

9
(
1 + 2x+ x2

3 +O(x6)
)
ln (x)

x
+ 1− 45x2 − 16x3 +O(x6)

x2
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Verification of solutions

y =
c1
(
1 + 2x+ x2

3 +O(x6)
)

x

+ c2

9
(
1 + 2x+ x2

3 +O(x6)
)
ln (x)

x
+ 1− 45x2 − 16x3 +O(x6)

x2


Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 55� �
Order:=6;
dsolve(x^2*(1-x)*diff(y(x),x$2)+x*(4+x)*diff(y(x),x)+(2-x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
ln (x) (9x+ 18x2 + 3x3 +O(x6)) c2 + c1

(
1 + 2x+ 1

3x
2 +O(x6)

)
x+

(
1− 5x− 55x2 − 53

3 x
3 +O(x6)

)
c2

x2
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3 Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 56� �
AsymptoticDSolveValue[x^2*(1-x)*y''[x]+x*(4+x)*y'[x]+(2-x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
3(x2 + 6x+ 3) log(x)

x
− 21x3 + 75x2 + 15x− 1

x2

)
+ c2

(
x

3 + 1
x
+ 2
)

3583



11.11 problem 22
11.11.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3596

Internal problem ID [1200]
Internal file name [OUTPUT/1201_Sunday_June_05_2022_02_04_58_AM_40370122/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.1 Exercises. Page 318
Problem number: 22.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x+ 1) y′′ + x(1 + 2x) y′ − (6x+ 4) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x3 + x2) y′′ + (2x2 + x
)
y′ + (−6x− 4) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1 + 2x
x (x+ 1)

q(x) = − 2(3x+ 2)
x2 (x+ 1)
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Table 450: Table p(x), q(x) singularites.

p(x) = 1+2x
x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

q(x) = − 2(3x+2)
x2(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x+ 1) y′′ +
(
2x2 + x

)
y′ + (−6x− 4) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x+ 1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
2x2 + x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (−6x− 4)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2x1+n+ran(n+ r)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
∞∑

n =0

(
−6x1+n+ran

)
+

∞∑
n =0

(
−4anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

2x1+n+ran(n+ r) =
∞∑
n=1

2an−1(n+ r − 1)xn+r

∞∑
n =0

(
−6x1+n+ran

)
=

∞∑
n=1

(
−6an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

an−1(n+ r− 1) (n+ r− 2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=1

2an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r)
)

+
∞∑

n =1

(
−6an−1x

n+r
)
+

∞∑
n =0

(
−4anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− 4anxn+r = 0
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When n = 0 the above becomes

xra0r(−1 + r) + xra0r − 4a0xr = 0

Or
(xrr(−1 + r) + xrr − 4xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 4

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − 4 = 0

Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = −2

Since a0 6= 0 then the indicial equation becomes(
r2 − 4

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x2

Or

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−2

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
+ 2an−1(n+ r − 1) + an(n+ r)− 6an−1 − 4an = 0

Solving for an from recursive equation (4) gives

an = −(n+ r − 3) an−1

n+ r − 2 (4)

Which for the root r = 2 becomes

an = −(n− 1) an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−r + 2
−1 + r

Which for the root r = 2 becomes
a1 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−r+2
−1+r

0

For n = 2, using the above recursive equation gives

a2 =
r − 2
r
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Which for the root r = 2 becomes
a2 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−r+2
−1+r

0

a2
r−2
r

0

For n = 3, using the above recursive equation gives

a3 =
−r + 2
1 + r

Which for the root r = 2 becomes
a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−r+2
−1+r

0

a2
r−2
r

0
a3

−r+2
1+r

0

For n = 4, using the above recursive equation gives

a4 =
r − 2
2 + r

Which for the root r = 2 becomes
a4 = 0

And the table now becomes
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n an,r an

a0 1 1
a1

−r+2
−1+r

0

a2
r−2
r

0
a3

−r+2
1+r

0

a4
r−2
2+r

0

For n = 5, using the above recursive equation gives

a5 =
−r + 2
3 + r

Which for the root r = 2 becomes
a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−r+2
−1+r

0

a2
r−2
r

0
a3

−r+2
1+r

0

a4
r−2
2+r

0

a5
−r+2
3+r

0

Using the above table, then the solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2(1 +O

(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 4. Now we need to determine if
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C is zero or not. This is done by finding limr→r2 a4(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a4

= r − 2
2 + r

Therefore

lim
r→r2

r − 2
2 + r

= lim
r→−2

r − 2
2 + r

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode x2(x+ 1) y′′+(2x2 + x) y′+(−6x− 4) y = 0
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gives

x2(x+ 1)
(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
2x2 + x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+ (−6x− 4)
(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
x2(x+ 1) y′′1(x) +

(
2x2 + x

)
y′1(x) + (−6x− 4) y1(x)

)
ln (x)

+ x2(x+ 1)
(
2y′1(x)

x
− y1(x)

x2

)
+ (2x2 + x) y1(x)

x

)
C

+ x2(x+ 1)
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
2x2 + x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ (−6x− 4)

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

x2(x+ 1) y′′1(x) +
(
2x2 + x

)
y′1(x) + (−6x− 4) y1(x) = 0

Eq (7) simplifes to

(8)

(
x2(x+ 1)

(
2y′1(x)

x
− y1(x)

x2

)
+ (2x2 + x) y1(x)

x

)
C

+ x2(x+ 1)
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
2x2 + x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ (−6x− 4)

(
∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2x(x+ 1)

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)

+
(

∞∑
n=0

anx
n+r1

)
x

)
C

+ x2(x+ 1)
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)

+
(
2x2 + x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

+ (−6x− 4)
(

∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 2 and r2 = −2 then the above becomes

(10)

(
2x(x+ 1)

(
∞∑
n=0

x1+nan(n+ 2)
)

+
(

∞∑
n=0

anx
n+2

)
x

)
C

+ x2(x+ 1)
(

∞∑
n=0

x−4+nbn(n− 2) (−3 + n)
)

+
(
2x2 + x

)( ∞∑
n=0

x−3+nbn(n− 2)
)

+ (−6x− 4)
(

∞∑
n=0

bnx
n−2

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C xn+3an(n+ 2)
)

+
(

∞∑
n=0

2C xn+2an(n+ 2)
)

+
(

∞∑
n=0

C xn+3an

)
+
(

∞∑
n=0

xn−1bn
(
n2 − 5n+ 6

))

+
(

∞∑
n=0

xn−2bn
(
n2 − 5n+ 6

))
+
(

∞∑
n=0

2xn−1bn(n− 2)
)

+
(

∞∑
n=0

xn−2bn(n− 2)
)

+
∞∑

n =0

(
−6xn−1bn

)
+

∞∑
n =0

(
−4bnxn−2) = 0

The next step is to make all powers of x be n − 2 in each summation term. Going
over each summation term above with power of x in it which is not already xn−2 and
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adjusting the power and the corresponding index gives

∞∑
n =0

2C xn+3an(n+ 2) =
∞∑
n=5

2Can−5(−3 + n)xn−2

∞∑
n =0

2C xn+2an(n+ 2) =
∞∑
n=4

2Ca−4+n(n− 2)xn−2

∞∑
n =0

C xn+3an =
∞∑
n=5

Can−5x
n−2

∞∑
n =0

xn−1bn
(
n2 − 5n+ 6

)
=

∞∑
n=1

bn−1
(
(n− 1)2 − 5n+ 11

)
xn−2

∞∑
n =0

2xn−1bn(n− 2) =
∞∑
n=1

2bn−1(−3 + n)xn−2

∞∑
n =0

(
−6xn−1bn

)
=

∞∑
n=1

(
−6bn−1x

n−2)
Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 2.

(2B)

(
∞∑
n=5

2Can−5(−3 + n)xn−2

)
+
(

∞∑
n=4

2Ca−4+n(n− 2)xn−2

)

+
(

∞∑
n=5

Can−5x
n−2

)
+
(

∞∑
n=1

bn−1
(
(n− 1)2 − 5n+ 11

)
xn−2

)

+
(

∞∑
n=0

xn−2bn
(
n2 − 5n+ 6

))
+
(

∞∑
n=1

2bn−1(−3 + n)xn−2

)

+
(

∞∑
n=0

xn−2bn(n− 2)
)

+
∞∑

n =1

(
−6bn−1x

n−2)+ ∞∑
n =0

(
−4bnxn−2) = 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−4b0 − 3b1 = 0
Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−4− 3b1 = 0
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Solving the above for b1 gives
b1 = −4

3
For n = 2, Eq (2B) gives

−6b1 − 4b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

8− 4b2 = 0

Solving the above for b2 gives
b2 = 2

For n = 3, Eq (2B) gives
−3b3 − 6b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b3 − 12 = 0

Solving the above for b3 gives
b3 = −4

For n = N , where N = 4 which is the difference between the two roots, we are free to
choose b4 = 0. Hence for n = 4, Eq (2B) gives

4C + 16 = 0

Which is solved for C. Solving for C gives

C = −4

For n = 5, Eq (2B) gives
(5a0 + 6a1)C + 5b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−20 + 5b5 = 0

Solving the above for b5 gives
b5 = 4

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Using the above value found for C = −4 and all bn, then the second solution becomes

y2(x) = (−4)
(
x2(1 +O

(
x6))) ln (x) + 1− 4x

3 + 2x2 − 4x3 + 4x5 +O(x6)
x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2(1 +O

(
x6))

+ c2

(
(−4)

(
x2(1 +O

(
x6))) ln (x) + 1− 4x

3 + 2x2 − 4x3 + 4x5 +O(x6)
x2

)

Hence the final solution is

y = yh

= c1x
2(1+O

(
x6))+ c2

(
−4x2(1+O

(
x6)) ln (x)+ 1− 4x

3 + 2x2 − 4x3 + 4x5 +O(x6)
x2

)

Summary
The solution(s) found are the following

(1)
y = c1x

2(1 +O
(
x6))

+ c2

(
−4x2(1 +O

(
x6)) ln (x) + 1− 4x

3 + 2x2 − 4x3 + 4x5 +O(x6)
x2

)
Verification of solutions

y= c1x
2(1+O

(
x6))+c2

(
−4x2(1+O

(
x6)) ln (x)+ 1− 4x

3 + 2x2 − 4x3 + 4x5 +O(x6)
x2

)
Verified OK.

11.11.1 Maple step by step solution

Let’s solve
x2(x+ 1) y′′ + (2x2 + x) y′ + (−6x− 4) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
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y′′ = 2(3x+2)y
x2(x+1) − (1+2x)y′

x(x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (1+2x)y′
x(x+1) − 2(3x+2)y

x2(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 1+2x
x(x+1) , P3(x) = − 2(3x+2)

x2(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
x2(x+ 1) y′′ + x(1 + 2x) y′ + (−6x− 4) y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 2u2 + u)
(

d2

du2y(u)
)
+ (2u2 − 3u+ 1)

(
d
du
y(u)

)
+ (−6u+ 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2
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um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r
2u−1+r +

(
a1(1 + r)2 − a0(2r2 + r − 2)

)
ur +

(
∞∑
k=1

(
ak+1(k + 1 + r)2 − ak(2k2 + 4kr + 2r2 + k + r − 2) + ak−1(k + 2 + r) (k − 3 + r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 − a0(2r2 + r − 2) = 0

• Each term in the series must be 0, giving the recursion relation
(k2 − k − 6) ak−1 + (−2k2 − k + 2) ak + ak+1(k + 1)2 = 0

• Shift index using k− >k + 1(
(k + 1)2 − k − 7

)
ak +

(
−2(k + 1)2 − k + 1

)
ak+1 + ak+2(k + 2)2 = 0

• Recursion relation that defines series solution to ODE

ak+2 = −k2ak−2k2ak+1+kak−5kak+1−6ak−ak+1
(k+2)2

• Recursion relation for r = 0

ak+2 = −k2ak−2k2ak+1+kak−5kak+1−6ak−ak+1
(k+2)2

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−2k2ak+1+kak−5kak+1−6ak−ak+1

(k+2)2 , a1 + 2a0 = 0
]
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• Revert the change of variables u = x+ 1[
y =

∞∑
k=0

ak(x+ 1)k , ak+2 = −k2ak−2k2ak+1+kak−5kak+1−6ak−ak+1
(k+2)2 , a1 + 2a0 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 51� �
Order:=6;
dsolve(x^2*(1+x)*diff(y(x),x$2)+x*(1+2*x)*diff(y(x),x)-(4+6*x)*y(x)=0,y(x),type='series',x=0);� �
y(x) = c1x

2(1 + O
(
x6))

+ c2(ln (x) (576x4 +O(x6)) + (−144 + 192x− 288x2 + 576x3 − 576x4 − 576x5 +O(x6)))
x2

3 Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 48� �
AsymptoticDSolveValue[x^2*(1+x)*y''[x]+x*(1+2*x)*y'[x]-(4+6*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2x
2 + c1

(
3x4 − 12x3 + 6x2 − 4x+ 3

3x2 − 4x2 log(x)
)
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11.12 problem 23
11.12.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3609

Internal problem ID [1201]
Internal file name [OUTPUT/1202_Sunday_June_05_2022_02_05_02_AM_53203217/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.1 Exercises. Page 318
Problem number: 23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x+ 1) y′′ − x
(
−x2 − 6x+ 1

)
y′ +

(
x2 + 6x+ 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

x3 + x2) y′′ + (x3 + 6x2 − x
)
y′ +

(
x2 + 6x+ 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x2 + 6x− 1
x (x+ 1)

q(x) = x2 + 6x+ 1
x2 (x+ 1)
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Table 452: Table p(x), q(x) singularites.

p(x) = x2+6x−1
x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

q(x) = x2+6x+1
x2(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x+ 1) y′′ +
(
x3 + 6x2 − x

)
y′ +

(
x2 + 6x+ 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x+ 1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x3 + 6x2 − x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
x2 + 6x+ 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+r+2an(n+r)
)
+
(

∞∑
n=0

6x1+n+ran(n+r)
)
+

∞∑
n =0

(
−xn+ran(n+r)

)
+
(

∞∑
n=0

xn+r+2an

)
+
(

∞∑
n=0

6x1+n+ran

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

xn+r+2an(n+ r) =
∞∑
n=2

an−2(n+ r − 2)xn+r

∞∑
n =0

6x1+n+ran(n+ r) =
∞∑
n=1

6an−1(n+ r − 1)xn+r

∞∑
n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

∞∑
n =0

6x1+n+ran =
∞∑
n=1

6an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=1

6an−1(n+ r − 1)xn+r

)
+

∞∑
n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=2

an−2x
n+r

)
+
(

∞∑
n=1

6an−1x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− xra0r + a0x
r = 0

Or
(xrr(−1 + r)− xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(−1 + r)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(−1 + r)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 1

Since a0 6= 0 then the indicial equation becomes

(−1 + r)2 xr = 0
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Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
1+n

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
1+n

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 =
−r2 − 5r − 6

r2

For 2 ≤ n the recursive equation is

(3)an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1) + an−2(n+ r − 2)
+ 6an−1(n+ r − 1)− an(n+ r) + an−2 + 6an−1 + an = 0

Solving for an from recursive equation (4) gives

an = −n2an−1 + 2nran−1 + r2an−1 + nan−2 + 3nan−1 + ran−2 + 3ran−1 − an−2 + 2an−1

n2 + 2nr + r2 − 2n− 2r + 1
(4)
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Which for the root r = 1 becomes

an = −n2an−1 + (−an−2 − 5an−1)n− 6an−1

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

−r2−5r−6
r2

−12

For n = 2, using the above recursive equation gives

a2 =
r4 + 11r3 + 52r2 + 102r + 72

r2 (1 + r)2

Which for the root r = 1 becomes

a2 =
119
2

And the table now becomes

n an,r an

a0 1 1
a1

−r2−5r−6
r2

−12

a2
r4+11r3+52r2+102r+72

r2(1+r)2
119
2

For n = 3, using the above recursive equation gives

a3 =
−r6 − 19r5 − 162r4 − 759r3 − 1979r2 − 2648r − 1428

r2 (1 + r)2 (r + 2)2

Which for the root r = 1 becomes

a3 = −583
3

And the table now becomes
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n an,r an

a0 1 1
a1

−r2−5r−6
r2

−12

a2
r4+11r3+52r2+102r+72

r2(1+r)2
119
2

a3
−r6−19r5−162r4−759r3−1979r2−2648r−1428

r2(1+r)2(r+2)2 −583
3

For n = 4, using the above recursive equation gives

a4 =
r8 + 29r7 + 383r6 + 2966r5 + 14534r4 + 45437r3 + 87166r2 + 92772r + 41976

r2 (1 + r)2 (r + 2)2 (r + 3)2

Which for the root r = 1 becomes

a4 =
1981
4

And the table now becomes

n an,r an

a0 1 1
a1

−r2−5r−6
r2

−12

a2
r4+11r3+52r2+102r+72

r2(1+r)2
119
2

a3
−r6−19r5−162r4−759r3−1979r2−2648r−1428

r2(1+r)2(r+2)2 −583
3

a4
r8+29r7+383r6+2966r5+14534r4+45437r3+87166r2+92772r+41976

r2(1+r)2(r+2)2(r+3)2
1981
4

For n = 5, using the above recursive equation gives

a5 =
−r10 − 41r9 − 773r8 − 8778r7 − 66136r6 − 343352r5 − 1234958r4 − 3013745r3 − 4736076r2 − 4299660r − 1711584

r2 (1 + r)2 (r + 2)2 (r + 3)2 (r + 4)2

Which for the root r = 1 becomes

a5 = −80287
75

And the table now becomes
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n an,r an

a0 1 1
a1

−r2−5r−6
r2

−12

a2
r4+11r3+52r2+102r+72

r2(1+r)2
119
2

a3
−r6−19r5−162r4−759r3−1979r2−2648r−1428

r2(1+r)2(r+2)2 −583
3

a4
r8+29r7+383r6+2966r5+14534r4+45437r3+87166r2+92772r+41976

r2(1+r)2(r+2)2(r+3)2
1981
4

a5
−r10−41r9−773r8−8778r7−66136r6−343352r5−1234958r4−3013745r3−4736076r2−4299660r−1711584

r2(1+r)2(r+2)2(r+3)2(r+4)2 −80287
75

Using the above table, then the first solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− 12x+ 119x2

2 − 583x3

3 + 1981x4

4 − 80287x5

75 +O
(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 1)

b0 1 1 N/A since bn starts from 1 N/A
b1

−r2−5r−6
r2

−12 5r+12
r3

17

b2
r4+11r3+52r2+102r+72

r2(1+r)2
119
2

−9r4−93r3−306r2−390r−144
r3(1+r)3 −471

4

b3
−r6−19r5−162r4−759r3−1979r2−2648r−1428

r2(1+r)2(r+2)2 −583
3

13r7+259r6+2163r5+9545r4+23596r3+32400r2+22432r+5712
r3(1+r)3(r+2)3 445

b4
r8+29r7+383r6+2966r5+14534r4+45437r3+87166r2+92772r+41976

r2(1+r)2(r+2)2(r+3)2
1981
4

−17r10−548r9−7905r8−66636r7−359775r6−1287474r5−3066787r4−4763998r3−4572612r2−2403576r−503712
r3(1+r)3(r+2)3(r+3)3 −118285

96

b5
−r10−41r9−773r8−8778r7−66136r6−343352r5−1234958r4−3013745r3−4736076r2−4299660r−1711584

r2(1+r)2(r+2)2(r+3)2(r+4)2 −80287
75

21r13+996r12+21729r11+287772r10+2570762r9+16282296r8+74844895r7+251506262r6+614583381r5+1072551946r4+1290644940r3+1004381640r2+445508640r+82156032
r3(1+r)3(r+2)3(r+3)3(r+4)3

702451
250
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x

(
1− 12x+ 119x2

2 − 583x3

3 + 1981x4

4 − 80287x5

75 +O
(
x6)) ln (x)

+ x

(
17x− 471x2

4 + 445x3 − 118285x4

96 + 702451x5

250 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− 12x+ 119x2

2 − 583x3

3 + 1981x4

4 − 80287x5

75 +O
(
x6))

+ c2

(
x

(
1− 12x+ 119x2

2 − 583x3

3 + 1981x4

4 − 80287x5

75 +O
(
x6)) ln (x)

+ x

(
17x− 471x2

4 + 445x3 − 118285x4

96 + 702451x5

250 +O
(
x6)))

Hence the final solution is

y = yh

= c1x

(
1− 12x+ 119x2

2 − 583x3

3 + 1981x4

4 − 80287x5

75 +O
(
x6))

+ c2

(
x

(
1− 12x+ 119x2

2 − 583x3

3 + 1981x4

4 − 80287x5

75 +O
(
x6)) ln (x)

+ x

(
17x− 471x2

4 + 445x3 − 118285x4

96 + 702451x5

250 +O
(
x6)))

Summary
The solution(s) found are the following

(1)

y = c1x

(
1− 12x+ 119x2

2 − 583x3

3 + 1981x4

4 − 80287x5

75 +O
(
x6))

+ c2

(
x

(
1− 12x+ 119x2

2 − 583x3

3 + 1981x4

4 − 80287x5

75 +O
(
x6)) ln (x)

+ x

(
17x− 471x2

4 + 445x3 − 118285x4

96 + 702451x5

250 +O
(
x6)))
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Verification of solutions

y = c1x

(
1− 12x+ 119x2

2 − 583x3

3 + 1981x4

4 − 80287x5

75 +O
(
x6))

+ c2

(
x

(
1− 12x+ 119x2

2 − 583x3

3 + 1981x4

4 − 80287x5

75 +O
(
x6)) ln (x)

+ x

(
17x− 471x2

4 + 445x3 − 118285x4

96 + 702451x5

250 +O
(
x6)))

Verified OK.

11.12.1 Maple step by step solution

Let’s solve
x2(x+ 1) y′′ + (x3 + 6x2 − x) y′ + (x2 + 6x+ 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2+6x+1

)
y

x2(x+1) −
(
x2+6x−1

)
y′

x(x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
x2+6x−1

)
y′

x(x+1) +
(
x2+6x+1

)
y

x2(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = x2+6x−1
x(x+1) , P3(x) = x2+6x+1

x2(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 6

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
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x2(x+ 1) y′′ + x(x2 + 6x− 1) y′ + (x2 + 6x+ 1) y = 0
• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 2u2 + u)
(

d2

du2y(u)
)
+ (u3 + 3u2 − 10u+ 6)

(
d
du
y(u)

)
+ (u2 + 4u− 4) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..3

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(5 + r)u−1+r + (a1(1 + r) (6 + r)− 2a0(r2 + 4r + 2))ur + (a2(2 + r) (7 + r)− 2a1(r2 + 6r + 7) + a0(r2 + 2r + 4))u1+r +
(

∞∑
k=2

(
ak+1(k + r + 1) (k + 6 + r)− 2ak(k2 + 2kr + r2 + 4k + 4r + 2) + ak−1

(
(k − 1)2 + 2(k − 1) r + r2 + 2k + 2 + 2r

)
+ ak−2(k + r − 1)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(5 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−5, 0}
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• The coefficients of each power of u must be 0
[a1(1 + r) (6 + r)− 2a0(r2 + 4r + 2) = 0, a2(2 + r) (7 + r)− 2a1(r2 + 6r + 7) + a0(r2 + 2r + 4) = 0]

• Solve for the dependent coefficient(s){
a1 = 2a0

(
r2+4r+2

)
r2+7r+6 , a2 = a0

(
3r4+31r3+108r2+120r+32

)
r4+16r3+83r2+152r+84

}
• Each term in the series must be 0, giving the recursion relation

(−2ak + ak−1 + ak+1) k2 + ((−4ak + 2ak−1 + 2ak+1) r − 8ak + ak−2 + 7ak+1) k + (−2ak + ak−1 + ak+1) r2 + (−8ak + ak−2 + 7ak+1) r − 4ak − ak−2 + 3ak−1 + 6ak+1 = 0
• Shift index using k− >k + 2

(−2ak+2 + ak+1 + ak+3) (k + 2)2 + ((−4ak+2 + 2ak+1 + 2ak+3) r − 8ak+2 + ak + 7ak+3) (k + 2) + (−2ak+2 + ak+1 + ak+3) r2 + (−8ak+2 + ak + 7ak+3) r − 4ak+2 − ak + 3ak+1 + 6ak+3 = 0
• Recursion relation that defines series solution to ODE

ak+3 = −k2ak+1−2k2ak+2+2krak+1−4krak+2+r2ak+1−2r2ak+2+kak+4kak+1−16kak+2+rak+4rak+1−16rak+2+ak+7ak+1−28ak+2
k2+2kr+r2+11k+11r+24

• Recursion relation for r = −5

ak+3 = −k2ak+1−2k2ak+2+kak−6kak+1+4kak+2−4ak+12ak+1+2ak+2
k2+k−6

• Series not valid for r = −5 , division by 0 in the recursion relation at k = 2

ak+3 = −k2ak+1−2k2ak+2+kak−6kak+1+4kak+2−4ak+12ak+1+2ak+2
k2+k−6

• Recursion relation for r = 0

ak+3 = −k2ak+1−2k2ak+2+kak+4kak+1−16kak+2+ak+7ak+1−28ak+2
k2+11k+24

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+3 = −k2ak+1−2k2ak+2+kak+4kak+1−16kak+2+ak+7ak+1−28ak+2

k2+11k+24 , a1 = 2a0
3 , a2 = 8a0

21

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k , ak+3 = −k2ak+1−2k2ak+2+kak+4kak+1−16kak+2+ak+7ak+1−28ak+2
k2+11k+24 , a1 = 2a0

3 , a2 = 8a0
21

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0 `� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 63� �
Order:=6;
dsolve(x^2*(1+x)*diff(y(x),x$2)-x*(1-6*x-x^2)*diff(y(x),x)+(1+6*x+x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x) =

(
(c2 ln (x) + c1)

(
1− 12x+ 119

2 x2 − 583
3 x3 + 1981

4 x4 − 80287
75 x5 +O

(
x6))

+
(
17x− 471

4 x2 + 445x3 − 118285
96 x4 + 702451

250 x5 +O
(
x6)) c2

)
x
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3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 114� �
AsymptoticDSolveValue[x^2*(1+x)*y''[x]-x*(1-6*x-x^2)*y'[x]+(1+6*x+x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x

(
−80287x5

75 + 1981x4

4 − 583x3

3 + 119x2

2 − 12x+ 1
)

+ c2

(
x

(
702451x5

250 − 118285x4

96 + 445x3 − 471x2

4 + 17x
)

+ x

(
−80287x5

75 + 1981x4

4 − 583x3

3 + 119x2

2 − 12x+ 1
)
log(x)

)
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11.13 problem 24
11.13.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3625

Internal problem ID [1202]
Internal file name [OUTPUT/1203_Sunday_June_05_2022_02_05_04_AM_2392867/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.1 Exercises. Page 318
Problem number: 24.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries], [_2nd_order , _linear , `

_with_symmetry_ [0,F(x)]`]]

x2(3x+ 1) y′′ + x
(
x2 + 12x+ 2

)
y′ + 2x(x+ 3) y = 0

With the expansion point for the power series method at x = 0.

The ODE is (
3x3 + x2) y′′ + (x3 + 12x2 + 2x

)
y′ +

(
2x2 + 6x

)
y = 0

Or
x
(
y′x2 + 3x2y′′ + 2yx+ 12y′x+ xy′′ + 6y + 2y′

)
= 0

For x 6= 0 the above simplifies to(
3x2 + x

)
y′′ + y′

(
x2 + 12x+ 2

)
+ 2y(x+ 3) = 0

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

3x3 + x2) y′′ + (x3 + 12x2 + 2x
)
y′ +

(
2x2 + 6x

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0
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Where

p(x) = x2 + 12x+ 2
x (3x+ 1)

q(x) = 2x+ 6
x (3x+ 1)

Table 454: Table p(x), q(x) singularites.

p(x) = x2+12x+2
x(3x+1)

singularity type
x = 0 “regular”
x = −1

3 “regular”

q(x) = 2x+6
x(3x+1)

singularity type
x = 0 “regular”
x = −1

3 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−1

3

]
Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(3x+ 1) y′′ +
(
x3 + 12x2 + 2x

)
y′ +

(
2x2 + 6x

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2
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Substituting the above back into the ode gives

(1)
x2(3x+ 1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x3 + 12x2 + 2x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
2x2 + 6x

)( ∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

3x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+r+2an(n+ r)
)

+
(

∞∑
n=0

12x1+n+ran(n+ r)
)

+
(

∞∑
n=0

2xn+ran(n+ r)
)

+
(

∞∑
n=0

2xn+r+2an

)
+
(

∞∑
n=0

6x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

3x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

3an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

xn+r+2an(n+ r) =
∞∑
n=2

an−2(n+ r − 2)xn+r

∞∑
n =0

12x1+n+ran(n+ r) =
∞∑
n=1

12an−1(n+ r − 1)xn+r

∞∑
n =0

2xn+r+2an =
∞∑
n=2

2an−2x
n+r

∞∑
n =0

6x1+n+ran =
∞∑
n=1

6an−1x
n+r

3616



Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

3an−1(n+ r− 1) (n+ r− 2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=2

an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=1

12an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

2xn+ran(n+ r)
)

+
(

∞∑
n=2

2an−2x
n+r

)
+
(

∞∑
n=1

6an−1x
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 2xn+ran(n+ r) = 0

When n = 0 the above becomes

xra0r(−1 + r) + 2xra0r = 0

Or
(xrr(−1 + r) + 2xrr) a0 = 0

Since a0 6= 0 then the above simplifies to

xrr(1 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = −1

Since a0 6= 0 then the indicial equation becomes

xrr(1 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
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Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−1

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = −3

For 2 ≤ n the recursive equation is

(3)3an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1) + an−2(n+ r − 2)
+ 12an−1(n+ r − 1) + 2an(n+ r) + 2an−2 + 6an−1 = 0

Solving for an from recursive equation (4) gives

an = −3nan−1 + 3ran−1 + an−2 + 3an−1

1 + n+ r
(4)

Which for the root r = 0 becomes

an = (−3n− 3) an−1 − an−2

1 + n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 −3 −3
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For n = 2, using the above recursive equation gives

a2 =
9r + 26
3 + r

Which for the root r = 0 becomes
a2 =

26
3

And the table now becomes

n an,r an

a0 1 1
a1 −3 −3
a2

9r+26
3+r

26
3

For n = 3, using the above recursive equation gives

a3 =
−27r2 − 183r − 303

(3 + r) (4 + r)

Which for the root r = 0 becomes

a3 = −101
4

And the table now becomes

n an,r an

a0 1 1
a1 −3 −3
a2

9r+26
3+r

26
3

a3
−27r2−183r−303

(3+r)(4+r) −101
4

For n = 4, using the above recursive equation gives

a4 =
81r3 + 945r2 + 3592r + 4441

(3 + r) (4 + r) (5 + r)

Which for the root r = 0 becomes

a4 =
4441
60
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And the table now becomes

n an,r an

a0 1 1
a1 −3 −3
a2

9r+26
3+r

26
3

a3
−27r2−183r−303

(3+r)(4+r) −101
4

a4
81r3+945r2+3592r+4441

(3+r)(4+r)(5+r)
4441
60

For n = 5, using the above recursive equation gives

a5 =
−243r4 − 4266r3 − 27468r2 − 76761r − 78423

(3 + r) (4 + r) (5 + r) (6 + r)

Which for the root r = 0 becomes

a5 = −26141
120

And the table now becomes

n an,r an

a0 1 1
a1 −3 −3
a2

9r+26
3+r

26
3

a3
−27r2−183r−303

(3+r)(4+r) −101
4

a4
81r3+945r2+3592r+4441

(3+r)(4+r)(5+r)
4441
60

a5
−243r4−4266r3−27468r2−76761r−78423

(3+r)(4+r)(5+r)(6+r) −26141
120

Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− 3x+ 26x2

3 − 101x3

4 + 4441x4

60 − 26141x5

120 +O
(
x6)

Now the second solution y2(x) is found. Let

r1 − r2 = N
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Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= −3

Therefore

lim
r→r2

−3 = lim
r→−1

−3

= −3

The limit is −3. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−1

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = −3

For 2 ≤ n the recursive equation is

(4)3bn−1(n+ r − 1) (n+ r − 2) + bn(n+ r) (n+ r − 1) + bn−2(n+ r − 2)
+ 12bn−1(n+ r − 1) + 2bn(n+ r) + 2bn−2 + 6bn−1 = 0

Which for for the root r = −1 becomes

(4A)3bn−1(n− 2) (n− 3) + bn(n− 1) (n− 2) + bn−2(n− 3)
+ 12bn−1(n− 2) + 2bn(n− 1) + 2bn−2 + 6bn−1 = 0

Solving for bn from the recursive equation (4) gives

bn = −3nbn−1 + 3rbn−1 + bn−2 + 3bn−1

1 + n+ r
(5)
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Which for the root r = −1 becomes

bn = −3nbn−1 + bn−2

n
(6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 −3 −3

For n = 2, using the above recursive equation gives

b2 =
9r + 26
3 + r

Which for the root r = −1 becomes

b2 =
17
2

And the table now becomes

n bn,r bn

b0 1 1
b1 −3 −3
b2

9r+26
3+r

17
2

For n = 3, using the above recursive equation gives

b3 = −3(9r2 + 61r + 101)
(3 + r) (4 + r)

Which for the root r = −1 becomes

b3 = −49
2

And the table now becomes
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n bn,r bn

b0 1 1
b1 −3 −3
b2

9r+26
3+r

17
2

b3
−27r2−183r−303

(3+r)(4+r) −49
2

For n = 4, using the above recursive equation gives

b4 =
81r3 + 945r2 + 3592r + 4441

(3 + r) (4 + r) (5 + r)

Which for the root r = −1 becomes

b4 =
571
8

And the table now becomes

n bn,r bn

b0 1 1
b1 −3 −3
b2

9r+26
3+r

17
2

b3
−27r2−183r−303

(3+r)(4+r) −49
2

b4
81r3+945r2+3592r+4441

(3+r)(4+r)(5+r)
571
8

For n = 5, using the above recursive equation gives

b5 = −3(81r4 + 1422r3 + 9156r2 + 25587r + 26141)
(3 + r) (4 + r) (6 + r) (5 + r)

Which for the root r = −1 becomes

b5 = −8369
40

And the table now becomes
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n bn,r bn

b0 1 1
b1 −3 −3
b2

9r+26
3+r

17
2

b3
−27r2−183r−303

(3+r)(4+r) −49
2

b4
81r3+945r2+3592r+4441

(3+r)(4+r)(5+r)
571
8

b5
−243r4−4266r3−27468r2−76761r−78423

(3+r)(4+r)(5+r)(6+r) −8369
40

Using the above table, then the solution y2(x) is

y2(x) = 1
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− 3x+ 17x2

2 − 49x3

2 + 571x4

8 − 8369x5

40 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− 3x+ 26x2

3 − 101x3

4 + 4441x4

60 − 26141x5

120 +O
(
x6))

+
c2
(
1− 3x+ 17x2

2 − 49x3

2 + 571x4

8 − 8369x5

40 +O(x6)
)

x

Hence the final solution is
y = yh

= c1

(
1− 3x+ 26x2

3 − 101x3

4 + 4441x4

60 − 26141x5

120 +O
(
x6))

+
c2
(
1− 3x+ 17x2

2 − 49x3

2 + 571x4

8 − 8369x5

40 +O(x6)
)

x

Summary
The solution(s) found are the following

(1)
y = c1

(
1− 3x+ 26x2

3 − 101x3

4 + 4441x4

60 − 26141x5

120 +O
(
x6))

+
c2
(
1− 3x+ 17x2

2 − 49x3

2 + 571x4

8 − 8369x5

40 +O(x6)
)

x
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Verification of solutions

y = c1

(
1− 3x+ 26x2

3 − 101x3

4 + 4441x4

60 − 26141x5

120 +O
(
x6))

+
c2
(
1− 3x+ 17x2

2 − 49x3

2 + 571x4

8 − 8369x5

40 +O(x6)
)

x

Verified OK.

11.13.1 Maple step by step solution

Let’s solve
x2(3x+ 1) y′′ + (x3 + 12x2 + 2x) y′ + (2x2 + 6x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 2(x+3)y
x(3x+1) −

(
x2+12x+2

)
y′

x(3x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
x2+12x+2

)
y′

x(3x+1) + 2(x+3)y
x(3x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = x2+12x+2
x(3x+1) , P3(x) = 2(x+3)

x(3x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x(3x+ 1) y′′ + y′(x2 + 12x+ 2) + (2x+ 6) y = 0
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• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 0..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..2

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(1 + r)x−1+r + (a1(1 + r) (2 + r) + 3a0(2 + r) (1 + r))xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + r + 2) + 3ak(k + r + 2) (k + r + 1) + ak−1(k + r + 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
a1(1 + r) (2 + r) + 3a0(2 + r) (1 + r) = 0

• Each term in the series must be 0, giving the recursion relation
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3
(

ak+1(k+r+2)
3 + ak(k + r + 2) + ak−1

3

)
(k + r + 1) = 0

• Shift index using k− >k + 1

3
(

ak+2(k+3+r)
3 + ak+1(k + 3 + r) + ak

3

)
(k + r + 2) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −3kak+1+3rak+1+ak+9ak+1

k+3+r

• Recursion relation for r = −1
ak+2 = −3kak+1+ak+6ak+1

k+2

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = −3kak+1+ak+6ak+1

k+2 , 0 = 0
]

• Recursion relation for r = 0
ak+2 = −3kak+1+ak+9ak+1

k+3

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = −3kak+1+ak+9ak+1

k+3 , 2a1 + 6a0 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = −3ka1+k+ak+6a1+k

k+2 , 0 = 0, bk+2 = −3kb1+k+bk+9b1+k

k+3 , 2b1 + 6b0 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]

One independent solution has integrals. Trying a hypergeometric solution free of integrals...
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning hypergeometric solution free of uncomputed integrals

<- linear_1 successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 44� �
Order:=6;
dsolve(x^2*(1+3*x)*diff(y(x),x$2)+x*(2+12*x+x^2)*diff(y(x),x)+2*x*(3+x)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1

(
1− 3x+ 26

3 x2 − 101
4 x3 + 4441

60 x4 − 26141
120 x5 +O

(
x6))

+
c2
(
1− 6x+ 35

2 x
2 − 101

2 x3 + 1177
8 x4 − 17251

40 x5 +O(x6)
)

x

3 Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 60� �
AsymptoticDSolveValue[x^2*(1+3*x)*y''[x]+x*(2+12*x+x^2)*y'[x]+2*x*(3+x)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
571x3

8 − 49x2

2 + 17x
2 + 1

x
− 3
)
+ c2

(
4441x4

60 − 101x3

4 + 26x2

3 − 3x+ 1
)
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11.14 problem 25
11.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3639

Internal problem ID [1203]
Internal file name [OUTPUT/1204_Sunday_June_05_2022_02_05_07_AM_19121030/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.1 Exercises. Page 318
Problem number: 25.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(2x2 + 1
)
y′′ + x

(
2x2 + 4

)
y′ + 2

(
−x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

2x4 + x2) y′′ + (2x3 + 4x
)
y′ +

(
−2x2 + 2

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2x2 + 4
x (2x2 + 1)

q(x) = − 2(x2 − 1)
x2 (2x2 + 1)
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Table 456: Table p(x), q(x) singularites.

p(x) = 2x2+4
x(2x2+1)

singularity type
x = 0 “regular”

x = − i
√
2

2 “regular”

x = i
√
2

2 “regular”

q(x) = − 2
(
x2−1

)
x2(2x2+1)

singularity type
x = 0 “regular”

x = − i
√
2

2 “regular”

x = i
√
2

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,− i

√
2

2 , i
√
2

2 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(2x2 + 1
)
y′′ +

(
2x3 + 4x

)
y′ +

(
−2x2 + 2

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(2x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
2x3 + 4x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
−2x2 + 2

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+r+2an(n+ r)
)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
∞∑

n =0

(
−2xn+r+2an

)
+
(

∞∑
n=0

2anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

2an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

2xn+r+2an(n+ r) =
∞∑
n=2

2an−2(n+ r − 2)xn+r

∞∑
n =0

(
−2xn+r+2an

)
=

∞∑
n=2

(
−2an−2x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

2an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

2an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
∞∑

n =2

(
−2an−2x

n+r
)
+
(

∞∑
n=0

2anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 4xn+ran(n+ r) + 2anxn+r = 0
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When n = 0 the above becomes

xra0r(−1 + r) + 4xra0r + 2a0xr = 0

Or
(xrr(−1 + r) + 4xrr + 2xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 + 3r + 2

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 + 3r + 2 = 0

Solving for r gives the roots of the indicial equation as

r1 = −1
r2 = −2

Since a0 6= 0 then the indicial equation becomes(
r2 + 3r + 2

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =

∞∑
n=0

anx
n

x

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x2

Or

y1(x) =
∞∑
n=0

anx
n−1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−2

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)2an−2(n+ r − 2) (n− 3 + r) + an(n+ r) (n+ r − 1)
+ 2an−2(n+ r − 2) + 4an(n+ r)− 2an−2 + 2an = 0

Solving for an from recursive equation (4) gives

an = −2an−2(n2 + 2nr + r2 − 4n− 4r + 3)
n2 + 2nr + r2 + 3n+ 3r + 2 (4)

Which for the root r = −1 becomes

an = −2an−2(n2 − 6n+ 8)
n (n+ 1) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−2r2 + 2

r2 + 7r + 12
Which for the root r = −1 becomes

a2 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−2r2+2
r2+7r+12 0
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For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−2r2+2
r2+7r+12 0

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
4(−1 + r) (1 + r)2

(r + 6) (r + 5) (r + 4)

Which for the root r = −1 becomes

a4 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−2r2+2
r2+7r+12 0

a3 0 0

a4
4(−1+r)(1+r)2
(r+6)(r+5)(r+4) 0

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

−2r2+2
r2+7r+12 0

a3 0 0

a4
4(−1+r)(1+r)2
(r+6)(r+5)(r+4) 0

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) =
1
x

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= 1 +O(x6)
x

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= 0

Therefore

lim
r→r2

0 = lim
r→−2

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−2
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Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)2bn−2(n+ r − 2) (n− 3 + r) + bn(n+ r) (n+ r − 1)
+ 2bn−2(n+ r − 2) + 4bn(n+ r)− 2bn−2 + 2bn = 0

Which for for the root r = −2 becomes

(4A)2bn−2(n−4) (n−5)+bn(n−2) (n−3)+2bn−2(n−4)+4bn(n−2)−2bn−2+2bn = 0

Solving for bn from the recursive equation (4) gives

bn = −2bn−2(n2 + 2nr + r2 − 4n− 4r + 3)
n2 + 2nr + r2 + 3n+ 3r + 2 (5)

Which for the root r = −2 becomes

bn = −2bn−2(n2 − 8n+ 15)
n2 − n

(6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 2(r2 − 1)
r2 + 7r + 12

Which for the root r = −2 becomes

b2 = −3

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2

−2r2+2
r2+7r+12 −3

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−2r2+2
r2+7r+12 −3

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
4r3 + 4r2 − 4r − 4

(r2 + 11r + 30) (r + 4)
Which for the root r = −2 becomes

b4 = −1
2

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−2r2+2
r2+7r+12 −3

b3 0 0

b4
4(−1+r)(1+r)2
(r+6)(r+5)(r+4) −1

2

For n = 5, using the above recursive equation gives

b5 = 0

3637



And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−2r2+2
r2+7r+12 −3

b3 0 0

b4
4(−1+r)(1+r)2
(r+6)(r+5)(r+4) −1

2

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) =
1
x

(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− 3x2 − x4

2 +O(x6)
x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1(1 +O(x6))
x

+
c2
(
1− 3x2 − x4

2 +O(x6)
)

x2

Hence the final solution is
y = yh

= c1(1 +O(x6))
x

+
c2
(
1− 3x2 − x4

2 +O(x6)
)

x2

Summary
The solution(s) found are the following

(1)y = c1(1 +O(x6))
x

+
c2
(
1− 3x2 − x4

2 +O(x6)
)

x2

Verification of solutions

y = c1(1 +O(x6))
x

+
c2
(
1− 3x2 − x4

2 +O(x6)
)

x2

Verified OK.
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11.14.1 Maple step by step solution

Let’s solve
x2(2x2 + 1) y′′ + (2x3 + 4x) y′ + (−2x2 + 2) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = 2
(
x2−1

)
y

x2(2x2+1) −
2
(
x2+2

)
y′

x(2x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2
(
x2+2

)
y′

x(2x2+1) − 2
(
x2−1

)
y

x2(2x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2
(
x2+2

)
x(2x2+1) , P3(x) = − 2

(
x2−1

)
x2(2x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 2

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(2x2 + 1) y′′ + 2(x2 + 2)xy′ + (−2x2 + 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(2 + r) (1 + r)xr + a1(3 + r) (2 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r + 1) + 2ak−2(k + r − 1) (k − 3 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2,−1}

• Each term must be 0
a1(3 + r) (2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2) (k + r + 1) + 2ak−2(k + r − 1) (k − 3 + r) = 0

• Shift index using k− >k + 2
ak+2(k + 4 + r) (k + 3 + r) + 2ak(k + r + 1) (k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2ak(k+r+1)(k+r−1)

(k+4+r)(k+3+r)
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• Recursion relation for r = −2
ak+2 = −2ak(k−1)(k−3)

(k+2)(k+1)

• Solution for r = −2[
y =

∞∑
k=0

akx
k−2, ak+2 = −2ak(k−1)(k−3)

(k+2)(k+1) , a1 = 0
]

• Recursion relation for r = −1 ; series terminates at k = 2
ak+2 = − 2akk(k−2)

(k+3)(k+2)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = − 2akk(k−2)

(k+3)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k−1
)
, ak+2 = −2ak(k−1)(k−3)

(k+2)(1+k) , a1 = 0, bk+2 = − 2bkk(k−2)
(k+3)(k+2) , b1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 31� �
Order:=6;
dsolve(x^2*(1+2*x^2)*diff(y(x),x$2)+x*(4+2*x^2)*diff(y(x),x)+2*(1-x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1(1 + O (x6))x+ c2

(
1− 3x2 − 1

2x
4 +O(x6)

)
x2

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 25� �
AsymptoticDSolveValue[x^2*(1+2*x^2)*y''[x]+x*(4+2*x^2)*y'[x]+2*(1-x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
−x2

2 + 1
x2 − 3

)
+ c2

x
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11.15 problem 26
11.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3655

Internal problem ID [1204]
Internal file name [OUTPUT/1205_Sunday_June_05_2022_02_05_09_AM_47489370/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.1 Exercises. Page 318
Problem number: 26.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x2 + 2
)
y′′ + 2x

(
x2 + 5

)
y′ + 2

(
−x2 + 3

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x4 + 2x2) y′′ + (2x3 + 10x
)
y′ +

(
−2x2 + 6

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2x2 + 10
(x2 + 2)x

q(x) = − 2(x2 − 3)
x2 (x2 + 2)
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Table 458: Table p(x), q(x) singularites.

p(x) = 2x2+10
(x2+2)x

singularity type
x = 0 “regular”

x = −i
√
2 “regular”

x = i
√
2 “regular”

q(x) = − 2
(
x2−3

)
x2(x2+2)

singularity type
x = 0 “regular”

x = −i
√
2 “regular”

x = i
√
2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−i

√
2, i

√
2,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 + 2
)
y′′ +

(
2x3 + 10x

)
y′ +

(
−2x2 + 6

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x2 + 2

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
2x3 + 10x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
−2x2 + 6

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+r+2an(n+ r)
)

+
(

∞∑
n=0

10xn+ran(n+ r)
)

+
∞∑

n =0

(
−2xn+r+2an

)
+
(

∞∑
n=0

6anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

2xn+r+2an(n+ r) =
∞∑
n=2

2an−2(n+ r − 2)xn+r

∞∑
n =0

(
−2xn+r+2an

)
=

∞∑
n=2

(
−2an−2x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+r−2) (n−3+r)xn+r

)
+
(

∞∑
n=0

2xn+ran(n+r) (n+r−1)
)

+
(

∞∑
n=2

2an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=0

10xn+ran(n+ r)
)

+
∞∑

n =2

(
−2an−2x

n+r
)
+
(

∞∑
n=0

6anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+ran(n+ r) (n+ r − 1) + 10xn+ran(n+ r) + 6anxn+r = 0
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When n = 0 the above becomes

2xra0r(−1 + r) + 10xra0r + 6a0xr = 0

Or
(2xrr(−1 + r) + 10xrr + 6xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
2r2 + 8r + 6

)
xr = 0

Since the above is true for all x then the indicial equation becomes

2r2 + 8r + 6 = 0

Solving for r gives the roots of the indicial equation as

r1 = −1
r2 = −3

Since a0 6= 0 then the indicial equation becomes(
2r2 + 8r + 6

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =

∞∑
n=0

anx
n

x

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x3

Or

y1(x) =
∞∑
n=0

anx
n−1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−3

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0
For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r) + 2an(n+ r) (n+ r − 1)
+ 2an−2(n+ r − 2) + 10an(n+ r)− 2an−2 + 6an = 0

Solving for an from recursive equation (4) gives

an = − an−2(n2 + 2nr + r2 − 3n− 3r)
2 (n2 + 2nr + r2 + 4n+ 4r + 3) (4)

Which for the root r = −1 becomes

an = −an−2(n2 − 5n+ 4)
2n (n+ 2) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−r2 − r + 2

2r2 + 16r + 30
Which for the root r = −1 becomes

a2 =
1
8

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−r2−r+2
2r2+16r+30

1
8

3647



For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−r2−r+2
2r2+16r+30

1
8

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
r4 + 6r3 + 7r2 − 6r − 8
4 (r + 5)2 (r + 3) (r + 7)

Which for the root r = −1 becomes

a4 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−r2−r+2
2r2+16r+30

1
8

a3 0 0
a4

r4+6r3+7r2−6r−8
4(r+5)2(r+3)(r+7) 0

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

−r2−r+2
2r2+16r+30

1
8

a3 0 0
a4

r4+6r3+7r2−6r−8
4(r+5)2(r+3)(r+7) 0

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) =
1
x

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
1 + x2

8 +O(x6)
x

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a2(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a2

= −r2 − r + 2
2r2 + 16r + 30

Therefore

lim
r→r2

−r2 − r + 2
2r2 + 16r + 30 = lim

r→−3

−r2 − r + 2
2r2 + 16r + 30

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode x2(x2 + 2) y′′+(2x3 + 10x) y′+(−2x2 + 6) y =
0 gives

x2(x2 + 2
)(

Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
2x3 + 10x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+
(
−2x2 + 6

)(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
x2(x2 + 2

)
y′′1(x) +

(
2x3 + 10x

)
y′1(x) +

(
−2x2 + 6

)
y1(x)

)
ln (x)

+ x2(x2 + 2
)(2y′1(x)

x
− y1(x)

x2

)
+ (2x3 + 10x) y1(x)

x

)
C

+ x2(x2 + 2
)( ∞∑

n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
2x3 + 10x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
−2x2 + 6

)( ∞∑
n=0

bnx
n+r2

)
= 0
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But since y1(x) is a solution to the ode, then

x2(x2 + 2
)
y′′1(x) +

(
2x3 + 10x

)
y′1(x) +

(
−2x2 + 6

)
y1(x) = 0

Eq (7) simplifes to

(8)

(
x2(x2 + 2

)(2y′1(x)
x

− y1(x)
x2

)
+ (2x3 + 10x) y1(x)

x

)
C

+ x2(x2 + 2
)( ∞∑

n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
2x3 + 10x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
−2x2 + 6

)( ∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2x
(
x2 + 2

)( ∞∑
n=0

x−1+n+r1an(n+ r1)
)

+
(
x2 + 8

)( ∞∑
n=0

anx
n+r1

))
C

+
(
x4 + 2x2)( ∞∑

n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)

+ 2
(
x3 + 5x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

+ 2
(
−x2 + 3

)( ∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = −1 and r2 = −3 then the above becomes

(10)

(
2x
(
x2 + 2

)( ∞∑
n=0

xn−2an(n− 1)
)

+
(
x2 + 8

)( ∞∑
n=0

anx
n−1

))
C

+
(
x4 + 2x2)( ∞∑

n=0

x−5+nbn(n− 3) (−4 + n)
)

+ 2
(
x3 + 5x

)( ∞∑
n=0

x−4+nbn(n− 3)
)

+ 2
(
−x2 + 3

)( ∞∑
n=0

bnx
n−3

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2C x1+nan(n− 1)
)

+
(

∞∑
n=0

4C xn−1an(n− 1)
)

+
(

∞∑
n=0

C x1+nan

)

+
(

∞∑
n=0

8C xn−1an

)
+
(

∞∑
n=0

xn−1bn(−4 + n) (n− 3)
)

+
(

∞∑
n=0

2xn−3bn(−4 + n) (n− 3)
)

+
(

∞∑
n=0

2xn−1bn(n− 3)
)

+
(

∞∑
n=0

10xn−3bn(n− 3)
)

+
∞∑

n =0

(
−2xn−1bn

)
+
(

∞∑
n=0

6bnxn−3

)
= 0

The next step is to make all powers of x be n − 3 in each summation term. Going
over each summation term above with power of x in it which is not already xn−3 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C x1+nan(n− 1) =
∞∑
n=4

2Ca−4+n(−5 + n)xn−3

∞∑
n =0

4C xn−1an(n− 1) =
∞∑
n=2

4Can−2(n− 3)xn−3

∞∑
n =0

C x1+nan =
∞∑
n=4

Ca−4+nx
n−3

∞∑
n =0

8C xn−1an =
∞∑
n=2

8Can−2x
n−3

∞∑
n =0

xn−1bn(−4 + n) (n− 3) =
∞∑
n=2

bn−2(−6 + n) (−5 + n)xn−3

∞∑
n =0

2xn−1bn(n− 3) =
∞∑
n=2

2bn−2(−5 + n)xn−3

∞∑
n =0

(
−2xn−1bn

)
=

∞∑
n=2

(
−2bn−2x

n−3)
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Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 3.

(2B)

(
∞∑
n=4

2Ca−4+n(−5 + n)xn−3

)
+
(

∞∑
n=2

4Can−2(n− 3)xn−3

)

+
(

∞∑
n=4

Ca−4+nx
n−3

)
+
(

∞∑
n=2

8Can−2x
n−3

)

+
(

∞∑
n=2

bn−2(−6 + n) (−5 + n)xn−3

)
+
(

∞∑
n=0

2xn−3bn(−4 + n) (n− 3)
)

+
(

∞∑
n=2

2bn−2(−5 + n)xn−3

)
+
(

∞∑
n=0

10xn−3bn(n− 3)
)

+
∞∑

n =2

(
−2bn−2x

n−3)+( ∞∑
n=0

6bnxn−3

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−2b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−2b1 = 0

Solving the above for b1 gives
b1 = 0

For n = N , where N = 2 which is the difference between the two roots, we are free to
choose b2 = 0. Hence for n = 2, Eq (2B) gives

4C + 4 = 0

Which is solved for C. Solving for C gives

C = −1

For n = 3, Eq (2B) gives
8Ca1 + 6b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

6b3 = 0
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Solving the above for b3 gives
b3 = 0

For n = 4, Eq (2B) gives

(−a0 + 12a2)C − 2b2 + 16b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−1
2 + 16b4 = 0

Solving the above for b4 gives
b4 =

1
32

For n = 5, Eq (2B) gives

(a1 + 16a3)C − 2b3 + 30b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

30b5 = 0

Solving the above for b5 gives
b5 = 0

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = −1 and all bn, then the second solution becomes

y2(x) = (−1)
(
1 + x2

8 +O(x6)
x

)
ln (x) +

1 + x4

32 +O(x6)
x3

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
1 + x2

8 +O(x6)
)

x
+ c2

(
(−1)

(
1 + x2

8 +O(x6)
x

)
ln (x) +

1 + x4

32 +O(x6)
x3

)
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Hence the final solution is

y = yh

=
c1
(
1 + x2

8 +O(x6)
)

x
+ c2

−

(
1 + x2

8 +O(x6)
)
ln (x)

x
+

1 + x4

32 +O(x6)
x3


Summary
The solution(s) found are the following

(1)y =
c1
(
1 + x2

8 +O(x6)
)

x
+ c2

−

(
1 + x2

8 +O(x6)
)
ln (x)

x
+

1 + x4

32 +O(x6)
x3


Verification of solutions

y =
c1
(
1 + x2

8 +O(x6)
)

x
+ c2

−

(
1 + x2

8 +O(x6)
)
ln (x)

x
+

1 + x4

32 +O(x6)
x3


Verified OK.

11.15.1 Maple step by step solution

Let’s solve
x2(x2 + 2) y′′ + (2x3 + 10x) y′ + (−2x2 + 6) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = 2
(
x2−3

)
y

x2(x2+2) −
2
(
x2+5

)
y′

x(x2+2)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2
(
x2+5

)
y′

x(x2+2) − 2
(
x2−3

)
y

x2(x2+2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2
(
x2+5

)
(x2+2)x , P3(x) = − 2

(
x2−3

)
x2(x2+2)

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(x2 + 2) y′′ + 2x(x2 + 5) y′ + (−2x2 + 6) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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2a0(3 + r) (1 + r)xr + 2a1(4 + r) (2 + r)x1+r +
(

∞∑
k=2

(2ak(k + r + 3) (k + r + 1) + ak−2(k + r) (k − 3 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2(3 + r) (1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3,−1}

• Each term must be 0
2a1(4 + r) (2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
2ak(k + r + 3) (k + r + 1) + ak−2(k + r) (k − 3 + r) = 0

• Shift index using k− >k + 2
2ak+2(k + 5 + r) (k + r + 3) + ak(k + r + 2) (k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+2)(k+r−1)

2(k+5+r)(k+r+3)

• Recursion relation for r = −3 ; series terminates at k = 4
ak+2 = −ak(k−1)(k−4)

2(k+2)k

• Solution for r = −3[
y =

∞∑
k=0

akx
k−3, ak+2 = −ak(k−1)(k−4)

2(k+2)k , a1 = 0
]

• Recursion relation for r = −1 ; series terminates at k = 2
ak+2 = −ak(k+1)(k−2)

2(k+4)(k+2)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = −ak(k+1)(k−2)

2(k+4)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−3
)
+
(

∞∑
k=0

bkx
k−1
)
, ak+2 = −ak(k−1)(−4+k)

2(k+2)k , a1 = 0, bk+2 = − bk(1+k)(k−2)
2(4+k)(k+2) , b1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 49� �
Order:=6;
dsolve(x^2*(2+x^2)*diff(y(x),x$2)+2*x*(x^2+5)*diff(y(x),x)+2*(3-x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1
(
1 + 1

8x
2 +O(x6)

)
x

+
c2
(
ln (x)

(
2x2 + 1

4x
4 +O(x6)

)
+
(
−2− 3

2x
2 − 1

4x
4 +O(x6)

))
x3

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 51� �
AsymptoticDSolveValue[x^2*(2+x^2)*y''[x]+2*x*(x^2+5)*y'[x]+2*(3-x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x4 + 7x2 + 4

4x3 − (x2 + 8) log(x)
8x

)
+ c2

(
x

8 + 1
x

)

3658



12 Chapter 7 Series Solutions of Linear Second
Equations. 7.2 SERIES SOLUTIONS NEAR
AN ORDINARY POINT I. Exercises 7.2. Page
329

12.1 problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3661
12.2 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3669
12.3 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3677
12.4 problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3685
12.5 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3696
12.6 problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3705
12.7 problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3714
12.8 problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3725
12.9 problem 9(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3733
12.10problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3742
12.11problem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3751
12.12problem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3761
12.13problem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3771
12.14problem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3781
12.15problem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3791
12.16problem 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3801
12.17problem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3812
12.18problem 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3824
12.19problem 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3835
12.20problem 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3847
12.21problem 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3858
12.22problem 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3871
12.23problem 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3881
12.24problem 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3893
12.25problem 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3905
12.26problem 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3913
12.27problem 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3923
12.28problem 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3932
12.29problem 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3943
12.30problem 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3955
12.31problem 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3966
12.32problem 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3978
12.33problem 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3990

3659



12.34problem 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3999
12.35problem 42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4008
12.36problem 43 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4015
12.37problem 44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4026

3660



12.1 problem 1
Internal problem ID [1205]
Internal file name [OUTPUT/1206_Sunday_June_05_2022_02_05_12_AM_61059740/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x2 + 1

)
y′′ + 6y′x+ 6y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (818)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (819)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −6(y′x+ y)
x2 + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 36y′x2 + 48yx− 12y′

(x2 + 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 240(−x3 + x) y′ + 120(−3x2 + 1) y
(x2 + 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= 360(5x4 − 10x2 + 1) y′ + 2880(x3 − x) y
(x2 + 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(−15120x5 + 50400x3 − 15120x) y′ − 25200y

(
x4 − 2x2 + 1

5

)
(x2 + 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −6y(0)
F1 = −12y′(0)
F2 = 120y(0)
F3 = 360y′(0)
F4 = −5040y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
−7x6 + 5x4 − 3x2 + 1

)
y(0) +

(
3x5 − 2x3 + x

)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 + 1
)
y′′ + 6y′x+ 6y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ 6
(

∞∑
n=1

nanx
n−1

)
x+ 6

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)
(

∞∑
n=2

xnann(n−1)
)
+
(

∞∑
n=2

n(n−1) anxn−2

)
+
(

∞∑
n=1

6nanxn

)
+
(

∞∑
n=0

6anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
(

∞∑
n=1

6nanxn

)
+
(

∞∑
n=0

6anxn

)
= 0
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n = 0 gives
2a2 + 6a0 = 0

a2 = −3a0

n = 1 gives
6a3 + 12a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −2a1

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1) + (n+ 2) an+2(n+ 1) + 6nan + 6an = 0

Solving for an+2, gives

(5)an+2 = −(n+ 3) an
n+ 1

For n = 2 the recurrence equation gives

20a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = 5a0

For n = 3 the recurrence equation gives

30a3 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 = 3a1

For n = 4 the recurrence equation gives

42a4 + 30a6 = 0
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Which after substituting the earlier terms found becomes

a6 = −7a0

For n = 5 the recurrence equation gives

56a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = −4a1

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = 3a1x5 + 5a0x4 − 2a1x3 − 3a0x2 + a1x+ a0 + . . .

Collecting terms, the solution becomes

(3)y =
(
5x4 − 3x2 + 1

)
a0 +

(
3x5 − 2x3 + x

)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
5x4 − 3x2 + 1

)
c1 +

(
3x5 − 2x3 + x

)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
−7x6 + 5x4 − 3x2 + 1

)
y(0) +

(
3x5 − 2x3 + x

)
y′(0) +O

(
x6)

(2)y =
(
5x4 − 3x2 + 1

)
c1 +

(
3x5 − 2x3 + x

)
c2 +O

(
x6)

Verification of solutions

y =
(
−7x6 + 5x4 − 3x2 + 1

)
y(0) +

(
3x5 − 2x3 + x

)
y′(0) +O

(
x6)

Verified OK.

y =
(
5x4 − 3x2 + 1

)
c1 +

(
3x5 − 2x3 + x

)
c2 +O

(
x6)

Verified OK.

3667



Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 34� �
Order:=6;
dsolve((1+x^2)*diff(y(x),x$2)+6*x*diff(y(x),x)+6*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
5x4 − 3x2 + 1

)
y(0) +

(
3x5 − 2x3 + x

)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 34� �
AsymptoticDSolveValue[(1+x^2)*y''[x]+6*x*y'[x]+6*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2
(
3x5 − 2x3 + x

)
+ c1

(
5x4 − 3x2 + 1

)
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12.2 problem 2
Internal problem ID [1206]
Internal file name [OUTPUT/1207_Sunday_June_05_2022_02_05_13_AM_51423085/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Ordi-
nary point", "second_order_change_of_variable_on_y_method_2", "sec-
ond order series method. Taylor series method", "second_order_ode_non_con-
stant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x2 + 1

)
y′′ + 2y′x− 2y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (821)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (822)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2(−y + y′x)
x2 + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 8(−y + y′x)x
(x2 + 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −8(−y + y′x) (5x2 − 1)
(x2 + 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
240
(
x2 − 3

5

)
(−y + y′x)x

(x2 + 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −48(−y + y′x) (35x4 − 42x2 + 3)
(x2 + 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 2y(0)
F1 = 0
F2 = −8y(0)
F3 = 0
F4 = 144y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + x2 − 1

3x
4 + 1

5x
6
)
y(0) + y′(0)x+O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 + 1
)
y′′ + 2y′x− 2y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ 2
(

∞∑
n=1

nanx
n−1

)
x− 2

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)
(

∞∑
n=2

xnann(n−1)
)
+
(

∞∑
n=2

n(n−1) anxn−2

)
+
(

∞∑
n=1

2nanxn

)
+

∞∑
n =0

(−2anxn) = 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
(

∞∑
n=1

2nanxn

)
+

∞∑
n =0

(−2anxn) = 0
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n = 0 gives
2a2 − 2a0 = 0

a2 = a0

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1) + (n+ 2) an+2(n+ 1) + 2nan − 2an = 0

Solving for an+2, gives

(5)an+2 = −(n− 1) an
n+ 1

For n = 2 the recurrence equation gives

4a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = −a0
3

For n = 3 the recurrence equation gives

10a3 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 = 0

For n = 4 the recurrence equation gives

18a4 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 =
a0
5
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For n = 5 the recurrence equation gives

28a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = 0

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ a0x
2 − 1

3a0x
4 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + x2 − 1

3x
4
)
a0 + a1x+O

(
x6)

At x = 0 the solution above becomes

y =
(
1 + x2 − 1

3x
4
)
c1 + c2x+O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1 + x2 − 1

3x
4 + 1

5x
6
)
y(0) + y′(0)x+O

(
x6)

(2)y =
(
1 + x2 − 1

3x
4
)
c1 + c2x+O

(
x6)

Verification of solutions

y =
(
1 + x2 − 1

3x
4 + 1

5x
6
)
y(0) + y′(0)x+O

(
x6)

Verified OK.

y =
(
1 + x2 − 1

3x
4
)
c1 + c2x+O

(
x6)

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 22� �
Order:=6;
dsolve((1+x^2)*diff(y(x),x$2)+2*x*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + x2 − 1

3x
4
)
y(0) +D(y) (0)x+O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 23� �
AsymptoticDSolveValue[(1+x^2)*y''[x]+2*x*y'[x]-2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
−x4

3 + x2 + 1
)
+ c2x
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12.3 problem 3
Internal problem ID [1207]
Internal file name [OUTPUT/1208_Sunday_June_05_2022_02_05_14_AM_24094619/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x2 + 1

)
y′′ − 8y′x+ 20y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (824)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (825)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
8y′x− 20y
x2 + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 36y′x2 − 120yx− 12y′

(x2 + 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 96x3y′ − 360x2y − 96y′x+ 120y
(x2 + 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= 24(5x4 − 10x2 + 1) y′ + 480(−x3 + x) y
(x2 + 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= 0

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −20y(0)
F1 = −12y′(0)
F2 = 120y(0)
F3 = 24y′(0)
F4 = 0

Substituting all the above in (7) and simplifying gives the solution as

y =
(
5x4 − 10x2 + 1

)
y(0) +

(
x− 2x3 + 1

5x
5
)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 + 1
)
y′′ − 8y′x+ 20y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
− 8
(

∞∑
n=1

nanx
n−1

)
x+ 20

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to(
∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(−8nanxn) +
(

∞∑
n=0

20anxn

)
= 0

(2)

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
∞∑

n =1

(−8nanxn) +
(

∞∑
n=0

20anxn

)
= 0
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n = 0 gives
2a2 + 20a0 = 0

a2 = −10a0

n = 1 gives
6a3 + 12a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −2a1

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1) + (n+ 2) an+2(n+ 1)− 8nan + 20an = 0

Solving for an+2, gives

(5)an+2 = −an(n2 − 9n+ 20)
(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

6a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = 5a0

For n = 3 the recurrence equation gives

2a3 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
5

For n = 4 the recurrence equation gives

30a6 = 0
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Which after substituting the earlier terms found becomes

a6 = 0

For n = 5 the recurrence equation gives

42a7 = 0

Which after substituting the earlier terms found becomes

a7 = 0

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 10a0x2 − 2a1x3 + 5a0x4 + 1
5a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
5x4 − 10x2 + 1

)
a0 +

(
x− 2x3 + 1

5x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
5x4 − 10x2 + 1

)
c1 +

(
x− 2x3 + 1

5x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
5x4 − 10x2 + 1

)
y(0) +

(
x− 2x3 + 1

5x
5
)
y′(0) +O

(
x6)

(2)y =
(
5x4 − 10x2 + 1

)
c1 +

(
x− 2x3 + 1

5x
5
)
c2 +O

(
x6)
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Verification of solutions

y =
(
5x4 − 10x2 + 1

)
y(0) +

(
x− 2x3 + 1

5x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
5x4 − 10x2 + 1

)
c1 +

(
x− 2x3 + 1

5x
5
)
c2 +O

(
x6)

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 34� �
Order:=6;
dsolve((1+x^2)*diff(y(x),x$2)-8*x*diff(y(x),x)+20*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
5x4 − 10x2 + 1

)
y(0) +

(
x− 2x3 + 1

5x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 36� �
AsymptoticDSolveValue[(1+x^2)*y''[x]-8*x*y'[x]+20*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x5

5 − 2x3 + x

)
+ c1

(
5x4 − 10x2 + 1

)
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12.4 problem 4
12.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3692

Internal problem ID [1208]
Internal file name [OUTPUT/1209_Sunday_June_05_2022_02_05_16_AM_56479052/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[_Gegenbauer]

(
−x2 + 1

)
y′′ − 8y′x− 12y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (827)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (828)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −4(2y′x+ 3y)
x2 − 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 60y′x2 + 120yx+ 20y′

(x2 − 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −120(4x3y′ + 9x2y + 4y′x+ 3y)
(x2 − 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (4200x4 + 8400x2 + 840) y′ + 10080xy(x2 + 1)
(x2 − 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(−40320x5 − 134400x3 − 40320x) y′ − 100800

(
x4 + 2x2 + 1

5

)
y

(x2 − 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 12y(0)
F1 = 20y′(0)
F2 = 360y(0)
F3 = 840y′(0)
F4 = 20160y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
28x6 + 15x4 + 6x2 + 1

)
y(0) +

(
x+ 10

3 x3 + 7x5
)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

−x2 + 1
)
y′′ − 8y′x− 12y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
−x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
− 8
(

∞∑
n=1

nanx
n−1

)
x− 12

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

∞∑
n =2

(−xnann(n− 1)) +
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(−8nanxn) +
∞∑

n =0

(−12anxn) = 0

(2)

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

∞∑
n =2

(−xnann(n− 1)) +
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
∞∑

n =1

(−8nanxn) +
∞∑

n =0

(−12anxn) = 0
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n = 0 gives
2a2 − 12a0 = 0

a2 = 6a0

n = 1 gives
6a3 − 20a1 = 0

Which after substituting earlier equations, simplifies to

a3 =
10a1
3

For 2 ≤ n, the recurrence equation is

(4)−nan(n− 1) + (n+ 2) an+2(n+ 1)− 8nan − 12an = 0

Solving for an+2, gives

(5)an+2 =
an(n2 + 7n+ 12)
(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

−30a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = 15a0

For n = 3 the recurrence equation gives

−42a3 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 = 7a1

For n = 4 the recurrence equation gives

−56a4 + 30a6 = 0
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Which after substituting the earlier terms found becomes

a6 = 28a0

For n = 5 the recurrence equation gives

−72a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = 12a1

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ 6a0x2 + 10
3 a1x

3 + 15a0x4 + 7a1x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
15x4 + 6x2 + 1

)
a0 +

(
x+ 10

3 x3 + 7x5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
15x4 + 6x2 + 1

)
c1 +

(
x+ 10

3 x3 + 7x5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
28x6 + 15x4 + 6x2 + 1

)
y(0) +

(
x+ 10

3 x3 + 7x5
)
y′(0) +O

(
x6)

(2)y =
(
15x4 + 6x2 + 1

)
c1 +

(
x+ 10

3 x3 + 7x5
)
c2 +O

(
x6)
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Verification of solutions

y =
(
28x6 + 15x4 + 6x2 + 1

)
y(0) +

(
x+ 10

3 x3 + 7x5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
15x4 + 6x2 + 1

)
c1 +

(
x+ 10

3 x3 + 7x5
)
c2 +O

(
x6)

Verified OK.

12.4.1 Maple step by step solution

Let’s solve
(−x2 + 1) y′′ − 8y′x− 12y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − 8xy′

x2−1 −
12y
x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 8xy′

x2−1 +
12y
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 8x
x2−1 , P3(x) = 12

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 4

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
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(x2 − 1) y′′ + 8y′x+ 12y = 0
• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (8u− 8)

(
d
du
y(u)

)
+ 12y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(3 + r)u−1+r +
(

∞∑
k=0

(−2ak+1(k + 1 + r) (k + r + 4) + ak(k + r + 4) (k + r + 3))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r(3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3, 0}

• Each term in the series must be 0, giving the recursion relation
((−2k − 2r − 2) ak+1 + ak(k + r + 3)) (k + r + 4) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r+3)

2(k+1+r)

• Recursion relation for r = −3
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ak+1 = akk
2(k−2)

• Series not valid for r = −3 , division by 0 in the recursion relation at k = 2
ak+1 = akk

2(k−2)

• Recursion relation for r = 0
ak+1 = ak(k+3)

2(k+1)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak(k+3)

2(k+1)

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k , ak+1 = ak(k+3)
2(k+1)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 34� �
Order:=6;
dsolve((1-x^2)*diff(y(x),x$2)-8*x*diff(y(x),x)-12*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
15x4 + 6x2 + 1

)
y(0) +

(
x+ 10

3 x3 + 7x5
)
D(y) (0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 36� �
AsymptoticDSolveValue[(1-x^2)*y''[x]-8*x*y'[x]-12*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
7x5 + 10x3

3 + x

)
+ c1

(
15x4 + 6x2 + 1

)
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12.5 problem 5
Internal problem ID [1209]
Internal file name [OUTPUT/1210_Sunday_June_05_2022_02_05_17_AM_79760735/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
2x2 + 1

)
y′′ + 7y′x+ 2y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (830)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (831)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −7y′x+ 2y
2x2 + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 59y′x2 + 22yx− 9y′

(2x2 + 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −605x3y′ − 250x2y + 275y′x+ 40y
(2x2 + 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (7365x4 − 6660x2 + 315) y′ + (3210x3 − 1530x) y
(2x2 + 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (−104055x5 + 156150x3 − 22095x) y′ + (−46830x4 + 44370x2 − 2160) y
(2x2 + 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −2y(0)
F1 = −9y′(0)
F2 = 40y(0)
F3 = 315y′(0)
F4 = −2160y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− x2 + 5

3x
4 − 3x6

)
y(0) +

(
x− 3

2x
3 + 21

8 x5
)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

2x2 + 1
)
y′′ + 7y′x+ 2y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
2x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ 7
(

∞∑
n=1

nanx
n−1

)
x+ 2

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to(
∞∑
n=2

2xnann(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

7nanxn

)
+
(

∞∑
n=0

2anxn

)
= 0

(2)

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

2xnann(n− 1)
)

+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
(

∞∑
n=1

7nanxn

)
+
(

∞∑
n=0

2anxn

)
= 0
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n = 0 gives
2a2 + 2a0 = 0

a2 = −a0

n = 1 gives
6a3 + 9a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −3a1
2

For 2 ≤ n, the recurrence equation is

(4)2nan(n− 1) + (n+ 2) an+2(n+ 1) + 7nan + 2an = 0

Solving for an+2, gives

(5)an+2 = −(2n+ 1) an
n+ 1

For n = 2 the recurrence equation gives

20a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 =
5a0
3

For n = 3 the recurrence equation gives

35a3 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 =
21a1
8
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For n = 4 the recurrence equation gives

54a4 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = −3a0

For n = 5 the recurrence equation gives

77a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = −77a1
16

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− a0x
2 − 3

2a1x
3 + 5

3a0x
4 + 21

8 a1x
5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− x2 + 5

3x
4
)
a0 +

(
x− 3

2x
3 + 21

8 x5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x2 + 5

3x
4
)
c1 +

(
x− 3

2x
3 + 21

8 x5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− x2 + 5

3x
4 − 3x6

)
y(0) +

(
x− 3

2x
3 + 21

8 x5
)
y′(0) +O

(
x6)

(2)y =
(
1− x2 + 5

3x
4
)
c1 +

(
x− 3

2x
3 + 21

8 x5
)
c2 +O

(
x6)
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Verification of solutions

y =
(
1− x2 + 5

3x
4 − 3x6

)
y(0) +

(
x− 3

2x
3 + 21

8 x5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− x2 + 5

3x
4
)
c1 +

(
x− 3

2x
3 + 21

8 x5
)
c2 +O

(
x6)

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Legendre successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
Order:=6;
dsolve((1+2*x^2)*diff(y(x),x$2)+7*x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− x2 + 5

3x
4
)
y(0) +

(
x− 3

2x
3 + 21

8 x5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 40� �
AsymptoticDSolveValue[(1+2*x^2)*y''[x]+7*x*y'[x]+2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
21x5

8 − 3x3

2 + x

)
+ c1

(
5x4

3 − x2 + 1
)
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12.6 problem 6
Internal problem ID [1210]
Internal file name [OUTPUT/1211_Sunday_June_05_2022_02_05_18_AM_42177438/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x2 + 1

)
y′′ + 2y′x+ y

4 = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (833)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (834)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = − 8y′x+ y

4 (x2 + 1)

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 23y′x2 + 4yx− 9y′

4 (x2 + 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −352x3y′ − 71x2y + 416y′x+ 25y
16 (x2 + 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (1689x4 − 4014x2 + 441) y′ + (372x3 − 396x) y
16 (x2 + 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (−39048x5 + 155376x3 − 51336x) y′ + (−9129x4 + 19566x2 − 2025) y
64 (x2 + 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −y(0)
4

F1 = −9y′(0)
4

F2 =
25y(0)
16

F3 =
441y′(0)

16

F4 = −2025y(0)
64
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

8x
2 + 25

384x
4 − 45

1024x
6
)
y(0) +

(
x− 3

8x
3 + 147

640x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 + 1
)
y′′ + 2y′x+ y

4 = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ 2
(

∞∑
n=1

nanx
n−1

)
x+

(
∞∑
n=0

anx
n

)
4 = 0 (1)

Which simplifies to

(2)
(

∞∑
n=2

xnann(n−1)
)
+
(

∞∑
n=2

n(n−1) anxn−2

)
+
(

∞∑
n=1

2nanxn

)
+
(

∞∑
n=0

anx
n

4

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.(

∞∑
n=2

xnann(n−1)
)
+
(

∞∑
n=0

(n+2) an+2(n+1)xn

)
+
(

∞∑
n=1

2nanxn

)
+
(

∞∑
n=0

anx
n

4

)
= 0

(3)

n = 0 gives

2a2 +
a0
4 = 0

a2 = −a0
8

n = 1 gives

6a3 +
9a1
4 = 0

Which after substituting earlier equations, simplifies to

a3 = −3a1
8

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1) + (n+ 2) an+2(n+ 1) + 2nan +
an
4 = 0

Solving for an+2, gives

(5)an+2 = −an(4n2 + 4n+ 1)
4 (n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

25a2
4 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 =
25a0
384
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For n = 3 the recurrence equation gives

49a3
4 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 =
147a1
640

For n = 4 the recurrence equation gives

81a4
4 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = −45a0
1024

For n = 5 the recurrence equation gives

121a5
4 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = −847a1
5120

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
8a0x

2 − 3
8a1x

3 + 25
384a0x

4 + 147
640a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

8x
2 + 25

384x
4
)
a0 +

(
x− 3

8x
3 + 147

640x
5
)
a1 +O

(
x6)
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At x = 0 the solution above becomes

y =
(
1− 1

8x
2 + 25

384x
4
)
c1 +

(
x− 3

8x
3 + 147

640x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− 1

8x
2 + 25

384x
4 − 45

1024x
6
)
y(0) +

(
x− 3

8x
3 + 147

640x
5
)
y′(0) +O

(
x6)

(2)y =
(
1− 1

8x
2 + 25

384x
4
)
c1 +

(
x− 3

8x
3 + 147

640x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 1

8x
2 + 25

384x
4 − 45

1024x
6
)
y(0) +

(
x− 3

8x
3 + 147

640x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 1

8x
2 + 25

384x
4
)
c1 +

(
x− 3

8x
3 + 147

640x
5
)
c2 +O

(
x6)

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Legendre successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
Order:=6;
dsolve((1+x^2)*diff(y(x),x$2)+2*x*diff(y(x),x)+1/4*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 1

8x
2 + 25

384x
4
)
y(0) +

(
x− 3

8x
3 + 147

640x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42� �
AsymptoticDSolveValue[(1+x^2)*y''[x]+2*x*y'[x]+1/4*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
147x5

640 − 3x3

8 + x

)
+ c1

(
25x4

384 − x2

8 + 1
)
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12.7 problem 7
12.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3721

Internal problem ID [1211]
Internal file name [OUTPUT/1212_Sunday_June_05_2022_02_05_19_AM_26816525/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[_Gegenbauer]

(
−x2 + 1

)
y′′ − 5y′x− 4y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (836)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (837)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −5y′x+ 4y
x2 − 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 26y′x2 + 28yx+ 9y′

(x2 − 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −154x3y′ − 188x2y − 161y′x− 64y
(x2 − 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (1044x4 + 2196x2 + 225) y′ + (1368x3 + 1404x) y
(x2 − 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (−8028x5 − 28296x3 − 8721x) y′ + (−11016x4 − 22716x2 − 2304) y
(x2 − 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 4y(0)
F1 = 9y′(0)
F2 = 64y(0)
F3 = 225y′(0)
F4 = 2304y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + 2x2 + 8

3x
4 + 16

5 x6
)
y(0) +

(
x+ 3

2x
3 + 15

8 x5
)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

−x2 + 1
)
y′′ − 5y′x− 4y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
−x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
− 5
(

∞∑
n=1

nanx
n−1

)
x− 4

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

∞∑
n =2

(−xnann(n− 1)) +
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(−5nanxn) +
∞∑

n =0

(−4anxn) = 0

(2)

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

∞∑
n =2

(−xnann(n− 1)) +
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
∞∑

n =1

(−5nanxn) +
∞∑

n =0

(−4anxn) = 0
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n = 0 gives
2a2 − 4a0 = 0

a2 = 2a0

n = 1 gives
6a3 − 9a1 = 0

Which after substituting earlier equations, simplifies to

a3 =
3a1
2

For 2 ≤ n, the recurrence equation is

(4)−nan(n− 1) + (n+ 2) an+2(n+ 1)− 5nan − 4an = 0

Solving for an+2, gives

(5)an+2 =
(n+ 2) an
n+ 1

For n = 2 the recurrence equation gives

−16a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 =
8a0
3

For n = 3 the recurrence equation gives

−25a3 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 =
15a1
8
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For n = 4 the recurrence equation gives

−36a4 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 =
16a0
5

For n = 5 the recurrence equation gives

−49a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 =
35a1
16

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ 2a0x2 + 3
2a1x

3 + 8
3a0x

4 + 15
8 a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + 2x2 + 8

3x
4
)
a0 +

(
x+ 3

2x
3 + 15

8 x5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1 + 2x2 + 8

3x
4
)
c1 +

(
x+ 3

2x
3 + 15

8 x5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1 + 2x2 + 8

3x
4 + 16

5 x6
)
y(0) +

(
x+ 3

2x
3 + 15

8 x5
)
y′(0) +O

(
x6)

(2)y =
(
1 + 2x2 + 8

3x
4
)
c1 +

(
x+ 3

2x
3 + 15

8 x5
)
c2 +O

(
x6)
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Verification of solutions

y =
(
1 + 2x2 + 8

3x
4 + 16

5 x6
)
y(0) +

(
x+ 3

2x
3 + 15

8 x5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1 + 2x2 + 8

3x
4
)
c1 +

(
x+ 3

2x
3 + 15

8 x5
)
c2 +O

(
x6)

Verified OK.

12.7.1 Maple step by step solution

Let’s solve
(−x2 + 1) y′′ − 5y′x− 4y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − 5xy′

x2−1 −
4y

x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 5xy′

x2−1 +
4y

x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5x
x2−1 , P3(x) = 4

x2−1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 5
2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
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(x2 − 1) y′′ + 5y′x+ 4y = 0
• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (5u− 5)

(
d
du
y(u)

)
+ 4y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(3 + 2r)u−1+r +
(

∞∑
k=0

(
−ak+1(k + 1 + r) (2k + 5 + 2r) + ak(k + r + 2)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−3

2

}
• Each term in the series must be 0, giving the recursion relation

ak(k + r + 2)2 − 2(k + 1 + r)
(
k + 5

2 + r
)
ak+1 = 0

• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r+2)2
(k+1+r)(2k+5+2r)

• Recursion relation for r = 0
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ak+1 = ak(k+2)2
(k+1)(2k+5)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak(k+2)2

(k+1)(2k+5)

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k , ak+1 = ak(k+2)2
(k+1)(2k+5)

]
• Recursion relation for r = −3

2

ak+1 =
ak
(
k+ 1

2
)2(

k− 1
2
)
(2k+2)

• Solution for r = −3
2[

y(u) =
∞∑
k=0

aku
k− 3

2 , ak+1 =
ak
(
k+ 1

2
)2(

k− 1
2
)
(2k+2)

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k−
3
2 , ak+1 =

ak
(
k+ 1

2
)2(

k− 1
2
)
(2k+2)

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k−
3
2

)
, a1+k = ak(k+2)2

(1+k)(2k+5) , b1+k =
bk
(
k+ 1

2
)2(

k− 1
2
)
(2k+2)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
Order:=6;
dsolve((1-x^2)*diff(y(x),x$2)-5*x*diff(y(x),x)-4*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + 2x2 + 8

3x
4
)
y(0) +

(
x+ 3

2x
3 + 15

8 x5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 40� �
AsymptoticDSolveValue[(1-x^2)*y''[x]-5*x*y'[x]-4*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
15x5

8 + 3x3

2 + x

)
+ c1

(
8x4

3 + 2x2 + 1
)
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12.8 problem 8
Internal problem ID [1212]
Internal file name [OUTPUT/1213_Sunday_June_05_2022_02_05_20_AM_93707444/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x2 + 1

)
y′′ − 10y′x+ 28y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (839)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (840)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
10y′x− 28y

x2 + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 62y′x2 − 224yx− 18y′

(x2 + 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 272x3y′ − 1064x2y − 208y′x+ 280y
(x2 + 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(840x4 − 1008x2 + 72) y′ − 3360

(
x2 − 3

5

)
xy

(x2 + 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(1680x5 − 2016x3 + 144x) y′ − 6720

(
x2 − 3

5

)
x2y

(x2 + 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −28y(0)
F1 = −18y′(0)
F2 = 280y(0)
F3 = 72y′(0)
F4 = 0

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 14x2 + 35

3 x4
)
y(0) +

(
x− 3x3 + 3

5x
5
)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 + 1
)
y′′ − 10y′x+ 28y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
− 10

(
∞∑
n=1

nanx
n−1

)
x+ 28

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to(
∞∑
n=2

xnann(n− 1)
)
+
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(−10nanxn) +
(

∞∑
n=0

28anxn

)
= 0

(2)

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
∞∑

n =1

(−10nanxn) +
(

∞∑
n=0

28anxn

)
= 0
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n = 0 gives
2a2 + 28a0 = 0

a2 = −14a0

n = 1 gives
6a3 + 18a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −3a1

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1) + (n+ 2) an+2(n+ 1)− 10nan + 28an = 0

Solving for an+2, gives

(5)an+2 = −an(n2 − 11n+ 28)
(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

10a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 =
35a0
3

For n = 3 the recurrence equation gives

4a3 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 =
3a1
5
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For n = 4 the recurrence equation gives

30a6 = 0

Which after substituting the earlier terms found becomes

a6 = 0

For n = 5 the recurrence equation gives

−2a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 =
a1
35

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 14a0x2 − 3a1x3 + 35
3 a0x

4 + 3
5a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 14x2 + 35

3 x4
)
a0 +

(
x− 3x3 + 3

5x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 14x2 + 35

3 x4
)
c1 +

(
x− 3x3 + 3

5x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− 14x2 + 35

3 x4
)
y(0) +

(
x− 3x3 + 3

5x
5
)
y′(0) +O

(
x6)

(2)y =
(
1− 14x2 + 35

3 x4
)
c1 +

(
x− 3x3 + 3

5x
5
)
c2 +O

(
x6)
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Verification of solutions

y =
(
1− 14x2 + 35

3 x4
)
y(0) +

(
x− 3x3 + 3

5x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 14x2 + 35

3 x4
)
c1 +

(
x− 3x3 + 3

5x
5
)
c2 +O

(
x6)

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
Order:=6;
dsolve((1+x^2)*diff(y(x),x$2)-10*x*diff(y(x),x)+28*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + 35

3 x4 − 14x2
)
y(0) +

(
x− 3x3 + 3

5x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 38� �
AsymptoticDSolveValue[(1+x^2)*y''[x]-10*x*y'[x]+28*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
3x5

5 − 3x3 + x

)
+ c1

(
35x4

3 − 14x2 + 1
)
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12.9 problem 9(a)
12.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3740

Internal problem ID [1213]
Internal file name [OUTPUT/1214_Sunday_June_05_2022_02_05_22_AM_14355239/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 9(a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + y′x+ 2y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (842)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (843)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −y′x− 2y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= y′x2 + 2yx− 3y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −x3y′ − 2x2y + 7y′x+ 8y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
x4 − 12x2 + 15

)
y′ + 2

(
x3 − 9x

)
y

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
−x5 + 18x3 − 57x

)
y′ − 2y

(
x4 − 15x2 + 24

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −2y(0)
F1 = −3y′(0)
F2 = 8y(0)
F3 = 15y′(0)
F4 = −48y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− x2 + 1

3x
4 − 1

15x
6
)
y(0) +

(
x− 1

2x
3 + 1

8x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = −

(
∞∑
n=1

nanx
n−1

)
x− 2

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

nxnan

)
+
(

∞∑
n=0

2anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=1

nxnan

)
+
(

∞∑
n=0

2anxn

)
= 0

n = 0 gives
2a2 + 2a0 = 0

a2 = −a0
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For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + nan + 2an = 0

Solving for an+2, gives

(5)an+2 = − an
n+ 1

For n = 1 the recurrence equation gives

6a3 + 3a1 = 0

Which after substituting the earlier terms found becomes

a3 = −a1
2

For n = 2 the recurrence equation gives

12a4 + 4a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
3

For n = 3 the recurrence equation gives

20a5 + 5a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
8

For n = 4 the recurrence equation gives

30a6 + 6a4 = 0

Which after substituting the earlier terms found becomes

a6 = −a0
15
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For n = 5 the recurrence equation gives

42a7 + 7a5 = 0

Which after substituting the earlier terms found becomes

a7 = −a1
48

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− a0x
2 − 1

2a1x
3 + 1

3a0x
4 + 1

8a1x
5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− x2 + 1

3x
4
)
a0 +

(
x− 1

2x
3 + 1

8x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x2 + 1

3x
4
)
c1 +

(
x− 1

2x
3 + 1

8x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− x2 + 1

3x
4 − 1

15x
6
)
y(0) +

(
x− 1

2x
3 + 1

8x
5
)
y′(0) +O

(
x6)

(2)y =
(
1− x2 + 1

3x
4
)
c1 +

(
x− 1

2x
3 + 1

8x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− x2 + 1

3x
4 − 1

15x
6
)
y(0) +

(
x− 1

2x
3 + 1

8x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− x2 + 1

3x
4
)
c1 +

(
x− 1

2x
3 + 1

8x
5
)
c2 +O

(
x6)

Verified OK.
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12.9.1 Maple step by step solution

Let’s solve
y′′ = −y′x− 2y

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′x+ 2y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

akk x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + ak(k + 2))xk = 0

• Each term in the series must be 0, giving the recursion relation
(k + 2) (kak+2 + ak + ak+2) = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+2 = − ak

k+1

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
Order:=6;
dsolve(diff(y(x),x$2)+x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− x2 + 1

3x
4
)
y(0) +

(
x− 1

2x
3 + 1

8x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 40� �
AsymptoticDSolveValue[y''[x]+x*y'[x]+2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x5

8 − x3

2 + x

)
+ c1

(
x4

3 − x2 + 1
)
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12.10 problem 10
12.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3749

Internal problem ID [1214]
Internal file name [OUTPUT/1215_Sunday_June_05_2022_02_05_23_AM_36955727/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 2y′x+ 3y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (845)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (846)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2y′x− 3y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 4y′x2 + 6yx− 5y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −8x3y′ − 12x2y + 24y′x+ 21y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
16x4 − 84x2 + 45

)
y′ + 24

(
x3 − 4x

)
y

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
−32x5 + 256x3 − 354x

)
y′ +

(
−48x4 + 324x2 − 231

)
y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −3y(0)
F1 = −5y′(0)
F2 = 21y(0)
F3 = 45y′(0)
F4 = −231y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 3

2x
2 + 7

8x
4 − 77

240x
6
)
y(0) +

(
x− 5

6x
3 + 3

8x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = −2
(

∞∑
n=1

nanx
n−1

)
x− 3

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

2nxnan

)
+
(

∞∑
n=0

3anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=1

2nxnan

)
+
(

∞∑
n=0

3anxn

)
= 0

n = 0 gives
2a2 + 3a0 = 0

a2 = −3a0
2
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For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + 2nan + 3an = 0

Solving for an+2, gives

(5)an+2 = − an(2n+ 3)
(n+ 2) (n+ 1)

For n = 1 the recurrence equation gives

6a3 + 5a1 = 0

Which after substituting the earlier terms found becomes

a3 = −5a1
6

For n = 2 the recurrence equation gives

12a4 + 7a2 = 0

Which after substituting the earlier terms found becomes

a4 =
7a0
8

For n = 3 the recurrence equation gives

20a5 + 9a3 = 0

Which after substituting the earlier terms found becomes

a5 =
3a1
8

For n = 4 the recurrence equation gives

30a6 + 11a4 = 0

Which after substituting the earlier terms found becomes

a6 = −77a0
240
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For n = 5 the recurrence equation gives

42a7 + 13a5 = 0

Which after substituting the earlier terms found becomes

a7 = −13a1
112

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 3
2a0x

2 − 5
6a1x

3 + 7
8a0x

4 + 3
8a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 3

2x
2 + 7

8x
4
)
a0 +

(
x− 5

6x
3 + 3

8x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 3

2x
2 + 7

8x
4
)
c1 +

(
x− 5

6x
3 + 3

8x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− 3

2x
2 + 7

8x
4 − 77

240x
6
)
y(0) +

(
x− 5

6x
3 + 3

8x
5
)
y′(0) +O

(
x6)

(2)y =
(
1− 3

2x
2 + 7

8x
4
)
c1 +

(
x− 5

6x
3 + 3

8x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 3

2x
2 + 7

8x
4 − 77

240x
6
)
y(0) +

(
x− 5

6x
3 + 3

8x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 3

2x
2 + 7

8x
4
)
c1 +

(
x− 5

6x
3 + 3

8x
5
)
c2 +O

(
x6)

Verified OK.

3748



12.10.1 Maple step by step solution

Let’s solve
y′′ = −2y′x− 3y

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2y′x+ 3y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

akk x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + ak(2k + 3))xk = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + 2akk + 3ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+2 = −ak(2k+3)

k2+3k+2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 34� �
Order:=6;
dsolve(diff(y(x),x$2)+2*x*diff(y(x),x)+3*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 3

2x
2 + 7

8x
4
)
y(0) +

(
x− 5

6x
3 + 3

8x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42� �
AsymptoticDSolveValue[y''[x]+2*x*y'[x]+3*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
3x5

8 − 5x3

6 + x

)
+ c1

(
7x4

8 − 3x2

2 + 1
)
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12.11 problem 11
12.11.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 3751

Internal problem ID [1215]
Internal file name [OUTPUT/1216_Sunday_June_05_2022_02_05_24_AM_30131521/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second_order_change_of_variable_on_x_method_1",
"second_order_change_of_variable_on_x_method_2", "second order se-
ries method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries], [_2nd_order , _linear , `

_with_symmetry_ [0,F(x)]`]]

(
x2 + 1

)
y′′ + y′x+ y = 0

With initial conditions

[y(0) = 2, y′(0) = −1]

With the expansion point for the power series method at x = 0.

12.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F
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Where here

p(x) = x

x2 + 1
q(x) = 1

x2 + 1
F = 0

Hence the ode is

y′′ + xy′

x2 + 1 + y

x2 + 1 = 0

The domain of p(x) = x
x2+1 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 1
x2+1 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (848)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (849)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −y′x+ y

x2 + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= y′x2 + 3yx− 2y′

(x2 + 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −10x2y + 15y′x+ 5y
(x2 + 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (−10x4 − 95x2 + 20) y′ + (40x3 − 65x) y
(x2 + 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (90x5 + 600x3 − 435x) y′ + (−190x4 + 670x2 − 85) y
(x2 + 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 2 and
y′(0) = −1 gives

F0 = −2
F1 = 2
F2 = 10
F3 = −20
F4 = −170

Substituting all the above in (7) and simplifying gives the solution as

y = −x2 − x+ 2 + x3

3 + 5x4

12 − x5

6 − 17x6

72 +O
(
x6)
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y = −x2 − x+ 2 + x3

3 + 5x4

12 − x5

6 − 17x6

72 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 + 1
)
y′′ + y′x+ y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

nanx
n−1

)
x+

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)
(

∞∑
n=2

xnann(n− 1)
)
+
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

nanx
n

)
+
(

∞∑
n=0

anx
n

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.(

∞∑
n=2

xnann(n− 1)
)
+
(

∞∑
n=0

(n+2) an+2(n+1)xn

)
+
(

∞∑
n=1

nanx
n

)
+
(

∞∑
n=0

anx
n

)
= 0

(3)
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n = 0 gives
2a2 + a0 = 0

a2 = −a0
2

n = 1 gives
6a3 + 2a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −a1
3

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1) + (n+ 2) an+2(n+ 1) + nan + an = 0

Solving for an+2, gives

(5)an+2 = − an(n2 + 1)
(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

5a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 =
5a0
24

For n = 3 the recurrence equation gives

10a3 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
6
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For n = 4 the recurrence equation gives

17a4 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = −17a0
144

For n = 5 the recurrence equation gives

26a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = −13a1
126

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
2a0x

2 − 1
3a1x

3 + 5
24a0x

4 + 1
6a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

2x
2 + 5

24x
4
)
a0 +

(
x− 1

3x
3 + 1

6x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

2x
2 + 5

24x
4
)
c1 +

(
x− 1

3x
3 + 1

6x
5
)
c2 +O

(
x6)

y = 2− x2 + 5x4

12 − x+ x3

3 − x5

6 +O
(
x6)
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Summary
The solution(s) found are the following

(1)y = −x2 − x+ 2 + x3

3 + 5x4

12 − x5

6 − 17x6

72 +O
(
x6)

(2)y = 2− x2 + 5x4

12 − x+ x3

3 − x5

6 +O
(
x6)

Verification of solutions

y = −x2 − x+ 2 + x3

3 + 5x4

12 − x5

6 − 17x6

72 +O
(
x6)

Verified OK.

y = 2− x2 + 5x4

12 − x+ x3

3 − x5

6 +O
(
x6)

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(1+x^2)*diff(y(x),x$2)+x*diff(y(x),x)+y(x)=0,y(0) = 2, D(y)(0) = -1],y(x),type='series',x=0);� �

y(x) = 2− x− x2 + 1
3x

3 + 5
12x

4 − 1
6x

5 +O
(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 34� �
AsymptoticDSolveValue[{(1+x^2)*y''[x]+x*y'[x]+y[x]==0,{y[0]==2,y'[0]==-1}},y[x],{x,0,5}]� �

y(x) → −x5

6 + 5x4

12 + x3

3 − x2 − x+ 2
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12.12 problem 12
12.12.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 3761

Internal problem ID [1216]
Internal file name [OUTPUT/1217_Sunday_June_05_2022_02_05_26_AM_87113912/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
2x2 + 1

)
y′′ − 9y′x− 6y = 0

With initial conditions

[y(0) = 1, y′(0) = −1]

With the expansion point for the power series method at x = 0.

12.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = − 9x
2x2 + 1

q(x) = − 6
2x2 + 1

F = 0
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Hence the ode is

y′′ − 9xy′
2x2 + 1 − 6y

2x2 + 1 = 0

The domain of p(x) = − 9x
2x2+1 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = − 6
2x2+1 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (851)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (852)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
9y′x+ 6y
2x2 + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 75y′x2 + 30yx+ 15y′

(2x2 + 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 435x3y′ + 270x2y + 195y′x+ 120y
(2x2 + 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (1845x4 + 1620x2 + 315) y′ + (450x3 + 270x) y
(2x2 + 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (2745x5 + 3510x3 + 1305x) y′ + (6570x4 + 7290x2 + 2160) y
(2x2 + 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 1 and
y′(0) = −1 gives

F0 = 6
F1 = −15
F2 = 120
F3 = −315
F4 = 2160

Substituting all the above in (7) and simplifying gives the solution as

y = 3x2 − x+ 1− 5x3

2 + 5x4 − 21x5

8 + 3x6 +O
(
x6)
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y = 3x2 − x+ 1− 5x3

2 + 5x4 − 21x5

8 + 3x6 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

2x2 + 1
)
y′′ − 9y′x− 6y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives(
2x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
− 9
(

∞∑
n=1

nanx
n−1

)
x− 6

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to(
∞∑
n=2

2xnann(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(−9nanxn) +
∞∑

n =0

(−6anxn) = 0

(2)

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

2xnann(n− 1)
)

+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
∞∑

n =1

(−9nanxn) +
∞∑

n =0

(−6anxn) = 0
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n = 0 gives
2a2 − 6a0 = 0

a2 = 3a0

n = 1 gives
6a3 − 15a1 = 0

Which after substituting earlier equations, simplifies to

a3 =
5a1
2

For 2 ≤ n, the recurrence equation is

(4)2nan(n− 1) + (n+ 2) an+2(n+ 1)− 9nan − 6an = 0

Solving for an+2, gives

(5)an+2 = −an(2n2 − 11n− 6)
(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

−20a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = 5a0

For n = 3 the recurrence equation gives

−21a3 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 =
21a1
8

3767



For n = 4 the recurrence equation gives

−18a4 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = 3a0

For n = 5 the recurrence equation gives

−11a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 =
11a1
16

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ 3a0x2 + 5
2a1x

3 + 5a0x4 + 21
8 a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
5x4 + 3x2 + 1

)
a0 +

(
x+ 5

2x
3 + 21

8 x5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
5x4 + 3x2 + 1

)
c1 +

(
x+ 5

2x
3 + 21

8 x5
)
c2 +O

(
x6)

y = 5x4 + 3x2 + 1− x− 5x3

2 − 21x5

8 +O
(
x6)
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Summary
The solution(s) found are the following

(1)y = 3x2 − x+ 1− 5x3

2 + 5x4 − 21x5

8 + 3x6 +O
(
x6)

(2)y = 5x4 + 3x2 + 1− x− 5x3

2 − 21x5

8 +O
(
x6)

Verification of solutions

y = 3x2 − x+ 1− 5x3

2 + 5x4 − 21x5

8 + 3x6 +O
(
x6)

Verified OK.

y = 5x4 + 3x2 + 1− x− 5x3

2 − 21x5

8 +O
(
x6)

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Legendre successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(1+2*x^2)*diff(y(x),x$2)-9*x*diff(y(x),x)-6*y(x)=0,y(0) = 1, D(y)(0) = -1],y(x),type='series',x=0);� �

y(x) = 1− x+ 3x2 − 5
2x

3 + 5x4 − 21
8 x5 +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 32� �
AsymptoticDSolveValue[{(1+2*x^2)*y''[x]-9*x*y'[x]-6*y[x]==0,{y[0]==1,y'[0]==-1}},y[x],{x,0,5}]� �

y(x) → −21x5

8 + 5x4 − 5x3

2 + 3x2 − x+ 1
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12.13 problem 13
12.13.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 3771

Internal problem ID [1217]
Internal file name [OUTPUT/1218_Sunday_June_05_2022_02_05_28_AM_77980607/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

(
8x2 + 1

)
y′′ + 2y = 0

With initial conditions

[y(0) = 2, y′(0) = −1]

With the expansion point for the power series method at x = 0.

12.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 0

q(x) = 2
8x2 + 1

F = 0
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Hence the ode is

y′′ + 2y
8x2 + 1 = 0

The domain of p(x) = 0 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 2
8x2+1 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (854)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (855)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = − 2y
8x2 + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −16y′x2 + 32yx− 2y′

(8x2 + 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 512x3y′ − 736x2y + 64y′x+ 36y
(8x2 + 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (−18176x4 − 1472x2 + 100) y′ + (22528x3 − 3328x) y
(8x2 + 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (761856x5 − 6144x3 − 12672x) y′ + (−864768x4 + 256896x2 − 3528) y
(8x2 + 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 2 and
y′(0) = −1 gives

F0 = −4
F1 = 2
F2 = 72
F3 = −100
F4 = −7056

Substituting all the above in (7) and simplifying gives the solution as

y = −2x2 − x+ 2 + x3

3 + 3x4 − 5x5

6 − 49x6

5 +O
(
x6)
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y = −2x2 − x+ 2 + x3

3 + 3x4 − 5x5

6 − 49x6

5 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

8x2 + 1
)
y′′ + 2y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
8x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ 2
(

∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)
(

∞∑
n=2

8xnann(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

2anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=2

8xnann(n− 1)
)

+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=0

2anxn

)
= 0
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n = 0 gives
2a2 + 2a0 = 0

a2 = −a0

n = 1 gives
6a3 + 2a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −a1
3

For 2 ≤ n, the recurrence equation is

(4)8nan(n− 1) + (n+ 2) an+2(n+ 1) + 2an = 0

Solving for an+2, gives

(5)an+2 = −2an(4n2 − 4n+ 1)
(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

18a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 =
3a0
2

For n = 3 the recurrence equation gives

50a3 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 =
5a1
6
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For n = 4 the recurrence equation gives

98a4 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = −49a0
10

For n = 5 the recurrence equation gives

162a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = −45a1
14

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− a0x
2 − 1

3a1x
3 + 3

2a0x
4 + 5

6a1x
5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− x2 + 3

2x
4
)
a0 +

(
x− 1

3x
3 + 5

6x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x2 + 3

2x
4
)
c1 +

(
x− 1

3x
3 + 5

6x
5
)
c2 +O

(
x6)

y = 3x4 − 2x2 + 2− x+ x3

3 − 5x5

6 +O
(
x6)
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Summary
The solution(s) found are the following

(1)y = −2x2 − x+ 2 + x3

3 + 3x4 − 5x5

6 − 49x6

5 +O
(
x6)

(2)y = 3x4 − 2x2 + 2− x+ x3

3 − 5x5

6 +O
(
x6)

Verification of solutions

y = −2x2 − x+ 2 + x3

3 + 3x4 − 5x5

6 − 49x6

5 +O
(
x6)

Verified OK.

y = 3x4 − 2x2 + 2− x+ x3

3 − 5x5

6 +O
(
x6)

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(1+8*x^2)*diff(y(x),x$2)+2*y(x)=0,y(0) = 2, D(y)(0) = -1],y(x),type='series',x=0);� �

y(x) = 2− x− 2x2 + 1
3x

3 + 3x4 − 5
6x

5 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 32� �
AsymptoticDSolveValue[{(1+8*x^2)*y''[x]+2*y[x]==0,{y[0]==2,y'[0]==-1}},y[x],{x,0,5}]� �

y(x) → −5x5

6 + 3x4 + x3

3 − 2x2 − x+ 2
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12.14 problem 16
12.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3789

Internal problem ID [1218]
Internal file name [OUTPUT/1219_Sunday_June_05_2022_02_05_30_AM_44814531/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 16.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_linear_constant_co-
eff", "second_order_ode_can_be_made_integrable", "second order series
method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ − y = 0

With the expansion point for the power series method at x = 3.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x− 3

The ode is converted to be in terms of the new independent variable t. This results in

d2

dt2
y(t)− y(t) = 0

With its expansion point and initial conditions now at t = 0. The transformed ODE
is now solved. Solving ode using Taylor series method. This gives review on how the
Taylor series method works for solving second order ode.
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Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (857)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (858)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = y(t)

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

= d

dt
y(t)

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

= y(t)

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

= d

dt
y(t)

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

= y(t)

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = y(0)
F1 = y′(0)
F2 = y(0)
F3 = y′(0)
F4 = y(0)

Substituting all the above in (7) and simplifying gives the solution as

y(t) =
(
1 + 1

2t
2 + 1

24t
4 + 1

720t
6
)
y(0) +

(
t+ 1

6t
3 + 1

120t
5
)
y′(0) +O

(
t6
)
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Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) antn−2 =
∞∑
n=0

ant
n (1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) antn−2

)
+

∞∑
n =0

(−ant
n) = 0

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) antn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1) tn

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1) tn
)

+
∞∑

n =0

(−ant
n) = 0

For 0 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1)− an = 0
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Solving for an+2, gives

(5)an+2 =
an

(n+ 2) (n+ 1)

For n = 0 the recurrence equation gives

2a2 − a0 = 0

Which after substituting the earlier terms found becomes

a2 =
a0
2

For n = 1 the recurrence equation gives

6a3 − a1 = 0

Which after substituting the earlier terms found becomes

a3 =
a1
6

For n = 2 the recurrence equation gives

12a4 − a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
24

For n = 3 the recurrence equation gives

20a5 − a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
120

For n = 4 the recurrence equation gives

30a6 − a4 = 0
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Which after substituting the earlier terms found becomes

a6 =
a0
720

For n = 5 the recurrence equation gives

42a7 − a5 = 0

Which after substituting the earlier terms found becomes

a7 =
a1

5040

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t+
1
2a0t

2 + 1
6a1t

3 + 1
24a0t

4 + 1
120a1t

5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1 + 1

2t
2 + 1

24t
4
)
a0 +

(
t+ 1

6t
3 + 1

120t
5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1 + 1

2t
2 + 1

24t
4
)
c1 +

(
t+ 1

6t
3 + 1

120t
5
)
c2 +O

(
t6
)

Replacing t in the above with the original independent variable xsusing t = x − 3
results in

y =
(
1 + (x− 3)2

2 + (x− 3)4

24 + (x− 3)6

720

)
y(3)

+
(
x− 3 + (x− 3)3

6 + (x− 3)5

120

)
y′(3) +O

(
(x− 3)6

)
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Summary
The solution(s) found are the following

(1)
y =

(
1 + (x− 3)2

2 + (x− 3)4

24 + (x− 3)6

720

)
y(3)

+
(
x− 3 + (x− 3)3

6 + (x− 3)5

120

)
y′(3) +O

(
(x− 3)6

)

Figure 536: Slope field plot

Verification of solutions

y =
(
1 + (x− 3)2

2 + (x− 3)4

24 + (x− 3)6

720

)
y(3)

+
(
x− 3 + (x− 3)3

6 + (x− 3)5

120

)
y′(3) +O

(
(x− 3)6

)
Verified OK.
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12.14.1 Maple step by step solution

Let’s solve
y′′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of ODE
r2 − 1 = 0

• Factor the characteristic polynomial
(r − 1) (r + 1) = 0

• Roots of the characteristic polynomial
r = (−1, 1)

• 1st solution of the ODE
y1(x) = e−x

• 2nd solution of the ODE
y2(x) = ex

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = c1e−x + c2ex

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
Order:=6;
dsolve(diff(y(x),x$2)-y(x)=0,y(x),type='series',x=3);� �
y(x) =

(
1+ (x− 3)2

2 + (x− 3)4

24

)
y(3)+

(
x−3+ (x− 3)3

6 + (x− 3)5

120

)
D(y) (3)+O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 51� �
AsymptoticDSolveValue[y''[x]-y[x]==0,y[x],{x,3,5}]� �
y(x) → c1

(
1
24(x− 3)4 + 1

2(x− 3)2 + 1
)
+ c2

(
1
120(x− 3)5 + 1

6(x− 3)3 + x− 3
)
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12.15 problem 17
12.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3798

Internal problem ID [1219]
Internal file name [OUTPUT/1220_Sunday_June_05_2022_02_05_31_AM_75916991/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

y′′ − (x− 3) y′ − y = 0

With the expansion point for the power series method at x = 3.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x− 3

The ode is converted to be in terms of the new independent variable t. This results in

d2

dt2
y(t)− t

(
d

dt
y(t)

)
− y(t) = 0

With its expansion point and initial conditions now at t = 0. The transformed ODE
is now solved. Solving ode using Taylor series method. This gives review on how the
Taylor series method works for solving second order ode.
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Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (860)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (861)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = t

(
d

dt
y(t)

)
+ y(t)

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(

d

dt
y(t)

)
t2 + y(t) t+ 2 d

dt
y(t)

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(
t3 + 5t

)( d

dt
y(t)

)
+ y(t)

(
t2 + 3

)
F3 =

dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(
t4 + 9t2 + 8

)( d

dt
y(t)

)
+ ty(t)

(
t2 + 7

)
F4 =

dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(
t5 + 14t3 + 33t

)( d

dt
y(t)

)
+ y(t)

(
t4 + 12t2 + 15

)
And so on. Evaluating all the above at initial conditions t = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = y(0)
F1 = 2y′(0)
F2 = 3y(0)
F3 = 8y′(0)
F4 = 15y(0)

Substituting all the above in (7) and simplifying gives the solution as

y(t) =
(
1 + 1

2t
2 + 1

8t
4 + 1

48t
6
)
y(0) +

(
t+ 1

3t
3 + 1

15t
5
)
y′(0) +O

(
t6
)
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Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) antn−2 = t

(
∞∑
n=1

nant
n−1

)
+
(

∞∑
n=0

ant
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) antn−2

)
+

∞∑
n =1

(−n tnan) +
∞∑

n =0

(−ant
n) = 0

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) antn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1) tn

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1) tn
)

+
∞∑

n =1

(−n tnan) +
∞∑

n =0

(−ant
n) = 0

n = 0 gives
2a2 − a0 = 0
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a2 =
a0
2

For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1)− nan − an = 0

Solving for an+2, gives

(5)an+2 =
an

n+ 2

For n = 1 the recurrence equation gives

6a3 − 2a1 = 0

Which after substituting the earlier terms found becomes

a3 =
a1
3

For n = 2 the recurrence equation gives

12a4 − 3a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
8

For n = 3 the recurrence equation gives

20a5 − 4a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
15

For n = 4 the recurrence equation gives

30a6 − 5a4 = 0
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Which after substituting the earlier terms found becomes

a6 =
a0
48

For n = 5 the recurrence equation gives

42a7 − 6a5 = 0

Which after substituting the earlier terms found becomes

a7 =
a1
105

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t+
1
2a0t

2 + 1
3a1t

3 + 1
8a0t

4 + 1
15a1t

5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1 + 1

2t
2 + 1

8t
4
)
a0 +

(
t+ 1

3t
3 + 1

15t
5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1 + 1

2t
2 + 1

8t
4
)
c1 +

(
t+ 1

3t
3 + 1

15t
5
)
c2 +O

(
t6
)

Replacing t in the above with the original independent variable xsusing t = x − 3
results in

y =
(
1 + (x− 3)2

2 + (x− 3)4

8 + (x− 3)6

48

)
y(3)

+
(
x− 3 + (x− 3)3

3 + (x− 3)5

15

)
y′(3) +O

(
(x− 3)6

)
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Summary
The solution(s) found are the following

(1)
y =

(
1 + (x− 3)2

2 + (x− 3)4

8 + (x− 3)6

48

)
y(3)

+
(
x− 3 + (x− 3)3

3 + (x− 3)5

15

)
y′(3) +O

(
(x− 3)6

)
Verification of solutions

y =
(
1 + (x− 3)2

2 + (x− 3)4

8 + (x− 3)6

48

)
y(3)

+
(
x− 3 + (x− 3)3

3 + (x− 3)5

15

)
y′(3) +O

(
(x− 3)6

)
Verified OK.

12.15.1 Maple step by step solution

Let’s solve
y′′ + (3− x) y′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑

k=max(0,1−m)
akk x

k−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=max(0,1−m)+m−1
ak+1−m(k + 1−m)xk

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2
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◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + 3ak+1(k + 1)− ak(k + 1))xk = 0

• Each term in the series must be 0, giving the recursion relation
(k + 1) (ak+2(k + 2) + 3ak+1 − ak) = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+2 = −3ak+1+ak

k+2

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 34� �
Order:=6;
dsolve(diff(y(x),x$2)-(x-3)*diff(y(x),x)-y(x)=0,y(x),type='series',x=3);� �
y(x) =

(
1+ (x− 3)2

2 + (x− 3)4

8

)
y(3)+

(
x−3+ (x− 3)3

3 + (x− 3)5

15

)
D(y) (3)+O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 51� �
AsymptoticDSolveValue[y''[x]-(x-3)*y'[x]-y[x]==0,y[x],{x,3,5}]� �

y(x) → c1

(
1
8(x− 3)4 + 1

2(x− 3)2 + 1
)
+ c2

(
1
15(x− 3)5 + 1

3(x− 3)3 + x− 3
)
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12.16 problem 18
12.16.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3808

Internal problem ID [1220]
Internal file name [OUTPUT/1221_Sunday_June_05_2022_02_05_33_AM_65793830/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(
2x2 − 4x+ 1

)
y′′ + 10(x− 1) y′ + 6y = 0

With the expansion point for the power series method at x = 1.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x− 1

The ode is converted to be in terms of the new independent variable t. This results in

(
2(t+ 1)2 − 4t− 3

)( d2

dt2
y(t)

)
+ 10t

(
d

dt
y(t)

)
+ 6y(t) = 0

With its expansion point and initial conditions now at t = 0. The transformed ODE
is now solved. Solving ode using Taylor series method. This gives review on how the
Taylor series method works for solving second order ode.
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Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (863)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (864)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
2
(
5t
(

d
dt
y(t)

)
+ 3y(t)

)
2t2 − 1

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
108
(

d
dt
y(t)

)
t2 + 84y(t) t+ 16 d

dt
y(t)

(2t2 − 1)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
−1344

(
d
dt
y(t)

)
t3 − 1152y(t) t2 − 588t

(
d
dt
y(t)

)
− 180y(t)

(2t2 − 1)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(19200t4 + 16584t2 + 768)

(
d
dt
y(t)

)
+ (17280t3 + 7992t) y(t)

(2t2 − 1)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(−311040t5 − 442944t3 − 61128t)

(
d
dt
y(t)

)
− 288000

(
t4 + 457

500t
2 + 7

160

)
y(t)

(2t2 − 1)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 6y(0)
F1 = 16y′(0)
F2 = 180y(0)
F3 = 768y′(0)
F4 = 12600y(0)
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Substituting all the above in (7) and simplifying gives the solution as

y(t) =
(
1 + 3t2 + 15

2 t4 + 35
2 t6

)
y(0) +

(
t+ 8

3t
3 + 32

5 t5
)
y′(0) +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

d2

dt2
y(t)

)(
2t2 − 1

)
+ 10t

(
d

dt
y(t)

)
+ 6y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)(
2t2 − 1

)
+ 10t

(
∞∑
n=1

nant
n−1

)
+ 6
(

∞∑
n=0

ant
n

)
= 0 (1)

Which simplifies to(
∞∑
n=2

2tnann(n− 1)
)

+
∞∑

n =2

(
−n(n− 1) antn−2)+( ∞∑

n=1

10nantn
)

+
(

∞∑
n=0

6antn
)

= 0

(2)

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

(
−n(n− 1) antn−2) = ∞∑

n=0

(−(n+ 2) an+2(n+ 1) tn)
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Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=2

2tnann(n− 1)
)

+
∞∑

n =0

(−(n+ 2) an+2(n+ 1) tn)

+
(

∞∑
n=1

10nantn
)

+
(

∞∑
n=0

6antn
)

= 0

n = 0 gives
−2a2 + 6a0 = 0

a2 = 3a0

n = 1 gives
−6a3 + 16a1 = 0

Which after substituting earlier equations, simplifies to

a3 =
8a1
3

For 2 ≤ n, the recurrence equation is

(4)2nan(n− 1)− (n+ 2) an+2(n+ 1) + 10nan + 6an = 0

Solving for an+2, gives

(5)an+2 =
2(n+ 3) an

n+ 2

For n = 2 the recurrence equation gives

30a2 − 12a4 = 0

Which after substituting the earlier terms found becomes

a4 =
15a0
2
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For n = 3 the recurrence equation gives

48a3 − 20a5 = 0

Which after substituting the earlier terms found becomes

a5 =
32a1
5

For n = 4 the recurrence equation gives

70a4 − 30a6 = 0

Which after substituting the earlier terms found becomes

a6 =
35a0
2

For n = 5 the recurrence equation gives

96a5 − 42a7 = 0

Which after substituting the earlier terms found becomes

a7 =
512a1
35

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t+ 3a0t2 +
8
3a1t

3 + 15
2 a0t

4 + 32
5 a1t

5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1 + 3t2 + 15

2 t4
)
a0 +

(
t+ 8

3t
3 + 32

5 t5
)
a1 +O

(
t6
)
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At t = 0 the solution above becomes

y(t) =
(
1 + 3t2 + 15

2 t4
)
c1 +

(
t+ 8

3t
3 + 32

5 t5
)
c2 +O

(
t6
)

Replacing t in the above with the original independent variable xsusing t = x−1 results
in

y =
(
1 + 3(x− 1)2 + 15(x− 1)4

2 + 35(x− 1)6

2

)
y(1)

+
(
x− 1 + 8(x− 1)3

3 + 32(x− 1)5

5

)
y′(1) +O

(
(x− 1)6

)
Summary
The solution(s) found are the following

(1)
y =

(
1 + 3(x− 1)2 + 15(x− 1)4

2 + 35(x− 1)6

2

)
y(1)

+
(
x− 1 + 8(x− 1)3

3 + 32(x− 1)5

5

)
y′(1) +O

(
(x− 1)6

)
Verification of solutions

y =
(
1 + 3(x− 1)2 + 15(x− 1)4

2 + 35(x− 1)6

2

)
y(1)

+
(
x− 1 + 8(x− 1)3

3 + 32(x− 1)5

5

)
y′(1) +O

(
(x− 1)6

)
Verified OK.

12.16.1 Maple step by step solution

Let’s solve
(2x2 − 4x+ 1) y′′ + (10x− 10) y′ + 6y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 6y
2x2−4x+1 −

10(x−1)y′
2x2−4x+1
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 10(x−1)y′
2x2−4x+1 +

6y
2x2−4x+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 10(x−1)
2x2−4x+1 , P3(x) = 6

2x2−4x+1

]
◦
(
x− 1 +

√
2
2

)
· P2(x) is analytic at x = 1−

√
2
2((

x− 1 +
√
2
2

)
· P2(x)

) ∣∣∣∣
x=1−

√
2

2

= 0

◦
(
x− 1 +

√
2
2

)2
· P3(x) is analytic at x = 1−

√
2
2((

x− 1 +
√
2
2

)2
· P3(x)

) ∣∣∣∣
x=1−

√
2

2

= 0

◦ x = 1−
√
2
2 is a regular singular point

Check to see if x0 is a regular singular point

x0 = 1−
√
2
2

• Multiply by denominators
(2x2 − 4x+ 1) y′′ + (10x− 10) y′ + 6y = 0

• Change variables using x = u+ 1−
√
2
2 so that the regular singular point is at u = 0(

2u2 − 2u
√
2
) (

d2

du2y(u)
)
+
(
10u− 5

√
2
) (

d
du
y(u)

)
+ 6y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−
√
2 r(2r + 3) a0u−1+r +

(
∞∑
k=0

(
−
√
2 (k + r + 1) (2k + 5 + 2r) ak+1 + 2ak(k + r + 3) (k + r + 1)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−
√
2 r(2r + 3) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−3

2

}
• Each term in the series must be 0, giving the recursion relation

2
(
−ak+1

(
k + r + 5

2

)√
2 + ak(k + r + 3)

)
(k + r + 1) = 0

• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r+3)
√
2

2k+5+2r

• Recursion relation for r = 0

ak+1 = ak(k+3)
√
2

2k+5

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak(k+3)

√
2

2k+5

]
• Revert the change of variables u = x− 1 +

√
2
2[

y =
∞∑
k=0

ak
(
x− 1 +

√
2
2

)k
, ak+1 = ak(k+3)

√
2

2k+5

]
• Recursion relation for r = −3

2

ak+1 =
ak
(
k+ 3

2
)√

2
2k+2

• Solution for r = −3
2[

y(u) =
∞∑
k=0

aku
k− 3

2 , ak+1 =
ak
(
k+ 3

2
)√

2
2k+2

]
• Revert the change of variables u = x− 1 +

√
2
2
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[
y =

∞∑
k=0

ak
(
x− 1 +

√
2
2

)k− 3
2
, ak+1 =

ak
(
k+ 3

2
)√

2
2k+2

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak
(
x− 1 +

√
2
2

)k)
+
(

∞∑
k=0

bk
(
x− 1 +

√
2
2

)k− 3
2
)
, a1+k = ak(k+3)

√
2

2k+5 , b1+k =
bk
(
k+ 3

2
)√

2
2k+2

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 34� �
Order:=6;
dsolve((1-4*x+2*x^2)*diff(y(x),x$2)+10*(x-1)*diff(y(x),x)+6*y(x)=0,y(x),type='series',x=1);� �

y(x) =
(
1 + 3(x− 1)2 + 15(x− 1)4

2

)
y(1)

+
(
x− 1 + 8(x− 1)3

3 + 32(x− 1)5

5

)
D(y) (1) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 49� �
AsymptoticDSolveValue[(1-4*x+2*x^2)*y''[x]+10*(x-1)*y'[x]+6*y[x]==0,y[x],{x,1,5}]� �

y(x) → c1

(
15
2 (x− 1)4 + 3(x− 1)2 + 1

)
+ c2

(
32
5 (x− 1)5 + 8

3(x− 1)3 + x− 1
)
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12.17 problem 19
12.17.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3819

Internal problem ID [1221]
Internal file name [OUTPUT/1222_Sunday_June_05_2022_02_05_35_AM_4673127/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
2x2 − 8x+ 11

)
y′′ − 16(−2 + x) y′ + 36y = 0

With the expansion point for the power series method at x = 2.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = −2 + x

The ode is converted to be in terms of the new independent variable t. This results in

(
2(2 + t)2 − 5− 8t

)( d2

dt2
y(t)

)
− 16t

(
d

dt
y(t)

)
+ 36y(t) = 0

With its expansion point and initial conditions now at t = 0. The transformed ODE
is now solved. Solving ode using Taylor series method. This gives review on how the
Taylor series method works for solving second order ode.
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Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (866)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (867)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
16t
(

d
dt
y(t)

)
− 36y(t)

2t2 + 3

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
152
(

d
dt
y(t)

)
t2 − 432y(t) t− 60 d

dt
y(t)

(2t2 + 3)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
960
(

d
dt
y(t)

)
t3 − 2880y(t) t2 − 864t

(
d
dt
y(t)

)
+ 864y(t)

(2t2 + 3)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
384
(
10
(

d
dt
y(t)

)
t3 − 30y(t) t2 − 9t

(
d
dt
y(t)

)
+ 9y(t)

)
t

(2t2 + 3)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
3840

(
d
dt
y(t)

)
t3 − 11520y(t) t2 − 3456t

(
d
dt
y(t)

)
+ 3456y(t)

(2t2 + 3)4

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −12y(0)

F1 = −20y′(0)
3

F2 = 32y(0)
F3 = 0

F4 =
128y(0)

3
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Substituting all the above in (7) and simplifying gives the solution as

y(t) =
(
1− 6t2 + 4

3t
4 + 8

135t
6
)
y(0) +

(
t− 10

9 t3
)
y′(0) +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

d2

dt2
y(t)

)(
2t2 + 3

)
− 16t

(
d

dt
y(t)

)
+ 36y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)(
2t2 + 3

)
− 16t

(
∞∑
n=1

nant
n−1

)
+ 36

(
∞∑
n=0

ant
n

)
= 0 (1)

Which simplifies to(
∞∑
n=2

2tnann(n− 1)
)
+
(

∞∑
n=2

3n(n− 1) antn−2

)
+

∞∑
n =1

(−16nantn) +
(

∞∑
n=0

36antn
)

= 0

(2)

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

3n(n− 1) antn−2 =
∞∑
n=0

3(n+ 2) an+2(n+ 1) tn
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Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=2

2tnann(n− 1)
)

+
(

∞∑
n=0

3(n+ 2) an+2(n+ 1) tn
)

+
∞∑

n =1

(−16nantn) +
(

∞∑
n=0

36antn
)

= 0

n = 0 gives
6a2 + 36a0 = 0

a2 = −6a0

n = 1 gives
18a3 + 20a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −10a1
9

For 2 ≤ n, the recurrence equation is

(4)2nan(n− 1) + 3(n+ 2) an+2(n+ 1)− 16nan + 36an = 0

Solving for an+2, gives

(5)an+2 = −2an(n2 − 9n+ 18)
3 (n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

8a2 + 36a4 = 0

Which after substituting the earlier terms found becomes

a4 =
4a0
3
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For n = 3 the recurrence equation gives

60a5 = 0

Which after substituting the earlier terms found becomes

a5 = 0

For n = 4 the recurrence equation gives

−4a4 + 90a6 = 0

Which after substituting the earlier terms found becomes

a6 =
8a0
135

For n = 5 the recurrence equation gives

−4a5 + 126a7 = 0

Which after substituting the earlier terms found becomes

a7 = 0

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t− 6a0t2 −
10
9 a1t

3 + 4
3a0t

4 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− 6t2 + 4

3t
4
)
a0 +

(
t− 10

9 t3
)
a1 +O

(
t6
)
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At t = 0 the solution above becomes

y(t) =
(
1− 6t2 + 4

3t
4
)
c1 +

(
t− 10

9 t3
)
c2 +O

(
t6
)

Replacing t in the above with the original independent variable xsusing t = −2 + x

results in

y =
(
1− 6(−2 + x)2 + 4(−2 + x)4

3 + 8(−2 + x)6

135

)
y(2)

+
(
−2 + x− 10(−2 + x)3

9

)
y′(2) +O

(
(−2 + x)6

)
Summary
The solution(s) found are the following

(1)
y =

(
1− 6(−2 + x)2 + 4(−2 + x)4

3 + 8(−2 + x)6

135

)
y(2)

+
(
−2 + x− 10(−2 + x)3

9

)
y′(2) +O

(
(−2 + x)6

)
Verification of solutions

y =
(
1− 6(−2 + x)2 + 4(−2 + x)4

3 + 8(−2 + x)6

135

)
y(2)

+
(
−2 + x− 10(−2 + x)3

9

)
y′(2) +O

(
(−2 + x)6

)
Verified OK.

12.17.1 Maple step by step solution

Let’s solve
(2x2 − 8x+ 11) y′′ + (−16x+ 32) y′ + 36y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 36y
2x2−8x+11 +

16(−2+x)y′
2x2−8x+11

3819



• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − 16(−2+x)y′
2x2−8x+11 +

36y
2x2−8x+11 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 16(−2+x)
2x2−8x+11 , P3(x) = 36

2x2−8x+11

]
◦
(
x− 2 + I

√
6

2

)
· P2(x) is analytic at x = 2− I

√
6

2((
x− 2 + I

√
6

2

)
· P2(x)

) ∣∣∣∣
x=2− I

√
6

2

= 0

◦
(
x− 2 + I

√
6

2

)2
· P3(x) is analytic at x = 2− I

√
6

2((
x− 2 + I

√
6

2

)2
· P3(x)

) ∣∣∣∣
x=2− I

√
6

2

= 0

◦ x = 2− I
√
6

2 is a regular singular point

Check to see if x0 is a regular singular point

x0 = 2− I
√
6

2

• Multiply by denominators
(2x2 − 8x+ 11) y′′ + (−16x+ 32) y′ + 36y = 0

• Change variables using x = u+ 2− I
√
6

2 so that the regular singular point is at u = 0(
2u2 − 2 Iu

√
6
) (

d2

du2y(u)
)
+
(
−16u+ 8 I

√
6
) (

d
du
y(u)

)
+ 36y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2 I
√
6 r(r − 5) a0u−1+r +

(
∞∑
k=0

(
−2 I

√
6 (k + 1 + r) (k − 4 + r) ak+1 + 2ak(k + r − 3) (k + r − 6)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2 I

√
6 r(r − 5) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 5}

• Each term in the series must be 0, giving the recursion relation
−2 I

√
6 (k + 1 + r) (k − 4 + r) ak+1 + 2ak(k + r − 3) (k + r − 6) = 0

• Recursion relation that defines series solution to ODE

ak+1 =
− I

6ak
(
k2+2kr+r2−9k−9r+18

)√
6

k2+2kr+r2−3k−3r−4

• Recursion relation for r = 0 ; series terminates at k = 3

ak+1 =
− I

6ak
(
k2−9k+18

)√
6

k2−3k−4

• Apply recursion relation for k = 0
a1 = 3 I

4 a0
√
6

• Apply recursion relation for k = 1
a2 = 5 I

18a1
√
6

• Express in terms of a0
a2 = −5a0

4

• Apply recursion relation for k = 2
a3 = I

9a2
√
6

• Express in terms of a0
a3 = −5 I

36a0
√
6

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution

y(u) = a0 ·
(
1 + 3 I

√
6u

4 − 5u2

4 − 5 I
√
6u3

36

)
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• Revert the change of variables u = x− 2 + I
√
6

2[
y = − I

72a0
√
6 (10x3 − 60x2 + 111x− 62)

]
• Recursion relation for r = 5 ; series terminates at k = 1

ak+1 =
− I

6ak
(
k2+k−2

)√
6

k2+7k+6

• Apply recursion relation for k = 0
a1 = I

18a0
√
6

• Terminating series solution of the ODE for r = 5 . Use reduction of order to find the second linearly independent solution

y(u) = a0 ·
(
1 + I

√
6u

18

)
• Revert the change of variables u = x− 2 + I

√
6

2[
y = a0

(
5
6 +

I(−2+x)
√
6

18

)]
• Combine solutions and rename parameters[

y = − Ia0
√
6
(
10x3−60x2+111x−62

)
72 + b0

(
5
6 +

I(−2+x)
√
6

18

)]
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
Order:=6;
dsolve((11-8*x+2*x^2)*diff(y(x),x$2)-16*(x-2)*diff(y(x),x)+36*y(x)=0,y(x),type='series',x=2);� �
y(x) =

(
1−6(−2+x)2+4(−2 + x)4

3

)
y(2)+

(
−2+x− 10(−2 + x)3

9

)
D(y) (2)+O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 40� �
AsymptoticDSolveValue[(11-8*x+2*x^2)*y''[x]-16*(x-2)*y'[x]+36*y[x]==0,y[x],{x,2,5}]� �

y(x) → c1

(
4
3(x− 2)4 − 6(x− 2)2 + 1

)
+ c2

(
−10

9 (x− 2)3 + x− 2
)
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12.18 problem 20
12.18.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3831

Internal problem ID [1222]
Internal file name [OUTPUT/1223_Sunday_June_05_2022_02_05_36_AM_94614651/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 20.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(
3x2 + 6x+ 5

)
y′′ + 9(x+ 1) y′ + 3y = 0

With the expansion point for the power series method at x = −1.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x+ 1

The ode is converted to be in terms of the new independent variable t. This results in

(
3(−1 + t)2 − 1 + 6t

)( d2

dt2
y(t)

)
+ 9t

(
d

dt
y(t)

)
+ 3y(t) = 0

With its expansion point and initial conditions now at t = 0. The transformed ODE
is now solved. Solving ode using Taylor series method. This gives review on how the
Taylor series method works for solving second order ode.
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Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (869)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (870)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
3
(
3t
(

d
dt
y(t)

)
+ y(t)

)
3t2 + 2

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
99
(

d
dt
y(t)

)
t2 + 45y(t) t− 24 d

dt
y(t)

(3t2 + 2)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

= −
18
(
75
(

d
dt
y(t)

)
t3 + 39y(t) t2 − 55t

(
d
dt
y(t)

)
− 9y(t)

)
(3t2 + 2)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(22194t4 − 32778t2 + 2304)

(
d
dt
y(t)

)
+ (12474t3 − 8694t) y(t)

(3t2 + 2)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(−428652t5 + 1061424t3 − 224532t)

(
d
dt
y(t)

)
− 253692y(t)

(
t4 − 122

87 t
2 + 25

261

)
(3t2 + 2)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −3y(0)
2

F1 = −6y′(0)

F2 =
81y(0)

4
F3 = 144y′(0)

F4 = −6075y(0)
8
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Substituting all the above in (7) and simplifying gives the solution as

y(t) =
(
1− 3

4t
2 + 27

32t
4 − 135

128t
6
)
y(0) +

(
t− t3 + 6

5t
5
)
y′(0) +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

d2

dt2
y(t)

)(
3t2 + 2

)
+ 9t

(
d

dt
y(t)

)
+ 3y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)(
3t2 + 2

)
+ 9t

(
∞∑
n=1

nant
n−1

)
+ 3
(

∞∑
n=0

ant
n

)
= 0 (1)

Which simplifies to(
∞∑
n=2

3tnann(n− 1)
)

+
(

∞∑
n=2

2n(n− 1) antn−2

)
+
(

∞∑
n=1

9nantn
)

+
(

∞∑
n=0

3antn
)

= 0

(2)

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

2n(n− 1) antn−2 =
∞∑
n=0

2(n+ 2) an+2(n+ 1) tn
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Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=2

3tnann(n− 1)
)

+
(

∞∑
n=0

2(n+ 2) an+2(n+ 1) tn
)

+
(

∞∑
n=1

9nantn
)

+
(

∞∑
n=0

3antn
)

= 0

n = 0 gives
4a2 + 3a0 = 0

a2 = −3a0
4

n = 1 gives
12a3 + 12a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −a1

For 2 ≤ n, the recurrence equation is

(4)3nan(n− 1) + 2(n+ 2) an+2(n+ 1) + 9nan + 3an = 0

Solving for an+2, gives

(5)an+2 = −3(n+ 1) an
2 (n+ 2)

For n = 2 the recurrence equation gives

27a2 + 24a4 = 0

Which after substituting the earlier terms found becomes

a4 =
27a0
32
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For n = 3 the recurrence equation gives

48a3 + 40a5 = 0

Which after substituting the earlier terms found becomes

a5 =
6a1
5

For n = 4 the recurrence equation gives

75a4 + 60a6 = 0

Which after substituting the earlier terms found becomes

a6 = −135a0
128

For n = 5 the recurrence equation gives

108a5 + 84a7 = 0

Which after substituting the earlier terms found becomes

a7 = −54a1
35

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t−
3
4a0t

2 − a1t
3 + 27

32a0t
4 + 6

5a1t
5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− 3

4t
2 + 27

32t
4
)
a0 +

(
t− t3 + 6

5t
5
)
a1 +O

(
t6
)
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At t = 0 the solution above becomes

y(t) =
(
1− 3

4t
2 + 27

32t
4
)
c1 +

(
t− t3 + 6

5t
5
)
c2 +O

(
t6
)

Replacing t in the above with the original independent variable xsusing t = x+1 results
in

y =
(
1− 3(x+ 1)2

4 + 27(x+ 1)4

32 − 135(x+ 1)6

128

)
y(−1)

+
(
x+ 1− (x+ 1)3 + 6(x+ 1)5

5

)
y′(−1) +O

(
(x+ 1)6

)
Summary
The solution(s) found are the following

(1)
y =

(
1− 3(x+ 1)2

4 + 27(x+ 1)4

32 − 135(x+ 1)6

128

)
y(−1)

+
(
x+ 1− (x+ 1)3 + 6(x+ 1)5

5

)
y′(−1) +O

(
(x+ 1)6

)
Verification of solutions

y =
(
1− 3(x+ 1)2

4 + 27(x+ 1)4

32 − 135(x+ 1)6

128

)
y(−1)

+
(
x+ 1− (x+ 1)3 + 6(x+ 1)5

5

)
y′(−1) +O

(
(x+ 1)6

)
Verified OK.

12.18.1 Maple step by step solution

Let’s solve
(3x2 + 6x+ 5) y′′ + (9x+ 9) y′ + 3y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 3y
3x2+6x+5 −

9(x+1)y′
3x2+6x+5
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 9(x+1)y′
3x2+6x+5 +

3y
3x2+6x+5 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 9(x+1)
3x2+6x+5 , P3(x) = 3

3x2+6x+5

]
◦
(
x+ 1 + I

√
6

3

)
· P2(x) is analytic at x = −1− I

√
6

3((
x+ 1 + I

√
6

3

)
· P2(x)

) ∣∣∣∣
x=−1− I

√
6

3

= 0

◦
(
x+ 1 + I

√
6

3

)2
· P3(x) is analytic at x = −1− I

√
6

3((
x+ 1 + I

√
6

3

)2
· P3(x)

) ∣∣∣∣
x=−1− I

√
6

3

= 0

◦ x = −1− I
√
6

3 is a regular singular point

Check to see if x0 is a regular singular point

x0 = −1− I
√
6

3

• Multiply by denominators
(3x2 + 6x+ 5) y′′ + (9x+ 9) y′ + 3y = 0

• Change variables using x = u− 1− I
√
6

3 so that the regular singular point is at u = 0(
3u2 − 2 Iu

√
6
) (

d2

du2y(u)
)
+
(
9u− 3 I

√
6
) (

d
du
y(u)

)
+ 3y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−I
√
6 (2r + 1) ra0u−1+r +

(
∞∑
k=0

(
−I

√
6 (2k + 3 + 2r) (k + r + 1) ak+1 + 3ak(k + r + 1)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−I

√
6 (2r + 1) r = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−1

2

}
• Each term in the series must be 0, giving the recursion relation

−2
(
I
(
k + r + 3

2

)
ak+1

√
6− 3ak(k+r+1)

2

)
(k + r + 1) = 0

• Recursion relation that defines series solution to ODE

ak+1 =
− I

2ak(k+r+1)
√
6

2k+3+2r

• Recursion relation for r = 0

ak+1 =
− I

2ak(k+1)
√
6

2k+3

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 =

− I
2ak(k+1)

√
6

2k+3

]
• Revert the change of variables u = x+ 1 + I

√
6

3[
y =

∞∑
k=0

ak
(
x+ 1 + I

√
6

3

)k
, ak+1 =

− I
2ak(k+1)

√
6

2k+3

]
• Recursion relation for r = −1

2

ak+1 =
− I

2ak
(
k+ 1

2
)√

6
2k+2

• Solution for r = −1
2[

y(u) =
∞∑
k=0

aku
k− 1

2 , ak+1 =
− I

2ak
(
k+ 1

2
)√

6
2k+2

]
• Revert the change of variables u = x+ 1 + I

√
6

3
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[
y =

∞∑
k=0

ak
(
x+ 1 + I

√
6

3

)k− 1
2
, ak+1 =

− I
2ak

(
k+ 1

2
)√

6
2k+2

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak
(
x+ 1 + I

√
6

3

)k)
+
(

∞∑
k=0

bk
(
x+ 1 + I

√
6

3

)k− 1
2
)
, a1+k =

− I
2ak(1+k)

√
6

2k+3 , b1+k =
− I

2 bk
(
k+ 1

2
)√

6
2k+2

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
Order:=6;
dsolve((5+6*x+3*x^2)*diff(y(x),x$2)+9*(x+1)*diff(y(x),x)+3*y(x)=0,y(x),type='series',x=-1);� �

y(x) =
(
1− 3(x+ 1)2

4 + 27(x+ 1)4

32

)
y(−1)

+
(
x+ 1− (x+ 1)3 + 6(x+ 1)5

5

)
D(y) (−1) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 70� �
AsymptoticDSolveValue[(5+6*x+2*x^2)*y''[x]+9*(x+1)*y'[x]+3*y[x]==0,y[x],{x,-1,5}]� �

y(x) → c1

(
−93
20(x+ 1)5 + 17

8 (x+ 1)4 + (x+ 1)3 − 3
2(x+ 1)2 + 1

)
+ c2

(
9
5(x+ 1)5 + 2(x+ 1)4 − 2(x+ 1)3 + x+ 1

)
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12.19 problem 21
12.19.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 3835
12.19.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3843

Internal problem ID [1223]
Internal file name [OUTPUT/1224_Sunday_June_05_2022_02_05_38_AM_55005998/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 21.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(
x2 − 4

)
y′′ − y′x− 3y = 0

With initial conditions

[y(0) = −1, y′(0) = 2]

With the expansion point for the power series method at x = 0.

12.19.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = − x

x2 − 4
q(x) = − 3

x2 − 4
F = 0

3835



Hence the ode is

y′′ − xy′

x2 − 4 − 3y
x2 − 4 = 0

The domain of p(x) = − x
x2−4 is

{−∞ ≤ x < −2,−2 < x < 2, 2 < x ≤ ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = − 3
x2−4 is

{−∞ ≤ x < −2,−2 < x < 2, 2 < x ≤ ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (872)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (873)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
3y + y′x

x2 − 4

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 3y′x2 − 3yx− 16y′

(x2 − 4)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −6x3y′ + 18x2y + 36y′x− 36y
(x2 − 4)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= 30x((x3 − 6x) y′ + (−3x2 + 6) y)
(x2 − 4)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −
180
(
x2 + 2

3

)
((x3 − 6x) y′ + (−3x2 + 6) y)

(x2 − 4)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = −1 and
y′(0) = 2 gives

F0 =
3
4

F1 = −2

F2 = − 9
16

F3 = 0

F4 = −45
64
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Substituting all the above in (7) and simplifying gives the solution as

y = 2x− 1 + 3x2

8 − x3

3 − 3x4

128 − x6

1024 +O
(
x6)

y = 2x− 1 + 3x2

8 − x3

3 − 3x4

128 − x6

1024 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 − 4
)
y′′ − y′x− 3y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 − 4

)( ∞∑
n=2

n(n− 1) anxn−2

)
−

(
∞∑
n=1

nanx
n−1

)
x− 3

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to(
∞∑
n=2

xnann(n− 1)
)

+
∞∑

n =2

(
−4n(n− 1) anxn−2)+ ∞∑

n =1

(−nanx
n) +

∞∑
n =0

(−3anxn) = 0

(2)

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

(
−4n(n− 1) anxn−2) = ∞∑

n=0

(−4(n+ 2) an+2(n+ 1)xn)
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

xnann(n− 1)
)

+
∞∑

n =0

(−4(n+ 2) an+2(n+ 1)xn)

+
∞∑

n =1

(−nanx
n) +

∞∑
n =0

(−3anxn) = 0

n = 0 gives
−8a2 − 3a0 = 0

a2 = −3a0
8

n = 1 gives
−24a3 − 4a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −a1
6

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1)− 4(n+ 2) an+2(n+ 1)− nan − 3an = 0

Solving for an+2, gives

(5)an+2 =
(n− 3) an
4n+ 8

For n = 2 the recurrence equation gives

−3a2 − 48a4 = 0

Which after substituting the earlier terms found becomes

a4 =
3a0
128
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For n = 3 the recurrence equation gives

−80a5 = 0

Which after substituting the earlier terms found becomes

a5 = 0

For n = 4 the recurrence equation gives

5a4 − 120a6 = 0

Which after substituting the earlier terms found becomes

a6 =
a0

1024

For n = 5 the recurrence equation gives

12a5 − 168a7 = 0

Which after substituting the earlier terms found becomes

a7 = 0

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 3
8a0x

2 − 1
6a1x

3 + 3
128a0x

4 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 3

8x
2 + 3

128x
4
)
a0 +

(
x− 1

6x
3
)
a1 +O

(
x6)
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At x = 0 the solution above becomes

y =
(
1− 3

8x
2 + 3

128x
4
)
c1 +

(
x− 1

6x
3
)
c2 +O

(
x6)

y = −1 + 3x2

8 − 3x4

128 + 2x− x3

3 +O
(
x6)

Summary
The solution(s) found are the following

(1)y = 2x− 1 + 3x2

8 − x3

3 − 3x4

128 − x6

1024 +O
(
x6)

(2)y = −1 + 3x2

8 − 3x4

128 + 2x− x3

3 +O
(
x6)

Verification of solutions

y = 2x− 1 + 3x2

8 − x3

3 − 3x4

128 − x6

1024 +O
(
x6)

Verified OK.

y = −1 + 3x2

8 − 3x4

128 + 2x− x3

3 +O
(
x6)

Verified OK.

12.19.2 Maple step by step solution

Let’s solve[
(x2 − 4) y′′ − y′x− 3y = 0, y(0) = −1, y′

∣∣∣{x=0}
= 2
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = xy′

x2−4 +
3y

x2−4

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − xy′

x2−4 −
3y

x2−4 = 0

� Check to see if x0 is a regular singular point
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◦ Define functions[
P2(x) = − x

x2−4 , P3(x) = − 3
x2−4

]
◦ (2 + x) · P2(x) is analytic at x = −2

((2 + x) · P2(x))
∣∣∣∣
x=−2

= −1
2

◦ (2 + x)2 · P3(x) is analytic at x = −2(
(2 + x)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators
(x2 − 4) y′′ − y′x− 3y = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(u2 − 4u)
(

d2

du2y(u)
)
+ (−u+ 2)

(
d
du
y(u)

)
− 3y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r
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Rewrite ODE with series expansions

−2a0r(−3 + 2r)u−1+r +
(

∞∑
k=0

(−2ak+1(k + r + 1) (2k − 1 + 2r) + ak(k + r + 1) (k + r − 3))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r(−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 32
}

• Each term in the series must be 0, giving the recursion relation
((−4k − 4r + 2) ak+1 + ak(k + r − 3)) (k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−3)

2(2k−1+2r)

• Recursion relation for r = 0 ; series terminates at k = 3
ak+1 = ak(k−3)

2(2k−1)

• Apply recursion relation for k = 0
a1 = 3a0

2

• Apply recursion relation for k = 1
a2 = −a1

• Express in terms of a0
a2 = −3a0

2

• Apply recursion relation for k = 2
a3 = −a2

6

• Express in terms of a0
a3 = a0

4

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1 + 3

2u− 3
2u

2 + 1
4u

3)
• Revert the change of variables u = 2 + x[

y = a0
(
−3

2x+ 1
4x

3)]
• Recursion relation for r = 3

2

ak+1 =
ak
(
k− 3

2
)

2(2k+2)
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• Solution for r = 3
2[

y(u) =
∞∑
k=0

aku
k+ 3

2 , ak+1 =
ak
(
k− 3

2
)

2(2k+2)

]
• Revert the change of variables u = 2 + x[

y =
∞∑
k=0

ak(2 + x)k+
3
2 , ak+1 =

ak
(
k− 3

2
)

2(2k+2)

]
• Combine solutions and rename parameters[

y = a0
(
−3

2x+ 1
4x

3)+ ( ∞∑
k=0

bk(2 + x)k+
3
2

)
, b1+k =

bk
(
k− 3

2
)

2(2k+2)

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
Order:=6;
dsolve([(x^2-4)*diff(y(x),x$2)-x*diff(y(x),x)-3*y(x)=0,y(0) = -1, D(y)(0) = 2],y(x),type='series',x=0);� �

y(x) = −1 + 2x+ 3
8x

2 − 1
3x

3 − 3
128x

4 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 29� �
AsymptoticDSolveValue[{(x^2-4)*y''[x]-x*y'[x]-3*y[x]==0,{y[0]==-1,y'[0]==2}},y[x],{x,0,5}]� �

y(x) → −3x4

128 − x3

3 + 3x2

8 + 2x− 1
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12.20 problem 22
12.20.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 3847
12.20.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3855

Internal problem ID [1224]
Internal file name [OUTPUT/1225_Sunday_June_05_2022_02_05_40_AM_69064895/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 22.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + (x− 3) y′ + 3y = 0

With initial conditions

[y(3) = −2, y′(3) = 3]

With the expansion point for the power series method at x = 3.

12.20.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = x− 3
q(x) = 3

F = 0
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Hence the ode is

y′′ + (x− 3) y′ + 3y = 0

The domain of p(x) = x− 3 is

{−∞ < x < ∞}

And the point x0 = 3 is inside this domain. The domain of q(x) = 3 is

{−∞ < x < ∞}

And the point x0 = 3 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x− 3

The ode is converted to be in terms of the new independent variable t. This results in

d2

dt2
y(t) + t

(
d

dt
y(t)

)
+ 3y(t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = −2
y′(0) = 3

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (875)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (876)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)

3850



To find y(x) series solution around x = 0. Hence

F0 = −t

(
d

dt
y(t)

)
− 3y(t)

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(

d

dt
y(t)

)
t2 + 3y(t) t− 4 d

dt
y(t)

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

= −
(

d

dt
y(t)

)
t3 − 3y(t) t2 + 9t

(
d

dt
y(t)

)
+ 15y(t)

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(
t4 − 15t2 + 24

)( d

dt
y(t)

)
+ 3ty(t)

(
t2 − 11

)
F4 =

dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(
−t5 + 22t3 − 87t

)( d

dt
y(t)

)
− 3y(t)

(
t4 − 18t2 + 35

)
And so on. Evaluating all the above at initial conditions t = 0 and y(0) = −2 and
y′(0) = 3 gives

F0 = 6
F1 = −12
F2 = −30
F3 = 72
F4 = 210

Substituting all the above in (7) and simplifying gives the solution as

y(t) = −2t3 + 3t2 + 3t− 2− 5t4
4 + 3t5

5 + 7t6
24 +O

(
t6
)
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y(t) = −2t3 + 3t2 + 3t− 2− 5t4
4 + 3t5

5 + 7t6
24 +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) antn−2 = −t

(
∞∑
n=1

nant
n−1

)
− 3
(

∞∑
n=0

ant
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) antn−2

)
+
(

∞∑
n=1

n tnan

)
+
(

∞∑
n=0

3antn
)

= 0

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) antn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1) tn

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1) tn
)

+
(

∞∑
n=1

n tnan

)
+
(

∞∑
n=0

3antn
)

= 0

n = 0 gives
2a2 + 3a0 = 0
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a2 = −3a0
2

For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + nan + 3an = 0

Solving for an+2, gives

(5)an+2 = − an(n+ 3)
(n+ 2) (n+ 1)

For n = 1 the recurrence equation gives

6a3 + 4a1 = 0

Which after substituting the earlier terms found becomes

a3 = −2a1
3

For n = 2 the recurrence equation gives

12a4 + 5a2 = 0

Which after substituting the earlier terms found becomes

a4 =
5a0
8

For n = 3 the recurrence equation gives

20a5 + 6a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
5

For n = 4 the recurrence equation gives

30a6 + 7a4 = 0
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Which after substituting the earlier terms found becomes

a6 = −7a0
48

For n = 5 the recurrence equation gives

42a7 + 8a5 = 0

Which after substituting the earlier terms found becomes

a7 = −4a1
105

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t−
3
2a0t

2 − 2
3a1t

3 + 5
8a0t

4 + 1
5a1t

5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− 3

2t
2 + 5

8t
4
)
a0 +

(
t− 2

3t
3 + 1

5t
5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1− 3

2t
2 + 5

8t
4
)
c1 +

(
t− 2

3t
3 + 1

5t
5
)
c2 +O

(
t6
)

y(t) = −2 + 3t2 − 5t4
4 + 3t− 2t3 + 3t5

5 +O
(
t6
)

Replacing t in the above with the original independent variable xsusing t = x − 3
results in

y =−2(x− 3)3+3(x− 3)2+3x− 11− 5(x− 3)4

4 + 3(x− 3)5

5 + 7(x− 3)6

24 +O
(
(x− 3)6

)
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Summary
The solution(s) found are the following

(1)
y = −2(x− 3)3 + 3(x− 3)2 + 3x− 11− 5(x− 3)4

4

+ 3(x− 3)5

5 + 7(x− 3)6

24 +O
(
(x− 3)6

)
Verification of solutions

y =−2(x− 3)3+3(x− 3)2+3x− 11− 5(x− 3)4

4 + 3(x− 3)5

5 + 7(x− 3)6

24 +O
(
(x− 3)6

)
Verified OK.

12.20.2 Maple step by step solution

Let’s solve[
y′′ + (x− 3) y′ + 3y = 0, y(3) = −2, y′

∣∣∣{x=3}
= 3
]

• Highest derivative means the order of the ODE is 2
y′′

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑

k=max(0,1−m)
akk x

k−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=max(0,1−m)+m−1
ak+1−m(k + 1−m)xk

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk
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Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1)− 3ak+1(k + 1) + ak(k + 3))xk = 0

• Each term in the series must be 0, giving the recursion relation
k2ak+2 + (ak − 3ak+1 + 3ak+2) k + 3ak − 3ak+1 + 2ak+2 = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+2 = −akk−3ak+1k+3ak−3ak+1

k2+3k+2

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([diff(y(x),x$2)+(x-3)*diff(y(x),x)+3*y(x)=0,y(3) = -2, D(y)(3) = 3],y(x),type='series',x=3);� �
y(x) = −2 + 3(x− 3) + 3(x− 3)2 − 2(x− 3)3 − 5

4(x− 3)4 + 3
5(x− 3)5 +O

(
(x− 3)6

)
3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42� �
AsymptoticDSolveValue[{y''[x]+(x-3)*y'[x]+3*y[x]==0,{y[3]==-2,y'[3]==3}},y[x],{x,3,5}]� �

y(x) → 3
5(x− 3)5 − 5

4(x− 3)4 − 2(x− 3)3 + 3(x− 3)2 + 3(x− 3)− 2
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12.21 problem 23
12.21.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 3858
12.21.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3866

Internal problem ID [1225]
Internal file name [OUTPUT/1226_Sunday_June_05_2022_02_05_43_AM_10674045/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
3x2 − 6x+ 5

)
y′′ + (x− 1) y′ + 12y = 0

With initial conditions

[y(1) = −1, y′(1) = 1]

With the expansion point for the power series method at x = 1.

12.21.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = x− 1
3x2 − 6x+ 5

q(x) = 12
3x2 − 6x+ 5

F = 0
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Hence the ode is

y′′ + (x− 1) y′
3x2 − 6x+ 5 + 12y

3x2 − 6x+ 5 = 0

The domain of p(x) = x−1
3x2−6x+5 is

{−∞ < x < ∞}

And the point x0 = 1 is inside this domain. The domain of q(x) = 12
3x2−6x+5 is

{−∞ < x < ∞}

And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x− 1

The ode is converted to be in terms of the new independent variable t. This results in

(
3(t+ 1)2 − 6t− 1

)( d2

dt2
y(t)

)
+ t

(
d

dt
y(t)

)
+ 12y(t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = −1
y′(0) = 1

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (878)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (879)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
t
(

d
dt
y(t)

)
+ 12y(t)

3t2 + 2

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
−32

(
d
dt
y(t)

)
t2 + 84y(t) t− 26 d

dt
y(t)

(3t2 + 2)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
476
(

d
dt
y(t)

)
t3 − 372y(t) t2 + 378t

(
d
dt
y(t)

)
+ 480y(t)

(3t2 + 2)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(−5876t4 − 2496t2 + 1716)

(
d
dt
y(t)

)
− 1248ty(t)

(
t2 + 47

4

)
(3t2 + 2)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(72644t5 − 46072t3 − 82212t)

(
d
dt
y(t)

)
+ (89232t4 + 330408t2 − 49920) y(t)

(3t2 + 2)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = −1 and
y′(0) = 1 gives

F0 = 6

F1 = −13
2

F2 = −60

F3 =
429
4

F4 = 1560
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Substituting all the above in (7) and simplifying gives the solution as

y(t) = 3t2 + t− 1− 13t3
12 − 5t4

2 + 143t5
160 + 13t6

6 +O
(
t6
)

y(t) = 3t2 + t− 1− 13t3
12 − 5t4

2 + 143t5
160 + 13t6

6 +O
(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

d2

dt2
y(t)

)(
3t2 + 2

)
+ t

(
d

dt
y(t)

)
+ 12y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)(
3t2 + 2

)
+ t

(
∞∑
n=1

nant
n−1

)
+ 12

(
∞∑
n=0

ant
n

)
= 0 (1)

Which simplifies to(
∞∑
n=2

3tnann(n− 1)
)

+
(

∞∑
n=2

2n(n− 1) antn−2

)
+
(

∞∑
n=1

nant
n

)
+
(

∞∑
n=0

12antn
)

= 0

(2)

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

2n(n− 1) antn−2 =
∞∑
n=0

2(n+ 2) an+2(n+ 1) tn
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Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=2

3tnann(n− 1)
)

+
(

∞∑
n=0

2(n+ 2) an+2(n+ 1) tn
)

+
(

∞∑
n=1

nant
n

)
+
(

∞∑
n=0

12antn
)

= 0

n = 0 gives
4a2 + 12a0 = 0

a2 = −3a0

n = 1 gives
12a3 + 13a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −13a1
12

For 2 ≤ n, the recurrence equation is

(4)3nan(n− 1) + 2(n+ 2) an+2(n+ 1) + nan + 12an = 0

Solving for an+2, gives

(5)an+2 = −an(3n2 − 2n+ 12)
2 (n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

20a2 + 24a4 = 0

Which after substituting the earlier terms found becomes

a4 =
5a0
2
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For n = 3 the recurrence equation gives

33a3 + 40a5 = 0

Which after substituting the earlier terms found becomes

a5 =
143a1
160

For n = 4 the recurrence equation gives

52a4 + 60a6 = 0

Which after substituting the earlier terms found becomes

a6 = −13a0
6

For n = 5 the recurrence equation gives

77a5 + 84a7 = 0

Which after substituting the earlier terms found becomes

a7 = −1573a1
1920

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t− 3a0t2 −
13
12a1t

3 + 5
2a0t

4 + 143
160a1t

5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− 3t2 + 5

2t
4
)
a0 +

(
t− 13

12t
3 + 143

160t
5
)
a1 +O

(
t6
)
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At t = 0 the solution above becomes

y(t) =
(
1− 3t2 + 5

2t
4
)
c1 +

(
t− 13

12t
3 + 143

160t
5
)
c2 +O

(
t6
)

y(t) = −1 + 3t2 − 5t4
2 + t− 13t3

12 + 143t5
160 +O

(
t6
)

Replacing t in the above with the original independent variable xsusing t = x−1 results
in

y = 3(x−1)2+x−2− 13(x− 1)3

12 − 5(x− 1)4

2 + 143(x− 1)5

160 + 13(x− 1)6

6 +O
(
(x−1)6

)
Summary
The solution(s) found are the following

(1)
y = 3(x− 1)2 + x− 2− 13(x− 1)3

12 − 5(x− 1)4

2

+ 143(x− 1)5

160 + 13(x− 1)6

6 +O
(
(x− 1)6

)
Verification of solutions

y = 3(x−1)2+x−2− 13(x− 1)3

12 − 5(x− 1)4

2 + 143(x− 1)5

160 + 13(x− 1)6

6 +O
(
(x−1)6

)
Verified OK.

12.21.2 Maple step by step solution

Let’s solve[
(3x2 − 6x+ 5) y′′ + (x− 1) y′ + 12y = 0, y(1) = −1, y′

∣∣∣{x=1}
= 1
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 12y
3x2−6x+5 −

(x−1)y′
3x2−6x+5

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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y′′ + (x−1)y′
3x2−6x+5 +

12y
3x2−6x+5 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = x−1
3x2−6x+5 , P3(x) = 12

3x2−6x+5

]
◦
(
x− 1 + I

√
6

3

)
· P2(x) is analytic at x = 1− I

√
6

3((
x− 1 + I

√
6

3

)
· P2(x)

) ∣∣∣∣
x=1− I

√
6

3

= 0

◦
(
x− 1 + I

√
6

3

)2
· P3(x) is analytic at x = 1− I

√
6

3((
x− 1 + I

√
6

3

)2
· P3(x)

) ∣∣∣∣
x=1− I

√
6

3

= 0

◦ x = 1− I
√
6

3 is a regular singular point

Check to see if x0 is a regular singular point

x0 = 1− I
√
6

3

• Multiply by denominators
(3x2 − 6x+ 5) y′′ + (x− 1) y′ + 12y = 0

• Change variables using x = u+ 1− I
√
6

3 so that the regular singular point is at u = 0(
3u2 − 2 Iu

√
6
) (

d2

du2y(u)
)
+
(
u− I

√
6

3

) (
d
du
y(u)

)
+ 12y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m
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◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

− I
√
6 r(6r−5)a0u−1+r

3 +
(

∞∑
k=0

(
− I

√
6 (k+1+r)(6k+1+6r)ak+1

3 + ak(3k2 + 6kr + 3r2 − 2k − 2r + 12)
)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
− I

3

√
6 r(6r − 5) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 56
}

• Each term in the series must be 0, giving the recursion relation
−2 I

(
k + r + 1

6

)
(k + 1 + r) ak+1

√
6 + 3

(
k2 +

(
2r − 2

3

)
k + r2 − 2r

3 + 4
)
ak = 0

• Recursion relation that defines series solution to ODE

ak+1 =
− I

2ak
(
3k2+6kr+3r2−2k−2r+12

)√
6

6k2+12kr+6r2+7k+7r+1

• Recursion relation for r = 0

ak+1 =
− I

2ak
(
3k2−2k+12

)√
6

6k2+7k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 =

− I
2ak

(
3k2−2k+12

)√
6

6k2+7k+1

]
• Revert the change of variables u = x− 1 + I

√
6

3[
y =

∞∑
k=0

ak
(
x− 1 + I

√
6

3

)k
, ak+1 =

− I
2ak

(
3k2−2k+12

)√
6

6k2+7k+1

]
• Recursion relation for r = 5

6

ak+1 =
− I

2ak
(
3k2+3k+ 149

12
)√

6
6k2+17k+11

• Solution for r = 5
6[

y(u) =
∞∑
k=0

aku
k+ 5

6 , ak+1 =
− I

2ak
(
3k2+3k+ 149

12
)√

6
6k2+17k+11

]
• Revert the change of variables u = x− 1 + I

√
6

3[
y =

∞∑
k=0

ak
(
x− 1 + I

√
6

3

)k+ 5
6
, ak+1 =

− I
2ak

(
3k2+3k+ 149

12
)√

6
6k2+17k+11

]
• Combine solutions and rename parameters
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[
y =

(
∞∑
k=0

ak
(
x− 1 + I

√
6

3

)k)
+
(

∞∑
k=0

bk
(
x− 1 + I

√
6

3

)k+ 5
6
)
, a1+k =

− I
2ak

(
3k2−2k+12

)√
6

6k2+7k+1 , b1+k =
− I

2 bk
(
3k2+3k+ 149

12
)√

6
6k2+17k+11

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
Order:=6;
dsolve([(5-6*x+3*x^2)*diff(y(x),x$2)+(x-1)*diff(y(x),x)+12*y(x)=0,y(1) = -1, D(y)(1) = 1],y(x),type='series',x=1);� �
y(x) = −1 + (x− 1) + 3(x− 1)2 − 13

12(x− 1)3 − 5
2(x− 1)4 + 143

160(x− 1)5 +O
(
(x− 1)6

)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 40� �
AsymptoticDSolveValue[{(5-6*x+3*x^2)*y''[x]+(x-1)*y'[x]+12*y[x]==0,{y[1]==-1,y'[1]==1}},y[x],{x,1,5}]� �

y(x) → 143
160(x− 1)5 − 5

2(x− 1)4 − 13
12(x− 1)3 + 3(x− 1)2 + x− 2
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12.22 problem 24
12.22.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 3871

Internal problem ID [1226]
Internal file name [OUTPUT/1227_Sunday_June_05_2022_02_05_45_AM_387783/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 24.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

(
4x2 − 24x+ 37

)
y′′ + y = 0

With initial conditions

[y(3) = 4, y′(3) = −6]

With the expansion point for the power series method at x = 3.

12.22.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 0

q(x) = 1
4x2 − 24x+ 37

F = 0
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Hence the ode is

y′′ + y

4x2 − 24x+ 37 = 0

The domain of p(x) = 0 is
{−∞ < x < ∞}

And the point x0 = 3 is inside this domain. The domain of q(x) = 1
4x2−24x+37 is

{−∞ < x < ∞}

And the point x0 = 3 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x− 3

The ode is converted to be in terms of the new independent variable t. This results in

(
4(t+ 3)2 − 24t− 35

)( d2

dt2
y(t)

)
+ y(t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = 4
y′(0) = −6

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (881)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (882)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = − y(t)
4t2 + 1

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
−4
(

d
dt
y(t)

)
t2 + 8y(t) t− d

dt
y(t)

(4t2 + 1)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
16(4t3 + t)

(
d
dt
y(t)

)
+ (−92t2 + 9) y(t)

(4t2 + 1)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(−1136t4 − 184t2 + 25)

(
d
dt
y(t)

)
+ (1408t3 − 416t) y(t)

(4t2 + 1)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(23808t5 − 384t3 − 1584t)

(
d
dt
y(t)

)
+ (−27024t4 + 16056t2 − 441) y(t)

(4t2 + 1)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = 4 and
y′(0) = −6 gives

F0 = −4
F1 = 6
F2 = 36
F3 = −150
F4 = −1764
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Substituting all the above in (7) and simplifying gives the solution as

y(t) = t3 − 2t2 − 6t+ 4 + 3t4
2 − 5t5

4 − 49t6
20 +O

(
t6
)

y(t) = t3 − 2t2 − 6t+ 4 + 3t4
2 − 5t5

4 − 49t6
20 +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

d2

dt2
y(t)

)(
4t2 + 1

)
+ y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)(
4t2 + 1

)
+
(

∞∑
n=0

ant
n

)
= 0 (1)

Which simplifies to

(2)
(

∞∑
n=2

4tnann(n− 1)
)

+
(

∞∑
n=2

n(n− 1) antn−2

)
+
(

∞∑
n=0

ant
n

)
= 0

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) antn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1) tn
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Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)
(

∞∑
n=2

4tnann(n− 1)
)

+
(

∞∑
n=0

(n+ 2) an+2(n+ 1) tn
)

+
(

∞∑
n=0

ant
n

)
= 0

n = 0 gives
2a2 + a0 = 0

a2 = −a0
2

n = 1 gives
6a3 + a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −a1
6

For 2 ≤ n, the recurrence equation is

(4)4nan(n− 1) + (n+ 2) an+2(n+ 1) + an = 0

Solving for an+2, gives

(5)an+2 = −an(4n2 − 4n+ 1)
(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

9a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 =
3a0
8

For n = 3 the recurrence equation gives

25a3 + 20a5 = 0
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Which after substituting the earlier terms found becomes

a5 =
5a1
24

For n = 4 the recurrence equation gives

49a4 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = −49a0
80

For n = 5 the recurrence equation gives

81a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = −45a1
112

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t−
1
2a0t

2 − 1
6a1t

3 + 3
8a0t

4 + 5
24a1t

5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− 1

2t
2 + 3

8t
4
)
a0 +

(
t− 1

6t
3 + 5

24t
5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1− 1

2t
2 + 3

8t
4
)
c1 +

(
t− 1

6t
3 + 5

24t
5
)
c2 +O

(
t6
)
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y(t) = 4− 2t2 + 3t4
2 − 6t+ t3 − 5t5

4 +O
(
t6
)

Replacing t in the above with the original independent variable xsusing t = x − 3
results in

y = (x− 3)3 − 2(x− 3)2 − 6x+22+ 3(x− 3)4

2 − 5(x− 3)5

4 − 49(x− 3)6

20 +O
(
(x− 3)6

)
Summary
The solution(s) found are the following

y = (x− 3)3 − 2(x− 3)2 − 6x+22+ 3(x− 3)4

2 − 5(x− 3)5

4 − 49(x− 3)6

20 +O
(
(x− 3)6

)
(1)

Verification of solutions

y = (x− 3)3 − 2(x− 3)2 − 6x+22+ 3(x− 3)4

2 − 5(x− 3)5

4 − 49(x− 3)6

20 +O
(
(x− 3)6

)
Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(4*x^2-24*x+37)*diff(y(x),x$2)+y(x)=0,y(3) = 4, D(y)(3) = -6],y(x),type='series',x=3);� �
y(x) = 4− 6(x− 3)− 2(x− 3)2 + (x− 3)3 + 3

2(x− 3)4 − 5
4(x− 3)5 +O

(
(x− 3)6

)
3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 40� �
AsymptoticDSolveValue[{(4*x^2-24*x+37)*y''[x]+y[x]==0,{y[3]==4,y'[3]==-6}},y[x],{x,3,5}]� �

y(x) → −5
4(x− 3)5 + 3

2(x− 3)4 + (x− 3)3 − 2(x− 3)2 − 6(x− 3) + 4
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12.23 problem 25
12.23.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3888

Internal problem ID [1227]
Internal file name [OUTPUT/1228_Sunday_June_05_2022_02_05_48_AM_82497750/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 25.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x2 − 8x+ 14

)
y′′ − 8(x− 4) y′ + 20y = 0

With initial conditions

[y(4) = 3, y′(4) = −4]

With the expansion point for the power series method at x = 4.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x− 4

The ode is converted to be in terms of the new independent variable t. This results in

(
(t+ 4)2 − 8t− 18

)( d2

dt2
y(t)

)
− 8t

(
d

dt
y(t)

)
+ 20y(t) = 0
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With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = 3
y′(0) = −4

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (884)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (885)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
8t
(

d
dt
y(t)

)
− 20y(t)

t2 − 2

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
36
(

d
dt
y(t)

)
t2 − 120y(t) t+ 24 d

dt
y(t)

(t2 − 2)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
96
(

d
dt
y(t)

)
t3 − 360y(t) t2 + 192t

(
d
dt
y(t)

)
− 240y(t)

(t2 − 2)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(120t4 + 480t2 + 96)

(
d
dt
y(t)

)
− 480ty(t) (t2 + 2)

(t2 − 2)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

= 0

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = 3 and
y′(0) = −4 gives

F0 = 30
F1 = −24
F2 = 90
F3 = −24
F4 = 0

Substituting all the above in (7) and simplifying gives the solution as

y(t) = −4t3 + 15t2 − 4t+ 3 + 15t4
4 − t5

5 +O
(
t6
)
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y(t) = −4t3 + 15t2 − 4t+ 3 + 15t4
4 − t5

5 +O
(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

d2

dt2
y(t)

)(
t2 − 2

)
− 8t

(
d

dt
y(t)

)
+ 20y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)(
t2 − 2

)
− 8t

(
∞∑
n=1

nant
n−1

)
+ 20

(
∞∑
n=0

ant
n

)
= 0 (1)

Which simplifies to(
∞∑
n=2

tnann(n− 1)
)

+
∞∑

n =2

(
−2n(n− 1) antn−2)+ ∞∑

n =1

(−8nantn) +
(

∞∑
n=0

20antn
)

= 0

(2)

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

(
−2n(n− 1) antn−2) = ∞∑

n=0

(−2(n+ 2) an+2(n+ 1) tn)
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Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=2

tnann(n− 1)
)

+
∞∑

n =0

(−2(n+ 2) an+2(n+ 1) tn)

+
∞∑

n =1

(−8nantn) +
(

∞∑
n=0

20antn
)

= 0

n = 0 gives
−4a2 + 20a0 = 0

a2 = 5a0

n = 1 gives
−12a3 + 12a1 = 0

Which after substituting earlier equations, simplifies to

a3 = a1

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1)− 2(n+ 2) an+2(n+ 1)− 8nan + 20an = 0

Solving for an+2, gives

(5)an+2 =
an(n2 − 9n+ 20)
2 (n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

6a2 − 24a4 = 0

Which after substituting the earlier terms found becomes

a4 =
5a0
4
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For n = 3 the recurrence equation gives

2a3 − 40a5 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
20

For n = 4 the recurrence equation gives

−60a6 = 0

Which after substituting the earlier terms found becomes

a6 = 0

For n = 5 the recurrence equation gives

−84a7 = 0

Which after substituting the earlier terms found becomes

a7 = 0

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t+ 5a0t2 + a1t
3 + 5

4a0t
4 + 1

20a1t
5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1 + 5t2 + 5

4t
4
)
a0 +

(
t+ t3 + 1

20t
5
)
a1 +O

(
t6
)
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At t = 0 the solution above becomes

y(t) =
(
1 + 5t2 + 5

4t
4
)
c1 +

(
t+ t3 + 1

20t
5
)
c2 +O

(
t6
)

y(t) = −4t3 + 15t2 − 4t+ 3 + 15t4
4 − t5

5 +O
(
t6
)

Replacing t in the above with the original independent variable xsusing t = x − 4
results in

y = −4(x− 4)3 + 15(x− 4)2 − 4x+ 19 + 15(x− 4)4

4 − (x− 4)5

5 +O
(
(x− 4)6

)
Summary
The solution(s) found are the following

(1)y = −4(x− 4)3 + 15(x− 4)2 − 4x+ 19 + 15(x− 4)4

4 − (x− 4)5

5 +O
(
(x− 4)6

)
Verification of solutions

y = −4(x− 4)3 + 15(x− 4)2 − 4x+ 19 + 15(x− 4)4

4 − (x− 4)5

5 +O
(
(x− 4)6

)
Verified OK.

12.23.1 Maple step by step solution

Let’s solve[
(x2 − 8x+ 14) y′′ + (−8x+ 32) y′ + 20y = 0, y(4) = 3, y′

∣∣∣{x=4}
= −4

]
• Highest derivative means the order of the ODE is 2

y′′

• Isolate 2nd derivative

y′′ = − 20y
x2−8x+14 +

8(x−4)y′
x2−8x+14

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − 8(x−4)y′
x2−8x+14 +

20y
x2−8x+14 = 0
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� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 8(x−4)
x2−8x+14 , P3(x) = 20

x2−8x+14

]
◦
(
x− 4 +

√
2
)
· P2(x) is analytic at x = 4−

√
2((

x− 4 +
√
2
)
· P2(x)

) ∣∣∣∣
x=4−

√
2
= 0

◦
(
x− 4 +

√
2
)2 · P3(x) is analytic at x = 4−

√
2((

x− 4 +
√
2
)2 · P3(x)

) ∣∣∣∣
x=4−

√
2
= 0

◦ x = 4−
√
2is a regular singular point

Check to see if x0 is a regular singular point
x0 = 4−

√
2

• Multiply by denominators
(x2 − 8x+ 14) y′′ + (−8x+ 32) y′ + 20y = 0

• Change variables using x = u+ 4−
√
2 so that the regular singular point is at u = 0(

u2 − 2u
√
2
) (

d2

du2y(u)
)
+
(
−8u+ 8

√
2
) (

d
du
y(u)

)
+ 20y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2
√
2 r(r − 5) a0u−1+r +

(
∞∑
k=0

(
−2

√
2 (k + 1 + r) (k + r − 4) ak+1 + ak(k + r − 4) (k + r − 5)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2

√
2 r(r − 5) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 5}

• Each term in the series must be 0, giving the recursion relation
(k + r − 4)

(
−2ak+1(k + 1 + r)

√
2 + ak(k + r − 5)

)
= 0

• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r−5)
√
2

4(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 5

ak+1 = ak(k−5)
√
2

4(k+1)

• Apply recursion relation for k = 0

a1 = −5a0
√
2

4

• Apply recursion relation for k = 1

a2 = −a1
√
2

2

• Express in terms of a0
a2 = 5a0

4

• Apply recursion relation for k = 2

a3 = −a2
√
2

4

• Express in terms of a0
a3 = −5a0

√
2

16

• Apply recursion relation for k = 3

a4 = −a3
√
2

8

• Express in terms of a0
a4 = 5a0

64
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• Apply recursion relation for k = 4

a5 = −a4
√
2

20

• Express in terms of a0
a5 = −a0

√
2

256

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution

y(u) = a0 ·
(
1− 5u

√
2

4 + 5u2

4 − 5
√
2u3

16 + 5u4

64 −
√
2u5

256

)
• Revert the change of variables u = x− 4 +

√
2[

y = a0
( (

−x5+20x4−180x3+880x2−2260x+2384
)√

2
256 + 5x4

128 −
5x3

8 + 125x2

32 − 45x
4 + 401

32

)]
• Recursion relation for r = 5

ak+1 = akk
√
2

4(k+6)

• Solution for r = 5[
y(u) =

∞∑
k=0

aku
k+5, ak+1 = akk

√
2

4(k+6)

]
• Revert the change of variables u = x− 4 +

√
2[

y =
∞∑
k=0

ak
(
x− 4 +

√
2
)k+5

, ak+1 = akk
√
2

4(k+6)

]
• Combine solutions and rename parameters[

y = a0
( (

−x5+20x4−180x3+880x2−2260x+2384
)√

2
256 + 5x4

128 −
5x3

8 + 125x2

32 − 45x
4 + 401

32

)
+
(

∞∑
k=0

bk
(
x− 4 +

√
2
)5+k

)
, b1+k = bkk

√
2

4(k+6)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(x^2-8*x+14)*diff(y(x),x$2)-8*(x-4)*diff(y(x),x)+20*y(x)=0,y(4) = 3, D(y)(4) = -4],y(x),type='series',x=4);� �
y(x) = 3− 4(x− 4) + 15(x− 4)2 − 4(x− 4)3 + 15

4 (x− 4)4 − 1
5(x− 4)5 +O

(
(x− 4)6

)
3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 44� �
AsymptoticDSolveValue[{(x^2-8*x+14)*y''[x]+8*(x-4)*y'[x]+20*y[x]==0,{y[4]==3,y'[4]==-4}},y[x],{x,4,5}]� �

y(x) → −35
3 (x− 4)5 + 95

4 (x− 4)4 − 28
3 (x− 4)3 + 15(x− 4)2 − 4(x− 4) + 3
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12.24 problem 26
12.24.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 3893
12.24.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3901

Internal problem ID [1228]
Internal file name [OUTPUT/1229_Sunday_June_05_2022_02_05_51_AM_43820621/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 26.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
2x2 + 4x+ 5

)
y′′ − 20(x+ 1) y′ + 60y = 0

With initial conditions

[y(−1) = 3, y′(−1) = −3]

With the expansion point for the power series method at x = −1.

12.24.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −20x− 20
2x2 + 4x+ 5

q(x) = 60
2x2 + 4x+ 5

F = 0

3893



Hence the ode is

y′′ + (−20x− 20) y′
2x2 + 4x+ 5 + 60y

2x2 + 4x+ 5 = 0

The domain of p(x) = −20x−20
2x2+4x+5 is

{−∞ < x < ∞}

And the point x0 = −1 is inside this domain. The domain of q(x) = 60
2x2+4x+5 is

{−∞ < x < ∞}

And the point x0 = −1 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x+ 1

The ode is converted to be in terms of the new independent variable t. This results in

(
2(−1 + t)2 + 1 + 4t

)( d2

dt2
y(t)

)
− 20t

(
d

dt
y(t)

)
+ 60y(t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = 3
y′(0) = −3

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the

3894



case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (887)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (888)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
20t
(

d
dt
y(t)

)
− 60y(t)

2t2 + 3

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
240
(

d
dt
y(t)

)
t2 − 960y(t) t− 120 d

dt
y(t)

(2t2 + 3)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
1920

(
d
dt
y(t)

)
t3 − 8640y(t) t2 − 2880t

(
d
dt
y(t)

)
+ 4320y(t)

(2t2 + 3)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(9600t4 − 28800t2 + 4320)

(
d
dt
y(t)

)
− 46080

(
t2 − 3

2

)
ty(t)

(2t2 + 3)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(23040t5 − 115200t3 + 51840t)

(
d
dt
y(t)

)
− 115200

(
t4 − 3t2 + 9

20

)
y(t)

(2t2 + 3)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = 3 and
y′(0) = −3 gives

F0 = −60
F1 = 40
F2 = 480
F3 = −160
F4 = −640
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Substituting all the above in (7) and simplifying gives the solution as

y(t) = −30t2 − 3t+ 3 + 20t3
3 + 20t4 − 4t5

3 − 8t6
9 +O

(
t6
)

y(t) = −30t2 − 3t+ 3 + 20t3
3 + 20t4 − 4t5

3 − 8t6
9 +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

d2

dt2
y(t)

)(
2t2 + 3

)
− 20t

(
d

dt
y(t)

)
+ 60y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)(
2t2 + 3

)
− 20t

(
∞∑
n=1

nant
n−1

)
+ 60

(
∞∑
n=0

ant
n

)
= 0 (1)

Which simplifies to(
∞∑
n=2

2tnann(n− 1)
)
+
(

∞∑
n=2

3n(n− 1) antn−2

)
+

∞∑
n =1

(−20nantn) +
(

∞∑
n=0

60antn
)

= 0

(2)

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

3n(n− 1) antn−2 =
∞∑
n=0

3(n+ 2) an+2(n+ 1) tn
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Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=2

2tnann(n− 1)
)

+
(

∞∑
n=0

3(n+ 2) an+2(n+ 1) tn
)

+
∞∑

n =1

(−20nantn) +
(

∞∑
n=0

60antn
)

= 0

n = 0 gives
6a2 + 60a0 = 0

a2 = −10a0

n = 1 gives
18a3 + 40a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −20a1
9

For 2 ≤ n, the recurrence equation is

(4)2nan(n− 1) + 3(n+ 2) an+2(n+ 1)− 20nan + 60an = 0

Solving for an+2, gives

(5)an+2 = −2an(n2 − 11n+ 30)
3 (n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

24a2 + 36a4 = 0

Which after substituting the earlier terms found becomes

a4 =
20a0
3

3899



For n = 3 the recurrence equation gives

12a3 + 60a5 = 0

Which after substituting the earlier terms found becomes

a5 =
4a1
9

For n = 4 the recurrence equation gives

4a4 + 90a6 = 0

Which after substituting the earlier terms found becomes

a6 = −8a0
27

For n = 5 the recurrence equation gives

126a7 = 0

Which after substituting the earlier terms found becomes

a7 = 0

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t− 10a0t2 −
20
9 a1t

3 + 20
3 a0t

4 + 4
9a1t

5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− 10t2 + 20

3 t4
)
a0 +

(
t− 20

9 t3 + 4
9t

5
)
a1 +O

(
t6
)
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At t = 0 the solution above becomes

y(t) =
(
1− 10t2 + 20

3 t4
)
c1 +

(
t− 20

9 t3 + 4
9t

5
)
c2 +O

(
t6
)

y(t) = 20t4 − 30t2 + 3− 3t+ 20t3
3 − 4t5

3 +O
(
t6
)

Replacing t in the above with the original independent variable xsusing t = x+1 results
in

y = −30(x+1)2 − 3x+ 20(x+ 1)3

3 + 20(x+1)4 − 4(x+ 1)5

3 − 8(x+ 1)6

9 +O
(
(x+1)6

)
Summary
The solution(s) found are the following

y = −30(x+1)2 − 3x+ 20(x+ 1)3

3 + 20(x+1)4 − 4(x+ 1)5

3 − 8(x+ 1)6

9 +O
(
(x+1)6

)
(1)

Verification of solutions

y = −30(x+1)2 − 3x+ 20(x+ 1)3

3 + 20(x+1)4 − 4(x+ 1)5

3 − 8(x+ 1)6

9 +O
(
(x+1)6

)
Verified OK.

12.24.2 Maple step by step solution

Let’s solve[
(2x2 + 4x+ 5) y′′ + (−20x− 20) y′ + 60y = 0, y(−1) = 3, y′

∣∣∣{x=−1}
= −3

]
• Highest derivative means the order of the ODE is 2

y′′

• Isolate 2nd derivative

y′′ = − 60y
2x2+4x+5 +

20(x+1)y′
2x2+4x+5

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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y′′ − 20(x+1)y′
2x2+4x+5 +

60y
2x2+4x+5 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 20(x+1)
2x2+4x+5 , P3(x) = 60

2x2+4x+5

]
◦
(
x+ 1 + I

√
6

2

)
· P2(x) is analytic at x = −1− I

√
6

2((
x+ 1 + I

√
6

2

)
· P2(x)

) ∣∣∣∣
x=−1− I

√
6

2

= 0

◦
(
x+ 1 + I

√
6

2

)2
· P3(x) is analytic at x = −1− I

√
6

2((
x+ 1 + I

√
6

2

)2
· P3(x)

) ∣∣∣∣
x=−1− I

√
6

2

= 0

◦ x = −1− I
√
6

2 is a regular singular point

Check to see if x0 is a regular singular point

x0 = −1− I
√
6

2

• Multiply by denominators
(2x2 + 4x+ 5) y′′ + (−20x− 20) y′ + 60y = 0

• Change variables using x = u− 1− I
√
6

2 so that the regular singular point is at u = 0(
2u2 − 2 Iu

√
6
) (

d2

du2y(u)
)
+
(
−20u+ 10 I

√
6
) (

d
du
y(u)

)
+ 60y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2 I
√
6 (r − 6) ra0u−1+r +

(
∞∑
k=0

(
−2 I

√
6 (k + r − 5) (k + 1 + r) ak+1 + 2ak(k + r − 5) (k + r − 6)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2 I

√
6 (r − 6) r = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 6}

• Each term in the series must be 0, giving the recursion relation
−2
(
I(k + 1 + r) ak+1

√
6− ak(k + r − 6)

)
(k + r − 5) = 0

• Recursion relation that defines series solution to ODE

ak+1 =
− I

6ak(k+r−6)
√
6

k+1+r

• Recursion relation for r = 0 ; series terminates at k = 6

ak+1 =
− I

6ak(k−6)
√
6

k+1

• Recursion relation that defines the terminating series solution of the ODE for r = 0[
y(u) =

5∑
k=0

aku
k, ak+1 =

− I
6ak(k−6)

√
6

k+1

]
• Revert the change of variables u = x+ 1 + I

√
6

2[
y =

5∑
k=0

ak
(
x+ 1 + I

√
6

2

)k
, ak+1 =

− I
6ak(k−6)

√
6

k+1

]
• Recursion relation for r = 6

ak+1 =
− I

6akk
√
6

k+7

• Solution for r = 6[
y(u) =

∞∑
k=0

aku
k+6, ak+1 =

− I
6akk

√
6

k+7

]
• Revert the change of variables u = x+ 1 + I

√
6

2
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[
y =

∞∑
k=0

ak
(
x+ 1 + I

√
6

2

)k+6
, ak+1 =

− I
6akk

√
6

k+7

]
• Combine solutions and rename parameters[

y =
(

5∑
k=0

ak
(
x+ 1 + I

√
6

2

)k)
+
(

∞∑
k=0

bk
(
x+ 1 + I

√
6

2

)k+6
)
, a1+k =

− I
6ak(k−6)

√
6

1+k
, b1+k =

− I
6 bkk

√
6

k+7

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
Order:=6;
dsolve([(2*x^2+4*x+5)*diff(y(x),x$2)-20*(x+1)*diff(y(x),x)+60*y(x)=0,y(-1) = 3, D(y)(-1) = -3],y(x),type='series',x=-1);� �
y(x) = 3− 3(x+ 1)− 30(x+ 1)2 + 20

3 (x+ 1)3 + 20(x+ 1)4 − 4
3(x+ 1)5 +O

(
(x+ 1)6

)
3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42� �
AsymptoticDSolveValue[{(2*x^2+4*x+5)*y''[x]-20*(x+1)*y'[x]+60*y[x]==0,{y[-1]==3,y'[-1]==-3}},y[x],{x,-1,5}]� �

y(x) → −4
3(x+ 1)5 + 20(x+ 1)4 + 20

3 (x+ 1)3 − 30(x+ 1)2 − 3(x+ 1) + 3
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12.25 problem 27
Internal problem ID [1229]
Internal file name [OUTPUT/1230_Sunday_June_05_2022_02_05_53_AM_57799692/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 27.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second_order_change_of_variable_on_y_method_1", "linear_sec-
ond_order_ode_solved_by_an_integrating_factor", "second order series
method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(
x2 + 1

)
y′′ + 4y′x+ 2y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (890)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (891)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2(y + 2y′x)
x2 + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 18y′x2 + 12yx− 6y′

(x2 + 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −96x3y′ − 72x2y + 96y′x+ 24y
(x2 + 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= 120(5x4 − 10x2 + 1) y′ + 480(x3 − x) y
(x2 + 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(−4320x5 + 14400x3 − 4320x) y′ − 3600y

(
x4 − 2x2 + 1

5

)
(x2 + 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −2y(0)
F1 = −6y′(0)
F2 = 24y(0)
F3 = 120y′(0)
F4 = −720y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
−x6 + x4 − x2 + 1

)
y(0) +

(
x5 − x3 + x

)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 + 1
)
y′′ + 4y′x+ 2y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ 4
(

∞∑
n=1

nanx
n−1

)
x+ 2

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)
(

∞∑
n=2

xnann(n−1)
)
+
(

∞∑
n=2

n(n−1) anxn−2

)
+
(

∞∑
n=1

4nanxn

)
+
(

∞∑
n=0

2anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
(

∞∑
n=1

4nanxn

)
+
(

∞∑
n=0

2anxn

)
= 0
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n = 0 gives
2a2 + 2a0 = 0

a2 = −a0

n = 1 gives
6a3 + 6a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −a1

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1) + (n+ 2) an+2(n+ 1) + 4nan + 2an = 0

Solving for an+2, gives
(5)an+2 = −an

For n = 2 the recurrence equation gives

12a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = a0

For n = 3 the recurrence equation gives

20a3 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 = a1

For n = 4 the recurrence equation gives

30a4 + 30a6 = 0
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Which after substituting the earlier terms found becomes

a6 = −a0

For n = 5 the recurrence equation gives

42a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = −a1

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a1x
5 + a0x

4 − a1x
3 − a0x

2 + a1x+ a0 + . . .

Collecting terms, the solution becomes

(3)y =
(
x4 − x2 + 1

)
a0 +

(
x5 − x3 + x

)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
x4 − x2 + 1

)
c1 +

(
x5 − x3 + x

)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
−x6 + x4 − x2 + 1

)
y(0) +

(
x5 − x3 + x

)
y′(0) +O

(
x6)

(2)y =
(
x4 − x2 + 1

)
c1 +

(
x5 − x3 + x

)
c2 +O

(
x6)

Verification of solutions

y =
(
−x6 + x4 − x2 + 1

)
y(0) +

(
x5 − x3 + x

)
y′(0) +O

(
x6)

Verified OK.

y =
(
x4 − x2 + 1

)
c1 +

(
x5 − x3 + x

)
c2 +O

(
x6)

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 30� �
Order:=6;
dsolve((1+x^2)*diff(y(x),x$2)+4*x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
x4 − x2 + 1

)
y(0) +

(
x5 − x3 + x

)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 30� �
AsymptoticDSolveValue[(1+x^2)*y''[x]+4*x*y'[x]+2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2
(
x5 − x3 + x

)
+ c1

(
x4 − x2 + 1

)
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12.26 problem 31
12.26.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3920

Internal problem ID [1230]
Internal file name [OUTPUT/1231_Sunday_June_05_2022_02_05_55_AM_27204929/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 31.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − 2y′x+ 2αy = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (893)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (894)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = 2y′x− 2αy

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

=
(
4x2 − 2α + 2

)
y′ − 4yαx

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(
8x3 − 8αx+ 12x

)
y′ − 8

(
x2 − α

2 + 1
)
αy

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= 4
(
3 + α2 + 2

(
−3x2 − 2

)
α + 4x4 + 12x2) y′ − 16

(
x2 − α + 5

2

)
xαy

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= 32
(
3α2

4 +
(
−2x2 − 15

4

)
α + x4 + 5x2 + 15

4

)
xy′ − 32αy

(
2 + α2

4 + 3(−x2 − 1)α
2 + x4 + 9x2

2

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −2y(0)α
F1 = −2y′(0)α + 2y′(0)
F2 = 4y(0)α2 − 8y(0)α
F3 = 4y′(0)α2 − 16y′(0)α + 12y′(0)
F4 = −8y(0)α3 + 48y(0)α2 − 64y(0)α

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− αx2 + 1

6x
4α2 − 1

3x
4α− 1

90x
6α3 + 1

15x
6α2 − 4

45x
6α

)
y(0)

+
(
x− 1

3x
3α+ 1

3x
3 + 1

30x
5α2 − 2

15x
5α+ 1

10x
5
)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = 2
(

∞∑
n=1

nanx
n−1

)
x− 2α

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(−2nxnan) +
(

∞∑
n=0

2αanxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+

∞∑
n =1

(−2nxnan) +
(

∞∑
n=0

2αanxn

)
= 0

n = 0 gives
2αa0 + 2a2 = 0

a2 = −αa0
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For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1)− 2nan + 2αan = 0

Solving for an+2, gives

(5)an+2 = − 2an(α− n)
(n+ 2) (n+ 1)

For n = 1 the recurrence equation gives

2αa1 − 2a1 + 6a3 = 0

Which after substituting the earlier terms found becomes

a3 = −1
3αa1 +

1
3a1

For n = 2 the recurrence equation gives

2αa2 − 4a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 =
1
6α

2a0 −
1
3αa0

For n = 3 the recurrence equation gives

2αa3 − 6a3 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 =
1
30α

2a1 −
2
15αa1 +

1
10a1

For n = 4 the recurrence equation gives

2αa4 − 8a4 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = − 1
90α

3a0 +
1
15α

2a0 −
4
45αa0
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For n = 5 the recurrence equation gives

2αa5 − 10a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = − 1
630α

3a1 +
1
70α

2a1 −
23
630αa1 +

1
42a1

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− αa0x
2 +

(
−1
3αa1 +

1
3a1
)
x3

+
(
1
6α

2a0 −
1
3αa0

)
x4 +

(
1
30α

2a1 −
2
15αa1 +

1
10a1

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− αx2 +

(
1
6α

2 − 1
3α
)
x4
)
a0

+
(
x+

(
−α

3 + 1
3

)
x3 +

(
1
30α

2 − 2
15α+ 1

10

)
x5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− αx2 +

(
1
6α

2 − 1
3α
)
x4
)
c1

+
(
x+

(
−α

3 + 1
3

)
x3 +

(
1
30α

2 − 2
15α+ 1

10

)
x5
)
c2 +O

(
x6)
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Summary
The solution(s) found are the following

(1)
y =

(
1− αx2 + 1

6x
4α2 − 1

3x
4α− 1

90x
6α3 + 1

15x
6α2 − 4

45x
6α

)
y(0)

+
(
x− 1

3x
3α+ 1

3x
3 + 1

30x
5α2 − 2

15x
5α+ 1

10x
5
)
y′(0) +O

(
x6)

(2)
y =

(
1− αx2 +

(
1
6α

2 − 1
3α
)
x4
)
c1

+
(
x+

(
−α

3 + 1
3

)
x3 +

(
1
30α

2 − 2
15α+ 1

10

)
x5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− αx2 + 1

6x
4α2 − 1

3x
4α− 1

90x
6α3 + 1

15x
6α2 − 4

45x
6α

)
y(0)

+
(
x− 1

3x
3α+ 1

3x
3 + 1

30x
5α2 − 2

15x
5α+ 1

10x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− αx2 +

(
1
6α

2 − 1
3α
)
x4
)
c1

+
(
x+

(
−α

3 + 1
3

)
x3 +

(
1
30α

2 − 2
15α+ 1

10

)
x5
)
c2 +O

(
x6)

Verified OK.

12.26.1 Maple step by step solution

Let’s solve
y′′ = 2y′x− 2αy

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 2y′x+ 2αy = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite DE with series expansions
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◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

akk x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite DE with series expansions
∞∑
k=0

(ak+2(k + 2) (k + 1) + 2ak(α− k))xk = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − 2ak(k − α) = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+2 = −2ak(α−k)

k2+3k+2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Kummer successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 63� �
Order:=6;
dsolve(diff(y(x),x$2)-2*x*diff(y(x),x)+2*alpha*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− αx2 + α(α− 2)x4

6

)
y(0)

+
(
x− (α− 1)x3

3 + (α2 − 4α + 3)x5

30

)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 78� �
AsymptoticDSolveValue[y''[x]-2*x*y'[x]+2*\[Alpha]*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
α2x5

30 − 2αx5

15 + x5

10 − αx3

3 + x3

3 + x

)
+ c1

(
α2x4

6 − αx4

3 − αx2 + 1
)
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12.27 problem 33
12.27.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3930

Internal problem ID [1231]
Internal file name [OUTPUT/1232_Sunday_June_05_2022_02_05_56_AM_31970484/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 33.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_airy", "second_or-
der_bessel_ode", "second order series method. Ordinary point", "second
order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

y′′ − yx = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (896)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (897)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = yx

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= y′x+ y

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= x2y + 2y′

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= x(y′x+ 4y)

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= yx3 + 6y′x+ 4y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = y(0)
F2 = 2y′(0)
F3 = 0
F4 = 4y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + 1

6x
3 + 1

180x
6
)
y(0) +

(
x+ 1

12x
4
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 =
(

∞∑
n=0

anx
n

)
x (1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =0

(
−x1+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =0

(
−x1+nan

)
=

∞∑
n=1

(−an−1x
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(1 + n)xn

)
+

∞∑
n =1

(−an−1x
n) = 0

For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(1 + n)− an−1 = 0
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Solving for an+2, gives

(5)an+2 =
an−1

(n+ 2) (1 + n)

For n = 1 the recurrence equation gives

6a3 − a0 = 0

Which after substituting the earlier terms found becomes

a3 =
a0
6

For n = 2 the recurrence equation gives

12a4 − a1 = 0

Which after substituting the earlier terms found becomes

a4 =
a1
12

For n = 3 the recurrence equation gives

20a5 − a2 = 0

Which after substituting the earlier terms found becomes

a5 = 0

For n = 4 the recurrence equation gives

30a6 − a3 = 0

Which after substituting the earlier terms found becomes

a6 =
a0
180

For n = 5 the recurrence equation gives

42a7 − a4 = 0
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Which after substituting the earlier terms found becomes

a7 =
a1
504

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ 1
6a0x

3 + 1
12a1x

4 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + x3

6

)
a0 +

(
x+ 1

12x
4
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1 + x3

6

)
c1 +

(
x+ 1

12x
4
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1 + 1

6x
3 + 1

180x
6
)
y(0) +

(
x+ 1

12x
4
)
y′(0) +O

(
x6)

(2)y =
(
1 + x3

6

)
c1 +

(
x+ 1

12x
4
)
c2 +O

(
x6)

Verification of solutions

y =
(
1 + 1

6x
3 + 1

180x
6
)
y(0) +

(
x+ 1

12x
4
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1 + x3

6

)
c1 +

(
x+ 1

12x
4
)
c2 +O

(
x6)

Verified OK.
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12.27.1 Maple step by step solution

Let’s solve
y′′ = yx

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − yx = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − ak−1 = 0

• Shift index using k− >k + 1
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(
(k + 1)2 + 3k + 5

)
ak+3 − ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+3 = ak

k2+5k+6 , 2a2 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
Order:=6;
dsolve(diff(y(x),x$2)-x*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + x3

6

)
y(0) +

(
x+ 1

12x
4
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28� �
AsymptoticDSolveValue[y''[x]-x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x4

12 + x

)
+ c1

(
x3

6 + 1
)
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12.28 problem 34
12.28.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3939

Internal problem ID [1232]
Internal file name [OUTPUT/1233_Sunday_June_05_2022_02_05_57_AM_40351558/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 34.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(
−2x3 + 1

)
y′′ − 10y′x2 − 8yx = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (899)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (900)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...

3933



And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2x(5y′x+ 4y)
2x3 − 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 104y′x4 + 112yx3 + 28y′x+ 8y
(2x3 − 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −1232y′x6 − 1504yx5 − 1072x3y′ − 656x2y − 36y′

(2x3 − 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(16704x8 + 31168x5 + 4880x2) y′ + 21888xy

(
x6 + 395

342x
3 + 25

342

)
(2x3 − 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (−256896x10 − 852992x7 − 324320x4 − 11360x) y′ + (−352512x9 − 807040x6 − 175360x3 − 1600) y
(2x3 − 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = 8y(0)
F2 = 36y′(0)
F3 = 0
F4 = 1600y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + 4

3x
3 + 20

9 x6
)
y(0) +

(
x+ 3

2x
4
)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

−2x3 + 1
)
y′′ − 10y′x2 − 8yx = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives(
−2x3 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
− 10

(
∞∑
n=1

nanx
n−1

)
x2 − 8

(
∞∑
n=0

anx
n

)
x = 0 (1)

Which simplifies to

(2)

∞∑
n =2

(
−2nx1+nan(n− 1)

)
+
(

∞∑
n=2

n(n− 1) anxn−2

)

+
∞∑

n =1

(
−10nx1+nan

)
+

∞∑
n =0

(
−8x1+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

(
−2nx1+nan(n− 1)

)
=

∞∑
n=3

(−2(n− 1) an−1(n− 2)xn)

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =1

(
−10nx1+nan

)
=

∞∑
n=2

(−10(n− 1) an−1x
n)

∞∑
n =0

(
−8x1+nan

)
=

∞∑
n=1

(−8an−1x
n)
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

∞∑
n =3

(−2(n− 1) an−1(n− 2)xn) +
(

∞∑
n=0

(n+ 2) an+2(1 + n)xn

)

+
∞∑

n =2

(−10(n− 1) an−1x
n) +

∞∑
n =1

(−8an−1x
n) = 0

n = 1 gives
6a3 − 8a0 = 0

Which after substituting earlier equations, simplifies to

a3 =
4a0
3

n = 2 gives
12a4 − 18a1 = 0

Which after substituting earlier equations, simplifies to

a4 =
3a1
2

For 3 ≤ n, the recurrence equation is

(4)−2(n− 1) an−1(n− 2) + (n+ 2) an+2(1 + n)− 10(n− 1) an−1 − 8an−1 = 0

Solving for an+2, gives

(5)an+2 =
2(1 + n) an−1

n+ 2

For n = 3 the recurrence equation gives

−32a2 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 = 0
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For n = 4 the recurrence equation gives

−50a3 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 =
20a0
9

For n = 5 the recurrence equation gives

−72a4 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 =
18a1
7

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ 4
3a0x

3 + 3
2a1x

4 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + 4x3

3

)
a0 +

(
x+ 3

2x
4
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1 + 4x3

3

)
c1 +

(
x+ 3

2x
4
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1 + 4

3x
3 + 20

9 x6
)
y(0) +

(
x+ 3

2x
4
)
y′(0) +O

(
x6)

(2)y =
(
1 + 4x3

3

)
c1 +

(
x+ 3

2x
4
)
c2 +O

(
x6)
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Verification of solutions

y =
(
1 + 4

3x
3 + 20

9 x6
)
y(0) +

(
x+ 3

2x
4
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1 + 4x3

3

)
c1 +

(
x+ 3

2x
4
)
c2 +O

(
x6)

Verified OK.

12.28.1 Maple step by step solution

Let’s solve
(−2x3 + 1) y′′ − 10y′x2 − 8yx = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −10x2y′

2x3−1 −
8xy

2x3−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 10x2y′

2x3−1 +
8xy

2x3−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 10x2

2x3−1 , P3(x) = 8x
2x3−1

]
◦
(
x+ 2

2
3
4 + I

√
3 2

2
3

4

)
· P2(x) is analytic at x = −2

2
3
4 − I

√
3 2

2
3

4((
x+ 2

2
3
4 + I

√
3 2

2
3

4

)
· P2(x)

) ∣∣∣∣
x=− 2

2
3
4 − I

√
3 2

2
3

4

= 0

◦
(
x+ 2

2
3
4 + I

√
3 2

2
3

4

)2
· P3(x) is analytic at x = −2

2
3
4 − I

√
3 2

2
3

4((
x+ 2

2
3
4 + I

√
3 2

2
3

4

)2
· P3(x)

) ∣∣∣∣
x=− 2

2
3
4 − I

√
3 2

2
3

4

= 0

◦ x = −2
2
3
4 − I

√
3 2

2
3

4 is a regular singular point

Check to see if x0 is a regular singular point
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x0 = −2
2
3
4 − I

√
3 2

2
3

4

• Multiply by denominators
y′′(2x3 − 1) + 10y′x2 + 8yx = 0

• Change variables using x = u− 2
2
3
4 − I

√
3 2

2
3

4 so that the regular singular point is at u = 0(
2u3 − 3u22

2
3

2 − 3 Iu2√3 2
2
3

2 − 3u2
1
3

2 + 3 Iu
√
3 2

1
3

2

)(
d2

du2y(u)
)
+
(
10u2 − 5u2 2

3 − 5 Iu
√
3 2 2

3 − 5 2
1
3

2 + 5 I
√
3 2

1
3

2

) (
d
du
y(u)

)
+
(
8u− 2 2 2

3 − 2 I
√
3 2 2

3

)
y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions
2
1
3
(
I
√
3−1

)
(3r+2)ra0u−1+r

2 +
(

2
1
3
(
I
√
3−1

)
(5+3r)(r+1)a1
2 −

2
2
3
(
1+I

√
3
)
(r+1)(4+3r)a0
2

)
ur +

(
∞∑
k=1

(
2
1
3
(
I
√
3−1

)
(3k+5+3r)(k+1+r)ak+1

2 −
2
2
3
(
1+I

√
3
)
(k+1+r)(3k+4+3r)ak

2 + 2ak−1(k + 1 + r)2
)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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2
1
3
(
I
√
3−1

)
(3r+2)r

2 = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−2

3

}
• Each term must be 0

2
1
3
(
I
√
3−1

)
(5+3r)(r+1)a1
2 −

2
2
3
(
1+I

√
3
)
(r+1)(4+3r)a0
2 = 0

• Each term in the series must be 0, giving the recursion relation

−
3(k+1+r)

(
−
(
k+r+ 5

3
)
ak+1

(
I
√
3−1

)
2
1
3+
(
k+ 4

3+r
)
ak

(
1+I

√
3
)
2
2
3−

4ak−1(k+1+r)
3

)
2 = 0

• Shift index using k− >k + 1

−
3(k+r+2)

(
−
(
k+ 8

3+r
)
ak+2

(
I
√
3−1

)
2
1
3+
(
k+ 7

3+r
)
ak+1

(
1+I

√
3
)
2
2
3− 4ak(k+r+2)

3

)
2 = 0

• Recursion relation that defines series solution to ODE

ak+2 =
(
3 Iak+12

2
3 k

√
3+3 Iak+12

2
3 r

√
3+7 Iak+12

2
3
√
3+3ak+12

2
3 k+3ak+12

2
3 r+7ak+12

2
3−4kak−4rak−8ak

)
2
2
3

2
(
3 Ik

√
3+3 Ir

√
3+8 I

√
3−3k−3r−8

)
• Recursion relation for r = 0

ak+2 =
(
3 Iak+12

2
3 k

√
3+7 Iak+12

2
3
√
3+3ak+12

2
3 k+7ak+12

2
3−4kak−8ak

)
2
2
3

2
(
3 Ik

√
3−8+8 I

√
3−3k

)
• Solution for r = 0[

y(u) =
∞∑
k=0

aku
k, ak+2 =

(
3 Iak+12

2
3 k

√
3+7 Iak+12

2
3
√
3+3ak+12

2
3 k+7ak+12

2
3−4kak−8ak

)
2
2
3

2
(
3 Ik

√
3−8+8 I

√
3−3k

) ,
5 2

1
3
(
I
√
3−1

)
a1

2 − 2 2 2
3
(
1 + I

√
3
)
a0 = 0

]
• Revert the change of variables u = x+ 2

2
3
4 + I

√
3 2

2
3

4[
y =

∞∑
k=0

ak
(
x+ 2

2
3
4 + I

√
3 2

2
3

4

)k
, ak+2 =

(
3 Iak+12

2
3 k

√
3+7 Iak+12

2
3
√
3+3ak+12

2
3 k+7ak+12

2
3−4kak−8ak

)
2
2
3

2
(
3 Ik

√
3−8+8 I

√
3−3k

) ,
5 2

1
3
(
I
√
3−1

)
a1

2 − 2 2 2
3
(
1 + I

√
3
)
a0 = 0

]
• Recursion relation for r = −2

3

ak+2 =
(
3 Iak+12

2
3 k

√
3+5 Iak+12

2
3
√
3+3ak+12

2
3 k+5ak+12

2
3−4kak−

16ak
3

)
2
2
3

2
(
3 Ik

√
3+6 I

√
3−3k−6

)
• Solution for r = −2

3[
y(u) =

∞∑
k=0

aku
k− 2

3 , ak+2 =
(
3 Iak+12

2
3 k

√
3+5 Iak+12

2
3
√
3+3ak+12

2
3 k+5ak+12

2
3−4kak−

16ak
3

)
2
2
3

2
(
3 Ik

√
3+6 I

√
3−3k−6

) ,
2
1
3
(
I
√
3−1

)
a1

2 −
2
2
3
(
1+I

√
3
)
a0

3 = 0
]

• Revert the change of variables u = x+ 2
2
3
4 + I

√
3 2

2
3

4
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[
y =

∞∑
k=0

ak
(
x+ 2

2
3
4 + I

√
3 2

2
3

4

)k− 2
3
, ak+2 =

(
3 Iak+12

2
3 k

√
3+5 Iak+12

2
3
√
3+3ak+12

2
3 k+5ak+12

2
3−4kak−

16ak
3

)
2
2
3

2
(
3 Ik

√
3+6 I

√
3−3k−6

) ,
2
1
3
(
I
√
3−1

)
a1

2 −
2
2
3
(
1+I

√
3
)
a0

3 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak
(
x+ 2

2
3
4 + I

√
3 2

2
3

4

)k)
+
(

∞∑
k=0

bk
(
x+ 2

2
3
4 + I

√
3 2

2
3

4

)k− 2
3
)
, ak+2 =

(
3 Ia1+k2

2
3 k

√
3+7 Ia1+k2

2
3
√
3+3a1+k2

2
3 k+7a1+k2

2
3−4kak−8ak

)
2
2
3

2
(
3 Ik

√
3−8+8 I

√
3−3k

) ,
5 2

1
3
(
I
√
3−1

)
a1

2 − 2 2 2
3
(
1 + I

√
3
)
a0 = 0, bk+2 =

(
3 Ib1+k2

2
3 k

√
3+5 Ib1+k2

2
3
√
3+3b1+k2

2
3 k+5b1+k2

2
3−4kbk−

16bk
3

)
2
2
3

2
(
3 Ik

√
3+6 I

√
3−3k−6

) ,
2
1
3
(
I
√
3−1

)
b1

2 −
2
2
3
(
1+I

√
3
)
b0

3 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
Order:=6;
dsolve((1-2*x^3)*diff(y(x),x$2)-10*x^2*diff(y(x),x)-8*x*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + 4x3

3

)
y(0) +

(
x+ 3

2x
4
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28� �
AsymptoticDSolveValue[(1-2*x^3)*y''[x]-10*x^2*y'[x]-8*x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
3x4

2 + x

)
+ c1

(
4x3

3 + 1
)
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12.29 problem 35
12.29.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3950

Internal problem ID [1233]
Internal file name [OUTPUT/1234_Sunday_June_05_2022_02_05_58_AM_42837116/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 35.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x3 + 1

)
y′′ + 7y′x2 + 9yx = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (902)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (903)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −x(7y′x+ 9y)
x3 + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 47y′x4 + 81yx3 − 23y′x− 9y
(x3 + 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −342y′x6 − 666yx5 + 536x3y′ + 504x2y − 32y′

(x3 + 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(2754x8 − 9182x5 + 2624x2) y′ + 5742

(
x6 − 59

29x
3 + 72

319

)
xy

(x3 + 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(−24552x10 + 144640x7 − 100904x4 + 6544x) y′ − 53496

(
x9 − 3004

743 x
6 + 1175

743 x
3 − 18

743

)
y

(x3 + 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = −9y(0)
F2 = −32y′(0)
F3 = 0
F4 = 1296y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 3

2x
3 + 9

5x
6
)
y(0) +

(
x− 4

3x
4
)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x3 + 1
)
y′′ + 7y′x2 + 9yx = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives(
x3 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ 7
(

∞∑
n=1

nanx
n−1

)
x2 + 9

(
∞∑
n=0

anx
n

)
x = 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

nx1+nan(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)

+
(

∞∑
n=1

7nx1+nan

)
+
(

∞∑
n=0

9x1+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

nx1+nan(n− 1) =
∞∑
n=3

(n− 1) an−1(n− 2)xn

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =1

7nx1+nan =
∞∑
n=2

7(n− 1) an−1x
n

∞∑
n =0

9x1+nan =
∞∑
n=1

9an−1x
n
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=3

(n− 1) an−1(n− 2)xn

)
+
(

∞∑
n=0

(n+ 2) an+2(1 + n)xn

)

+
(

∞∑
n=2

7(n− 1) an−1x
n

)
+
(

∞∑
n=1

9an−1x
n

)
= 0

n = 1 gives
6a3 + 9a0 = 0

Which after substituting earlier equations, simplifies to

a3 = −3a0
2

n = 2 gives
12a4 + 16a1 = 0

Which after substituting earlier equations, simplifies to

a4 = −4a1
3

For 3 ≤ n, the recurrence equation is

(4)(n− 1) an−1(n− 2) + (n+ 2) an+2(1 + n) + 7(n− 1) an−1 + 9an−1 = 0

Solving for an+2, gives

(5)an+2 = −(n+ 2) an−1

1 + n

For n = 3 the recurrence equation gives

25a2 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 = 0
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For n = 4 the recurrence equation gives

36a3 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 =
9a0
5

For n = 5 the recurrence equation gives

49a4 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 =
14a1
9

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 3
2a0x

3 − 4
3a1x

4 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 3x3

2

)
a0 +

(
x− 4

3x
4
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 3x3

2

)
c1 +

(
x− 4

3x
4
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− 3

2x
3 + 9

5x
6
)
y(0) +

(
x− 4

3x
4
)
y′(0) +O

(
x6)

(2)y =
(
1− 3x3

2

)
c1 +

(
x− 4

3x
4
)
c2 +O

(
x6)
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Verification of solutions

y =
(
1− 3

2x
3 + 9

5x
6
)
y(0) +

(
x− 4

3x
4
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 3x3

2

)
c1 +

(
x− 4

3x
4
)
c2 +O

(
x6)

Verified OK.

12.29.1 Maple step by step solution

Let’s solve
(x3 + 1) y′′ + 7y′x2 + 9yx = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −7x2y′

x3+1 −
9xy
x3+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 7x2y′

x3+1 +
9xy
x3+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 7x2

x3+1 , P3(x) = 9x
x3+1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 7
3

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
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(x3 + 1) y′′ + 7y′x2 + 9yx = 0
• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 3u2 + 3u)
(

d2

du2y(u)
)
+ (7u2 − 14u+ 7)

(
d
du
y(u)

)
+ (9u− 9) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(4 + 3r)u−1+r + (a1(1 + r) (7 + 3r)− a0(3r2 + 11r + 9))ur +
(

∞∑
k=1

(
ak+1(k + 1 + r) (3k + 7 + 3r)− ak(3k2 + 6kr + 3r2 + 11k + 11r + 9) + ak−1(k + 2 + r)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(4 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−4

3

}
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• Each term must be 0
a1(1 + r) (7 + 3r)− a0(3r2 + 11r + 9) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (3k + 7 + 3r)− ak(3k2 + 6kr + 3r2 + 11k + 11r + 9) + ak−1(k + 2 + r)2 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (3k + 10 + 3r)− ak+1

(
3(k + 1)2 + 6(k + 1) r + 3r2 + 11k + 20 + 11r

)
+ ak(k + r + 3)2 = 0

• Recursion relation that defines series solution to ODE

ak+2 = −k2ak−3k2ak+1+2krak−6krak+1+r2ak−3r2ak+1+6kak−17kak+1+6rak−17rak+1+9ak−23ak+1
(k+2+r)(3k+10+3r)

• Recursion relation for r = 0

ak+2 = −k2ak−3k2ak+1+6kak−17kak+1+9ak−23ak+1
(k+2)(3k+10)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−3k2ak+1+6kak−17kak+1+9ak−23ak+1

(k+2)(3k+10) , 7a1 − 9a0 = 0
]

• Revert the change of variables u = x+ 1[
y =

∞∑
k=0

ak(x+ 1)k , ak+2 = −k2ak−3k2ak+1+6kak−17kak+1+9ak−23ak+1
(k+2)(3k+10) , 7a1 − 9a0 = 0

]
• Recursion relation for r = −4

3

ak+2 = −k2ak−3k2ak+1+ 10
3 kak−9kak+1+ 25

9 ak− 17
3 ak+1(

k+ 2
3
)
(3k+6)

• Solution for r = −4
3[

y(u) =
∞∑
k=0

aku
k− 4

3 , ak+2 = −k2ak−3k2ak+1+ 10
3 kak−9kak+1+ 25

9 ak− 17
3 ak+1(

k+ 2
3
)
(3k+6) ,−a1 + a0

3 = 0
]

• Revert the change of variables u = x+ 1[
y =

∞∑
k=0

ak(x+ 1)k−
4
3 , ak+2 = −k2ak−3k2ak+1+ 10

3 kak−9kak+1+ 25
9 ak− 17

3 ak+1(
k+ 2

3
)
(3k+6) ,−a1 + a0

3 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k−
4
3

)
, ak+2 = −k2ak−3k2a1+k+6kak−17ka1+k+9ak−23a1+k

(k+2)(3k+10) , 7a1 − 9a0 = 0, bk+2 = −k2bk−3k2b1+k+ 10
3 kbk−9kb1+k+ 25

9 bk− 17
3 b1+k(

k+ 2
3
)
(3k+6) ,−b1 + b0

3 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
Order:=6;
dsolve((1+x^3)*diff(y(x),x$2)+7*x^2*diff(y(x),x)+9*x*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 3x3

2

)
y(0) +

(
x− 4

3x
4
)
D(y) (0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28� �
AsymptoticDSolveValue[(1+x^3)*y''[x]+7*x^2*y'[x]+9*x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x− 4x4

3

)
+ c1

(
1− 3x3

2

)
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12.30 problem 36
12.30.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3962

Internal problem ID [1234]
Internal file name [OUTPUT/1235_Sunday_June_05_2022_02_06_00_AM_18016655/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 36.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(
−2x3 + 1

)
y′′ + 6y′x2 + 24yx = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (905)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (906)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
6x(y′x+ 4y)

2x3 − 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 36y′x+ 24y
2x3 − 1

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 120x3y′ + 720x2y − 60y′

(2x3 − 1)2

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
1440

(
x3 − 1

2

)
x2y′ + (−2880x4 − 2880x) y
(2x3 − 1)3

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
4320(−2x7 − x4 + x) y′ + 63360

(
x6 + 7

11x
3 + 1

22

)
y

(2x3 − 1)4

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = −24y(0)
F2 = −60y′(0)
F3 = 0
F4 = 2880y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
4x6 − 4x3 + 1

)
y(0) +

(
x− 5

2x
4
)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

−2x3 + 1
)
y′′ + 6y′x2 + 24yx = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives(
−2x3 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ 6
(

∞∑
n=1

nanx
n−1

)
x2 + 24

(
∞∑
n=0

anx
n

)
x = 0 (1)

Which simplifies to

(2)

∞∑
n =2

(
−2nx1+nan(n− 1)

)
+
(

∞∑
n=2

n(n− 1) anxn−2

)

+
(

∞∑
n=1

6nx1+nan

)
+
(

∞∑
n=0

24x1+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

(
−2nx1+nan(n− 1)

)
=

∞∑
n=3

(−2(n− 1) an−1(n− 2)xn)

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =1

6nx1+nan =
∞∑
n=2

6(n− 1) an−1x
n

∞∑
n =0

24x1+nan =
∞∑
n=1

24an−1x
n
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

∞∑
n =3

(−2(n− 1) an−1(n− 2)xn) +
(

∞∑
n=0

(n+ 2) an+2(1 + n)xn

)

+
(

∞∑
n=2

6(n− 1) an−1x
n

)
+
(

∞∑
n=1

24an−1x
n

)
= 0

n = 1 gives
6a3 + 24a0 = 0

Which after substituting earlier equations, simplifies to

a3 = −4a0

n = 2 gives
12a4 + 30a1 = 0

Which after substituting earlier equations, simplifies to

a4 = −5a1
2

For 3 ≤ n, the recurrence equation is

(4)−2(n− 1) an−1(n− 2) + (n+ 2) an+2(1 + n) + 6(n− 1) an−1 + 24an−1 = 0

Solving for an+2, gives

(5)an+2 =
2(n− 7) an−1

n+ 2

For n = 3 the recurrence equation gives

32a2 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 = 0
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For n = 4 the recurrence equation gives

30a3 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = 4a0

For n = 5 the recurrence equation gives

24a4 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 =
10a1
7

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 4a0x3 − 5
2a1x

4 + . . .

Collecting terms, the solution becomes

(3)y =
(
−4x3 + 1

)
a0 +

(
x− 5

2x
4
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
−4x3 + 1

)
c1 +

(
x− 5

2x
4
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
4x6 − 4x3 + 1

)
y(0) +

(
x− 5

2x
4
)
y′(0) +O

(
x6)

(2)y =
(
−4x3 + 1

)
c1 +

(
x− 5

2x
4
)
c2 +O

(
x6)
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Verification of solutions

y =
(
4x6 − 4x3 + 1

)
y(0) +

(
x− 5

2x
4
)
y′(0) +O

(
x6)

Verified OK.

y =
(
−4x3 + 1

)
c1 +

(
x− 5

2x
4
)
c2 +O

(
x6)

Verified OK.

12.30.1 Maple step by step solution

Let’s solve
(−2x3 + 1) y′′ + 6y′x2 + 24yx = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = 6x2y′

2x3−1 +
24xy
2x3−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − 6x2y′

2x3−1 −
24xy
2x3−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 6x2

2x3−1 , P3(x) = − 24x
2x3−1

]
◦
(
x+ 2

2
3
4 + I

√
3 2

2
3

4

)
· P2(x) is analytic at x = −2

2
3
4 − I

√
3 2

2
3

4((
x+ 2

2
3
4 + I

√
3 2

2
3

4

)
· P2(x)

) ∣∣∣∣
x=− 2

2
3
4 − I

√
3 2

2
3

4

= 0

◦
(
x+ 2

2
3
4 + I

√
3 2

2
3

4

)2
· P3(x) is analytic at x = −2

2
3
4 − I

√
3 2

2
3

4((
x+ 2

2
3
4 + I

√
3 2

2
3

4

)2
· P3(x)

) ∣∣∣∣
x=− 2

2
3
4 − I

√
3 2

2
3

4

= 0

◦ x = −2
2
3
4 − I

√
3 2

2
3

4 is a regular singular point

Check to see if x0 is a regular singular point
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x0 = −2
2
3
4 − I

√
3 2

2
3

4

• Multiply by denominators
y′′(2x3 − 1)− 6y′x2 − 24yx = 0

• Change variables using x = u− 2
2
3
4 − I

√
3 2

2
3

4 so that the regular singular point is at u = 0(
2u3 − 3u22

2
3

2 − 3 Iu2√3 2
2
3

2 − 3u2
1
3

2 + 3 Iu
√
3 2

1
3

2

)(
d2

du2y(u)
)
+
(
−6u2 + 3u2 2

3 + 3 Iu
√
3 2 2

3 + 3 2
1
3

2 − 3 I
√
3 2

1
3

2

) (
d
du
y(u)

)
+
(
−24u+ 62 2

3 + 6 I
√
3 2 2

3

)
y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions
3 2

1
3
(
I
√
3−1

)
(r−2)ra0ur−1

2 +
(

3 2
1
3
(
I
√
3−1

)
(r−1)(1+r)a1
2 −

3 2
2
3
(
1+I

√
3
)
(1+r)(−4+r)a0
2

)
ur +

(
∞∑
k=1

(
3 2

1
3
(
I
√
3−1

)
(k+r−1)(k+1+r)ak+1

2 −
3 2

2
3
(
1+I

√
3
)
(k+1+r)(k−4+r)ak

2 + 2ak−1(k + 1 + r) (k − 7 + r)
)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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3 2
1
3
(
I
√
3−1

)
(r−2)r

2 = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term must be 0
3 2

1
3
(
I
√
3−1

)
(r−1)(1+r)a1
2 −

3 2
2
3
(
1+I

√
3
)
(1+r)(−4+r)a0
2 = 0

• Each term in the series must be 0, giving the recursion relation

−
3(k+1+r)

(
−(k+r−1)ak+1

(
I
√
3−1

)
2
1
3+
(
1+I

√
3
)
ak(k−4+r)2

2
3−

4ak−1(k−7+r)
3

)
2 = 0

• Shift index using k− >k + 1

−
3(k+r+2)

(
−(k+r)ak+2

(
I
√
3−1

)
2
1
3+
(
1+I

√
3
)
ak+1(k−3+r)2

2
3− 4ak(k+r−6)

3

)
2 = 0

• Recursion relation that defines series solution to ODE

ak+2 =
(
3 I

√
3 2

2
3 kak+1+3 I

√
3 2

2
3 rak+1−9 I

√
3 2

2
3 ak+1+32

2
3 kak+1+32

2
3 rak+1−9ak+12

2
3−4kak−4rak+24ak

)
2
2
3

6
(
I
√
3 k+I

√
3 r−k−r

)
• Recursion relation for r = 0

ak+2 =
(
3 I

√
3 2

2
3 kak+1−9 I

√
3 2

2
3 ak+1+32

2
3 kak+1−9ak+12

2
3−4kak+24ak

)
2
2
3

6
(
I
√
3 k−k

)
• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0

ak+2 =
(
3 I

√
3 2

2
3 kak+1−9 I

√
3 2

2
3 ak+1+32

2
3 kak+1−9ak+12

2
3−4kak+24ak

)
2
2
3

6
(
I
√
3 k−k

)
• Recursion relation for r = 2

ak+2 =
(
3 I

√
3 2

2
3 kak+1−3 I

√
3 2

2
3 ak+1+32

2
3 kak+1−3ak+12

2
3−4kak+16ak

)
2
2
3

6
(
I
√
3 k+2 I

√
3−k−2

)
• Solution for r = 2[

y(u) =
∞∑
k=0

aku
k+2, ak+2 =

(
3 I

√
3 2

2
3 kak+1−3 I

√
3 2

2
3 ak+1+32

2
3 kak+1−3ak+12

2
3−4kak+16ak

)
2
2
3

6
(
I
√
3 k+2 I

√
3−k−2

) ,
9 2

1
3
(
I
√
3−1

)
a1

2 + 92 2
3
(
1 + I

√
3
)
a0 = 0

]
• Revert the change of variables u = x+ 2

2
3
4 + I

√
3 2

2
3

4[
y =

∞∑
k=0

ak
(
x+ 2

2
3
4 + I

√
3 2

2
3

4

)k+2
, ak+2 =

(
3 I

√
3 2

2
3 kak+1−3 I

√
3 2

2
3 ak+1+32

2
3 kak+1−3ak+12

2
3−4kak+16ak

)
2
2
3

6
(
I
√
3 k+2 I

√
3−k−2

) ,
9 2

1
3
(
I
√
3−1

)
a1

2 + 92 2
3
(
1 + I

√
3
)
a0 = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
Order:=6;
dsolve((1-2*x^3)*diff(y(x),x$2)+6*x^2*diff(y(x),x)+24*x*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
−4x3 + 1

)
y(0) +

(
x− 5

2x
4
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 26� �
AsymptoticDSolveValue[(1-2*x^3)*y''[x]+6*x^2*y'[x]+24*x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x− 5x4

2

)
+ c1

(
1− 4x3)
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12.31 problem 37
12.31.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3973

Internal problem ID [1235]
Internal file name [OUTPUT/1236_Sunday_June_05_2022_02_06_01_AM_10713628/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 37.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
−x3 + 1

)
y′′ + 15y′x2 − 36yx = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (908)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (909)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
3x(5y′x− 12y)

x3 − 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 174y′x4 − 468yx3 + 6y′x+ 36y
(x3 − 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 6(299x6 − 22x3 − 7) y′ + 972(−5x5 + x2) y
(x3 − 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(16668x8 − 6120x5 − 828x2) y′ − 45144xy

(
x6 − 103

209x
3 + 2

209

)
(x3 − 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (138204x10 − 114912x7 + 3780x4 + 2088x) y′ + (−374328x9 + 358344x6 − 54432x3 + 432) y
(x3 − 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = 36y(0)
F2 = 42y′(0)
F3 = 0
F4 = −432y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + 6x3 − 3

5x
6
)
y(0) +

(
x+ 7

4x
4
)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

−x3 + 1
)
y′′ + 15y′x2 − 36yx = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives(
−x3 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ 15

(
∞∑
n=1

nanx
n−1

)
x2 − 36

(
∞∑
n=0

anx
n

)
x = 0 (1)

Which simplifies to

(2)

∞∑
n =2

(
−nx1+nan(n− 1)

)
+
(

∞∑
n=2

n(n− 1) anxn−2

)

+
(

∞∑
n=1

15nx1+nan

)
+

∞∑
n =0

(
−36x1+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

(
−nx1+nan(n− 1)

)
=

∞∑
n=3

(−(n− 1) an−1(n− 2)xn)

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =1

15nx1+nan =
∞∑
n=2

15(n− 1) an−1x
n

∞∑
n =0

(
−36x1+nan

)
=

∞∑
n=1

(−36an−1x
n)
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

∞∑
n =3

(−(n− 1) an−1(n− 2)xn) +
(

∞∑
n=0

(n+ 2) an+2(1 + n)xn

)

+
(

∞∑
n=2

15(n− 1) an−1x
n

)
+

∞∑
n =1

(−36an−1x
n) = 0

n = 1 gives
6a3 − 36a0 = 0

Which after substituting earlier equations, simplifies to

a3 = 6a0

n = 2 gives
12a4 − 21a1 = 0

Which after substituting earlier equations, simplifies to

a4 =
7a1
4

For 3 ≤ n, the recurrence equation is

(4)−(n− 1) an−1(n− 2) + (n+ 2) an+2(1 + n) + 15(n− 1) an−1 − 36an−1 = 0

Solving for an+2, gives

(5)an+2 =
an−1(n2 − 18n+ 53)

(n+ 2) (1 + n)

For n = 3 the recurrence equation gives

−8a2 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 = 0
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For n = 4 the recurrence equation gives

3a3 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = −3a0
5

For n = 5 the recurrence equation gives

12a4 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = −a1
2

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ 6a0x3 + 7
4a1x

4 + . . .

Collecting terms, the solution becomes

(3)y =
(
6x3 + 1

)
a0 +

(
x+ 7

4x
4
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
6x3 + 1

)
c1 +

(
x+ 7

4x
4
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1 + 6x3 − 3

5x
6
)
y(0) +

(
x+ 7

4x
4
)
y′(0) +O

(
x6)

(2)y =
(
6x3 + 1

)
c1 +

(
x+ 7

4x
4
)
c2 +O

(
x6)
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Verification of solutions

y =
(
1 + 6x3 − 3

5x
6
)
y(0) +

(
x+ 7

4x
4
)
y′(0) +O

(
x6)

Verified OK.

y =
(
6x3 + 1

)
c1 +

(
x+ 7

4x
4
)
c2 +O

(
x6)

Verified OK.

12.31.1 Maple step by step solution

Let’s solve
(−x3 + 1) y′′ + 15y′x2 − 36yx = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = 15x2y′

x3−1 − 36xy
x3−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − 15x2y′

x3−1 + 36xy
x3−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 15x2

x3−1 , P3(x) = 36x
x3−1

]
◦ (x− 1) · P2(x) is analytic at x = 1

((x− 1) · P2(x))
∣∣∣∣
x=1

= −5

◦ (x− 1)2 · P3(x) is analytic at x = 1(
(x− 1)2 · P3(x)

) ∣∣∣∣
x=1

= 0

◦ x = 1is a regular singular point
Check to see if x0 is a regular singular point
x0 = 1

• Multiply by denominators
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y′′(x3 − 1)− 15y′x2 + 36yx = 0
• Change variables using x = u+ 1 so that the regular singular point is at u = 0

(u3 + 3u2 + 3u)
(

d2

du2y(u)
)
+ (−15u2 − 30u− 15)

(
d
du
y(u)

)
+ (36u+ 36) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

3a0r(−6 + r)u−1+r + (3a1(1 + r) (−5 + r) + 3a0(r2 − 11r + 12))ur +
(

∞∑
k=1

(
3ak+1(k + 1 + r) (k − 5 + r) + 3ak(k2 + 2kr + r2 − 11k − 11r + 12) + ak−1

(
(k − 1)2 + 2(k − 1) r + r2 − 16k + 52− 16r

))
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
3r(−6 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 6}
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• Each term must be 0
3a1(1 + r) (−5 + r) + 3a0(r2 − 11r + 12) = 0

• Each term in the series must be 0, giving the recursion relation
(3ak + ak−1 + 3ak+1) k2 + (2(3ak + ak−1 + 3ak+1) r − 33ak − 18ak−1 − 12ak+1) k + (3ak + ak−1 + 3ak+1) r2 + 3(−11ak − 6ak−1 − 4ak+1) r + 36ak + 53ak−1 − 15ak+1 = 0

• Shift index using k− >k + 1
(3ak+1 + ak + 3ak+2) (k + 1)2 + (2(3ak+1 + ak + 3ak+2) r − 33ak+1 − 18ak − 12ak+2) (k + 1) + (3ak+1 + ak + 3ak+2) r2 + 3(−11ak+1 − 6ak − 4ak+2) r + 36ak+1 + 53ak − 15ak+2 = 0

• Recursion relation that defines series solution to ODE

ak+2 = −k2ak+3k2ak+1+2krak+6krak+1+r2ak+3r2ak+1−16kak−27kak+1−16rak−27rak+1+36ak+6ak+1
3(k2+2kr+r2−2k−2r−8)

• Recursion relation for r = 0

ak+2 = −k2ak+3k2ak+1−16kak−27kak+1+36ak+6ak+1
3(k2−2k−8)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 4

ak+2 = −k2ak+3k2ak+1−16kak−27kak+1+36ak+6ak+1
3(k2−2k−8)

• Recursion relation for r = 6

ak+2 = −k2ak+3k2ak+1−4kak+9kak+1−24ak−48ak+1
3(k2+10k+16)

• Solution for r = 6[
y(u) =

∞∑
k=0

aku
k+6, ak+2 = −k2ak+3k2ak+1−4kak+9kak+1−24ak−48ak+1

3(k2+10k+16) , 21a1 − 54a0 = 0
]

• Revert the change of variables u = x− 1[
y =

∞∑
k=0

ak(x− 1)k+6 , ak+2 = −k2ak+3k2ak+1−4kak+9kak+1−24ak−48ak+1
3(k2+10k+16) , 21a1 − 54a0 = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
Order:=6;
dsolve((1-x^3)*diff(y(x),x$2)+15*x^2*diff(y(x),x)-36*x*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
6x3 + 1

)
y(0) +

(
x+ 7

4x
4
)
D(y) (0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28� �
AsymptoticDSolveValue[(1-2*x^3)*y''[x]-10*x^2*y'[x]-8*x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
3x4

2 + x

)
+ c1

(
4x3

3 + 1
)
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12.32 problem 39
12.32.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3985

Internal problem ID [1236]
Internal file name [OUTPUT/1237_Sunday_June_05_2022_02_06_02_AM_35795779/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 39.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
2x5 + 1

)
y′′ + 14y′x4 + 10yx3 = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (911)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (912)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2x3(7y′x+ 5y)
2x5 + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

=
(204x8 − 66x3) y′ + 180x2(x5 − 1

6

)
y

(2x5 + 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(−3312x12 + 3600x7 − 228x2) y′ − 3120xy

(
x10 − 10

13x
5 + 1

52

)
(2x5 + 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(60000x16 − 146064x11 + 36600x6 − 516x) y′ + 58080

(
x15 − 43

22x
10 + 153

484x
5 − 1

968

)
y

(2x5 + 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(−1203840x20 + 5465088x15 − 3220704x10 + 264672x5 − 576) y′ − 1180800

(
x15 − 799

205x
10 + 285

164x
5 − 69

820

)
x4y

(2x5 + 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = 0
F2 = 0
F3 = −60y(0)
F4 = −576y′(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− x5

2

)
y(0) +

(
x− 4

5x
6
)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

2x5 + 1
)
y′′ + 14y′x4 + 10yx3 = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives(
2x5 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ 14

(
∞∑
n=1

nanx
n−1

)
x4 + 10

(
∞∑
n=0

anx
n

)
x3 = 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

2nxn+3an(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)

+
(

∞∑
n=1

14nxn+3an

)
+
(

∞∑
n=0

10xn+3an

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

2nxn+3an(n− 1) =
∞∑
n=5

2(n− 3) an−3(n− 4)xn

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =1

14nxn+3an =
∞∑
n=4

14(n− 3) an−3x
n

∞∑
n =0

10xn+3an =
∞∑
n=3

10an−3x
n
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=5

2(n− 3) an−3(n− 4)xn

)
+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
(

∞∑
n=4

14(n− 3) an−3x
n

)
+
(

∞∑
n=3

10an−3x
n

)
= 0

n = 3 gives
20a5 + 10a0 = 0

Which after substituting earlier equations, simplifies to

a5 = −a0
2

n = 4 gives
30a6 + 24a1 = 0

Which after substituting earlier equations, simplifies to

a6 = −4a1
5

For 5 ≤ n, the recurrence equation is

(4)2(n− 3) an−3(n− 4) + (n+ 2) an+2(n+ 1) + 14(n− 3) an−3 + 10an−3 = 0

Solving for an+2, gives

(5)an+2 = −2(n− 2) an−3

n+ 1

For n = 5 the recurrence equation gives

42a2 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = 0
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And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
2a0x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− x5

2

)
a0 + a1x+O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x5

2

)
c1 + c2x+O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− x5

2

)
y(0) +

(
x− 4

5x
6
)
y′(0) +O

(
x6)

(2)y =
(
1− x5

2

)
c1 + c2x+O

(
x6)

Verification of solutions

y =
(
1− x5

2

)
y(0) +

(
x− 4

5x
6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− x5

2

)
c1 + c2x+O

(
x6)

Verified OK.
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12.32.1 Maple step by step solution

Let’s solve
(2x5 + 1) y′′ + 14y′x4 + 10yx3 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −14x4y′

2x5+1 −
10x3y
2x5+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 14x4y′

2x5+1 +
10x3y
2x5+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 14x4

2x5+1 , P3(x) = 10x3

2x5+1

]
◦
(
x−

((
−

√
5
8 − 1

8

)
cos
(
π
5

)
−

√
2
√

5−
√
5 sin

(
π
5
)

8

)
2 4

5 − I
(√

2
√

5−
√
5 cos

(
π
5
)

8 +
(
−

√
5
8 − 1

8

)
sin
(
π
5

))
2 4

5

)
· P2(x) is analytic at x =

((
−

√
5
8 − 1

8

)
cos
(
π
5

)
−

√
2
√

5−
√
5 sin

(
π
5
)

8

)
2 4

5 + I
(√

2
√

5−
√
5 cos

(
π
5
)

8 +
(
−

√
5
8 − 1

8

)
sin
(
π
5

))
2 4

5

((
x−

((
−

√
5
8 − 1

8

)
cos
(
π
5

)
−

√
2
√

5−
√
5 sin

(
π
5
)

8

)
2 4

5 − I
(√

2
√

5−
√
5 cos

(
π
5
)

8 +
(
−

√
5
8 − 1

8

)
sin
(
π
5

))
2 4

5

)
· P2(x)

) ∣∣∣∣
x=
((

−
√
5

8 − 1
8

)
cos
(
π
5
)
−

√
2
√

5−
√
5 sin

(
π
5
)

8

)
2
4
5+I

(√
2
√

5−
√

5 cos
(
π
5
)

8 +
(
−

√
5

8 − 1
8

)
sin
(
π
5
))

2
4
5

= −
7
(
2 I 2

3
10 cos

(
π
5
)√

5−
√
5−I

√
5 sin

(
π
5
)
2
4
5−2 2

3
10 sin

(
π
5
)√

5−
√
5−I sin

(
π
5
)
2
4
5−

√
5 cos

(
π
5
)
2
4
5−cos

(
π
5
)
2
4
5−8

((
−

√
5

8 − 1
8

)
cos
(
π
5
)
−

√
2
√

5−
√
5 sin

(
π
5
)

8

)
2
4
5−8 I

(√
2
√

5−
√

5 cos
(
π
5
)

8 +
(
−

√
5

8 − 1
8

)
sin
(
π
5
))

2
4
5

)(((
−

√
5

8 − 1
8

)
cos
(
π
5
)
−

√
2
√

5−
√

5 sin
(
π
5
)

8

)
2
4
5+I

(√
2
√

5−
√
5 cos

(
π
5
)

8 +
(
−

√
5
8 − 1

8

)
sin
(
π
5
))

2
4
5

)4

4

2
(((

−
√
5
8 − 1

8

)
cos
(
π
5
)
−

√
2
√

5−
√
5 sin

(
π
5
)

8

)
2
4
5+I

(√
2
√

5−
√

5 cos
(
π
5
)

8 +
(
−

√
5

8 − 1
8

)
sin
(
π
5
))

2
4
5

)5
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◦
(
x−

((
−

√
5
8 − 1

8

)
cos
(
π
5

)
−

√
2
√

5−
√
5 sin

(
π
5
)

8

)
2 4

5 − I
(√

2
√

5−
√
5 cos

(
π
5
)

8 +
(
−

√
5
8 − 1

8

)
sin
(
π
5

))
2 4

5

)2

· P3(x) is analytic at x =
((

−
√
5
8 − 1

8

)
cos
(
π
5

)
−

√
2
√

5−
√
5 sin

(
π
5
)

8

)
2 4

5 + I
(√

2
√

5−
√
5 cos

(
π
5
)

8 +
(
−

√
5
8 − 1

8

)
sin
(
π
5

))
2 4

5

((
x−

((
−

√
5
8 − 1

8

)
cos
(
π
5

)
−

√
2
√

5−
√
5 sin

(
π
5
)

8

)
2 4

5 − I
(√

2
√

5−
√
5 cos

(
π
5
)

8 +
(
−

√
5
8 − 1

8

)
sin
(
π
5

))
2 4

5

)2

· P3(x)
)∣∣∣∣

x=
((

−
√
5
8 − 1

8

)
cos
(
π
5
)
−

√
2
√

5−
√
5 sin

(
π
5
)

8

)
2
4
5+I

(√
2
√

5−
√
5 cos

(
π
5
)

8 +
(
−

√
5

8 − 1
8

)
sin
(
π
5
))

2
4
5

=
5
(
2 I 2

3
10 cos

(
π
5
)√

5−
√
5−I

√
5 sin

(
π
5
)
2
4
5−2 2

3
10 sin

(
π
5
)√

5−
√
5−I sin

(
π
5
)
2
4
5−

√
5 cos

(
π
5
)
2
4
5−cos

(
π
5
)
2
4
5−8

((
−

√
5

8 − 1
8

)
cos
(
π
5
)
−

√
2
√

5−
√
5 sin

(
π
5
)
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◦ x =
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−
√
5
8 − 1

8

)
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(
π
5

)
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√
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(
π
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√
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√
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)
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5 is a regular singular point

Check to see if x0 is a regular singular point

x0 =
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−
√
5
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)
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(
π
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)
−

√
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√
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π
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√
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√
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)
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5

• Multiply by denominators
(2x5 + 1) y′′ + 14y′x4 + 10yx3 = 0
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• Change variables using x = u+
((

−
√
5
8 − 1

8

)
cos
(
π
5

)
−

√
2
√

5−
√
5 sin

(
π
5
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8
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5 + I
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2
√

5−
√
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(
π
5
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8 +
(
−

√
5
8 − 1

8

)
sin
(
π
5

))
2 4

5 so that the regular singular point is at u = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..3

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..4

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 0..5

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions
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• a0cannot be 0 by assumption, giving the indicial equation
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• Values of r that satisfy the indicial equation
r = r

• The coefficients of each power of u must be 0
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]
• Solve for the dependent coefficient(s)
• Each term in the series must be 0, giving the recursion relation
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• Shift index using k− >k + 3
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5 + 1
2

)
ak+32

2
5+4

(
− 7

10+(k+3)2+2
( 3
5+r

)
(k+3)+r2+ 6r

5

)
ak+22

3
5
)
sin
(
π
5
)

4 +
5 I
(
−8
(
− 7

10+(k+3)2+2
( 3
5+r

)
(k+3)+r2+ 6r

5

)
ak+22

1
10+22

3
10 ak+1

(
(k+3)2+

(
2r+ 3

5
)
(k+3)+r2+ 3r

5 − 11
5

)
+(k+4+r)

(
k+ 22

5 +r
)
2

7
10 ak+4−4

(
(k+3)2+

(
2r+ 9

5
)
(k+3)+r2+ 9r

5 + 1
2

)
2

9
10 ak+3

)√
5−

√
5

16 +
5 I
(
2 2

3
10 ak+1

(
(k+3)2+

(
2r+ 3

5
)
(k+3)+r2+ 3r

5 − 11
5

)
+(k+4+r)

(
k+ 22

5 +r
)
2

7
10 ak+4

)√
25−5

√
5

16 + 5(k + 4 + r)
(
k + 22

5 + r
)
ak+42

1
5 − 5 2 4

5ak+1
(
(k + 3)2 +

(
2r + 3

5

)
(k + 3) + r2 + 3r

5 − 11
5

)
− 10

(
(k + 3)2 +

(
2r + 9

5

)
(k + 3) + r2 + 9r

5 + 1
2

)
ak+32

2
5 + 10

(
− 7

10 + (k + 3)2 + 2
(3
5 + r

)
(k + 3) + r2 + 6r

5

)
ak+22

3
5 + 2ak(k + 5 + r) (k + r + 1) = 0

• Recursion relation that defines series solution to ODE

ak+4 = −
2
(
20 I sin

(
π
5
)
ak+12

4
5 kr

√
5+80ak+12

4
5 kr−160ak+22

3
5 kr+160ak+32

2
5 kr+149 I

√
5−

√
5 2

9
10 ak+3+86 I sin

(
π
5
)
ak+12

4
5−476 I sin

(
π
5
)
ak+22

3
5−43 I

√
5−

√
5 2

3
10 ak+1−43 I

√
25−5

√
5 2

3
10 ak+1−596 I sin

(
π
5
)
ak+32

2
5+238 I

√
5−

√
5 ak+22

1
10−5 I

√
5−

√
5 2

3
10 ak+1k

2−5 I
√

5−
√
5 2

3
10 ak+1r

2−5 I
√

25−5
√
5 2

3
10 ak+1k

2−5 I
√

25−5
√
5 2

3
10 ak+1r

2−288 I sin
(
π
5
)
ak+22

3
5 k−288 I sin

(
π
5
)
ak+22

3
5 r−40 I sin

(
π
5
)
ak+32

2
5 k2−40 I sin

(
π
5
)
ak+32

2
5 r2−33 I

√
5−

√
5 2

3
10 ak+1k−33 I

√
5−

√
5 2

3
10 ak+1r−33 I

√
25−5

√
5 2

3
10 ak+1k−33 I

√
25−5

√
5 2

3
10 ak+1r−312 I sin

(
π
5
)
ak+32

2
5 k−312 I sin

(
π
5
)
ak+32

2
5 r+20 I

√
5−

√
5 ak+22

1
10 k2+20 I

√
5−

√
5 ak+22

1
10 r2+144 I

√
5−

√
5 ak+22

1
10 k+144 I

√
5−

√
5 ak+22

1
10 r+10 I

√
5−

√
5 2

9
10 ak+3k

2+10 I
√

5−
√
5 2

9
10 ak+3r

2+78 I
√

5−
√
5 2

9
10 ak+3k+78 I

√
5−

√
5 2

9
10 ak+3r+10 I sin

(
π
5
)
ak+12

4
5 k2+10 I sin

(
π
5
)
ak+12

4
5 r2+86 I sin

(
π
5
)
ak+12

4
5
√
5+66 I sin

(
π
5
)
ak+12

4
5 k+66 I sin

(
π
5
)
ak+12

4
5 r−40 I sin

(
π
5
)
ak+22

3
5 k2−40 I sin

(
π
5
)
ak+22

3
5 r2+20 I

√
5−

√
5 2

9
10 ak+3kr+10 I sin

(
π
5
)
ak+12

4
5 k2

√
5+10 I sin

(
π
5
)
ak+12

4
5 r2

√
5+66 I sin

(
π
5
)
ak+12

4
5 k

√
5+66 I sin

(
π
5
)
ak+12

4
5 r

√
5+20 I sin

(
π
5
)
ak+12

4
5 kr−80 I sin

(
π
5
)
ak+22

3
5 kr−10 I

√
5−

√
5 2

3
10 ak+1kr−10 I

√
25−5

√
5 2

3
10 ak+1kr−80 I sin

(
π
5
)
ak+32

2
5 kr+40 I

√
5−

√
5 ak+22

1
10 kr−80ak+344ak+12

4
5−952ak+22

3
5+1192ak+32

2
5−96akk−96akr+80ak+32

2
5 k2−32krak−16k2ak−16r2ak+80ak+32

2
5 r2+624ak+32

2
5 k+624ak+32

2
5 r+40ak+12

4
5 k2+40ak+12

4
5 r2+264ak+12

4
5 k+264ak+12

4
5 r−80ak+22

3
5 k2−80ak+22

3
5 r2−576ak+22

3
5 k−576ak+22

3
5 r
)

−1408 2
1
5+40 I sin

(
π
5
)
2
1
5 kr

√
5+352 I sin

(
π
5
)
2
1
5
√
5+168 I sin

(
π
5
)
2
1
5 k+168 I sin

(
π
5
)
2
1
5 r−5 I

√
5−

√
5 2

7
10 k2−10 I

√
5−

√
5 2

7
10 kr−10 I

√
25−5

√
5 2

7
10 kr+20 I sin

(
π
5
)
2
1
5 k2

√
5+20 I sin

(
π
5
)
2
1
5 r2

√
5+168 I sin

(
π
5
)
2
1
5 k

√
5+168 I sin

(
π
5
)
2
1
5 r

√
5+40 I sin

(
π
5
)
2
1
5 kr−160 2

1
5 kr−5 I

√
5−

√
5 2

7
10 r2−5 I

√
25−5

√
5 2

7
10 k2−5 I

√
25−5

√
5 2

7
10 r2−42 I

√
5−

√
5 2

7
10 k−42 I

√
5−

√
5 2

7
10 r−42 I

√
25−5

√
5 2

7
10 k−42 I

√
25−5

√
5 2

7
10 r+20 I sin

(
π
5
)
2
1
5 k2+20 I sin

(
π
5
)
2
1
5 r2+352 I sin

(
π
5
)
2
1
5−88 I

√
25−5

√
5 2

7
10−88 I

√
5−

√
5 2

7
10−80 2

1
5 r2−672 2

1
5 k−672 2

1
5 r−80 2

1
5 k2

• Recursion relation for r = r

ak+4 = −
2
(
20 I sin

(
π
5
)
ak+12

4
5 kr

√
5+80ak+12

4
5 kr−160ak+22

3
5 kr+160ak+32

2
5 kr+149 I

√
5−

√
5 2

9
10 ak+3+86 I sin

(
π
5
)
ak+12

4
5−476 I sin

(
π
5
)
ak+22

3
5−43 I

√
5−

√
5 2

3
10 ak+1−43 I

√
25−5

√
5 2

3
10 ak+1−596 I sin

(
π
5
)
ak+32

2
5+238 I

√
5−

√
5 ak+22

1
10−5 I

√
5−

√
5 2

3
10 ak+1k

2−5 I
√

5−
√
5 2

3
10 ak+1r

2−5 I
√

25−5
√
5 2

3
10 ak+1k

2−5 I
√

25−5
√
5 2

3
10 ak+1r

2−288 I sin
(
π
5
)
ak+22

3
5 k−288 I sin

(
π
5
)
ak+22

3
5 r−40 I sin

(
π
5
)
ak+32

2
5 k2−40 I sin

(
π
5
)
ak+32

2
5 r2−33 I

√
5−

√
5 2

3
10 ak+1k−33 I

√
5−

√
5 2

3
10 ak+1r−33 I

√
25−5

√
5 2

3
10 ak+1k−33 I

√
25−5

√
5 2

3
10 ak+1r−312 I sin

(
π
5
)
ak+32

2
5 k−312 I sin

(
π
5
)
ak+32

2
5 r+20 I

√
5−

√
5 ak+22

1
10 k2+20 I

√
5−

√
5 ak+22

1
10 r2+144 I

√
5−

√
5 ak+22

1
10 k+144 I

√
5−

√
5 ak+22

1
10 r+10 I

√
5−

√
5 2

9
10 ak+3k

2+10 I
√

5−
√
5 2

9
10 ak+3r

2+78 I
√

5−
√
5 2

9
10 ak+3k+78 I

√
5−

√
5 2

9
10 ak+3r+10 I sin

(
π
5
)
ak+12

4
5 k2+10 I sin

(
π
5
)
ak+12

4
5 r2+86 I sin

(
π
5
)
ak+12

4
5
√
5+66 I sin

(
π
5
)
ak+12

4
5 k+66 I sin

(
π
5
)
ak+12

4
5 r−40 I sin

(
π
5
)
ak+22

3
5 k2−40 I sin

(
π
5
)
ak+22

3
5 r2+20 I

√
5−

√
5 2

9
10 ak+3kr+10 I sin

(
π
5
)
ak+12

4
5 k2

√
5+10 I sin

(
π
5
)
ak+12

4
5 r2

√
5+66 I sin

(
π
5
)
ak+12

4
5 k

√
5+66 I sin

(
π
5
)
ak+12

4
5 r

√
5+20 I sin

(
π
5
)
ak+12

4
5 kr−80 I sin

(
π
5
)
ak+22

3
5 kr−10 I

√
5−

√
5 2

3
10 ak+1kr−10 I

√
25−5

√
5 2

3
10 ak+1kr−80 I sin

(
π
5
)
ak+32

2
5 kr+40 I

√
5−

√
5 ak+22

1
10 kr−80ak+344ak+12

4
5−952ak+22

3
5+1192ak+32

2
5−96akk−96akr+80ak+32

2
5 k2−32krak−16k2ak−16r2ak+80ak+32

2
5 r2+624ak+32

2
5 k+624ak+32

2
5 r+40ak+12

4
5 k2+40ak+12

4
5 r2+264ak+12

4
5 k+264ak+12

4
5 r−80ak+22

3
5 k2−80ak+22

3
5 r2−576ak+22

3
5 k−576ak+22

3
5 r
)

−1408 2
1
5+40 I sin

(
π
5
)
2
1
5 kr

√
5+352 I sin

(
π
5
)
2
1
5
√
5+168 I sin

(
π
5
)
2
1
5 k+168 I sin

(
π
5
)
2
1
5 r−5 I

√
5−

√
5 2

7
10 k2−10 I

√
5−

√
5 2

7
10 kr−10 I

√
25−5

√
5 2

7
10 kr+20 I sin

(
π
5
)
2
1
5 k2

√
5+20 I sin

(
π
5
)
2
1
5 r2

√
5+168 I sin

(
π
5
)
2
1
5 k

√
5+168 I sin

(
π
5
)
2
1
5 r

√
5+40 I sin

(
π
5
)
2
1
5 kr−160 2

1
5 kr−5 I

√
5−

√
5 2

7
10 r2−5 I

√
25−5

√
5 2

7
10 k2−5 I

√
25−5

√
5 2

7
10 r2−42 I

√
5−

√
5 2

7
10 k−42 I

√
5−

√
5 2

7
10 r−42 I

√
25−5

√
5 2

7
10 k−42 I

√
25−5

√
5 2

7
10 r+20 I sin

(
π
5
)
2
1
5 k2+20 I sin

(
π
5
)
2
1
5 r2+352 I sin

(
π
5
)
2
1
5−88 I

√
25−5

√
5 2

7
10−88 I

√
5−

√
5 2

7
10−80 2

1
5 r2−672 2

1
5 k−672 2

1
5 r−80 2

1
5 k2

• Solution for r = r

• Revert the change of variables u = x−
((

−
√
5
8 − 1

8

)
cos
(
π
5

)
−

√
2
√

5−
√
5 sin

(
π
5
)

8

)
2 4

5 − I
(√

2
√

5−
√
5 cos

(
π
5
)

8 +
(
−

√
5
8 − 1

8

)
sin
(
π
5

))
2 4

5
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
Order:=6;
dsolve((1+2*x^5)*diff(y(x),x$2)+14*x^4*diff(y(x),x)+10*x^3*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− x5

2

)
y(0) +D(y) (0)x+O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 20� �
AsymptoticDSolveValue[(1+2*x^5)*y''[x]+14*x^4*y'[x]+10*x^3*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1− x5

2

)
+ c2x
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12.33 problem 40
12.33.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 3996

Internal problem ID [1237]
Internal file name [OUTPUT/1238_Sunday_June_05_2022_02_06_04_AM_55445381/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 40.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Ordinary point", "second order series method.
Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

y′′ + x2y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (914)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (915)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −x2y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −x(2y + y′x)

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= yx4 − 4y′x− 2y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= y′x4 + 8yx3 − 6y′

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= 12x3y′ − x2y
(
x4 − 30

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = 0
F2 = −2y(0)
F3 = −6y′(0)
F4 = 0

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− x4

12

)
y(0) +

(
x− 1

20x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = −x2

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

xn+2an

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =0

xn+2an =
∞∑
n=2

an−2x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=2

an−2x
n

)
= 0

For 2 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + an−2 = 0
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Solving for an+2, gives

(5)an+2 = − an−2

(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

12a4 + a0 = 0

Which after substituting the earlier terms found becomes

a4 = −a0
12

For n = 3 the recurrence equation gives

20a5 + a1 = 0

Which after substituting the earlier terms found becomes

a5 = −a1
20

For n = 4 the recurrence equation gives

30a6 + a2 = 0

Which after substituting the earlier terms found becomes

a6 = 0

For n = 5 the recurrence equation gives

42a7 + a3 = 0

Which after substituting the earlier terms found becomes

a7 = 0

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .
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Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
12a0x

4 − 1
20a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− x4

12

)
a0 +

(
x− 1

20x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x4

12

)
c1 +

(
x− 1

20x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− x4

12

)
y(0) +

(
x− 1

20x
5
)
y′(0) +O

(
x6)

(2)y =
(
1− x4

12

)
c1 +

(
x− 1

20x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− x4

12

)
y(0) +

(
x− 1

20x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− x4

12

)
c1 +

(
x− 1

20x
5
)
c2 +O

(
x6)

Verified OK.

12.33.1 Maple step by step solution

Let’s solve
y′′ = −x2y

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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y′′ + x2y = 0
• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x2 · y to series expansion

x2 · y =
∞∑
k=0

akx
k+2

◦ Shift index using k− >k − 2

x2 · y =
∞∑
k=2

ak−2x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

6a3x+ 2a2 +
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 = 0, 6a3 = 0]

• Solve for the dependent coefficient(s)
{a2 = 0, a3 = 0}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + ak−2 = 0

• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 + ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+4 = − ak

k2+7k+12 , a2 = 0, a3 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
Order:=6;
dsolve(diff(y(x),x$2)+x^2*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− x4

12

)
y(0) +

(
x− 1

20x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28� �
AsymptoticDSolveValue[y''[x]+x^2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x− x5

20

)
+ c1

(
1− x4

12

)
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12.34 problem 41
12.34.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4005

Internal problem ID [1238]
Internal file name [OUTPUT/1239_Sunday_June_05_2022_02_06_05_AM_57468465/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 41.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + y′x6 + 7yx5 = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (917)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (918)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −y′x6 − 7yx5

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= x4((x8 − 13x
)
y′ + 7y

(
x7 − 5

))
F2 =

dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −
((
x15 − 32x8 + 100x

)
y′ + 7y

(
x14 − 24x7 + 20

))
x3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
((
x22 − 57x15 + 620x8 − 540x

)
y′ + 7y

(
x21 − 49x14 + 340x7 − 60

))
x2

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −x
((
x29 − 88x22 + 1932x15 − 9120x8 + 2040x

)
y′ + 7y

(
x28 − 80x21 + 1404x14 − 3600x7 + 120

))
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = 0
F2 = 0
F3 = 0
F4 = 0

Substituting all the above in (7) and simplifying gives the solution as

y = y(0) + y′(0)x+O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n
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Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) anxn−2 = −

(
∞∑
n=1

nanx
n−1

)
x6 − 7

(
∞∑
n=0

anx
n

)
x5 (1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

nx5+nan

)
+
(

∞∑
n=0

7x5+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =1

nx5+nan =
∞∑
n=6

(n− 5) an−5x
n

∞∑
n =0

7x5+nan =
∞∑
n=5

7an−5x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=6

(n− 5) an−5x
n

)
+
(

∞∑
n=5

7an−5x
n

)
= 0

n = 5 gives
42a7 + 7a0 = 0
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Which after substituting earlier equations, simplifies to

a7 = −a0
6

For 6 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + (n− 5) an−5 + 7an−5 = 0

Solving for an+2, gives

(5)an+2 = − an−5

n+ 1

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a1x+ a0 + . . .

Collecting terms, the solution becomes

(3)y = a1x+ a0 +O
(
x6)

At x = 0 the solution above becomes

y = c2x+ c1 +O
(
x6)

Summary
The solution(s) found are the following

(1)y = y(0) + y′(0)x+O
(
x6)

(2)y = c2x+ c1 +O
(
x6)

Verification of solutions

y = y(0) + y′(0)x+O
(
x6)

Verified OK.

y = c2x+ c1 +O
(
x6)

Verified OK.
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12.34.1 Maple step by step solution

Let’s solve
y′′ = −y′x6 − 7yx5

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′x6 + 7yx5 = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x5 · y to series expansion

x5 · y =
∞∑
k=0

akx
k+5

◦ Shift index using k− >k − 5

x5 · y =
∞∑
k=5

ak−5x
k

◦ Convert x6 · y′ to series expansion

x6 · y′ =
∞∑
k=0

akk x
k+5

◦ Shift index using k− >k − 5

x6 · y′ =
∞∑
k=5

ak−5(k − 5)xk

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

30a6x4 + 20a5x3 + 12a4x2 + 6a3x+ 2a2 +
(

∞∑
k=5

(ak+2(k + 2) (k + 1) + ak−5(k + 2))xk

)
= 0
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• The coefficients of each power of x must be 0
[2a2 = 0, 6a3 = 0, 12a4 = 0, 20a5 = 0, 30a6 = 0]

• Solve for the dependent coefficient(s)
{a2 = 0, a3 = 0, a4 = 0, a5 = 0, a6 = 0}

• Each term in the series must be 0, giving the recursion relation
(k + 2) (kak+2 + ak−5 + ak+2) = 0

• Shift index using k− >k + 5
(k + 7) ((k + 5) ak+7 + ak + ak+7) = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+7 = − ak

k+6 , a2 = 0, a3 = 0, a4 = 0, a5 = 0, a6 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
Order:=6;
dsolve(diff(y(x),x$2)+x^6*diff(y(x),x)+7*x^5*y(x)=0,y(x),type='series',x=0);� �

y(x) = y(0) +D(y) (0)x
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 10� �
AsymptoticDSolveValue[y''[x]+x^6*y'[x]+7*x^5*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2x+ c1
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12.35 problem 42
Internal problem ID [1239]
Internal file name [OUTPUT/1240_Sunday_June_05_2022_02_06_06_AM_66728715/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 42.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x8 + 1

)
y′′ − 16y′x7 + 72yx6 = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (920)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (921)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
8x6(2y′x− 9y)

x8 + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

=
(168x14 + 40x6) y′ − 1008

(
x8 + 3

7

)
x5y

(x8 + 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 48x4(28y′x9 − 189yx8 − 4y′x− 45y)
(x8 + 1)2

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= 240x3(35y′x9 − 252yx8 − 13y′x− 36y)
(x8 + 1)2

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= 960x2(42y′x9 − 315yx8 − 22y′x− 27y)
(x8 + 1)2

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = 0
F2 = 0
F3 = 0
F4 = 0

Substituting all the above in (7) and simplifying gives the solution as

y = y(0) + y′(0)x+O
(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x8 + 1
)
y′′ − 16y′x7 + 72yx6 = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives(
x8 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
− 16

(
∞∑
n=1

nanx
n−1

)
x7 + 72

(
∞∑
n=0

anx
n

)
x6 = 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

nxn+6an(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)

+
∞∑

n =1

(
−16nxn+6an

)
+
(

∞∑
n=0

72xn+6an

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

nxn+6an(n− 1) =
∞∑
n=8

(n− 6) an−6(n− 7)xn

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =1

(
−16nxn+6an

)
=

∞∑
n=7

(−16(n− 6) an−6x
n)

∞∑
n =0

72xn+6an =
∞∑
n=6

72an−6x
n
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=8

(n− 6) an−6(n− 7)xn

)
+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
∞∑

n =7

(−16(n− 6) an−6x
n) +

(
∞∑
n=6

72an−6x
n

)
= 0

For 8 ≤ n, the recurrence equation is

(4)(n− 6) an−6(n− 7) + (n+ 2) an+2(n+ 1)− 16(n− 6) an−6 + 72an−6 = 0

Solving for an+2, gives

(5)an+2 = −an−6(n2 − 29n+ 210)
(n+ 2) (n+ 1)

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a1x+ a0 + . . .

Collecting terms, the solution becomes

(3)y = a1x+ a0 +O
(
x6)

At x = 0 the solution above becomes

y = c2x+ c1 +O
(
x6)

Summary
The solution(s) found are the following

(1)y = y(0) + y′(0)x+O
(
x6)

(2)y = c2x+ c1 +O
(
x6)
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Verification of solutions

y = y(0) + y′(0)x+O
(
x6)

Verified OK.

y = c2x+ c1 +O
(
x6)

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
Order:=6;
dsolve((1+x^8)*diff(y(x),x$2)-16*x^7*diff(y(x),x)+72*x^6*y(x)=0,y(x),type='series',x=0);� �

y(x) = y(0) +D(y) (0)x

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 10� �
AsymptoticDSolveValue[(1+x^8)*y''[x]-16*x^7*y'[x]+72*x^6*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2x+ c1
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12.36 problem 43
12.36.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4021

Internal problem ID [1240]
Internal file name [OUTPUT/1241_Sunday_June_05_2022_02_06_08_AM_56327843/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 43.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second_order_change_of_variable_on_y_method_1", "second
order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(
−x6 + 1

)
y′′ − 12y′x5 − 30yx4 = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (923)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (924)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −6x4(2y′x+ 5y)
x6 − 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 6x3(21y′x7 + 70yx6 + 15y′x+ 20y)
(x6 − 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −
1344

((
x13 + 5

2x
7 + 5

14x
)
y′ + 15

(
x12+ 3

2x
6+ 1

14
)
y

4

)
x2

(x6 − 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
15120x

((
x19 + 35

6 x
13 + 10

3 x
7 + 5

42x
)
y′ + 4

(
x18 + 49

12x
12 + 4

3x
6 + 1

84

)
y
)

(x6 − 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
−181440

(
x24 + 34

3 x
18 + 31

2 x
12 + 3x6 + 1

42

)
xy′ − 756000y

(
x24 + 646

75 x
18 + 403

50 x
12 + 21

25x
6 + 1

1050

)
(x6 − 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = 0
F2 = 0
F3 = 0
F4 = 720y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
x6 + 1

)
y(0) + y′(0)x+O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

−x6 + 1
)
y′′ − 12y′x5 − 30yx4 = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
−x6 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
− 12

(
∞∑
n=1

nanx
n−1

)
x5 − 30

(
∞∑
n=0

anx
n

)
x4 = 0

(1)

Which simplifies to

(2)

∞∑
n =2

(
−nxn+4an(n− 1)

)
+
(

∞∑
n=2

n(n− 1) anxn−2

)

+
∞∑

n =1

(
−12nxn+4an

)
+

∞∑
n =0

(
−30xn+4an

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

(
−nxn+4an(n− 1)

)
=

∞∑
n=6

(−(n− 4) an−4(n− 5)xn)

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn
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∞∑
n =1

(
−12nxn+4an

)
=

∞∑
n=5

(−12(n− 4) an−4x
n)

∞∑
n =0

(
−30xn+4an

)
=

∞∑
n=4

(−30an−4x
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

∞∑
n =6

(−(n− 4) an−4(n− 5)xn) +
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
∞∑

n =5

(−12(n− 4) an−4x
n) +

∞∑
n =4

(−30an−4x
n) = 0

n = 4 gives
30a6 − 30a0 = 0

Which after substituting earlier equations, simplifies to

a6 = a0

n = 5 gives
42a7 − 42a1 = 0

Which after substituting earlier equations, simplifies to

a7 = a1

For 6 ≤ n, the recurrence equation is

(4)−(n− 4) an−4(n− 5) + (n+ 2) an+2(n+ 1)− 12(n− 4) an−4 − 30an−4 = 0

Solving for an+2, gives
(5)an+2 = an−4

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .
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Substituting the values for an found above, the solution becomes

y = a1x+ a0 + . . .

Collecting terms, the solution becomes

(3)y = a1x+ a0 +O
(
x6)

At x = 0 the solution above becomes

y = c2x+ c1 +O
(
x6)

Summary
The solution(s) found are the following

(1)y =
(
x6 + 1

)
y(0) + y′(0)x+O

(
x6)

(2)y = c2x+ c1 +O
(
x6)

Verification of solutions

y =
(
x6 + 1

)
y(0) + y′(0)x+O

(
x6)

Verified OK.

y = c2x+ c1 +O
(
x6)

Verified OK.

12.36.1 Maple step by step solution

Let’s solve
(−x6 + 1) y′′ − 12y′x5 − 30yx4 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −12x5y′

x6−1 − 30x4y
x6−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 12x5y′

x6−1 + 30x4y
x6−1 = 0

� Check to see if x0 is a regular singular point
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◦ Define functions[
P2(x) = 12x5

x6−1 , P3(x) = 30x4

x6−1

]
◦
(
x+

√
−2 I

√
3−2

2

)
· P2(x) is analytic at x = −

√
−2 I

√
3−2

2((
x+

√
−2 I

√
3−2

2

)
· P2(x)

) ∣∣∣∣
x=−

√
−2 I

√
3−2

2

= 0

◦
(
x+

√
−2 I

√
3−2

2

)2
· P3(x) is analytic at x = −

√
−2 I

√
3−2

2((
x+

√
−2 I

√
3−2

2

)2
· P3(x)

) ∣∣∣∣
x=−

√
−2 I

√
3−2

2

= 0

◦ x = −
√

−2 I
√
3−2

2 is a regular singular point

Check to see if x0 is a regular singular point

x0 = −
√

−2 I
√
3−2

2

• Multiply by denominators
y′′(x6 − 1) + 12y′x5 + 30yx4 = 0

• Change variables using x = u−
√

−2 I
√
3−2

2 so that the regular singular point is at u = 0(
u6 − 3u5

√
−2 I

√
3− 2− 15 Iu4√3

2 − 15u4

2 + 15 Iu2√3
2 + 5u3

√
−2 I

√
3− 2− 15u2

2 − 3 I
√

−2 I
√
3−2u

√
3

2 + 5 I
√

−2 I
√
3− 2u3√3 + 3u

√
−2 I

√
3−2

2

)(
d2

du2y(u)
)
+
(
12u5 − 30u4

√
−2 I

√
3− 2 + 30 I

√
−2 I

√
3− 2u2√3− 60u3 + 30 Iu

√
3 + 30u2

√
−2 I

√
3− 2− 30u− 60 Iu3√3− 3 I

√
−2 I

√
3− 2

√
3 + 3

√
−2 I

√
3− 2

) (
d
du
y(u)

)
+
(
30u4 − 60u3

√
−2 I

√
3− 2− 90 Iu2√3− 90u2 + 30 Iu

√
−2 I

√
3− 2

√
3 + 30u

√
−2 I

√
3− 2− 15 + 15 I

√
3
)
y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..4

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..5

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m
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um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..6

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−3
(
1 + I

√
3
)
r(1 + r) a0u−1+r +

(
−3
(
1 + I

√
3
)
(1 + r) (2 + r) a1 +

15
(
I
√
3−1

)
(1+r)(2+r)a0
2

)
ur +

(
−3
(
1 + I

√
3
)
(2 + r) (3 + r) a2 +

15
(
I
√
3−1

)
(2+r)(3+r)a1
2 + 20(2 + r) (3 + r) a0

)
u1+r +

(
−3
(
1 + I

√
3
)
(3 + r) (4 + r) a3 +

15
(
I
√
3−1

)
(3+r)(4+r)a2
2 + 20(3 + r) (4 + r) a1 −

15
(
1+I

√
3
)
(4+r)(3+r)a0
2

)
u2+r +

(
−3
(
1 + I

√
3
)
(4 + r) (r + 5) a4 +

15
(
I
√
3−1

)
(4+r)(r+5)a3
2 + 20(4 + r) (r + 5) a2 −

15
(
1+I

√
3
)
(r+5)(4+r)a1
2 + 3

(
I
√
3− 1

)
(4 + r) (r + 5) a0

)
u3+r +

(
∞∑
k=4

(
−3
(
1 + I

√
3
)
(k + 1 + r) (k + 2 + r) ak+1 +

15
(
I
√
3−1

)
(k+1+r)(k+2+r)ak

2 + 20(k + 1 + r) (k + 2 + r) ak−1 −
15
(
1+I

√
3
)
(k+2+r)(k+1+r)ak−2

2 + 3
(
I
√
3− 1

)
(k + 1 + r) (k + 2 + r) ak−3 + ak−4(k + 2 + r) (k + 1 + r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−3
(
1 + I

√
3
)
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• The coefficients of each power of u must be 0[
−3
(
1 + I

√
3
)
(1 + r) (2 + r) a1 +

15
(
I
√
3−1

)
(1+r)(2+r)a0
2 = 0,−3

(
1 + I

√
3
)
(2 + r) (3 + r) a2 +

15
(
I
√
3−1

)
(2+r)(3+r)a1
2 + 20(2 + r) (3 + r) a0 = 0,−3

(
1 + I

√
3
)
(3 + r) (4 + r) a3 +

15
(
I
√
3−1

)
(3+r)(4+r)a2
2 + 20(3 + r) (4 + r) a1 −

15
(
1+I

√
3
)
(4+r)(3+r)a0
2 = 0,−3

(
1 + I

√
3
)
(4 + r) (r + 5) a4 +

15
(
I
√
3−1

)
(4+r)(r+5)a3
2 + 20(4 + r) (r + 5) a2 −

15
(
1+I

√
3
)
(r+5)(4+r)a1
2 + 3

(
I
√
3− 1

)
(4 + r) (r + 5) a0 = 0

]
• Solve for the dependent coefficient(s){

a1 =
5a0
(
I
√
3−1

)
2
(
1+I

√
3
) , a2 =

5a0
(
−14−14 I

√
3
)

12
(
2 I

√
3−2

) , a3 = −35a0
24 , a4 =

(
952−952 I

√
3
)
a0

144
(
−8−8 I

√
3
)
}

• Each term in the series must be 0, giving the recursion relation
15
(
I
(
ak+

2ak−3
5 −ak−2−

2ak+1
5

)√
3−ak+

2ak−4
15 −

2ak−3
5 −ak−2+

8ak−1
3 −

2ak+1
5

)
(k+2+r)(k+1+r)

2 = 0

• Shift index using k− >k + 4
15
(
I
(
ak+4+

2ak+1
5 −ak+2−

2ak+5
5

)√
3−ak+4+

2ak
15 −

2ak+1
5 −ak+2+

8ak+3
3 −

2ak+5
5

)
(k+r+6)(k+r+5)

2 = 0

• Recursion relation that defines series solution to ODE

ak+5 = 6 I
√
3 ak+1−15 I

√
3 ak+2+15 I

√
3 ak+4+2ak−6ak+1−15ak+2+40ak+3−15ak+4

6
(
1+I

√
3
)

• Recursion relation for r = −1

ak+5 = 6 I
√
3 ak+1−15 I

√
3 ak+2+15 I

√
3 ak+4+2ak−6ak+1−15ak+2+40ak+3−15ak+4

6
(
1+I

√
3
)
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• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+5 = 6 I

√
3 ak+1−15 I

√
3 ak+2+15 I

√
3 ak+4+2ak−6ak+1−15ak+2+40ak+3−15ak+4

6
(
1+I

√
3
) , a1 =

5a0
(
I
√
3−1

)
2
(
1+I

√
3
) , a2 =

5a0
(
−14−14 I

√
3
)

12
(
2 I

√
3−2

) , a3 = −35a0
24 , a4 =

(
952−952 I

√
3
)
a0

144
(
−8−8 I

√
3
)
]

• Revert the change of variables u = x+
√

−2 I
√
3−2

2[
y =

∞∑
k=0

ak
(
x+

√
−2 I

√
3−2

2

)k−1
, ak+5 = 6 I

√
3 ak+1−15 I

√
3 ak+2+15 I

√
3 ak+4+2ak−6ak+1−15ak+2+40ak+3−15ak+4

6
(
1+I

√
3
) , a1 =

5a0
(
I
√
3−1

)
2
(
1+I

√
3
) , a2 =

5a0
(
−14−14 I

√
3
)

12
(
2 I

√
3−2

) , a3 = −35a0
24 , a4 =

(
952−952 I

√
3
)
a0

144
(
−8−8 I

√
3
)
]

• Recursion relation for r = 0

ak+5 = 6 I
√
3 ak+1−15 I

√
3 ak+2+15 I

√
3 ak+4+2ak−6ak+1−15ak+2+40ak+3−15ak+4

6
(
1+I

√
3
)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+5 = 6 I

√
3 ak+1−15 I

√
3 ak+2+15 I

√
3 ak+4+2ak−6ak+1−15ak+2+40ak+3−15ak+4

6
(
1+I

√
3
) , a1 =

5a0
(
I
√
3−1

)
2
(
1+I

√
3
) , a2 =

5a0
(
−14−14 I

√
3
)

12
(
2 I

√
3−2

) , a3 = −35a0
24 , a4 =

(
952−952 I

√
3
)
a0

144
(
−8−8 I

√
3
)
]

• Revert the change of variables u = x+
√

−2 I
√
3−2

2[
y =

∞∑
k=0

ak
(
x+

√
−2 I

√
3−2

2

)k
, ak+5 = 6 I

√
3 ak+1−15 I

√
3 ak+2+15 I

√
3 ak+4+2ak−6ak+1−15ak+2+40ak+3−15ak+4

6
(
1+I

√
3
) , a1 =

5a0
(
I
√
3−1

)
2
(
1+I

√
3
) , a2 =

5a0
(
−14−14 I

√
3
)

12
(
2 I

√
3−2

) , a3 = −35a0
24 , a4 =

(
952−952 I

√
3
)
a0

144
(
−8−8 I

√
3
)
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak
(
x+

√
−2 I

√
3−2

2

)k−1
)
+
(

∞∑
k=0

bk
(
x+

√
−2 I

√
3−2

2

)k)
, a5+k = 6 I

√
3 a1+k−15 I

√
3 ak+2+15 I

√
3 a4+k+2ak−6a1+k−15ak+2+40ak+3−15a4+k

6
(
1+I

√
3
) , a1 =

5a0
(
I
√
3−1

)
2
(
1+I

√
3
) , a2 =

5a0
(
−14−14 I

√
3
)

12
(
2 I

√
3−2

) , a3 = −35a0
24 , a4 =

(
952−952 I

√
3
)
a0

144
(
−8−8 I

√
3
) , b5+k = 6 I

√
3 b1+k−15 I

√
3 bk+2+15 I

√
3 b4+k+2bk−6b1+k−15bk+2+40bk+3−15b4+k

6
(
1+I

√
3
) , b1 =

5b0
(
I
√
3−1

)
2
(
1+I

√
3
) , b2 =

5b0
(
−14−14 I

√
3
)

12
(
2 I

√
3−2

) , b3 = −35b0
24 , b4 =

(
952−952 I

√
3
)
b0

144
(
−8−8 I

√
3
)
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
Order:=6;
dsolve((1-x^6)*diff(y(x),x$2)-12*x^5*diff(y(x),x)-30*x^4*y(x)=0,y(x),type='series',x=0);� �

y(x) = y(0) +D(y) (0)x+O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 10� �
AsymptoticDSolveValue[(1-x^6)*y''[x]-12*x^5*y'[x]-30*x^4*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2x+ c1
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12.37 problem 44
12.37.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4032

Internal problem ID [1241]
Internal file name [OUTPUT/1242_Sunday_June_05_2022_02_06_09_AM_92488736/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS
NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number: 44.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + y′x5 + 6yx4 = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (926)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (927)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −y′x5 − 6yx4

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

=
((
x7 − 11x

)
y′ + 6y

(
x6 − 4

))
x3

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −
((
x13 − 27x7 + 68x

)
y′ + 6y

(
x12 − 20x6 + 12

))
x2

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
((
x19 − 48x13 + 431x7 − 276x

)
y′ + 6y

(
x18 − 41x12 + 228x6 − 24

))
x

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
−x25 + 74x19 − 1349x13 + 5092x7 − 696x

)
y′ − 6y

(
x24 − 67x18 + 964x12 − 1872x6 + 24

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = 0
F2 = 0
F3 = 0
F4 = −144y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− x6

5

)
y(0) + y′(0)x+O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = −

(
∞∑
n=1

nanx
n−1

)
x5 − 6

(
∞∑
n=0

anx
n

)
x4 (1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

nx4+nan

)
+
(

∞∑
n=0

6x4+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =1

nx4+nan =
∞∑
n=5

(n− 4) an−4x
n

∞∑
n =0

6x4+nan =
∞∑
n=4

6an−4x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=5

(n− 4) an−4x
n

)
+
(

∞∑
n=4

6an−4x
n

)
= 0
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n = 4 gives
30a6 + 6a0 = 0

Which after substituting earlier equations, simplifies to

a6 = −a0
5

For 5 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + (n− 4) an−4 + 6an−4 = 0

Solving for an+2, gives

(5)an+2 = − an−4

n+ 1

For n = 5 the recurrence equation gives

42a7 + 7a1 = 0

Which after substituting the earlier terms found becomes

a7 = −a1
6

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a1x+ a0 + . . .

Collecting terms, the solution becomes

(3)y = a1x+ a0 +O
(
x6)

At x = 0 the solution above becomes

y = c2x+ c1 +O
(
x6)

4031



Summary
The solution(s) found are the following

(1)y =
(
1− x6

5

)
y(0) + y′(0)x+O

(
x6)

(2)y = c2x+ c1 +O
(
x6)

Verification of solutions

y =
(
1− x6

5

)
y(0) + y′(0)x+O

(
x6)

Verified OK.

y = c2x+ c1 +O
(
x6)

Verified OK.

12.37.1 Maple step by step solution

Let’s solve
y′′ = −y′x5 − 6yx4

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′x5 + 6yx4 = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x4 · y to series expansion

x4 · y =
∞∑
k=0

akx
k+4

◦ Shift index using k− >k − 4

x4 · y =
∞∑
k=4

ak−4x
k

◦ Convert x5 · y′ to series expansion

x5 · y′ =
∞∑
k=0

akk x
k+4
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◦ Shift index using k− >k − 4

x5 · y′ =
∞∑
k=4

ak−4(k − 4)xk

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

20a5x3 + 12a4x2 + 6a3x+ 2a2 +
(

∞∑
k=4

(ak+2(k + 2) (k + 1) + ak−4(k + 2))xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 = 0, 6a3 = 0, 12a4 = 0, 20a5 = 0]

• Solve for the dependent coefficient(s)
{a2 = 0, a3 = 0, a4 = 0, a5 = 0}

• Each term in the series must be 0, giving the recursion relation
(k + 2) (kak+2 + ak−4 + ak+2) = 0

• Shift index using k− >k + 4
(k + 6) ((k + 4) ak+6 + ak + ak+6) = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+6 = − ak

k+5 , a2 = 0, a3 = 0, a4 = 0, a5 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
Order:=6;
dsolve(diff(y(x),x$2)+x^5*diff(y(x),x)+6*x^4*y(x)=0,y(x),type='series',x=0);� �

y(x) = y(0) +D(y) (0)x+O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 10� �
AsymptoticDSolveValue[y''[x]+x^5*y'[x]+6*x^4*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2x+ c1
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13.1 problem 1
13.1.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4037
13.1.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4045

Internal problem ID [1242]
Internal file name [OUTPUT/1243_Sunday_June_05_2022_02_06_10_AM_30732153/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(3x+ 1) y′′ + y′x+ 2y = 0

With initial conditions

[y(0) = 2, y′(0) = −3]

With the expansion point for the power series method at x = 0.

13.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = x

3x+ 1
q(x) = 2

3x+ 1
F = 0
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Hence the ode is

y′′ + xy′

3x+ 1 + 2y
3x+ 1 = 0

The domain of p(x) = x
3x+1 is

{
x < −1

3 ∨−1
3 < x

}

And the point x0 = 0 is inside this domain. The domain of q(x) = 2
3x+1 is

{
x < −1

3 ∨−1
3 < x

}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (929)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (930)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2y + y′x

3x+ 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (x2 − 6x− 3) y′ + 2y(x+ 3)
(3x+ 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (−x3 + 12x2 + 43x+ 18) y′ − 2y(x2 − 3x+ 14)
(3x+ 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (x4 − 18x3 − 66x2 − 330x− 147) y′ + 2y(x3 − 9x2 − 63x+ 111)
(3x+ 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (−x5 + 24x4 + 72x3 + 276x2 + 3525x+ 1656) y′ − 2y(x4 − 15x3 − 123x2 − 879x+ 1248)
(3x+ 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 2 and
y′(0) = −3 gives

F0 = −4
F1 = 21
F2 = −110
F3 = 885
F4 = −9960

Substituting all the above in (7) and simplifying gives the solution as

y = −2x2 − 3x+ 2 + 7x3

2 − 55x4

12 + 59x5

8 − 83x6

6 +O
(
x6)
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y = −2x2 − 3x+ 2 + 7x3

2 − 55x4

12 + 59x5

8 − 83x6

6 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(3x+ 1) y′′ + y′x+ 2y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(3x+ 1)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

nanx
n−1

)
x+ 2

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to(
∞∑
n=2

3nxn−1an(n− 1)
)
+
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

nanx
n

)
+
(

∞∑
n=0

2anxn

)
= 0

(2)

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

3nxn−1an(n− 1) =
∞∑
n=1

3(n+ 1) an+1nxn

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=1

3(n+ 1) an+1nxn

)
+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
(

∞∑
n=1

nanx
n

)
+
(

∞∑
n=0

2anxn

)
= 0

n = 0 gives
2a2 + 2a0 = 0

a2 = −a0

For 1 ≤ n, the recurrence equation is

(4)3(n+ 1) an+1n+ (n+ 2) an+2(n+ 1) + nan + 2an = 0

Solving for an+2, gives

(5)

an+2 = −3n2an+1 + nan + 3nan+1 + 2an
(n+ 2) (n+ 1)

= − an
n+ 1 − (3n2 + 3n) an+1

(n+ 2) (n+ 1)

For n = 1 the recurrence equation gives

6a2 + 6a3 + 3a1 = 0

Which after substituting the earlier terms found becomes

a3 = a0 −
a1
2

For n = 2 the recurrence equation gives

18a3 + 12a4 + 4a2 = 0
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Which after substituting the earlier terms found becomes

a4 = −7a0
6 + 3a1

4

For n = 3 the recurrence equation gives

36a4 + 20a5 + 5a3 = 0

Which after substituting the earlier terms found becomes

a5 =
37a0
20 − 49a1

40

For n = 4 the recurrence equation gives

60a5 + 30a6 + 6a4 = 0

Which after substituting the earlier terms found becomes

a6 = −52a0
15 + 23a1

10

For n = 5 the recurrence equation gives

90a6 + 42a7 + 7a5 = 0

Which after substituting the earlier terms found becomes

a7 =
5981a0
840 − 7937a1

1680

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− a0x
2 +

(
a0 −

a1
2

)
x3 +

(
−7a0

6 + 3a1
4

)
x4 +

(
37a0
20 − 49a1

40

)
x5 + . . .
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Collecting terms, the solution becomes

(3)y =
(
1− x2 + x3 − 7

6x
4 + 37

20x
5
)
a0 +

(
x− 1

2x
3 + 3

4x
4 − 49

40x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x2 + x3 − 7

6x
4 + 37

20x
5
)
c1 +

(
x− 1

2x
3 + 3

4x
4 − 49

40x
5
)
c2 +O

(
x6)

y = 2− 2x2 + 7x3

2 − 55x4

12 + 59x5

8 − 3x+O
(
x6)

Summary
The solution(s) found are the following

(1)y = −2x2 − 3x+ 2 + 7x3

2 − 55x4

12 + 59x5

8 − 83x6

6 +O
(
x6)

(2)y = 2− 2x2 + 7x3

2 − 55x4

12 + 59x5

8 − 3x+O
(
x6)

Verification of solutions

y = −2x2 − 3x+ 2 + 7x3

2 − 55x4

12 + 59x5

8 − 83x6

6 +O
(
x6)

Verified OK.

y = 2− 2x2 + 7x3

2 − 55x4

12 + 59x5

8 − 3x+O
(
x6)

Verified OK.

13.1.2 Maple step by step solution

Let’s solve[
(3x+ 1) y′′ + y′x+ 2y = 0, y(0) = 2, y′

∣∣∣{x=0}
= −3

]
• Highest derivative means the order of the ODE is 2

y′′

• Isolate 2nd derivative
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y′′ = − 2y
3x+1 −

xy′

3x+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + xy′

3x+1 +
2y

3x+1 = 0

� Check to see if x0 = −1
3 is a regular singular point

◦ Define functions[
P2(x) = x

3x+1 , P3(x) = 2
3x+1

]
◦
(
x+ 1

3

)
· P2(x) is analytic at x = −1

3((
x+ 1

3

)
· P2(x)

) ∣∣∣∣
x=− 1

3

= −1
9

◦
(
x+ 1

3

)2 · P3(x) is analytic at x = −1
3((

x+ 1
3

)2 · P3(x)
) ∣∣∣∣

x=− 1
3

= 0

◦ x = −1
3 is a regular singular point

Check to see if x0 = −1
3 is a regular singular point

x0 = −1
3

• Multiply by denominators
(3x+ 1) y′′ + y′x+ 2y = 0

• Change variables using x = u− 1
3 so that the regular singular point is at u = 0

3u
(

d2

du2y(u)
)
+
(
u− 1

3

) (
d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion
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u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions
a0r(−10+9r)u−1+r

3 +
(

∞∑
k=0

(
ak+1(k+1+r)(9k−1+9r)

3 + ak(k + r + 2)
)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−10+9r)

3 = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 109

}
• Each term in the series must be 0, giving the recursion relation

3
(
k − 1

9 + r
)
(k + 1 + r) ak+1 + ak(k + r + 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 3ak(k+r+2)

(9k−1+9r)(k+1+r)

• Recursion relation for r = 0
ak+1 = − 3ak(k+2)

(9k−1)(k+1)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = − 3ak(k+2)

(9k−1)(k+1)

]
• Revert the change of variables u = x+ 1

3[
y =

∞∑
k=0

ak
(
x+ 1

3

)k
, ak+1 = − 3ak(k+2)

(9k−1)(k+1)

]
• Recursion relation for r = 10

9

ak+1 = − 3ak
(
k+ 28

9
)

(9k+9)
(
k+ 19

9
)

• Solution for r = 10
9[

y(u) =
∞∑
k=0

aku
k+ 10

9 , ak+1 = − 3ak
(
k+ 28

9
)

(9k+9)
(
k+ 19

9
)
]

• Revert the change of variables u = x+ 1
3
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[
y =

∞∑
k=0

ak
(
x+ 1

3

)k+ 10
9 , ak+1 = − 3ak

(
k+ 28

9
)

(9k+9)
(
k+ 19

9
)
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak
(
x+ 1

3

)k)+
(

∞∑
k=0

bk
(
x+ 1

3

)k+ 10
9

)
, a1+k = − 3ak(k+2)

(9k−1)(1+k) , b1+k = − 3bk
(
k+ 28

9
)

(9k+9)
(
k+ 19

9
)
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Kummer successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(1+3*x)*diff(y(x),x$2)+x*diff(y(x),x)+2*y(x)=0,y(0) = 2, D(y)(0) = -3],y(x),type='series',x=0);� �

y(x) = 2− 3x− 2x2 + 7
2x

3 − 55
12x

4 + 59
8 x5 +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 34� �
AsymptoticDSolveValue[{(1+3*x)*y''[x]+x*y'[x]+2*y[x]==0,{y[0]==2,y'[0]==-3}},y[x],{x,0,5}]� �

y(x) → 59x5

8 − 55x4

12 + 7x3

2 − 2x2 − 3x+ 2
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13.2 problem 2
13.2.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4051
13.2.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4058

Internal problem ID [1243]
Internal file name [OUTPUT/1244_Sunday_June_05_2022_02_06_12_AM_96010497/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second_order_change_of_variable_on_y_method_1", "linear_sec-
ond_order_ode_solved_by_an_integrating_factor", "second order series
method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(
2x2 + x+ 1

)
y′′ + (2 + 8x) y′ + 4y = 0

With initial conditions

[y(0) = −1, y′(0) = 2]

With the expansion point for the power series method at x = 0.
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13.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 2 + 8x
2x2 + x+ 1

q(x) = 4
2x2 + x+ 1

F = 0

Hence the ode is

y′′ + (2 + 8x) y′
2x2 + x+ 1 + 4y

2x2 + x+ 1 = 0

The domain of p(x) = 2+8x
2x2+x+1 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 4
2x2+x+1 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (932)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (933)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2(4y′x+ y′ + 2y)
2x2 + x+ 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (72x2 + 36x− 6) y′ + (48x+ 12) y
(2x2 + x+ 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(−768x3 − 576x2 + 192x+ 72) y′ − 576

(
x2 + 1

2x− 1
12

)
y

(2x2 + x+ 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(9600x4 + 9600x3 − 4800x2 − 3600x− 120) y′ + 7680

(
x+ 1

4

) (
x2 + 1

2x− 3
8

)
y

(2x2 + x+ 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(−138240x5 − 172800x4 + 115200x3 + 129600x2 + 8640x− 3600) y′ − 115200y

(
x4 + x3 − 1

2x
2 − 3

8x− 1
80

)
(2x2 + x+ 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = −1 and
y′(0) = 2 gives

F0 = 0
F1 = −24
F2 = 96
F3 = 480
F4 = −8640

Substituting all the above in (7) and simplifying gives the solution as

y = −12x6 + 4x5 + 4x4 − 4x3 + 2x− 1 +O
(
x6)
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y = −12x6 + 4x5 + 4x4 − 4x3 + 2x− 1 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

2x2 + x+ 1
)
y′′ + (2 + 8x) y′ + 4y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives(
2x2 + x+ 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ (2 + 8x)

(
∞∑
n=1

nanx
n−1

)
+ 4
(

∞∑
n=0

anx
n

)
= 0

(1)
Which simplifies to

(2)

(
∞∑
n=2

2xnann(n− 1)
)

+
(

∞∑
n=2

nxn−1an(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)

+
(

∞∑
n=1

2nanxn−1

)
+
(

∞∑
n=1

8nanxn

)
+
(

∞∑
n=0

4anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

nxn−1an(n− 1) =
∞∑
n=1

(n+ 1) an+1nxn

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =1

2nanxn−1 =
∞∑
n=0

2(n+ 1) an+1x
n
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

2xnann(n−1)
)
+
(

∞∑
n=1

(n+1) an+1nxn

)
+
(

∞∑
n=0

(n+2) an+2(n+1)xn

)

+
(

∞∑
n=0

2(n+ 1) an+1x
n

)
+
(

∞∑
n=1

8nanxn

)
+
(

∞∑
n=0

4anxn

)
= 0

n = 0 gives
2a2 + 2a1 + 4a0 = 0

a2 = −2a0 − a1

n = 1 gives
6a2 + 6a3 + 12a1 = 0

Which after substituting earlier equations, simplifies to

a3 = 2a0 − a1

For 2 ≤ n, the recurrence equation is

(4)2nan(n− 1)+ (n+1) an+1n+(n+2) an+2(n+1)+ 2(n+1) an+1 +8nan +4an = 0

Solving for an+2, gives

(5)
an+2 = −2an − an+1

= −2an − an+1

For n = 2 the recurrence equation gives

24a2 + 12a3 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = 2a0 + 3a1
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For n = 3 the recurrence equation gives

40a3 + 20a4 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 = −6a0 − a1

For n = 4 the recurrence equation gives

60a4 + 30a5 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = 2a0 − 5a1

For n = 5 the recurrence equation gives

84a5 + 42a6 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = 10a0 + 7a1

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ (−2a0 − a1)x2 + (2a0 − a1)x3 + (2a0 + 3a1)x4 + (−6a0 − a1)x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
−6x5 + 2x4 + 2x3 − 2x2 + 1

)
a0 +

(
−x5 + 3x4 − x3 − x2 + x

)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
−6x5 + 2x4 + 2x3 − 2x2 + 1

)
c1 +

(
−x5 + 3x4 − x3 − x2 + x

)
c2 +O

(
x6)

4057



y = 4x5 + 4x4 − 4x3 − 1 + 2x+O
(
x6)

Summary
The solution(s) found are the following

(1)y = −12x6 + 4x5 + 4x4 − 4x3 + 2x− 1 +O
(
x6)

(2)y = 4x5 + 4x4 − 4x3 − 1 + 2x+O
(
x6)

Verification of solutions

y = −12x6 + 4x5 + 4x4 − 4x3 + 2x− 1 +O
(
x6)

Verified OK.

y = 4x5 + 4x4 − 4x3 − 1 + 2x+O
(
x6)

Verified OK.

13.2.2 Maple step by step solution

Let’s solve[
(2x2 + x+ 1) y′′ + (2 + 8x) y′ + 4y = 0, y(0) = −1, y′

∣∣∣{x=0}
= 2
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 4y
2x2+x+1 −

2(4x+1)y′
2x2+x+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2(4x+1)y′
2x2+x+1 + 4y

2x2+x+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2(4x+1)
2x2+x+1 , P3(x) = 4

2x2+x+1

]
◦
(

I
√
7

4 + x+ 1
4

)
· P2(x) is analytic at x = − I

√
7

4 − 1
4((

I
√
7

4 + x+ 1
4

)
· P2(x)

) ∣∣∣∣
x=− I

√
7

4 − 1
4

= 0

◦
(

I
√
7

4 + x+ 1
4

)2
· P3(x) is analytic at x = − I

√
7

4 − 1
4
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((
I
√
7

4 + x+ 1
4

)2
· P3(x)

) ∣∣∣∣
x=− I

√
7

4 − 1
4

= 0

◦ x = − I
√
7

4 − 1
4 is a regular singular point

Check to see if x0 is a regular singular point

x0 = − I
√
7

4 − 1
4

• Multiply by denominators
(2x2 + x+ 1) y′′ + (2 + 8x) y′ + 4y = 0

• Change variables using x = u− I
√
7

4 − 1
4 so that the regular singular point is at u = 0(

2u2 − Iu
√
7
) (

d2

du2y(u)
)
+
(
8u− 2 I

√
7
) (

d
du
y(u)

)
+ 4y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−I
√
7 r(r + 1) a0u−1+r +

(
∞∑
k=0

(
−I

√
7 (k + r + 1) (k + r + 2) ak+1 + 2ak(k + r + 2) (k + r + 1)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−I

√
7 r(r + 1) = 0

• Values of r that satisfy the indicial equation
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r ∈ {−1, 0}
• Each term in the series must be 0, giving the recursion relation

−
(
I
√
7 ak+1 − 2ak

)
(k + r + 2) (k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = −2 I

7 ak
√
7

• Recursion relation for r = −1
ak+1 = −2 I

7 ak
√
7

• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+1 = −2 I

7 ak
√
7
]

• Revert the change of variables u = I
√
7

4 + x+ 1
4[

y =
∞∑
k=0

ak
(

I
√
7

4 + x+ 1
4

)k−1
, ak+1 = −2 I

7 ak
√
7
]

• Recursion relation for r = 0
ak+1 = −2 I

7 ak
√
7

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = −2 I

7 ak
√
7
]

• Revert the change of variables u = I
√
7

4 + x+ 1
4[

y =
∞∑
k=0

ak
(

I
√
7

4 + x+ 1
4

)k
, ak+1 = −2 I

7 ak
√
7
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak
(

I
√
7

4 + x+ 1
4

)k−1
)
+
(

∞∑
k=0

bk
(

I
√
7

4 + x+ 1
4

)k)
, a1+k = −2 I

7 ak
√
7, b1+k = −2 I

7 bk
√
7
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
Order:=6;
dsolve([(1+x+2*x^2)*diff(y(x),x$2)+(2+8*x)*diff(y(x),x)+4*y(x)=0,y(0) = -1, D(y)(0) = 2],y(x),type='series',x=0);� �

y(x) = −1 + 2x− 4x3 + 4x4 + 4x5 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 23� �
AsymptoticDSolveValue[{(1+x+2*x^2)*y''[x]+(2+8*x)*y'[x]+4*y[x]==0,{y[0]==-1,y'[0]==2}},y[x],{x,0,5}]� �

y(x) → 4x5 + 4x4 − 4x3 + 2x− 1
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13.3 problem 3
Internal problem ID [1244]
Internal file name [OUTPUT/1245_Sunday_June_05_2022_02_06_14_AM_91059259/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(
−2x2 + 1

)
y′′ + (2− 6x) y′ − 2y = 0

With initial conditions

[y(0) = 1, y′(0) = 0]

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (935)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (936)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2(3y′x− y′ + y)
2x2 − 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (44x2 − 32x+ 12) y′ + (20x− 4) y
(2x2 − 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (−400x3 + 464x2 − 340x+ 60) y′ + (−208x2 + 96x− 44) y
(2x2 − 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(4384x4 − 7104x3 + 7688x2 − 2784x+ 504) y′ + 2464y

(
x3 − 59

77x
2 + 29

44x− 27
308

)
(2x2 − 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(−56448x5 + 118656x4 − 169344x3 + 93824x2 − 33656x+ 4008) y′ − 33408y

(
x4 − 32

29x
3 + 79

58x
2 − 100

261x+ 329
4176

)
(2x2 − 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 1 and
y′(0) = 0 gives

F0 = 2
F1 = −4
F2 = 44
F3 = −216
F4 = 2632

Substituting all the above in (7) and simplifying gives the solution as

y = x2 + 1− 2x3

3 + 11x4

6 − 9x5

5 + 329x6

90 +O
(
x6)
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y = x2 + 1− 2x3

3 + 11x4

6 − 9x5

5 + 329x6

90 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

−2x2 + 1
)
y′′ + (2− 6x) y′ − 2y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
−2x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ (2− 6x)

(
∞∑
n=1

nanx
n−1

)
− 2
(

∞∑
n=0

anx
n

)
= 0

(1)

Which simplifies to

(2)

∞∑
n =2

(−2xnann(n− 1)) +
(

∞∑
n=2

n(n− 1) anxn−2

)

+
(

∞∑
n=1

2nanxn−1

)
+

∞∑
n =1

(−6nanxn) +
∞∑

n =0

(−2anxn) = 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =1

2nanxn−1 =
∞∑
n=0

2(n+ 1) an+1x
n
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

∞∑
n =2

(−2xnann(n− 1)) +
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
(

∞∑
n=0

2(n+ 1) an+1x
n

)
+

∞∑
n =1

(−6nanxn) +
∞∑

n =0

(−2anxn) = 0

n = 0 gives
2a2 + 2a1 − 2a0 = 0

a2 = a0 − a1

n = 1 gives
6a3 + 4a2 − 8a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −2a0
3 + 2a1

For 2 ≤ n, the recurrence equation is

(4)−2nan(n− 1) + (n+ 2) an+2(n+ 1) + 2(n+ 1) an+1 − 6nan − 2an = 0

Solving for an+2, gives

(5)

an+2 =
2nan + 2an − 2an+1

n+ 2

= 2(n+ 1) an
n+ 2 − 2an+1

n+ 2

For n = 2 the recurrence equation gives

−18a2 + 12a4 + 6a3 = 0

Which after substituting the earlier terms found becomes

a4 =
11a0
6 − 5a1

2
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For n = 3 the recurrence equation gives

−32a3 + 20a5 + 8a4 = 0

Which after substituting the earlier terms found becomes

a5 = −9a0
5 + 21a1

5

For n = 4 the recurrence equation gives

−50a4 + 30a6 + 10a5 = 0

Which after substituting the earlier terms found becomes

a6 =
329a0
90 − 167a1

30

For n = 5 the recurrence equation gives

−72a5 + 42a7 + 12a6 = 0

Which after substituting the earlier terms found becomes

a7 = −1301a0
315 + 923a1

105

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ (a0 − a1)x2 +
(
−2a0

3 + 2a1
)
x3

+
(
11a0
6 − 5a1

2

)
x4 +

(
−9a0

5 + 21a1
5

)
x5 + . . .
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Collecting terms, the solution becomes

(3)y =
(
x2 + 1− 2

3x
3 + 11

6 x4 − 9
5x

5
)
a0 +

(
x− x2 + 2x3 − 5

2x
4 + 21

5 x5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
x2 + 1− 2

3x
3 + 11

6 x4 − 9
5x

5
)
c1 +

(
x− x2 + 2x3 − 5

2x
4 + 21

5 x5
)
c2 +O

(
x6)

y = x2 + 1− 2x3

3 + 11x4

6 − 9x5

5 +O
(
x6)

Summary
The solution(s) found are the following

(1)y = x2 + 1− 2x3

3 + 11x4

6 − 9x5

5 + 329x6

90 +O
(
x6)

(2)y = x2 + 1− 2x3

3 + 11x4

6 − 9x5

5 +O
(
x6)

Verification of solutions

y = x2 + 1− 2x3

3 + 11x4

6 − 9x5

5 + 329x6

90 +O
(
x6)

Verified OK.

y = x2 + 1− 2x3

3 + 11x4

6 − 9x5

5 +O
(
x6)

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]

One independent solution has integrals. Trying a hypergeometric solution free of integrals...
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning hypergeometric solution free of uncomputed integrals

<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
Order:=6;
dsolve([(1-2*x^2)*diff(y(x),x$2)+(2-6*x)*diff(y(x),x)-2*y(x)=0,y(0) = 1, D(y)(0) = 0],y(x),type='series',x=0);� �

y(x) = 1 + x2 − 2
3x

3 + 11
6 x4 − 9

5x
5 +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 29� �
AsymptoticDSolveValue[{(1-2*x^2)*y''[x]+(2-6*x)*y'[x]-2*y[x]==0,{y[0]==1,y'[0]==0}},y[x],{x,0,5}]� �

y(x) → −9x5

5 + 11x4

6 − 2x3

3 + x2 + 1
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13.4 problem 4
13.4.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4071
13.4.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4079

Internal problem ID [1245]
Internal file name [OUTPUT/1246_Sunday_June_05_2022_02_06_21_AM_14952766/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
3x2 + x+ 1

)
y′′ + (2 + 15x) y′ + 12y = 0

With initial conditions

[y(0) = 0, y′(0) = 1]

With the expansion point for the power series method at x = 0.

13.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 2 + 15x
3x2 + x+ 1

q(x) = 12
3x2 + x+ 1

F = 0
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Hence the ode is

y′′ + (2 + 15x) y′
3x2 + x+ 1 + 12y

3x2 + x+ 1 = 0

The domain of p(x) = 2+15x
3x2+x+1 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 12
3x2+x+1 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (938)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (939)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...

4073



And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −15y′x+ 2y′ + 12y
3x2 + x+ 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (234x2 + 60x− 21) y′ + (252x+ 36) y
(3x2 + x+ 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(−4158x3 − 1548x2 + 1143x+ 180) y′ − 5076y

(
x2 + 13

47x− 4
47

)
(3x2 + x+ 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(84564x4 + 40824x3 − 47304x2 − 14580x+ 675) y′ + 110808

(
x3 + 23

57x
2 − 89

342x− 5
114

)
y

(3x2 + x+ 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(−1950804x5 − 1148904x4 + 1845828x3 + 837864x2 − 81729x− 23490) y′ − 2676888

(
x4 + 241

459x
3 − 1457

2754x
2 − 481

2754x+ 1
153

)
y

(3x2 + x+ 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 0 and
y′(0) = 1 gives

F0 = −2
F1 = −21
F2 = 180
F3 = 675
F4 = −23490

Substituting all the above in (7) and simplifying gives the solution as

y = −x2 + x− 7x3

2 + 15x4

2 + 45x5

8 − 261x6

8 +O
(
x6)

4075



y = −x2 + x− 7x3

2 + 15x4

2 + 45x5

8 − 261x6

8 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

3x2 + x+ 1
)
y′′ + (2 + 15x) y′ + 12y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives(
3x2 + x+ 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ (2 + 15x)

(
∞∑
n=1

nanx
n−1

)
+ 12

(
∞∑
n=0

anx
n

)
= 0

(1)
Which simplifies to

(2)

(
∞∑
n=2

3xnann(n− 1)
)

+
(

∞∑
n=2

nxn−1an(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)

+
(

∞∑
n=1

2nanxn−1

)
+
(

∞∑
n=1

15nanxn

)
+
(

∞∑
n=0

12anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

nxn−1an(n− 1) =
∞∑
n=1

(n+ 1) an+1nxn

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =1

2nanxn−1 =
∞∑
n=0

2(n+ 1) an+1x
n
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

3xnann(n−1)
)
+
(

∞∑
n=1

(n+1) an+1nxn

)
+
(

∞∑
n=0

(n+2) an+2(n+1)xn

)

+
(

∞∑
n=0

2(n+ 1) an+1x
n

)
+
(

∞∑
n=1

15nanxn

)
+
(

∞∑
n=0

12anxn

)
= 0

n = 0 gives
2a2 + 2a1 + 12a0 = 0

a2 = −6a0 − a1

n = 1 gives
6a2 + 6a3 + 27a1 = 0

Which after substituting earlier equations, simplifies to

a3 = 6a0 −
7a1
2

For 2 ≤ n, the recurrence equation is

(4)3nan(n−1)+(n+1) an+1n+(n+2) an+2(n+1)+2(n+1) an+1+15nan+12an = 0

Solving for an+2, gives

(5)

an+2 = −3nan + nan+1 + 6an + an+1

n+ 1

= −(3n+ 6) an
n+ 1 − an+1

For n = 2 the recurrence equation gives

48a2 + 12a3 + 12a4 = 0
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Which after substituting the earlier terms found becomes

a4 = 18a0 +
15a1
2

For n = 3 the recurrence equation gives

75a3 + 20a4 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 = −81a0
2 + 45a1

8

For n = 4 the recurrence equation gives

108a4 + 30a5 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = −243a0
10 − 261a1

8

For n = 5 the recurrence equation gives

147a5 + 42a6 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 =
3321a0
20 + 207a1

16

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ (−6a0 − a1)x2 +
(
6a0 −

7a1
2

)
x3

+
(
18a0 +

15a1
2

)
x4 +

(
−81a0

2 + 45a1
8

)
x5 + . . .
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Collecting terms, the solution becomes

(3)y =
(
1−6x2+6x3+18x4− 81

2 x5
)
a0+

(
−x2+x− 7

2x
3+ 15

2 x4+ 45
8 x5

)
a1+O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 6x2 + 6x3 + 18x4 − 81

2 x5
)
c1 +

(
−x2 + x− 7

2x
3 + 15

2 x4 + 45
8 x5

)
c2 +O

(
x6)

y = −x2 + x− 7x3

2 + 15x4

2 + 45x5

8 +O
(
x6)

Summary
The solution(s) found are the following

(1)y = −x2 + x− 7x3

2 + 15x4

2 + 45x5

8 − 261x6

8 +O
(
x6)

(2)y = −x2 + x− 7x3

2 + 15x4

2 + 45x5

8 +O
(
x6)

Verification of solutions

y = −x2 + x− 7x3

2 + 15x4

2 + 45x5

8 − 261x6

8 +O
(
x6)

Verified OK.

y = −x2 + x− 7x3

2 + 15x4

2 + 45x5

8 +O
(
x6)

Verified OK.

13.4.2 Maple step by step solution

Let’s solve[
(3x2 + x+ 1) y′′ + (2 + 15x) y′ + 12y = 0, y(0) = 0, y′

∣∣∣{x=0}
= 1
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
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y′′ = − 12y
3x2+x+1 −

(2+15x)y′
3x2+x+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (2+15x)y′
3x2+x+1 + 12y

3x2+x+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2+15x
3x2+x+1 , P3(x) = 12

3x2+x+1

]
◦
(

I
√
11
6 + x+ 1

6

)
· P2(x) is analytic at x = − I

√
11
6 − 1

6((
I
√
11
6 + x+ 1

6

)
· P2(x)

) ∣∣∣∣
x=− I

√
11
6 − 1

6

= 0

◦
(

I
√
11
6 + x+ 1

6

)2
· P3(x) is analytic at x = − I

√
11
6 − 1

6((
I
√
11
6 + x+ 1

6

)2
· P3(x)

) ∣∣∣∣
x=− I

√
11
6 − 1

6

= 0

◦ x = − I
√
11
6 − 1

6 is a regular singular point

Check to see if x0 is a regular singular point

x0 = − I
√
11
6 − 1

6

• Multiply by denominators
(3x2 + x+ 1) y′′ + (2 + 15x) y′ + 12y = 0

• Change variables using x = u− I
√
11
6 − 1

6 so that the regular singular point is at u = 0(
3u2 − Iu

√
11
) (

d2

du2y(u)
)
+
(
−1

2 + 15u− 5 I
√
11

2

) (
d
du
y(u)

)
+ 12y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r
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◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions
I
√
11
(
I
√
11−33−22r

)
ra0u−1+r

22 +
(

∞∑
k=0

(
I
√
11
(
I
√
11−22k−55−22r

)
(k+1+r)ak+1

22 + 3ak(k + r + 2)2
)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
I
22

√
11
(
I
√
11− 33− 22r

)
r = 0

• Values of r that satisfy the indicial equation

r ∈
{
0,−3

2 +
I
√
11

22

}
• Each term in the series must be 0, giving the recursion relation

3ak(k + r + 2)2 − (k + 1 + r) ak+1
(1
2 + I

(
k + r + 5

2

)√
11
)
= 0

• Recursion relation that defines series solution to ODE

ak+1 = 6ak
(
k2+2kr+r2+4k+4r+4

)
2 I

√
11 k2+4 Ikr

√
11+2 I

√
11 r2+7 Ik

√
11+7 Ir

√
11+5 I

√
11+k+r+1

• Recursion relation for r = 0

ak+1 = 6ak
(
k2+4k+4

)
2 I

√
11 k2+1+7 Ik

√
11+5 I

√
11+k

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = 6ak

(
k2+4k+4

)
2 I

√
11 k2+1+7 Ik

√
11+5 I

√
11+k

]
• Revert the change of variables u = I

√
11
6 + x+ 1

6[
y =

∞∑
k=0

ak
(

I
√
11
6 + x+ 1

6

)k
, ak+1 = 6ak

(
k2+4k+4

)
2 I

√
11 k2+1+7 Ik

√
11+5 I

√
11+k

]
• Recursion relation for r = −3

2 +
I
√
11

22

ak+1 =
6ak
(
k2+2k

(
− 3

2+
I
√
11

22

)
+
(
− 3

2+
I
√
11

22

)2
+4k−2+ 2 I

√
11

11

)
2 I

√
11 k2+4 Ik

(
− 3

2+
I
√
11

22

)√
11+2 I

√
11
(
− 3

2+
I
√
11

22

)2
+7 Ik

√
11+7 I

(
− 3

2+
I
√
11

22

)√
11+ 111 I

√
11

22 +k− 1
2

• Solution for r = −3
2 +

I
√
11

22
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[
y(u) =

∞∑
k=0

aku
k− 3

2+
I
√
11

22 , ak+1 =
6ak
(
k2+2k

(
− 3

2+
I
√
11

22

)
+
(
− 3

2+
I
√
11

22

)2
+4k−2+ 2 I

√
11

11

)
2 I

√
11 k2+4 Ik

(
− 3

2+
I
√
11

22

)√
11+2 I

√
11
(
− 3

2+
I
√
11

22

)2
+7 Ik

√
11+7 I

(
− 3

2+
I
√
11

22

)√
11+ 111 I

√
11

22 +k− 1
2

]
• Revert the change of variables u = I

√
11
6 + x+ 1

6[
y =

∞∑
k=0

ak
(

I
√
11
6 + x+ 1

6

)k− 3
2+

I
√
11

22
, ak+1 =

6ak
(
k2+2k

(
− 3

2+
I
√

11
22

)
+
(
− 3

2+
I
√
11

22

)2
+4k−2+ 2 I

√
11

11

)
2 I

√
11 k2+4 Ik

(
− 3

2+
I
√
11

22

)√
11+2 I

√
11
(
− 3

2+
I
√
11

22

)2
+7 Ik

√
11+7 I

(
− 3

2+
I
√

11
22

)√
11+ 111 I

√
11

22 +k− 1
2

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak
(

I
√
11
6 + x+ 1

6

)k)
+
(

∞∑
k=0

bk
(

I
√
11
6 + x+ 1

6

)k− 3
2+

I
√
11

22

)
, a1+k = 6ak

(
k2+4k+4

)
2 I

√
11 k2+1+7 Ik

√
11+5 I

√
11+k

, b1+k =
6bk
(
k2+2k

(
− 3

2+
I
√
11

22

)
+
(
− 3

2+
I
√
11

22

)2
+4k−2+ 2 I

√
11

11

)
2 I

√
11 k2+4 Ik

(
− 3

2+
I
√
11

22

)√
11+2 I

√
11
(
− 3

2+
I
√
11

22

)2
+7 Ik

√
11+7 I

(
− 3

2+
I
√
11

22

)√
11+ 111 I

√
11

22 +k− 1
2

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 18� �
Order:=6;
dsolve([(1+x+3*x^2)*diff(y(x),x$2)+(2+15*x)*diff(y(x),x)+12*y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='series',x=0);� �

y(x) = x− x2 − 7
2x

3 + 15
2 x4 + 45

8 x5 +O
(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 31� �
AsymptoticDSolveValue[{(1+x+3*x^2)*y''[x]+(2+15*x)*y'[x]+12*y[x]==0,{y[0]==0,y'[0]==1}},y[x],{x,0,5}]� �

y(x) → 45x5

8 + 15x4

2 − 7x3

2 − x2 + x
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13.5 problem 5
13.5.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4085
13.5.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4094

Internal problem ID [1246]
Internal file name [OUTPUT/1247_Sunday_June_05_2022_02_06_25_AM_51456129/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(2 + x) y′′ + (x+ 1) y′ + 3y = 0

With initial conditions

[y(0) = 4, y′(0) = 3]

With the expansion point for the power series method at x = 0.

13.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = x+ 1
2 + x

q(x) = 3
2 + x

F = 0
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Hence the ode is

y′′ + (x+ 1) y′
2 + x

+ 3y
2 + x

= 0

The domain of p(x) = x+1
2+x

is

{x < −2∨−2 < x}

And the point x0 = 0 is inside this domain. The domain of q(x) = 3
2+x

is

{x < −2∨−2 < x}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

4086



But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (941)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (942)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −y′x+ y′ + 3y
2 + x

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (x− 3) y′ + 3y
2 + x

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (−x2 + 5x+ 14) y′ − 3(−2 + x) y
(2 + x)2

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (x3 − 7x2 − 28x− 20) y′ + 3y(x2 − 4x− 20)
(2 + x)3

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (−x4 + 9x3 + 42x2 − 8x− 96) y′ − 3y(x3 − 6x2 − 40x− 72)
(2 + x)4

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 4 and
y′(0) = 3 gives

F0 = −15
2

F1 =
3
2

F2 =
33
2

F3 = −75
2

F4 = 36
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Substituting all the above in (7) and simplifying gives the solution as

y = 3x+ 4− 15x2

4 + x3

4 + 11x4

16 − 5x5

16 + x6

20 +O
(
x6)

y = 3x+ 4− 15x2

4 + x3

4 + 11x4

16 − 5x5

16 + x6

20 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(2 + x) y′′ + (x+ 1) y′ + 3y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(2 + x)
(

∞∑
n=2

n(n− 1) anxn−2

)
+ (x+ 1)

(
∞∑
n=1

nanx
n−1

)
+ 3
(

∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

nxn−1an(n− 1)
)

+
(

∞∑
n=2

2n(n− 1) anxn−2

)

+
(

∞∑
n=1

nanx
n

)
+
(

∞∑
n=1

nanx
n−1

)
+
(

∞∑
n=0

3anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
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power and the corresponding index gives

∞∑
n =2

nxn−1an(n− 1) =
∞∑
n=1

(n+ 1) an+1nxn

∞∑
n =2

2n(n− 1) anxn−2 =
∞∑
n=0

2(n+ 2) an+2(n+ 1)xn

∞∑
n =1

nanx
n−1 =

∞∑
n=0

(n+ 1) an+1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=1

(n+ 1) an+1nxn

)
+
(

∞∑
n=0

2(n+ 2) an+2(n+ 1)xn

)

+
(

∞∑
n=1

nanx
n

)
+
(

∞∑
n=0

(n+ 1) an+1x
n

)
+
(

∞∑
n=0

3anxn

)
= 0

n = 0 gives
4a2 + a1 + 3a0 = 0

a2 = −3a0
4 − a1

4

For 1 ≤ n, the recurrence equation is

(4)(n+ 1) an+1n+ 2(n+ 2) an+2(n+ 1) + nan + (n+ 1) an+1 + 3an = 0

Solving for an+2, gives

(5)

an+2 = −n2an+1 + nan + 2nan+1 + 3an + an+1

2 (n+ 2) (n+ 1)

= − (n+ 3) an
2 (n+ 2) (n+ 1) −

(n2 + 2n+ 1) an+1

2 (n+ 2) (n+ 1)
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For n = 1 the recurrence equation gives

4a2 + 12a3 + 4a1 = 0

Which after substituting the earlier terms found becomes

a3 =
a0
4 − a1

4

For n = 2 the recurrence equation gives

9a3 + 24a4 + 5a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
16 + 7a1

48

For n = 3 the recurrence equation gives

16a4 + 40a5 + 6a3 = 0

Which after substituting the earlier terms found becomes

a5 = −a0
16 − a1

48

For n = 4 the recurrence equation gives

25a5 + 60a6 + 7a4 = 0

Which after substituting the earlier terms found becomes

a6 =
3a0
160 − a1

120

For n = 5 the recurrence equation gives

36a6 + 84a7 + 8a5 = 0

Which after substituting the earlier terms found becomes

a7 = − a0
480 + a1

180
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And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0+a1x+
(
−3a0

4 − a1
4

)
x2+

(a0
4 − a1

4

)
x3+

(
a0
16 +

7a1
48

)
x4+

(
−a0
16−

a1
48

)
x5+ . . .

Collecting terms, the solution becomes

y =
(
1− 3

4x
2 + 1

4x
3 + 1

16x
4 − 1

16x
5
)
a0 +

(
x− 1

4x
2 − 1

4x
3 + 7

48x
4 − 1

48x
5
)
a1 +O

(
x6)
(3)

At x = 0 the solution above becomes

y =
(
1− 3

4x
2 + 1

4x
3 + 1

16x
4 − 1

16x
5
)
c1 +

(
x− 1

4x
2 − 1

4x
3 + 7

48x
4 − 1

48x
5
)
c2 +O

(
x6)

y = 4− 15x2

4 + x3

4 + 11x4

16 − 5x5

16 + 3x+O
(
x6)

Summary
The solution(s) found are the following

(1)y = 3x+ 4− 15x2

4 + x3

4 + 11x4

16 − 5x5

16 + x6

20 +O
(
x6)

(2)y = 4− 15x2

4 + x3

4 + 11x4

16 − 5x5

16 + 3x+O
(
x6)

Verification of solutions

y = 3x+ 4− 15x2

4 + x3

4 + 11x4

16 − 5x5

16 + x6

20 +O
(
x6)

Verified OK.

y = 4− 15x2

4 + x3

4 + 11x4

16 − 5x5

16 + 3x+O
(
x6)

Verified OK.
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13.5.2 Maple step by step solution

Let’s solve[
(2 + x) y′′ + (x+ 1) y′ + 3y = 0, y(0) = 4, y′

∣∣∣{x=0}
= 3
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 3y
2+x

− (x+1)y′
2+x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (x+1)y′
2+x

+ 3y
2+x

= 0

� Check to see if x0 = −2 is a regular singular point
◦ Define functions[

P2(x) = x+1
2+x

, P3(x) = 3
2+x

]
◦ (2 + x) · P2(x) is analytic at x = −2

((2 + x) · P2(x))
∣∣∣∣
x=−2

= −1

◦ (2 + x)2 · P3(x) is analytic at x = −2(
(2 + x)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 = −2 is a regular singular point
x0 = −2

• Multiply by denominators
(2 + x) y′′ + (x+ 1) y′ + 3y = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (u− 1)

(
d
du
y(u)

)
+ 3y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1) + ak(k + r + 3))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r − 1) + ak(k + r + 3) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r+3)

(k+1+r)(k+r−1)

• Recursion relation for r = 0
ak+1 = − ak(k+3)

(k+1)(k−1)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 1
ak+1 = − ak(k+3)

(k+1)(k−1)

• Recursion relation for r = 2
ak+1 = − ak(k+5)

(k+3)(k+1)

• Solution for r = 2
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[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = − ak(k+5)

(k+3)(k+1)

]
• Revert the change of variables u = 2 + x[

y =
∞∑
k=0

ak(2 + x)k+2 , ak+1 = − ak(k+5)
(k+3)(k+1)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(2+x)*diff(y(x),x$2)+(1+x)*diff(y(x),x)+3*y(x)=0,y(0) = 4, D(y)(0) = 3],y(x),type='series',x=0);� �

y(x) = 4 + 3x− 15
4 x2 + 1

4x
3 + 11

16x
4 − 5

16x
5 +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 36� �
AsymptoticDSolveValue[{(2+x)*y''[x]+(1+x)*y'[x]+3*y[x]==0,{y[0]==4,y'[0]==3}},y[x],{x,0,5}]� �

y(x) → −5x5

16 + 11x4

16 + x3

4 − 15x2

4 + 3x+ 4

4096



13.6 problem 6
13.6.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4098
13.6.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4106

Internal problem ID [1247]
Internal file name [OUTPUT/1248_Sunday_June_05_2022_02_06_27_AM_57198332/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second_order_change_of_variable_on_y_method_1", "linear_sec-
ond_order_ode_solved_by_an_integrating_factor", "second order series
method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(
x2 + 3x+ 3

)
y′′ + (6 + 4x) y′ + 2y = 0

With initial conditions

[y(0) = 7, y′(0) = 3]

With the expansion point for the power series method at x = 0.
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13.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 6 + 4x
x2 + 3x+ 3

q(x) = 2
x2 + 3x+ 3

F = 0

Hence the ode is

y′′ + (6 + 4x) y′
x2 + 3x+ 3 + 2y

x2 + 3x+ 3 = 0

The domain of p(x) = 6+4x
x2+3x+3 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 2
x2+3x+3 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (944)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (945)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2(2y′x+ 3y′ + y)
x2 + 3x+ 3

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 18(x2 + 3x+ 2) y′ + 6(2x+ 3) y
(x2 + 3x+ 3)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (−96x3 − 432x2 − 576x− 216) y′ − 72(2 + x) y(x+ 1)
(x2 + 3x+ 3)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(600x4 + 3600x3 + 7200x2 + 5400x+ 1080) y′ + 480

(
x2 + 3x+ 3

2

) (
x+ 3

2

)
y

(x2 + 3x+ 3)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(−4320x5 − 32400x4 − 86400x3 − 97200x2 − 38880x) y′ − 3600

(
x4 + 6x3 + 12x2 + 9x+ 9

5

)
y

(x2 + 3x+ 3)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 7 and
y′(0) = 3 gives

F0 = −32
3

F1 = 26

F2 = −184
3

F3 =
400
3

F4 = −560
3
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Substituting all the above in (7) and simplifying gives the solution as

y = 7 + 3x− 16x2

3 + 13x3

3 − 23x4

9 + 10x5

9 − 7x6

27 +O
(
x6)

y = 7 + 3x− 16x2

3 + 13x3

3 − 23x4

9 + 10x5

9 − 7x6

27 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 + 3x+ 3
)
y′′ + (6 + 4x) y′ + 2y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 + 3x+ 3

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ (6 + 4x)

(
∞∑
n=1

nanx
n−1

)
+ 2
(

∞∑
n=0

anx
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=2

3nxn−1an(n− 1)
)

+
(

∞∑
n=2

3n(n− 1) anxn−2

)

+
(

∞∑
n=1

6nanxn−1

)
+
(

∞∑
n=1

4nanxn

)
+
(

∞∑
n=0

2anxn

)
= 0
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The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

3nxn−1an(n− 1) =
∞∑
n=1

3(n+ 1) an+1nxn

∞∑
n =2

3n(n− 1) anxn−2 =
∞∑
n=0

3(n+ 2) an+2(n+ 1)xn

∞∑
n =1

6nanxn−1 =
∞∑
n=0

6(n+ 1) an+1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=1

3(n+ 1) an+1nxn

)

+
(

∞∑
n=0

3(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=0

6(n+ 1) an+1x
n

)

+
(

∞∑
n=1

4nanxn

)
+
(

∞∑
n=0

2anxn

)
= 0

n = 0 gives
6a2 + 6a1 + 2a0 = 0

a2 = −a0
3 − a1

n = 1 gives
18a2 + 18a3 + 6a1 = 0

Which after substituting earlier equations, simplifies to

a3 =
a0
3 + 2a1

3
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For 2 ≤ n, the recurrence equation is

(4)nan(n− 1)+3(n+1) an+1n+3(n+2) an+2(n+1)+6(n+1) an+1+4nan+2an = 0

Solving for an+2, gives

(5)

an+2 = −an
3 − an+1

= −an
3 − an+1

For n = 2 the recurrence equation gives

12a2 + 36a3 + 36a4 = 0

Which after substituting the earlier terms found becomes

a4 = −2a0
9 − a1

3

For n = 3 the recurrence equation gives

20a3 + 60a4 + 60a5 = 0

Which after substituting the earlier terms found becomes

a5 =
a0
9 + a1

9

For n = 4 the recurrence equation gives

30a4 + 90a5 + 90a6 = 0

Which after substituting the earlier terms found becomes

a6 = −a0
27

For n = 5 the recurrence equation gives

42a5 + 126a6 + 126a7 = 0
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Which after substituting the earlier terms found becomes

a7 = −a1
27

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0+a1x+
(
−a0

3 −a1
)
x2+

(
a0
3 + 2a1

3

)
x3+

(
−2a0

9 − a1
3

)
x4+

(a0
9 + a1

9

)
x5+ . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

3x
2 + 1

3x
3 − 2

9x
4 + 1

9x
5
)
a0 +

(
x− x2 + 2

3x
3 − 1

3x
4 + 1

9x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

3x
2 + 1

3x
3 − 2

9x
4 + 1

9x
5
)
c1 +

(
x− x2 + 2

3x
3 − 1

3x
4 + 1

9x
5
)
c2 +O

(
x6)

y = 7− 16x2

3 + 13x3

3 − 23x4

9 + 10x5

9 + 3x+O
(
x6)

Summary
The solution(s) found are the following

(1)y = 7 + 3x− 16x2

3 + 13x3

3 − 23x4

9 + 10x5

9 − 7x6

27 +O
(
x6)

(2)y = 7− 16x2

3 + 13x3

3 − 23x4

9 + 10x5

9 + 3x+O
(
x6)

Verification of solutions

y = 7 + 3x− 16x2

3 + 13x3

3 − 23x4

9 + 10x5

9 − 7x6

27 +O
(
x6)

Verified OK.

y = 7− 16x2

3 + 13x3

3 − 23x4

9 + 10x5

9 + 3x+O
(
x6)

Verified OK.
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13.6.2 Maple step by step solution

Let’s solve[
(x2 + 3x+ 3) y′′ + (6 + 4x) y′ + 2y = 0, y(0) = 7, y′

∣∣∣{x=0}
= 3
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 2y
x2+3x+3 −

2(2x+3)y′
x2+3x+3

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2(2x+3)y′
x2+3x+3 + 2y

x2+3x+3 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2(2x+3)
x2+3x+3 , P3(x) = 2

x2+3x+3

]
◦
(

I
√
3

2 + x+ 3
2

)
· P2(x) is analytic at x = − I

√
3

2 − 3
2((

I
√
3

2 + x+ 3
2

)
· P2(x)

) ∣∣∣∣
x=− I

√
3

2 − 3
2

= 0

◦
(

I
√
3

2 + x+ 3
2

)2
· P3(x) is analytic at x = − I

√
3

2 − 3
2((

I
√
3

2 + x+ 3
2

)2
· P3(x)

) ∣∣∣∣
x=− I

√
3

2 − 3
2

= 0

◦ x = − I
√
3

2 − 3
2 is a regular singular point

Check to see if x0 is a regular singular point

x0 = − I
√
3

2 − 3
2

• Multiply by denominators
(x2 + 3x+ 3) y′′ + (6 + 4x) y′ + 2y = 0

• Change variables using x = u− I
√
3

2 − 3
2 so that the regular singular point is at u = 0(

u2 − Iu
√
3
) (

d2

du2y(u)
)
+
(
4u− 2 I

√
3
) (

d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r
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� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−I
√
3 r(r + 1) a0u−1+r +

(
∞∑
k=0

(
−I

√
3 (k + r + 1) (k + r + 2) ak+1 + ak(k + r + 2) (k + r + 1)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−I

√
3 r(r + 1) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term in the series must be 0, giving the recursion relation(
−I

√
3 ak+1 + ak

)
(k + r + 2) (k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − I

3ak
√
3

• Recursion relation for r = −1
ak+1 = − I

3ak
√
3

• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+1 = − I

3ak
√
3
]

• Revert the change of variables u = I
√
3

2 + x+ 3
2
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[
y =

∞∑
k=0

ak
(

I
√
3

2 + x+ 3
2

)k−1
, ak+1 = − I

3ak
√
3
]

• Recursion relation for r = 0
ak+1 = − I

3ak
√
3

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = − I

3ak
√
3
]

• Revert the change of variables u = I
√
3

2 + x+ 3
2[

y =
∞∑
k=0

ak
(

I
√
3

2 + x+ 3
2

)k
, ak+1 = − I

3ak
√
3
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak
(

I
√
3

2 + x+ 3
2

)k−1
)
+
(

∞∑
k=0

bk
(

I
√
3

2 + x+ 3
2

)k)
, a1+k = − I

3ak
√
3, b1+k = − I

3bk
√
3
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
Order:=6;
dsolve([(3+3*x+x^2)*diff(y(x),x$2)+(6+4*x)*diff(y(x),x)+2*y(x)=0,y(0) = 7, D(y)(0) = 3],y(x),type='series',x=0);� �

y(x) = 7 + 3x− 16
3 x2 + 13

3 x3 − 23
9 x4 + 10

9 x5 +O
(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 36� �
AsymptoticDSolveValue[{(3+3*x+x^2)*y''[x]+(6+4*x)*y'[x]+2*y[x]==0,{y[0]==7,y'[0]==3}},y[x],{x,0,5}]� �

y(x) → 10x5

9 − 23x4

9 + 13x3

3 − 16x2

3 + 3x+ 7
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13.7 problem 7
13.7.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4110
13.7.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4119

Internal problem ID [1248]
Internal file name [OUTPUT/1249_Sunday_June_05_2022_02_06_29_AM_3004114/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(x+ 4) y′′ + (2 + x) y′ + 2y = 0

With initial conditions

[y(0) = 2, y′(0) = 5]

With the expansion point for the power series method at x = 0.

13.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 2 + x

x+ 4
q(x) = 2

x+ 4
F = 0
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Hence the ode is

y′′ + (2 + x) y′
x+ 4 + 2y

x+ 4 = 0

The domain of p(x) = 2+x
x+4 is

{x < −4∨−4 < x}

And the point x0 = 0 is inside this domain. The domain of q(x) = 2
x+4 is

{x < −4∨−4 < x}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (947)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (948)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −y′x+ 2y′ + 2y
x+ 4

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (x2 + 2x− 6) y′ + 2y(x+ 3)
(x+ 4)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (−x2 + 2x+ 14) y′ − 2y(x− 1)
(x+ 4)2

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (x2 − 6x− 10) y′ + 2y(x− 5)
(x+ 4)2

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (−x3 + 6x2 + 34x− 24) y′ − 2y(x+ 3) (x− 8)
(x+ 4)3

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 2 and
y′(0) = 5 gives

F0 = −7
2

F1 = −9
8

F2 =
37
8

F3 = −35
8

F4 = −3
8
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Substituting all the above in (7) and simplifying gives the solution as

y = 5x+ 2− 7x2

4 − 3x3

16 + 37x4

192 − 7x5

192 − x6

1920 +O
(
x6)

y = 5x+ 2− 7x2

4 − 3x3

16 + 37x4

192 − 7x5

192 − x6

1920 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(x+ 4) y′′ + (2 + x) y′ + 2y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(x+ 4)
(

∞∑
n=2

n(n− 1) anxn−2

)
+ (2 + x)

(
∞∑
n=1

nanx
n−1

)
+ 2
(

∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

nxn−1an(n− 1)
)

+
(

∞∑
n=2

4n(n− 1) anxn−2

)

+
(

∞∑
n=1

2nanxn−1

)
+
(

∞∑
n=1

nanx
n

)
+
(

∞∑
n=0

2anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
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power and the corresponding index gives

∞∑
n =2

nxn−1an(n− 1) =
∞∑
n=1

(n+ 1) an+1nxn

∞∑
n =2

4n(n− 1) anxn−2 =
∞∑
n=0

4(n+ 2) an+2(n+ 1)xn

∞∑
n =1

2nanxn−1 =
∞∑
n=0

2(n+ 1) an+1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=1

(n+ 1) an+1nxn

)
+
(

∞∑
n=0

4(n+ 2) an+2(n+ 1)xn

)

+
(

∞∑
n=0

2(n+ 1) an+1x
n

)
+
(

∞∑
n=1

nanx
n

)
+
(

∞∑
n=0

2anxn

)
= 0

n = 0 gives
8a2 + 2a1 + 2a0 = 0

a2 = −a0
4 − a1

4

For 1 ≤ n, the recurrence equation is

(4)(n+ 1) an+1n+ 4(n+ 2) an+2(n+ 1) + 2(n+ 1) an+1 + nan + 2an = 0

Solving for an+2, gives

(5)

an+2 = −nan+1 + an + an+1

4 (n+ 1)

= − an
4 (n+ 1) −

an+1

4

For n = 1 the recurrence equation gives

6a2 + 24a3 + 3a1 = 0
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Which after substituting the earlier terms found becomes

a3 =
a0
16 − a1

16

For n = 2 the recurrence equation gives

12a3 + 48a4 + 4a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
192 + 7a1

192

For n = 3 the recurrence equation gives

20a4 + 80a5 + 5a3 = 0

Which after substituting the earlier terms found becomes

a5 = − a0
192 − a1

192

For n = 4 the recurrence equation gives

30a5 + 120a6 + 6a4 = 0

Which after substituting the earlier terms found becomes

a6 =
a0
960 − a1

1920

For n = 5 the recurrence equation gives

42a6 + 168a7 + 7a5 = 0

Which after substituting the earlier terms found becomes

a7 = − a0
23040 + a1

2880
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And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y= a0+a1x+
(
−a0

4 − a1
4

)
x2+

(a0
16−

a1
16

)
x3+

(
a0
192+

7a1
192

)
x4+

(
− a0
192−

a1
192

)
x5+. . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

4x
2 + 1

16x
3 + 1

192x
4 − 1

192x
5
)
a0

+
(
x− 1

4x
2 − 1

16x
3 + 7

192x
4 − 1

192x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y=
(
1− 1

4x
2+ 1

16x
3+ 1

192x
4− 1

192x
5
)
c1+

(
x− 1

4x
2− 1

16x
3+ 7

192x
4− 1

192x
5
)
c2+O

(
x6)

y = 2− 7x2

4 − 3x3

16 + 37x4

192 − 7x5

192 + 5x+O
(
x6)

Summary
The solution(s) found are the following

(1)y = 5x+ 2− 7x2

4 − 3x3

16 + 37x4

192 − 7x5

192 − x6

1920 +O
(
x6)

(2)y = 2− 7x2

4 − 3x3

16 + 37x4

192 − 7x5

192 + 5x+O
(
x6)

Verification of solutions

y = 5x+ 2− 7x2

4 − 3x3

16 + 37x4

192 − 7x5

192 − x6

1920 +O
(
x6)

Verified OK.

y = 2− 7x2

4 − 3x3

16 + 37x4

192 − 7x5

192 + 5x+O
(
x6)

Verified OK.
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13.7.2 Maple step by step solution

Let’s solve[
(x+ 4) y′′ + (2 + x) y′ + 2y = 0, y(0) = 2, y′

∣∣∣{x=0}
= 5
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 2y
x+4 −

(2+x)y′
x+4

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (2+x)y′
x+4 + 2y

x+4 = 0

� Check to see if x0 = −4 is a regular singular point
◦ Define functions[

P2(x) = 2+x
x+4 , P3(x) = 2

x+4

]
◦ (x+ 4) · P2(x) is analytic at x = −4

((x+ 4) · P2(x))
∣∣∣∣
x=−4

= −2

◦ (x+ 4)2 · P3(x) is analytic at x = −4(
(x+ 4)2 · P3(x)

) ∣∣∣∣
x=−4

= 0

◦ x = −4is a regular singular point
Check to see if x0 = −4 is a regular singular point
x0 = −4

• Multiply by denominators
(x+ 4) y′′ + (2 + x) y′ + 2y = 0

• Change variables using x = u− 4 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−2 + u)

(
d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−3 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k − 2 + r) + ak(k + r + 2))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 3}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k − 2 + r) + ak(k + r + 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r+2)

(k+1+r)(k−2+r)

• Recursion relation for r = 0
ak+1 = − ak(k+2)

(k+1)(k−2)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 2
ak+1 = − ak(k+2)

(k+1)(k−2)

• Recursion relation for r = 3
ak+1 = − ak(k+5)

(k+4)(k+1)

• Solution for r = 3
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[
y(u) =

∞∑
k=0

aku
k+3, ak+1 = − ak(k+5)

(k+4)(k+1)

]
• Revert the change of variables u = x+ 4[

y =
∞∑
k=0

ak(x+ 4)k+3 , ak+1 = − ak(k+5)
(k+4)(k+1)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 20� �
Order:=6;
dsolve([(4+x)*diff(y(x),x$2)+(2+x)*diff(y(x),x)+2*y(x)=0,y(0) = 2, D(y)(0) = 5],y(x),type='series',x=0);� �

y(x) = 2 + 5x− 7
4x

2 − 3
16x

3 + 37
192x

4 − 7
192x

5 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 36� �
AsymptoticDSolveValue[{(4+x)*y''[x]+(2+x)*y'[x]+2*y[x]==0,{y[0]==4,y'[0]==3}},y[x],{x,0,5}]� �

y(x) → −7x5

192 + 25x4

192 + x3

16 − 7x2

4 + 3x+ 4
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13.8 problem 8
13.8.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4122
13.8.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4131

Internal problem ID [1249]
Internal file name [OUTPUT/1250_Sunday_June_05_2022_02_06_31_AM_53835349/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(
2x2 − 3x+ 2

)
y′′ − (4− 6x) y′ + 2y = 0

With initial conditions

[y(1) = 1, y′(1) = −1]

With the expansion point for the power series method at x = 1.

13.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 6x− 4
2x2 − 3x+ 2

q(x) = 2
2x2 − 3x+ 2

F = 0
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Hence the ode is

y′′ + (6x− 4) y′
2x2 − 3x+ 2 + 2y

2x2 − 3x+ 2 = 0

The domain of p(x) = 6x−4
2x2−3x+2 is

{−∞ < x < ∞}

And the point x0 = 1 is inside this domain. The domain of q(x) = 2
2x2−3x+2 is

{−∞ < x < ∞}

And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x− 1

The ode is converted to be in terms of the new independent variable t. This results in

(
2(t+ 1)2 − 3t− 1

)( d2

dt2
y(t)

)
+ (6t+ 2)

(
d

dt
y(t)

)
+ 2y(t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = 1
y′(0) = −1

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (950)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (951)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)

4125



To find y(x) series solution around x = 0. Hence

F0 = −
2
(
3t
(

d
dt
y(t)

)
+ d

dt
y(t) + y(t)

)
2t2 + t+ 1

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(44t2 + 30t− 2)

(
d
dt
y(t)

)
+ (20t+ 6) y(t)

(2t2 + t+ 1)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(−400t3 − 416t2 + 52t+ 44)

(
d
dt
y(t)

)
− 208

(
t2 + 8

13t−
3
52

)
y(t)

(2t2 + t+ 1)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(4384t4 + 6160t3 − 1096t2 − 1948t− 156)

(
d
dt
y(t)

)
+ 2464

(
t3 + 145

154t
2 − 51

308t−
9
88

)
y(t)

(2t2 + t+ 1)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(−56448t5 − 100224t4 + 22752t3 + 63232t2 + 10320t− 1264)

(
d
dt
y(t)

)
− 33408y(t)

(
t4 + 37

29t
3 − 37

116t
2 − 431

1044t−
19
696

)
(2t2 + t+ 1)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = 1 and
y′(0) = −1 gives

F0 = 0
F1 = 8
F2 = −32
F3 = −96
F4 = 2176
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Substituting all the above in (7) and simplifying gives the solution as

y(t) = 1− t+ 4t3
3 − 4t4

3 − 4t5
5 + 136t6

45 +O
(
t6
)

y(t) = 1− t+ 4t3
3 − 4t4

3 − 4t5
5 + 136t6

45 +O
(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

d2

dt2
y(t)

)(
2t2 + t+ 1

)
+ (6t+ 2)

(
d

dt
y(t)

)
+ 2y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)(
2t2 + t+ 1

)
+ (6t+ 2)

(
∞∑
n=1

nant
n−1

)
+ 2
(

∞∑
n=0

ant
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

2tnann(n− 1)
)

+
(

∞∑
n=2

n tn−1an(n− 1)
)

+
(

∞∑
n=2

n(n− 1) antn−2

)

+
(

∞∑
n=1

6nantn
)

+
(

∞∑
n=1

2nantn−1

)
+
(

∞∑
n=0

2antn
)

= 0
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The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

n tn−1an(n− 1) =
∞∑
n=1

(n+ 1) an+1n tn

∞∑
n =2

n(n− 1) antn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1) tn

∞∑
n =1

2nantn−1 =
∞∑
n=0

2(n+ 1) an+1t
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=2

2tnann(n−1)
)
+
(

∞∑
n=1

(n+1) an+1n tn

)
+
(

∞∑
n=0

(n+2) an+2(n+1) tn
)

+
(

∞∑
n=1

6nantn
)

+
(

∞∑
n=0

2(n+ 1) an+1t
n

)
+
(

∞∑
n=0

2antn
)

= 0

n = 0 gives
2a2 + 2a1 + 2a0 = 0

a2 = −a0 − a1

n = 1 gives
6a2 + 6a3 + 8a1 = 0

Which after substituting earlier equations, simplifies to

a3 = a0 −
a1
3

For 2 ≤ n, the recurrence equation is

(4)2nan(n− 1)+ (n+1) an+1n+(n+2) an+2(n+1)+ 6nan +2(n+1) an+1 +2an = 0
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Solving for an+2, gives

(5)

an+2 = −2nan + nan+1 + 2an + 2an+1

n+ 2

= −(2n+ 2) an
n+ 2 − an+1

For n = 2 the recurrence equation gives

18a2 + 12a3 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
2 + 11a1

6

For n = 3 the recurrence equation gives

32a3 + 20a4 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 = −21a0
10 − 13a1

10

For n = 4 the recurrence equation gives

50a4 + 30a5 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 =
19a0
15 − 79a1

45

For n = 5 the recurrence equation gives

72a5 + 42a6 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 =
7a0
3 + 251a1

63
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And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0+a1t+(−a0−a1) t2+
(
a0−

a1
3

)
t3+

(
a0
2 + 11a1

6

)
t4+

(
−21a0

10 − 13a1
10

)
t5+ . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− t2 + t3 + 1

2t
4 − 21

10t
5
)
a0 +

(
t− t2 − 1

3t
3 + 11

6 t4 − 13
10t

5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1− t2 + t3 + 1

2t
4 − 21

10t
5
)
c1 +

(
t− t2 − 1

3t
3 + 11

6 t4 − 13
10t

5
)
c2 +O

(
t6
)

y(t) = 1 + 4t3
3 − 4t4

3 − 4t5
5 − t+O

(
t6
)

Replacing t in the above with the original independent variable xsusing t = x−1 results
in

y = 2− x+ 4(x− 1)3

3 − 4(x− 1)4

3 − 4(x− 1)5

5 + 136(x− 1)6

45 +O
(
(x− 1)6

)
Summary
The solution(s) found are the following

(1)y = 2− x+ 4(x− 1)3

3 − 4(x− 1)4

3 − 4(x− 1)5

5 + 136(x− 1)6

45 +O
(
(x− 1)6

)
Verification of solutions

y = 2− x+ 4(x− 1)3

3 − 4(x− 1)4

3 − 4(x− 1)5

5 + 136(x− 1)6

45 +O
(
(x− 1)6

)
Verified OK.
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13.8.2 Maple step by step solution

Let’s solve[
(2x2 − 3x+ 2) y′′ + (6x− 4) y′ + 2y = 0, y(1) = 1, y′

∣∣∣{x=1}
= −1

]
• Highest derivative means the order of the ODE is 2

y′′

• Isolate 2nd derivative

y′′ = − 2y
2x2−3x+2 −

2(3x−2)y′
2x2−3x+2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2(3x−2)y′
2x2−3x+2 +

2y
2x2−3x+2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2(3x−2)
2x2−3x+2 , P3(x) = 2

2x2−3x+2

]
◦
(

I
√
7

4 + x− 3
4

)
· P2(x) is analytic at x = − I

√
7

4 + 3
4((

I
√
7

4 + x− 3
4

)
· P2(x)

) ∣∣∣∣
x=− I

√
7

4 + 3
4

= 0

◦
(

I
√
7

4 + x− 3
4

)2
· P3(x) is analytic at x = − I

√
7

4 + 3
4((

I
√
7

4 + x− 3
4

)2
· P3(x)

) ∣∣∣∣
x=− I

√
7

4 + 3
4

= 0

◦ x = − I
√
7

4 + 3
4 is a regular singular point

Check to see if x0 is a regular singular point

x0 = − I
√
7

4 + 3
4

• Multiply by denominators
(2x2 − 3x+ 2) y′′ + (6x− 4) y′ + 2y = 0

• Change variables using x = u− I
√
7

4 + 3
4 so that the regular singular point is at u = 0(

2u2 − Iu
√
7
) (

d2

du2y(u)
)
+
(
6u− 3 I

√
7

2 + 1
2

) (
d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r
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� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−
I
√
7 r
(
I
√
7+7+14r

)
a0u−1+r

14 +
(

∞∑
k=0

(
−

I
√
7 (k+r+1)

(
I
√
7+14k+21+14r

)
ak+1

14 + 2ak(k + r + 1)2
)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
− I

14

√
7 r
(
I
√
7 + 7 + 14r

)
= 0

• Values of r that satisfy the indicial equation

r ∈
{
0,−1

2 −
I
√
7

14

}
• Each term in the series must be 0, giving the recursion relation

−(k + r + 1)
(
I
(
k + r + 3

2

)
ak+1

√
7− ak+1

2 + (−2k − 2r − 2) ak
)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = 4ak(k+r+1)

−1+2 I
√
7 k+2 I

√
7 r+3 I

√
7

• Recursion relation for r = 0
ak+1 = 4ak(k+1)

−1+2 I
√
7 k+3 I

√
7

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = 4ak(k+1)

−1+2 I
√
7 k+3 I

√
7

]
• Revert the change of variables u = I

√
7

4 + x− 3
4
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[
y =

∞∑
k=0

ak
(

I
√
7

4 + x− 3
4

)k
, ak+1 = 4ak(k+1)

−1+2 I
√
7 k+3 I

√
7

]
• Recursion relation for r = −1

2 −
I
√
7

14

ak+1 =
4ak
(
k+ 1

2−
I
√
7

14

)
−1+2 I

√
7 k+2 I

√
7
(
− 1

2−
I
√
7

14

)
+3 I

√
7

• Solution for r = −1
2 −

I
√
7

14[
y(u) =

∞∑
k=0

aku
k− 1

2−
I
√
7

14 , ak+1 =
4ak
(
k+ 1

2−
I
√
7

14

)
−1+2 I

√
7 k+2 I

√
7
(
− 1

2−
I
√
7

14

)
+3 I

√
7

]
• Revert the change of variables u = I

√
7

4 + x− 3
4[

y =
∞∑
k=0

ak
(

I
√
7

4 + x− 3
4

)k− 1
2−

I
√
7

14
, ak+1 =

4ak
(
k+ 1

2−
I
√
7

14

)
−1+2 I

√
7 k+2 I

√
7
(
− 1

2−
I
√
7

14

)
+3 I

√
7

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak
(

I
√
7

4 + x− 3
4

)k)
+
(

∞∑
k=0

bk
(

I
√
7

4 + x− 3
4

)k− 1
2−

I
√
7

14

)
, a1+k = 4ak(1+k)

−1+2 I
√
7 k+3 I

√
7 , b1+k =

4bk
(
k+ 1

2−
I
√
7

14

)
−1+2 I

√
7 k+2 I

√
7
(
− 1

2−
I
√
7

14

)
+3 I

√
7

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]

One independent solution has integrals. Trying a hypergeometric solution free of integrals...
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning hypergeometric solution free of uncomputed integrals

<- linear_1 successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
Order:=6;
dsolve([(2-3*x+2*x^2)*diff(y(x),x$2)-(4-6*x)*diff(y(x),x)+2*y(x)=0,y(1) = 1, D(y)(1) = -1],y(x),type='series',x=1);� �

y(x) = 1− (x− 1) + 4
3(x− 1)3 − 4

3(x− 1)4 − 4
5(x− 1)5 +O

(
(x− 1)6

)
3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 35� �
AsymptoticDSolveValue[{(2-3*x+2*x^2)*y''[x]-(4-6*x)*y'[x]+2*y[x]==0,{y[1]==1,y'[1]==-1}},y[x],{x,1,5}]� �

y(x) → −4
5(x− 1)5 − 4

3(x− 1)4 + 4
3(x− 1)3 − x+ 2

4134



13.9 problem 9
13.9.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4135
13.9.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4144

Internal problem ID [1250]
Internal file name [OUTPUT/1251_Sunday_June_05_2022_02_06_37_AM_37683215/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
2x2 + 3x

)
y′′ + 10(x+ 1) y′ + 8y = 0

With initial conditions

[y(−1) = 1, y′(−1) = −1]

With the expansion point for the power series method at x = −1.

13.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 10x+ 10
2x2 + 3x

q(x) = 8
2x2 + 3x

F = 0
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Hence the ode is

y′′ + (10x+ 10) y′
2x2 + 3x + 8y

2x2 + 3x = 0

The domain of p(x) = 10x+10
2x2+3x is

{
−∞ ≤ x < 0, 0 < x < −3

2 ,−
3
2 < x ≤ ∞

}

And the point x0 = −1 is inside this domain. The domain of q(x) = 8
2x2+3x is

{
−∞ ≤ x < 0, 0 < x < −3

2 ,−
3
2 < x ≤ ∞

}
And the point x0 = −1 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x+ 1

The ode is converted to be in terms of the new independent variable t. This results in

(
2(−1 + t)2 − 3 + 3t

)( d2

dt2
y(t)

)
+ 10t

(
d

dt
y(t)

)
+ 8y(t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = 1
y′(0) = −1

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (953)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (954)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
2
(
5t
(

d
dt
y(t)

)
+ 4y(t)

)
2t2 − t− 1

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(104t2 + 8t+ 18)

(
d
dt
y(t)

)
+ (112t− 8) y(t)

(2t2 − t− 1)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(−1232t3 − 256t2 − 628t+ 36)

(
d
dt
y(t)

)
− 1504

(
t2 − 7

94t+
17
94

)
y(t)

(2t2 − t− 1)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(16704t4 + 6336t3 + 16848t2 − 1376t+ 1008)

(
d
dt
y(t)

)
+ 21888

(
t3 − 1

38t
2 + 10

19t−
1
18

)
y(t)

(2t2 − t− 1)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(−256896t5 − 149760t4 − 429408t3 + 34336t2 − 74336t+ 6624)

(
d
dt
y(t)

)
− 352512

(
t4 + 19

306t
3 + 35

34t
2 − 517

2754t+
191
2754

)
y(t)

(2t2 − t− 1)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = 1 and
y′(0) = −1 gives

F0 = 8
F1 = −26
F2 = 308
F3 = −2224
F4 = 31072

4139



Substituting all the above in (7) and simplifying gives the solution as

y(t) = 4t2 − t+ 1− 13t3
3 + 77t4

6 − 278t5
15 + 1942t6

45 +O
(
t6
)

y(t) = 4t2 − t+ 1− 13t3
3 + 77t4

6 − 278t5
15 + 1942t6

45 +O
(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

d2

dt2
y(t)

)(
2t2 − t− 1

)
+ 10t

(
d

dt
y(t)

)
+ 8y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)(
2t2 − t− 1

)
+ 10t

(
∞∑
n=1

nant
n−1

)
+ 8
(

∞∑
n=0

ant
n

)
= 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

2tnann(n− 1)
)

+
∞∑

n =2

(
−n tn−1an(n− 1)

)
+

∞∑
n =2

(
−n(n− 1) antn−2)+( ∞∑

n=1

10nantn
)

+
(

∞∑
n=0

8antn
)

= 0
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The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

(
−n tn−1an(n− 1)

)
=

∞∑
n=1

(−(n+ 1) an+1n tn)

∞∑
n =2

(
−n(n− 1) antn−2) = ∞∑

n=0

(−(n+ 2) an+2(n+ 1) tn)

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=2

2tnann(n− 1)
)

+
∞∑

n =1

(−(n+ 1) an+1n tn)

+
∞∑

n =0

(−(n+ 2) an+2(n+ 1) tn) +
(

∞∑
n=1

10nantn
)

+
(

∞∑
n=0

8antn
)

= 0

n = 0 gives
−2a2 + 8a0 = 0

a2 = 4a0

n = 1 gives
−2a2 − 6a3 + 18a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −4a0
3 + 3a1

For 2 ≤ n, the recurrence equation is

(4)2nan(n− 1)− (n+ 1) an+1n− (n+ 2) an+2(n+ 1) + 10nan + 8an = 0
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Solving for an+2, gives

(5)

an+2 =
2n2an − n2an+1 + 8nan − nan+1 + 8an

(n+ 2) (n+ 1)

= (2n2 + 8n+ 8) an
(n+ 2) (n+ 1) + (−n2 − n) an+1

(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

32a2 − 6a3 − 12a4 = 0

Which after substituting the earlier terms found becomes

a4 =
34a0
3 − 3a1

2

For n = 3 the recurrence equation gives

50a3 − 12a4 − 20a5 = 0

Which after substituting the earlier terms found becomes

a5 = −152a0
15 + 42a1

5

For n = 4 the recurrence equation gives

72a4 − 20a5 − 30a6 = 0

Which after substituting the earlier terms found becomes

a6 =
1528a0
45 − 46a1

5

For n = 5 the recurrence equation gives

98a5 − 30a6 − 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = −15088a0
315 + 916a1

35
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And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0+a1t+4a0t2+
(
−4a0

3 +3a1
)
t3+

(
34a0
3 − 3a1

2

)
t4+

(
−152a0

15 + 42a1
5

)
t5+ . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1 + 4t2 − 4

3t
3 + 34

3 t4 − 152
15 t5

)
a0 +

(
t+ 3t3 − 3

2t
4 + 42

5 t5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1 + 4t2 − 4

3t
3 + 34

3 t4 − 152
15 t5

)
c1 +

(
t+ 3t3 − 3

2t
4 + 42

5 t5
)
c2 +O

(
t6
)

y(t) = 1 + 4t2 − 13t3
3 + 77t4

6 − 278t5
15 − t+O

(
t6
)

Replacing t in the above with the original independent variable xsusing t = x+1 results
in

y = 4(x+1)2−x− 13(x+ 1)3

3 + 77(x+ 1)4

6 − 278(x+ 1)5

15 + 1942(x+ 1)6

45 +O
(
(x+1)6

)
Summary
The solution(s) found are the following

(1)
y = 4(x+ 1)2 − x− 13(x+ 1)3

3 + 77(x+ 1)4

6

− 278(x+ 1)5

15 + 1942(x+ 1)6

45 +O
(
(x+ 1)6

)
Verification of solutions

y = 4(x+1)2−x− 13(x+ 1)3

3 + 77(x+ 1)4

6 − 278(x+ 1)5

15 + 1942(x+ 1)6

45 +O
(
(x+1)6

)
Verified OK.
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13.9.2 Maple step by step solution

Let’s solve[
(2x2 + 3x) y′′ + (10x+ 10) y′ + 8y = 0, y(−1) = 1, y′

∣∣∣{x=−1}
= −1

]
• Highest derivative means the order of the ODE is 2

y′′

• Isolate 2nd derivative

y′′ = − 8y
x(2x+3) −

10(x+1)y′
x(2x+3)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 10(x+1)y′
x(2x+3) + 8y

x(2x+3) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 10(x+1)
x(2x+3) , P3(x) = 8

x(2x+3)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 10
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x(2x+ 3) + (10x+ 10) y′ + 8y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1
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xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..2

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(7 + 3r)x−1+r +
(

∞∑
k=0

(
ak+1(k + 1 + r) (3k + 10 + 3r) + 2ak(k + r + 2)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(7 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−7

3

}
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1 + r) (3k + 10 + 3r) + 2ak(k + r + 2)2 = 0
• Recursion relation that defines series solution to ODE

ak+1 = − 2ak(k+r+2)2
(k+1+r)(3k+10+3r)

• Recursion relation for r = 0

ak+1 = − 2ak(k+2)2
(k+1)(3k+10)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − 2ak(k+2)2

(k+1)(3k+10)

]
• Recursion relation for r = −7

3

ak+1 = − 2ak
(
k− 1

3
)2(

k− 4
3
)
(3k+3)

• Solution for r = −7
3
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[
y =

∞∑
k=0

akx
k− 7

3 , ak+1 = − 2ak
(
k− 1

3
)2(

k− 4
3
)
(3k+3)

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k− 7

3

)
, a1+k = − 2ak(k+2)2

(1+k)(3k+10) , b1+k = − 2bk
(
k− 1

3
)2(

k− 4
3
)
(3k+3)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(3*x+2*x^2)*diff(y(x),x$2)+10*(1+x)*diff(y(x),x)+8*y(x)=0,y(-1) = 1, D(y)(-1) = -1],y(x),type='series',x=-1);� �
y(x) = 1− (x+ 1) + 4(x+ 1)2 − 13

3 (x+ 1)3 + 77
6 (x+ 1)4 − 278

15 (x+ 1)5 +O
(
(x+ 1)6

)
3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 41� �
AsymptoticDSolveValue[{(3*x+2*x^2)*y''[x]+10*(1+x)*y'[x]+8*y[x]==0,{y[-1]==1,y'[-1]==-1}},y[x],{x,-1,5}]� �

y(x) → −278
15 (x+ 1)5 + 77

6 (x+ 1)4 − 13
3 (x+ 1)3 + 4(x+ 1)2 − x
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13.10 problem 10
13.10.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4148
13.10.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4157

Internal problem ID [1251]
Internal file name [OUTPUT/1252_Sunday_June_05_2022_02_06_40_AM_33631006/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(
x2 − x+ 1

)
y′′ − (−4x+ 1) y′ + 2y = 0

With initial conditions

[y(1) = 2, y′(1) = −1]

With the expansion point for the power series method at x = 1.

13.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 4x− 1
x2 − x+ 1

q(x) = 2
x2 − x+ 1

F = 0
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Hence the ode is

y′′ + (4x− 1) y′
x2 − x+ 1 + 2y

x2 − x+ 1 = 0

The domain of p(x) = 4x−1
x2−x+1 is

{−∞ < x < ∞}

And the point x0 = 1 is inside this domain. The domain of q(x) = 2
x2−x+1 is

{−∞ < x < ∞}

And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x− 1

The ode is converted to be in terms of the new independent variable t. This results in

(
(t+ 1)2 − t

)( d2

dt2
y(t)

)
+ (4t+ 3)

(
d

dt
y(t)

)
+ 2y(t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = 2
y′(0) = −1

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (956)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (957)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
4t
(

d
dt
y(t)

)
+ 3 d

dt
y(t) + 2y(t)

t2 + t+ 1

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(18t2 + 28t+ 6)

(
d
dt
y(t)

)
+ (12t+ 8) y(t)

(t2 + t+ 1)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(−96t3 − 230t2 − 104t+ 6)

(
d
dt
y(t)

)
− 72y(t)

(
t2 + 25

18t+
2
9

)
(t2 + t+ 1)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(600t4 + 1956t3 + 1380t2 − 116t− 156)

(
d
dt
y(t)

)
+ 480

(
t3 + 43

20t
2 + 3

4t−
2
15

)
y(t)

(t2 + t+ 1)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(−4320t5 − 17892t4 − 17352t3 + 1572t2 + 5624t+ 912)

(
d
dt
y(t)

)
− 3600

(
t4 + 147

50 t
3 + 41

25t
2 − 12

25t−
58
225

)
y(t)

(t2 + t+ 1)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = 2 and
y′(0) = −1 gives

F0 = −1
F1 = 10
F2 = −38
F3 = 28
F4 = 944
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Substituting all the above in (7) and simplifying gives the solution as

y(t) = −t+ 2− t2

2 + 5t3
3 − 19t4

12 + 7t5
30 + 59t6

45 +O
(
t6
)

y(t) = −t+ 2− t2

2 + 5t3
3 − 19t4

12 + 7t5
30 + 59t6

45 +O
(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

d2

dt2
y(t)

)(
t2 + t+ 1

)
+ (4t+ 3)

(
d

dt
y(t)

)
+ 2y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)(
t2 + t+ 1

)
+ (4t+ 3)

(
∞∑
n=1

nant
n−1

)
+ 2
(

∞∑
n=0

ant
n

)
= 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

tnann(n− 1)
)

+
(

∞∑
n=2

n tn−1an(n− 1)
)

+
(

∞∑
n=2

n(n− 1) antn−2

)

+
(

∞∑
n=1

4nantn
)

+
(

∞∑
n=1

3nantn−1

)
+
(

∞∑
n=0

2antn
)

= 0
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The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

n tn−1an(n− 1) =
∞∑
n=1

(n+ 1) an+1n tn

∞∑
n =2

n(n− 1) antn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1) tn

∞∑
n =1

3nantn−1 =
∞∑
n=0

3(n+ 1) an+1t
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=2

tnann(n− 1)
)
+
(

∞∑
n=1

(n+1) an+1n tn

)
+
(

∞∑
n=0

(n+2) an+2(n+1) tn
)

+
(

∞∑
n=1

4nantn
)

+
(

∞∑
n=0

3(n+ 1) an+1t
n

)
+
(

∞∑
n=0

2antn
)

= 0

n = 0 gives
2a2 + 3a1 + 2a0 = 0

a2 = −a0 −
3a1
2

n = 1 gives
8a2 + 6a3 + 6a1 = 0

Which after substituting earlier equations, simplifies to

a3 =
4a0
3 + a1

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1) + (n+ 1) an+1n+ (n+ 2) an+2(n+ 1) + 4nan + 3(n+ 1) an+1 + 2an = 0
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Solving for an+2, gives

(5)

an+2 = −nan + nan+1 + 2an + 3an+1

n+ 2

= −an −
(n+ 3) an+1

n+ 2

For n = 2 the recurrence equation gives

12a2 + 15a3 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = −2a0
3 + a1

4

For n = 3 the recurrence equation gives

20a3 + 24a4 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 = −8a0
15 − 13a1

10

For n = 4 the recurrence equation gives

30a4 + 35a5 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 =
58a0
45 + 19a1

15

For n = 5 the recurrence equation gives

42a5 + 48a6 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = −296a0
315 − 31a1

210
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And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t+
(
−a0 −

3a1
2

)
t2 +

(
4a0
3 + a1

)
t3

+
(
−2a0

3 + a1
4

)
t4 +

(
−8a0

15 − 13a1
10

)
t5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− t2 + 4

3t
3 − 2

3t
4 − 8

15t
5
)
a0 +

(
t− 3

2t
2 + t3 + 1

4t
4 − 13

10t
5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1− t2 + 4

3t
3 − 2

3t
4 − 8

15t
5
)
c1 +

(
t− 3

2t
2 + t3 + 1

4t
4 − 13

10t
5
)
c2 +O

(
t6
)

y(t) = 2− t2

2 + 5t3
3 − 19t4

12 + 7t5
30 − t+O

(
t6
)

Replacing t in the above with the original independent variable xsusing t = x−1 results
in

y =−x+3− (x− 1)2

2 + 5(x− 1)3

3 − 19(x− 1)4

12 + 7(x− 1)5

30 + 59(x− 1)6

45 +O
(
(x−1)6

)
Summary
The solution(s) found are the following

(1)
y = −x+ 3− (x− 1)2

2 + 5(x− 1)3

3 − 19(x− 1)4

12

+ 7(x− 1)5

30 + 59(x− 1)6

45 +O
(
(x− 1)6

)
Verification of solutions

y =−x+3− (x− 1)2

2 + 5(x− 1)3

3 − 19(x− 1)4

12 + 7(x− 1)5

30 + 59(x− 1)6

45 +O
(
(x−1)6

)
Verified OK.
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13.10.2 Maple step by step solution

Let’s solve[
(x2 − x+ 1) y′′ + (4x− 1) y′ + 2y = 0, y(1) = 2, y′

∣∣∣{x=1}
= −1

]
• Highest derivative means the order of the ODE is 2

y′′

• Isolate 2nd derivative

y′′ = − 2y
x2−x+1 −

(4x−1)y′
x2−x+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (4x−1)y′
x2−x+1 + 2y

x2−x+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 4x−1
x2−x+1 , P3(x) = 2

x2−x+1

]
◦
(

I
√
3

2 + x− 1
2

)
· P2(x) is analytic at x = 1

2 −
I
√
3

2((
I
√
3

2 + x− 1
2

)
· P2(x)

) ∣∣∣∣
x= 1

2−
I
√
3

2

= 0

◦
(

I
√
3

2 + x− 1
2

)2
· P3(x) is analytic at x = 1

2 −
I
√
3

2((
I
√
3

2 + x− 1
2

)2
· P3(x)

) ∣∣∣∣
x= 1

2−
I
√
3

2

= 0

◦ x = 1
2 −

I
√
3

2 is a regular singular point

Check to see if x0 is a regular singular point

x0 = 1
2 −

I
√
3

2

• Multiply by denominators
(x2 − x+ 1) y′′ + (4x− 1) y′ + 2y = 0

• Change variables using x = u+ 1
2 −

I
√
3

2 so that the regular singular point is at u = 0(
u2 − Iu

√
3
) (

d2

du2y(u)
)
+
(
4u+ 1− 2 I

√
3
) (

d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r
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� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−
I
√
3 r
(
I
√
3+3+3r

)
a0u−1+r

3 +
(

∞∑
k=0

(
−

I
√
3 (k+r+1)

(
I
√
3+3k+6+3r

)
ak+1

3 + ak(k + r + 2) (k + r + 1)
)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
− I

3

√
3 r
(
I
√
3 + 3 + 3r

)
= 0

• Values of r that satisfy the indicial equation

r ∈
{
0,−1− I

√
3

3

}
• Each term in the series must be 0, giving the recursion relation(

−I(k + r + 2) ak+1
√
3 + ak+1 − (−k − 2− r) ak

)
(k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r+2)

−1+I
√
3 k+Ir

√
3+2 I

√
3

• Recursion relation for r = 0
ak+1 = ak(k+2)

−1+I
√
3 k+2 I

√
3

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak(k+2)

−1+I
√
3 k+2 I

√
3

]
• Revert the change of variables u = I

√
3

2 + x− 1
2
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[
y =

∞∑
k=0

ak
(

I
√
3

2 + x− 1
2

)k
, ak+1 = ak(k+2)

−1+I
√
3 k+2 I

√
3

]
• Recursion relation for r = −1− I

√
3

3

ak+1 =
ak

(
k+1− I

√
3

3

)
−1+I

√
3 k+I

(
−1− I

√
3

3

)√
3+2 I

√
3

• Solution for r = −1− I
√
3

3[
y(u) =

∞∑
k=0

aku
k−1− I

√
3

3 , ak+1 =
ak

(
k+1− I

√
3

3

)
−1+I

√
3 k+I

(
−1− I

√
3

3

)√
3+2 I

√
3

]
• Revert the change of variables u = I

√
3

2 + x− 1
2[

y =
∞∑
k=0

ak
(

I
√
3

2 + x− 1
2

)k−1− I
√
3

3
, ak+1 =

ak

(
k+1− I

√
3

3

)
−1+I

√
3 k+I

(
−1− I

√
3

3

)√
3+2 I

√
3

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak
(

I
√
3

2 + x− 1
2

)k)
+
(

∞∑
k=0

bk
(

I
√
3

2 + x− 1
2

)k−1− I
√
3

3

)
, a1+k = ak(k+2)

−1+I
√
3 k+2 I

√
3 , b1+k =

bk

(
k+1− I

√
3

3

)
−1+I

√
3 k+I

(
−1− I

√
3

3

)√
3+2 I

√
3

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]

One independent solution has integrals. Trying a hypergeometric solution free of integrals...
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning hypergeometric solution free of uncomputed integrals

<- linear_1 successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
Order:=6;
dsolve([(1-x+x^2)*diff(y(x),x$2)-(1-4*x)*diff(y(x),x)+2*y(x)=0,y(1) = 2, D(y)(1) = -1],y(x),type='series',x=1);� �
y(x) = 2− (x− 1)− 1

2(x− 1)2 + 5
3(x− 1)3 − 19

12(x− 1)4 + 7
30(x− 1)5 +O

(
(x− 1)6

)
3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 44� �
AsymptoticDSolveValue[{(1-x+x^2)*y''[x]-(1-4*x)*y'[x]+2*y[x]==0,{y[1]==2,y'[1]==-1}},y[x],{x,1,5}]� �

y(x) → 7
30(x− 1)5 − 19

12(x− 1)4 + 5
3(x− 1)3 − 1

2(x− 1)2 − x+ 3
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13.11 problem 11
13.11.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4161
13.11.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4170

Internal problem ID [1252]
Internal file name [OUTPUT/1253_Sunday_June_05_2022_02_06_46_AM_60515970/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(2 + x) y′′ + (2 + x) y′ + y = 0

With initial conditions

[y(−1) = −2, y′(−1) = 3]

With the expansion point for the power series method at x = −1.

13.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 1

q(x) = 1
2 + x

F = 0
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Hence the ode is

y′′ + y′ + y

2 + x
= 0

The domain of p(x) = 1 is
{−∞ < x < ∞}

And the point x0 = −1 is inside this domain. The domain of q(x) = 1
2+x

is

{x < −2∨−2 < x}

And the point x0 = −1 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x+ 1

The ode is converted to be in terms of the new independent variable t. This results in(
d2

dt2
y(t)

)
(t+ 1) + (t+ 1)

(
d

dt
y(t)

)
+ y(t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = −2
y′(0) = 3

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (959)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (960)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
t
(

d
dt
y(t)

)
+ d

dt
y(t) + y(t)

t+ 1

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(t2 + t)

(
d
dt
y(t)

)
+ (2 + t) y(t)

(t+ 1)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(−t3 − t2 + 3t+ 3)

(
d
dt
y(t)

)
− y(t) (t2 + 2t+ 3)

(t+ 1)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(t+ 1) (t3 − 7t− 12)

(
d
dt
y(t)

)
+ y(t) (t3 + 2t2 − t+ 4)

(t+ 1)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
−(t+ 1) (t4 − 12t2 − 32t− 45)

(
d
dt
y(t)

)
− y(t) (t4 + 2t3 − 6t2 − 26t+ 5)

(t+ 1)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = −2 and
y′(0) = 3 gives

F0 = −1
F1 = −4
F2 = 15
F3 = −44
F4 = 145
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Substituting all the above in (7) and simplifying gives the solution as

y(t) = −2 + 3t− t2

2 − 2t3
3 + 5t4

8 − 11t5
30 + 29t6

144 +O
(
t6
)

y(t) = −2 + 3t− t2

2 − 2t3
3 + 5t4

8 − 11t5
30 + 29t6

144 +O
(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

d2

dt2
y(t)

)
(t+ 1) + (t+ 1)

(
d

dt
y(t)

)
+ y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)
(t+ 1) + (t+ 1)

(
∞∑
n=1

nant
n−1

)
+
(

∞∑
n=0

ant
n

)
= 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

n tn−1an(n− 1)
)

+
(

∞∑
n=2

n(n− 1) antn−2

)

+
(

∞∑
n=1

nant
n

)
+
(

∞∑
n=1

nant
n−1

)
+
(

∞∑
n=0

ant
n

)
= 0
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The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

n tn−1an(n− 1) =
∞∑
n=1

(n+ 1) an+1n tn

∞∑
n =2

n(n− 1) antn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1) tn

∞∑
n =1

nant
n−1 =

∞∑
n=0

(n+ 1) an+1t
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=1

(n+ 1) an+1n tn

)
+
(

∞∑
n=0

(n+ 2) an+2(n+ 1) tn
)

+
(

∞∑
n=1

nant
n

)
+
(

∞∑
n=0

(n+ 1) an+1t
n

)
+
(

∞∑
n=0

ant
n

)
= 0

n = 0 gives
2a2 + a1 + a0 = 0

a2 = −a0
2 − a1

2

For 1 ≤ n, the recurrence equation is

(4)(n+ 1) an+1n+ (n+ 2) an+2(n+ 1) + nan + (n+ 1) an+1 + an = 0

Solving for an+2, gives

(5)

an+2 = −nan+1 + an + an+1

n+ 2

= − an
n+ 2 − (n+ 1) an+1

n+ 2
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For n = 1 the recurrence equation gives

4a2 + 6a3 + 2a1 = 0

Which after substituting the earlier terms found becomes

a3 =
a0
3

For n = 2 the recurrence equation gives

9a3 + 12a4 + 3a2 = 0

Which after substituting the earlier terms found becomes

a4 = −a0
8 + a1

8

For n = 3 the recurrence equation gives

16a4 + 20a5 + 4a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a0
30 − a1

10

For n = 4 the recurrence equation gives

25a5 + 30a6 + 5a4 = 0

Which after substituting the earlier terms found becomes

a6 = − a0
144 + a1

16

For n = 5 the recurrence equation gives

36a6 + 42a7 + 6a5 = 0

Which after substituting the earlier terms found becomes

a7 =
a0
840 − 11a1

280
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And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t+
(
−a0

2 − a1
2

)
t2 + a0t

3

3 +
(
−a0

8 + a1
8

)
t4 +

(a0
30 − a1

10

)
t5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− 1

2t
2 + 1

3t
3 − 1

8t
4 + 1

30t
5
)
a0 +

(
t− 1

2t
2 + 1

8t
4 − 1

10t
5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1− 1

2t
2 + 1

3t
3 − 1

8t
4 + 1

30t
5
)
c1 +

(
t− 1

2t
2 + 1

8t
4 − 1

10t
5
)
c2 +O

(
t6
)

y(t) = −2− t2

2 − 2t3
3 + 5t4

8 − 11t5
30 + 3t+O

(
t6
)

Replacing t in the above with the original independent variable xsusing t = x+1 results
in

y = 1+3x− (x+ 1)2

2 − 2(x+ 1)3

3 + 5(x+ 1)4

8 − 11(x+ 1)5

30 + 29(x+ 1)6

144 +O
(
(x+1)6

)
Summary
The solution(s) found are the following

(1)
y = 1 + 3x− (x+ 1)2

2 − 2(x+ 1)3

3 + 5(x+ 1)4

8

− 11(x+ 1)5

30 + 29(x+ 1)6

144 +O
(
(x+ 1)6

)
Verification of solutions

y = 1+3x− (x+ 1)2

2 − 2(x+ 1)3

3 + 5(x+ 1)4

8 − 11(x+ 1)5

30 + 29(x+ 1)6

144 +O
(
(x+1)6

)
Verified OK.
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13.11.2 Maple step by step solution

Let’s solve[
(2 + x) y′′ + (2 + x) y′ + y = 0, y(−1) = −2, y′

∣∣∣{x=−1}
= 3
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −y′ − y

2+x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′ + y

2+x
= 0

� Check to see if x0 = −2 is a regular singular point
◦ Define functions[

P2(x) = 1, P3(x) = 1
2+x

]
◦ (2 + x) · P2(x) is analytic at x = −2

((2 + x) · P2(x))
∣∣∣∣
x=−2

= 0

◦ (2 + x)2 · P3(x) is analytic at x = −2(
(2 + x)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 = −2 is a regular singular point
x0 = −2

• Multiply by denominators
(2 + x) y′′ + (2 + x) y′ + y = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ u
(

d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert u ·
(

d
du
y(u)

)
to series expansion

u ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−1 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r) + ak(k + 1 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term in the series must be 0, giving the recursion relation
(k + 1 + r) (ak+1(k + r) + ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

k+r

• Recursion relation for r = 0
ak+1 = −ak

k

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = −ak

k

]
• Revert the change of variables u = 2 + x[

y =
∞∑
k=0

ak(2 + x)k , ak+1 = −ak
k

]
• Recursion relation for r = 1

ak+1 = − ak
k+1

• Solution for r = 1
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[
y(u) =

∞∑
k=0

aku
k+1, ak+1 = − ak

k+1

]
• Revert the change of variables u = 2 + x[

y =
∞∑
k=0

ak(2 + x)k+1 , ak+1 = − ak
k+1

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(2 + x)k
)
+
(

∞∑
k=0

bk(2 + x)1+k

)
, a1+k = −ak

k
, b1+k = − bk

1+k

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(2+x)*diff(y(x),x$2)+(2+x)*diff(y(x),x)+y(x)=0,y(-1) = -2, D(y)(-1) = 3],y(x),type='series',x=-1);� �
y(x) = −2 + 3(x+ 1)− 1

2(x+ 1)2 − 2
3(x+ 1)3 + 5

8(x+ 1)4 − 11
30(x+ 1)5 +O

(
(x+ 1)6

)
3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 46� �
AsymptoticDSolveValue[{(2+x)*y''[x]+(2+x)*y'[x]+y[x]==0,{y[-1]==-2,y'[-1]==3}},y[x],{x,-1,5}]� �

y(x) → −11
30(x+ 1)5 + 5

8(x+ 1)4 − 2
3(x+ 1)3 − 1

2(x+ 1)2 + 3(x+ 1)− 2
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13.12 problem 12
13.12.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4173

Internal problem ID [1253]
Internal file name [OUTPUT/1254_Sunday_June_05_2022_02_06_49_AM_34265106/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − (6− 7x) y′ + 8y = 0

With initial conditions

[y(1) = 1, y′(1) = −2]

With the expansion point for the power series method at x = 1.

13.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −6 + 7x
x2

q(x) = 8
x2

F = 0
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Hence the ode is

y′′ + (−6 + 7x) y′
x2 + 8y

x2 = 0

The domain of p(x) = −6+7x
x2 is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The domain of q(x) = 8
x2 is

{x < 0∨ 0 < x}

And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x− 1

The ode is converted to be in terms of the new independent variable t. This results in

(t+ 1)2
(

d2

dt2
y(t)

)
+ (7t+ 1)

(
d

dt
y(t)

)
+ 8y(t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = 1
y′(0) = −2

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (962)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (963)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
7t
(

d
dt
y(t)

)
+ d

dt
y(t) + 8y(t)

(t+ 1)2

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
48
(

d
dt
y(t)

)
t2 + 72y(t) t− 12 d

dt
y(t) + 24y(t)

(t+ 1)4

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(−360t3 + 120t2 + 348t+ 84)

(
d
dt
y(t)

)
+ (−600t2 − 240t+ 72) y(t)

(t+ 1)6

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(3000t4 − 2400t3 − 6624t2 − 2688t− 168)

(
d
dt
y(t)

)
+ 5280

(
t3 + 3

11t
2 − 36

55t−
14
55

)
y(t)

(t+ 1)8

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(−27720t5 + 37800t4 + 110016t3 + 56736t2 + 1944t− 2520)

(
d
dt
y(t)

)
+ (−50400t4 + 87264t2 + 55872t+ 8640) y(t)

(t+ 1)10

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = 1 and
y′(0) = −2 gives

F0 = −6
F1 = 48
F2 = −96
F3 = −1008
F4 = 13680
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Substituting all the above in (7) and simplifying gives the solution as

y(t) = −4t4 + 8t3 − 3t2 − 2t+ 1− 42t5
5 + 19t6 +O

(
t6
)

y(t) = −4t4 + 8t3 − 3t2 − 2t+ 1− 42t5
5 + 19t6 +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(
t2 + 2t+ 1

)( d2

dt2
y(t)

)
+ (7t+ 1)

(
d

dt
y(t)

)
+ 8y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives

(
t2 + 2t+ 1

)( ∞∑
n=2

n(n− 1) antn−2

)
+ (7t+ 1)

(
∞∑
n=1

nant
n−1

)
+ 8
(

∞∑
n=0

ant
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

tnann(n− 1)
)

+
(

∞∑
n=2

2n tn−1an(n− 1)
)

+
(

∞∑
n=2

n(n− 1) antn−2

)

+
(

∞∑
n=1

7nantn
)

+
(

∞∑
n=1

nant
n−1

)
+
(

∞∑
n=0

8antn
)

= 0
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The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

2n tn−1an(n− 1) =
∞∑
n=1

2(n+ 1) an+1n tn

∞∑
n =2

n(n− 1) antn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1) tn

∞∑
n =1

nant
n−1 =

∞∑
n=0

(n+ 1) an+1t
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=2

tnann(n−1)
)
+
(

∞∑
n=1

2(n+1) an+1n tn

)
+
(

∞∑
n=0

(n+2) an+2(n+1) tn
)

+
(

∞∑
n=1

7nantn
)

+
(

∞∑
n=0

(n+ 1) an+1t
n

)
+
(

∞∑
n=0

8antn
)

= 0

n = 0 gives
2a2 + a1 + 8a0 = 0

a2 = −4a0 −
a1
2

n = 1 gives
6a2 + 6a3 + 15a1 = 0

Which after substituting earlier equations, simplifies to

a3 = 4a0 − 2a1

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1) + 2(n+ 1) an+1n+ (n+ 2) an+2(n+ 1) + 7nan + (n+ 1) an+1 + 8an = 0
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Solving for an+2, gives

(5)

an+2 = −n2an + 2n2an+1 + 6nan + 3nan+1 + 8an + an+1

(n+ 2) (n+ 1)

= −(n2 + 6n+ 8) an
(n+ 2) (n+ 1) − (2n2 + 3n+ 1) an+1

(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

24a2 + 15a3 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = 3a0 +
7a1
2

For n = 3 the recurrence equation gives

35a3 + 28a4 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 = −56a0
5 − 7a1

5

For n = 4 the recurrence equation gives

48a4 + 45a5 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = 12a0 −
7a1
2

For n = 5 the recurrence equation gives

63a5 + 66a6 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = −72a0
35 + 38a1

5
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And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0+ a1t+
(
−4a0−

a1
2

)
t2+(4a0− 2a1) t3+

(
3a0+

7a1
2

)
t4+

(
−56a0

5 − 7a1
5

)
t5

+ . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− 4t2 + 4t3 + 3t4 − 56

5 t5
)
a0 +

(
t− 1

2t
2 − 2t3 + 7

2t
4 − 7

5t
5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1− 4t2 + 4t3 + 3t4 − 56

5 t5
)
c1 +

(
t− 1

2t
2 − 2t3 + 7

2t
4 − 7

5t
5
)
c2 +O

(
t6
)

y(t) = 1− 3t2 + 8t3 − 4t4 − 42t5
5 − 2t+O

(
t6
)

Replacing t in the above with the original independent variable xsusing t = x−1 results
in

y = −4(x− 1)4+8(x− 1)3− 3(x− 1)2− 2x+3− 42(x− 1)5

5 +19(x− 1)6+O
(
(x− 1)6

)
Summary
The solution(s) found are the following

y = −4(x− 1)4+8(x− 1)3− 3(x− 1)2− 2x+3− 42(x− 1)5

5 +19(x− 1)6+O
(
(x− 1)6

)
(1)

Verification of solutions

y = −4(x− 1)4+8(x− 1)3− 3(x− 1)2− 2x+3− 42(x− 1)5

5 +19(x− 1)6+O
(
(x− 1)6

)
Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([x^2*diff(y(x),x$2)-(6-7*x)*diff(y(x),x)+8*y(x)=0,y(1) = 1, D(y)(1) = -2],y(x),type='series',x=1);� �
y(x) = 1− 2(x− 1)− 3(x− 1)2 + 8(x− 1)3 − 4(x− 1)4 − 42

5 (x− 1)5 +O
(
(x− 1)6

)
3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 40� �
AsymptoticDSolveValue[{x^2*y''[x]-(6-7*x)*y'[x]+8*y[x]==0,{y[1]==1,y'[1]==-2}},y[x],{x,1,5}]� �

y(x) → −42
5 (x− 1)5 − 4(x− 1)4 + 8(x− 1)3 − 3(x− 1)2 − 2(x− 1) + 1
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13.13 problem 13
13.13.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4183
13.13.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4192

Internal problem ID [1254]
Internal file name [OUTPUT/1255_Sunday_June_05_2022_02_06_51_AM_91343712/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
2x2 + x+ 1

)
y′′ + (1 + 7x) y′ + 2y = 0

With initial conditions

[y(1) = 1, y′(1) = 0]

With the expansion point for the power series method at x = 1.

13.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 1 + 7x
2x2 + x+ 1

q(x) = 2
2x2 + x+ 1

F = 0
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Hence the ode is

y′′ + (1 + 7x) y′
2x2 + x+ 1 + 2y

2x2 + x+ 1 = 0

The domain of p(x) = 1+7x
2x2+x+1 is

{−∞ < x < ∞}

And the point x0 = 1 is inside this domain. The domain of q(x) = 2
2x2+x+1 is

{−∞ < x < ∞}

And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x− 1

The ode is converted to be in terms of the new independent variable t. This results in

(
2(t+ 1)2 + t+ 2

)( d2

dt2
y(t)

)
+ (8 + 7t)

(
d

dt
y(t)

)
+ 2y(t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = 1
y′(0) = 0

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (965)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (966)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
7t
(

d
dt
y(t)

)
+ 8 d

dt
y(t) + 2y(t)

2t2 + 5t+ 4

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(59t2 + 134t+ 68)

(
d
dt
y(t)

)
+ (22t+ 26) y(t)

(2t2 + 5t+ 4)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(−605t3 − 2052t2 − 2072t− 584)

(
d
dt
y(t)

)
+ (−250t2 − 586t− 308) y(t)

(2t2 + 5t+ 4)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(7365t4 + 33198t3 + 50094t2 + 28092t+ 3912)

(
d
dt
y(t)

)
+ 3210

(
t3 + 1869

535 t
2 + 390

107t+
574
535

)
y(t)

(2t2 + 5t+ 4)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(−104055t5 − 584808t4 − 1173210t3 − 983004t2 − 271320t+ 16608)

(
d
dt
y(t)

)
− 46830

(
t4 + 5167

1115t
3 + 56268

7805 t
2 + 32846

7805 t+
712
1115

)
y(t)

(2t2 + 5t+ 4)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = 1 and
y′(0) = 0 gives

F0 = −1
2

F1 =
13
8

F2 = −77
16

F3 =
861
64

F4 = −1869
64
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Substituting all the above in (7) and simplifying gives the solution as

y(t) = 1− t2

4 + 13t3
48 − 77t4

384 + 287t5
2560 − 623t6

15360 +O
(
t6
)

y(t) = 1− t2

4 + 13t3
48 − 77t4

384 + 287t5
2560 − 623t6

15360 +O
(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

d2

dt2
y(t)

)(
2t2 + 5t+ 4

)
+ (8 + 7t)

(
d

dt
y(t)

)
+ 2y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)(
2t2 + 5t+ 4

)
+ (8 + 7t)

(
∞∑
n=1

nant
n−1

)
+ 2
(

∞∑
n=0

ant
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

2tnann(n− 1)
)

+
(

∞∑
n=2

5n tn−1an(n− 1)
)

+
(

∞∑
n=2

4n(n− 1) antn−2

)

+
(

∞∑
n=1

8nantn−1

)
+
(

∞∑
n=1

7nantn
)

+
(

∞∑
n=0

2antn
)

= 0
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The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

5n tn−1an(n− 1) =
∞∑
n=1

5(n+ 1) an+1n tn

∞∑
n =2

4n(n− 1) antn−2 =
∞∑
n=0

4(n+ 2) an+2(n+ 1) tn

∞∑
n =1

8nantn−1 =
∞∑
n=0

8(n+ 1) an+1t
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=2

2tnann(n− 1)
)

+
(

∞∑
n=1

5(n+ 1) an+1n tn

)

+
(

∞∑
n=0

4(n+ 2) an+2(n+ 1) tn
)

+
(

∞∑
n=0

8(n+ 1) an+1t
n

)

+
(

∞∑
n=1

7nantn
)

+
(

∞∑
n=0

2antn
)

= 0

n = 0 gives
8a2 + 8a1 + 2a0 = 0

a2 = −a0
4 − a1

n = 1 gives
26a2 + 24a3 + 9a1 = 0

Which after substituting earlier equations, simplifies to

a3 =
13a0
48 + 17a1

24
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For 2 ≤ n, the recurrence equation is

(4)2nan(n−1)+5(n+1) an+1n+4(n+2) an+2(n+1)+8(n+1) an+1+7nan+2an = 0

Solving for an+2, gives

(5)

an+2 = −2n2an + 5n2an+1 + 5nan + 13nan+1 + 2an + 8an+1

4 (n+ 2) (n+ 1)

= −(2n2 + 5n+ 2) an
4 (n+ 2) (n+ 1) − (5n2 + 13n+ 8) an+1

4 (n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

20a2 + 54a3 + 48a4 = 0

Which after substituting the earlier terms found becomes

a4 = −77a0
384 − 73a1

192

For n = 3 the recurrence equation gives

35a3 + 92a4 + 80a5 = 0

Which after substituting the earlier terms found becomes

a5 =
287a0
2560 + 163a1

1280

For n = 4 the recurrence equation gives

54a4 + 140a5 + 120a6 = 0

Which after substituting the earlier terms found becomes

a6 = −623a0
15360 + 173a1

7680

For n = 5 the recurrence equation gives

77a5 + 198a6 + 168a7 = 0
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Which after substituting the earlier terms found becomes

a7 = −11a0
3072 − 913a1

10752

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t+
(
−a0

4 − a1
)
t2 +

(
13a0
48 + 17a1

24

)
t3

+
(
−77a0

384 − 73a1
192

)
t4 +

(
287a0
2560 + 163a1

1280

)
t5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− 1

4t
2 + 13

48t
3 − 77

384t
4 + 287

2560t
5
)
a0

+
(
t− t2 + 17

24t
3 − 73

192t
4 + 163

1280t
5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1− 1

4t
2+13

48t
3− 77

384t
4+ 287

2560t
5
)
c1+

(
t−t2+17

24t
3− 73

192t
4+ 163

1280t
5
)
c2+O

(
t6
)

y(t) = 1− t2

4 + 13t3
48 − 77t4

384 + 287t5
2560 +O

(
t6
)

Replacing t in the above with the original independent variable xsusing t = x−1 results
in

y = 1− (x− 1)2

4 + 13(x− 1)3

48 − 77(x− 1)4

384 + 287(x− 1)5

2560 − 623(x− 1)6

15360 +O
(
(x− 1)6

)
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Summary
The solution(s) found are the following

(1)
y = 1− (x− 1)2

4 + 13(x− 1)3

48 − 77(x− 1)4

384

+ 287(x− 1)5

2560 − 623(x− 1)6

15360 +O
(
(x− 1)6

)
Verification of solutions

y = 1− (x− 1)2

4 + 13(x− 1)3

48 − 77(x− 1)4

384 + 287(x− 1)5

2560 − 623(x− 1)6

15360 +O
(
(x− 1)6

)
Verified OK.

13.13.2 Maple step by step solution

Let’s solve[
(2x2 + x+ 1) y′′ + (1 + 7x) y′ + 2y = 0, y(1) = 1, y′

∣∣∣{x=1}
= 0
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 2y
2x2+x+1 −

(1+7x)y′
2x2+x+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (1+7x)y′
2x2+x+1 +

2y
2x2+x+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 1+7x
2x2+x+1 , P3(x) = 2

2x2+x+1

]
◦
(

I
√
7

4 + x+ 1
4

)
· P2(x) is analytic at x = − I

√
7

4 − 1
4((

I
√
7

4 + x+ 1
4

)
· P2(x)

) ∣∣∣∣
x=− I

√
7

4 − 1
4

= 0

◦
(

I
√
7

4 + x+ 1
4

)2
· P3(x) is analytic at x = − I

√
7

4 − 1
4((

I
√
7

4 + x+ 1
4

)2
· P3(x)

) ∣∣∣∣
x=− I

√
7

4 − 1
4

= 0
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◦ x = − I
√
7

4 − 1
4 is a regular singular point

Check to see if x0 is a regular singular point

x0 = − I
√
7

4 − 1
4

• Multiply by denominators
(2x2 + x+ 1) y′′ + (1 + 7x) y′ + 2y = 0

• Change variables using x = u− I
√
7

4 − 1
4 so that the regular singular point is at u = 0(

2u2 − Iu
√
7
) (

d2

du2y(u)
)
+
(
−3

4 + 7u− 7 I
√
7

4

) (
d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions
I
√
7 r
(
3 I

√
7−21−28r

)
a0u−1+r

28 +
(

∞∑
k=0

(
I
√
7 (k+1+r)

(
3 I

√
7−28k−49−28r

)
ak+1

28 + ak(k + r + 2) (2k + 2r + 1)
)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
I
28

√
7 r
(
3 I

√
7− 21− 28r

)
= 0

• Values of r that satisfy the indicial equation

r ∈
{
0, 3 I

√
7

28 − 3
4

}
• Each term in the series must be 0, giving the recursion relation
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−I
(
k + r + 7

4

)
(k + 1 + r) ak+1

√
7 + (−3k−3r−3)ak+1

4 + 2(k + r + 2)
(
k + r + 1

2

)
ak = 0

• Recursion relation that defines series solution to ODE

ak+1 = 4ak
(
2k2+4kr+2r2+5k+5r+2

)
3+4 I

√
7 k2+8 I

√
7 kr+4 I

√
7 r2+11 I

√
7 k+11 I

√
7 r+7 I

√
7+3k+3r

• Recursion relation for r = 0

ak+1 = 4ak
(
2k2+5k+2

)
3+4 I

√
7 k2+11 I

√
7 k+7 I

√
7+3k

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = 4ak

(
2k2+5k+2

)
3+4 I

√
7 k2+11 I

√
7 k+7 I

√
7+3k

]
• Revert the change of variables u = I

√
7

4 + x+ 1
4[

y =
∞∑
k=0

ak
(

I
√
7

4 + x+ 1
4

)k
, ak+1 = 4ak

(
2k2+5k+2

)
3+4 I

√
7 k2+11 I

√
7 k+7 I

√
7+3k

]
• Recursion relation for r = 3 I

√
7

28 − 3
4

ak+1 =
4ak
(
2k2+4k

(
3 I

√
7

28 − 3
4

)
+2
(

3 I
√
7

28 − 3
4

)2
+5k+ 15 I

√
7

28 − 7
4

)
3
4+4 I

√
7 k2+8 I

√
7 k
(

3 I
√
7

28 − 3
4

)
+4 I

√
7
(

3 I
√
7

28 − 3
4

)2
+11 I

√
7 k+11 I

√
7
(

3 I
√
7

28 − 3
4

)
+ 205 I

√
7

28 +3k

• Solution for r = 3 I
√
7

28 − 3
4[

y(u) =
∞∑
k=0

aku
k+ 3 I

√
7

28 − 3
4 , ak+1 =

4ak
(
2k2+4k

(
3 I

√
7

28 − 3
4

)
+2
(

3 I
√
7

28 − 3
4

)2
+5k+ 15 I

√
7

28 − 7
4

)
3
4+4 I

√
7 k2+8 I

√
7 k
(

3 I
√
7

28 − 3
4

)
+4 I

√
7
(

3 I
√
7

28 − 3
4

)2
+11 I

√
7 k+11 I

√
7
(

3 I
√
7

28 − 3
4

)
+ 205 I

√
7

28 +3k

]
• Revert the change of variables u = I

√
7

4 + x+ 1
4[

y =
∞∑
k=0

ak
(

I
√
7

4 + x+ 1
4

)k+ 3 I
√
7

28 − 3
4
, ak+1 =

4ak
(
2k2+4k

(
3 I

√
7

28 − 3
4

)
+2
(

3 I
√
7

28 − 3
4

)2
+5k+ 15 I

√
7

28 − 7
4

)
3
4+4 I

√
7 k2+8 I

√
7 k
(

3 I
√
7

28 − 3
4

)
+4 I

√
7
(

3 I
√
7

28 − 3
4

)2
+11 I

√
7 k+11 I

√
7
(

3 I
√
7

28 − 3
4

)
+ 205 I

√
7

28 +3k

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak
(

I
√
7

4 + x+ 1
4

)k)
+
(

∞∑
k=0

bk
(

I
√
7

4 + x+ 1
4

)k+ 3 I
√
7

28 − 3
4

)
, a1+k = 4ak

(
2k2+5k+2

)
3+4 I

√
7 k2+11 I

√
7 k+7 I

√
7+3k , b1+k =

4bk
(
2k2+4k

(
3 I

√
7

28 − 3
4

)
+2
(

3 I
√
7

28 − 3
4

)2
+5k+ 15 I

√
7

28 − 7
4

)
3
4+4 I

√
7 k2+8 I

√
7 k
(

3 I
√

7
28 − 3

4

)
+4 I

√
7
(

3 I
√
7

28 − 3
4

)2
+11 I

√
7 k+11 I

√
7
(

3 I
√
7

28 − 3
4

)
+ 205 I

√
7

28 +3k

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 18� �
Order:=6;
dsolve([(1+x+2*x^2)*diff(y(x),x$2)+(1+7*x)*diff(y(x),x)+2*y(x)=0,y(1) = 1, D(y)(1) = 0],y(x),type='series',x=1);� �

y(x) = 1− 1
4(x− 1)2 + 13

48(x− 1)3 − 77
384(x− 1)4 + 287

2560(x− 1)5 +O
(
(x− 1)6

)
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3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 41� �
AsymptoticDSolveValue[{(1+x+2*x^2)*y''[x]+(1+7*x)*y'[x]+2*y[x]==0,{y[1]==1,y'[1]==0}},y[x],{x,1,5}]� �

y(x) → 287(x− 1)5
2560 − 77

384(x− 1)4 + 13
48(x− 1)3 − 1

4(x− 1)2 + 1
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13.14 problem 14
13.14.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4197
13.14.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4206

Internal problem ID [1255]
Internal file name [OUTPUT/1256_Sunday_June_05_2022_02_06_56_AM_72253966/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(x+ 3) y′′ + (1 + 2x) y′ − (2− x) y = 0

With initial conditions

[y(−1) = 1, y′(−1) = 0]

With the expansion point for the power series method at x = −1.

13.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 1 + 2x
x+ 3

q(x) = −2 + x

x+ 3
F = 0
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Hence the ode is

y′′ + (1 + 2x) y′
x+ 3 + (−2 + x) y

x+ 3 = 0

The domain of p(x) = 1+2x
x+3 is

{x < −3∨−3 < x}

And the point x0 = −1 is inside this domain. The domain of q(x) = −2+x
x+3 is

{x < −3∨−3 < x}

And the point x0 = −1 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x+ 1

The ode is converted to be in terms of the new independent variable t. This results in(
d2

dt2
y(t)

)
(2 + t) + (2t− 1)

(
d

dt
y(t)

)
+ (t− 3) y(t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = 1
y′(0) = 0

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (968)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (969)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
y(t) t+ 2t

(
d
dt
y(t)

)
− 3y(t)− d

dt
y(t)

2 + t

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(3t2 − 3t+ 2)

(
d
dt
y(t)

)
+ 2
(
t2 − 7

2t− 1
)
y(t)

(2 + t)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(−4t3 + 6t2 − 8t− 12)

(
d
dt
y(t)

)
− 3y(t)

(
t3 − 4t2 − 4

3t+
4
3

)
(2 + t)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
5(t4 − 2t3 + 4t2 + 12t)

(
d
dt
y(t)

)
+ 4
(
t4 − 9

2t
3 − t2 + 7t− 4

)
y(t)

(2 + t)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(−6t5 + 15t4 − 40t3 − 180t2 + 88)

(
d
dt
y(t)

)
− 5y(t) (t5 − 5t4 + 20t2 − 16t− 24)

(2 + t)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = 1 and
y′(0) = 0 gives

F0 =
3
2

F1 = −1
2

F2 = −1
2

F3 = −1

F4 =
15
4
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Substituting all the above in (7) and simplifying gives the solution as

y(t) = 1 + 3t2
4 − t3

12 − t4

48 − t5

120 + t6

192 +O
(
t6
)

y(t) = 1 + 3t2
4 − t3

12 − t4

48 − t5

120 + t6

192 +O
(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

d2

dt2
y(t)

)
(2 + t) + (2t− 1)

(
d

dt
y(t)

)
+ (t− 3) y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)
(2 + t) + (2t− 1)

(
∞∑
n=1

nant
n−1

)
+ (t− 3)

(
∞∑
n=0

ant
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

n tn−1an(n− 1)
)

+
(

∞∑
n=2

2n(n− 1) antn−2

)
+
(

∞∑
n=1

2nantn
)

+
∞∑

n =1

(
−nant

n−1)+( ∞∑
n=0

t1+nan

)
+

∞∑
n =0

(−3antn) = 0
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The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

n tn−1an(n− 1) =
∞∑
n=1

(1 + n) a1+nn tn

∞∑
n =2

2n(n− 1) antn−2 =
∞∑
n=0

2(n+ 2) an+2(1 + n) tn

∞∑
n =1

(
−nant

n−1) = ∞∑
n=0

(−(1 + n) a1+nt
n)

∞∑
n =0

t1+nan =
∞∑
n=1

an−1t
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=1

(1 + n) a1+nn tn

)
+
(

∞∑
n=0

2(n+ 2) an+2(1 + n) tn
)

+
(

∞∑
n=1

2nantn
)

+
∞∑

n =0

(−(1 + n) a1+nt
n) +

(
∞∑
n=1

an−1t
n

)
+

∞∑
n =0

(−3antn) = 0

n = 0 gives
4a2 − a1 − 3a0 = 0

a2 =
3a0
4 + a1

4

For 1 ≤ n, the recurrence equation is

(4)(1 + n) a1+nn+ 2(n+ 2) an+2(1 + n) + 2nan − (1 + n) a1+n + an−1 − 3an = 0

Solving for an+2, gives

(5)

an+2 = −n2a1+n + 2nan − 3an − a1+n + an−1

2 (n+ 2) (1 + n)

= − (2n− 3) an
2 (n+ 2) (1 + n) −

(n2 − 1) a1+n

2 (n+ 2) (1 + n) −
an−1

2 (n+ 2) (1 + n)
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For n = 1 the recurrence equation gives

12a3 − a1 + a0 = 0

Which after substituting the earlier terms found becomes

a3 =
a1
12 − a0

12

For n = 2 the recurrence equation gives

3a3 + 24a4 + a2 + a1 = 0

Which after substituting the earlier terms found becomes

a4 = −a1
16 − a0

48

For n = 3 the recurrence equation gives

8a4 + 40a5 + 3a3 + a2 = 0

Which after substituting the earlier terms found becomes

a5 = − a0
120

For n = 4 the recurrence equation gives

15a5 + 60a6 + 5a4 + a3 = 0

Which after substituting the earlier terms found becomes

a6 =
a0
192 + 11a1

2880

For n = 5 the recurrence equation gives

24a6 + 84a7 + 7a5 + a4 = 0

Which after substituting the earlier terms found becomes

a7 = − 11a0
20160 − a1

2880
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And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t+
(
3a0
4 + a1

4

)
t2 +

(a1
12 − a0

12

)
t3 +

(
−a1
16 − a0

48

)
t4 − a0t

5

120 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1 + 3

4t
2 − 1

12t
3 − 1

48t
4 − 1

120t
5
)
a0 +

(
t+ 1

4t
2 + 1

12t
3 − 1

16t
4
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1 + 3

4t
2 − 1

12t
3 − 1

48t
4 − 1

120t
5
)
c1 +

(
t+ 1

4t
2 + 1

12t
3 − 1

16t
4
)
c2 +O

(
t6
)

y(t) = 1 + 3t2
4 − t3

12 − t4

48 − t5

120 +O
(
t6
)

Replacing t in the above with the original independent variable xsusing t = x+1 results
in

y = 1 + 3(x+ 1)2

4 − (x+ 1)3

12 − (x+ 1)4

48 − (x+ 1)5

120 + (x+ 1)6

192 +O
(
(x+ 1)6

)
Summary
The solution(s) found are the following

(1)y = 1 + 3(x+ 1)2

4 − (x+ 1)3

12 − (x+ 1)4

48 − (x+ 1)5

120 + (x+ 1)6

192 +O
(
(x+ 1)6

)
Verification of solutions

y = 1 + 3(x+ 1)2

4 − (x+ 1)3

12 − (x+ 1)4

48 − (x+ 1)5

120 + (x+ 1)6

192 +O
(
(x+ 1)6

)
Verified OK.
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13.14.2 Maple step by step solution

Let’s solve[
(x+ 3) y′′ + (1 + 2x) y′ + (−2 + x) y = 0, y(−1) = 1, y′

∣∣∣{x=−1}
= 0
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (−2+x)y
x+3 − (1+2x)y′

x+3

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (1+2x)y′
x+3 + (−2+x)y

x+3 = 0

� Check to see if x0 = −3 is a regular singular point
◦ Define functions[

P2(x) = 1+2x
x+3 , P3(x) = −2+x

x+3

]
◦ (x+ 3) · P2(x) is analytic at x = −3

((x+ 3) · P2(x))
∣∣∣∣
x=−3

= −5

◦ (x+ 3)2 · P3(x) is analytic at x = −3(
(x+ 3)2 · P3(x)

) ∣∣∣∣
x=−3

= 0

◦ x = −3is a regular singular point
Check to see if x0 = −3 is a regular singular point
x0 = −3

• Multiply by denominators
(x+ 3) y′′ + (1 + 2x) y′ + (−2 + x) y = 0

• Change variables using x = u− 3 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−5 + 2u)

(
d
du
y(u)

)
+ (−5 + u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−6 + r)u−1+r + (a1(1 + r) (−5 + r) + a0(−5 + 2r))ur +
(

∞∑
k=1

(ak+1(k + 1 + r) (k − 5 + r) + ak(2k + 2r − 5) + ak−1)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−6 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 6}

• Each term must be 0
a1(1 + r) (−5 + r) + a0(−5 + 2r) = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k − 5 + r) + 2akk + 2akr − 5ak + ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k − 4 + r) + 2ak+1(k + 1) + 2rak+1 − 5ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
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ak+2 = −2kak+1+2rak+1+ak−3ak+1
(k+2+r)(k−4+r)

• Recursion relation for r = 0
ak+2 = −2kak+1+ak−3ak+1

(k+2)(k−4)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 4
ak+2 = −2kak+1+ak−3ak+1

(k+2)(k−4)

• Recursion relation for r = 6
ak+2 = −2kak+1+ak+9ak+1

(k+8)(k+2)

• Solution for r = 6[
y(u) =

∞∑
k=0

aku
k+6, ak+2 = −2kak+1+ak+9ak+1

(k+8)(k+2) , 7a1 + 7a0 = 0
]

• Revert the change of variables u = x+ 3[
y =

∞∑
k=0

ak(x+ 3)k+6 , ak+2 = −2kak+1+ak+9ak+1
(k+8)(k+2) , 7a1 + 7a0 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
Order:=6;
dsolve([(3+x)*diff(y(x),x$2)+(1+2*x)*diff(y(x),x)-(2-x)*y(x)=0,y(-1) = 1, D(y)(-1) = 0],y(x),type='series',x=-1);� �

y(x) = 1 + 3
4(x+ 1)2 − 1

12(x+ 1)3 − 1
48(x+ 1)4 − 1

120(x+ 1)5 +O
(
(x+ 1)6

)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 41� �
AsymptoticDSolveValue[{(3+x)*y''[x]+(1+2*x)*y'[x]-(2-x)*y[x]==0,{y[-1]==1,y'[-1]==0}},y[x],{x,-1,5}]� �

y(x) → − 1
120(x+ 1)5 − 1

48(x+ 1)4 − 1
12(x+ 1)3 + 3

4(x+ 1)2 + 1
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13.15 problem 15
13.15.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4210
13.15.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4218

Internal problem ID [1256]
Internal file name [OUTPUT/1257_Sunday_June_05_2022_02_06_59_AM_54892672/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 3y′x+
(
2x2 + 4

)
y = 0

With initial conditions

[y(0) = 1, y′(0) = 0]

With the expansion point for the power series method at x = 0.

13.15.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 3x
q(x) = 2x2 + 4

F = 0
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Hence the ode is

y′′ + 3y′x+
(
2x2 + 4

)
y = 0

The domain of p(x) = 3x is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 2x2 + 4 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (971)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (972)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2x2y − 3y′x− 4y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 6yx3 + 7y′x2 + 8yx− 7y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(
−15x3 + 43x

)
y′ +

(
−14x4 + 4x2 + 36

)
y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
31x4 − 170x2 + 79

)
y′ + 30

(
x4 − 41

15x
2 − 82

15

)
xy

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
−63x5 + 552x3 − 741x

)
y′ +

(
−62x6 + 366x4 + 276x2 − 480

)
y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 1 and
y′(0) = 0 gives

F0 = −4
F1 = 0
F2 = 36
F3 = 0
F4 = −480

Substituting all the above in (7) and simplifying gives the solution as

y = −2x2 + 1 + 3x4

2 − 2x6

3 +O
(
x6)

y = −2x2 + 1 + 3x4

2 − 2x6

3 +O
(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) anxn−2 = −2x2

(
∞∑
n=0

anx
n

)
− 3
(

∞∑
n=1

nanx
n−1

)
x− 4

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

3nxnan

)
+
(

∞∑
n=0

2xn+2an

)
+
(

∞∑
n=0

4anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =0

2xn+2an =
∞∑
n=2

2an−2x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=1

3nxnan

)
+
(

∞∑
n=2

2an−2x
n

)
+
(

∞∑
n=0

4anxn

)
= 0

(3)
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n = 0 gives
2a2 + 4a0 = 0

a2 = −2a0

n = 1 gives
6a3 + 7a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −7a1
6

For 2 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + 3nan + 2an−2 + 4an = 0

Solving for an+2, gives

(5)

an+2 = −3nan + 4an + 2an−2

(n+ 2) (n+ 1)

= − (3n+ 4) an
(n+ 2) (n+ 1) −

2an−2

(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

12a4 + 10a2 + 2a0 = 0

Which after substituting the earlier terms found becomes

a4 =
3a0
2

For n = 3 the recurrence equation gives

20a5 + 13a3 + 2a1 = 0

Which after substituting the earlier terms found becomes

a5 =
79a1
120
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For n = 4 the recurrence equation gives

30a6 + 16a4 + 2a2 = 0

Which after substituting the earlier terms found becomes

a6 = −2a0
3

For n = 5 the recurrence equation gives

42a7 + 19a5 + 2a3 = 0

Which after substituting the earlier terms found becomes

a7 = −407a1
1680

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 2a0x2 − 7
6a1x

3 + 3
2a0x

4 + 79
120a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
−2x2 + 1 + 3

2x
4
)
a0 +

(
x− 7

6x
3 + 79

120x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
−2x2 + 1 + 3

2x
4
)
c1 +

(
x− 7

6x
3 + 79

120x
5
)
c2 +O

(
x6)

y = −2x2 + 1 + 3x4

2 +O
(
x6)
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Summary
The solution(s) found are the following

(1)y = −2x2 + 1 + 3x4

2 − 2x6

3 +O
(
x6)

(2)y = −2x2 + 1 + 3x4

2 +O
(
x6)

Verification of solutions

y = −2x2 + 1 + 3x4

2 − 2x6

3 +O
(
x6)

Verified OK.

y = −2x2 + 1 + 3x4

2 +O
(
x6)

Verified OK.

13.15.2 Maple step by step solution

Let’s solve[
y′′ = −2x2y − 3y′x− 4y, y(0) = 1, y′

∣∣∣{x=0}
= 0
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = (−2x2 − 4) y − 3y′x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 3y′x+ (2x2 + 4) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m
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xm · y =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

akk x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 4a0 + (6a3 + 7a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + ak(3k + 4) + 2ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + 4a0 = 0, 6a3 + 7a1 = 0]

• Solve for the dependent coefficient(s){
a2 = −2a0, a3 = −7a1

6

}
• Each term in the series must be 0, giving the recursion relation

(k2 + 3k + 2) ak+2 + 3akk + 4ak + 2ak−2 = 0
• Shift index using k− >k + 2(

(k + 2)2 + 3k + 8
)
ak+4 + 3ak+2(k + 2) + 4ak+2 + 2ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+4 = −3kak+2+2ak+10ak+2

k2+7k+12 , a2 = −2a0, a3 = −7a1
6

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
Order:=6;
dsolve([diff(y(x),x$2)+3*x*diff(y(x),x)+(4+2*x^2)*y(x)=0,y(0) = 1, D(y)(0) = 0],y(x),type='series',x=0);� �

y(x) = 1− 2x2 + 3
2x

4 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 17� �
AsymptoticDSolveValue[{y''[x]+3*x*y'[x]+(4+2*x^2)*y[x]==0,{y[0]==1,y'[0]==0}},y[x],{x,0,5}]� �

y(x) → 3x4

2 − 2x2 + 1
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13.16 problem 19
13.16.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4221
13.16.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4230

Internal problem ID [1257]
Internal file name [OUTPUT/1258_Sunday_June_05_2022_02_07_01_AM_10248380/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(4x+ 2) y′′ − 4y′ − (6 + 4x) y = 0

With initial conditions

[y(0) = 2, y′(0) = −7]

With the expansion point for the power series method at x = 0.

13.16.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = − 4
4x+ 2

q(x) = −4x− 6
4x+ 2

F = 0
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Hence the ode is

y′′ − 4y′
4x+ 2 + (−4x− 6) y

4x+ 2 = 0

The domain of p(x) = − 4
4x+2 is

{
x < −1

2 ∨−1
2 < x

}

And the point x0 = 0 is inside this domain. The domain of q(x) = −4x−6
4x+2 is

{
x < −1

2 ∨−1
2 < x

}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (974)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (975)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
2yx+ 2y′ + 3y

1 + 2x

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (2x+ 3) y′ + 2y
1 + 2x

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 4y′ + (2x+ 5) y
1 + 2x

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (2x+ 5) y′ + 4y
1 + 2x

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= 6y′ + (2x+ 7) y
1 + 2x

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 2 and
y′(0) = −7 gives

F0 = −8
F1 = −17
F2 = −18
F3 = −27
F4 = −28

Substituting all the above in (7) and simplifying gives the solution as

y = −4x2 − 7x+ 2− 17x3

6 − 3x4

4 − 9x5

40 − 7x6

180 +O
(
x6)
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y = −4x2 − 7x+ 2− 17x3

6 − 3x4

4 − 9x5

40 − 7x6

180 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(4x+ 2) y′′ − 4y′ + (−4x− 6) y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(4x+ 2)
(

∞∑
n=2

n(n− 1) anxn−2

)
− 4
(

∞∑
n=1

nanx
n−1

)
+ (−4x− 6)

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

4nxn−1an(n− 1)
)

+
(

∞∑
n=2

2n(n− 1) anxn−2

)

+
∞∑

n =1

(
−4nanxn−1)+ ∞∑

n =0

(
−4x1+nan

)
+

∞∑
n =0

(−6anxn) = 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

4nxn−1an(n− 1) =
∞∑
n=1

4(1 + n) a1+nnxn

∞∑
n =2

2n(n− 1) anxn−2 =
∞∑
n=0

2(n+ 2) an+2(1 + n)xn
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∞∑
n =1

(
−4nanxn−1) = ∞∑

n=0

(−4(1 + n) a1+nx
n)

∞∑
n =0

(
−4x1+nan

)
=

∞∑
n=1

(−4an−1x
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=1

4(1 + n) a1+nnxn

)
+
(

∞∑
n=0

2(n+ 2) an+2(1 + n)xn

)

+
∞∑

n =0

(−4(1 + n) a1+nx
n) +

∞∑
n =1

(−4an−1x
n) +

∞∑
n =0

(−6anxn) = 0

n = 0 gives
4a2 − 4a1 − 6a0 = 0

a2 =
3a0
2 + a1

For 1 ≤ n, the recurrence equation is

(4)4(1 + n) a1+nn+ 2(n+ 2) an+2(1 + n)− 4(1 + n) a1+n − 4an−1 − 6an = 0

Solving for an+2, gives

(5)

an+2 = −2n2a1+n − 3an − 2a1+n − 2an−1

(n+ 2) (1 + n)

= 3an
(n+ 2) (1 + n) −

(2n2 − 2) a1+n

(n+ 2) (1 + n) +
2an−1

(n+ 2) (1 + n)

For n = 1 the recurrence equation gives

12a3 − 4a0 − 6a1 = 0

Which after substituting the earlier terms found becomes

a3 =
a0
3 + a1

2
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For n = 2 the recurrence equation gives

12a3 + 24a4 − 4a1 − 6a2 = 0

Which after substituting the earlier terms found becomes

a4 =
5a0
24 + a1

6

For n = 3 the recurrence equation gives

32a4 + 40a5 − 4a2 − 6a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a0
30 + a1

24

For n = 4 the recurrence equation gives

60a5 + 60a6 − 4a3 − 6a4 = 0

Which after substituting the earlier terms found becomes

a6 =
7a0
720 + a1

120

For n = 5 the recurrence equation gives

96a6 + 84a7 − 4a4 − 6a5 = 0

Which after substituting the earlier terms found becomes

a7 =
a0
840 + a1

720

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .
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Substituting the values for an found above, the solution becomes

y = a0 + a1x+
(
3a0
2 + a1

)
x2 +

(a0
3 + a1

2

)
x3 +

(
5a0
24 + a1

6

)
x4 +

(a0
30 + a1

24

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1+ 3

2x
2+ 1

3x
3+ 5

24x
4+ 1

30x
5
)
a0+

(
x+x2+ 1

2x
3+ 1

6x
4+ 1

24x
5
)
a1+O

(
x6)

At x = 0 the solution above becomes

y =
(
1 + 3

2x
2 + 1

3x
3 + 5

24x
4 + 1

30x
5
)
c1 +

(
x+ x2 + 1

2x
3 + 1

6x
4 + 1

24x
5
)
c2 +O

(
x6)

y = 2− 4x2 − 17x3

6 − 3x4

4 − 9x5

40 − 7x+O
(
x6)

Summary
The solution(s) found are the following

(1)y = −4x2 − 7x+ 2− 17x3

6 − 3x4

4 − 9x5

40 − 7x6

180 +O
(
x6)

(2)y = 2− 4x2 − 17x3

6 − 3x4

4 − 9x5

40 − 7x+O
(
x6)

Verification of solutions

y = −4x2 − 7x+ 2− 17x3

6 − 3x4

4 − 9x5

40 − 7x6

180 +O
(
x6)

Verified OK.

y = 2− 4x2 − 17x3

6 − 3x4

4 − 9x5

40 − 7x+O
(
x6)

Verified OK.
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13.16.2 Maple step by step solution

Let’s solve[
(4x+ 2) y′′ − 4y′ + (−4x− 6) y = 0, y(0) = 2, y′

∣∣∣{x=0}
= −7

]
• Highest derivative means the order of the ODE is 2

y′′

• Isolate 2nd derivative
y′′ = (2x+3)y

1+2x + 2y′
1+2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 2y′

1+2x − (2x+3)y
1+2x = 0

� Check to see if x0 = −1
2 is a regular singular point

◦ Define functions[
P2(x) = − 2

1+2x , P3(x) = −2x+3
1+2x

]
◦
(
x+ 1

2

)
· P2(x) is analytic at x = −1

2((
x+ 1

2

)
· P2(x)

) ∣∣∣∣
x=− 1

2

= −1

◦
(
x+ 1

2

)2 · P3(x) is analytic at x = −1
2((

x+ 1
2

)2 · P3(x)
) ∣∣∣∣

x=− 1
2

= 0

◦ x = −1
2 is a regular singular point

Check to see if x0 = −1
2 is a regular singular point

x0 = −1
2

• Multiply by denominators
(1 + 2x) y′′ − 2y′ + (−3− 2x) y = 0

• Change variables using x = u− 1
2 so that the regular singular point is at u = 0

2u
(

d2

du2y(u)
)
− 2 d

du
y(u) + (−2− 2u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert d
du
y(u) to series expansion

d
du
y(u) =

∞∑
k=0

ak(k + r)uk+r−1

◦ Shift index using k− >k + 1
d
du
y(u) =

∞∑
k=−1

ak+1(k + 1 + r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

2a0r(−2 + r)u−1+r + (2a1(1 + r) (−1 + r)− 2a0)ur +
(

∞∑
k=1

(2ak+1(k + 1 + r) (k + r − 1)− 2ak − 2ak−1)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term must be 0
2a1(1 + r) (−1 + r)− 2a0 = 0

• Each term in the series must be 0, giving the recursion relation
2ak+1(k + 1 + r) (k + r − 1)− 2ak − 2ak−1 = 0

• Shift index using k− >k + 1
2ak+2(k + 2 + r) (k + r)− 2ak+1 − 2ak = 0

• Recursion relation that defines series solution to ODE
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ak+2 = ak+1+ak
(k+2+r)(k+r)

• Recursion relation for r = 0
ak+2 = ak+1+ak

(k+2)k

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0
ak+2 = ak+1+ak

(k+2)k

• Recursion relation for r = 2
ak+2 = ak+1+ak

(k+4)(k+2)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+2 = ak+1+ak

(k+4)(k+2) , 6a1 − 2a0 = 0
]

• Revert the change of variables u = x+ 1
2[

y =
∞∑
k=0

ak
(
x+ 1

2

)k+2
, ak+2 = ak+1+ak

(k+4)(k+2) , 6a1 − 2a0 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(2+4*x)*diff(y(x),x$2)-4*diff(y(x),x)-(6+4*x)*y(x)=0,y(0) = 2, D(y)(0) = -7],y(x),type='series',x=0);� �

y(x) = 2− 7x− 4x2 − 17
6 x3 − 3

4x
4 − 9

40x
5 +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 34� �
AsymptoticDSolveValue[{(2+4*x)*y''[x]-4*y'[x]-(6+4*x)*y[x]==0,{y[0]==2,y'[0]==-7}},y[x],{x,0,5}]� �

y(x) → −9x5

40 − 3x4

4 − 17x3

6 − 4x2 − 7x+ 2
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13.17 problem 20
13.17.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4234
13.17.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4243

Internal problem ID [1258]
Internal file name [OUTPUT/1259_Sunday_June_05_2022_02_07_03_AM_53593430/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 20.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(1 + 2x) y′′ − (1− 2x) y′ − (−2x+ 3) y = 0

With initial conditions

[y(1) = 1, y′(1) = −2]

With the expansion point for the power series method at x = 1.

13.17.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 2x− 1
1 + 2x

q(x) = −3 + 2x
1 + 2x

F = 0
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Hence the ode is

y′′ + (2x− 1) y′
1 + 2x + (−3 + 2x) y

1 + 2x = 0

The domain of p(x) = 2x−1
1+2x is

{
x < −1

2 ∨−1
2 < x

}

And the point x0 = 1 is inside this domain. The domain of q(x) = −3+2x
1+2x is

{
x < −1

2 ∨−1
2 < x

}
And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x− 1

The ode is converted to be in terms of the new independent variable t. This results in

(2t+ 3)
(

d2

dt2
y(t)

)
+ (1 + 2t)

(
d

dt
y(t)

)
+ (2t− 1) y(t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = 1
y′(0) = −2

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (977)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (978)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
2y(t) t+ 2t

(
d
dt
y(t)

)
− y(t) + d

dt
y(t)

2t+ 3

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

= y(t) (−3 + 2t)
2t+ 3

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
4
(

d
dt
y(t)

)
t2 + 12y(t)− 9 d

dt
y(t)

(2t+ 3)2

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(−8t3 − 4t2 + 66t+ 81)

(
d
dt
y(t)

)
− 8
(
t3 − 1

2t
2 − 9

4t+
57
8

)
y(t)

(2t+ 3)3

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(−144t2 − 576t− 540)

(
d
dt
y(t)

)
+ 16

(
t4 − 27

2 t
2 − 9t+ 477

16

)
y(t)

(2t+ 3)4

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = 1 and
y′(0) = −2 gives

F0 = 1
F1 = −1

F2 =
10
3

F3 = −73
9

F4 =
173
9
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Substituting all the above in (7) and simplifying gives the solution as

y(t) = 1 + t2

2 − 2t− t3

6 + 5t4
36 − 73t5

1080 + 173t6
6480 +O

(
t6
)

y(t) = 1 + t2

2 − 2t− t3

6 + 5t4
36 − 73t5

1080 + 173t6
6480 +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(2t+ 3)
(

d2

dt2
y(t)

)
+ (1 + 2t)

(
d

dt
y(t)

)
+ (2t− 1) y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives

(2t+ 3)
(

∞∑
n=2

n(n− 1) antn−2

)
+ (1 + 2t)

(
∞∑
n=1

nant
n−1

)
+ (2t− 1)

(
∞∑
n=0

ant
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

2n tn−1an(n− 1)
)

+
(

∞∑
n=2

3n(n− 1) antn−2

)
+
(

∞∑
n=1

nant
n−1

)

+
(

∞∑
n=1

2nantn
)

+
(

∞∑
n=0

2t1+nan

)
+

∞∑
n =0

(−ant
n) = 0

4239



The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

2n tn−1an(n− 1) =
∞∑
n=1

2(1 + n) a1+nn tn

∞∑
n =2

3n(n− 1) antn−2 =
∞∑
n=0

3(n+ 2) an+2(1 + n) tn

∞∑
n =1

nant
n−1 =

∞∑
n=0

(1 + n) a1+nt
n

∞∑
n =0

2t1+nan =
∞∑
n=1

2an−1t
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=1

2(1 + n) a1+nn tn

)
+
(

∞∑
n=0

3(n+ 2) an+2(1 + n) tn
)

+
(

∞∑
n=0

(1 + n) a1+nt
n

)
+
(

∞∑
n=1

2nantn
)

+
(

∞∑
n=1

2an−1t
n

)
+

∞∑
n =0

(−ant
n) = 0

n = 0 gives
6a2 + a1 − a0 = 0

a2 =
a0
6 − a1

6

For 1 ≤ n, the recurrence equation is

(4)2(1 + n) a1+nn+ 3(n+ 2) an+2(1 + n) + (1 + n) a1+n + 2nan + 2an−1 − an = 0

Solving for an+2, gives

(5)

an+2 = −2n2a1+n + 2nan + 3na1+n − an + a1+n + 2an−1

3 (n+ 2) (1 + n)

= − (2n− 1) an
3 (n+ 2) (1 + n) −

(2n2 + 3n+ 1) a1+n

3 (n+ 2) (1 + n) − 2an−1

3 (n+ 2) (1 + n)
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For n = 1 the recurrence equation gives

6a2 + 18a3 + a1 + 2a0 = 0

Which after substituting the earlier terms found becomes

a3 = −a0
6

For n = 2 the recurrence equation gives

15a3 + 36a4 + 3a2 + 2a1 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
18 − a1

24

For n = 3 the recurrence equation gives

28a4 + 60a5 + 5a3 + 2a2 = 0

Which after substituting the earlier terms found becomes

a5 = −19a0
1080 + a1

40

For n = 4 the recurrence equation gives

45a5 + 90a6 + 7a4 + 2a3 = 0

Which after substituting the earlier terms found becomes

a6 =
53a0
6480 − a1

108

For n = 5 the recurrence equation gives

66a6 + 126a7 + 9a5 + 2a4 = 0

Which after substituting the earlier terms found becomes

a7 = −19a0
4860 + 169a1

45360
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And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t+
(a0
6 − a1

6

)
t2 − a0t

3

6 +
(a0
18 − a1

24

)
t4 +

(
−19a0
1080 + a1

40

)
t5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1 + 1

6t
2 − 1

6t
3 + 1

18t
4 − 19

1080t
5
)
a0 +

(
t− 1

6t
2 − 1

24t
4 + 1

40t
5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1 + 1

6t
2 − 1

6t
3 + 1

18t
4 − 19

1080t
5
)
c1 +

(
t− 1

6t
2 − 1

24t
4 + 1

40t
5
)
c2 +O

(
t6
)

y(t) = 1 + t2

2 − t3

6 + 5t4
36 − 73t5

1080 − 2t+O
(
t6
)

Replacing t in the above with the original independent variable xsusing t = x−1 results
in

y = 3+ (x− 1)2

2 − 2x− (x− 1)3

6 + 5(x− 1)4

36 − 73(x− 1)5

1080 + 173(x− 1)6

6480 +O
(
(x− 1)6

)
Summary
The solution(s) found are the following

(1)
y = 3 + (x− 1)2

2 − 2x− (x− 1)3

6 + 5(x− 1)4

36

− 73(x− 1)5

1080 + 173(x− 1)6

6480 +O
(
(x− 1)6

)
Verification of solutions

y = 3+ (x− 1)2

2 − 2x− (x− 1)3

6 + 5(x− 1)4

36 − 73(x− 1)5

1080 + 173(x− 1)6

6480 +O
(
(x− 1)6

)
Verified OK.
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13.17.2 Maple step by step solution

Let’s solve[
(1 + 2x) y′′ + (2x− 1) y′ + (−3 + 2x) y = 0, y(1) = 1, y′

∣∣∣{x=1}
= −2

]
• Highest derivative means the order of the ODE is 2

y′′

• Isolate 2nd derivative

y′′ = − (−3+2x)y
1+2x − (2x−1)y′

1+2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (2x−1)y′
1+2x + (−3+2x)y

1+2x = 0

� Check to see if x0 = −1
2 is a regular singular point

◦ Define functions[
P2(x) = 2x−1

1+2x , P3(x) = −3+2x
1+2x

]
◦
(
x+ 1

2

)
· P2(x) is analytic at x = −1

2((
x+ 1

2

)
· P2(x)

) ∣∣∣∣
x=− 1

2

= −1

◦
(
x+ 1

2

)2 · P3(x) is analytic at x = −1
2((

x+ 1
2

)2 · P3(x)
) ∣∣∣∣

x=− 1
2

= 0

◦ x = −1
2 is a regular singular point

Check to see if x0 = −1
2 is a regular singular point

x0 = −1
2

• Multiply by denominators
(1 + 2x) y′′ + (2x− 1) y′ + (−3 + 2x) y = 0

• Change variables using x = u− 1
2 so that the regular singular point is at u = 0

2u
(

d2

du2y(u)
)
+ (2u− 2)

(
d
du
y(u)

)
+ (−4 + 2u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

2a0r(−2 + r)u−1+r + (2a1(1 + r) (−1 + r) + 2a0(−2 + r))ur +
(

∞∑
k=1

(2ak+1(k + 1 + r) (k + r − 1) + 2ak(k + r − 2) + 2ak−1)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term must be 0
2a1(1 + r) (−1 + r) + 2a0(−2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
2ak+1(k + 1 + r) (k + r − 1) + ak(2k + 2r − 4) + 2ak−1 = 0

• Shift index using k− >k + 1
2ak+2(k + 2 + r) (k + r) + ak+1(2k − 2 + 2r) + 2ak = 0

• Recursion relation that defines series solution to ODE
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ak+2 = −kak+1+rak+1+ak−ak+1
(k+2+r)(k+r)

• Recursion relation for r = 0
ak+2 = −kak+1+ak−ak+1

(k+2)k

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 0
ak+2 = −kak+1+ak−ak+1

(k+2)k

• Recursion relation for r = 2
ak+2 = −kak+1+ak+ak+1

(k+4)(k+2)

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+2 = −kak+1+ak+ak+1

(k+4)(k+2) , 6a1 = 0
]

• Revert the change of variables u = x+ 1
2[

y =
∞∑
k=0

ak
(
x+ 1

2

)k+2
, ak+2 = −kak+1+ak+ak+1

(k+4)(k+2) , 6a1 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Kummer successful
<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(1+2*x)*diff(y(x),x$2)-(1-2*x)*diff(y(x),x)-(3-2*x)*y(x)=0,y(1) = 1, D(y)(1) = -2],y(x),type='series',x=1);� �
y(x) = 1− 2(x− 1)+ 1

2(x− 1)2 − 1
6(x− 1)3 + 5

36(x− 1)4 − 73
1080(x− 1)5 +O

(
(x− 1)6

)
3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 46� �
AsymptoticDSolveValue[{(1+2*x)*y''[x]-(1-2*x)*y'[x]-(3-2*x)*y[x]==0,{y[1]==1,y'[1]==-2}},y[x],{x,1,5}]� �

y(x) → −73(x− 1)5
1080 + 5

36(x− 1)4 − 1
6(x− 1)3 + 1

2(x− 1)2 − 2(x− 1) + 1

4246



13.18 problem 21
13.18.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4247
13.18.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4256

Internal problem ID [1259]
Internal file name [OUTPUT/1260_Sunday_June_05_2022_02_07_06_AM_69075082/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 21.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(2x+ 5) y′′ − y′ + (x+ 5) y = 0

With initial conditions

[y(−2) = 2, y′(−2) = −1]

With the expansion point for the power series method at x = −2.

13.18.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = − 1
2x+ 5

q(x) = x+ 5
2x+ 5

F = 0

4247



Hence the ode is

y′′ − y′

2x+ 5 + (x+ 5) y
2x+ 5 = 0

The domain of p(x) = − 1
2x+5 is

{
x < −5

2 ∨−5
2 < x

}

And the point x0 = −2 is inside this domain. The domain of q(x) = x+5
2x+5 is

{
x < −5

2 ∨−5
2 < x

}
And the point x0 = −2 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = 2 + x

The ode is converted to be in terms of the new independent variable t. This results in

(1 + 2t)
(

d2

dt2
y(t)

)
− d

dt
y(t) + (t+ 3) y(t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = 2
y′(0) = −1

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (980)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (981)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
y(t) t+ 3y(t)− d

dt
y(t)

1 + 2t

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(−2t2 − 7t− 4)

(
d
dt
y(t)

)
− y(t) (t− 2)

(1 + 2t)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(−4t2 + 6t+ 7)

(
d
dt
y(t)

)
+ 2y(t)

(
t3 + 13

2 t
2 + 27

2 t+
3
2

)
(1 + 2t)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(4t4 + 28t3 + 71t2 + 7t− 26)

(
d
dt
y(t)

)
+ 4
(
t3 − 7

2t
2 − 107

4 t− 3
)
y(t)

(1 + 2t)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(12t4 − 36t3 − 357t2 − 24t+ 177)

(
d
dt
y(t)

)
− 4y(t)

(
t5 + 10t4 + 163

4 t3 + 38t2 − 619
4 t− 67

4

)
(1 + 2t)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = 2 and
y′(0) = −1 gives

F0 = −7
F1 = 8
F2 = −1
F3 = 2
F4 = −43
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Substituting all the above in (7) and simplifying gives the solution as

y(t) = −t+ 2− 7t2
2 + 4t3

3 − t4

24 + t5

60 − 43t6
720 +O

(
t6
)

y(t) = −t+ 2− 7t2
2 + 4t3

3 − t4

24 + t5

60 − 43t6
720 +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(1 + 2t)
(

d2

dt2
y(t)

)
− d

dt
y(t) + (t+ 3) y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives

(1 + 2t)
(

∞∑
n=2

n(n− 1) antn−2

)
−

(
∞∑
n=1

nant
n−1

)
+ (t+ 3)

(
∞∑
n=0

ant
n

)
= 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

2n tn−1an(n− 1)
)

+
(

∞∑
n=2

n(n− 1) antn−2

)

+
∞∑

n =1

(
−nant

n−1)+( ∞∑
n=0

t1+nan

)
+
(

∞∑
n=0

3antn
)

= 0
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The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

2n tn−1an(n− 1) =
∞∑
n=1

2(1 + n) a1+nn tn

∞∑
n =2

n(n− 1) antn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n) tn

∞∑
n =1

(
−nant

n−1) = ∞∑
n=0

(−(1 + n) a1+nt
n)

∞∑
n =0

t1+nan =
∞∑
n=1

an−1t
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=1

2(1 + n) a1+nn tn

)
+
(

∞∑
n=0

(n+ 2) an+2(1 + n) tn
)

+
∞∑

n =0

(−(1 + n) a1+nt
n) +

(
∞∑
n=1

an−1t
n

)
+
(

∞∑
n=0

3antn
)

= 0

n = 0 gives
2a2 − a1 + 3a0 = 0

a2 = −3a0
2 + a1

2

For 1 ≤ n, the recurrence equation is

(4)2(1 + n) a1+nn+ (n+ 2) an+2(1 + n)− (1 + n) a1+n + an−1 + 3an = 0

Solving for an+2, gives

(5)

an+2 = −2n2a1+n + na1+n + 3an − a1+n + an−1

(n+ 2) (1 + n)

= − 3an
(n+ 2) (1 + n) −

(2n2 + n− 1) a1+n

(n+ 2) (1 + n) − an−1

(n+ 2) (1 + n)
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For n = 1 the recurrence equation gives

2a2 + 6a3 + a0 + 3a1 = 0

Which after substituting the earlier terms found becomes

a3 =
a0
3 − 2a1

3

For n = 2 the recurrence equation gives

9a3 + 12a4 + a1 + 3a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
8 + 7a1

24

For n = 3 the recurrence equation gives

20a4 + 20a5 + a2 + 3a3 = 0

Which after substituting the earlier terms found becomes

a5 = −a0
10 − 13a1

60

For n = 4 the recurrence equation gives

35a5 + 30a6 + a3 + 3a4 = 0

Which after substituting the earlier terms found becomes

a6 =
67a0
720 + 59a1

240

For n = 5 the recurrence equation gives

54a6 + 42a7 + a4 + 3a5 = 0
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Which after substituting the earlier terms found becomes

a7 = −97a0
840 − 155a1

504

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t+
(
−3a0

2 + a1
2

)
t2 +

(
a0
3 − 2a1

3

)
t3

+
(
a0
8 + 7a1

24

)
t4 +

(
−a0
10 − 13a1

60

)
t5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− 3

2t
2+ 1

3t
3+ 1

8t
4− 1

10t
5
)
a0+

(
t+ 1

2t
2− 2

3t
3+ 7

24t
4− 13

60t
5
)
a1+O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1− 3

2t
2 + 1

3t
3 + 1

8t
4 − 1

10t
5
)
c1 +

(
t+ 1

2t
2 − 2

3t
3 + 7

24t
4 − 13

60t
5
)
c2 +O

(
t6
)

y(t) = 2− 7t2
2 + 4t3

3 − t4

24 + t5

60 − t+O
(
t6
)

Replacing t in the above with the original independent variable xsusing t = 2 + x

results in

y = −x− 7(2 + x)2

2 + 4(2 + x)3

3 − (2 + x)4

24 + (2 + x)5

60 − 43(2 + x)6

720 +O
(
(2 + x)6

)
Summary
The solution(s) found are the following

(1)y = −x− 7(2 + x)2

2 + 4(2 + x)3

3 − (2 + x)4

24 + (2 + x)5

60 − 43(2 + x)6

720 +O
(
(2 + x)6

)
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Verification of solutions

y = −x− 7(2 + x)2

2 + 4(2 + x)3

3 − (2 + x)4

24 + (2 + x)5

60 − 43(2 + x)6

720 +O
(
(2 + x)6

)
Verified OK.

13.18.2 Maple step by step solution

Let’s solve[
(2x+ 5) y′′ − y′ + (x+ 5) y = 0, y(−2) = 2, y′

∣∣∣{x=−2}
= −1

]
• Highest derivative means the order of the ODE is 2

y′′

• Isolate 2nd derivative
y′′ = − (x+5)y

2x+5 + y′

2x+5

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − y′

2x+5 +
(x+5)y
2x+5 = 0

� Check to see if x0 = −5
2 is a regular singular point

◦ Define functions[
P2(x) = − 1

2x+5 , P3(x) = x+5
2x+5

]
◦
(
x+ 5

2

)
· P2(x) is analytic at x = −5

2((
x+ 5

2

)
· P2(x)

) ∣∣∣∣
x=− 5

2

= −1
2

◦
(
x+ 5

2

)2 · P3(x) is analytic at x = −5
2((

x+ 5
2

)2 · P3(x)
) ∣∣∣∣

x=− 5
2

= 0

◦ x = −5
2 is a regular singular point

Check to see if x0 = −5
2 is a regular singular point

x0 = −5
2

• Multiply by denominators
(2x+ 5) y′′ − y′ + (x+ 5) y = 0

• Change variables using x = u− 5
2 so that the regular singular point is at u = 0
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2u
(

d2

du2y(u)
)
− d

du
y(u) +

(
u+ 5

2

)
y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert d
du
y(u) to series expansion

d
du
y(u) =

∞∑
k=0

ak(k + r)uk+r−1

◦ Shift index using k− >k + 1
d
du
y(u) =

∞∑
k=−1

ak+1(k + 1 + r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−3 + 2r)u−1+r +
(
a1(1 + r) (−1 + 2r) + 5a0

2

)
ur +

(
∞∑
k=1

(
ak+1(k + 1 + r) (2k − 1 + 2r) + 5ak

2 + ak−1
)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 32
}

• Each term must be 0
a1(1 + r) (−1 + 2r) + 5a0

2 = 0
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• Each term in the series must be 0, giving the recursion relation
2
(
k − 1

2 + r
)
(k + 1 + r) ak+1 + 5ak

2 + ak−1 = 0

• Shift index using k− >k + 1
2
(
k + 1

2 + r
)
(k + 2 + r) ak+2 + 5ak+1

2 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 5ak+1+2ak

2(2k+1+2r)(k+2+r)

• Recursion relation for r = 0
ak+2 = − 5ak+1+2ak

2(2k+1)(k+2)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = − 5ak+1+2ak

2(2k+1)(k+2) ,−a1 + 5a0
2 = 0

]
• Revert the change of variables u = x+ 5

2[
y =

∞∑
k=0

ak
(
x+ 5

2

)k
, ak+2 = − 5ak+1+2ak

2(2k+1)(k+2) ,−a1 + 5a0
2 = 0

]
• Recursion relation for r = 3

2

ak+2 = − 5ak+1+2ak
2(2k+4)

(
k+ 7

2
)

• Solution for r = 3
2[

y(u) =
∞∑
k=0

aku
k+ 3

2 , ak+2 = − 5ak+1+2ak
2(2k+4)

(
k+ 7

2
) , 5a1 + 5a0

2 = 0
]

• Revert the change of variables u = x+ 5
2[

y =
∞∑
k=0

ak
(
x+ 5

2

)k+ 3
2 , ak+2 = − 5ak+1+2ak

2(2k+4)
(
k+ 7

2
) , 5a1 + 5a0

2 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak
(
x+ 5

2

)k)+
(

∞∑
k=0

bk
(
x+ 5

2

)k+ 3
2

)
, ak+2 = − 5a1+k+2ak

2(2k+1)(k+2) ,−a1 + 5a0
2 = 0, bk+2 = − 5b1+k+2bk

2(2k+4)
(
k+ 7

2
) , 5b1 + 5b0

2 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Kummer successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(5+2*x)*diff(y(x),x$2)-diff(y(x),x)+(5+x)*y(x)=0,y(-2) = 2, D(y)(-2) = -1],y(x),type='series',x=-2);� �
y(x) = 2− (2 + x)− 7

2(2 + x)2 + 4
3(2 + x)3 − 1

24(2 + x)4 + 1
60(2 + x)5 +O

(
(2 + x)6

)
3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 43� �
AsymptoticDSolveValue[{(5+2*x)*y''[x]-y'[x]+(5+x)*y[x]==0,{y[-2]==2,y'[-2]==-1}},y[x],{x,-2,5}]� �

y(x) → 1
60(x+ 2)5 − 1

24(x+ 2)4 + 4
3(x+ 2)3 − 7

2(x+ 2)2 − x
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13.19 problem 22
13.19.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4260

Internal problem ID [1260]
Internal file name [OUTPUT/1261_Sunday_June_05_2022_02_07_09_AM_58608132/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 22.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(x+ 4) y′′ − (2x+ 4) y′ + (x+ 6) y = 0

With initial conditions

[y(−3) = 2, y′(−3) = −2]

With the expansion point for the power series method at x = −3.

13.19.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −2x− 4
x+ 4

q(x) = x+ 6
x+ 4

F = 0
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Hence the ode is

y′′ + (−2x− 4) y′
x+ 4 + (x+ 6) y

x+ 4 = 0

The domain of p(x) = −2x−4
x+4 is

{x < −4∨−4 < x}

And the point x0 = −3 is inside this domain. The domain of q(x) = x+6
x+4 is

{x < −4∨−4 < x}

And the point x0 = −3 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x+ 3

The ode is converted to be in terms of the new independent variable t. This results in(
d2

dt2
y(t)

)
(t+ 1) + (−2t+ 2)

(
d

dt
y(t)

)
+ (t+ 3) y(t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = 2
y′(0) = −2

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (983)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (984)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
y(t) t− 2t

(
d
dt
y(t)

)
+ 3y(t) + 2 d

dt
y(t)

t+ 1

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(3t2 − 12t+ 5)

(
d
dt
y(t)

)
− 2y(t) (t2 + 2t− 4)

(t+ 1)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
4(t3 − 9t2 + 14t− 6)

(
d
dt
y(t)

)
− 3
(
t3 − t2 − 31

3 t+
35
3

)
y(t)

(t+ 1)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(5t4 − 80t3 + 266t2 − 348t+ 141)

(
d
dt
y(t)

)
− 4y(t) (t4 − 6t3 − 10t2 + 50t− 52)

(t+ 1)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(6t5 − 150t4 + 856t3 − 2160t2 + 2562t− 986)

(
d
dt
y(t)

)
− 5y(t)

(
t5 − 13t4 + 66

5 t
3 + 458

5 t2 − 1583
5 t+ 291

)
(t+ 1)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = 2 and
y′(0) = −2 gives

F0 = −2
F1 = 6
F2 = −22
F3 = 134
F4 = −938
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Substituting all the above in (7) and simplifying gives the solution as

y(t) = t3 − t2 − 2t+ 2− 11t4
12 + 67t5

60 − 469t6
360 +O

(
t6
)

y(t) = t3 − t2 − 2t+ 2− 11t4
12 + 67t5

60 − 469t6
360 +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

d2

dt2
y(t)

)
(t+ 1) + (−2t+ 2)

(
d

dt
y(t)

)
+ (t+ 3) y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)
(t+ 1) + (−2t+ 2)

(
∞∑
n=1

nant
n−1

)
+ (t+ 3)

(
∞∑
n=0

ant
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

n tn−1an(n− 1)
)

+
(

∞∑
n=2

n(n− 1) antn−2

)
+

∞∑
n =1

(−2nantn)

+
(

∞∑
n=1

2nantn−1

)
+
(

∞∑
n=0

t1+nan

)
+
(

∞∑
n=0

3antn
)

= 0
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The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

n tn−1an(n− 1) =
∞∑
n=1

(1 + n) a1+nn tn

∞∑
n =2

n(n− 1) antn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n) tn

∞∑
n =1

2nantn−1 =
∞∑
n=0

2(1 + n) a1+nt
n

∞∑
n =0

t1+nan =
∞∑
n=1

an−1t
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=1

(1 + n) a1+nn tn

)
+
(

∞∑
n=0

(n+ 2) an+2(1 + n) tn
)

+
∞∑

n =1

(−2nantn)

+
(

∞∑
n=0

2(1 + n) a1+nt
n

)
+
(

∞∑
n=1

an−1t
n

)
+
(

∞∑
n=0

3antn
)

= 0

n = 0 gives
2a2 + 2a1 + 3a0 = 0

a2 = −3a0
2 − a1

For 1 ≤ n, the recurrence equation is

(4)(1 + n) a1+nn+ (n+ 2) an+2(1 + n)− 2nan + 2(1 + n) a1+n + an−1 + 3an = 0

Solving for an+2, gives

(5)

an+2 = −n2a1+n − 2nan + 3na1+n + 3an + 2a1+n + an−1

(n+ 2) (1 + n)

= − (−2n+ 3) an
(n+ 2) (1 + n) −

(n2 + 3n+ 2) a1+n

(n+ 2) (1 + n) − an−1

(n+ 2) (1 + n)
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For n = 1 the recurrence equation gives

6a2 + 6a3 + a1 + a0 = 0

Which after substituting the earlier terms found becomes

a3 =
4a0
3 + 5a1

6

For n = 2 the recurrence equation gives

12a3 + 12a4 − a2 + a1 = 0

Which after substituting the earlier terms found becomes

a4 = −35a0
24 − a1

For n = 3 the recurrence equation gives

20a4 + 20a5 − 3a3 + a2 = 0

Which after substituting the earlier terms found becomes

a5 =
26a0
15 + 47a1

40

For n = 4 the recurrence equation gives

30a5 + 30a6 − 5a4 + a3 = 0

Which after substituting the earlier terms found becomes

a6 = −97a0
48 − 493a1

360

For n = 5 the recurrence equation gives

42a6 + 42a7 − 7a5 + a4 = 0
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Which after substituting the earlier terms found becomes

a7 =
211a0
90 + 8009a1

5040

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t+
(
−3a0

2 − a1

)
t2 +

(
4a0
3 + 5a1

6

)
t3

+
(
−35a0

24 − a1

)
t4 +

(
26a0
15 + 47a1

40

)
t5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− 3

2t
2 + 4

3t
3 − 35

24t
4 + 26

15t
5
)
a0 +

(
t− t2 + 5

6t
3 − t4 + 47

40t
5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1− 3

2t
2 + 4

3t
3 − 35

24t
4 + 26

15t
5
)
c1 +

(
t− t2 + 5

6t
3 − t4 + 47

40t
5
)
c2 +O

(
t6
)

y(t) = 2− t2 + t3 − 11t4
12 + 67t5

60 − 2t+O
(
t6
)

Replacing t in the above with the original independent variable xsusing t = x + 3
results in

y = (x+3)3− (x+3)2− 2x− 4− 11(x+ 3)4

12 + 67(x+ 3)5

60 − 469(x+ 3)6

360 +O
(
(x+3)6

)
Summary
The solution(s) found are the following

y = (x+3)3− (x+3)2− 2x− 4− 11(x+ 3)4

12 + 67(x+ 3)5

60 − 469(x+ 3)6

360 +O
(
(x+3)6

)
(1)
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Verification of solutions

y = (x+3)3− (x+3)2− 2x− 4− 11(x+ 3)4

12 + 67(x+ 3)5

60 − 469(x+ 3)6

360 +O
(
(x+3)6

)
Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(4+x)*diff(y(x),x$2)-(4+2*x)*diff(y(x),x)+(6+x)*y(x)=0,y(-3) = 2, D(y)(-3) = -2],y(x),type='series',x=-3);� �
y(x) = 2− 2(x+ 3)− (x+ 3)2 + (x+ 3)3 − 11

12(x+ 3)4 + 67
60(x+ 3)5 +O

(
(x+ 3)6

)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 40� �
AsymptoticDSolveValue[{(4+x)*y''[x]-(4+2*x)*y'[x]+(6+x)*y[x]==0,{y[-3]==2,y'[-3]==-2}},y[x],{x,-3,5}]� �

y(x) → 67
60(x+ 3)5 − 11

12(x+ 3)4 + (x+ 3)3 − (x+ 3)2 − 2(x+ 3) + 2
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13.20 problem 23
13.20.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4271
13.20.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4279

Internal problem ID [1261]
Internal file name [OUTPUT/1262_Sunday_June_05_2022_02_07_12_AM_20866627/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(3x+ 2) y′′ − y′x+ 2yx = 0

With initial conditions

[y(0) = −1, y′(0) = 2]

With the expansion point for the power series method at x = 0.

13.20.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = − x

3x+ 2
q(x) = 2x

3x+ 2
F = 0
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Hence the ode is

y′′ − xy′

3x+ 2 + 2xy
3x+ 2 = 0

The domain of p(x) = − x
3x+2 is

{
x < −2

3 ∨−2
3 < x

}

And the point x0 = 0 is inside this domain. The domain of q(x) = 2x
3x+2 is

{
x < −2

3 ∨−2
3 < x

}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (986)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (987)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −x(−y′ + 2y)
3x+ 2

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (−5x2 − 4x+ 2) y′ + (−2x2 − 4) y
(3x+ 2)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(−11x3 − 8x2 − 18x− 28) y′ + 10(2 + x)

(
x2 − 6

5x+ 6
5

)
y

(3x+ 2)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(19x4 + 36x3 − 80x2 + 96x+ 264) y′ + 22

(
x4 + 8

11x
3 + 36

11x
2 + 80

11x− 120
11

)
y

(3x+ 2)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(85x5 + 128x4 + 212x3 + 1416x2 − 1320x− 3456) y′ − 38y

(
x5 + 36

19x
4 − 144

19 x
3 + 264

19 x
2 + 840

19 x− 1600
19

)
(3x+ 2)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = −1 and
y′(0) = 2 gives

F0 = 0
F1 = 2
F2 = −10
F3 = 48
F4 = −316

Substituting all the above in (7) and simplifying gives the solution as

y = 2x− 1 + x3

3 − 5x4

12 + 2x5

5 − 79x6

180 +O
(
x6)
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y = 2x− 1 + x3

3 − 5x4

12 + 2x5

5 − 79x6

180 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(3x+ 2) y′′ − y′x+ 2yx = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(3x+ 2)
(

∞∑
n=2

n(n− 1) anxn−2

)
−

(
∞∑
n=1

nanx
n−1

)
x+ 2

(
∞∑
n=0

anx
n

)
x = 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

3nxn−1an(n− 1)
)

+
(

∞∑
n=2

2n(n− 1) anxn−2

)

+
∞∑

n =1

(−nanx
n) +

(
∞∑
n=0

2x1+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

3nxn−1an(n− 1) =
∞∑
n=1

3(1 + n) a1+nnxn

∞∑
n =2

2n(n− 1) anxn−2 =
∞∑
n=0

2(n+ 2) an+2(1 + n)xn

∞∑
n =0

2x1+nan =
∞∑
n=1

2an−1x
n
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=1

3(1 + n) a1+nnxn

)
+
(

∞∑
n=0

2(n+ 2) an+2(1 + n)xn

)

+
∞∑

n =1

(−nanx
n) +

(
∞∑
n=1

2an−1x
n

)
= 0

For 1 ≤ n, the recurrence equation is

(4)3(1 + n) a1+nn+ 2(n+ 2) an+2(1 + n)− nan + 2an−1 = 0

Solving for an+2, gives

(5)

an+2 = −3n2a1+n − nan + 3na1+n + 2an−1

2 (n+ 2) (1 + n)

= nan
2 (n+ 2) (1 + n) −

(3n2 + 3n) a1+n

2 (n+ 2) (1 + n) −
an−1

(n+ 2) (1 + n)

For n = 1 the recurrence equation gives

6a2 + 12a3 − a1 + 2a0 = 0

Which after substituting the earlier terms found becomes

a3 =
a1
12 − a0

6

For n = 2 the recurrence equation gives

18a3 + 24a4 − 2a2 + 2a1 = 0

Which after substituting the earlier terms found becomes

a4 = −7a1
48 + a0

8

For n = 3 the recurrence equation gives

36a4 + 40a5 − 3a3 + 2a2 = 0
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Which after substituting the earlier terms found becomes

a5 =
11a1
80 − a0

8

For n = 4 the recurrence equation gives

60a5 + 60a6 − 4a4 + 2a3 = 0

Which after substituting the earlier terms found becomes

a6 = −3a1
20 + 5a0

36

For n = 5 the recurrence equation gives

90a6 + 84a7 − 5a5 + 2a4 = 0

Which after substituting the earlier terms found becomes

a7 =
695a1
4032 − 107a0

672

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+
(a1
12 − a0

6

)
x3 +

(
−7a1

48 + a0
8

)
x4 +

(
11a1
80 − a0

8

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

6x
3 + 1

8x
4 − 1

8x
5
)
a0 +

(
x+ 1

12x
3 − 7

48x
4 + 11

80x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

6x
3 + 1

8x
4 − 1

8x
5
)
c1 +

(
x+ 1

12x
3 − 7

48x
4 + 11

80x
5
)
c2 +O

(
x6)

4278



y = −1 + x3

3 − 5x4

12 + 2x5

5 + 2x+O
(
x6)

Summary
The solution(s) found are the following

(1)y = 2x− 1 + x3

3 − 5x4

12 + 2x5

5 − 79x6

180 +O
(
x6)

(2)y = −1 + x3

3 − 5x4

12 + 2x5

5 + 2x+O
(
x6)

Verification of solutions

y = 2x− 1 + x3

3 − 5x4

12 + 2x5

5 − 79x6

180 +O
(
x6)

Verified OK.

y = −1 + x3

3 − 5x4

12 + 2x5

5 + 2x+O
(
x6)

Verified OK.

13.20.2 Maple step by step solution

Let’s solve[
(3x+ 2) y′′ − y′x+ 2yx = 0, y(0) = −1, y′

∣∣∣{x=0}
= 2
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − 2xy

3x+2 +
xy′

3x+2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − xy′

3x+2 +
2xy
3x+2 = 0

� Check to see if x0 = −2
3 is a regular singular point

◦ Define functions[
P2(x) = − x

3x+2 , P3(x) = 2x
3x+2

]
◦
(
x+ 2

3

)
· P2(x) is analytic at x = −2

3
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((
x+ 2

3

)
· P2(x)

) ∣∣∣∣
x=− 2

3

= 2
9

◦
(
x+ 2

3

)2 · P3(x) is analytic at x = −2
3((

x+ 2
3

)2 · P3(x)
) ∣∣∣∣

x=− 2
3

= 0

◦ x = −2
3 is a regular singular point

Check to see if x0 = −2
3 is a regular singular point

x0 = −2
3

• Multiply by denominators
(3x+ 2) y′′ − y′x+ 2yx = 0

• Change variables using x = u− 2
3 so that the regular singular point is at u = 0

3u
(

d2

du2y(u)
)
+
(
−u+ 2

3

) (
d
du
y(u)

)
+
(
2u− 4

3

)
y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1
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◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions
a0r(−7+9r)u−1+r

3 +
(

a1(1+r)(2+9r)
3 − a0(4+3r)

3

)
ur +

(
∞∑
k=1

(
ak+1(k+1+r)(9k+2+9r)

3 − ak(3k+3r+4)
3 + 2ak−1

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−7+9r)

3 = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 79
}

• Each term must be 0
a1(1+r)(2+9r)

3 − a0(4+3r)
3 = 0

• Each term in the series must be 0, giving the recursion relation
3(k + 1 + r)

(
k + 2

9 + r
)
ak+1 − akk − akr − 4ak

3 + 2ak−1 = 0

• Shift index using k− >k + 1
3(k + 2 + r)

(
k + 11

9 + r
)
ak+2 − ak+1(k + 1)− rak+1 − 4ak+1

3 + 2ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 3kak+1+3rak+1−6ak+7ak+1

(k+2+r)(9k+11+9r)

• Recursion relation for r = 0
ak+2 = 3kak+1−6ak+7ak+1

(k+2)(9k+11)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = 3kak+1−6ak+7ak+1

(k+2)(9k+11) , 2a13 − 4a0
3 = 0

]
• Revert the change of variables u = x+ 2

3[
y =

∞∑
k=0

ak
(
x+ 2

3

)k
, ak+2 = 3kak+1−6ak+7ak+1

(k+2)(9k+11) , 2a13 − 4a0
3 = 0

]
• Recursion relation for r = 7

9

ak+2 =
3kak+1−6ak+ 28

3 ak+1(
k+ 25

9
)
(9k+18)

• Solution for r = 7
9
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[
y(u) =

∞∑
k=0

aku
k+ 7

9 , ak+2 =
3kak+1−6ak+ 28

3 ak+1(
k+ 25

9
)
(9k+18) , 16a13 − 19a0

9 = 0
]

• Revert the change of variables u = x+ 2
3[

y =
∞∑
k=0

ak
(
x+ 2

3

)k+ 7
9 , ak+2 =

3kak+1−6ak+ 28
3 ak+1(

k+ 25
9
)
(9k+18) , 16a13 − 19a0

9 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak
(
x+ 2

3

)k)+
(

∞∑
k=0

bk
(
x+ 2

3

)k+ 7
9

)
, ak+2 = 3ka1+k−6ak+7a1+k

(k+2)(9k+11) , 2a13 − 4a0
3 = 0, bk+2 =

3kb1+k−6bk+ 28
3 b1+k(

k+ 25
9
)
(9k+18) , 16b13 − 19b0

9 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Kummer successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
Order:=6;
dsolve([(2+3*x)*diff(y(x),x$2)-x*diff(y(x),x)+2*x*y(x)=0,y(0) = -1, D(y)(0) = 2],y(x),type='series',x=0);� �

y(x) = −1 + 2x+ 1
3x

3 − 5
12x

4 + 2
5x

5 +O
(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 29� �
AsymptoticDSolveValue[{(2+3*x)*y''[x]-x*y'[x]+2*x*y[x]==0,{y[0]==-1,y'[0]==2}},y[x],{x,0,5}]� �

y(x) → 2x5

5 − 5x4

12 + x3

3 + 2x− 1
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13.21 problem 24
13.21.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4284
13.21.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4293

Internal problem ID [1262]
Internal file name [OUTPUT/1263_Sunday_June_05_2022_02_07_14_AM_97472436/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 24.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(2x+ 3) y′′ + 3y′ − yx = 0

With initial conditions

[y(−1) = 2, y′(−1) = −3]

With the expansion point for the power series method at x = −1.

13.21.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 3
2x+ 3

q(x) = − x

2x+ 3
F = 0
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Hence the ode is

y′′ + 3y′
2x+ 3 − xy

2x+ 3 = 0

The domain of p(x) = 3
2x+3 is

{
x < −3

2 ∨−3
2 < x

}
And the point x0 = −1 is inside this domain. The domain of q(x) = − x

2x+3 is

{
x < −3

2 ∨−3
2 < x

}
And the point x0 = −1 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x+ 1

The ode is converted to be in terms of the new independent variable t. This results in

(1 + 2t)
(

d2

dt2
y(t)

)
+ 3 d

dt
y(t)− y(t) (−1 + t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = 2
y′(0) = −3

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (989)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (990)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
y(t) t− y(t)− 3 d

dt
y(t)

1 + 2t

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(2t2 − t+ 14)

(
d
dt
y(t)

)
− 3y(t) (t− 2)

(1 + 2t)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(−12t2 + 18t− 93)

(
d
dt
y(t)

)
+ 2
(
t3 − 3

2t
2 + 21

2 t−
41
2

)
y(t)

(1 + 2t)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(4t4 − 4t3 + 99t2 − 211t+ 814)

(
d
dt
y(t)

)
− 12

(
t3 − 7

2t
2 + 67

4 t− 30
)
y(t)

(1 + 2t)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(−36t4 + 108t3 − 1065t2 + 2616t− 8805)

(
d
dt
y(t)

)
+ 4
(
t5 − 2t4 + 127

4 t3 − 257
2 t2 + 2315

4 t− 3895
4

)
y(t)

(1 + 2t)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = 2 and
y′(0) = −3 gives

F0 = 7
F1 = −30
F2 = 197
F3 = −1722
F4 = 18625
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Substituting all the above in (7) and simplifying gives the solution as

y(t) = 2− 3t+ 7t2
2 − 5t3 + 197t4

24 − 287t5
20 + 3725t6

144 +O
(
t6
)

y(t) = 2− 3t+ 7t2
2 − 5t3 + 197t4

24 − 287t5
20 + 3725t6

144 +O
(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(1 + 2t)
(

d2

dt2
y(t)

)
+ 3 d

dt
y(t) + (1− t) y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives

(1 + 2t)
(

∞∑
n=2

n(n− 1) antn−2

)
+ 3
(

∞∑
n=1

nant
n−1

)
+ (1− t)

(
∞∑
n=0

ant
n

)
= 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

2n tn−1an(n− 1)
)

+
(

∞∑
n=2

n(n− 1) antn−2

)

+
(

∞∑
n=1

3nantn−1

)
+
(

∞∑
n=0

ant
n

)
+

∞∑
n =0

(
−t1+nan

)
= 0
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The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

2n tn−1an(n− 1) =
∞∑
n=1

2(1 + n) a1+nn tn

∞∑
n =2

n(n− 1) antn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n) tn

∞∑
n =1

3nantn−1 =
∞∑
n=0

3(1 + n) a1+nt
n

∞∑
n =0

(
−t1+nan

)
=

∞∑
n=1

(−an−1t
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=1

2(1 + n) a1+nn tn

)
+
(

∞∑
n=0

(n+ 2) an+2(1 + n) tn
)

+
(

∞∑
n=0

3(1 + n) a1+nt
n

)
+
(

∞∑
n=0

ant
n

)
+

∞∑
n =1

(−an−1t
n) = 0

n = 0 gives
2a2 + 3a1 + a0 = 0

a2 = −a0
2 − 3a1

2

For 1 ≤ n, the recurrence equation is

(4)2(1 + n) a1+nn+ (n+ 2) an+2(1 + n) + 3(1 + n) a1+n + an − an−1 = 0

Solving for an+2, gives

(5)

an+2 = −2n2a1+n + 5na1+n + an + 3a1+n − an−1

(n+ 2) (1 + n)

= − an
(n+ 2) (1 + n) −

(2n2 + 5n+ 3) a1+n

(n+ 2) (1 + n) + an−1

(n+ 2) (1 + n)

4290



For n = 1 the recurrence equation gives

10a2 + 6a3 + a1 − a0 = 0

Which after substituting the earlier terms found becomes

a3 = a0 +
7a1
3

For n = 2 the recurrence equation gives

21a3 + 12a4 + a2 − a1 = 0

Which after substituting the earlier terms found becomes

a4 = −41a0
24 − 31a1

8

For n = 3 the recurrence equation gives

36a4 + 20a5 + a3 − a2 = 0

Which after substituting the earlier terms found becomes

a5 = 3a0 +
407a1
60

For n = 4 the recurrence equation gives

55a5 + 30a6 + a4 − a3 = 0

Which after substituting the earlier terms found becomes

a6 = −779a0
144 − 587a1

48

For n = 5 the recurrence equation gives

78a6 + 42a7 + a5 − a4 = 0
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Which after substituting the earlier terms found becomes

a7 =
1669a0
168 + 56593a1

2520

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t+
(
−a0

2 − 3a1
2

)
t2 +

(
a0 +

7a1
3

)
t3

+
(
−41a0

24 − 31a1
8

)
t4 +

(
3a0 +

407a1
60

)
t5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− 1

2t
2+ t3− 41

24t
4+3t5

)
a0+

(
t− 3

2t
2+ 7

3t
3− 31

8 t4+ 407
60 t5

)
a1+O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1− 1

2t
2 + t3 − 41

24t
4 + 3t5

)
c1 +

(
t− 3

2t
2 + 7

3t
3 − 31

8 t4 + 407
60 t5

)
c2 +O

(
t6
)

y(t) = 2 + 7t2
2 − 5t3 + 197t4

24 − 287t5
20 − 3t+O

(
t6
)

Replacing t in the above with the original independent variable xsusing t = x+1 results
in

y = −1− 3x+ 7(x+ 1)2

2 − 5(x+ 1)3 + 197(x+ 1)4

24

− 287(x+ 1)5

20 + 3725(x+ 1)6

144 +O
(
(x+ 1)6

)
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Summary
The solution(s) found are the following

(1)
y = −1− 3x+ 7(x+ 1)2

2 − 5(x+ 1)3 + 197(x+ 1)4

24

− 287(x+ 1)5

20 + 3725(x+ 1)6

144 +O
(
(x+ 1)6

)
Verification of solutions

y = −1− 3x+ 7(x+ 1)2

2 − 5(x+ 1)3 + 197(x+ 1)4

24

− 287(x+ 1)5

20 + 3725(x+ 1)6

144 +O
(
(x+ 1)6

)
Verified OK.

13.21.2 Maple step by step solution

Let’s solve[
(2x+ 3) y′′ + 3y′ − yx = 0, y(−1) = 2, y′

∣∣∣{x=−1}
= −3

]
• Highest derivative means the order of the ODE is 2

y′′

• Isolate 2nd derivative
y′′ = xy

2x+3 −
3y′

2x+3

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 3y′

2x+3 −
xy

2x+3 = 0

� Check to see if x0 = −3
2 is a regular singular point

◦ Define functions[
P2(x) = 3

2x+3 , P3(x) = − x
2x+3

]
◦
(
x+ 3

2

)
· P2(x) is analytic at x = −3

2((
x+ 3

2

)
· P2(x)

) ∣∣∣∣
x=− 3

2

= 3
2

◦
(
x+ 3

2

)2 · P3(x) is analytic at x = −3
2((

x+ 3
2

)2 · P3(x)
) ∣∣∣∣

x=− 3
2

= 0
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◦ x = −3
2 is a regular singular point

Check to see if x0 = −3
2 is a regular singular point

x0 = −3
2

• Multiply by denominators
(2x+ 3) y′′ + 3y′ − yx = 0

• Change variables using x = u− 3
2 so that the regular singular point is at u = 0

2u
(

d2

du2y(u)
)
+ 3 d

du
y(u) +

(
−u+ 3

2

)
y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert d
du
y(u) to series expansion

d
du
y(u) =

∞∑
k=0

ak(k + r)uk+r−1

◦ Shift index using k− >k + 1
d
du
y(u) =

∞∑
k=−1

ak+1(k + 1 + r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(1 + 2r)u−1+r +
(
a1(1 + r) (3 + 2r) + 3a0

2

)
ur +

(
∞∑
k=1

(
ak+1(k + 1 + r) (2k + 3 + 2r) + 3ak

2 − ak−1
)
uk+r

)
= 0
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• a0cannot be 0 by assumption, giving the indicial equation
r(1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−1

2

}
• Each term must be 0

a1(1 + r) (3 + 2r) + 3a0
2 = 0

• Each term in the series must be 0, giving the recursion relation
2(k + 1 + r)

(
k + 3

2 + r
)
ak+1 + 3ak

2 − ak−1 = 0

• Shift index using k− >k + 1
2(k + 2 + r)

(
k + 5

2 + r
)
ak+2 + 3ak+1

2 − ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = −3ak+1+2ak

2(k+2+r)(2k+5+2r)

• Recursion relation for r = 0
ak+2 = −3ak+1+2ak

2(k+2)(2k+5)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −3ak+1+2ak

2(k+2)(2k+5) , 3a1 +
3a0
2 = 0

]
• Revert the change of variables u = x+ 3

2[
y =

∞∑
k=0

ak
(
x+ 3

2

)k
, ak+2 = −3ak+1+2ak

2(k+2)(2k+5) , 3a1 +
3a0
2 = 0

]
• Recursion relation for r = −1

2

ak+2 = −3ak+1+2ak
2
(
k+ 3

2
)
(2k+4)

• Solution for r = −1
2[

y(u) =
∞∑
k=0

aku
k− 1

2 , ak+2 = −3ak+1+2ak
2
(
k+ 3

2
)
(2k+4) , a1 +

3a0
2 = 0

]
• Revert the change of variables u = x+ 3

2[
y =

∞∑
k=0

ak
(
x+ 3

2

)k− 1
2 , ak+2 = −3ak+1+2ak

2
(
k+ 3

2
)
(2k+4) , a1 +

3a0
2 = 0

]
• Combine solutions and rename parameters
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[
y =

(
∞∑
k=0

ak
(
x+ 3

2

)k)+
(

∞∑
k=0

bk
(
x+ 3

2

)k− 1
2

)
, ak+2 = −3a1+k+2ak

2(k+2)(2k+5) , 3a1 +
3a0
2 = 0, bk+2 = −3b1+k+2bk

2
(
k+ 3

2
)
(2k+4) , b1 +

3b0
2 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Kummer successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(3+2*x)*diff(y(x),x$2)+3*diff(y(x),x)-x*y(x)=0,y(-1) = 2, D(y)(-1) = -3],y(x),type='series',x=-1);� �
y(x) = 2− 3(x+1)+ 7

2(x+1)2 − 5(x+1)3 + 197
24 (x+1)4 − 287

20 (x+1)5 +O
(
(x+1)6

)
3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 44� �
AsymptoticDSolveValue[{(3+2*x)*y''[x]+3*y'[x]-x*y[x]==0,{y[-1]==2,y'[-1]==-3}},y[x],{x,-1,5}]� �

y(x) → −287
20 (x+ 1)5 + 197

24 (x+ 1)4 − 5(x+ 1)3 + 7
2(x+ 1)2 − 3(x+ 1) + 2
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13.22 problem 25
13.22.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4297
13.22.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4306

Internal problem ID [1263]
Internal file name [OUTPUT/1264_Sunday_June_05_2022_02_07_17_AM_38759375/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 25.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(2x+ 3) y′′ − 3y′ − (2 + x) y = 0

With initial conditions

[y(−2) = −2, y′(−2) = 3]

With the expansion point for the power series method at x = −2.

13.22.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = − 3
2x+ 3

q(x) = −x− 2
2x+ 3

F = 0
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Hence the ode is

y′′ − 3y′
2x+ 3 + (−x− 2) y

2x+ 3 = 0

The domain of p(x) = − 3
2x+3 is

{
x < −3

2 ∨−3
2 < x

}

And the point x0 = −2 is inside this domain. The domain of q(x) = −x−2
2x+3 is

{
x < −3

2 ∨−3
2 < x

}
And the point x0 = −2 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = 2 + x

The ode is converted to be in terms of the new independent variable t. This results in

(2t− 1)
(

d2

dt2
y(t)

)
− 3 d

dt
y(t)− y(t) t = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = −2
y′(0) = 3

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (992)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (993)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
3 d
dt
y(t) + y(t) t
2t− 1

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(2t2 − t+ 3)

(
d
dt
y(t)

)
+ y(t) (−1 + 3t)

(2t− 1)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(12t2 − 10t− 1)

(
d
dt
y(t)

)
+ 2
(
t3 − 1

2t
2 − 3

2t+
1
2

)
y(t)

(2t− 1)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(4t4 − 4t3 + 7t2 − 9t+ 12)

(
d
dt
y(t)

)
+ 12y(t)

(
t3 − 7

6t
2 + 13

12t−
1
4

)
(2t− 1)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(36t4 − 60t3 + 45t2 − 6t− 48)

(
d
dt
y(t)

)
+ 4
(
t5 − t4 − 17

4 t
3 + 11

4 t
2 − 19

2 t+
11
4

)
y(t)

(2t− 1)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = −2 and
y′(0) = 3 gives

F0 = −9
F1 = 11
F2 = 5
F3 = 42
F4 = 166
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Substituting all the above in (7) and simplifying gives the solution as

y(t) = −2 + 3t− 9t2
2 + 11t3

6 + 5t4
24 + 7t5

20 + 83t6
360 +O

(
t6
)

y(t) = −2 + 3t− 9t2
2 + 11t3

6 + 5t4
24 + 7t5

20 + 83t6
360 +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(2t− 1)
(

d2

dt2
y(t)

)
− 3 d

dt
y(t)− y(t) t = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives

(2t− 1)
(

∞∑
n=2

n(n− 1) antn−2

)
− 3
(

∞∑
n=1

nant
n−1

)
−

(
∞∑
n=0

ant
n

)
t = 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

2n tn−1an(n− 1)
)

+
∞∑

n =2

(
−n(n− 1) antn−2)

+
∞∑

n =1

(
−3nantn−1)+ ∞∑

n =0

(
−t1+nan

)
= 0
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The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

2n tn−1an(n− 1) =
∞∑
n=1

2(1 + n) a1+nn tn

∞∑
n =2

(
−n(n− 1) antn−2) = ∞∑

n=0

(−(n+ 2) an+2(1 + n) tn)

∞∑
n =1

(
−3nantn−1) = ∞∑

n=0

(−3(1 + n) a1+nt
n)

∞∑
n =0

(
−t1+nan

)
=

∞∑
n=1

(−an−1t
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=1

2(1 + n) a1+nn tn

)
+

∞∑
n =0

(−(n+ 2) an+2(1 + n) tn)

+
∞∑

n =0

(−3(1 + n) a1+nt
n) +

∞∑
n =1

(−an−1t
n) = 0

n = 0 gives
−2a2 − 3a1 = 0

a2 = −3a1
2

For 1 ≤ n, the recurrence equation is

(4)2(1 + n) a1+nn− (n+ 2) an+2(1 + n)− 3(1 + n) a1+n − an−1 = 0

Solving for an+2, gives

(5)

an+2 =
2n2a1+n − na1+n − 3a1+n − an−1

(n+ 2) (1 + n)

= (2n2 − n− 3) a1+n

(n+ 2) (1 + n) − an−1

(n+ 2) (1 + n)
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For n = 1 the recurrence equation gives

−2a2 − 6a3 − a0 = 0

Which after substituting the earlier terms found becomes

a3 =
a1
2 − a0

6

For n = 2 the recurrence equation gives

3a3 − 12a4 − a1 = 0

Which after substituting the earlier terms found becomes

a4 =
a1
24 − a0

24

For n = 3 the recurrence equation gives

12a4 − 20a5 − a2 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
10 − a0

40

For n = 4 the recurrence equation gives

25a5 − 30a6 − a3 = 0

Which after substituting the earlier terms found becomes

a6 =
a1
15 − 11a0

720

For n = 5 the recurrence equation gives

42a6 − 42a7 − a4 = 0

Which after substituting the earlier terms found becomes

a7 =
331a1
5040 − a0

70
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And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t−
3a1t2
2 +

(a1
2 − a0

6

)
t3 +

(a1
24 − a0

24

)
t4 +

(a1
10 − a0

40

)
t5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− 1

6t
3 − 1

24t
4 − 1

40t
5
)
a0 +

(
t− 3

2t
2 + 1

2t
3 + 1

24t
4 + 1

10t
5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1− 1

6t
3 − 1

24t
4 − 1

40t
5
)
c1 +

(
t− 3

2t
2 + 1

2t
3 + 1

24t
4 + 1

10t
5
)
c2 +O

(
t6
)

y(t) = −2 + 11t3
6 + 5t4

24 + 7t5
20 + 3t− 9t2

2 +O
(
t6
)

Replacing t in the above with the original independent variable xsusing t = 2 + x

results in

y = 4+3x− 9(2 + x)2

2 + 11(2 + x)3

6 + 5(2 + x)4

24 + 7(2 + x)5

20 + 83(2 + x)6

360 +O
(
(2+x)6

)
Summary
The solution(s) found are the following

(1)
y = 4 + 3x− 9(2 + x)2

2 + 11(2 + x)3

6 + 5(2 + x)4

24

+ 7(2 + x)5

20 + 83(2 + x)6

360 +O
(
(2 + x)6

)
Verification of solutions

y = 4+3x− 9(2 + x)2

2 + 11(2 + x)3

6 + 5(2 + x)4

24 + 7(2 + x)5

20 + 83(2 + x)6

360 +O
(
(2+x)6

)
Verified OK.
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13.22.2 Maple step by step solution

Let’s solve[
(2x+ 3) y′′ − 3y′ + (−x− 2) y = 0, y(−2) = −2, y′

∣∣∣{x=−2}
= 3
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = (2+x)y

2x+3 + 3y′
2x+3

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 3y′

2x+3 −
(2+x)y
2x+3 = 0

� Check to see if x0 = −3
2 is a regular singular point

◦ Define functions[
P2(x) = − 3

2x+3 , P3(x) = − 2+x
2x+3

]
◦
(
x+ 3

2

)
· P2(x) is analytic at x = −3

2((
x+ 3

2

)
· P2(x)

) ∣∣∣∣
x=− 3

2

= −3
2

◦
(
x+ 3

2

)2 · P3(x) is analytic at x = −3
2((

x+ 3
2

)2 · P3(x)
) ∣∣∣∣

x=− 3
2

= 0

◦ x = −3
2 is a regular singular point

Check to see if x0 = −3
2 is a regular singular point

x0 = −3
2

• Multiply by denominators
(2x+ 3) y′′ − 3y′ + (−x− 2) y = 0

• Change variables using x = u− 3
2 so that the regular singular point is at u = 0

2u
(

d2

du2y(u)
)
− 3 d

du
y(u) +

(
−u− 1

2

)
y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert d
du
y(u) to series expansion

d
du
y(u) =

∞∑
k=0

ak(k + r)uk+r−1

◦ Shift index using k− >k + 1
d
du
y(u) =

∞∑
k=−1

ak+1(k + 1 + r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−5 + 2r)u−1+r +
(
a1(1 + r) (−3 + 2r)− a0

2

)
ur +

(
∞∑
k=1

(
ak+1(k + 1 + r) (2k − 3 + 2r)− ak

2 − ak−1
)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−5 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 52
}

• Each term must be 0
a1(1 + r) (−3 + 2r)− a0

2 = 0

• Each term in the series must be 0, giving the recursion relation
2
(
k − 3

2 + r
)
(k + 1 + r) ak+1 − ak

2 − ak−1 = 0

• Shift index using k− >k + 1
2
(
k − 1

2 + r
)
(k + 2 + r) ak+2 − ak+1

2 − ak = 0

• Recursion relation that defines series solution to ODE
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ak+2 = ak+1+2ak
2(2k−1+2r)(k+2+r)

• Recursion relation for r = 0
ak+2 = ak+1+2ak

2(2k−1)(k+2)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = ak+1+2ak

2(2k−1)(k+2) ,−3a1 − a0
2 = 0

]
• Revert the change of variables u = x+ 3

2[
y =

∞∑
k=0

ak
(
x+ 3

2

)k
, ak+2 = ak+1+2ak

2(2k−1)(k+2) ,−3a1 − a0
2 = 0

]
• Recursion relation for r = 5

2

ak+2 = ak+1+2ak
2(2k+4)

(
k+ 9

2
)

• Solution for r = 5
2[

y(u) =
∞∑
k=0

aku
k+ 5

2 , ak+2 = ak+1+2ak
2(2k+4)

(
k+ 9

2
) , 7a1 − a0

2 = 0
]

• Revert the change of variables u = x+ 3
2[

y =
∞∑
k=0

ak
(
x+ 3

2

)k+ 5
2 , ak+2 = ak+1+2ak

2(2k+4)
(
k+ 9

2
) , 7a1 − a0

2 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak
(
x+ 3

2

)k)+
(

∞∑
k=0

bk
(
x+ 3

2

)k+ 5
2

)
, ak+2 = a1+k+2ak

2(2k−1)(k+2) ,−3a1 − a0
2 = 0, bk+2 = b1+k+2bk

2(2k+4)
(
k+ 9

2
) , 7b1 − b0

2 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Kummer successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(3+2*x)*diff(y(x),x$2)-3*diff(y(x),x)-(2+x)*y(x)=0,y(-2) = -2, D(y)(-2) = 3],y(x),type='series',x=-2);� �
y(x) = −2+ 3(2+x)− 9

2(2+x)2 + 11
6 (2+x)3 + 5

24(2+x)4 + 7
20(2+x)5 +O

(
(2+x)6

)
3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 46� �
AsymptoticDSolveValue[{(3+2*x)*y''[x]-3*y'[x]-(2+x)*y[x]==0,{y[-2]==-2,y'[-2]==3}},y[x],{x,-2,5}]� �

y(x) → 7
20(x+ 2)5 + 5

24(x+ 2)4 + 11
6 (x+ 2)3 − 9

2(x+ 2)2 + 3(x+ 2)− 2
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13.23 problem 26
13.23.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4310
13.23.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4319

Internal problem ID [1264]
Internal file name [OUTPUT/1265_Sunday_June_05_2022_02_07_20_AM_17878250/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 26.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(10− 2x) y′′ + (x+ 1) y = 0

With initial conditions

[y(2) = 2, y′(2) = −4]

With the expansion point for the power series method at x = 2.

13.23.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 0

q(x) = x+ 1
10− 2x

F = 0
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Hence the ode is

y′′ + (x+ 1) y
10− 2x = 0

The domain of p(x) = 0 is
{−∞ < x < ∞}

And the point x0 = 2 is inside this domain. The domain of q(x) = x+1
10−2x is

{x < 5∨ 5 < x}

And the point x0 = 2 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = −2 + x

The ode is converted to be in terms of the new independent variable t. This results in

(6− 2t)
(

d2

dt2
y(t)

)
+ (t+ 3) y(t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = 2
y′(0) = −4

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (995)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (996)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
(t+ 3) y(t)

2t− 6

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(

d
dt
y(t)

)
t2 − 9 d

dt
y(t)− 6y(t)

2 (t− 3)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(−24t+ 72)

(
d
dt
y(t)

)
+ y(t) (t3 + 3t2 − 9t− 3)

4 (t− 3)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(t4 − 18t2 + 72t− 135)

(
d
dt
y(t)

)
+ (−24t2 + 144) y(t)

4 (t− 3)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
72(−t3 + 3t2 + t− 3)

(
d
dt
y(t)

)
+ y(t) (t5 + 3t4 − 18t3 + 114t2 + 369t− 1557)

8 (t− 3)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = 2 and
y′(0) = −4 gives

F0 = −1

F1 =
4
3

F2 =
49
18

F3 =
23
9

F4 =
125
108
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Substituting all the above in (7) and simplifying gives the solution as

y(t) = 2− 4t− t2

2 + 2t3
9 + 49t4

432 + 23t5
1080 + 25t6

15552 +O
(
t6
)

y(t) = 2− 4t− t2

2 + 2t3
9 + 49t4

432 + 23t5
1080 + 25t6

15552 +O
(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(6− 2t)
(

d2

dt2
y(t)

)
+ (t+ 3) y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives

(6− 2t)
(

∞∑
n=2

n(n− 1) antn−2

)
+ (t+ 3)

(
∞∑
n=0

ant
n

)
= 0 (1)

Which simplifies to

∞∑
n =2

(
−2n tn−1an(n− 1)

)
+
(

∞∑
n=2

6n(n− 1) antn−2

)
+
(

∞∑
n=0

t1+nan

)
+
(

∞∑
n=0

3antn
)

= 0

(2)

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
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power and the corresponding index gives

∞∑
n =2

(
−2n tn−1an(n− 1)

)
=

∞∑
n=1

(−2(1 + n) a1+nn tn)

∞∑
n =2

6n(n− 1) antn−2 =
∞∑
n=0

6(n+ 2) an+2(1 + n) tn

∞∑
n =0

t1+nan =
∞∑
n=1

an−1t
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

∞∑
n =1

(−2(1 + n) a1+nn tn) +
(

∞∑
n=0

6(n+ 2) an+2(1 + n) tn
)

+
(

∞∑
n=1

an−1t
n

)
+
(

∞∑
n=0

3antn
)

= 0

n = 0 gives
12a2 + 3a0 = 0

a2 = −a0
4

For 1 ≤ n, the recurrence equation is

(4)−2(1 + n) a1+nn+ 6(n+ 2) an+2(1 + n) + an−1 + 3an = 0

Solving for an+2, gives

(5)

an+2 =
2n2a1+n + 2na1+n − 3an − an−1

6 (n+ 2) (1 + n)

= − an
2 (n+ 2) (1 + n) +

(2n2 + 2n) a1+n

6 (n+ 2) (1 + n) −
an−1

6 (n+ 2) (1 + n)
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For n = 1 the recurrence equation gives

−4a2 + 36a3 + a0 + 3a1 = 0

Which after substituting the earlier terms found becomes

a3 = −a0
18 − a1

12

For n = 2 the recurrence equation gives

−12a3 + 72a4 + a1 + 3a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
864 − a1

36

For n = 3 the recurrence equation gives

−24a4 + 120a5 + a2 + 3a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a0
270 − a1

288

For n = 4 the recurrence equation gives

−40a5 + 180a6 + a3 + 3a4 = 0

Which after substituting the earlier terms found becomes

a6 =
173a0
155520 + a1

6480

For n = 5 the recurrence equation gives

−60a6 + 252a7 + a4 + 3a5 = 0

Which after substituting the earlier terms found becomes

a7 =
353a0

1632960 + 41a1
217728
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And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t−
a0t

2

4 +
(
−a0
18 − a1

12

)
t3 +

( a0
864 − a1

36

)
t4 +

( a0
270 − a1

288

)
t5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− 1

4t
2− 1

18t
3+ 1

864t
4+ 1

270t
5
)
a0+

(
t− 1

12t
3− 1

36t
4− 1

288t
5
)
a1+O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1− 1

4t
2 − 1

18t
3 + 1

864t
4 + 1

270t
5
)
c1 +

(
t− 1

12t
3 − 1

36t
4 − 1

288t
5
)
c2 +O

(
t6
)

y(t) = 2− t2

2 + 2t3
9 + 49t4

432 + 23t5
1080 − 4t+O

(
t6
)

Replacing t in the above with the original independent variable xsusing t = −2 + x

results in

y = 10− 4x− (−2 + x)2

2 + 2(−2 + x)3

9 + 49(−2 + x)4

432

+ 23(−2 + x)5

1080 + 25(−2 + x)6

15552 +O
(
(−2 + x)6

)
Summary
The solution(s) found are the following

(1)
y = 10− 4x− (−2 + x)2

2 + 2(−2 + x)3

9 + 49(−2 + x)4

432

+ 23(−2 + x)5

1080 + 25(−2 + x)6

15552 +O
(
(−2 + x)6

)
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Verification of solutions

y = 10− 4x− (−2 + x)2

2 + 2(−2 + x)3

9 + 49(−2 + x)4

432

+ 23(−2 + x)5

1080 + 25(−2 + x)6

15552 +O
(
(−2 + x)6

)
Verified OK.

13.23.2 Maple step by step solution

Let’s solve[
(10− 2x) y′′ + (x+ 1) y = 0, y(2) = 2, y′

∣∣∣{x=2}
= −4

]
• Highest derivative means the order of the ODE is 2

y′′

• Isolate 2nd derivative
y′′ = (x+1)y

2(x−5)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − (x+1)y

2(x−5) = 0

� Check to see if x0 = 5 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = − x+1
2(x−5)

]
◦ (x− 5) · P2(x) is analytic at x = 5

((x− 5) · P2(x))
∣∣∣∣
x=5

= 0

◦ (x− 5)2 · P3(x) is analytic at x = 5(
(x− 5)2 · P3(x)

) ∣∣∣∣
x=5

= 0

◦ x = 5is a regular singular point
Check to see if x0 = 5 is a regular singular point
x0 = 5

• Multiply by denominators
y′′(2x− 10) + (−x− 1) y = 0
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• Change variables using x = u+ 5 so that the regular singular point is at u = 0

2u
(

d2

du2y(u)
)
+ (−u− 6) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

2a0r(−1 + r)u−1+r + (2a1(1 + r) r − 6a0)ur +
(

∞∑
k=1

(2ak+1(k + 1 + r) (k + r)− 6ak − ak−1)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2r(−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term must be 0
2a1(1 + r) r − 6a0 = 0

• Each term in the series must be 0, giving the recursion relation
2ak+1(k + 1 + r) (k + r)− 6ak − ak−1 = 0

• Shift index using k− >k + 1
2ak+2(k + 2 + r) (k + 1 + r)− 6ak+1 − ak = 0

4320



• Recursion relation that defines series solution to ODE
ak+2 = 6ak+1+ak

2(k+2+r)(k+1+r)

• Recursion relation for r = 0
ak+2 = 6ak+1+ak

2(k+2)(k+1)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = 6ak+1+ak

2(k+2)(k+1) ,−6a0 = 0
]

• Revert the change of variables u = x− 5[
y =

∞∑
k=0

ak(x− 5)k , ak+2 = 6ak+1+ak
2(k+2)(k+1) ,−6a0 = 0

]
• Recursion relation for r = 1

ak+2 = 6ak+1+ak
2(k+3)(k+2)

• Solution for r = 1[
y(u) =

∞∑
k=0

aku
k+1, ak+2 = 6ak+1+ak

2(k+3)(k+2) , 4a1 − 6a0 = 0
]

• Revert the change of variables u = x− 5[
y =

∞∑
k=0

ak(x− 5)k+1 , ak+2 = 6ak+1+ak
2(k+3)(k+2) , 4a1 − 6a0 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x− 5)k
)
+
(

∞∑
k=0

bk(x− 5)1+k

)
, ak+2 = 6a1+k+ak

2(k+2)(1+k) ,−6a0 = 0, bk+2 = 6b1+k+bk
2(k+3)(k+2) , 4b1 − 6b0 = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(10-2*x)*diff(y(x),x$2)+(1+x)*y(x)=0,y(2) = 2, D(y)(2) = -4],y(x),type='series',x=2);� �

y(x) = 2− 4(−2 + x)− 1
2(−2 + x)2 + 2

9(−2 + x)3

+ 49
432(−2 + x)4 + 23

1080(−2 + x)5 +O
(
(−2 + x)6

)
3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 46� �
AsymptoticDSolveValue[{(10-2*x)*y''[x]+(1+x)*y[x]==0,{y[2]==2,y'[2]==-4}},y[x],{x,2,5}]� �

y(x) → 23(x− 2)5
1080 + 49

432(x− 2)4 + 2
9(x− 2)3 − 1

2(x− 2)2 − 4(x− 2) + 2
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13.24 problem 27
13.24.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4323

Internal problem ID [1265]
Internal file name [OUTPUT/1266_Sunday_June_05_2022_02_07_23_AM_82174801/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 27.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(7 + x) y′′ + (2x+ 8) y′ + (x+ 5) y = 0

With initial conditions

[y(−4) = 1, y′(−4) = 2]

With the expansion point for the power series method at x = −4.

13.24.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 2x+ 8
7 + x

q(x) = x+ 5
7 + x

F = 0
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Hence the ode is

y′′ + (2x+ 8) y′
7 + x

+ (x+ 5) y
7 + x

= 0

The domain of p(x) = 2x+8
7+x

is

{x < −7∨−7 < x}

And the point x0 = −4 is inside this domain. The domain of q(x) = x+5
7+x

is

{x < −7∨−7 < x}

And the point x0 = −4 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x+ 4

The ode is converted to be in terms of the new independent variable t. This results in

(t+ 3)
(

d2

dt2
y(t)

)
+ 2t

(
d

dt
y(t)

)
+ (t+ 1) y(t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = 1
y′(0) = 2

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (998)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (999)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
2t
(

d
dt
y(t)

)
+ y(t) t+ y(t)
t+ 3

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(3t2 − 4t− 9)

(
d
dt
y(t)

)
+ 2y(t) (t2 + t− 1)

(t+ 3)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(−4t3 + 16t2 + 44t)

(
d
dt
y(t)

)
− 3
(
t2 − 4

3t−
19
3

)
(t+ 1) y(t)

(t+ 3)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(5t4 − 40t3 − 114t2 + 96t+ 189)

(
d
dt
y(t)

)
+ 4y(t) (t4 − 3t3 − 22t2 − 21t+ 3)

(t+ 3)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(−6t5 + 80t4 + 204t3 − 672t2 − 1590t− 432)

(
d
dt
y(t)

)
− 5
(
t5 − 7t4 − 214

5 t3 − 86
5 t

2 + 561
5 t+ 489

5

)
y(t)

(t+ 3)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = 1 and
y′(0) = 2 gives

F0 = −1
3

F1 = −20
9

F2 =
19
27

F3 =
130
27

F4 = −451
81
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Substituting all the above in (7) and simplifying gives the solution as

y(t) = 1 + 2t− t2

6 − 10t3
27 + 19t4

648 + 13t5
324 − 451t6

58320 +O
(
t6
)

y(t) = 1 + 2t− t2

6 − 10t3
27 + 19t4

648 + 13t5
324 − 451t6

58320 +O
(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(t+ 3)
(

d2

dt2
y(t)

)
+ 2t

(
d

dt
y(t)

)
+ (t+ 1) y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives

(t+ 3)
(

∞∑
n=2

n(n− 1) antn−2

)
+ 2t

(
∞∑
n=1

nant
n−1

)
+ (t+ 1)

(
∞∑
n=0

ant
n

)
= 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

n tn−1an(n− 1)
)

+
(

∞∑
n=2

3n(n− 1) antn−2

)

+
(

∞∑
n=1

2nantn
)

+
(

∞∑
n=0

t1+nan

)
+
(

∞∑
n=0

ant
n

)
= 0
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The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

n tn−1an(n− 1) =
∞∑
n=1

(1 + n) a1+nn tn

∞∑
n =2

3n(n− 1) antn−2 =
∞∑
n=0

3(n+ 2) an+2(1 + n) tn

∞∑
n =0

t1+nan =
∞∑
n=1

an−1t
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=1

(1 + n) a1+nn tn

)
+
(

∞∑
n=0

3(n+ 2) an+2(1 + n) tn
)

+
(

∞∑
n=1

2nantn
)

+
(

∞∑
n=1

an−1t
n

)
+
(

∞∑
n=0

ant
n

)
= 0

n = 0 gives
6a2 + a0 = 0

a2 = −a0
6

For 1 ≤ n, the recurrence equation is

(4)(1 + n) a1+nn+ 3(n+ 2) an+2(1 + n) + 2nan + an−1 + an = 0

Solving for an+2, gives

(5)

an+2 = −n2a1+n + 2nan + na1+n + an + an−1

3 (n+ 2) (1 + n)

= − (2n+ 1) an
3 (n+ 2) (1 + n) −

(n2 + n) a1+n

3 (n+ 2) (1 + n) −
an−1

3 (n+ 2) (1 + n)
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For n = 1 the recurrence equation gives

2a2 + 18a3 + 3a1 + a0 = 0

Which after substituting the earlier terms found becomes

a3 = −a0
27 − a1

6

For n = 2 the recurrence equation gives

6a3 + 36a4 + 5a2 + a1 = 0

Which after substituting the earlier terms found becomes

a4 =
19a0
648

For n = 3 the recurrence equation gives

12a4 + 60a5 + 7a3 + a2 = 0

Which after substituting the earlier terms found becomes

a5 =
a0
810 + 7a1

360

For n = 4 the recurrence equation gives

20a5 + 90a6 + 9a4 + a3 = 0

Which after substituting the earlier terms found becomes

a6 = −163a0
58320 − a1

405

For n = 5 the recurrence equation gives

30a6 + 126a7 + 11a5 + a4 = 0

Which after substituting the earlier terms found becomes

a7 =
199a0
612360 − 151a1

136080
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And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t−
a0t

2

6 +
(
−a0
27 − a1

6

)
t3 + 19a0t4

648 +
(

a0
810 + 7a1

360

)
t5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− 1

6t
2 − 1

27t
3 + 19

648t
4 + 1

810t
5
)
a0 +

(
t− 1

6t
3 + 7

360t
5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1− 1

6t
2 − 1

27t
3 + 19

648t
4 + 1

810t
5
)
c1 +

(
t− 1

6t
3 + 7

360t
5
)
c2 +O

(
t6
)

y(t) = 1− t2

6 − 10t3
27 + 19t4

648 + 13t5
324 + 2t+O

(
t6
)

Replacing t in the above with the original independent variable xsusing t = x + 4
results in

y=9+2x− (x+ 4)2

6 − 10(x+ 4)3

27 + 19(x+ 4)4

648 + 13(x+ 4)5

324 − 451(x+ 4)6

58320 +O
(
(x+4)6

)
Summary
The solution(s) found are the following

(1)
y = 9 + 2x− (x+ 4)2

6 − 10(x+ 4)3

27 + 19(x+ 4)4

648

+ 13(x+ 4)5

324 − 451(x+ 4)6

58320 +O
(
(x+ 4)6

)
Verification of solutions

y=9+2x− (x+ 4)2

6 − 10(x+ 4)3

27 + 19(x+ 4)4

648 + 13(x+ 4)5

324 − 451(x+ 4)6

58320 +O
(
(x+4)6

)
Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(7+x)*diff(y(x),x$2)+(8+2*x)*diff(y(x),x)+(5+x)*y(x)=0,y(-4) = 1, D(y)(-4) = 2],y(x),type='series',x=-4);� �
y(x) = 1+2(x+4)− 1

6(x+4)2− 10
27(x+4)3+ 19

648(x+4)4+ 13
324(x+4)5+O

(
(x+4)6

)
3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 46� �
AsymptoticDSolveValue[{(7+x)*y''[x]+(8+2*x)*y'[x]+(5+x)*y[x]==0,{y[-4]==1,y'[-4]==2}},y[x],{x,-4,5}]� �

y(x) → 13
324(x+ 4)5 + 19

648(x+ 4)4 − 10
27(x+ 4)3 − 1

6(x+ 4)2 + 2(x+ 4) + 1
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13.25 problem 28
13.25.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4333
13.25.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4342

Internal problem ID [1266]
Internal file name [OUTPUT/1267_Sunday_June_05_2022_02_07_26_AM_11076969/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 28.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(6 + 4x) y′′ + (1 + 2x) y = 0

With initial conditions

[y(−1) = −1, y′(−1) = 2]

With the expansion point for the power series method at x = −1.

13.25.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 0

q(x) = 1 + 2x
6 + 4x

F = 0
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Hence the ode is

y′′ + (1 + 2x) y
6 + 4x = 0

The domain of p(x) = 0 is
{−∞ < x < ∞}

And the point x0 = −1 is inside this domain. The domain of q(x) = 1+2x
6+4x is

{
x < −3

2 ∨−3
2 < x

}

And the point x0 = −1 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x+ 1

The ode is converted to be in terms of the new independent variable t. This results in

(4t+ 2)
(

d2

dt2
y(t)

)
+ (2t− 1) y(t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = −1
y′(0) = 2

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1001)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1002)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −(2t− 1) y(t)
2 (1 + 2t)

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
−2
(

d
dt
y(t)

)
t2 − 2y(t) +

d
dt
y(t)
2

(1 + 2t)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
4(−2t− 1)

(
d
dt
y(t)

)
+ 2
(
t+ 3

2

) (
t2 − 2t+ 11

4

)
y(t)

(1 + 2t)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(16t4 − 8t2 + 192t+ 97)

(
d
dt
y(t)

)
+ (64t2 − 208) y(t)

4 (1 + 2t)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(384t3 + 192t2 − 3168t− 1584)

(
d
dt
y(t)

)
− 32

(
t5 − 1

2t
4 − 1

2t
3 + 113

4 t2 − 127
16 t−

3425
32

)
y(t)

8 (1 + 2t)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = −1 and
y′(0) = 2 gives

F0 = −1
2

F1 = 3

F2 = −65
4

F3 =
201
2

F4 = −6593
8
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Substituting all the above in (7) and simplifying gives the solution as

y(t) = 2t− 1− t2

4 + t3

2 − 65t4
96 + 67t5

80 − 6593t6
5760 +O

(
t6
)

y(t) = 2t− 1− t2

4 + t3

2 − 65t4
96 + 67t5

80 − 6593t6
5760 +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(4t+ 2)
(

d2

dt2
y(t)

)
+ (2t− 1) y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives

(4t+ 2)
(

∞∑
n=2

n(n− 1) antn−2

)
+ (2t− 1)

(
∞∑
n=0

ant
n

)
= 0 (1)

Which simplifies to(
∞∑
n=2

4n tn−1an(n− 1)
)
+
(

∞∑
n=2

2n(n− 1) antn−2

)
+
(

∞∑
n=0

2t1+nan

)
+

∞∑
n =0

(−ant
n) = 0

(2)

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
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power and the corresponding index gives

∞∑
n =2

4n tn−1an(n− 1) =
∞∑
n=1

4(1 + n) a1+nn tn

∞∑
n =2

2n(n− 1) antn−2 =
∞∑
n=0

2(n+ 2) an+2(1 + n) tn

∞∑
n =0

2t1+nan =
∞∑
n=1

2an−1t
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=1

4(1 + n) a1+nn tn

)
+
(

∞∑
n=0

2(n+ 2) an+2(1 + n) tn
)

+
(

∞∑
n=1

2an−1t
n

)
+

∞∑
n =0

(−ant
n) = 0

n = 0 gives
4a2 − a0 = 0

a2 =
a0
4

For 1 ≤ n, the recurrence equation is

(4)4(1 + n) a1+nn+ 2(n+ 2) an+2(1 + n) + 2an−1 − an = 0

Solving for an+2, gives

(5)

an+2 = −4n2a1+n + 4na1+n − an + 2an−1

2 (n+ 2) (1 + n)

= an
2 (n+ 2) (1 + n) −

(4n2 + 4n) a1+n

2 (n+ 2) (1 + n) −
an−1

(n+ 2) (1 + n)
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For n = 1 the recurrence equation gives

8a2 + 12a3 + 2a0 − a1 = 0

Which after substituting the earlier terms found becomes

a3 = −a0
3 + a1

12

For n = 2 the recurrence equation gives

24a3 + 24a4 + 2a1 − a2 = 0

Which after substituting the earlier terms found becomes

a4 =
11a0
32 − a1

6

For n = 3 the recurrence equation gives

48a4 + 40a5 + 2a2 − a3 = 0

Which after substituting the earlier terms found becomes

a5 = −13a0
30 + 97a1

480

For n = 4 the recurrence equation gives

80a5 + 60a6 + 2a3 − a4 = 0

Which after substituting the earlier terms found becomes

a6 =
685a0
1152 − 11a1

40

For n = 5 the recurrence equation gives

120a6 + 84a7 + 2a4 − a5 = 0

Which after substituting the earlier terms found becomes

a7 = −2899a0
3360 + 16097a1

40320
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And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t+
a0t

2

4 +
(
−a0

3 + a1
12

)
t3 +

(
11a0
32 − a1

6

)
t4 +

(
−13a0

30 + 97a1
480

)
t5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1 + 1

4t
2 − 1

3t
3 + 11

32t
4 − 13

30t
5
)
a0 +

(
t+ 1

12t
3 − 1

6t
4 + 97

480t
5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1 + 1

4t
2 − 1

3t
3 + 11

32t
4 − 13

30t
5
)
c1 +

(
t+ 1

12t
3 − 1

6t
4 + 97

480t
5
)
c2 +O

(
t6
)

y(t) = −1− t2

4 + t3

2 − 65t4
96 + 67t5

80 + 2t+O
(
t6
)

Replacing t in the above with the original independent variable xsusing t = x+1 results
in

y = 2x+1− (x+ 1)2

4 + (x+ 1)3

2 − 65(x+ 1)4

96 + 67(x+ 1)5

80 − 6593(x+ 1)6

5760 +O
(
(x+1)6

)
Summary
The solution(s) found are the following

(1)
y = 2x+ 1− (x+ 1)2

4 + (x+ 1)3

2 − 65(x+ 1)4

96

+ 67(x+ 1)5

80 − 6593(x+ 1)6

5760 +O
(
(x+ 1)6

)
Verification of solutions

y = 2x+1− (x+ 1)2

4 + (x+ 1)3

2 − 65(x+ 1)4

96 + 67(x+ 1)5

80 − 6593(x+ 1)6

5760 +O
(
(x+1)6

)
Verified OK.
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13.25.2 Maple step by step solution

Let’s solve[
(6 + 4x) y′′ + (1 + 2x) y = 0, y(−1) = −1, y′

∣∣∣{x=−1}
= 2
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − (1+2x)y

2(2x+3)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + (1+2x)y

2(2x+3) = 0

� Check to see if x0 = −3
2 is a regular singular point

◦ Define functions[
P2(x) = 0, P3(x) = 1+2x

2(2x+3)

]
◦
(
x+ 3

2

)
· P2(x) is analytic at x = −3

2((
x+ 3

2

)
· P2(x)

) ∣∣∣∣
x=− 3

2

= 0

◦
(
x+ 3

2

)2 · P3(x) is analytic at x = −3
2((

x+ 3
2

)2 · P3(x)
) ∣∣∣∣

x=− 3
2

= 0

◦ x = −3
2 is a regular singular point

Check to see if x0 = −3
2 is a regular singular point

x0 = −3
2

• Multiply by denominators
(6 + 4x) y′′ + (1 + 2x) y = 0

• Change variables using x = u− 3
2 so that the regular singular point is at u = 0

4u
(

d2

du2y(u)
)
+ (−2 + 2u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

4342



� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

4a0r(−1 + r)u−1+r + (4a1(1 + r) r − 2a0)ur +
(

∞∑
k=1

(4ak+1(k + 1 + r) (k + r)− 2ak + 2ak−1)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term must be 0
4a1(1 + r) r − 2a0 = 0

• Each term in the series must be 0, giving the recursion relation
4ak+1(k + 1 + r) (k + r)− 2ak + 2ak−1 = 0

• Shift index using k− >k + 1
4ak+2(k + 2 + r) (k + 1 + r)− 2ak+1 + 2ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − −ak+1+ak

2(k+2+r)(k+1+r)

• Recursion relation for r = 0
ak+2 = − −ak+1+ak

2(k+2)(k+1)

• Solution for r = 0
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[
y(u) =

∞∑
k=0

aku
k, ak+2 = − −ak+1+ak

2(k+2)(k+1) ,−2a0 = 0
]

• Revert the change of variables u = x+ 3
2[

y =
∞∑
k=0

ak
(
x+ 3

2

)k
, ak+2 = − −ak+1+ak

2(k+2)(k+1) ,−2a0 = 0
]

• Recursion relation for r = 1
ak+2 = − −ak+1+ak

2(k+3)(k+2)

• Solution for r = 1[
y(u) =

∞∑
k=0

aku
k+1, ak+2 = − −ak+1+ak

2(k+3)(k+2) , 8a1 − 2a0 = 0
]

• Revert the change of variables u = x+ 3
2[

y =
∞∑
k=0

ak
(
x+ 3

2

)k+1
, ak+2 = − −ak+1+ak

2(k+3)(k+2) , 8a1 − 2a0 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak
(
x+ 3

2

)k)+
(

∞∑
k=0

bk
(
x+ 3

2

)1+k
)
, ak+2 = − −a1+k+ak

2(k+2)(1+k) ,−2a0 = 0, bk+2 = − −b1+k+bk
2(k+3)(k+2) , 8b1 − 2b0 = 0

]

4344



Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(6+4*x)*diff(y(x),x$2)+(1+2*x)*y(x)=0,y(-1) = -1, D(y)(-1) = 2],y(x),type='series',x=-1);� �
y(x) = −1+ 2(x+1)− 1

4(x+1)2 + 1
2(x+1)3 − 65

96(x+1)4 + 67
80(x+1)5 +O

(
(x+1)6

)
3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 46� �
AsymptoticDSolveValue[{(6+4*x)*y''[x]+(1+2*x)*y[x]==0,{y[-1]==-1,y'[-1]==2}},y[x],{x,-1,5}]� �

y(x) → 67
80(x+ 1)5 − 65

96(x+ 1)4 + 1
2(x+ 1)3 − 1

4(x+ 1)2 + 2(x+ 1)− 1
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13.26 problem 29
13.26.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4356

Internal problem ID [1267]
Internal file name [OUTPUT/1268_Sunday_June_05_2022_02_07_29_AM_65047568/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 29.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
β x2 + αx+ 1

)
y′′ + (δx+ γ) y′ + εy = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

4346



But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1004)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1005)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −y′δx+ y′γ + εy

β x2 + αx+ 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

=
((−βε+ δ(β + δ))x2 + (−αε+ 2γ(β + δ))x+ αγ + γ2 − δ − ε) y′ + 2

((
β + δ

2

)
x+ α

2 + γ
2

)
yε

(β x2 + αx+ 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=

(
−2
(
β + δ

2

)
(−2βε+ δ(β + δ))x3 +

(
((6α + 2γ) β + 2αδ) ε− 6

(
β + δ

2

)
γ(β + δ)

)
x2 +

(
(2α2 + 2αγ + 4β + 2δ) ε− 6

(
β + δ

2

)
(αγ + γ2 − δ)

)
x+ (2α + 2γ) ε+ 2βγ + (2α + 3γ) δ − 2(α + γ)

(
α + γ

2

)
γ
)
y′ − 6

((
β2 + 2

3βδ −
1
6βε+

1
6δ

2)x2 +
(
−αε

6 + (α + γ) β + δ(α+2γ)
6

)
x+ α2

3 + αγ
2 + γ2

6 − β
3 − δ

3 −
ε
6

)
yε

(β x2 + αx+ 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=

(
(β2ε2 + (−18β3 − 14δ β2 − 3β δ2) ε+ 6β3δ + 11β2δ2 + 6β δ3 + δ4)x4 +

(
2βα ε2 +

(
(−36α− 18γ) β2 − 19

(
α + 6γ

19

)
δβ − 3α δ2

)
ε+ 24

(
β + δ

2

)
γ
(
β + δ

3

)
(β + δ)

)
x3 +

(
(α2 + 2β) ε2 + (−12β2 + (−24α2 − 27αγ − 3γ2 − 10δ) β − 3δ2 + (−5α2 − 6αγ) δ) ε+ 36

(
β + δ

2

)
(αγ + γ2 − δ)

(
β + δ

3

))
x2 +

(
2α ε2 +

(
(−12α− 18γ) β + (−α− 6γ) δ − 6(α + γ)

(
α + γ

2

)
α
)
ε− 24

(
βγ +

(
α + 3γ

2

)
δ − (α + γ)

(
α + γ

2

)
γ
) (

β + δ
3

))
x+ ε2 + (−6α2 − 9αγ − 3γ2 + 6β + 4δ) ε+ (−12αγ − 8γ2 + 6δ) β + 3δ2 + (−6α2 − 14αγ − 6γ2) δ + 6α3γ + 11α2γ2 + 6α γ3 + γ4) y′ + 24y

((
β2 + 1

2βδ −
1
3βε+

1
6δ

2) (β + δ
4

)
x3 +

(((
−α

2 − γ
12

)
β − αδ

12

)
ε+

(3α
2 + 3γ

2

)
β2 +

3
(

19γ
9 +α

)
δβ

8 + δ2(α+3γ)
24

)
x2 +

((
− 1

12αγ − 1
3β − 1

6α
2 − 1

12δ
)
ε− β2 +

(3
2αγ − 13

12δ +
1
2γ

2 + α2) β +
δ
(
− 5δ

2 +(α+3γ)
(
α+ γ

2
))

12

)
x+

(
− γ

12 −
α
6

)
ε+

(
−γ

3 −
α
2

)
β +

(
−5γ

24 −
3α
8

)
δ + (α+γ)

(
α+ γ

3
)(
α+ γ

2
)

4

)
ε

(β x2 + αx+ 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= Expression too large to display

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −y(0) ε− y′(0) γ
F1 = y(0)αε+ y(0) εγ + y′(0)αγ + y′(0) γ2 − y′(0) δ − y′(0) ε
F2 = −2y(0)α2ε− 3y(0)αεγ − y(0) ε γ2 − 2y′(0)α2γ − 3y′(0)α γ2 − y′(0) γ3 + 2y(0) βε+ 2y(0) εδ + ε2y(0) + 2y′(0)αδ + 2y′(0)αε+ 2y′(0) βγ + 3y′(0) δγ + 2y′(0) εγ
F3 = 11y(0)α2εγ + 6y(0)αε γ2 − 9y(0)αεδ − 8y(0) βεγ − 5y(0) εδγ − 14y′(0)αδγ − 9y′(0)αεγ − 12y(0)αβε− 12y′(0)αβγ − 6y′(0)α2ε− 6y′(0) δ γ2 − 3y′(0) ε γ2 + 11y′(0)α2γ2 + 6y′(0)α γ3 + 4y′(0) δε− 8y′(0) β γ2 + 6y′(0) βε+ y(0) ε γ3 − 4ε2y(0)α− 2ε2y(0) γ + 6y(0)α3ε+ 6y′(0)α3γ − 6y′(0)α2δ + 6y′(0) βδ + 3y′(0) δ2 + y′(0) γ4 + y′(0) ε2

F4 = 80y(0)αβεγ + 41y(0)αεδγ + 44y(0)α2εδ + 15ε2y(0)αγ + 20y(0) βε γ2 + 9y(0) εδ γ2 − 32y(0) βεδ − 50y(0)α3εγ − 35y(0)α2ε γ2 − 10y(0)αε γ3 + 72y(0)α2βε+ 72y′(0)α2βγ − 48y′(0)αβδ − 26y′(0)αδε− 50y′(0) βδγ − 32y′(0) βεγ − 15y′(0) δεγ + 70y′(0)α2δγ + 44y′(0)α2εγ + 80y′(0)αβ γ2 + 50y′(0)αδ γ2 + 24y′(0)αε γ2 − 48y′(0)αβε− y′(0) γ5 − 15y′(0) δ2γ − 3y′(0) ε2γ − 50y′(0)α3γ2 − 35y′(0)α2γ3 − 10y′(0)α γ4 + 24y′(0)α3ε+ 20y′(0) β γ3 + 10y′(0) δ γ3 + 4y′(0) ε γ3 − 20y′(0)α δ2 − 6y′(0)α ε2 − 24y(0)α4ε− 24y′(0)α4γ + 24y′(0)α3δ − 24y(0) β2ε− 24y′(0) β2γ − y(0) ε γ4 + 18ε2y(0)α2 + 3ε2y(0) γ2 − 14ε2y(0) β − 8y(0) ε δ2 − 6ε2y(0) δ − ε3y(0)

Substituting all the above in (7) and simplifying gives the solution as

Expression too large to display
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

β x2 + αx+ 1
)
y′′ + (δx+ γ) y′ + εy = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
β x2 + αx+ 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ (δx+ γ)

(
∞∑
n=1

nanx
n−1

)
+ ε

(
∞∑
n=0

anx
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

xnanβn(n− 1)
)

+
(

∞∑
n=2

nαxn−1an(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)

+
(

∞∑
n=1

nanx
nδ

)
+
(

∞∑
n=1

nγ xn−1an

)
+
(

∞∑
n=0

εanx
n

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

nαxn−1an(n− 1) =
∞∑
n=1

α(n+ 1) an+1nxn

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =1

nγ xn−1an =
∞∑
n=0

γ(n+ 1) an+1x
n
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

xnanβn(n− 1)
)

+
(

∞∑
n=1

α(n+ 1) an+1nxn

)

+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=1

nanx
nδ

)

+
(

∞∑
n=0

γ(n+ 1) an+1x
n

)
+
(

∞∑
n=0

εanx
n

)
= 0

n = 0 gives
εa0 + γa1 + 2a2 = 0

a2 = −εa0
2 − γa1

2

n = 1 gives
2αa2 + δa1 + εa1 + 2γa2 + 6a3 = 0

Which after substituting earlier equations, simplifies to

a3 =
1
6αεa0 +

1
6αγa1 +

1
6γεa0 +

1
6γ

2a1 −
1
6δa1 −

1
6εa1

For 2 ≤ n, the recurrence equation is

(4)βnan(n−1)+α(n+1) an+1n+(n+2) an+2(n+1)+ δnan+γ(n+1) an+1+ εan = 0

Solving for an+2, gives

(5)

an+2 = −αn2an+1 + β n2an + αnan+1 − βnan + δnan + γnan+1 + εan + γan+1

(n+ 2) (n+ 1)

= −(β n2 − βn+ δn+ ε) an
(n+ 2) (n+ 1) − (αn2 + αn+ γn+ γ) an+1

(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

6αa3 + 2βa2 + 2δa2 + εa2 + 3γa3 + 12a4 = 0
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Which after substituting the earlier terms found becomes

a4 = − 1
12α

2εa0 −
1
12α

2γa1 −
1
8αγεa0 −

1
8α γ2a1 +

1
12αδa1 +

1
12αεa1 +

1
12βεa0

+ 1
12βγa1 +

1
12δεa0 +

1
8δγa1 +

1
24ε

2a0 +
1
12εγa1 −

1
24γ

2εa0 −
1
24γ

3a1

For n = 3 the recurrence equation gives

12αa4 + 6βa3 + 3δa3 + εa3 + 4γa4 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 =
11
120α

2γεa0 −
1
10αβεa0 −

1
10αβγa1 −

3
40αδεa0 −

7
60αδγa1 −

3
40αεγa1 +

1
20α γ2εa0

− 1
15βγεa0 −

1
24δγεa0 +

1
120γ

3εa0 +
1
20α

3εa0 +
1
20α

3γa1 +
11
120α

2γ2a1

− 1
20α

2δa1 −
1
20α

2εa1 −
1
30α ε2a0 +

1
20α γ3a1 −

1
15β γ2a1 +

1
20βδa1 +

1
20βεa1

− 1
20δ γ

2a1 +
1
30δεa1 −

1
60γ ε

2a0 −
1
40ε γ

2a1 +
1
40δ

2a1 +
1
120ε

2a1 +
1
120γ

4a1

For n = 4 the recurrence equation gives

20αa5 + 12βa4 + 4δa4 + εa4 + 5γa5 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 =
1
9αβγεa0 +

41
720αδγεa0 +

1
30αε γ

2a1 −
2
45βδεa0 −

5
72βδγa1 −

2
45βεγa1 +

1
36β γ2εa0

− 1
48δεγa1 +

1
80δ γ

2εa0 −
5
72α

3γεa0 +
1
10α

2βεa0 +
1
10α

2βγa1 +
11
180α

2δεa0

+ 7
72α

2δγa1 +
11
180α

2εγa1 −
7
144α

2γ2εa0 −
1
72α γ3εa0 +

1
9αβ γ2a1 −

1
15αβδa1

− 1
15αβεa1+

5
72αδ γ

2a1−
13
360αδεa1+

1
48αγ ε

2a0−
1
720γ

5a1−
1
720ε

3a0−
1
240ε

2γa1

+ 1
240γ

2ε2a0+
1
180ε γ

3a1−
1
720γ

4εa0−
1
36α δ2a1−

1
30α

4εa0−
1
30α

4γa1−
5
72α

3γ2a1

+ 1
30α

3δa1+
1
30α

3εa1+
1
40α

2ε2a0−
7
144α

2γ3a1−
1
120α ε2a1−

1
72α γ4a1−

1
30β

2εa0

− 1
30β

2γa1 −
7
360β ε2a0 +

1
36β γ3a1 −

1
90δ

2εa0 −
1
48δ

2γa1 −
1
120δ ε

2a0 +
1
72δ γ

3a1
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For n = 5 the recurrence equation gives

30αa6 + 20βa5 + 5δa5 + εa5 + 6γa6 + 42a7 = 0

Which after substituting the earlier terms found becomes

Expression too large to display

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0+a1x+
(
−εa0

2 − γa1
2

)
x2+

(
1
6αεa0+

1
6αγa1+

1
6γεa0+

1
6γ

2a1−
1
6δa1−

1
6εa1

)
x3

+
(
− 1
12α

2εa0 −
1
12α

2γa1 −
1
8αγεa0 −

1
8α γ2a1 +

1
12αδa1 +

1
12αεa1 +

1
12βεa0

+ 1
12βγa1 +

1
12δεa0 +

1
8δγa1 +

1
24ε

2a0 +
1
12εγa1 −

1
24γ

2εa0 −
1
24γ

3a1

)
x4

+
(

11
120α

2γεa0−
1
10αβεa0−

1
10αβγa1−

3
40αδεa0−

7
60αδγa1−

3
40αεγa1+

1
20α γ2εa0

− 1
15βγεa0 −

1
24δγεa0 +

1
120γ

3εa0 +
1
20α

3εa0 +
1
20α

3γa1 +
11
120α

2γ2a1 −
1
20α

2δa1

− 1
20α

2εa1 −
1
30α ε2a0 +

1
20α γ3a1 −

1
15β γ2a1 +

1
20βδa1 +

1
20βεa1 −

1
20δ γ

2a1

+ 1
30δεa1 −

1
60γ ε

2a0 −
1
40ε γ

2a1 +
1
40δ

2a1 +
1
120ε

2a1 +
1
120γ

4a1

)
x5 + . . .
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Collecting terms, the solution becomes

y =
(
1− ε x2

2 +
(
1
6αε+

1
6εγ
)
x3+

(
− 1
12α

2ε− 1
8αγε+

1
12βε+

1
12δε+

1
24ε

2− 1
24γ

2ε

)
x4

+
(

11
120α

2γε− 1
10βαε−

3
40αδε+

1
20α γ2ε− 1

15βεγ − 1
24δεγ + 1

120γ
3ε+ 1

20α
3ε

− 1
30α ε2 − 1

60γ ε
2
)
x5
)
a0 +

(
x− x2γ

2 +
(
1
6αγ + 1

6γ
2 − 1

6δ −
1
6ε
)
x3

+
(
− 1
12α

2γ − 1
8α γ2 + 1

12αδ +
1
12αε+

1
12βγ + 1

8δγ + 1
12εγ − 1

24γ
3
)
x4

+
(
− 1
10αβγ − 7

60αδγ − 3
40αγε+

1
20α

3γ + 11
120α

2γ2 − 1
20α

2δ − 1
20α

2ε+ 1
20α γ3

− 1
15β γ2+ 1

20βδ+
1
20βε−

1
20δ γ

2+ 1
30δε−

1
40γ

2ε+ 1
40δ

2+ 1
120ε

2+ 1
120γ

4
)
x5
)
a1

+O
(
x6)

(3)

At x = 0 the solution above becomes

y =
(
1− ε x2

2 +
(
1
6αε+

1
6εγ
)
x3+

(
− 1
12α

2ε− 1
8αγε+

1
12βε+

1
12δε+

1
24ε

2− 1
24γ

2ε

)
x4

+
(

11
120α

2γε− 1
10βαε−

3
40αδε+

1
20α γ2ε− 1

15βεγ − 1
24δεγ + 1

120γ
3ε+ 1

20α
3ε

− 1
30α ε2 − 1

60γ ε
2
)
x5
)
c1 +

(
x− x2γ

2 +
(
1
6αγ + 1

6γ
2 − 1

6δ −
1
6ε
)
x3

+
(
− 1
12α

2γ − 1
8α γ2 + 1

12αδ +
1
12αε+

1
12βγ + 1

8δγ + 1
12εγ − 1

24γ
3
)
x4

+
(
− 1
10αβγ − 7

60αδγ − 3
40αγε+

1
20α

3γ + 11
120α

2γ2 − 1
20α

2δ − 1
20α

2ε+ 1
20α γ3

− 1
15β γ2+ 1

20βδ+
1
20βε−

1
20δ γ

2+ 1
30δε−

1
40γ

2ε+ 1
40δ

2+ 1
120ε

2+ 1
120γ

4
)
x5
)
c2

+O
(
x6)
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Summary
The solution(s) found are the following

(1)Expression too large to display

(2)

y=
(
1− ε x2

2 +
(
1
6αε+

1
6εγ
)
x3+

(
− 1
12α

2ε− 1
8αγε+

1
12βε+

1
12δε+

1
24ε

2− 1
24γ

2ε

)
x4

+
(

11
120α

2γε− 1
10βαε−

3
40αδε+

1
20α γ2ε− 1

15βεγ − 1
24δεγ + 1

120γ
3ε+ 1

20α
3ε

− 1
30α ε2 − 1

60γ ε
2
)
x5
)
c1 +

(
x− x2γ

2 +
(
1
6αγ + 1

6γ
2 − 1

6δ −
1
6ε
)
x3

+
(
− 1
12α

2γ − 1
8α γ2 + 1

12αδ +
1
12αε+

1
12βγ + 1

8δγ + 1
12εγ − 1

24γ
3
)
x4

+
(
− 1
10αβγ − 7

60αδγ − 3
40αγε+

1
20α

3γ + 11
120α

2γ2 − 1
20α

2δ− 1
20α

2ε+ 1
20α γ3

− 1
15β γ2+ 1

20βδ+
1
20βε−

1
20δ γ

2+ 1
30δε−

1
40γ

2ε+ 1
40δ

2+ 1
120ε

2+ 1
120γ

4
)
x5
)
c2

+O
(
x6)

Verification of solutions

Expression too large to display

Verified OK.

y =
(
1− ε x2

2 +
(
1
6αε+

1
6εγ
)
x3+

(
− 1
12α

2ε− 1
8αγε+

1
12βε+

1
12δε+

1
24ε

2− 1
24γ

2ε

)
x4

+
(

11
120α

2γε− 1
10βαε−

3
40αδε+

1
20α γ2ε− 1

15βεγ − 1
24δεγ + 1

120γ
3ε+ 1

20α
3ε

− 1
30α ε2 − 1

60γ ε
2
)
x5
)
c1 +

(
x− x2γ

2 +
(
1
6αγ + 1

6γ
2 − 1

6δ −
1
6ε
)
x3

+
(
− 1
12α

2γ − 1
8α γ2 + 1

12αδ +
1
12αε+

1
12βγ + 1

8δγ + 1
12εγ − 1

24γ
3
)
x4

+
(
− 1
10αβγ − 7

60αδγ − 3
40αγε+

1
20α

3γ + 11
120α

2γ2 − 1
20α

2δ − 1
20α

2ε+ 1
20α γ3

− 1
15β γ2+ 1

20βδ+
1
20βε−

1
20δ γ

2+ 1
30δε−

1
40γ

2ε+ 1
40δ

2+ 1
120ε

2+ 1
120γ

4
)
x5
)
c2

+O
(
x6)

Verified OK.
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13.26.1 Maple step by step solution

Let’s solve
(β x2 + αx+ 1) y′′ + (δx+ γ) y′ + εy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − εy
β x2+αx+1 −

(δx+γ)y′
β x2+αx+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (δx+γ)y′
β x2+αx+1 +

εy
β x2+αx+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = δx+γ
β x2+αx+1 , P3(x) = ε

β x2+αx+1

]
◦
(
x− −α+

√
α2−4β

2β

)
· P2(x) is analytic at x = −α+

√
α2−4β

2β((
x− −α+

√
α2−4β

2β

)
· P2(x)

) ∣∣∣∣
x=−α+

√
α2−4β

2β

= 0

◦
(
x− −α+

√
α2−4β

2β

)2
· P3(x) is analytic at x = −α+

√
α2−4β

2β((
x− −α+

√
α2−4β

2β

)2
· P3(x)

) ∣∣∣∣
x=−α+

√
α2−4β

2β

= 0

◦ x = −α+
√

α2−4β
2β is a regular singular point

Check to see if x0 is a regular singular point

x0 = −α+
√

α2−4β
2β

• Multiply by denominators
(β x2 + αx+ 1) y′′ + (δx+ γ) y′ + εy = 0

• Change variables using x = u+ −α+
√

α2−4β
2β so that the regular singular point is at u = 0(

β u2 + u
√
α2 − 4β

) (
d2

du2y(u)
)
+
(
δu− δα

2β + δ
√

α2−4β
2β + γ

) (
d
du
y(u)

)
+ εy(u) = 0

• Assume series solution for y(u)
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y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions
a0r
(
2
√

α2−4β βr−2
√

α2−4β β+δ
√

α2−4β−αδ+2βγ
)
u−1+r

2β +
(

∞∑
k=0

(
ak+1(k+1+r)

(
2
√

α2−4β β(k+1)+2
√

α2−4β βr−2
√

α2−4β β+δ
√

α2−4β−αδ+2βγ
)

2β + ak(β k2 + 2βkr + β r2 − βk − βr + δk + δr + ε)
)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r
(
2
√

α2−4β βr−2
√

α2−4β β+δ
√

α2−4β−αδ+2βγ
)

2β = 0

• Values of r that satisfy the indicial equation

r ∈
{
0, 2

√
α2−4β β−δ

√
α2−4β+αδ−2βγ

2
√

α2−4β β

}
• Each term in the series must be 0, giving the recursion relation

2
(
(k+r)β+ δ

2

)
(k+1+r)ak+1

√
α2−4β+2ak(k+r)(k+r−1)β2+(2γ(k+1+r)ak+1+2ak(δk+δr+ε))β−ak+1αδ(k+1+r)

2β = 0

• Recursion relation that defines series solution to ODE

ak+1 = − 2βak
(
β k2+2βkr+β r2−βk−βr+δk+δr+ε

)
2
√

α2−4β β k2+4
√

α2−4β βkr+2
√

α2−4β β r2+2
√

α2−4β βk+2
√

α2−4β βr+
√

α2−4β δk+
√

α2−4β δr−αδk−αδr+2βγk+2βγr+δ
√

α2−4β−αδ+2βγ

• Recursion relation for r = 0

ak+1 = − 2βak
(
β k2−βk+δk+ε

)
2
√

α2−4β β k2+2
√

α2−4β βk+
√

α2−4β δk−αδk+2βγk+δ
√

α2−4β−αδ+2βγ

• Solution for r = 0
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[
y(u) =

∞∑
k=0

aku
k, ak+1 = − 2βak

(
β k2−βk+δk+ε

)
2
√

α2−4β β k2+2
√

α2−4β βk+
√

α2−4β δk−αδk+2βγk+δ
√

α2−4β−αδ+2βγ

]
• Revert the change of variables u = x− −α+

√
α2−4β

2β[
y =

∞∑
k=0

ak
(
x− −α+

√
α2−4β

2β

)k
, ak+1 = − 2βak

(
β k2−βk+δk+ε

)
2
√

α2−4β β k2+2
√

α2−4β βk+
√

α2−4β δk−αδk+2βγk+δ
√

α2−4β−αδ+2βγ

]
• Recursion relation for r = 2

√
α2−4β β−δ

√
α2−4β+αδ−2βγ

2
√

α2−4β β

ak+1 = −
2βak

β k2+
k

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)
√

α2−4β
+

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)2
4β
(
α2−4β

) −βk− 2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

2
√

α2−4β
+δk+

δ

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)
2
√

α2−4β β
+ε


2
√

α2−4β β k2+2k
(
2
√

α2−4β β−δ
√

α2−4β+αδ−2βγ
)
+

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)2
2
√

α2−4β β
+2
√

α2−4β βk+2
√

α2−4β β+
√

α2−4β δk+
δ

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)
2β −αδk−

αδ

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)
2
√

α2−4β β
+2βγk+

γ

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)
√

α2−4β

• Solution for r = 2
√

α2−4β β−δ
√

α2−4β+αδ−2βγ
2
√

α2−4β βy(u) = ∞∑
k=0

aku
k+ 2

√
α2−4β β−δ

√
α2−4β+αδ−2βγ

2
√

α2−4β β , ak+1 = −
2βak

β k2+
k

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)
√

α2−4β
+

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)2
4β
(
α2−4β

) −βk− 2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

2
√

α2−4β
+δk+

δ

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)
2
√

α2−4β β
+ε


2
√

α2−4β β k2+2k
(
2
√

α2−4β β−δ
√

α2−4β+αδ−2βγ
)
+

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)2
2
√

α2−4β β
+2
√

α2−4β βk+2
√

α2−4β β+
√

α2−4β δk+
δ

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)
2β −αδk−

αδ

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)
2
√

α2−4β β
+2βγk+

γ

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)
√

α2−4β


• Revert the change of variables u = x− −α+

√
α2−4β

2βy =
∞∑
k=0

ak
(
x− −α+

√
α2−4β

2β

)k+ 2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

2
√

α2−4β β , ak+1 = −
2βak

β k2+
k

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)
√

α2−4β
+

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)2
4β
(
α2−4β

) −βk− 2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

2
√

α2−4β
+δk+

δ

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)
2
√

α2−4β β
+ε


2
√

α2−4β β k2+2k
(
2
√

α2−4β β−δ
√

α2−4β+αδ−2βγ
)
+

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)2
2
√

α2−4β β
+2
√

α2−4β βk+2
√

α2−4β β+
√

α2−4β δk+
δ

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)
2β −αδk−

αδ

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)
2
√

α2−4β β
+2βγk+

γ

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)
√

α2−4β


• Combine solutions and rename parametersy =

(
∞∑
k=0

ak
(
x− −α+

√
α2−4β

2β

)k)
+

 ∞∑
k=0

bk
(
x− −α+

√
α2−4β

2β

)k+ 2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

2
√

α2−4β β

 , a1+k = − 2βak
(
β k2−βk+δk+ε

)
2
√

α2−4β β k2+2
√

α2−4β βk+
√

α2−4β δk−αδk+2βγk+δ
√

α2−4β−αδ+2βγ
, b1+k = −

2βbk

β k2+
k

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)
√

α2−4β
+

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)2
4β
(
α2−4β

) −βk− 2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

2
√

α2−4β
+δk+

δ

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)
2
√

α2−4β β
+ε


2
√

α2−4β β k2+2k
(
2
√

α2−4β β−δ
√

α2−4β+αδ−2βγ
)
+

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)2
2
√

α2−4β β
+2
√

α2−4β βk+2
√

α2−4β β+
√

α2−4β δk+
δ

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)
2β −αδk−

αδ

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)
2
√

α2−4β β
+2βγk+

γ

(
2
√

α2−4β β−δ

√
α2−4β+αδ−2βγ

)
√

α2−4β
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 366� �
Order:=6;
dsolve((1+alpha*x+beta*x^2)*diff(y(x),x$2)+(gamma+delta*x)*diff(y(x),x)+epsilon*y(x)=0,y(x),type='series',x=0);� �

y(x) =

1− ε x2

2 + ε(α + γ)x3

6 +
ε
(
−α2 − 3

2αγ − 1
2γ

2 + β + δ + 1
2ε
)
x4

12

−
ε

( (
α+ γ

2
)
ε

3 − γ3

12 −
αγ2

2 +
(
− 11α2

4 +2β+ 5δ
4

)
γ

3 + α
(
−α2

2 + β + 3δ
4

))
x5

10

 y(0)

+

x− γ x2

2 + (αγ + γ2 − δ − ε)x3

6

+ ((2α + 2γ) ε− γ3 − 3α γ2 + (−2α2 + 2β + 3δ) γ + 2δα)x4

24

+

(
ε2 + (−6α2 − 9αγ − 3γ2 + 6β + 4δ) ε+ γ4 + 6α γ3 + (11α2 − 8β − 6δ) γ2 − 12α

(
−α2

2 + β + 7δ
6

)
γ + 6

(
−α2 + β + δ

2

)
δ
)
x5

120

D(y) (0)

+O
(
x6)
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 561� �
AsymptoticDSolveValue[(1+\[Alpha]*x+\[Beta]*x^2)*y''[x]+(\[Gamma]+\[Delta]*x)*y'[x]+\[Epsilon]*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
− 1
20x

5ε
(
2αβ − α3)− 1

20x
5ε
(
αδ − γ

(
α2 − β

))
+ 1

60γx
5ε
(
α2 − β

)
+ 1

120αγ
2x5ε+ 1

40αx
5ε(αγ − δ) + 1

24γx
5ε(αγ − δ)− 1

30αx
5ε2 + 1

120γ
3x5ε

− 1
60γx

5ε2 − 1
12x

4ε
(
α2 − β

)
− 1

12x
4ε(αγ − δ)− 1

24αγx
4ε− 1

24γ
2x4ε+ x4ε2

24
+ 1

6αx
3ε+ 1

6γx
3ε− x2ε

2 + 1
)

+ c2

(
1
60γx

5(γ(α2 − β
)
− αδ

)
− 1

20γx
5(αδ − γ

(
α2 − β

))
− 1

20x
5ε
(
α2 − β

)
− 1

20x
5(α3(−γ) + α2δ + 2αβγ − βδ

)
+ 1

24γ
2x5(αγ − δ)− 1

120γ
2x5(δ − αγ)

− 1
40x

5ε(αγ − δ) + 1
120x

5ε(δ− αγ)− 1
40x

5(αγ − δ)(δ− αγ)− 1
24αγx

5ε+ γ4x5

120
− 1

40γ
2x5ε+ x5ε2

120 − 1
12x

4(γ(α2 − β
)
− αδ

)
− 1

12γx
4(αγ − δ) + 1

24γx
4(δ − αγ)

+ 1
12αx

4ε− γ3x4

24 + 1
12γx

4ε− 1
6x

3(δ − αγ) + γ2x3

6 − x3ε

6 − γx2

2 + x

)
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13.27 problem 31(a)
13.27.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4369

Internal problem ID [1268]
Internal file name [OUTPUT/1269_Sunday_June_05_2022_02_07_30_AM_94733438/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 31(a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second_order_change_of_variable_on_y_method_1", "linear_sec-
ond_order_ode_solved_by_an_integrating_factor", "second order series
method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(
2x2 + 3x+ 1

)
y′′ + (6 + 8x) y′ + 4y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1007)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1008)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2(4y′x+ 3y′ + 2y)
2x2 + 3x+ 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (72x2 + 108x+ 42) y′ + (48x+ 36) y
(2x2 + 3x+ 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(−768x3 − 1728x2 − 1344x− 360) y′ − 576y

(
x2 + 3

2x+ 7
12

)
(2x2 + 3x+ 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(9600x4 + 28800x3 + 33600x2 + 18000x+ 3720) y′ + 7680

(
x2 + 3

2x+ 5
8

)
y
(3
4 + x

)
(2x2 + 3x+ 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(−138240x5 − 518400x4 − 806400x3 − 648000x2 − 267840x− 45360) y′ − 115200

(
x4 + 3x3 + 7

2x
2 + 15

8 x+ 31
80

)
y

(2x2 + 3x+ 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −4y(0)− 6y′(0)
F1 = 36y(0) + 42y′(0)
F2 = −336y(0)− 360y′(0)
F3 = 3600y(0) + 3720y′(0)
F4 = −44640y(0)− 45360y′(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
−62x6 + 30x5 − 14x4 + 6x3 − 2x2 + 1

)
y(0)

+
(
−63x6 + 31x5 − 15x4 + 7x3 − 3x2 + x

)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

2x2 + 3x+ 1
)
y′′ + (6 + 8x) y′ + 4y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
2x2 + 3x+ 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ (6 + 8x)

(
∞∑
n=1

nanx
n−1

)
+ 4
(

∞∑
n=0

anx
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

2xnann(n− 1)
)

+
(

∞∑
n=2

3nxn−1an(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)

+
(

∞∑
n=1

6nanxn−1

)
+
(

∞∑
n=1

8nanxn

)
+
(

∞∑
n=0

4anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

3nxn−1an(n− 1) =
∞∑
n=1

3(n+ 1) an+1nxn

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =1

6nanxn−1 =
∞∑
n=0

6(n+ 1) an+1x
n
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

2xnann(n− 1)
)

+
(

∞∑
n=1

3(n+ 1) an+1nxn

)

+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=0

6(n+ 1) an+1x
n

)

+
(

∞∑
n=1

8nanxn

)
+
(

∞∑
n=0

4anxn

)
= 0

n = 0 gives
2a2 + 6a1 + 4a0 = 0

a2 = −2a0 − 3a1

n = 1 gives
18a2 + 6a3 + 12a1 = 0

Which after substituting earlier equations, simplifies to

a3 = 6a0 + 7a1

For 2 ≤ n, the recurrence equation is

(4)2nan(n− 1)+3(n+1) an+1n+(n+2) an+2(n+1)+6(n+1) an+1+8nan+4an = 0

Solving for an+2, gives

(5)
an+2 = −2an − 3an+1

= −2an − 3an+1

For n = 2 the recurrence equation gives

24a2 + 36a3 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = −14a0 − 15a1
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For n = 3 the recurrence equation gives

40a3 + 60a4 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 = 30a0 + 31a1

For n = 4 the recurrence equation gives

60a4 + 90a5 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = −62a0 − 63a1

For n = 5 the recurrence equation gives

84a5 + 126a6 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = 126a0 + 127a1

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y= a0+a1x+(−2a0−3a1)x2+(6a0+7a1)x3+(−14a0−15a1)x4+(30a0+31a1)x5+ . . .

Collecting terms, the solution becomes

(3)y =
(
30x5 − 14x4 + 6x3 − 2x2 + 1

)
a0 +

(
31x5 − 15x4 + 7x3 − 3x2 + x

)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
30x5 − 14x4 + 6x3 − 2x2 + 1

)
c1 +

(
31x5 − 15x4 + 7x3 − 3x2 + x

)
c2 +O

(
x6)
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Summary
The solution(s) found are the following

(1)y =
(
−62x6 + 30x5 − 14x4 + 6x3 − 2x2 + 1

)
y(0)

+
(
−63x6 + 31x5 − 15x4 + 7x3 − 3x2 + x

)
y′(0) +O

(
x6)

(2)y =
(
30x5 − 14x4 + 6x3 − 2x2 + 1

)
c1 +

(
31x5 − 15x4 + 7x3 − 3x2 + x

)
c2 +O

(
x6)

Verification of solutions

y =
(
−62x6 + 30x5 − 14x4 + 6x3 − 2x2 + 1

)
y(0)

+
(
−63x6 + 31x5 − 15x4 + 7x3 − 3x2 + x

)
y′(0) +O

(
x6)

Verified OK.

y =
(
30x5 − 14x4 + 6x3 − 2x2 + 1

)
c1 +

(
31x5 − 15x4 + 7x3 − 3x2 + x

)
c2 +O

(
x6)

Verified OK.

13.27.1 Maple step by step solution

Let’s solve
(2x2 + 3x+ 1) y′′ + (6 + 8x) y′ + 4y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 4y
2x2+3x+1 −

2(4x+3)y′
2x2+3x+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2(4x+3)y′
2x2+3x+1 +

4y
2x2+3x+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2(4x+3)
2x2+3x+1 , P3(x) = 4

2x2+3x+1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0
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◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
(2x2 + 3x+ 1) y′′ + (6 + 8x) y′ + 4y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(2u2 − u)
(

d2

du2y(u)
)
+ (−2 + 8u)

(
d
du
y(u)

)
+ 4y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(1 + r)u−1+r +
(

∞∑
k=0

(−ak+1(k + r + 1) (k + r + 2) + 2ak(k + r + 2) (k + r + 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term in the series must be 0, giving the recursion relation
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(k + r + 2) (k + r + 1) (−ak+1 + 2ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = 2ak
• Recursion relation for r = −1

ak+1 = 2ak
• Solution for r = −1[

y(u) =
∞∑
k=0

aku
k−1, ak+1 = 2ak

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k−1 , ak+1 = 2ak
]

• Recursion relation for r = 0
ak+1 = 2ak

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = 2ak

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k , ak+1 = 2ak
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak(x+ 1)k−1
)
+
(

∞∑
k=0

bk(x+ 1)k
)
, a1+k = 2ak, b1+k = 2bk

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 54� �
Order:=6;
dsolve((1+3*x+2*x^2)*diff(y(x),x$2)+(6+8*x)*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);� �
y(x) =

(
30x5−14x4+6x3−2x2+1

)
y(0)+

(
31x5−15x4+7x3−3x2+x

)
D(y) (0)+O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 54� �
AsymptoticDSolveValue[(1+3*x+2*x^2)*y''[x]+(6+8*x)*y'[x]+4*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
(
30x5 − 14x4 + 6x3 − 2x2 + 1

)
+ c2

(
31x5 − 15x4 + 7x3 − 3x2 + x

)
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13.28 problem 31(b)
13.28.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4380

Internal problem ID [1269]
Internal file name [OUTPUT/1270_Sunday_June_05_2022_02_07_32_AM_92575816/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 31(b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second_order_change_of_variable_on_y_method_1", "linear_sec-
ond_order_ode_solved_by_an_integrating_factor", "second order series
method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(
6x2 − 5x+ 1

)
y′′ − (10− 24x) y′ + 12y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1010)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1011)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2(12y′x− 5y′ + 6y)
6x2 − 5x+ 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (648x2 − 540x+ 114) y′ + (432x− 180) y
(6x2 − 5x+ 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(−20736x3 + 25920x2 − 10944x+ 1560) y′ − 15552

(
x2 − 5

6x+ 19
108

)
y

(6x2 − 5x+ 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(777600x4 − 1296000x3 + 820800x2 − 234000x+ 25320) y′ + 622080

(
x2 − 5

6x+ 13
72

)
y
(
x− 5

12

)
(6x2 − 5x+ 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(−33592320x5 + 69984000x4 − 59097600x3 + 25272000x2 − 5469120x+ 478800) y′ − 27993600y

(
x4 − 5

3x
3 + 19

18x
2 − 65

216x+ 211
6480

)
(6x2 − 5x+ 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −12y(0) + 10y′(0)
F1 = −180y(0) + 114y′(0)
F2 = −2736y(0) + 1560y′(0)
F3 = −46800y(0) + 25320y′(0)
F4 = −911520y(0) + 478800y′(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
−1266x6 − 390x5 − 114x4 − 30x3 − 6x2 + 1

)
y(0)

+
(
665x6 + 211x5 + 65x4 + 19x3 + 5x2 + x

)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

6x2 − 5x+ 1
)
y′′ + (24x− 10) y′ + 12y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
6x2 − 5x+ 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ (24x− 10)

(
∞∑
n=1

nanx
n−1

)
+ 12

(
∞∑
n=0

anx
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

6xnann(n− 1)
)

+
∞∑

n =2

(
−5nxn−1an(n− 1)

)
+
(

∞∑
n=2

n(n− 1) anxn−2

)

+
(

∞∑
n=1

24nanxn

)
+

∞∑
n =1

(
−10nanxn−1)+( ∞∑

n=0

12anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

(
−5nxn−1an(n− 1)

)
=

∞∑
n=1

(−5(n+ 1) an+1nxn)

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =1

(
−10nanxn−1) = ∞∑

n=0

(−10(n+ 1) an+1x
n)
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

6xnann(n− 1)
)

+
∞∑

n =1

(−5(n+ 1) an+1nxn) +
(

∞∑
n=0

(n+ 2) an+2(n

+ 1)xn

)

+
(

∞∑
n=1

24nanxn

)
+

∞∑
n =0

(−10(n+ 1) an+1x
n) +

(
∞∑
n=0

12anxn

)
= 0

n = 0 gives
2a2 − 10a1 + 12a0 = 0

a2 = −6a0 + 5a1

n = 1 gives
−30a2 + 6a3 + 36a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −30a0 + 19a1

For 2 ≤ n, the recurrence equation is

6nan(n− 1)− 5(n+1) an+1n+ (n+2) an+2(n+1)+ 24nan − 10(n+1) an+1 +12an = 0
(4)

Solving for an+2, gives

(5)
an+2 = −6an + 5an+1

= −6an + 5an+1

For n = 2 the recurrence equation gives

72a2 − 60a3 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = −114a0 + 65a1
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For n = 3 the recurrence equation gives

120a3 − 100a4 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 = −390a0 + 211a1

For n = 4 the recurrence equation gives

180a4 − 150a5 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = −1266a0 + 665a1

For n = 5 the recurrence equation gives

252a5 − 210a6 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = −3990a0 + 2059a1

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ (−6a0 + 5a1)x2 + (−30a0 + 19a1)x3

+ (−114a0 + 65a1)x4 + (−390a0 + 211a1)x5 + . . .

Collecting terms, the solution becomes

y =
(
−390x5− 114x4− 30x3− 6x2+1

)
a0+

(
211x5+65x4+19x3+5x2+x

)
a1+O

(
x6)
(3)
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At x = 0 the solution above becomes

y =
(
−390x5− 114x4− 30x3− 6x2+1

)
c1+

(
211x5+65x4+19x3+5x2+x

)
c2+O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
−1266x6 − 390x5 − 114x4 − 30x3 − 6x2 + 1

)
y(0)

+
(
665x6 + 211x5 + 65x4 + 19x3 + 5x2 + x

)
y′(0) +O

(
x6)

y =
(
−390x5− 114x4− 30x3− 6x2+1

)
c1+

(
211x5+65x4+19x3+5x2+x

)
c2+O

(
x6)
(2)

Verification of solutions

y =
(
−1266x6 − 390x5 − 114x4 − 30x3 − 6x2 + 1

)
y(0)

+
(
665x6 + 211x5 + 65x4 + 19x3 + 5x2 + x

)
y′(0) +O

(
x6)

Verified OK.

y =
(
−390x5− 114x4− 30x3− 6x2+1

)
c1+

(
211x5+65x4+19x3+5x2+x

)
c2+O

(
x6)

Verified OK.

13.28.1 Maple step by step solution

Let’s solve
(6x2 − 5x+ 1) y′′ + (24x− 10) y′ + 12y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 12y
6x2−5x+1 −

2(12x−5)y′
6x2−5x+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2(12x−5)y′
6x2−5x+1 + 12y

6x2−5x+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2(12x−5)
6x2−5x+1 , P3(x) = 12

6x2−5x+1

]
◦
(
x− 1

2

)
· P2(x) is analytic at x = 1

2
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((
x− 1

2

)
· P2(x)

) ∣∣∣∣
x= 1

2

= 2

◦
(
x− 1

2

)2 · P3(x) is analytic at x = 1
2((

x− 1
2

)2 · P3(x)
) ∣∣∣∣

x= 1
2

= 0

◦ x = 1
2 is a regular singular point

Check to see if x0 is a regular singular point
x0 = 1

2

• Multiply by denominators
(6x2 − 5x+ 1) y′′ + (24x− 10) y′ + 12y = 0

• Change variables using x = u+ 1
2 so that the regular singular point is at u = 0

(6u2 + u)
(

d2

du2y(u)
)
+ (24u+ 2)

(
d
du
y(u)

)
+ 12y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(1 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + r + 1) (k + r + 2) + 6ak(k + r + 2) (k + r + 1))uk+r

)
= 0
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• a0cannot be 0 by assumption, giving the indicial equation
r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term in the series must be 0, giving the recursion relation
(k + r + 2) (k + r + 1) (ak+1 + 6ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = −6ak

• Recursion relation for r = −1
ak+1 = −6ak

• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+1 = −6ak

]
• Revert the change of variables u = x− 1

2[
y =

∞∑
k=0

ak
(
x− 1

2

)k−1
, ak+1 = −6ak

]
• Recursion relation for r = 0

ak+1 = −6ak
• Solution for r = 0[

y(u) =
∞∑
k=0

aku
k, ak+1 = −6ak

]
• Revert the change of variables u = x− 1

2[
y =

∞∑
k=0

ak
(
x− 1

2

)k
, ak+1 = −6ak

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak
(
x− 1

2

)k−1
)
+
(

∞∑
k=0

bk
(
x− 1

2

)k)
, a1+k = −6ak, b1+k = −6bk

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 54� �
Order:=6;
dsolve((1-5*x+6*x^2)*diff(y(x),x$2)-(10-24*x)*diff(y(x),x)+12*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
−390x5 − 114x4 − 30x3 − 6x2 + 1

)
y(0)

+
(
211x5 + 65x4 + 19x3 + 5x2 + x

)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 54� �
AsymptoticDSolveValue[(1-5*x+6*x^2)*y''[x]-(10-24*x)*y'[x]+12*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
−390x5 − 114x4 − 30x3 − 6x2 + 1

)
+ c2

(
211x5 + 65x4 + 19x3 + 5x2 + x

)
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13.29 problem 31(c)
13.29.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4391

Internal problem ID [1270]
Internal file name [OUTPUT/1271_Sunday_June_05_2022_02_07_33_AM_99022394/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 31(c).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second_order_change_of_variable_on_x_method_2", "second_or-
der_change_of_variable_on_y_method_1", "second order series method.
Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(
4x2 − 4x+ 1

)
y′′ − (8− 16x) y′ + 8y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1013)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1014)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)

4386



To find y(x) series solution around x = 0. Hence

F0 = −8(2y′x− y′ + y)
(2x− 1)2

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (144x− 72) y′ + 96y
(2x− 1)3

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (−1536x+ 768) y′ − 1152y
(2x− 1)4

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (19200x− 9600) y′ + 15360y
(2x− 1)5

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (−276480x+ 138240) y′ − 230400y
(2x− 1)6

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −8y(0) + 8y′(0)
F1 = −96y(0) + 72y′(0)
F2 = −1152y(0) + 768y′(0)
F3 = −15360y(0) + 9600y′(0)
F4 = −230400y(0) + 138240y′(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
−320x6 − 128x5 − 48x4 − 16x3 − 4x2 + 1

)
y(0)

+
(
192x6 + 80x5 + 32x4 + 12x3 + 4x2 + x

)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

4x2 − 4x+ 1
)
y′′ + (16x− 8) y′ + 8y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
4x2 − 4x+ 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ (16x− 8)

(
∞∑
n=1

nanx
n−1

)
+ 8
(

∞∑
n=0

anx
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

4xnann(n− 1)
)

+
∞∑

n =2

(
−4nxn−1an(n− 1)

)
+
(

∞∑
n=2

n(n− 1) anxn−2

)

+
(

∞∑
n=1

16nanxn

)
+

∞∑
n =1

(
−8nanxn−1)+( ∞∑

n=0

8anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

(
−4nxn−1an(n− 1)

)
=

∞∑
n=1

(−4(n+ 1) an+1nxn)

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =1

(
−8nanxn−1) = ∞∑

n=0

(−8(n+ 1) an+1x
n)
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

4xnann(n− 1)
)

+
∞∑

n =1

(−4(n+ 1) an+1nxn)

+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=1

16nanxn

)

+
∞∑

n =0

(−8(n+ 1) an+1x
n) +

(
∞∑
n=0

8anxn

)
= 0

n = 0 gives
2a2 − 8a1 + 8a0 = 0

a2 = −4a0 + 4a1

n = 1 gives
−24a2 + 6a3 + 24a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −16a0 + 12a1

For 2 ≤ n, the recurrence equation is

(4)4nan(n−1)−4(n+1) an+1n+(n+2) an+2(n+1)+16nan−8(n+1) an+1+8an = 0

Solving for an+2, gives

(5)
an+2 = −4an + 4an+1

= −4an + 4an+1

For n = 2 the recurrence equation gives

48a2 − 48a3 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = −48a0 + 32a1
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For n = 3 the recurrence equation gives

80a3 − 80a4 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 = −128a0 + 80a1

For n = 4 the recurrence equation gives

120a4 − 120a5 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = −320a0 + 192a1

For n = 5 the recurrence equation gives

168a5 − 168a6 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = −768a0 + 448a1

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ (−4a0 + 4a1)x2 + (−16a0 + 12a1)x3

+ (−48a0 + 32a1)x4 + (−128a0 + 80a1)x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
−128x5−48x4−16x3−4x2+1

)
a0+

(
80x5+32x4+12x3+4x2+x

)
a1+O

(
x6)
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At x = 0 the solution above becomes

y =
(
−128x5 − 48x4 − 16x3 − 4x2 + 1

)
c1 +

(
80x5 + 32x4 + 12x3 + 4x2 + x

)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
−320x6 − 128x5 − 48x4 − 16x3 − 4x2 + 1

)
y(0)

+
(
192x6 + 80x5 + 32x4 + 12x3 + 4x2 + x

)
y′(0) +O

(
x6)

(2)y =
(
−128x5− 48x4− 16x3− 4x2+1

)
c1+

(
80x5+32x4+12x3+4x2+x

)
c2+O

(
x6)

Verification of solutions

y =
(
−320x6 − 128x5 − 48x4 − 16x3 − 4x2 + 1

)
y(0)

+
(
192x6 + 80x5 + 32x4 + 12x3 + 4x2 + x

)
y′(0) +O

(
x6)

Verified OK.

y =
(
−128x5 − 48x4 − 16x3 − 4x2 + 1

)
c1 +

(
80x5 + 32x4 + 12x3 + 4x2 + x

)
c2 +O

(
x6)

Verified OK.

13.29.1 Maple step by step solution

Let’s solve
(4x2 − 4x+ 1) y′′ + (16x− 8) y′ + 8y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − 8y

4x2−4x+1 −
8y′

2x−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 8y′

2x−1 +
8y

4x2−4x+1 = 0

� Check to see if x0 = 1
2 is a regular singular point

◦ Define functions[
P2(x) = 8

2x−1 , P3(x) = 8
4x2−4x+1

]
◦
(
x− 1

2

)
· P2(x) is analytic at x = 1

2
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((
x− 1

2

)
· P2(x)

) ∣∣∣∣
x= 1

2

= 4

◦
(
x− 1

2

)2 · P3(x) is analytic at x = 1
2((

x− 1
2

)2 · P3(x)
) ∣∣∣∣

x= 1
2

= 2

◦ x = 1
2 is a regular singular point

Check to see if x0 = 1
2 is a regular singular point

x0 = 1
2

• Multiply by denominators
(2x− 1) y′′(4x2 − 4x+ 1) + (32x2 − 32x+ 8) y′ + (16x− 8) y = 0

• Change variables using x = u+ 1
2 so that the regular singular point is at u = 0

8u3
(

d2

du2y(u)
)
+ 32u2( d

du
y(u)

)
+ 16uy(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite DE with series expansions
◦ Convert u · y(u) to series expansion

u · y(u) =
∞∑
k=0

aku
k+r+1

◦ Shift index using k− >k − 1

u · y(u) =
∞∑
k=1

ak−1u
k+r

◦ Convert u2 ·
(

d
du
y(u)

)
to series expansion

u2 ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r+1

◦ Shift index using k− >k − 1

u2 ·
(

d
du
y(u)

)
=

∞∑
k=1

ak−1(k − 1 + r)uk+r

◦ Convert u3 ·
(

d2

du2y(u)
)

to series expansion

u3 ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)uk+r+1

◦ Shift index using k− >k − 1
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u3 ·
(

d2

du2y(u)
)
=

∞∑
k=1

ak−1(k − 1 + r) (k − 2 + r)uk+r

Rewrite DE with series expansions
∞∑
k=1

8ak−1(k + r + 1) (k + r)uk+r = 0

• a0cannot be 0 by assumption, giving the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
8ak−1(k + 1) k = 0

• Shift index using k− >k + 1
8ak(k + 2) (k + 1) = 0

• Recursion relation that defines series solution to ODE
ak = 0

• Recursion relation for r = 0
ak = 0

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak = 0

]
• Revert the change of variables u = x− 1

2[
y =

∞∑
k=0

ak
(
x− 1

2

)k
, ak = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 54� �
Order:=6;
dsolve((1-4*x+4*x^2)*diff(y(x),x$2)-(8-16*x)*diff(y(x),x)+8*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
−128x5 − 48x4 − 16x3 − 4x2 + 1

)
y(0)

+
(
80x5 + 32x4 + 12x3 + 4x2 + x

)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 54� �
AsymptoticDSolveValue[(1-4*x+4*x^2)*y''[x]-(8-16*x)*y'[x]+8*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
(
−128x5 − 48x4 − 16x3 − 4x2 + 1

)
+ c2

(
80x5 + 32x4 + 12x3 + 4x2 + x

)
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13.30 problem 31(d)
13.30.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4403

Internal problem ID [1271]
Internal file name [OUTPUT/1272_Sunday_June_05_2022_02_07_34_AM_29640191/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 31(d).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second_order_change_of_variable_on_x_method_1", "second_or-
der_change_of_variable_on_x_method_2", "second_order_change_of_vari-
able_on_y_method_1", "linear_second_order_ode_solved_by_an_inte-
grating_factor", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(
x2 + 4x+ 4

)
y′′ + (8 + 4x) y′ + 2y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1016)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1017)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)

4397



To find y(x) series solution around x = 0. Hence

F0 = −2(2y′x+ 4y′ + y)
(2 + x)2

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (18x+ 36) y′ + 12y
(2 + x)3

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (−96x− 192) y′ − 72y
(2 + x)4

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= 600(2 + x) y′ + 480y
(2 + x)5

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (−4320x− 8640) y′ − 3600y
(2 + x)6

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −y(0)
2 − 2y′(0)

F1 =
3y(0)
2 + 9y′(0)

2

F2 = −9y(0)
2 − 12y′(0)

F3 = 15y(0) + 75y′(0)
2

F4 = −225y(0)
4 − 135y′(0)
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

4x
2 + 1

4x
3 − 3

16x
4 + 1

8x
5 − 5

64x
6
)
y(0)

+
(
x− x2 + 3

4x
3 − 1

2x
4 + 5

16x
5 − 3

16x
6
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 + 4x+ 4
)
y′′ + (8 + 4x) y′ + 2y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 + 4x+ 4

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ (8 + 4x)

(
∞∑
n=1

nanx
n−1

)
+ 2
(

∞∑
n=0

anx
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=2

4nxn−1an(n− 1)
)

+
(

∞∑
n=2

4n(n− 1) anxn−2

)

+
(

∞∑
n=1

8nanxn−1

)
+
(

∞∑
n=1

4nanxn

)
+
(

∞∑
n=0

2anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
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power and the corresponding index gives

∞∑
n =2

4nxn−1an(n− 1) =
∞∑
n=1

4(n+ 1) an+1nxn

∞∑
n =2

4n(n− 1) anxn−2 =
∞∑
n=0

4(n+ 2) an+2(n+ 1)xn

∞∑
n =1

8nanxn−1 =
∞∑
n=0

8(n+ 1) an+1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=1

4(n+ 1) an+1nxn

)

+
(

∞∑
n=0

4(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=0

8(n+ 1) an+1x
n

)

+
(

∞∑
n=1

4nanxn

)
+
(

∞∑
n=0

2anxn

)
= 0

n = 0 gives
8a2 + 8a1 + 2a0 = 0

a2 = −a0
4 − a1

n = 1 gives
24a2 + 24a3 + 6a1 = 0

Which after substituting earlier equations, simplifies to

a3 =
a0
4 + 3a1

4

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1)+4(n+1) an+1n+4(n+2) an+2(n+1)+8(n+1) an+1+4nan+2an = 0
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Solving for an+2, gives

(5)

an+2 = −an
4 − an+1

= −an
4 − an+1

For n = 2 the recurrence equation gives

12a2 + 48a3 + 48a4 = 0

Which after substituting the earlier terms found becomes

a4 = −3a0
16 − a1

2

For n = 3 the recurrence equation gives

20a3 + 80a4 + 80a5 = 0

Which after substituting the earlier terms found becomes

a5 =
a0
8 + 5a1

16

For n = 4 the recurrence equation gives

30a4 + 120a5 + 120a6 = 0

Which after substituting the earlier terms found becomes

a6 = −5a0
64 − 3a1

16

For n = 5 the recurrence equation gives

42a5 + 168a6 + 168a7 = 0

Which after substituting the earlier terms found becomes

a7 =
3a0
64 + 7a1

64
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And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0+a1x+
(
−a0

4 −a1
)
x2+

(
a0
4 + 3a1

4

)
x3+

(
−3a0

16 − a1
2

)
x4+

(
a0
8 + 5a1

16

)
x5+ . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

4x
2+ 1

4x
3− 3

16x
4+ 1

8x
5
)
a0+

(
x−x2+ 3

4x
3− 1

2x
4+ 5

16x
5
)
a1+O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

4x
2 + 1

4x
3 − 3

16x
4 + 1

8x
5
)
c1 +

(
x− x2 + 3

4x
3 − 1

2x
4 + 5

16x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)
y =

(
1− 1

4x
2 + 1

4x
3 − 3

16x
4 + 1

8x
5 − 5

64x
6
)
y(0)

+
(
x− x2 + 3

4x
3 − 1

2x
4 + 5

16x
5 − 3

16x
6
)
y′(0) +O

(
x6)

(2)y =
(
1− 1

4x
2 + 1

4x
3 − 3

16x
4 + 1

8x
5
)
c1 +

(
x− x2 + 3

4x
3 − 1

2x
4 + 5

16x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 1

4x
2 + 1

4x
3 − 3

16x
4 + 1

8x
5 − 5

64x
6
)
y(0)

+
(
x− x2 + 3

4x
3 − 1

2x
4 + 5

16x
5 − 3

16x
6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 1

4x
2 + 1

4x
3 − 3

16x
4 + 1

8x
5
)
c1 +

(
x− x2 + 3

4x
3 − 1

2x
4 + 5

16x
5
)
c2 +O

(
x6)

Verified OK.
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13.30.1 Maple step by step solution

Let’s solve
(x2 + 4x+ 4) y′′ + (8 + 4x) y′ + 2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − 2y

x2+4x+4 −
4y′
2+x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 4y′

2+x
+ 2y

x2+4x+4 = 0

� Check to see if x0 = −2 is a regular singular point
◦ Define functions[

P2(x) = 4
2+x

, P3(x) = 2
x2+4x+4

]
◦ (2 + x) · P2(x) is analytic at x = −2

((2 + x) · P2(x))
∣∣∣∣
x=−2

= 4

◦ (2 + x)2 · P3(x) is analytic at x = −2(
(2 + x)2 · P3(x)

) ∣∣∣∣
x=−2

= 2

◦ x = −2is a regular singular point
Check to see if x0 = −2 is a regular singular point
x0 = −2

• Multiply by denominators
(2 + x) y′′(x2 + 4x+ 4) + (4x2 + 16x+ 16) y′ + (2x+ 4) y = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

u3
(

d2

du2y(u)
)
+ 4u2( d

du
y(u)

)
+ 2uy(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite DE with series expansions
◦ Convert u · y(u) to series expansion
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u · y(u) =
∞∑
k=0

aku
k+r+1

◦ Shift index using k− >k − 1

u · y(u) =
∞∑
k=1

ak−1u
k+r

◦ Convert u2 ·
(

d
du
y(u)

)
to series expansion

u2 ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r+1

◦ Shift index using k− >k − 1

u2 ·
(

d
du
y(u)

)
=

∞∑
k=1

ak−1(k − 1 + r)uk+r

◦ Convert u3 ·
(

d2

du2y(u)
)

to series expansion

u3 ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k − 1 + r)uk+r+1

◦ Shift index using k− >k − 1

u3 ·
(

d2

du2y(u)
)
=

∞∑
k=1

ak−1(k − 1 + r) (k − 2 + r)uk+r

Rewrite DE with series expansions
∞∑
k=1

ak−1(k + r + 1) (k + r)uk+r = 0

• a0cannot be 0 by assumption, giving the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
ak−1(k + 1) k = 0

• Shift index using k− >k + 1
ak(k + 2) (k + 1) = 0

• Recursion relation that defines series solution to ODE
ak = 0

• Recursion relation for r = 0
ak = 0

• Solution for r = 0
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[
y(u) =

∞∑
k=0

aku
k, ak = 0

]
• Revert the change of variables u = 2 + x[

y =
∞∑
k=0

ak(2 + x)k , ak = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 54� �
Order:=6;
dsolve((4+4*x+x^2)*diff(y(x),x$2)+(8+4*x)*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 1

4x
2 + 1

4x
3 − 3

16x
4 + 1

8x
5
)
y(0)

+
(
x− x2 + 3

4x
3 − 1

2x
4 + 5

16x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 68� �
AsymptoticDSolveValue[(4+4*x+x^2)*y''[x]+(8+4*x)*y'[x]+2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x5

8 − 3x4

16 + x3

4 − x2

4 + 1
)
+ c2

(
5x5

16 − x4

2 + 3x3

4 − x2 + x

)
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13.31 problem 31(e)
13.31.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4414

Internal problem ID [1272]
Internal file name [OUTPUT/1273_Sunday_June_05_2022_02_07_36_AM_89784834/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 31(e).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second_order_change_of_variable_on_y_method_1", "linear_sec-
ond_order_ode_solved_by_an_integrating_factor", "second order series
method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(
3x2 + 8x+ 4

)
y′′ + (16 + 12x) y′ + 6y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1019)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1020)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2(6y′x+ 8y′ + 3y)
3x2 + 8x+ 4

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (162x2 + 432x+ 312) y′ + (108x+ 144) y
(3x2 + 8x+ 4)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(−2592x3 − 10368x2 − 14976x− 7680) y′ − 1944

(
x2 + 8

3x+ 52
27

)
y

(3x2 + 8x+ 4)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(48600x4 + 259200x3 + 561600x2 + 576000x+ 232320) y′ + 38880

(4
3 + x

) (
x2 + 8

3x+ 20
9

)
y

(3x2 + 8x+ 4)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
−1049760

(
x2 + 8

3x+ 52
27

) (4
3 + x

) (
x2 + 8

3x+ 28
9

)
y′ − 874800

(
x4 + 16

3 x
3 + 104

9 x2 + 320
27 x+ 1936

405

)
y

(3x2 + 8x+ 4)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −3y(0)
2 − 4y′(0)

F1 = 9y(0) + 39y′(0)
2

F2 = −117y(0)
2 − 120y′(0)

F3 = 450y(0) + 1815y′(0)
2

F4 = −16335y(0)
4 − 8190y′(0)
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 3

4x
2 + 3

2x
3 − 39

16x
4 + 15

4 x5 − 363
64 x6

)
y(0)

+
(
x− 2x2 + 13

4 x3 − 5x4 + 121
16 x5 − 91

8 x6
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

3x2 + 8x+ 4
)
y′′ + (16 + 12x) y′ + 6y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
3x2 + 8x+ 4

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ (16 + 12x)

(
∞∑
n=1

nanx
n−1

)
+ 6
(

∞∑
n=0

anx
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

3xnann(n− 1)
)

+
(

∞∑
n=2

8nxn−1an(n− 1)
)

+
(

∞∑
n=2

4n(n− 1) anxn−2

)

+
(

∞∑
n=1

16nanxn−1

)
+
(

∞∑
n=1

12nanxn

)
+
(

∞∑
n=0

6anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
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power and the corresponding index gives

∞∑
n =2

8nxn−1an(n− 1) =
∞∑
n=1

8(n+ 1) an+1nxn

∞∑
n =2

4n(n− 1) anxn−2 =
∞∑
n=0

4(n+ 2) an+2(n+ 1)xn

∞∑
n =1

16nanxn−1 =
∞∑
n=0

16(n+ 1) an+1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

3xnann(n− 1)
)

+
(

∞∑
n=1

8(n+ 1) an+1nxn

)

+
(

∞∑
n=0

4(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=0

16(n+ 1) an+1x
n

)

+
(

∞∑
n=1

12nanxn

)
+
(

∞∑
n=0

6anxn

)
= 0

n = 0 gives
8a2 + 16a1 + 6a0 = 0

a2 = −3a0
4 − 2a1

n = 1 gives
48a2 + 24a3 + 18a1 = 0

Which after substituting earlier equations, simplifies to

a3 =
3a0
2 + 13a1

4

For 2 ≤ n, the recurrence equation is

3nan(n− 1)+ 8(n+1) an+1n+4(n+2) an+2(n+1)+ 16(n+1) an+1 +12nan +6an = 0
(4)
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Solving for an+2, gives

(5)

an+2 = −3an
4 − 2an+1

= −3an
4 − 2an+1

For n = 2 the recurrence equation gives

36a2 + 96a3 + 48a4 = 0

Which after substituting the earlier terms found becomes

a4 = −39a0
16 − 5a1

For n = 3 the recurrence equation gives

60a3 + 160a4 + 80a5 = 0

Which after substituting the earlier terms found becomes

a5 =
15a0
4 + 121a1

16

For n = 4 the recurrence equation gives

90a4 + 240a5 + 120a6 = 0

Which after substituting the earlier terms found becomes

a6 = −363a0
64 − 91a1

8

For n = 5 the recurrence equation gives

126a5 + 336a6 + 168a7 = 0

Which after substituting the earlier terms found becomes

a7 =
273a0
32 + 1093a1

64
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And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+
(
−3a0

4 − 2a1
)
x2 +

(
3a0
2 + 13a1

4

)
x3

+
(
−39a0

16 − 5a1
)
x4 +

(
15a0
4 + 121a1

16

)
x5 + . . .

Collecting terms, the solution becomes

y =
(
1− 3

4x
2 + 3

2x
3 − 39

16x
4 + 15

4 x5
)
a0 +

(
x− 2x2 + 13

4 x3 − 5x4 + 121
16 x5

)
a1 +O

(
x6)
(3)

At x = 0 the solution above becomes

y =
(
1− 3

4x
2 + 3

2x
3 − 39

16x
4 + 15

4 x5
)
c1 +

(
x− 2x2 + 13

4 x3 − 5x4 + 121
16 x5

)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)
y =

(
1− 3

4x
2 + 3

2x
3 − 39

16x
4 + 15

4 x5 − 363
64 x6

)
y(0)

+
(
x− 2x2 + 13

4 x3 − 5x4 + 121
16 x5 − 91

8 x6
)
y′(0) +O

(
x6)

y =
(
1− 3

4x
2 + 3

2x
3 − 39

16x
4 + 15

4 x5
)
c1 +

(
x− 2x2 + 13

4 x3 − 5x4 + 121
16 x5

)
c2 +O

(
x6)
(2)
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Verification of solutions

y =
(
1− 3

4x
2 + 3

2x
3 − 39

16x
4 + 15

4 x5 − 363
64 x6

)
y(0)

+
(
x− 2x2 + 13

4 x3 − 5x4 + 121
16 x5 − 91

8 x6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 3

4x
2 + 3

2x
3 − 39

16x
4 + 15

4 x5
)
c1 +

(
x− 2x2 + 13

4 x3 − 5x4 + 121
16 x5

)
c2 +O

(
x6)

Verified OK.

13.31.1 Maple step by step solution

Let’s solve
(3x2 + 8x+ 4) y′′ + (16 + 12x) y′ + 6y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 6y
3x2+8x+4 −

4(3x+4)y′
3x2+8x+4

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 4(3x+4)y′
3x2+8x+4 +

6y
3x2+8x+4 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 4(3x+4)
3x2+8x+4 , P3(x) = 6

3x2+8x+4

]
◦ (2 + x) · P2(x) is analytic at x = −2

((2 + x) · P2(x))
∣∣∣∣
x=−2

= 2

◦ (2 + x)2 · P3(x) is analytic at x = −2(
(2 + x)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2
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• Multiply by denominators
(3x2 + 8x+ 4) y′′ + (16 + 12x) y′ + 6y = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(3u2 − 4u)
(

d2

du2y(u)
)
+ (−8 + 12u)

(
d
du
y(u)

)
+ 6y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−4a0r(1 + r)u−1+r +
(

∞∑
k=0

(−4ak+1(k + r + 1) (k + r + 2) + 3ak(k + r + 2) (k + r + 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−4r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term in the series must be 0, giving the recursion relation
(k + r + 2) (k + r + 1) (−4ak+1 + 3ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 3ak

4
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• Recursion relation for r = −1
ak+1 = 3ak

4

• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+1 = 3ak

4

]
• Revert the change of variables u = 2 + x[

y =
∞∑
k=0

ak(2 + x)k−1 , ak+1 = 3ak
4

]
• Recursion relation for r = 0

ak+1 = 3ak
4

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = 3ak

4

]
• Revert the change of variables u = 2 + x[

y =
∞∑
k=0

ak(2 + x)k , ak+1 = 3ak
4

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(2 + x)k−1
)
+
(

∞∑
k=0

bk(2 + x)k
)
, a1+k = 3ak

4 , b1+k = 3bk
4

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 54� �
Order:=6;
dsolve((4+8*x+3*x^2)*diff(y(x),x$2)+(16+12*x)*diff(y(x),x)+6*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 3

4x
2 + 3

2x
3 − 39

16x
4 + 15

4 x5
)
y(0)

+
(
x− 2x2 + 13

4 x3 − 5x4 + 121
16 x5

)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 66� �
AsymptoticDSolveValue[(4+8*x+3*x^2)*y''[x]+(16+12*x)*y'[x]+6*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
15x5

4 − 39x4

16 + 3x3

2 − 3x2

4 + 1
)
+ c2

(
121x5

16 − 5x4 + 13x3

4 − 2x2 + x

)
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13.32 problem 32
13.32.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4418
13.32.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4426

Internal problem ID [1273]
Internal file name [OUTPUT/1274_Sunday_June_05_2022_02_07_37_AM_11537175/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 32.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 2y′x+
(
2x2 + 3

)
y = 0

With initial conditions

[y(0) = 1, y′(0) = −2]

With the expansion point for the power series method at x = 0.

13.32.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 2x
q(x) = 2x2 + 3

F = 0
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Hence the ode is

y′′ + 2y′x+
(
2x2 + 3

)
y = 0

The domain of p(x) = 2x is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 2x2 + 3 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1022)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1023)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2x2y − 2y′x− 3y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 4yx3 + 2y′x2 + 2yx− 5y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 16y′x− 4
(
x4 − 4x2 − 17

4

)
y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
−4x4 − 16x2 + 33

)
y′ +

(
−48x3 − 16x

)
y

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
8x5 − 32x3 − 114x

)
y′ + 8y

(
x6 + 11

2 x4 − 81
4 x2 − 115

8

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 1 and
y′(0) = −2 gives

F0 = −3
F1 = 10
F2 = 17
F3 = −66
F4 = −115

Substituting all the above in (7) and simplifying gives the solution as

y = 1− 2x− 3x2

2 + 5x3

3 + 17x4

24 − 11x5

20 − 23x6

144 +O
(
x6)

y = 1− 2x− 3x2

2 + 5x3

3 + 17x4

24 − 11x5

20 − 23x6

144 +O
(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) anxn−2 = −2x2

(
∞∑
n=0

anx
n

)
− 2
(

∞∑
n=1

nanx
n−1

)
x− 3

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

2nxnan

)
+
(

∞∑
n=0

2xn+2an

)
+
(

∞∑
n=0

3anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =0

2xn+2an =
∞∑
n=2

2an−2x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=1

2nxnan

)
+
(

∞∑
n=2

2an−2x
n

)
+
(

∞∑
n=0

3anxn

)
= 0

(3)
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n = 0 gives
2a2 + 3a0 = 0

a2 = −3a0
2

n = 1 gives
6a3 + 5a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −5a1
6

For 2 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + 2nan + 2an−2 + 3an = 0

Solving for an+2, gives

(5)

an+2 = −2nan + 3an + 2an−2

(n+ 2) (n+ 1)

= − (2n+ 3) an
(n+ 2) (n+ 1) −

2an−2

(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

12a4 + 7a2 + 2a0 = 0

Which after substituting the earlier terms found becomes

a4 =
17a0
24

For n = 3 the recurrence equation gives

20a5 + 9a3 + 2a1 = 0
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Which after substituting the earlier terms found becomes

a5 =
11a1
40

For n = 4 the recurrence equation gives

30a6 + 11a4 + 2a2 = 0

Which after substituting the earlier terms found becomes

a6 = −23a0
144

For n = 5 the recurrence equation gives

42a7 + 13a5 + 2a3 = 0

Which after substituting the earlier terms found becomes

a7 = −229a1
5040

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 3
2a0x

2 − 5
6a1x

3 + 17
24a0x

4 + 11
40a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 3

2x
2 + 17

24x
4
)
a0 +

(
x− 5

6x
3 + 11

40x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 3

2x
2 + 17

24x
4
)
c1 +

(
x− 5

6x
3 + 11

40x
5
)
c2 +O

(
x6)
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y = 1− 3x2

2 + 17x4

24 − 2x+ 5x3

3 − 11x5

20 +O
(
x6)

Summary
The solution(s) found are the following

(1)y = 1− 2x− 3x2

2 + 5x3

3 + 17x4

24 − 11x5

20 − 23x6

144 +O
(
x6)

(2)y = 1− 3x2

2 + 17x4

24 − 2x+ 5x3

3 − 11x5

20 +O
(
x6)

Verification of solutions

y = 1− 2x− 3x2

2 + 5x3

3 + 17x4

24 − 11x5

20 − 23x6

144 +O
(
x6)

Verified OK.

y = 1− 3x2

2 + 17x4

24 − 2x+ 5x3

3 − 11x5

20 +O
(
x6)

Verified OK.

13.32.2 Maple step by step solution

Let’s solve[
y′′ = −2x2y − 2y′x− 3y, y(0) = 1, y′

∣∣∣{x=0}
= −2

]
• Highest derivative means the order of the ODE is 2

y′′

• Isolate 2nd derivative
y′′ = (−2x2 − 3) y − 2y′x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2y′x+ (2x2 + 3) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2
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xm · y =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

akk x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 3a0 + (6a3 + 5a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + ak(2k + 3) + 2ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + 3a0 = 0, 6a3 + 5a1 = 0]

• Solve for the dependent coefficient(s){
a2 = −3a0

2 , a3 = −5a1
6

}
• Each term in the series must be 0, giving the recursion relation

(k2 + 3k + 2) ak+2 + 2akk + 3ak + 2ak−2 = 0
• Shift index using k− >k + 2(

(k + 2)2 + 3k + 8
)
ak+4 + 2ak+2(k + 2) + 3ak+2 + 2ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+4 = −2kak+2+2ak+7ak+2

k2+7k+12 , a2 = −3a0
2 , a3 = −5a1

6

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Kummer successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([diff(y(x),x$2)+2*x*diff(y(x),x)+(3+2*x^2)*y(x)=0,y(0) = 1, D(y)(0) = -2],y(x),type='series',x=0);� �

y(x) = 1− 2x− 3
2x

2 + 5
3x

3 + 17
24x

4 − 11
20x

5 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 36� �
AsymptoticDSolveValue[{y''[x]+2*x*y'[x]+(3+2*x^2)*y[x]==0,{y[0]==1,y'[0]==-2}},y[x],{x,0,5}]� �

y(x) → −11x5

20 + 17x4

24 + 5x3

3 − 3x2

2 − 2x+ 1
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13.33 problem 33
13.33.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4429
13.33.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4437

Internal problem ID [1274]
Internal file name [OUTPUT/1275_Sunday_June_05_2022_02_07_39_AM_40863679/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 33.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − 3y′x+
(
2x2 + 5

)
y = 0

With initial conditions

[y(0) = 1, y′(0) = −2]

With the expansion point for the power series method at x = 0.

13.33.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −3x
q(x) = 2x2 + 5

F = 0
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Hence the ode is

y′′ − 3y′x+
(
2x2 + 5

)
y = 0

The domain of p(x) = −3x is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 2x2 + 5 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1025)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1026)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2x2y + 3y′x− 5y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −6yx3 + 7y′x2 − 19yx− 2y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(
15x3 − 11x

)
y′ +

(
−14x4 − 49x2 − 9

)
y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
31x4 − 37x2 − 20

)
y′ +

(
−30x5 − 109x3 − 43x

)
y

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
63x5 − 96x3 − 177x

)
y′ +

(
−62x6 − 231x4 − 102x2 + 57

)
y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 1 and
y′(0) = −2 gives

F0 = −5
F1 = 4
F2 = −9
F3 = 40
F4 = 57

Substituting all the above in (7) and simplifying gives the solution as

y = 1− 2x− 5x2

2 + 2x3

3 − 3x4

8 + x5

3 + 19x6

240 +O
(
x6)

y = 1− 2x− 5x2

2 + 2x3

3 − 3x4

8 + x5

3 + 19x6

240 +O
(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) anxn−2 = −2x2

(
∞∑
n=0

anx
n

)
+ 3
(

∞∑
n=1

nanx
n−1

)
x− 5

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(−3nxnan) +
(

∞∑
n=0

2xn+2an

)
+
(

∞∑
n=0

5anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =0

2xn+2an =
∞∑
n=2

2an−2x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+

∞∑
n =1

(−3nxnan) +
(

∞∑
n=2

2an−2x
n

)
+
(

∞∑
n=0

5anxn

)
= 0

(3)
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n = 0 gives
2a2 + 5a0 = 0

a2 = −5a0
2

n = 1 gives
6a3 + 2a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −a1
3

For 2 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1)− 3nan + 2an−2 + 5an = 0

Solving for an+2, gives

(5)

an+2 =
3nan − 5an − 2an−2

(n+ 2) (n+ 1)

= (3n− 5) an
(n+ 2) (n+ 1) −

2an−2

(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

12a4 − a2 + 2a0 = 0

Which after substituting the earlier terms found becomes

a4 = −3a0
8

For n = 3 the recurrence equation gives

20a5 − 4a3 + 2a1 = 0
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Which after substituting the earlier terms found becomes

a5 = −a1
6

For n = 4 the recurrence equation gives

30a6 − 7a4 + 2a2 = 0

Which after substituting the earlier terms found becomes

a6 =
19a0
240

For n = 5 the recurrence equation gives

42a7 − 10a5 + 2a3 = 0

Which after substituting the earlier terms found becomes

a7 = −a1
42

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 5
2a0x

2 − 1
3a1x

3 − 3
8a0x

4 − 1
6a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 5

2x
2 − 3

8x
4
)
a0 +

(
x− 1

3x
3 − 1

6x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 5

2x
2 − 3

8x
4
)
c1 +

(
x− 1

3x
3 − 1

6x
5
)
c2 +O

(
x6)
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y = 1− 5x2

2 − 3x4

8 − 2x+ 2x3

3 + x5

3 +O
(
x6)

Summary
The solution(s) found are the following

(1)y = 1− 2x− 5x2

2 + 2x3

3 − 3x4

8 + x5

3 + 19x6

240 +O
(
x6)

(2)y = 1− 5x2

2 − 3x4

8 − 2x+ 2x3

3 + x5

3 +O
(
x6)

Verification of solutions

y = 1− 2x− 5x2

2 + 2x3

3 − 3x4

8 + x5

3 + 19x6

240 +O
(
x6)

Verified OK.

y = 1− 5x2

2 − 3x4

8 − 2x+ 2x3

3 + x5

3 +O
(
x6)

Verified OK.

13.33.2 Maple step by step solution

Let’s solve[
y′′ = −2x2y + 3y′x− 5y, y(0) = 1, y′

∣∣∣{x=0}
= −2

]
• Highest derivative means the order of the ODE is 2

y′′

• Isolate 2nd derivative
y′′ = (−2x2 − 5) y + 3y′x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 3y′x+ (2x2 + 5) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2
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xm · y =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

akk x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 5a0 + (6a3 + 2a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− ak(3k − 5) + 2ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + 5a0 = 0, 6a3 + 2a1 = 0]

• Solve for the dependent coefficient(s){
a2 = −5a0

2 , a3 = −a1
3

}
• Each term in the series must be 0, giving the recursion relation

(k2 + 3k + 2) ak+2 − 3akk + 5ak + 2ak−2 = 0
• Shift index using k− >k + 2(

(k + 2)2 + 3k + 8
)
ak+4 − 3ak+2(k + 2) + 5ak+2 + 2ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+4 = 3kak+2−2ak+ak+2

k2+7k+12 , a2 = −5a0
2 , a3 = −a1

3

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([diff(y(x),x$2)-3*x*diff(y(x),x)+(5+2*x^2)*y(x)=0,y(0) = 1, D(y)(0) = -2],y(x),type='series',x=0);� �

y(x) = 1− 2x− 5
2x

2 + 2
3x

3 − 3
8x

4 + 1
3x

5 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 36� �
AsymptoticDSolveValue[{y''[x]-3*x*y'[x]+(5+2*x^2)*y[x]==0,{y[0]==1,y'[0]==-2}},y[x],{x,0,5}]� �

y(x) → x5

3 − 3x4

8 + 2x3

3 − 5x2

2 − 2x+ 1
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13.34 problem 34
13.34.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4440
13.34.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4448

Internal problem ID [1275]
Internal file name [OUTPUT/1276_Sunday_June_05_2022_02_07_41_AM_99699570/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 34.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 5y′x−
(
−x2 + 3

)
y = 0

With initial conditions

[y(0) = 6, y′(0) = −2]

With the expansion point for the power series method at x = 0.

13.34.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 5x
q(x) = x2 − 3

F = 0
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Hence the ode is

y′′ + 5y′x+
(
x2 − 3

)
y = 0

The domain of p(x) = 5x is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = x2 − 3 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1028)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1029)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −x2y − 5y′x+ 3y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 5yx3 + 24y′x2 − 17yx− 2y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(
−115x3 + 41x

)
y′ +

(
−24x4 + 89x2 − 23

)
y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
551x4 − 461x2 + 18

)
y′ +

(
115x5 − 482x3 + 301x

)
y

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
−2640x5 + 4027x3 − 711x

)
y′ +

(
−551x6 + 2689x4 − 2847x2 + 355

)
y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 6 and
y′(0) = −2 gives

F0 = 18
F1 = 4
F2 = −138
F3 = −36
F4 = 2130

Substituting all the above in (7) and simplifying gives the solution as

y = 9x2 − 2x+ 6 + 2x3

3 − 23x4

4 − 3x5

10 + 71x6

24 +O
(
x6)

y = 9x2 − 2x+ 6 + 2x3

3 − 23x4

4 − 3x5

10 + 71x6

24 +O
(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) anxn−2 = −x2

(
∞∑
n=0

anx
n

)
− 5
(

∞∑
n=1

nanx
n−1

)
x+ 3

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

5nxnan

)
+
(

∞∑
n=0

xn+2an

)
+

∞∑
n =0

(−3anxn) = 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =0

xn+2an =
∞∑
n=2

an−2x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=1

5nxnan

)
+
(

∞∑
n=2

an−2x
n

)
+

∞∑
n =0

(−3anxn) = 0

(3)
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n = 0 gives
2a2 − 3a0 = 0

a2 =
3a0
2

n = 1 gives
6a3 + 2a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −a1
3

For 2 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + 5nan + an−2 − 3an = 0

Solving for an+2, gives

(5)

an+2 = −5nan − 3an + an−2

(n+ 2) (n+ 1)

= − (5n− 3) an
(n+ 2) (n+ 1) −

an−2

(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

12a4 + 7a2 + a0 = 0

Which after substituting the earlier terms found becomes

a4 = −23a0
24

For n = 3 the recurrence equation gives

20a5 + 12a3 + a1 = 0
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Which after substituting the earlier terms found becomes

a5 =
3a1
20

For n = 4 the recurrence equation gives

30a6 + 17a4 + a2 = 0

Which after substituting the earlier terms found becomes

a6 =
71a0
144

For n = 5 the recurrence equation gives

42a7 + 22a5 + a3 = 0

Which after substituting the earlier terms found becomes

a7 = −89a1
1260

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ 3
2a0x

2 − 1
3a1x

3 − 23
24a0x

4 + 3
20a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + 3

2x
2 − 23

24x
4
)
a0 +

(
x− 1

3x
3 + 3

20x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1 + 3

2x
2 − 23

24x
4
)
c1 +

(
x− 1

3x
3 + 3

20x
5
)
c2 +O

(
x6)
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y = 6 + 9x2 − 23x4

4 − 2x+ 2x3

3 − 3x5

10 +O
(
x6)

Summary
The solution(s) found are the following

(1)y = 9x2 − 2x+ 6 + 2x3

3 − 23x4

4 − 3x5

10 + 71x6

24 +O
(
x6)

(2)y = 6 + 9x2 − 23x4

4 − 2x+ 2x3

3 − 3x5

10 +O
(
x6)

Verification of solutions

y = 9x2 − 2x+ 6 + 2x3

3 − 23x4

4 − 3x5

10 + 71x6

24 +O
(
x6)

Verified OK.

y = 6 + 9x2 − 23x4

4 − 2x+ 2x3

3 − 3x5

10 +O
(
x6)

Verified OK.

13.34.2 Maple step by step solution

Let’s solve[
y′′ = −x2y − 5y′x+ 3y, y(0) = 6, y′

∣∣∣{x=0}
= −2

]
• Highest derivative means the order of the ODE is 2

y′′

• Isolate 2nd derivative
y′′ = −5y′x+ (−x2 + 3) y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 5y′x+ (x2 − 3) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2
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xm · y =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

akk x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 − 3a0 + (6a3 + 2a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + ak(5k − 3) + ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 − 3a0 = 0, 6a3 + 2a1 = 0]

• Solve for the dependent coefficient(s){
a2 = 3a0

2 , a3 = −a1
3

}
• Each term in the series must be 0, giving the recursion relation

(k2 + 3k + 2) ak+2 + 5akk − 3ak + ak−2 = 0
• Shift index using k− >k + 2(

(k + 2)2 + 3k + 8
)
ak+4 + 5ak+2(k + 2)− 3ak+2 + ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+4 = −5kak+2+ak+7ak+2

k2+7k+12 , a2 = 3a0
2 , a3 = −a1

3

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Kummer successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
Order:=6;
dsolve([diff(y(x),x$2)+5*x*diff(y(x),x)-(3-x^2)*y(x)=0,y(0) = 6, D(y)(0) = -2],y(x),type='series',x=0);� �

y(x) = 6− 2x+ 9x2 + 2
3x

3 − 23
4 x4 − 3

10x
5 +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 34� �
AsymptoticDSolveValue[{y''[x]+5*x*y'[x]-(3-x^2)*y[x]==0,{y[0]==6,y'[0]==-2}},y[x],{x,0,5}]� �

y(x) → −3x5

10 − 23x4

4 + 2x3

3 + 9x2 − 2x+ 6
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13.35 problem 35
13.35.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4451
13.35.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4459

Internal problem ID [1276]
Internal file name [OUTPUT/1277_Sunday_June_05_2022_02_07_50_AM_61947886/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 35.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − 2y′x−
(
3x2 + 2

)
y = 0

With initial conditions

[y(0) = 2, y′(0) = −5]

With the expansion point for the power series method at x = 0.

13.35.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −2x
q(x) = −3x2 − 2

F = 0

4451



Hence the ode is

y′′ − 2y′x+
(
−3x2 − 2

)
y = 0

The domain of p(x) = −2x is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = −3x2 − 2 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1031)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1032)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = 3x2y + 2y′x+ 2y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 6yx3 + 7y′x2 + 10yx+ 4y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(
20x3 + 32x

)
y′ + y

(
21x4 + 44x2 + 18

)
F3 =

dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
61x4 + 168x2 + 50

)
y′ + 60

(
x4 + 11

3 x2 + 38
15

)
xy

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
182x5 + 800x3 + 588x

)
y′ + y

(
183x6 + 926x4 + 1146x2 + 252

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 2 and
y′(0) = −5 gives

F0 = 4
F1 = −20
F2 = 36
F3 = −250
F4 = 504

Substituting all the above in (7) and simplifying gives the solution as

y = 2x2 − 5x+ 2− 10x3

3 + 3x4

2 − 25x5

12 + 7x6

10 +O
(
x6)

y = 2x2 − 5x+ 2− 10x3

3 + 3x4

2 − 25x5

12 + 7x6

10 +O
(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) anxn−2 = 3x2

(
∞∑
n=0

anx
n

)
+ 2
(

∞∑
n=1

nanx
n−1

)
x+ 2

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(−2nxnan) +
∞∑

n =0

(
−3xn+2an

)
+

∞∑
n =0

(−2anxn) = 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =0

(
−3xn+2an

)
=

∞∑
n=2

(−3an−2x
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+

∞∑
n =1

(−2nxnan) +
∞∑

n =2

(−3an−2x
n) +

∞∑
n =0

(−2anxn) = 0

(3)
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n = 0 gives
2a2 − 2a0 = 0

a2 = a0

n = 1 gives
6a3 − 4a1 = 0

Which after substituting earlier equations, simplifies to

a3 =
2a1
3

For 2 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1)− 2nan − 3an−2 − 2an = 0

Solving for an+2, gives

(5)

an+2 =
2nan + 2an + 3an−2

(n+ 2) (n+ 1)

= (2n+ 2) an
(n+ 2) (n+ 1) +

3an−2

(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

12a4 − 6a2 − 3a0 = 0

Which after substituting the earlier terms found becomes

a4 =
3a0
4

For n = 3 the recurrence equation gives

20a5 − 8a3 − 3a1 = 0

Which after substituting the earlier terms found becomes

a5 =
5a1
12
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For n = 4 the recurrence equation gives

30a6 − 10a4 − 3a2 = 0

Which after substituting the earlier terms found becomes

a6 =
7a0
20

For n = 5 the recurrence equation gives

42a7 − 12a5 − 3a3 = 0

Which after substituting the earlier terms found becomes

a7 =
a1
6

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ a0x
2 + 2

3a1x
3 + 3

4a0x
4 + 5

12a1x
5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + x2 + 3

4x
4
)
a0 +

(
x+ 2

3x
3 + 5

12x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1 + x2 + 3

4x
4
)
c1 +

(
x+ 2

3x
3 + 5

12x
5
)
c2 +O

(
x6)

y = 2 + 2x2 + 3x4

2 − 5x− 10x3

3 − 25x5

12 +O
(
x6)
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Summary
The solution(s) found are the following

(1)y = 2x2 − 5x+ 2− 10x3

3 + 3x4

2 − 25x5

12 + 7x6

10 +O
(
x6)

(2)y = 2 + 2x2 + 3x4

2 − 5x− 10x3

3 − 25x5

12 +O
(
x6)

Verification of solutions

y = 2x2 − 5x+ 2− 10x3

3 + 3x4

2 − 25x5

12 + 7x6

10 +O
(
x6)

Verified OK.

y = 2 + 2x2 + 3x4

2 − 5x− 10x3

3 − 25x5

12 +O
(
x6)

Verified OK.

13.35.2 Maple step by step solution

Let’s solve[
y′′ = 3x2y + 2y′x+ 2y, y(0) = 2, y′

∣∣∣{x=0}
= −5

]
• Highest derivative means the order of the ODE is 2

y′′

• Isolate 2nd derivative
y′′ = 2y′x+ (3x2 + 2) y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 2y′x+ (−3x2 − 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m
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xm · y =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

akk x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 − 2a0 + (6a3 − 4a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− 2ak(k + 1)− 3ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 − 2a0 = 0, 6a3 − 4a1 = 0]

• Solve for the dependent coefficient(s){
a2 = a0, a3 = 2a1

3

}
• Each term in the series must be 0, giving the recursion relation

(k2 + 3k + 2) ak+2 − 2akk − 2ak − 3ak−2 = 0
• Shift index using k− >k + 2(

(k + 2)2 + 3k + 8
)
ak+4 − 2ak+2(k + 2)− 2ak+2 − 3ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+4 = 2kak+2+3ak+6ak+2

k2+7k+12 , a2 = a0, a3 = 2a1
3

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Kummer successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([diff(y(x),x$2)-2*x*diff(y(x),x)-(2+3*x^2)*y(x)=0,y(0) = 2, D(y)(0) = -5],y(x),type='series',x=0);� �

y(x) = 2− 5x+ 2x2 − 10
3 x3 + 3

2x
4 − 25

12x
5 +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 34� �
AsymptoticDSolveValue[{y''[x]-2*x*y'[x]-(2+3*x^2)*y[x]==0,{y[0]==2,y'[0]==-5}},y[x],{x,0,5}]� �

y(x) → −25x5

12 + 3x4

2 − 10x3

3 + 2x2 − 5x+ 2
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13.36 problem 36
13.36.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4462
13.36.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4470

Internal problem ID [1277]
Internal file name [OUTPUT/1278_Sunday_June_05_2022_02_07_53_AM_30782941/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 36.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 3y′x+
(
4x2 + 2

)
y = 0

With initial conditions

[y(0) = 3, y′(0) = 6]

With the expansion point for the power series method at x = 0.

13.36.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 3x
q(x) = 4x2 + 2

F = 0
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Hence the ode is

y′′ + 3y′x+
(
4x2 + 2

)
y = 0

The domain of p(x) = 3x is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 4x2 + 2 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1034)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1035)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −4x2y − 3y′x− 2y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 5
(
x2 − 1

)
y′ + 2

(
6x3 − x

)
y

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(
−3x3 + 23x

)
y′ +

(
−20x4 + 46x2 + 8

)
y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
−11x4 − 32x2 + 31

)
y′ + 12x

(
x4 − 83

6 x2 + 23
6

)
y

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
45x5 − 114x3 − 111x

)
y′ +

(
44x6 + 210x4 − 558x2 − 16

)
y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 3 and
y′(0) = 6 gives

F0 = −6
F1 = −30
F2 = 24
F3 = 186
F4 = −48

Substituting all the above in (7) and simplifying gives the solution as

y = x4 − 5x3 − 3x2 + 6x+ 3 + 31x5

20 − x6

15 +O
(
x6)

y = x4 − 5x3 − 3x2 + 6x+ 3 + 31x5

20 − x6

15 +O
(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) anxn−2 = −4x2

(
∞∑
n=0

anx
n

)
− 3
(

∞∑
n=1

nanx
n−1

)
x− 2

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

3nxnan

)
+
(

∞∑
n=0

4xn+2an

)
+
(

∞∑
n=0

2anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =0

4xn+2an =
∞∑
n=2

4an−2x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=1

3nxnan

)
+
(

∞∑
n=2

4an−2x
n

)
+
(

∞∑
n=0

2anxn

)
= 0

(3)
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n = 0 gives
2a2 + 2a0 = 0

a2 = −a0

n = 1 gives
6a3 + 5a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −5a1
6

For 2 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + 3nan + 4an−2 + 2an = 0

Solving for an+2, gives

(5)

an+2 = −3nan + 2an + 4an−2

(n+ 2) (n+ 1)

= − (3n+ 2) an
(n+ 2) (n+ 1) −

4an−2

(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

12a4 + 8a2 + 4a0 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
3

For n = 3 the recurrence equation gives

20a5 + 11a3 + 4a1 = 0

Which after substituting the earlier terms found becomes

a5 =
31a1
120
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For n = 4 the recurrence equation gives

30a6 + 14a4 + 4a2 = 0

Which after substituting the earlier terms found becomes

a6 = −a0
45

For n = 5 the recurrence equation gives

42a7 + 17a5 + 4a3 = 0

Which after substituting the earlier terms found becomes

a7 = −127a1
5040

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− a0x
2 − 5

6a1x
3 + 1

3a0x
4 + 31

120a1x
5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− x2 + 1

3x
4
)
a0 +

(
x− 5

6x
3 + 31

120x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x2 + 1

3x
4
)
c1 +

(
x− 5

6x
3 + 31

120x
5
)
c2 +O

(
x6)

y = x4 − 3x2 + 3 + 6x− 5x3 + 31x5

20 +O
(
x6)
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Summary
The solution(s) found are the following

(1)y = x4 − 5x3 − 3x2 + 6x+ 3 + 31x5

20 − x6

15 +O
(
x6)

(2)y = x4 − 3x2 + 3 + 6x− 5x3 + 31x5

20 +O
(
x6)

Verification of solutions

y = x4 − 5x3 − 3x2 + 6x+ 3 + 31x5

20 − x6

15 +O
(
x6)

Verified OK.

y = x4 − 3x2 + 3 + 6x− 5x3 + 31x5

20 +O
(
x6)

Verified OK.

13.36.2 Maple step by step solution

Let’s solve[
y′′ = −4x2y − 3y′x− 2y, y(0) = 3, y′

∣∣∣{x=0}
= 6
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = (−4x2 − 2) y − 3y′x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 3y′x+ (4x2 + 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m
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xm · y =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

akk x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 2a0 + (6a3 + 5a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + ak(3k + 2) + 4ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + 2a0 = 0, 6a3 + 5a1 = 0]

• Solve for the dependent coefficient(s){
a2 = −a0, a3 = −5a1

6

}
• Each term in the series must be 0, giving the recursion relation

(k2 + 3k + 2) ak+2 + 3akk + 2ak + 4ak−2 = 0
• Shift index using k− >k + 2(

(k + 2)2 + 3k + 8
)
ak+4 + 3ak+2(k + 2) + 2ak+2 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+4 = −3kak+2+4ak+8ak+2

k2+7k+12 , a2 = −a0, a3 = −5a1
6

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Kummer successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 20� �
Order:=6;
dsolve([diff(y(x),x$2)+3*x*diff(y(x),x)+(2+4*x^2)*y(x)=0,y(0) = 3, D(y)(0) = 6],y(x),type='series',x=0);� �

y(x) = 3 + 6x− 3x2 − 5x3 + x4 + 31
20x

5 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28� �
AsymptoticDSolveValue[{y''[x]+3*x*y'[x]+(2+4*x^2)*y[x]==0,{y[0]==3,y'[0]==6}},y[x],{x,0,5}]� �

y(x) → 31x5

20 + x4 − 5x3 − 3x2 + 6x+ 3
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13.37 problem 37
13.37.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4473
13.37.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4481

Internal problem ID [1278]
Internal file name [OUTPUT/1279_Sunday_June_05_2022_02_07_55_AM_13752740/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 37.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2y′′ + 5y′x+
(
2x2 + 4

)
y = 0

With initial conditions

[y(0) = 3, y′(0) = −2]

With the expansion point for the power series method at x = 0.

13.37.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 5x
2

q(x) = x2 + 2
F = 0
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Hence the ode is

y′′ + 5y′x
2 +

(
x2 + 2

)
y = 0

The domain of p(x) = 5x
2 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = x2 + 2 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1037)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1038)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −x2y − 5y′x
2 − 2y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 3(7x2 − 6) y′
4 + (5x3 + 6x) y

2
F2 =

dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (−85x3 + 198x) y′
8 + 3(−7x4 + 2x2 + 16) y

4
F3 =

dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (341x4 − 1476x2 + 588) y′
16 + (85x5 − 196x3 − 372x) y

8
F4 =

dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= 21(−65x5 + 444x3 − 492x) y′
32 + (−341x6 + 1644x4 + 1188x2 − 1920) y

16
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 3 and
y′(0) = −2 gives

F0 = −6
F1 = 9
F2 = 36

F3 = −147
2

F4 = −360

Substituting all the above in (7) and simplifying gives the solution as

y = −3x2 − 2x+ 3 + 3x3

2 + 3x4

2 − 49x5

80 − x6

2 +O
(
x6)
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y = −3x2 − 2x+ 3 + 3x3

2 + 3x4

2 − 49x5

80 − x6

2 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) anxn−2 = −x2

(
∞∑
n=0

anx
n

)
−

5
(

∞∑
n=1

nanx
n−1
)
x

2 − 2
(

∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

2n(n− 1) anxn−2

)
+
(

∞∑
n=1

5nxnan

)
+
(

∞∑
n=0

2xn+2an

)
+
(

∞∑
n=0

4anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

2n(n− 1) anxn−2 =
∞∑
n=0

2(n+ 2) an+2(n+ 1)xn

∞∑
n =0

2xn+2an =
∞∑
n=2

2an−2x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.(

∞∑
n=0

2(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=1

5nxnan

)
+
(

∞∑
n=2

2an−2x
n

)
+
(

∞∑
n=0

4anxn

)
= 0

(3)
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n = 0 gives
4a2 + 4a0 = 0

a2 = −a0

n = 1 gives
12a3 + 9a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −3a1
4

For 2 ≤ n, the recurrence equation is

(4)2(n+ 2) an+2(n+ 1) + 5nan + 2an−2 + 4an = 0

Solving for an+2, gives

(5)

an+2 = −5nan + 4an + 2an−2

2 (n+ 2) (n+ 1)

= − (5n+ 4) an
2 (n+ 2) (n+ 1) −

an−2

(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

24a4 + 14a2 + 2a0 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
2

For n = 3 the recurrence equation gives

40a5 + 19a3 + 2a1 = 0

Which after substituting the earlier terms found becomes

a5 =
49a1
160
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For n = 4 the recurrence equation gives

60a6 + 24a4 + 2a2 = 0

Which after substituting the earlier terms found becomes

a6 = −a0
6

For n = 5 the recurrence equation gives

84a7 + 29a5 + 2a3 = 0

Which after substituting the earlier terms found becomes

a7 = −1181a1
13440

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− a0x
2 − 3

4a1x
3 + 1

2a0x
4 + 49

160a1x
5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− x2 + 1

2x
4
)
a0 +

(
x− 3

4x
3 + 49

160x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x2 + 1

2x
4
)
c1 +

(
x− 3

4x
3 + 49

160x
5
)
c2 +O

(
x6)

y = 3− 3x2 + 3x4

2 − 2x+ 3x3

2 − 49x5

80 +O
(
x6)
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Summary
The solution(s) found are the following

(1)y = −3x2 − 2x+ 3 + 3x3

2 + 3x4

2 − 49x5

80 − x6

2 +O
(
x6)

(2)y = 3− 3x2 + 3x4

2 − 2x+ 3x3

2 − 49x5

80 +O
(
x6)

Verification of solutions

y = −3x2 − 2x+ 3 + 3x3

2 + 3x4

2 − 49x5

80 − x6

2 +O
(
x6)

Verified OK.

y = 3− 3x2 + 3x4

2 − 2x+ 3x3

2 − 49x5

80 +O
(
x6)

Verified OK.

13.37.2 Maple step by step solution

Let’s solve[
y′′ = −x2y − 5y′x

2 − 2y, y(0) = 3, y′
∣∣∣{x=0}

= −2
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = (−x2 − 2) y − 5y′x

2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 5y′x

2 + (x2 + 2) y = 0

• Multiply by denominators
2y′′ + 5y′x+ (2x2 + 4) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2
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xm · y =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

akk x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

4a2 + 4a0 + (12a3 + 9a1)x+
(

∞∑
k=2

(2ak+2(k + 2) (k + 1) + ak(5k + 4) + 2ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[4a2 + 4a0 = 0, 12a3 + 9a1 = 0]

• Solve for the dependent coefficient(s){
a2 = −a0, a3 = −3a1

4

}
• Each term in the series must be 0, giving the recursion relation

(2k2 + 6k + 4) ak+2 + 5akk + 4ak + 2ak−2 = 0
• Shift index using k− >k + 2(

2(k + 2)2 + 6k + 16
)
ak+4 + 5ak+2(k + 2) + 4ak+2 + 2ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+4 = −5kak+2+2ak+14ak+2

2(k2+7k+12) , a2 = −a0, a3 = −3a1
4

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
Order:=6;
dsolve([2*diff(y(x),x$2)+5*x*diff(y(x),x)+(4+2*x^2)*y(x)=0,y(0) = 3, D(y)(0) = -2],y(x),type='series',x=0);� �

y(x) = 3− 2x− 3x2 + 3
2x

3 + 3
2x

4 − 49
80x

5 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 34� �
AsymptoticDSolveValue[{2*y''[x]+5*x*y'[x]+(4+2*x^2)*y[x]==0,{y[0]==3,y'[0]==-2}},y[x],{x,0,5}]� �

y(x) → −49x5

80 + 3x4

2 + 3x3

2 − 3x2 − 2x+ 3
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13.38 problem 38
13.38.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4484
13.38.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4492

Internal problem ID [1279]
Internal file name [OUTPUT/1280_Sunday_June_05_2022_02_07_57_AM_73715578/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 38.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

3y′′ + 2y′x+
(
−x2 + 4

)
y = 0

With initial conditions

[y(0) = −2, y′(0) = 3]

With the expansion point for the power series method at x = 0.

13.38.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 2x
3

q(x) = −x2

3 + 4
3

F = 0
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Hence the ode is

y′′ + 2y′x
3 +

(
−x2

3 + 4
3

)
y = 0

The domain of p(x) = 2x
3 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = −x2

3 + 4
3 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1040)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1041)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
x2y

3 − 2y′x
3 − 4y

3
F1 =

dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −2yx3

9 + 7y′x2

9 + 14yx
9 − 2y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 20(−x3 + 6x) y′
27 + y(7x4 − 64x2 + 114)

27
F3 =

dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (61x4 − 612x2 + 702) y′
81 −

20
(
x4 − 71

5 x
2 + 216

5

)
xy

81
F4 =

dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= 2(−91x5 + 1404x3 − 3834x) y′
243 + y(61x6 − 1156x4 + 5706x2 − 5400)

243
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = −2 and
y′(0) = 3 gives

F0 =
8
3

F1 = −6

F2 = −76
9

F3 = 26

F4 =
400
9

Substituting all the above in (7) and simplifying gives the solution as

y = 3x− 2 + 4x2

3 − x3 − 19x4

54 + 13x5

60 + 5x6

81 +O
(
x6)
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y = 3x− 2 + 4x2

3 − x3 − 19x4

54 + 13x5

60 + 5x6

81 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) anxn−2 =
x2
(

∞∑
n=0

anx
n

)
3 −

2
(

∞∑
n=1

nanx
n−1
)
x

3 −
4
(

∞∑
n=0

anx
n

)
3 (1)

Which simplifies to

(2)
(

∞∑
n=2

3n(n− 1) anxn−2

)
+
(

∞∑
n=1

2nxnan

)
+

∞∑
n =0

(
−xn+2an

)
+
(

∞∑
n=0

4anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

3n(n− 1) anxn−2 =
∞∑
n=0

3(n+ 2) an+2(n+ 1)xn

∞∑
n =0

(
−xn+2an

)
=

∞∑
n=2

(−an−2x
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.(

∞∑
n=0

3(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=1

2nxnan

)
+

∞∑
n =2

(−an−2x
n) +

(
∞∑
n=0

4anxn

)
= 0

(3)

4489



n = 0 gives
6a2 + 4a0 = 0

a2 = −2a0
3

n = 1 gives
18a3 + 6a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −a1
3

For 2 ≤ n, the recurrence equation is

(4)3(n+ 2) an+2(n+ 1) + 2nan − an−2 + 4an = 0

Solving for an+2, gives

(5)

an+2 = −2nan + 4an − an−2

3 (n+ 2) (n+ 1)

= − (2n+ 4) an
3 (n+ 2) (n+ 1) +

an−2

3 (n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

36a4 + 8a2 − a0 = 0

Which after substituting the earlier terms found becomes

a4 =
19a0
108

For n = 3 the recurrence equation gives

60a5 + 10a3 − a1 = 0
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Which after substituting the earlier terms found becomes

a5 =
13a1
180

For n = 4 the recurrence equation gives

90a6 + 12a4 − a2 = 0

Which after substituting the earlier terms found becomes

a6 = −5a0
162

For n = 5 the recurrence equation gives

126a7 + 14a5 − a3 = 0

Which after substituting the earlier terms found becomes

a7 = −121a1
11340

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 2
3a0x

2 − 1
3a1x

3 + 19
108a0x

4 + 13
180a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 2

3x
2 + 19

108x
4
)
a0 +

(
x− 1

3x
3 + 13

180x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 2

3x
2 + 19

108x
4
)
c1 +

(
x− 1

3x
3 + 13

180x
5
)
c2 +O

(
x6)
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y = −2 + 4x2

3 − 19x4

54 + 3x− x3 + 13x5

60 +O
(
x6)

Summary
The solution(s) found are the following

(1)y = 3x− 2 + 4x2

3 − x3 − 19x4

54 + 13x5

60 + 5x6

81 +O
(
x6)

(2)y = −2 + 4x2

3 − 19x4

54 + 3x− x3 + 13x5

60 +O
(
x6)

Verification of solutions

y = 3x− 2 + 4x2

3 − x3 − 19x4

54 + 13x5

60 + 5x6

81 +O
(
x6)

Verified OK.

y = −2 + 4x2

3 − 19x4

54 + 3x− x3 + 13x5

60 +O
(
x6)

Verified OK.

13.38.2 Maple step by step solution

Let’s solve[
y′′ = x2y

3 − 2y′x
3 − 4y

3 , y(0) = −2, y′
∣∣∣{x=0}

= 3
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ =
(

x2

3 − 4
3

)
y − 2y′x

3

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2y′x
3 +

(
−x2

3 + 4
3

)
y = 0

• Multiply by denominators
3y′′ + 2y′x+ (−x2 + 4) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k
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� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

akk x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

6a2 + 4a0 + (18a3 + 6a1)x+
(

∞∑
k=2

(3ak+2(k + 2) (k + 1) + 2ak(k + 2)− ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[6a2 + 4a0 = 0, 18a3 + 6a1 = 0]

• Solve for the dependent coefficient(s){
a2 = −2a0

3 , a3 = −a1
3

}
• Each term in the series must be 0, giving the recursion relation

(3k2 + 9k + 6) ak+2 + 2akk + 4ak − ak−2 = 0
• Shift index using k− >k + 2(

3(k + 2)2 + 9k + 24
)
ak+4 + 2ak+2(k + 2) + 4ak+2 − ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+4 = −2kak+2−ak+8ak+2

3(k2+7k+12) , a2 = −2a0
3 , a3 = −a1

3

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Kummer successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
Order:=6;
dsolve([3*diff(y(x),x$2)+2*x*diff(y(x),x)+(4-x^2)*y(x)=0,y(0) = -2, D(y)(0) = 3],y(x),type='series',x=0);� �

y(x) = −2 + 3x+ 4
3x

2 − x3 − 19
54x

4 + 13
60x

5 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 34� �
AsymptoticDSolveValue[{3*y''[x]+2*x*y'[x]+(4-x^2)*y[x]==0,{y[0]==-2,y'[0]==3}},y[x],{x,0,5}]� �

y(x) → 13x5

60 − 19x4

54 − x3 + 4x2

3 + 3x− 2
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13.39 problem 39 (a)
13.39.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4495
13.39.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4503

Internal problem ID [1280]
Internal file name [OUTPUT/1281_Sunday_June_05_2022_02_07_59_AM_93449407/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 39 (a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Ordi-
nary point", "second_order_change_of_variable_on_y_method_1", "lin-
ear_second_order_ode_solved_by_an_integrating_factor", "second or-
der series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 4y′x+
(
4x2 + 2

)
y = 0

With initial conditions

[y(0) = 1, y′(0) = 0]

With the expansion point for the power series method at x = 0.

13.39.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 4x
q(x) = 4x2 + 2

F = 0
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Hence the ode is

y′′ + 4y′x+
(
4x2 + 2

)
y = 0

The domain of p(x) = 4x is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 4x2 + 2 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1043)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1044)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −4x2y − 4y′x− 2y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 16yx3 + 12y′x2 − 6y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(
−32x3 + 48x

)
y′ − 48

(
x4 − x2 − 1

4

)
y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= 128yx5 + 80y′x4 − 320yx3 − 240y′x2 + 60y′

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
−192x5 + 960x3 − 720x

)
y′ − 320

(
x6 − 9

2x
4 + 9

4x
2 + 3

8

)
y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 1 and
y′(0) = 0 gives

F0 = −2
F1 = 0
F2 = 12
F3 = 0
F4 = −120

Substituting all the above in (7) and simplifying gives the solution as

y = 1− x2 + x4

2 − x6

6 +O
(
x6)

y = 1− x2 + x4

2 − x6

6 +O
(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) anxn−2 = −4x2

(
∞∑
n=0

anx
n

)
− 4
(

∞∑
n=1

nanx
n−1

)
x− 2

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

4nxnan

)
+
(

∞∑
n=0

4xn+2an

)
+
(

∞∑
n=0

2anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =0

4xn+2an =
∞∑
n=2

4an−2x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=1

4nxnan

)
+
(

∞∑
n=2

4an−2x
n

)
+
(

∞∑
n=0

2anxn

)
= 0

(3)
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n = 0 gives
2a2 + 2a0 = 0

a2 = −a0

n = 1 gives
6a3 + 6a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −a1

For 2 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + 4nan + 4an−2 + 2an = 0

Solving for an+2, gives

(5)

an+2 = −2(2nan + an + 2an−2)
(n+ 2) (n+ 1)

= − 2(2n+ 1) an
(n+ 2) (n+ 1) −

4an−2

(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

12a4 + 10a2 + 4a0 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
2

For n = 3 the recurrence equation gives

20a5 + 14a3 + 4a1 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
2
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For n = 4 the recurrence equation gives

30a6 + 18a4 + 4a2 = 0

Which after substituting the earlier terms found becomes

a6 = −a0
6

For n = 5 the recurrence equation gives

42a7 + 22a5 + 4a3 = 0

Which after substituting the earlier terms found becomes

a7 = −a1
6

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− a0x
2 − a1x

3 + 1
2a0x

4 + 1
2a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− x2 + 1

2x
4
)
a0 +

(
x− x3 + 1

2x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x2 + 1

2x
4
)
c1 +

(
x− x3 + 1

2x
5
)
c2 +O

(
x6)

y = 1− x2 + x4

2 +O
(
x6)
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Summary
The solution(s) found are the following

(1)y = 1− x2 + x4

2 − x6

6 +O
(
x6)

(2)y = 1− x2 + x4

2 +O
(
x6)

Verification of solutions

y = 1− x2 + x4

2 − x6

6 +O
(
x6)

Verified OK.

y = 1− x2 + x4

2 +O
(
x6)

Verified OK.

13.39.2 Maple step by step solution

Let’s solve[
y′′ = −4x2y − 4y′x− 2y, y(0) = 1, y′

∣∣∣{x=0}
= 0
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = (−4x2 − 2) y − 4y′x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 4y′x+ (4x2 + 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m
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xm · y =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

akk x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 2a0 + (6a3 + 6a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + 2ak(2k + 1) + 4ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + 2a0 = 0, 6a3 + 6a1 = 0]

• Solve for the dependent coefficient(s)
{a2 = −a0, a3 = −a1}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + 4akk + 2ak + 4ak−2 = 0

• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 + 4ak+2(k + 2) + 2ak+2 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+4 = −2(2kak+2+2ak+5ak+2)

k2+7k+12 , a2 = −a0, a3 = −a1

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
Order:=6;
dsolve([diff(y(x),x$2)+4*x*diff(y(x),x)+(2+4*x^2)*y(x)=0,y(0) = 1, D(y)(0) = 0],y(x),type='series',x=0);� �

y(x) = 1− x2 + 1
2x

4 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 17� �
AsymptoticDSolveValue[{y''[x]+4*x*y'[x]+(2+4*x^2)*y[x]==0,{y[0]==1,y'[0]==0}},y[x],{x,0,5}]� �

y(x) → x4

2 − x2 + 1
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13.40 problem 39 (b)
13.40.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4506
13.40.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4514

Internal problem ID [1281]
Internal file name [OUTPUT/1282_Sunday_June_05_2022_02_08_01_AM_44876535/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 39 (b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Ordi-
nary point", "second_order_change_of_variable_on_y_method_1", "lin-
ear_second_order_ode_solved_by_an_integrating_factor", "second or-
der series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 4y′x+
(
4x2 + 2

)
y = 0

With initial conditions

[y(0) = 0, y′(0) = 1]

With the expansion point for the power series method at x = 0.

13.40.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 4x
q(x) = 4x2 + 2

F = 0
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Hence the ode is

y′′ + 4y′x+
(
4x2 + 2

)
y = 0

The domain of p(x) = 4x is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 4x2 + 2 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1046)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1047)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −4x2y − 4y′x− 2y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 16yx3 + 12y′x2 − 6y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(
−32x3 + 48x

)
y′ − 48

(
x4 − x2 − 1

4

)
y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= 128yx5 + 80y′x4 − 320yx3 − 240y′x2 + 60y′

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
−192x5 + 960x3 − 720x

)
y′ − 320

(
x6 − 9

2x
4 + 9

4x
2 + 3

8

)
y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 0 and
y′(0) = 1 gives

F0 = 0
F1 = −6
F2 = 0
F3 = 60
F4 = 0

Substituting all the above in (7) and simplifying gives the solution as

y = x− x3 + x5

2 +O
(
x6)

y = x− x3 + x5

2 +O
(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) anxn−2 = −4x2

(
∞∑
n=0

anx
n

)
− 4
(

∞∑
n=1

nanx
n−1

)
x− 2

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

4nxnan

)
+
(

∞∑
n=0

4xn+2an

)
+
(

∞∑
n=0

2anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =0

4xn+2an =
∞∑
n=2

4an−2x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=1

4nxnan

)
+
(

∞∑
n=2

4an−2x
n

)
+
(

∞∑
n=0

2anxn

)
= 0

(3)
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n = 0 gives
2a2 + 2a0 = 0

a2 = −a0

n = 1 gives
6a3 + 6a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −a1

For 2 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + 4nan + 4an−2 + 2an = 0

Solving for an+2, gives

(5)

an+2 = −2(2nan + an + 2an−2)
(n+ 2) (n+ 1)

= − 2(2n+ 1) an
(n+ 2) (n+ 1) −

4an−2

(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

12a4 + 10a2 + 4a0 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
2

For n = 3 the recurrence equation gives

20a5 + 14a3 + 4a1 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
2
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For n = 4 the recurrence equation gives

30a6 + 18a4 + 4a2 = 0

Which after substituting the earlier terms found becomes

a6 = −a0
6

For n = 5 the recurrence equation gives

42a7 + 22a5 + 4a3 = 0

Which after substituting the earlier terms found becomes

a7 = −a1
6

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− a0x
2 − a1x

3 + 1
2a0x

4 + 1
2a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− x2 + 1

2x
4
)
a0 +

(
x− x3 + 1

2x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x2 + 1

2x
4
)
c1 +

(
x− x3 + 1

2x
5
)
c2 +O

(
x6)

y = x− x3 + x5

2 +O
(
x6)
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Summary
The solution(s) found are the following

(1)y = x− x3 + x5

2 +O
(
x6)

(2)y = x− x3 + x5

2 +O
(
x6)

Verification of solutions

y = x− x3 + x5

2 +O
(
x6)

Verified OK.

y = x− x3 + x5

2 +O
(
x6)

Verified OK.

13.40.2 Maple step by step solution

Let’s solve[
y′′ = −4x2y − 4y′x− 2y, y(0) = 0, y′

∣∣∣{x=0}
= 1
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = (−4x2 − 2) y − 4y′x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 4y′x+ (4x2 + 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m
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xm · y =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

akk x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 2a0 + (6a3 + 6a1)x+
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + 2ak(2k + 1) + 4ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 + 2a0 = 0, 6a3 + 6a1 = 0]

• Solve for the dependent coefficient(s)
{a2 = −a0, a3 = −a1}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + 4akk + 2ak + 4ak−2 = 0

• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 + 4ak+2(k + 2) + 2ak+2 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+4 = −2(2kak+2+2ak+5ak+2)

k2+7k+12 , a2 = −a0, a3 = −a1

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 14� �
Order:=6;
dsolve([diff(y(x),x$2)+4*x*diff(y(x),x)+(2+4*x^2)*y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='series',x=0);� �

y(x) = x− x3 + 1
2x

5 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 17� �
AsymptoticDSolveValue[{y''[x]+4*x*y'[x]+(2+4*x^2)*y[x]==0,{y[0]==0,y'[0]==1}},y[x],{x,0,5}]� �

y(x) → x5

2 − x3 + x
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13.41 problem 40
13.41.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4517
13.41.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4526

Internal problem ID [1282]
Internal file name [OUTPUT/1283_Sunday_June_05_2022_02_08_03_AM_71948828/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 40.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(x+ 1) y′′ + y′x2 + (1 + 2x) y = 0

With initial conditions

[y(0) = −2, y′(0) = 3]

With the expansion point for the power series method at x = 0.

13.41.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = x2

x+ 1
q(x) = 1 + 2x

x+ 1
F = 0
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Hence the ode is

y′′ + x2y′

x+ 1 + (1 + 2x) y
x+ 1 = 0

The domain of p(x) = x2

x+1 is

{x < −1∨−1 < x}

And the point x0 = 0 is inside this domain. The domain of q(x) = 1+2x
x+1 is

{x < −1∨−1 < x}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

4518



But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1049)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1050)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −y′x2 + 2yx+ y

x+ 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (x4 − 3x2 − 5x− 1) y′ + y(2x3 + x2 − 1)
(x+ 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(−x6 + 7x4 + 12x3 + 2x2 − 2x− 4) y′ − 2

(
x5 + 1

2x
4 − 4x3 − 19

2 x
2 − 9

2x− 3
2

)
y

(x+ 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(x8 − 12x6 − 21x5 + 12x4 + 57x3 + 66x2 + 20x+ 13) y′ + 2

(
x7 + 1

2x
6 − 9x5 − 21x4 − 10x3 + 7

2x
2 + 15x+ 2

)
y

(x+ 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(−x10 + 18x8 + 32x7 − 53x6 − 210x5 − 233x4 − 42x3 + 63x2 + 106x− 28) y′ − 2

(
x9 + 1

2x
8 − 15x7 − 35x6 + 15

2 x
5 + 108x4 + 337

2 x3 + 90x2 + 61x− 1
2

)
y

(x+ 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = −2 and
y′(0) = 3 gives

F0 = 2
F1 = −1
F2 = −18
F3 = 31
F4 = −86

Substituting all the above in (7) and simplifying gives the solution as

y = x2 + 3x− 2− x3

6 − 3x4

4 + 31x5

120 − 43x6

360 +O
(
x6)
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y = x2 + 3x− 2− x3

6 − 3x4

4 + 31x5

120 − 43x6

360 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(x+ 1) y′′ + y′x2 + (1 + 2x) y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(x+ 1)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

nanx
n−1

)
x2 + (1 + 2x)

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

nxn−1an(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)

+
(

∞∑
n=1

nx1+nan

)
+
(

∞∑
n=0

anx
n

)
+
(

∞∑
n=0

2x1+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

nxn−1an(n− 1) =
∞∑
n=1

(1 + n) a1+nnxn

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn
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∞∑
n =1

nx1+nan =
∞∑
n=2

(n− 1) an−1x
n

∞∑
n =0

2x1+nan =
∞∑
n=1

2an−1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=1

(1 + n) a1+nnxn

)
+
(

∞∑
n=0

(n+ 2) an+2(1 + n)xn

)

+
(

∞∑
n=2

(n− 1) an−1x
n

)
+
(

∞∑
n=0

anx
n

)
+
(

∞∑
n=1

2an−1x
n

)
= 0

n = 0 gives
2a2 + a0 = 0

a2 = −a0
2

n = 1 gives
2a2 + 6a3 + a1 + 2a0 = 0

Which after substituting earlier equations, simplifies to

a3 = −a0
6 − a1

6

For 2 ≤ n, the recurrence equation is

(4)(1 + n) a1+nn+ (n+ 2) an+2(1 + n) + (n− 1) an−1 + an + 2an−1 = 0

Solving for an+2, gives

(5)

an+2 = −n2a1+n + na1+n + nan−1 + an + an−1

(n+ 2) (1 + n)

= − an
(n+ 2) (1 + n) −

(n2 + n) a1+n

(n+ 2) (1 + n) −
an−1

n+ 2
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For n = 2 the recurrence equation gives

6a3 + 12a4 + 3a1 + a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
8 − a1

6

For n = 3 the recurrence equation gives

12a4 + 20a5 + 4a2 + a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a0
30 + 13a1

120

For n = 4 the recurrence equation gives

20a5 + 30a6 + 5a3 + a4 = 0

Which after substituting the earlier terms found becomes

a6 =
a0
720 − 7a1

180

For n = 5 the recurrence equation gives

30a6 + 42a7 + 6a4 + a5 = 0

Which after substituting the earlier terms found becomes

a7 = −11a0
560 + 247a1

5040

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .
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Substituting the values for an found above, the solution becomes

y = a0 + a1x− a0x
2

2 +
(
−a0

6 − a1
6

)
x3 +

(a0
8 − a1

6

)
x4 +

(
a0
30 + 13a1

120

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

2x
2 − 1

6x
3 + 1

8x
4 + 1

30x
5
)
a0 +

(
x− 1

6x
3 − 1

6x
4 + 13

120x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

2x
2 − 1

6x
3 + 1

8x
4 + 1

30x
5
)
c1 +

(
x− 1

6x
3 − 1

6x
4 + 13

120x
5
)
c2 +O

(
x6)

y = −2 + x2 − x3

6 − 3x4

4 + 31x5

120 + 3x+O
(
x6)

Summary
The solution(s) found are the following

(1)y = x2 + 3x− 2− x3

6 − 3x4

4 + 31x5

120 − 43x6

360 +O
(
x6)

(2)y = −2 + x2 − x3

6 − 3x4

4 + 31x5

120 + 3x+O
(
x6)

Verification of solutions

y = x2 + 3x− 2− x3

6 − 3x4

4 + 31x5

120 − 43x6

360 +O
(
x6)

Verified OK.

y = −2 + x2 − x3

6 − 3x4

4 + 31x5

120 + 3x+O
(
x6)

Verified OK.
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13.41.2 Maple step by step solution

Let’s solve[
(x+ 1) y′′ + y′x2 + (1 + 2x) y = 0, y(0) = −2, y′

∣∣∣{x=0}
= 3
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −x2y′

x+1 −
(1+2x)y
x+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + x2y′

x+1 +
(1+2x)y
x+1 = 0

� Check to see if x0 = −1 is a regular singular point
◦ Define functions[

P2(x) = x2

x+1 , P3(x) = 1+2x
x+1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 = −1 is a regular singular point
x0 = −1

• Multiply by denominators
(x+ 1) y′′ + y′x2 + (1 + 2x) y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (u2 − 2u+ 1)

(
d
du
y(u)

)
+ (−1 + 2u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r
2u−1+r +

(
a1(1 + r)2 − a0(1 + 2r)

)
ur +

(
∞∑
k=1

(
ak+1(k + 1 + r)2 − ak(2k + 2r + 1) + ak−1(k + 1 + r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 − a0(1 + 2r) = 0

• Each term in the series must be 0, giving the recursion relation
k2ak+1 + (−2ak + ak−1 + 2ak+1) k − ak + ak−1 + ak+1 = 0

• Shift index using k− >k + 1
(k + 1)2 ak+2 + (−2ak+1 + ak + 2ak+2) (k + 1)− ak+1 + ak + ak+2 = 0

• Recursion relation that defines series solution to ODE
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ak+2 = −akk−2kak+1+2ak−3ak+1
k2+4k+4

• Recursion relation for r = 0
ak+2 = −akk−2kak+1+2ak−3ak+1

k2+4k+4

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −akk−2kak+1+2ak−3ak+1

k2+4k+4 , a1 − a0 = 0
]

• Revert the change of variables u = x+ 1[
y =

∞∑
k=0

ak(x+ 1)k , ak+2 = −akk−2kak+1+2ak−3ak+1
k2+4k+4 , a1 − a0 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0 `� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(1+x)*diff(y(x),x$2)+x^2*diff(y(x),x)+(1+2*x)*y(x)=0,y(0) = -2, D(y)(0) = 3],y(x),type='series',x=0);� �

y(x) = −2 + 3x+ x2 − 1
6x

3 − 3
4x

4 + 31
120x

5 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 32� �
AsymptoticDSolveValue[{(1+x)*y''[x]+x^2*y'[x]+(1+2*x)*y[x]==0,{y[0]==-2,y'[0]==3}},y[x],{x,0,5}]� �

y(x) → 31x5

120 − 3x4

4 − x3

6 + x2 + 3x− 2
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13.42 problem 41
13.42.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4530
13.42.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4538

Internal problem ID [1283]
Internal file name [OUTPUT/1284_Sunday_June_05_2022_02_08_06_AM_2747193/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 41.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ +
(
x2 + 2x+ 1

)
y′ + 2y = 0

With initial conditions

[y(0) = 2, y′(0) = 3]

With the expansion point for the power series method at x = 0.

13.42.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = (x+ 1)2

q(x) = 2
F = 0
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Hence the ode is

y′′ + (x+ 1)2 y′ + 2y = 0

The domain of p(x) = (x+ 1)2 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 2 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1052)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1053)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −y′x2 − 2y′x− y′ − 2y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

=
(
x4 + 4x3 + 6x2 + 2x− 3

)
y′ + 2y(x+ 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(
−x6 − 6x5 − 15x4 − 14x3 + 7x2 + 20x+ 7

)
y′ − 2y

(
x4 + 4x3 + 6x2 − 5

)
F3 =

dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
x8 + 8x7 + 28x6 + 44x5 + 4x4 − 88x3 − 108x2 − 20x+ 23

)
y′ + 2y

(
x6 + 6x5 + 15x4 + 10x3 − 19x2 − 32x− 7

)
F4 =

dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
−x10 − 10x9 − 45x8 − 100x7 − 62x6 + 216x5 + 530x4 + 360x3 − 177x2 − 306x− 57

)
y′ − 2y

(
x8 + 8x7 + 28x6 + 38x5 − 26x4 − 148x3 − 138x2 + 18x+ 55

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 2 and
y′(0) = 3 gives

F0 = −7
F1 = −5
F2 = 41
F3 = 41
F4 = −391

Substituting all the above in (7) and simplifying gives the solution as

y = 3x+ 2− 7x2

2 − 5x3

6 + 41x4

24 + 41x5

120 − 391x6

720 +O
(
x6)

y = 3x+ 2− 7x2

2 − 5x3

6 + 41x4

24 + 41x5

120 − 391x6

720 +O
(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) anxn−2 = −

(
∞∑
n=1

nanx
n−1

)
x2 − 2

(
∞∑
n=1

nanx
n−1

)
x−

(
∞∑
n=1

nanx
n−1

)
− 2
(

∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)

(
∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

nx1+nan

)

+
(

∞∑
n=1

2nanxn

)
+
(

∞∑
n=1

nanx
n−1

)
+
(

∞∑
n=0

2anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =1

nx1+nan =
∞∑
n=2

(n− 1) an−1x
n

∞∑
n =1

nanx
n−1 =

∞∑
n=0

(1 + n) a1+nx
n
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=0

(n+ 2) an+2(1 + n)xn

)
+
(

∞∑
n=2

(n− 1) an−1x
n

)

+
(

∞∑
n=1

2nanxn

)
+
(

∞∑
n=0

(1 + n) a1+nx
n

)
+
(

∞∑
n=0

2anxn

)
= 0

n = 0 gives
2a2 + a1 + 2a0 = 0

a2 = −a0 −
a1
2

n = 1 gives
6a3 + 4a1 + 2a2 = 0

Which after substituting earlier equations, simplifies to

a3 =
a0
3 − a1

2

For 2 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(1 + n) + (n− 1) an−1 + 2nan + (1 + n) a1+n + 2an = 0

Solving for an+2, gives

(5)

an+2 = −2nan + na1+n + nan−1 + 2an + a1+n − an−1

(n+ 2) (1 + n)

= − (2n+ 2) an
(n+ 2) (1 + n) −

a1+n

n+ 2 − (n− 1) an−1

(n+ 2) (1 + n)

For n = 2 the recurrence equation gives

12a4 + a1 + 6a2 + 3a3 = 0
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Which after substituting the earlier terms found becomes

a4 =
7a1
24 + 5a0

12

For n = 3 the recurrence equation gives

20a5 + 2a2 + 8a3 + 4a4 = 0

Which after substituting the earlier terms found becomes

a5 = −7a0
60 + 23a1

120

For n = 4 the recurrence equation gives

30a6 + 3a3 + 10a4 + 5a5 = 0

Which after substituting the earlier terms found becomes

a6 = −11a0
72 − 19a1

240

For n = 5 the recurrence equation gives

42a7 + 4a4 + 12a5 + 6a6 = 0

Which after substituting the earlier terms found becomes

a7 = −359a1
5040 + 13a0

840

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y= a0+a1x+
(
−a0−

a1
2

)
x2+

(a0
3 − a1

2

)
x3+

(
7a1
24 + 5a0

12

)
x4+

(
−7a0

60 + 23a1
120

)
x5+. . .
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Collecting terms, the solution becomes

y =
(
1− x2 + 1

3x
3 + 5

12x
4 − 7

60x
5
)
a0 +

(
x− 1

2x
2 − 1

2x
3 + 7

24x
4 + 23

120x
5
)
a1 +O

(
x6)
(3)

At x = 0 the solution above becomes

y =
(
1− x2 + 1

3x
3 + 5

12x
4 − 7

60x
5
)
c1 +

(
x− 1

2x
2 − 1

2x
3 + 7

24x
4 + 23

120x
5
)
c2 +O

(
x6)

y = 2− 7x2

2 − 5x3

6 + 41x4

24 + 41x5

120 + 3x+O
(
x6)

Summary
The solution(s) found are the following

(1)y = 3x+ 2− 7x2

2 − 5x3

6 + 41x4

24 + 41x5

120 − 391x6

720 +O
(
x6)

(2)y = 2− 7x2

2 − 5x3

6 + 41x4

24 + 41x5

120 + 3x+O
(
x6)

Verification of solutions

y = 3x+ 2− 7x2

2 − 5x3

6 + 41x4

24 + 41x5

120 − 391x6

720 +O
(
x6)

Verified OK.

y = 2− 7x2

2 − 5x3

6 + 41x4

24 + 41x5

120 + 3x+O
(
x6)

Verified OK.

13.42.2 Maple step by step solution

Let’s solve[
y′′ = −y′x2 − 2y′x− y′ − 2y, y(0) = 2, y′

∣∣∣{x=0}
= 3
]

• Highest derivative means the order of the ODE is 2
y′′
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + (x2 + 2x+ 1) y′ + 2y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..2

xm · y′ =
∞∑

k=max(0,1−m)
akk x

k−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=max(0,1−m)+m−1
ak+1−m(k + 1−m)xk

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + a1 + 2a0 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1) + ak+1(k + 1) + 2ak(k + 1) + ak−1(k − 1))xk

)
= 0

• Each term must be 0
2a2 + a1 + 2a0 = 0

• Each term in the series must be 0, giving the recursion relation
k2ak+2 + (2ak + ak−1 + ak+1 + 3ak+2) k + 2ak − ak−1 + ak+1 + 2ak+2 = 0

• Shift index using k− >k + 1
(k + 1)2 ak+3 + (2ak+1 + ak + ak+2 + 3ak+3) (k + 1) + 2ak+1 − ak + ak+2 + 2ak+3 = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+3 = −akk+2ak+1k+kak+2+4ak+1+2ak+2

k2+5k+6 , 2a2 + a1 + 2a0 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunT ODE, case c = 0 `� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([diff(y(x),x$2)+(1+2*x+x^2)*diff(y(x),x)+2*y(x)=0,y(0) = 2, D(y)(0) = 3],y(x),type='series',x=0);� �

y(x) = 2 + 3x− 7
2x

2 − 5
6x

3 + 41
24x

4 + 41
120x

5 +O
(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 36� �
AsymptoticDSolveValue[{y''[x]+(1+2*x+x^2)*y'[x]+2*y[x]==0,{y[0]==2,y'[0]==3}},y[x],{x,0,5}]� �

y(x) → 41x5

120 + 41x4

24 − 5x3

6 − 7x2

2 + 3x+ 2
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13.43 problem 42
13.43.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4542

Internal problem ID [1284]
Internal file name [OUTPUT/1285_Sunday_June_05_2022_02_08_09_AM_82858837/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 42.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x2 + 1

)
y′′ +

(
x2 + 2

)
y′ + yx = 0

With initial conditions

[y(0) = −3, y′(0) = 5]

With the expansion point for the power series method at x = 0.

13.43.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = x2 + 2
x2 + 1

q(x) = x

x2 + 1
F = 0
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Hence the ode is

y′′ + (x2 + 2) y′
x2 + 1 + xy

x2 + 1 = 0

The domain of p(x) = x2+2
x2+1 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = x
x2+1 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1055)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1056)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −y′x2 + yx+ 2y′
x2 + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (x4 − x3 + 4x2 + x+ 4) y′ + y(x3 + x2 + 2x− 1)
(x2 + 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (−x6 + 2x5 − 4x4 − 18x2 − 8x− 8) y′ − y(x5 + 6x3 + 4x2 − 2x− 2)
(x2 + 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (x8 − 3x7 + 4x6 − 9x5 + 32x4 + 60x3 + 82x2 + 30x+ 10) y′ + y(x7 − x6 + 4x5 + 13x4 + 34x3 − 20x2 − 12x+ 2)
(x2 + 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (−x10 + 4x9 − 4x8 + 20x7 − 22x6 − 108x5 − 498x4 − 492x3 − 222x2 + 12x+ 12) y′ − y(x9 − 2x8 + 2x7 − 4x6 + 90x5 + 210x4 − 90x3 − 156x2 + 66x+ 12)
(x2 + 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = −3 and
y′(0) = 5 gives

F0 = −10
F1 = 23
F2 = −46
F3 = 44
F4 = 96

Substituting all the above in (7) and simplifying gives the solution as

y = −5x2 + 5x− 3 + 23x3

6 − 23x4

12 + 11x5

30 + 2x6

15 +O
(
x6)
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y = −5x2 + 5x− 3 + 23x3

6 − 23x4

12 + 11x5

30 + 2x6

15 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 + 1
)
y′′ +

(
x2 + 2

)
y′ + yx = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+
(
x2 + 2

)( ∞∑
n=1

nanx
n−1

)
+
(

∞∑
n=0

anx
n

)
x = 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)

+
(

∞∑
n=1

nx1+nan

)
+
(

∞∑
n=1

2nanxn−1

)
+
(

∞∑
n=0

x1+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =1

nx1+nan =
∞∑
n=2

(n− 1) an−1x
n

4547



∞∑
n =1

2nanxn−1 =
∞∑
n=0

2(1 + n) a1+nx
n

∞∑
n =0

x1+nan =
∞∑
n=1

an−1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=0

(n+ 2) an+2(1 + n)xn

)

+
(

∞∑
n=2

(n− 1) an−1x
n

)
+
(

∞∑
n=0

2(1 + n) a1+nx
n

)
+
(

∞∑
n=1

an−1x
n

)
= 0

n = 0 gives
2a2 + 2a1 = 0

a2 = −a1

n = 1 gives
6a3 + 4a2 + a0 = 0

Which after substituting earlier equations, simplifies to

a3 = −a0
6 + 2a1

3

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1) + (n+ 2) an+2(1 + n) + (n− 1) an−1 + 2(1 + n) a1+n + an−1 = 0

Solving for an+2, gives

(5)

an+2 = −n2an − nan + 2na1+n + nan−1 + 2a1+n

(n+ 2) (1 + n)

= − (n2 − n) an
(n+ 2) (1 + n) −

(2n+ 2) a1+n

(n+ 2) (1 + n) −
nan−1

(n+ 2) (1 + n)
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For n = 2 the recurrence equation gives

2a2 + 12a4 + 2a1 + 6a3 = 0

Which after substituting the earlier terms found becomes

a4 = −a1
3 + a0

12

For n = 3 the recurrence equation gives

6a3 + 20a5 + 3a2 + 8a4 = 0

Which after substituting the earlier terms found becomes

a5 =
a0
60 + a1

12

For n = 4 the recurrence equation gives

12a4 + 30a6 + 4a3 + 10a5 = 0

Which after substituting the earlier terms found becomes

a6 =
a1
60 − a0

60

For n = 5 the recurrence equation gives

20a5 + 42a7 + 5a4 + 12a6 = 0

Which after substituting the earlier terms found becomes

a7 = −11a0
840 − a1

210

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .
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Substituting the values for an found above, the solution becomes

y = a0 + a1x− a1x
2 +

(
−a0

6 + 2a1
3

)
x3 +

(
−a1

3 + a0
12

)
x4 +

(a0
60 + a1

12

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

6x
3 + 1

12x
4 + 1

60x
5
)
a0 +

(
x− x2 + 2

3x
3 − 1

3x
4 + 1

12x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

6x
3 + 1

12x
4 + 1

60x
5
)
c1 +

(
x− x2 + 2

3x
3 − 1

3x
4 + 1

12x
5
)
c2 +O

(
x6)

y = −3 + 23x3

6 − 23x4

12 + 11x5

30 + 5x− 5x2 +O
(
x6)

Summary
The solution(s) found are the following

(1)y = −5x2 + 5x− 3 + 23x3

6 − 23x4

12 + 11x5

30 + 2x6

15 +O
(
x6)

(2)y = −3 + 23x3

6 − 23x4

12 + 11x5

30 + 5x− 5x2 +O
(
x6)

Verification of solutions

y = −5x2 + 5x− 3 + 23x3

6 − 23x4

12 + 11x5

30 + 2x6

15 +O
(
x6)

Verified OK.

y = −3 + 23x3

6 − 23x4

12 + 11x5

30 + 5x− 5x2 +O
(
x6)

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0 `� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(1+x^2)*diff(y(x),x$2)+(2+x^2)*diff(y(x),x)+x*y(x)=0,y(0) = -3, D(y)(0) = 5],y(x),type='series',x=0);� �

y(x) = −3 + 5x− 5x2 + 23
6 x3 − 23

12x
4 + 11

30x
5 +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 34� �
AsymptoticDSolveValue[{(1+x^2)*y''[x]+(2+x^2)*y'[x]+x*y[x]==0,{y[0]==-3,y'[0]==5}},y[x],{x,0,5}]� �

y(x) → 11x5

30 − 23x4

12 + 23x3

6 − 5x2 + 5x− 3
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13.44 problem 43
13.44.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4553
13.44.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4562

Internal problem ID [1285]
Internal file name [OUTPUT/1286_Sunday_June_05_2022_02_08_11_AM_57431340/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 43.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(x+ 1) y′′ +
(
2x2 − 3x+ 1

)
y′ − (x− 4) y = 0

With initial conditions

[y(1) = −2, y′(1) = 3]

With the expansion point for the power series method at x = 1.

13.44.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 2x2 − 3x+ 1
x+ 1

q(x) = −x+ 4
x+ 1

F = 0
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Hence the ode is

y′′ + (2x2 − 3x+ 1) y′
x+ 1 + (−x+ 4) y

x+ 1 = 0

The domain of p(x) = 2x2−3x+1
x+1 is

{x < −1∨−1 < x}

And the point x0 = 1 is inside this domain. The domain of q(x) = −x+4
x+1 is

{x < −1∨−1 < x}

And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x− 1

The ode is converted to be in terms of the new independent variable t. This results in(
d2

dt2
y(t)

)
(2 + t) +

(
2(t+ 1)2 − 3t− 2

)( d

dt
y(t)

)
+ (−t+ 3) y(t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = −2
y′(0) = 3

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1058)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1059)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
2
(

d
dt
y(t)

)
t2 + t

(
d
dt
y(t)

)
− y(t) t+ 3y(t)

2 + t

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(4t4 + 4t3 − 9t− 8)

(
d
dt
y(t)

)
− 2
(
t3 − 5

2t
2 − 3

2t−
5
2

)
y(t)

(2 + t)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(−8t6 − 12t5 + 2t4 + 55t3 + 62t2 + 28t+ 8)

(
d
dt
y(t)

)
+ 4
(
t5 − 2t4 − 7

2t
3 − 21

4 t
2 + 9t+ 5

)
y(t)

(2 + t)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(16t8 + 32t7 − 12t6 − 232t5 − 327t4 − 151t3 + 218t2 + 276t+ 72)

(
d
dt
y(t)

)
− 8
(
t7 − 3

2t
6 − 23

4 t
5 − 81

8 t
4 + 167

8 t3 + 221
8 t2 + 29t+ 3

2

)
y(t)

(2 + t)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(−32t10 − 80t9 + 48t8 + 824t7 + 1380t6 + 426t5 − 2610t4 − 3790t3 − 2436t2 − 504t+ 240)

(
d
dt
y(t)

)
+ 16

(
t9 − t8 − 33

4 t
7 − 71

4 t
6 + 559

16 t
5 + 645

8 t4 + 743
8 t3 − 469

8 t2 − 59t− 79
2

)
y(t)

(2 + t)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = −2 and
y′(0) = 3 gives

F0 = 3

F1 = −17
2

F2 = −2
F3 = 15
F4 = 62
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Substituting all the above in (7) and simplifying gives the solution as

y(t) = −2 + 3t+ 3t2
2 − 17t3

12 − t4

12 + t5

8 + 31t6
360 +O

(
t6
)

y(t) = −2 + 3t+ 3t2
2 − 17t3

12 − t4

12 + t5

8 + 31t6
360 +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

d2

dt2
y(t)

)
(2 + t) +

(
2t2 + t

)( d

dt
y(t)

)
+ (−t+ 3) y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)
(2 + t) +

(
2t2 + t

)( ∞∑
n=1

nant
n−1

)
+ (−t+ 3)

(
∞∑
n=0

ant
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

n tn−1an(n− 1)
)

+
(

∞∑
n=2

2n(n− 1) antn−2

)
+
(

∞∑
n=1

2n t1+nan

)

+
(

∞∑
n=1

nant
n

)
+

∞∑
n =0

(
−t1+nan

)
+
(

∞∑
n=0

3antn
)

= 0
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The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

n tn−1an(n− 1) =
∞∑
n=1

(1 + n) a1+nn tn

∞∑
n =2

2n(n− 1) antn−2 =
∞∑
n=0

2(n+ 2) an+2(1 + n) tn

∞∑
n =1

2n t1+nan =
∞∑
n=2

2(n− 1) an−1t
n

∞∑
n =0

(
−t1+nan

)
=

∞∑
n=1

(−an−1t
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=1

(1 + n) a1+nn tn

)
+
(

∞∑
n=0

2(n+ 2) an+2(1 + n) tn
)

+
(

∞∑
n=2

2(n− 1) an−1t
n

)
+
(

∞∑
n=1

nant
n

)
+

∞∑
n =1

(−an−1t
n) +

(
∞∑
n=0

3antn
)

= 0

n = 0 gives
4a2 + 3a0 = 0

a2 = −3a0
4

n = 1 gives
2a2 + 12a3 + 4a1 − a0 = 0

Which after substituting earlier equations, simplifies to

a3 =
5a0
24 − a1

3
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For 2 ≤ n, the recurrence equation is

(4)(1 + n) a1+nn+ 2(n+ 2) an+2(1 + n) + 2(n− 1) an−1 + nan − an−1 + 3an = 0

Solving for an+2, gives

(5)

an+2 = −n2a1+n + nan + na1+n + 2nan−1 + 3an − 3an−1

2 (n+ 2) (1 + n)

= − (n+ 3) an
2 (n+ 2) (1 + n) −

(n2 + n) a1+n

2 (n+ 2) (1 + n) −
(2n− 3) an−1

2 (n+ 2) (1 + n)

For n = 2 the recurrence equation gives

6a3 + 24a4 + a1 + 5a2 = 0

Which after substituting the earlier terms found becomes

a4 =
5a0
48 + a1

24

For n = 3 the recurrence equation gives

12a4 + 40a5 + 3a2 + 6a3 = 0

Which after substituting the earlier terms found becomes

a5 = − a0
160 + 3a1

80

For n = 4 the recurrence equation gives

20a5 + 60a6 + 5a3 + 7a4 = 0

Which after substituting the earlier terms found becomes

a6 = −79a0
2880 + a1

96

For n = 5 the recurrence equation gives

30a6 + 84a7 + 7a4 + 8a5 = 0
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Which after substituting the earlier terms found becomes

a7 =
23a0
13440 − 31a1

2880

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t−
3a0t2
4 +

(
5a0
24 − a1

3

)
t3 +

(
5a0
48 + a1

24

)
t4 +

(
− a0
160 + 3a1

80

)
t5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− 3

4t
2 + 5

24t
3 + 5

48t
4 − 1

160t
5
)
a0 +

(
t− 1

3t
3 + 1

24t
4 + 3

80t
5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1− 3

4t
2 + 5

24t
3 + 5

48t
4 − 1

160t
5
)
c1 +

(
t− 1

3t
3 + 1

24t
4 + 3

80t
5
)
c2 +O

(
t6
)

y(t) = −2 + 3t2
2 − 17t3

12 − t4

12 + t5

8 + 3t+O
(
t6
)

Replacing t in the above with the original independent variable xsusing t = x−1 results
in

y =−5+3x+ 3(x− 1)2

2 − 17(x− 1)3

12 − (x− 1)4

12 + (x− 1)5

8 + 31(x− 1)6

360 +O
(
(x−1)6

)
Summary
The solution(s) found are the following

(1)
y = −5 + 3x+ 3(x− 1)2

2 − 17(x− 1)3

12 − (x− 1)4

12

+ (x− 1)5

8 + 31(x− 1)6

360 +O
(
(x− 1)6

)
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Verification of solutions

y =−5+3x+ 3(x− 1)2

2 − 17(x− 1)3

12 − (x− 1)4

12 + (x− 1)5

8 + 31(x− 1)6

360 +O
(
(x−1)6

)
Verified OK.

13.44.2 Maple step by step solution

Let’s solve[
(x+ 1) y′′ + (2x2 − 3x+ 1) y′ + (−x+ 4) y = 0, y(1) = −2, y′

∣∣∣{x=1}
= 3
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = (x−4)y
x+1 −

(
2x2−3x+1

)
y′

x+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
2x2−3x+1

)
y′

x+1 − (x−4)y
x+1 = 0

� Check to see if x0 = −1 is a regular singular point
◦ Define functions[

P2(x) = 2x2−3x+1
x+1 , P3(x) = −x−4

x+1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 6

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 = −1 is a regular singular point
x0 = −1

• Multiply by denominators
(x+ 1) y′′ + (2x2 − 3x+ 1) y′ + (−x+ 4) y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0
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u
(

d2

du2y(u)
)
+ (2u2 − 7u+ 6)

(
d
du
y(u)

)
+ (−u+ 5) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1

u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(5 + r)u−1+r + (a1(1 + r) (6 + r)− a0(−5 + 7r))ur +
(

∞∑
k=1

(ak+1(k + 1 + r) (k + 6 + r)− ak(7k + 7r − 5) + ak−1(2k − 3 + 2r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(5 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−5, 0}

• Each term must be 0
a1(1 + r) (6 + r)− a0(−5 + 7r) = 0
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• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + 6 + r) + (−7ak + 2ak−1) k + (−7ak + 2ak−1) r + 5ak − 3ak−1 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 7 + r) + (−7ak+1 + 2ak) (k + 1) + (−7ak+1 + 2ak) r + 5ak+1 − 3ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2akk−7kak+1+2akr−7rak+1−ak−2ak+1

(k+2+r)(k+7+r)

• Recursion relation for r = −5
ak+2 = −2akk−7kak+1−11ak+33ak+1

(k−3)(k+2)

• Series not valid for r = −5 , division by 0 in the recursion relation at k = 3
ak+2 = −2akk−7kak+1−11ak+33ak+1

(k−3)(k+2)

• Recursion relation for r = 0
ak+2 = −2akk−7kak+1−ak−2ak+1

(k+2)(k+7)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −2akk−7kak+1−ak−2ak+1

(k+2)(k+7) , 6a1 + 5a0 = 0
]

• Revert the change of variables u = x+ 1[
y =

∞∑
k=0

ak(x+ 1)k , ak+2 = −2akk−7kak+1−ak−2ak+1
(k+2)(k+7) , 6a1 + 5a0 = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0 `� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(1+x)*diff(y(x),x$2)+(1-3*x+2*x^2)*diff(y(x),x)-(x-4)*y(x)=0,y(1) = -2, D(y)(1) = 3],y(x),type='series',x=1);� �
y(x) = −2+ 3(x− 1) + 3

2(x− 1)2 − 17
12(x− 1)3 − 1

12(x− 1)4 + 1
8(x− 1)5 +O

(
(x− 1)6

)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 46� �
AsymptoticDSolveValue[{(1+x)*y''[x]+(1-3*x+x^2)*y'[x]-(x-4)*y[x]==0,{y[1]==-2,y'[1]==3}},y[x],{x,1,5}]� �

y(x) → − 13
240(x− 1)5 − 1

96(x− 1)4 − 2
3(x− 1)3 + 9

4(x− 1)2 + 3(x− 1)− 2
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13.45 problem 44
13.45.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4567
13.45.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4575

Internal problem ID [1286]
Internal file name [OUTPUT/1287_Sunday_June_05_2022_02_08_15_AM_98761729/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 44.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ +
(
3x2 + 12x+ 13

)
y′ + (2x+ 5) y = 0

With initial conditions

[y(−2) = 2, y′(−2) = −3]

With the expansion point for the power series method at x = −2.

13.45.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 3x2 + 12x+ 13
q(x) = 2x+ 5

F = 0
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Hence the ode is

y′′ +
(
3x2 + 12x+ 13

)
y′ + (2x+ 5) y = 0

The domain of p(x) = 3x2 + 12x+ 13 is

{−∞ < x < ∞}

And the point x0 = −2 is inside this domain. The domain of q(x) = 2x+ 5 is

{−∞ < x < ∞}

And the point x0 = −2 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = 2 + x

The ode is converted to be in terms of the new independent variable t. This results in

d2

dt2
y(t) +

(
3(t− 2)2 + 12t− 11

)( d

dt
y(t)

)
+ (1 + 2t) y(t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = 2
y′(0) = −3

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1061)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1062)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −3
(

d

dt
y(t)

)
t2 − 2y(t) t− d

dt
y(t)− y(t)

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(
9t4 + 6t2 − 8t

)( d

dt
y(t)

)
+ 6
(
t3 + 1

2t
2 + 1

3t−
1
6

)
y(t)

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(
−27t6 − 27t4 + 66t3 − 3t2 + 22t− 9

)( d

dt
y(t)

)
− 18

(
t5 + 1

2t
4 + 2

3t
3 − 14

9 t2 − 7
9t−

1
9

)
y(t)

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(
81t8 + 108t6 − 378t5 + 27t4 − 252t3 + 256t2 − 14t+ 33

)( d

dt
y(t)

)
+ 54

(
t7 + 1

2t
6 + t5 − 65

18t
4 − 16

9 t3 − 77
54t

2 + 26
27t+

23
54

)
y(t)

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(
−243t10 − 405t8 + 1836t7 − 162t6 + 1836t5 − 2880t4 + 306t3 − 1188t2 + 578t− 24

)( d

dt
y(t)

)
− 162y(t)

(
t9 + 1

2t
8 + 4

3t
7 − 19

3 t6 − 3t5 − 83
18t

4 + 520
81 t3 + 86

27t
2 + 103

81 t− 19
162

)
And so on. Evaluating all the above at initial conditions t = 0 and y(0) = 2 and
y′(0) = −3 gives

F0 = 1
F1 = −2
F2 = 31
F3 = −53
F4 = 110

Substituting all the above in (7) and simplifying gives the solution as

y(t) = 2− 3t+ t2

2 − t3

3 + 31t4
24 − 53t5

120 + 11t6
72 +O

(
t6
)

4571



y(t) = 2− 3t+ t2

2 − t3

3 + 31t4
24 − 53t5

120 + 11t6
72 +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then
d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) antn−2 = −3
(

∞∑
n=1

nant
n−1

)
t2 − 2

(
∞∑
n=0

ant
n

)
t−

(
∞∑
n=1

nant
n−1

)
−

(
∞∑
n=0

ant
n

)
(1)

Which simplifies to

(2)

(
∞∑
n=2

n(n− 1) antn−2

)
+
(

∞∑
n=1

3n t1+nan

)

+
(

∞∑
n=1

nant
n−1

)
+
(

∞∑
n=0

ant
n

)
+
(

∞∑
n=0

2t1+nan

)
= 0

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) antn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n) tn

∞∑
n =1

3n t1+nan =
∞∑
n=2

3(n− 1) an−1t
n

∞∑
n =1

nant
n−1 =

∞∑
n=0

(1 + n) a1+nt
n

∞∑
n =0

2t1+nan =
∞∑
n=1

2an−1t
n
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Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=0

(n+ 2) an+2(1 + n) tn
)

+
(

∞∑
n=2

3(n− 1) an−1t
n

)

+
(

∞∑
n=0

(1 + n) a1+nt
n

)
+
(

∞∑
n=0

ant
n

)
+
(

∞∑
n=1

2an−1t
n

)
= 0

n = 0 gives
2a2 + a1 + a0 = 0

a2 = −a0
2 − a1

2

n = 1 gives
6a3 + 2a2 + a1 + 2a0 = 0

Which after substituting earlier equations, simplifies to

a3 = −a0
6

For 2 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(1 + n) + 3(n− 1) an−1 + (1 + n) a1+n + an + 2an−1 = 0

Solving for an+2, gives

(5)

an+2 = −na1+n + 3nan−1 + an + a1+n − an−1

(n+ 2) (1 + n)

= − an
(n+ 2) (1 + n) −

a1+n

n+ 2 − (3n− 1) an−1

(n+ 2) (1 + n)

For n = 2 the recurrence equation gives

12a4 + 5a1 + 3a3 + a2 = 0
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Which after substituting the earlier terms found becomes

a4 = −3a1
8 + a0

12

For n = 3 the recurrence equation gives

20a5 + 8a2 + 4a4 + a3 = 0

Which after substituting the earlier terms found becomes

a5 =
23a0
120 + 11a1

40

For n = 4 the recurrence equation gives

30a6 + 11a3 + 5a5 + a4 = 0

Which after substituting the earlier terms found becomes

a6 =
19a0
720 − a1

30

For n = 5 the recurrence equation gives

42a7 + 14a4 + 6a6 + a5 = 0

Which after substituting the earlier terms found becomes

a7 =
69a1
560 − 13a0

360

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t+
(
−a0

2 − a1
2

)
t2 − a0t

3

6 +
(
−3a1

8 + a0
12

)
t4 +

(
23a0
120 + 11a1

40

)
t5 + . . .
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Collecting terms, the solution becomes

(3)y(t) =
(
1− 1

2t
2 − 1

6t
3 + 1

12t
4 + 23

120t
5
)
a0 +

(
t− 1

2t
2 − 3

8t
4 + 11

40t
5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1− 1

2t
2 − 1

6t
3 + 1

12t
4 + 23

120t
5
)
c1 +

(
t− 1

2t
2 − 3

8t
4 + 11

40t
5
)
c2 +O

(
t6
)

y(t) = 2 + t2

2 − t3

3 + 31t4
24 − 53t5

120 − 3t+O
(
t6
)

Replacing t in the above with the original independent variable xsusing t = 2 + x

results in

y =−4−3x+ (2 + x)2

2 − (2 + x)3

3 + 31(2 + x)4

24 − 53(2 + x)5

120 + 11(2 + x)6

72 +O
(
(2+x)6

)
Summary
The solution(s) found are the following

(1)
y = −4− 3x+ (2 + x)2

2 − (2 + x)3

3 + 31(2 + x)4

24

− 53(2 + x)5

120 + 11(2 + x)6

72 +O
(
(2 + x)6

)
Verification of solutions

y =−4−3x+ (2 + x)2

2 − (2 + x)3

3 + 31(2 + x)4

24 − 53(2 + x)5

120 + 11(2 + x)6

72 +O
(
(2+x)6

)
Verified OK.

13.45.2 Maple step by step solution

Let’s solve[
y′′ + (3x2 + 12x+ 13) y′ + (2x+ 5) y = 0, y(−2) = 2, y′

∣∣∣{x=−2}
= −3

]
• Highest derivative means the order of the ODE is 2
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y′′

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert xm · y′ to series expansion form = 0..2

xm · y′ =
∞∑

k=max(0,1−m)
akk x

k−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=max(0,1−m)+m−1
ak+1−m(k + 1−m)xk

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + 13a1 + 5a0 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1) + 13ak+1(k + 1) + ak(12k + 5) + ak−1(3k − 1))xk

)
= 0

• Each term must be 0
2a2 + 13a1 + 5a0 = 0

• Each term in the series must be 0, giving the recursion relation
k2ak+2 + (12ak + 3ak−1 + 13ak+1 + 3ak+2) k + 5ak − ak−1 + 13ak+1 + 2ak+2 = 0

• Shift index using k− >k + 1
(k + 1)2 ak+3 + (12ak+1 + 3ak + 13ak+2 + 3ak+3) (k + 1) + 5ak+1 − ak + 13ak+2 + 2ak+3 = 0
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• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+3 = −3akk+12ak+1k+13kak+2+2ak+17ak+1+26ak+2

k2+5k+6 , 2a2 + 13a1 + 5a0 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunT ODE, case c = 0 `� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([diff(y(x),x$2)+(13+12*x+3*x^2)*diff(y(x),x)+(5+2*x)*y(x)=0,y(-2) = 2, D(y)(-2) = -3],y(x),type='series',x=-2);� �
y(x) = 2− 3(2 + x) + 1

2(2 + x)2 − 1
3(2 + x)3 + 31

24(2 + x)4 − 53
120(2 + x)5 +O

(
(2 + x)6

)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 46� �
AsymptoticDSolveValue[{y''[x]+(13+12*x+3*x^2)*y'[x]+(5+2*x)*y[x]==0,{y[-2]==2,y'[-2]==-3}},y[x],{x,-2,5}]� �

y(x) → − 53
120(x+ 2)5 + 31

24(x+ 2)4 − 1
3(x+ 2)3 + 1

2(x+ 2)2 − 3(x+ 2) + 2
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13.46 problem 45
13.46.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4579
13.46.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4588

Internal problem ID [1287]
Internal file name [OUTPUT/1288_Sunday_June_05_2022_02_08_18_AM_70568683/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 45.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
3x2 + 2x+ 1

)
y′′ +

(
−x2 + 2

)
y′ + (x+ 1) y = 0

With initial conditions

[y(0) = 1, y′(0) = −2]

With the expansion point for the power series method at x = 0.

13.46.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −x2 + 2
3x2 + 2x+ 1

q(x) = x+ 1
3x2 + 2x+ 1

F = 0
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Hence the ode is

y′′ + (−x2 + 2) y′
3x2 + 2x+ 1 + (x+ 1) y

3x2 + 2x+ 1 = 0

The domain of p(x) = −x2+2
3x2+2x+1 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = x+1
3x2+2x+1 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1064)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1065)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
y′x2 − yx− 2y′ − y

3x2 + 2x+ 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (x4 − 3x3 − 7x2 + 11x+ 7) y′ − y(x3 − 2x2 − 8x− 3)
(3x2 + 2x+ 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (x6 − 6x5 + 8x4 + 84x3 − 60x2 − 128x− 28) y′ − y(x5 − 5x4 + 4x3 + 79x2 + 66x+ 11)
(3x2 + 2x+ 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (x8 − 9x7 + 43x6 + 27x5 − 1086x4 + 96x3 + 2140x2 + 1064x+ 85) y′ − y(x7 − 8x6 + 36x5 + 51x4 − 944x3 − 1324x2 − 460x− 28)
(3x2 + 2x+ 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (x10 − 12x9 + 98x8 − 352x7 − 1523x6 + 16080x5 + 8816x4 − 37212x3 − 32483x2 − 5756x+ 242) y′ − y(x9 − 11x8 + 88x7 − 279x6 − 1647x5 + 13350x4 + 28160x3 + 15328x2 + 1933x− 151)
(3x2 + 2x+ 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 1 and
y′(0) = −2 gives

F0 = 3
F1 = −11
F2 = 45
F3 = −142
F4 = −333

Substituting all the above in (7) and simplifying gives the solution as

y = 1− 2x+ 3x2

2 − 11x3

6 + 15x4

8 − 71x5

60 − 37x6

80 +O
(
x6)
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y = 1− 2x+ 3x2

2 − 11x3

6 + 15x4

8 − 71x5

60 − 37x6

80 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

3x2 + 2x+ 1
)
y′′ +

(
−x2 + 2

)
y′ + (x+ 1) y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
3x2 + 2x+ 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+
(
−x2 + 2

)( ∞∑
n=1

nanx
n−1

)
+ (x+ 1)

(
∞∑
n=0

anx
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

3xnann(n− 1)
)

+
(

∞∑
n=2

2nxn−1an(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)

+
∞∑

n =1

(
−nx1+nan

)
+
(

∞∑
n=1

2nanxn−1

)
+
(

∞∑
n=0

x1+nan

)
+
(

∞∑
n=0

anx
n

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
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power and the corresponding index gives

∞∑
n =2

2nxn−1an(n− 1) =
∞∑
n=1

2(1 + n) a1+nnxn

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =1

(
−nx1+nan

)
=

∞∑
n=2

(−(n− 1) an−1x
n)

∞∑
n =1

2nanxn−1 =
∞∑
n=0

2(1 + n) a1+nx
n

∞∑
n =0

x1+nan =
∞∑
n=1

an−1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

3xnann(n− 1)
)

+
(

∞∑
n=1

2(1 + n) a1+nnxn

)

+
(

∞∑
n=0

(n+ 2) an+2(1 + n)xn

)
+

∞∑
n =2

(−(n− 1) an−1x
n)

+
(

∞∑
n=0

2(1 + n) a1+nx
n

)
+
(

∞∑
n=1

an−1x
n

)
+
(

∞∑
n=0

anx
n

)
= 0

n = 0 gives
2a2 + 2a1 + a0 = 0

a2 = −a0
2 − a1

n = 1 gives
8a2 + 6a3 + a0 + a1 = 0
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Which after substituting earlier equations, simplifies to

a3 =
a0
2 + 7a1

6

For 2 ≤ n, the recurrence equation is

(4)3nan(n− 1) + 2(1 + n) a1+nn+ (n+ 2) an+2(1 + n)
− (n− 1) an−1 + 2(1 + n) a1+n + an−1 + an = 0

Solving for an+2, gives

(5)

an+2 = −3n2an + 2n2a1+n − 3nan + 4na1+n − nan−1 + an + 2a1+n + 2an−1

(n+ 2) (1 + n)

= −(3n2 − 3n+ 1) an
(n+ 2) (1 + n) − (2n2 + 4n+ 2) a1+n

(n+ 2) (1 + n) − (−n+ 2) an−1

(n+ 2) (1 + n)

For n = 2 the recurrence equation gives

7a2 + 18a3 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = −11a0
24 − 7a1

6

For n = 3 the recurrence equation gives

19a3 + 32a4 + 20a5 − a2 = 0

Which after substituting the earlier terms found becomes

a5 =
7a0
30 + 17a1

24

For n = 4 the recurrence equation gives

37a4 + 50a5 + 30a6 − 2a3 = 0
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Which after substituting the earlier terms found becomes

a6 =
151a0
720 + 121a1

360

For n = 5 the recurrence equation gives

61a5 + 72a6 + 42a7 − 3a4 = 0

Which after substituting the earlier terms found becomes

a7 = −737a0
1008 − 8509a1

5040

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+
(
−a0

2 − a1
)
x2 +

(
a0
2 + 7a1

6

)
x3

+
(
−11a0

24 − 7a1
6

)
x4 +

(
7a0
30 + 17a1

24

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

2x
2+ 1

2x
3− 11

24x
4+ 7

30x
5
)
a0+

(
x−x2+ 7

6x
3− 7

6x
4+ 17

24x
5
)
a1+O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

2x
2 + 1

2x
3 − 11

24x
4 + 7

30x
5
)
c1 +

(
x− x2 + 7

6x
3 − 7

6x
4 + 17

24x
5
)
c2 +O

(
x6)

y = 1 + 3x2

2 − 11x3

6 + 15x4

8 − 71x5

60 − 2x+O
(
x6)
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Summary
The solution(s) found are the following

(1)y = 1− 2x+ 3x2

2 − 11x3

6 + 15x4

8 − 71x5

60 − 37x6

80 +O
(
x6)

(2)y = 1 + 3x2

2 − 11x3

6 + 15x4

8 − 71x5

60 − 2x+O
(
x6)

Verification of solutions

y = 1− 2x+ 3x2

2 − 11x3

6 + 15x4

8 − 71x5

60 − 37x6

80 +O
(
x6)

Verified OK.

y = 1 + 3x2

2 − 11x3

6 + 15x4

8 − 71x5

60 − 2x+O
(
x6)

Verified OK.

13.46.2 Maple step by step solution

Let’s solve[
(3x2 + 2x+ 1) y′′ + (−x2 + 2) y′ + (x+ 1) y = 0, y(0) = 1, y′

∣∣∣{x=0}
= −2

]
• Highest derivative means the order of the ODE is 2

y′′

• Isolate 2nd derivative

y′′ =
(
x2−2

)
y′

3x2+2x+1 −
(x+1)y

3x2+2x+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ −
(
x2−2

)
y′

3x2+2x+1 +
(x+1)y

3x2+2x+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x2−2
3x2+2x+1 , P3(x) = x+1

3x2+2x+1

]
◦
(

I
√
2

3 + x+ 1
3

)
· P2(x) is analytic at x = −1

3 −
I
√
2

3((
I
√
2

3 + x+ 1
3

)
· P2(x)

) ∣∣∣∣
x=− 1

3−
I
√
2

3

= 0
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◦
(

I
√
2

3 + x+ 1
3

)2
· P3(x) is analytic at x = −1

3 −
I
√
2

3((
I
√
2

3 + x+ 1
3

)2
· P3(x)

) ∣∣∣∣
x=− 1

3−
I
√
2

3

= 0

◦ x = −1
3 −

I
√
2

3 is a regular singular point

Check to see if x0 is a regular singular point

x0 = −1
3 −

I
√
2

3

• Multiply by denominators
(3x2 + 2x+ 1) y′′ + (−x2 + 2) y′ + (x+ 1) y = 0

• Change variables using x = u− 1
3 −

I
√
2

3 so that the regular singular point is at u = 0(
3u2 − 2 Iu

√
2
) (

d2

du2y(u)
)
+
(
−u2 + 2u

3 + 2 Iu
√
2

3 + 19
9 − 2 I

√
2

9

) (
d
du
y(u)

)
+
(
u+ 2

3 −
I
√
2

3

)
y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m
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um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−
I
√
2
(
19 I

√
2−32+36r

)
ra0u−1+r

18 +
(
−

I
√
2
(
19 I

√
2+4+36r

)
(1+r)a1

18 −
(
I
√
2+4−9r

)(
I
√
2−1+3r

)
a0

9

)
ur +

(
∞∑
k=1

(
−

I
√
2
(
19 I

√
2+36k+4+36r

)
(k+1+r)ak+1

18 −
(
I
√
2−9k−9r+4

)(
I
√
2+3k+3r−1

)
ak

9 − ak−1(k − 2 + r)
)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
− I

18

√
2
(
19 I

√
2− 32 + 36r

)
r = 0

• Values of r that satisfy the indicial equation

r ∈
{
0, 89 −

19 I
√
2

36

}
• Each term must be 0

−
I
√
2
(
19 I

√
2+4+36r

)
(1+r)a1

18 −
(
I
√
2+4−9r

)(
I
√
2−1+3r

)
a0

9 = 0

• Each term in the series must be 0, giving the recursion relation
2 I
(
−3
(
k+r+ 1

9
)
(k+1+r)ak+1+

(
k+r− 1

2
)
ak
)√

2
3 + 19(k+1+r)ak+1

9 +
(
2+9k2+(18r−7)k+9r2−7r

)
ak

3 − ak−1(k − 2 + r) = 0

• Shift index using k− >k + 1
2 I
(
−3
(
k+ 10

9 +r
)
(k+2+r)ak+2+

(
k+ 1

2+r
)
ak+1

)√
2

3 + 19(k+2+r)ak+2
9 +

(
2+9(k+1)2+(18r−7)(k+1)+9r2−7r

)
ak+1

3 − ak(k + r − 1) = 0

• Recursion relation that defines series solution to ODE

ak+2 =
3
(
2 I

√
2 ak+1k+2 I

√
2 ak+1r+I

√
2 ak+1+9k2ak+1+18krak+1+9r2ak+1−3kak+11kak+1−3rak+11rak+1+3ak+4ak+1

)
−38+56 I

√
2 k+56 I

√
2 r+40 I

√
2+18 I

√
2 r2+36 I

√
2 kr+18 I

√
2 k2−19k−19r

• Recursion relation for r = 0

ak+2 =
3
(
2 I

√
2 ak+1k+I

√
2 ak+1+9k2ak+1−3kak+11kak+1+3ak+4ak+1

)
−38+56 I

√
2 k+40 I

√
2+18 I

√
2 k2−19k

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 =

3
(
2 I

√
2 ak+1k+I

√
2 ak+1+9k2ak+1−3kak+11kak+1+3ak+4ak+1

)
−38+56 I

√
2 k+40 I

√
2+18 I

√
2 k2−19k ,−

I
√
2
(
19 I

√
2+4

)
a1

18 −
(
I
√
2+4

)(
−1+I

√
2
)
a0

9 = 0
]

• Revert the change of variables u = I
√
2

3 + x+ 1
3[

y =
∞∑
k=0

ak
(

I
√
2

3 + x+ 1
3

)k
, ak+2 =

3
(
2 I

√
2 ak+1k+I

√
2 ak+1+9k2ak+1−3kak+11kak+1+3ak+4ak+1

)
−38+56 I

√
2 k+40 I

√
2+18 I

√
2 k2−19k ,−

I
√
2
(
19 I

√
2+4

)
a1

18 −
(
I
√
2+4

)(
−1+I

√
2
)
a0

9 = 0
]

• Recursion relation for r = 8
9 −

19 I
√
2

36

ak+2 =
3
(
2 I

√
2 ak+1k+2 I

√
2 ak+1

(
8
9−

19 I
√
2

36

)
+I

√
2 ak+1+9k2ak+1+18k

(
8
9−

19 I
√
2

36

)
ak+1+9

(
8
9−

19 I
√

2
36

)2
ak+1−3kak+11kak+1−3

(
8
9−

19 I
√
2

36

)
ak+11

(
8
9−

19 I
√
2

36

)
ak+1+3ak+4ak+1

)
− 494

9 +56 I
√
2 k+56 I

√
2
(

8
9−

19 I
√
2

36

)
+ 1801 I

√
2

36 +18 I
√
2
(

8
9−

19 I
√
2

36

)2
+36 I

√
2 k
(

8
9−

19 I
√
2

36

)
+18 I

√
2 k2−19k
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• Solution for r = 8
9 −

19 I
√
2

36[
y(u) =

∞∑
k=0

aku
k+ 8

9−
19 I

√
2

36 , ak+2 =
3
(
2 I

√
2 ak+1k+2 I

√
2 ak+1

(
8
9−

19 I
√

2
36

)
+I

√
2 ak+1+9k2ak+1+18k

(
8
9−

19 I
√
2

36

)
ak+1+9

(
8
9−

19 I
√
2

36

)2
ak+1−3kak+11kak+1−3

(
8
9−

19 I
√
2

36

)
ak+11

(
8
9−

19 I
√
2

36

)
ak+1+3ak+4ak+1

)
− 494

9 +56 I
√
2 k+56 I

√
2
(

8
9−

19 I
√
2

36

)
+ 1801 I

√
2

36 +18 I
√
2
(

8
9−

19 I
√
2

36

)2
+36 I

√
2 k
(

8
9−

19 I
√
2

36

)
+18 I

√
2 k2−19k

,−2 I
√
2
(

17
9 − 19 I

√
2

36

)
a1 −

(
23 I

√
2

4 −4
)(

− 7 I
√
2

12 + 5
3

)
a0

9 = 0
]

• Revert the change of variables u = I
√
2

3 + x+ 1
3[

y =
∞∑
k=0

ak
(

I
√
2

3 + x+ 1
3

)k+ 8
9−

19 I
√
2

36
, ak+2 =

3
(
2 I

√
2 ak+1k+2 I

√
2 ak+1

(
8
9−

19 I
√
2

36

)
+I

√
2 ak+1+9k2ak+1+18k

(
8
9−

19 I
√
2

36

)
ak+1+9

(
8
9−

19 I
√
2

36

)2
ak+1−3kak+11kak+1−3

(
8
9−

19 I
√
2

36

)
ak+11

(
8
9−

19 I
√
2

36

)
ak+1+3ak+4ak+1

)
− 494

9 +56 I
√
2 k+56 I

√
2
(

8
9−

19 I
√

2
36

)
+ 1801 I

√
2

36 +18 I
√
2
(

8
9−

19 I
√
2

36

)2
+36 I

√
2 k
(

8
9−

19 I
√

2
36

)
+18 I

√
2 k2−19k

,−2 I
√
2
(

17
9 − 19 I

√
2

36

)
a1 −

(
23 I

√
2

4 −4
)(

− 7 I
√

2
12 + 5

3

)
a0

9 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak
(

I
√
2

3 + x+ 1
3

)k)
+
(

∞∑
k=0

bk
(

I
√
2

3 + x+ 1
3

)k+ 8
9−

19 I
√
2

36

)
, ak+2 =

3
(
2 I

√
2 a1+kk+I

√
2 a1+k+9k2a1+k−3kak+11ka1+k+3ak+4a1+k

)
−38+56 I

√
2 k+40 I

√
2+18 I

√
2 k2−19k ,−

I
√
2
(
19 I

√
2+4

)
a1

18 −
(
I
√
2+4

)(
−1+I

√
2
)
a0

9 = 0, bk+2 =
3
(
2 I

√
2 b1+kk+2 I

√
2 b1+k

(
8
9−

19 I
√

2
36

)
+I

√
2 b1+k+9k2b1+k+18k

(
8
9−

19 I
√
2

36

)
b1+k+9

(
8
9−

19 I
√

2
36

)2
b1+k−3kbk+11kb1+k−3

(
8
9−

19 I
√
2

36

)
bk+11

(
8
9−

19 I
√
2

36

)
b1+k+3bk+4b1+k

)
− 494

9 +56 I
√
2 k+56 I

√
2
(

8
9−

19 I
√

2
36

)
+ 1801 I

√
2

36 +18 I
√
2
(

8
9−

19 I
√
2

36

)2
+36 I

√
2 k
(

8
9−

19 I
√

2
36

)
+18 I

√
2 k2−19k

,−2 I
√
2
(

17
9 − 19 I

√
2

36

)
b1 −

(
23 I

√
2

4 −4
)(

− 7 I
√
2

12 + 5
3

)
b0

9 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0 `� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(1+2*x+3*x^2)*diff(y(x),x$2)+(2-x^2)*diff(y(x),x)+(1+x)*y(x)=0,y(0) = 1, D(y)(0) = -2],y(x),type='series',x=0);� �

y(x) = 1− 2x+ 3
2x

2 − 11
6 x3 + 15

8 x4 − 71
60x

5 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 36� �
AsymptoticDSolveValue[{(1+2*x+3*x^2)*y''[x]+(2-x^2)*y'[x]+(1+x)*y[x]==0,{y[0]==1,y'[0]==-2}},y[x],{x,0,5}]� �

y(x) → −71x5

60 + 15x4

8 − 11x3

6 + 3x2

2 − 2x+ 1
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13.47 problem 46
13.47.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4593
13.47.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4602

Internal problem ID [1288]
Internal file name [OUTPUT/1289_Sunday_June_05_2022_02_08_21_AM_59726315/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 46.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x2 + 4x+ 3

)
y′′ −

(
−x2 + 4x+ 5

)
y′ − (2 + x) y = 0

With initial conditions

[y(−2) = 2, y′(−2) = −1]

With the expansion point for the power series method at x = −2.

13.47.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = x2 − 4x− 5
x2 + 4x+ 3

q(x) = −x− 2
x2 + 4x+ 3

F = 0
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Hence the ode is

y′′ + (x2 − 4x− 5) y′
x2 + 4x+ 3 + (−x− 2) y

x2 + 4x+ 3 = 0

The domain of p(x) = x2−4x−5
x2+4x+3 is

{−∞ ≤ x < −3,−3 < x < −1,−1 < x ≤ ∞}

And the point x0 = −2 is inside this domain. The domain of q(x) = −x−2
x2+4x+3 is

{−∞ ≤ x < −3,−3 < x < −1,−1 < x ≤ ∞}

And the point x0 = −2 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = 2 + x

The ode is converted to be in terms of the new independent variable t. This results in

(
(t− 2)2 + 4t− 5

)( d2

dt2
y(t)

)
+
(
(t− 2)2 − 4t+ 3

)( d

dt
y(t)

)
− y(t) t = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = 2
y′(0) = −1

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1067)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1068)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
(

d
dt
y(t)

)
t2 − 8t

(
d
dt
y(t)

)
− y(t) t+ 7 d

dt
y(t)

t2 − 1

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(t4 − 15t3 + 70t2 − 97t+ 41)

(
d
dt
y(t)

)
− y(t) (t3 − 7t2 + 7t+ 1)

(t2 − 1)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(−t6 + 22t5 − 175t4 + 612t3 − 979t2 + 710t− 189)

(
d
dt
y(t)

)
+ y(t) (t5 − 14t4 + 56t3 − 73t2 + 31t+ 7)

(t2 − 1)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(t+ 1) (−1 + t)

(
(−1 + t) (t7 − 28t6 + 294t5 − 1461t4 + 3634t3 − 4601t2 + 2815t− 606)

(
d
dt
y(t)

)
− y(t) (t7 − 21t6 + 147t5 − 439t4 + 631t3 − 387t2 + 85t+ 31)

)
(t2 − 1)5

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

= −
(t+ 1) (−1 + t)

(
(−1 + t) (t9 − 35t8 + 476t7 − 3260t6 + 12243t5 − 26241t4 + 32822t3 − 23242t2 + 8410t− 790)

(
d
dt
y(t)

)
− y(t) (t9 − 28t8 + 280t7 − 1307t6 + 3213t5 − 4345t4 + 3338t3 − 933t2 + 80t+ 85)

)
(t2 − 1)6

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = 2 and
y′(0) = −1 gives

F0 = −7
F1 = −43
F2 = −203
F3 = −668
F4 = −960
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Substituting all the above in (7) and simplifying gives the solution as

y(t) = −t+ 2− 7t2
2 − 43t3

6 − 203t4
24 − 167t5

30 − 4t6
3 +O

(
t6
)

y(t) = −t+ 2− 7t2
2 − 43t3

6 − 203t4
24 − 167t5

30 − 4t6
3 +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

d2

dt2
y(t)

)(
t2 − 1

)
+
(
t2 − 8t+ 7

)( d

dt
y(t)

)
− y(t) t = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)(
t2 − 1

)
+
(
t2 − 8t+ 7

)( ∞∑
n=1

nant
n−1

)
−

(
∞∑
n=0

ant
n

)
t = 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

tnann(n− 1)
)

+
∞∑

n =2

(
−n(n− 1) antn−2)+( ∞∑

n=1

n t1+nan

)

+
∞∑

n =1

(−8nantn) +
(

∞∑
n=1

7nantn−1

)
+

∞∑
n =0

(
−t1+nan

)
= 0
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The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

(
−n(n− 1) antn−2) = ∞∑

n=0

(−(n+ 2) an+2(1 + n) tn)

∞∑
n =1

n t1+nan =
∞∑
n=2

(n− 1) an−1t
n

∞∑
n =1

7nantn−1 =
∞∑
n=0

7(1 + n) a1+nt
n

∞∑
n =0

(
−t1+nan

)
=

∞∑
n=1

(−an−1t
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=2

tnann(n− 1)
)

+
∞∑

n =0

(−(n+ 2) an+2(1 + n) tn) +
(

∞∑
n=2

(n− 1) an−1t
n

)

+
∞∑

n =1

(−8nantn) +
(

∞∑
n=0

7(1 + n) a1+nt
n

)
+

∞∑
n =1

(−an−1t
n) = 0

n = 0 gives
−2a2 + 7a1 = 0

a2 =
7a1
2

n = 1 gives
−6a3 − 8a1 + 14a2 − a0 = 0

Which after substituting earlier equations, simplifies to

a3 = −a0
6 + 41a1

6
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For 2 ≤ n, the recurrence equation is

(4)nan(n− 1)− (n+ 2) an+2(1 + n) + (n− 1) an−1 − 8nan + 7(1 + n) a1+n − an−1 = 0

Solving for an+2, gives

(5)

an+2 =
n2an − 9nan + 7na1+n + nan−1 + 7a1+n − 2an−1

(n+ 2) (1 + n)

= (n2 − 9n) an
(n+ 2) (1 + n) +

(7n+ 7) a1+n

(n+ 2) (1 + n) +
(n− 2) an−1

(n+ 2) (1 + n)

For n = 2 the recurrence equation gives

−14a2 − 12a4 + 21a3 = 0

Which after substituting the earlier terms found becomes

a4 =
63a1
8 − 7a0

24

For n = 3 the recurrence equation gives

−18a3 − 20a5 + a2 + 28a4 = 0

Which after substituting the earlier terms found becomes

a5 = −31a0
120 + 101a1

20

For n = 4 the recurrence equation gives

−20a4 − 30a6 + 2a3 + 35a5 = 0

Which after substituting the earlier terms found becomes

a6 =
79a1
72 − 17a0

144

For n = 5 the recurrence equation gives

−20a5 − 42a7 + 3a4 + 42a6 = 0
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Which after substituting the earlier terms found becomes

a7 = −a0
63 − 751a1

1008

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0+a1t+
7a1t2
2 +

(
−a0

6 + 41a1
6

)
t3+

(
63a1
8 − 7a0

24

)
t4+

(
−31a0

120 + 101a1
20

)
t5+. . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− 1

6t
3 − 7

24t
4 − 31

120t
5
)
a0 +

(
t+ 7

2t
2 + 41

6 t3 + 63
8 t4 + 101

20 t5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1− 1

6t
3 − 7

24t
4 − 31

120t
5
)
c1 +

(
t+ 7

2t
2 + 41

6 t3 + 63
8 t4 + 101

20 t5
)
c2 +O

(
t6
)

y(t) = 2− 43t3
6 − 203t4

24 − 167t5
30 − t− 7t2

2 +O
(
t6
)

Replacing t in the above with the original independent variable xsusing t = 2 + x

results in

y =−x− 7(2 + x)2

2 − 43(2 + x)3

6 − 203(2 + x)4

24 − 167(2 + x)5

30 − 4(2 + x)6

3 +O
(
(2+x)6

)
Summary
The solution(s) found are the following

(1)
y = −x− 7(2 + x)2

2 − 43(2 + x)3

6 − 203(2 + x)4

24

− 167(2 + x)5

30 − 4(2 + x)6

3 +O
(
(2 + x)6

)
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Verification of solutions

y =−x− 7(2 + x)2

2 − 43(2 + x)3

6 − 203(2 + x)4

24 − 167(2 + x)5

30 − 4(2 + x)6

3 +O
(
(2+x)6

)
Verified OK.

13.47.2 Maple step by step solution

Let’s solve[
(x2 + 4x+ 3) y′′ + (x2 − 4x− 5) y′ + (−x− 2) y = 0, y(−2) = 2, y′

∣∣∣{x=−2}
= −1

]
• Highest derivative means the order of the ODE is 2

y′′

• Isolate 2nd derivative

y′′ = (2+x)y
x2+4x+3 −

y′(x−5)
x+3

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′(x−5)
x+3 − (2+x)y

x2+4x+3 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = x−5
x+3 , P3(x) = − 2+x

x2+4x+3

]
◦ (x+ 3) · P2(x) is analytic at x = −3

((x+ 3) · P2(x))
∣∣∣∣
x=−3

= −8

◦ (x+ 3)2 · P3(x) is analytic at x = −3(
(x+ 3)2 · P3(x)

) ∣∣∣∣
x=−3

= 0

◦ x = −3is a regular singular point
Check to see if x0 is a regular singular point
x0 = −3

• Multiply by denominators
(x+ 3) y′′(x2 + 4x+ 3) + (x− 5) (x2 + 4x+ 3) y′ − (2 + x) (x+ 3) y = 0

• Change variables using x = u− 3 so that the regular singular point is at u = 0

4602



(u3 − 2u2)
(

d2

du2y(u)
)
+ (u3 − 10u2 + 16u)

(
d
du
y(u)

)
+ (−u2 + u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 1..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 1..3

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 2..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r(−9 + r)ur + (−2a1(1 + r) (−8 + r) + a0(r2 − 11r + 1))u1+r +
(

∞∑
k=2

(
−2ak(k + r) (k + r − 9) + ak−1

(
(k − 1)2 + 2(k − 1) r + r2 − 11k + 12− 11r

)
+ ak−2(k − 3 + r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r(−9 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 9}

• Each term must be 0
−2a1(1 + r) (−8 + r) + a0(r2 − 11r + 1) = 0
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• Solve for the dependent coefficient(s)

a1 = a0
(
r2−11r+1

)
2(r2−7r−8)

• Each term in the series must be 0, giving the recursion relation
(−2ak + ak−1) k2 + ((−4ak + 2ak−1) r + 18ak + ak−2 − 13ak−1) k + (−2ak + ak−1) r2 + (18ak + ak−2 − 13ak−1) r − 3ak−2 + 13ak−1 = 0

• Shift index using k− >k + 2
(−2ak+2 + ak+1) (k + 2)2 + ((−4ak+2 + 2ak+1) r + 18ak+2 + ak − 13ak+1) (k + 2) + (−2ak+2 + ak+1) r2 + (18ak+2 + ak − 13ak+1) r − 3ak + 13ak+1 = 0

• Recursion relation that defines series solution to ODE

ak+2 = k2ak+1+2krak+1+r2ak+1+kak−9kak+1+rak−9rak+1−ak−9ak+1
2(k2+2kr+r2−5k−5r−14)

• Recursion relation for r = 0

ak+2 = k2ak+1+kak−9kak+1−ak−9ak+1
2(k2−5k−14)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 7

ak+2 = k2ak+1+kak−9kak+1−ak−9ak+1
2(k2−5k−14)

• Recursion relation for r = 9

ak+2 = k2ak+1+kak+9kak+1+8ak−9ak+1
2(k2+13k+22)

• Solution for r = 9[
y(u) =

∞∑
k=0

aku
k+9, ak+2 = k2ak+1+kak+9kak+1+8ak−9ak+1

2(k2+13k+22) , a1 = −17a0
20

]
• Revert the change of variables u = x+ 3[

y =
∞∑
k=0

ak(x+ 3)k+9 , ak+2 = k2ak+1+kak+9kak+1+8ak−9ak+1
2(k2+13k+22) , a1 = −17a0

20

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0 `� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(3+4*x+x^2)*diff(y(x),x$2)-(5+4*x-x^2)*diff(y(x),x)-(2+x)*y(x)=0,y(-2) = 2, D(y)(-2) = -1],y(x),type='series',x=-2);� �
y(x) = 2− (2+ x)− 7

2(2+ x)2 − 43
6 (2+ x)3 − 203

24 (2+ x)4 − 167
30 (2+ x)5 +O

(
(2+ x)6

)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 43� �
AsymptoticDSolveValue[{(3+4*x+x^2)*y''[x]-(5+4*x-x^2)*y'[x]-(2+x)*y[x]==0,{y[-2]==2,y'[-2]==-1}},y[x],{x,-2,5}]� �

y(x) → −167
30 (x+ 2)5 − 203

24 (x+ 2)4 − 43
6 (x+ 2)3 − 7

2(x+ 2)2 − x
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13.48 problem 47
13.48.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4607
13.48.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4615

Internal problem ID [1289]
Internal file name [OUTPUT/1290_Sunday_June_05_2022_02_08_24_AM_12516137/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 47.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x2 + 2x+ 1

)
y′′ + (1− x) y = 0

With initial conditions

[y(0) = 2, y′(0) = −1]

With the expansion point for the power series method at x = 0.

13.48.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 0

q(x) = 1− x

(x+ 1)2

F = 0
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Hence the ode is

y′′ + (1− x) y
(x+ 1)2

= 0

The domain of p(x) = 0 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 1−x
(x+1)2 is

{x < −1∨−1 < x}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1070)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1071)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
(x− 1) y
(x+ 1)2

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= y′x2 − yx+ 3y − y′

(x+ 1)3

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (x− 3) ((−2x− 2) y′ + y(x+ 3))
(x+ 1)4

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(x3 + 5x2 − 25x− 29) y′ − 4

(
x2 − 5

2x− 15
2

)
y

(x+ 1)5

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (−6x3 − 6x2 + 150x+ 150) y′ + y(x3 + 15x2 − 81x− 111)
(x+ 1)6

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 2 and
y′(0) = −1 gives

F0 = −2
F1 = 7
F2 = −24
F3 = 89
F4 = −372

Substituting all the above in (7) and simplifying gives the solution as

y = −x2 − x+ 2 + 7x3

6 − x4 + 89x5

120 − 31x6

60 +O
(
x6)
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y = −x2 − x+ 2 + 7x3

6 − x4 + 89x5

120 − 31x6

60 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 + 2x+ 1
)
y′′ + (1− x) y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives(
x2 + 2x+ 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+ (1− x)

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)

(
∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=2

2nxn−1an(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

anx
n

)
+

∞∑
n =0

(
−x1+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

2nxn−1an(n− 1) =
∞∑
n=1

2(1 + n) a1+nnxn

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =0

(
−x1+nan

)
=

∞∑
n=1

(−an−1x
n)
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=1

2(1 + n) a1+nnxn

)

+
(

∞∑
n=0

(n+ 2) an+2(1 + n)xn

)
+
(

∞∑
n=0

anx
n

)
+

∞∑
n =1

(−an−1x
n) = 0

n = 0 gives
2a2 + a0 = 0

a2 = −a0
2

n = 1 gives
4a2 + 6a3 + a1 − a0 = 0

Which after substituting earlier equations, simplifies to

a3 =
a0
2 − a1

6

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1) + 2(1 + n) a1+nn+ (n+ 2) an+2(1 + n) + an − an−1 = 0

Solving for an+2, gives

(5)

an+2 = −n2an + 2n2a1+n − nan + 2na1+n + an − an−1

(n+ 2) (1 + n)

= −(n2 − n+ 1) an
(n+ 2) (1 + n) − (2n2 + 2n) a1+n

(n+ 2) (1 + n) + an−1

(n+ 2) (1 + n)

For n = 2 the recurrence equation gives

3a2 + 12a3 + 12a4 − a1 = 0
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Which after substituting the earlier terms found becomes

a4 = −3a0
8 + a1

4

For n = 3 the recurrence equation gives

7a3 + 24a4 + 20a5 − a2 = 0

Which after substituting the earlier terms found becomes

a5 =
a0
4 − 29a1

120

For n = 4 the recurrence equation gives

13a4 + 40a5 + 30a6 − a3 = 0

Which after substituting the earlier terms found becomes

a6 = −37a0
240 + 5a1

24

For n = 5 the recurrence equation gives

21a5 + 60a6 + 42a7 − a4 = 0

Which after substituting the earlier terms found becomes

a7 =
29a0
336 − 41a1

240

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− a0x
2

2 +
(a0
2 − a1

6

)
x3 +

(
−3a0

8 + a1
4

)
x4 +

(
a0
4 − 29a1

120

)
x5 + . . .
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Collecting terms, the solution becomes

(3)y =
(
1− 1

2x
2 + 1

2x
3 − 3

8x
4 + 1

4x
5
)
a0 +

(
x− 1

6x
3 + 1

4x
4 − 29

120x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

2x
2 + 1

2x
3 − 3

8x
4 + 1

4x
5
)
c1 +

(
x− 1

6x
3 + 1

4x
4 − 29

120x
5
)
c2 +O

(
x6)

y = 2− x2 + 7x3

6 − x4 + 89x5

120 − x+O
(
x6)

Summary
The solution(s) found are the following

(1)y = −x2 − x+ 2 + 7x3

6 − x4 + 89x5

120 − 31x6

60 +O
(
x6)

(2)y = 2− x2 + 7x3

6 − x4 + 89x5

120 − x+O
(
x6)

Verification of solutions

y = −x2 − x+ 2 + 7x3

6 − x4 + 89x5

120 − 31x6

60 +O
(
x6)

Verified OK.

y = 2− x2 + 7x3

6 − x4 + 89x5

120 − x+O
(
x6)

Verified OK.

13.48.2 Maple step by step solution

Let’s solve[
(x2 + 2x+ 1) y′′ + (1− x) y = 0, y(0) = 2, y′

∣∣∣{x=0}
= −1

]
• Highest derivative means the order of the ODE is 2

y′′

• Isolate 2nd derivative
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y′′ = (x−1)y
x2+2x+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − (x−1)y

x2+2x+1 = 0

� Check to see if x0 = −1 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = − x−1
x2+2x+1

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 0

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 2

◦ x = −1is a regular singular point
Check to see if x0 = −1 is a regular singular point
x0 = −1

• Multiply by denominators
(x2 + 2x+ 1) y′′ + (1− x) y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

u2
(

d2

du2y(u)
)
+ (2− u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert u2 ·
(

d2

du2y(u)
)

to series expansion
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u2 ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r

Rewrite ODE with series expansions

a0(r2 − r + 2)ur +
(

∞∑
k=1

(ak(k2 + 2kr + r2 − k − r + 2)− ak−1)uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 − r + 2 = 0

• Values of r that satisfy the indicial equation

r ∈
{
− I

√
7

2 + 1
2 ,

I
√
7

2 + 1
2

}
• Each term in the series must be 0, giving the recursion relation

(k2 + (2r − 1) k + r2 − r + 2) ak − ak−1 = 0
• Shift index using k− >k + 1(

(k + 1)2 + (2r − 1) (k + 1) + r2 − r + 2
)
ak+1 − ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k2+2kr+r2+k+r+2

• Recursion relation for r = − I
√
7

2 + 1
2

ak+1 = ak

k2+2k
(
− I

√
7

2 + 1
2

)
+
(
− I

√
7

2 + 1
2

)2
+k− I

√
7

2 + 5
2

• Solution for r = − I
√
7

2 + 1
2[

y(u) =
∞∑
k=0

aku
k− I

√
7

2 + 1
2 , ak+1 = ak

k2+2k
(
− I

√
7

2 + 1
2

)
+
(
− I

√
7

2 + 1
2

)2
+k− I

√
7

2 + 5
2

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k−
I
√
7

2 + 1
2 , ak+1 = ak

k2+2k
(
− I

√
7

2 + 1
2

)
+
(
− I

√
7

2 + 1
2

)2
+k− I

√
7

2 + 5
2

]
• Recursion relation for r = I

√
7

2 + 1
2

ak+1 = ak

k2+2k
(

I
√

7
2 + 1

2

)
+
(

I
√
7

2 + 1
2

)2
+k+ I

√
7

2 + 5
2

• Solution for r = I
√
7

2 + 1
2[

y(u) =
∞∑
k=0

aku
k+ I

√
7

2 + 1
2 , ak+1 = ak

k2+2k
(

I
√
7

2 + 1
2

)
+
(

I
√
7

2 + 1
2

)2
+k+ I

√
7

2 + 5
2

]
• Revert the change of variables u = x+ 1
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[
y =

∞∑
k=0

ak(x+ 1)k+
I
√
7

2 + 1
2 , ak+1 = ak

k2+2k
(

I
√
7

2 + 1
2

)
+
(

I
√
7

2 + 1
2

)2
+k+ I

√
7

2 + 5
2

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x+ 1)k−
I
√
7

2 + 1
2

)
+
(

∞∑
k=0

bk(x+ 1)k+
I
√
7

2 + 1
2

)
, a1+k = ak

k2+2k
(
− I

√
7

2 + 1
2

)
+
(
− I

√
7

2 + 1
2

)2
+k− I

√
7

2 + 5
2

, b1+k = bk

k2+2k
(

I
√
7

2 + 1
2

)
+
(

I
√

7
2 + 1

2

)2
+k+ I

√
7

2 + 5
2

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 0F1 ODE

<- hypergeometric successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(1+2*x+x^2)*diff(y(x),x$2)+(1-x)*y(x)=0,y(0) = 2, D(y)(0) = -1],y(x),type='series',x=0);� �

y(x) = 2− x− x2 + 7
6x

3 − x4 + 89
120x

5 +O
(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 32� �
AsymptoticDSolveValue[{(1+2*x+x^2)*y''[x]+(1-x)*y[x]==0,{y[0]==2,y'[0]==-1}},y[x],{x,0,5}]� �

y(x) → 89x5

120 − x4 + 7x3

6 − x2 − x+ 2
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13.49 problem 48
13.49.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4620
13.49.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4629

Internal problem ID [1290]
Internal file name [OUTPUT/1291_Sunday_June_05_2022_02_08_26_AM_77405407/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 48.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
−2x2 + x

)
y′′ +

(
−x2 + 3x+ 1

)
y′ + (2 + x) y = 0

With initial conditions

[y(1) = 1, y′(1) = 0]

With the expansion point for the power series method at x = 1.

13.49.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −x2 + 3x+ 1
−2x2 + x

q(x) = 2 + x

−2x2 + x

F = 0
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Hence the ode is

y′′ + (−x2 + 3x+ 1) y′
−2x2 + x

+ (2 + x) y
−2x2 + x

= 0

The domain of p(x) = −x2+3x+1
−2x2+x

is

{
−∞ ≤ x < 0, 0 < x <

1
2 ,

1
2 < x ≤ ∞

}

And the point x0 = 1 is inside this domain. The domain of q(x) = 2+x
−2x2+x

is

{
−∞ ≤ x < 0, 0 < x <

1
2 ,

1
2 < x ≤ ∞

}

And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x− 1

The ode is converted to be in terms of the new independent variable t. This results in

(
−2(t+ 1)2 + t+ 1

)( d2

dt2
y(t)

)
+
(
−(t+ 1)2 + 3t+ 4

)( d

dt
y(t)

)
+ (t+ 3) y(t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = 1
y′(0) = 0

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)
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Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1073)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1074)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
(

d
dt
y(t)

)
t2 − t

(
d
dt
y(t)

)
− y(t) t− 3 d

dt
y(t)− 3y(t)

2t2 + 3t+ 1

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(t4 − t2 + 2t+ 4)

(
d
dt
y(t)

)
− y(t) (t3 + 4t2 + 6t− 1)

(2t2 + 3t+ 1)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(−t6 − t5 − t4 − 20t3 − 37t2 − 33t− 9)

(
d
dt
y(t)

)
+ y(t) t(t4 + 5t3 + 12t2 + 32t+ 12)

(2t2 + 3t+ 1)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(t8 + 2t7 + 3t6 + 48t5 + 231t4 + 360t3 + 314t2 + 136t+ 21)

(
d
dt
y(t)

)
− y(t) (t7 + 6t6 + 18t5 + 75t4 + 333t3 + 324t2 + 116t+ 15)

(2t2 + 3t+ 1)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

= −
2(t+ 1)

(
(t10 + 3t9 + 5t8 + 80t7 + 640t6 + 2580t5 + 4343t4 + 4203t3 + 2353t2 + 664t+ 68)

(
d
dt
y(t)

)
− y(t) (t9 + 7t8 + 24t7 + 122t6 + 885t5 + 4293t4 + 5981t3 + 3647t2 + 1065t+ 127)

) (
t+ 1

2

)
(2t2 + 3t+ 1)6

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = 1 and
y′(0) = 0 gives

F0 = 3
F1 = 1
F2 = 0
F3 = −15
F4 = 127
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Substituting all the above in (7) and simplifying gives the solution as

y(t) = 1 + 3t2
2 + t3

6 − t5

8 + 127t6
720 +O

(
t6
)

y(t) = 1 + 3t2
2 + t3

6 − t5

8 + 127t6
720 +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

−2t2 − 3t− 1
)( d2

dt2
y(t)

)
+
(
−t2 + t+ 3

)( d

dt
y(t)

)
+ (t+ 3) y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives

(
−2t2 − 3t− 1

)( ∞∑
n=2

n(n− 1) antn−2

)
+
(
−t2 + t+ 3

)( ∞∑
n=1

nant
n−1

)
+ (t+ 3)

(
∞∑
n=0

ant
n

)
= 0

(1)

Which simplifies to

(2)

∞∑
n =2

(−2tnann(n− 1)) +
∞∑

n =2

(
−3n tn−1an(n− 1)

)
+

∞∑
n =2

(
−n(n− 1) antn−2)+ ∞∑

n =1

(
−n t1+nan

)
+
(

∞∑
n=1

nant
n

)

+
(

∞∑
n=1

3nantn−1

)
+
(

∞∑
n=0

t1+nan

)
+
(

∞∑
n=0

3antn
)

= 0
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The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

(
−3n tn−1an(n− 1)

)
=

∞∑
n=1

(−3(1 + n) a1+nn tn)

∞∑
n =2

(
−n(n− 1) antn−2) = ∞∑

n=0

(−(n+ 2) an+2(1 + n) tn)

∞∑
n =1

(
−n t1+nan

)
=

∞∑
n=2

(−(n− 1) an−1t
n)

∞∑
n =1

3nantn−1 =
∞∑
n=0

3(1 + n) a1+nt
n

∞∑
n =0

t1+nan =
∞∑
n=1

an−1t
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

∞∑
n =2

(−2tnann(n− 1)) +
∞∑

n =1

(−3(1 + n) a1+nn tn)

+
∞∑

n =0

(−(n+ 2) an+2(1 + n) tn) +
∞∑

n =2

(−(n− 1) an−1t
n) +

(
∞∑
n=1

nant
n

)

+
(

∞∑
n=0

3(1 + n) a1+nt
n

)
+
(

∞∑
n=1

an−1t
n

)
+
(

∞∑
n=0

3antn
)

= 0

n = 0 gives
−2a2 + 3a1 + 3a0 = 0

a2 =
3a0
2 + 3a1

2

n = 1 gives
−6a3 + 4a1 + a0 = 0
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Which after substituting earlier equations, simplifies to

a3 =
a0
6 + 2a1

3

For 2 ≤ n, the recurrence equation is

(4)−2nan(n− 1)− 3(1 + n) a1+nn− (n+ 2) an+2(1 + n)
− (n− 1) an−1 + nan + 3(1 + n) a1+n + an−1 + 3an = 0

Solving for an+2, gives

(5)

an+2 = −2n2an + 3n2a1+n − 3nan + nan−1 − 3an − 3a1+n − 2an−1

(n+ 2) (1 + n)

= −(2n2 − 3n− 3) an
(n+ 2) (1 + n) − (3n2 − 3) a1+n

(n+ 2) (1 + n) −
(n− 2) an−1

(n+ 2) (1 + n)

For n = 2 the recurrence equation gives

a2 − 9a3 − 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = −3a1
8

For n = 3 the recurrence equation gives

−6a3 − 24a4 − 20a5 − a2 = 0

Which after substituting the earlier terms found becomes

a5 = −a0
8 + 7a1

40

For n = 4 the recurrence equation gives

−17a4 − 45a5 − 30a6 − 2a3 = 0
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Which after substituting the earlier terms found becomes

a6 = −17a1
180 + 127a0

720

For n = 5 the recurrence equation gives

−32a5 − 72a6 − 42a7 − 3a4 = 0

Which after substituting the earlier terms found becomes

a7 = −29a0
140 + 31a1

560

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t+
(
3a0
2 + 3a1

2

)
t2 +

(
a0
6 + 2a1

3

)
t3 − 3a1t4

8 +
(
−a0

8 + 7a1
40

)
t5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1 + 3

2t
2 + 1

6t
3 − 1

8t
5
)
a0 +

(
t+ 3

2t
2 + 2

3t
3 − 3

8t
4 + 7

40t
5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1 + 3

2t
2 + 1

6t
3 − 1

8t
5
)
c1 +

(
t+ 3

2t
2 + 2

3t
3 − 3

8t
4 + 7

40t
5
)
c2 +O

(
t6
)

y(t) = 1 + 3t2
2 + t3

6 − t5

8 +O
(
t6
)

Replacing t in the above with the original independent variable xsusing t = x−1 results
in

y = 1 + 3(x− 1)2

2 + (x− 1)3

6 − (x− 1)5

8 + 127(x− 1)6

720 +O
(
(x− 1)6

)
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Summary
The solution(s) found are the following

(1)y = 1 + 3(x− 1)2

2 + (x− 1)3

6 − (x− 1)5

8 + 127(x− 1)6

720 +O
(
(x− 1)6

)
Verification of solutions

y = 1 + 3(x− 1)2

2 + (x− 1)3

6 − (x− 1)5

8 + 127(x− 1)6

720 +O
(
(x− 1)6

)
Verified OK.

13.49.2 Maple step by step solution

Let’s solve[
(−2x2 + x) y′′ + (−x2 + 3x+ 1) y′ + (2 + x) y = 0, y(1) = 1, y′

∣∣∣{x=1}
= 0
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = (2+x)y
x(2x−1) −

(
x2−3x−1

)
y′

x(2x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
x2−3x−1

)
y′

x(2x−1) − (2+x)y
x(2x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = x2−3x−1
x(2x−1) , P3(x) = − 2+x

x(2x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0
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• Multiply by denominators
y′′x(2x− 1) + (x2 − 3x− 1) y′ + (−x− 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 0..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..2

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r
2x−1+r +

(
−a1(1 + r)2 + a0(2r2 − 5r − 2)

)
xr +

(
∞∑
k=1

(
−ak+1(k + 1 + r)2 + ak(2k2 + 4kr + 2r2 − 5k − 5r − 2) + ak−1(k − 2 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
−a1(1 + r)2 + a0(2r2 − 5r − 2) = 0
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• Each term in the series must be 0, giving the recursion relation
(2ak − ak+1) k2 + (−5ak + ak−1 − 2ak+1) k − 2ak − 2ak−1 − ak+1 = 0

• Shift index using k− >k + 1
(2ak+1 − ak+2) (k + 1)2 + (−5ak+1 + ak − 2ak+2) (k + 1)− 2ak+1 − 2ak − ak+2 = 0

• Recursion relation that defines series solution to ODE

ak+2 = 2k2ak+1+kak−kak+1−ak−5ak+1
k2+4k+4

• Recursion relation for r = 0

ak+2 = 2k2ak+1+kak−kak+1−ak−5ak+1
k2+4k+4

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = 2k2ak+1+kak−kak+1−ak−5ak+1

k2+4k+4 ,−a1 − 2a0 = 0
]

4631



Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0 `� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
Order:=6;
dsolve([(x-2*x^2)*diff(y(x),x$2)+(1+3*x-x^2)*diff(y(x),x)+(2+x)*y(x)=0,y(1) = 1, D(y)(1) = 0],y(x),type='series',x=1);� �

y(x) = 1 + 3
2(x− 1)2 + 1

6(x− 1)3 − 1
8(x− 1)5 +O

(
(x− 1)6

)
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3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 32� �
AsymptoticDSolveValue[{(x-2*x^2)*y''[x]+(1+3*x-x^2)*y'[x]+(2+x)*y[x]==0,{y[1]==1,y'[1]==0}},y[x],{x,1,5}]� �

y(x) → −1
8(x− 1)5 + 1

6(x− 1)3 + 3
2(x− 1)2 + 1
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13.50 problem 49
13.50.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 4634
13.50.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4643

Internal problem ID [1291]
Internal file name [OUTPUT/1292_Sunday_June_05_2022_02_08_30_AM_68085191/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS
NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 49.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
2x2 − 11x+ 16

)
y′′ +

(
x2 − 6x+ 10

)
y′ − (2− x) y = 0

With initial conditions

[y(3) = 1, y′(3) = −2]

With the expansion point for the power series method at x = 3.

13.50.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = x2 − 6x+ 10
2x2 − 11x+ 16

q(x) = −2 + x

2x2 − 11x+ 16
F = 0
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Hence the ode is

y′′ + (x2 − 6x+ 10) y′
2x2 − 11x+ 16 + (−2 + x) y

2x2 − 11x+ 16 = 0

The domain of p(x) = x2−6x+10
2x2−11x+16 is

{−∞ < x < ∞}

And the point x0 = 3 is inside this domain. The domain of q(x) = −2+x
2x2−11x+16 is

{−∞ < x < ∞}

And the point x0 = 3 is also inside this domain. Hence solution exists and is unique.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x− 3

The ode is converted to be in terms of the new independent variable t. This results in

(
2(t+ 3)2 − 11t− 17

)( d2

dt2
y(t)

)
+
(
(t+ 3)2 − 6t− 8

)( d

dt
y(t)

)
+ (t+ 1) y(t) = 0

With its expansion point and initial conditions now at t = 0. With initial conditions
now becoming

y(0) = 1
y′(0) = −2

The transformed ODE is now solved. Solving ode using Taylor series method. This
gives review on how the Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
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case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1076)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (1077)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −
(

d
dt
y(t)

)
t2 + y(t) t+ d

dt
y(t) + y(t)

2t2 + t+ 1

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(t4 − 2t3 − 2t2 + 1)

(
d
dt
y(t)

)
+ y(t) (t3 + 3t2 + 5t+ 1)

(2t2 + t+ 1)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(−t6 + 4t5 + 14t4 + 26t3 + 5t2 − 6t− 2)

(
d
dt
y(t)

)
− y(t) (t5 + t4 + 7t3 + 25t2 + 8t− 2)

(2t2 + t+ 1)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(t8 − 6t7 − 27t6 − 100t5 − 199t4 − 52t3 + 101t2 + 46t+ 4)

(
d
dt
y(t)

)
+ y(t) (t7 − t6 − 16t5 − 4t4 + 165t3 + 85t2 − 50t− 12)

(2t2 + t+ 1)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(−t10 + 8t9 + 41t8 + 172t7 + 705t6 + 1792t5 + 449t4 − 1800t3 − 1096t2 − 108t+ 14)

(
d
dt
y(t)

)
− y(t) (t9 − 3t8 − 40t7 − 228t6 − 309t5 + 1479t4 + 1250t3 − 878t2 − 462t+ 6)

(2t2 + t+ 1)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = 1 and
y′(0) = −2 gives

F0 = 1
F1 = −1
F2 = 6
F3 = −20
F4 = −34
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Substituting all the above in (7) and simplifying gives the solution as

y(t) = 1 + t2

2 − 2t− t3

6 + t4

4 − t5

6 − 17t6
360 +O

(
t6
)

y(t) = 1 + t2

2 − 2t− t3

6 + t4

4 − t5

6 − 17t6
360 +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

d2

dt2
y(t)

)(
2t2 + t+ 1

)
+
(
t2 + 1

)( d

dt
y(t)

)
+ (t+ 1) y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) antn−2

)(
2t2 + t+ 1

)
+
(
t2 + 1

)( ∞∑
n=1

nant
n−1

)
+ (t+ 1)

(
∞∑
n=0

ant
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

2tnann(n− 1)
)

+
(

∞∑
n=2

n tn−1an(n− 1)
)

+
(

∞∑
n=2

n(n− 1) antn−2

)

+
(

∞∑
n=1

n t1+nan

)
+
(

∞∑
n=1

nant
n−1

)
+
(

∞∑
n=0

t1+nan

)
+
(

∞∑
n=0

ant
n

)
= 0
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The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

n tn−1an(n− 1) =
∞∑
n=1

(1 + n) a1+nn tn

∞∑
n =2

n(n− 1) antn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n) tn

∞∑
n =1

n t1+nan =
∞∑
n=2

(n− 1) an−1t
n

∞∑
n =1

nant
n−1 =

∞∑
n=0

(1 + n) a1+nt
n

∞∑
n =0

t1+nan =
∞∑
n=1

an−1t
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)

(
∞∑
n=2

2tnann(n− 1)
)

+
(

∞∑
n=1

(1 + n) a1+nn tn

)

+
(

∞∑
n=0

(n+ 2) an+2(1 + n) tn
)

+
(

∞∑
n=2

(n− 1) an−1t
n

)

+
(

∞∑
n=0

(1 + n) a1+nt
n

)
+
(

∞∑
n=1

an−1t
n

)
+
(

∞∑
n=0

ant
n

)
= 0

n = 0 gives
2a2 + a1 + a0 = 0

a2 = −a0
2 − a1

2

n = 1 gives
4a2 + 6a3 + a0 + a1 = 0
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Which after substituting earlier equations, simplifies to

a3 =
a0
6 + a1

6

For 2 ≤ n, the recurrence equation is

(4)2nan(n− 1) + (1 + n) a1+nn+ (n+ 2) an+2(1 + n)
+ (n− 1) an−1 + (1 + n) a1+n + an−1 + an = 0

Solving for an+2, gives

(5)

an+2 = −2n2an + n2a1+n − 2nan + 2na1+n + nan−1 + an + a1+n

(n+ 2) (1 + n)

= −(2n2 − 2n+ 1) an
(n+ 2) (1 + n) − (n2 + 2n+ 1) a1+n

(n+ 2) (1 + n) − nan−1

(n+ 2) (1 + n)

For n = 2 the recurrence equation gives

5a2 + 9a3 + 12a4 + 2a1 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
12 − a1

12

For n = 3 the recurrence equation gives

13a3 + 16a4 + 20a5 + 3a2 = 0

Which after substituting the earlier terms found becomes

a5 = −a0
10 + a1

30

For n = 4 the recurrence equation gives

25a4 + 25a5 + 30a6 + 4a3 = 0

Which after substituting the earlier terms found becomes

a6 = − a0
120 + 7a1

360
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For n = 5 the recurrence equation gives

41a5 + 36a6 + 42a7 + 5a4 = 0

Which after substituting the earlier terms found becomes

a7 =
239a0
2520 − 11a1

280

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t+
(
−a0

2 − a1
2

)
t2 +

(a0
6 + a1

6

)
t3 +

(a0
12 − a1

12

)
t4 +

(
−a0
10 + a1

30

)
t5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− 1

2t
2+ 1

6t
3+ 1

12t
4− 1

10t
5
)
a0+

(
t− 1

2t
2+ 1

6t
3− 1

12t
4+ 1

30t
5
)
a1+O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1− 1

2t
2 + 1

6t
3 + 1

12t
4 − 1

10t
5
)
c1 +

(
t− 1

2t
2 + 1

6t
3 − 1

12t
4 + 1

30t
5
)
c2 +O

(
t6
)

y(t) = 1 + t2

2 − t3

6 + t4

4 − t5

6 − 2t+O
(
t6
)

Replacing t in the above with the original independent variable xsusing t = x − 3
results in

y = 7 + (x− 3)2

2 − 2x− (x− 3)3

6 + (x− 3)4

4 − (x− 3)5

6 − 17(x− 3)6

360 +O
(
(x− 3)6

)
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Summary
The solution(s) found are the following

(1)y = 7+ (x− 3)2

2 − 2x− (x− 3)3

6 + (x− 3)4

4 − (x− 3)5

6 − 17(x− 3)6

360 +O
(
(x− 3)6

)
Verification of solutions

y = 7 + (x− 3)2

2 − 2x− (x− 3)3

6 + (x− 3)4

4 − (x− 3)5

6 − 17(x− 3)6

360 +O
(
(x− 3)6

)
Verified OK.

13.50.2 Maple step by step solution

Let’s solve[
(2x2 − 11x+ 16) y′′ + (x2 − 6x+ 10) y′ + (−2 + x) y = 0, y(3) = 1, y′

∣∣∣{x=3}
= −2

]
• Highest derivative means the order of the ODE is 2

y′′

• Isolate 2nd derivative

y′′ = − (−2+x)y
2x2−11x+16 −

(
x2−6x+10

)
y′

2x2−11x+16

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
x2−6x+10

)
y′

2x2−11x+16 + (−2+x)y
2x2−11x+16 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = x2−6x+10
2x2−11x+16 , P3(x) = −2+x

2x2−11x+16

]
◦
(

I
√
7

4 + x− 11
4

)
· P2(x) is analytic at x = − I

√
7

4 + 11
4((

I
√
7

4 + x− 11
4

)
· P2(x)

) ∣∣∣∣
x=− I

√
7

4 + 11
4

= 0

◦
(

I
√
7

4 + x− 11
4

)2
· P3(x) is analytic at x = − I

√
7

4 + 11
4((

I
√
7

4 + x− 11
4

)2
· P3(x)

) ∣∣∣∣
x=− I

√
7

4 + 11
4

= 0

◦ x = − I
√
7

4 + 11
4 is a regular singular point

Check to see if x0 is a regular singular point
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x0 = − I
√
7

4 + 11
4

• Multiply by denominators
(2x2 − 11x+ 16) y′′ + (x2 − 6x+ 10) y′ + (−2 + x) y = 0

• Change variables using x = u− I
√
7

4 + 11
4 so that the regular singular point is at u = 0(

2u2 − Iu
√
7
) (

d2

du2y(u)
)
+
(
u2 − Iu

√
7

2 − u
2 +

5
8 +

I
√
7

8

) (
d
du
y(u)

)
+
(

3
4 + u− I

√
7

4

)
y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−
I
√
7 r
(
5 I

√
7−63+56r

)
a0u−1+r

56 +
(
−

I
√
7 (1+r)

(
5 I

√
7−7+56r

)
a1

56 −
(
−3+2 Ir

√
7+I

√
7−8r2+10r

)
a0

4

)
ur +

(
∞∑
k=1

(
−

I
√
7 (k+r+1)

(
5 I

√
7+56k−7+56r

)
ak+1

56 −
(
2 Ik

√
7+2 Ir

√
7+I

√
7−8k2−16kr−8r2+10k+10r−3

)
ak

4 + ak−1(k + r)
)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
− I

56

√
7 r
(
5 I

√
7− 63 + 56r

)
= 0
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• Values of r that satisfy the indicial equation

r ∈
{
0, 98 −

5 I
√
7

56

}
• Each term must be 0

−
I
√
7 (1+r)

(
5 I

√
7−7+56r

)
a1

56 −
(
−3+2 Ir

√
7+I

√
7−8r2+10r

)
a0

4 = 0

• Each term in the series must be 0, giving the recursion relation
I
(
−2
(
k+r− 1

8
)
(k+r+1)ak+1−

(
k+r+ 1

2
)
ak
)√

7
2 + 5(k+r+1)ak+1

8 + 2
(
k + r − 3

4

) (
k + r − 1

2

)
ak + ak−1(k + r) = 0

• Shift index using k− >k + 1
I
(
−2
(
k+ 7

8+r
)
(k+2+r)ak+2−

(
k+ 3

2+r
)
ak+1

)√
7

2 + 5(k+2+r)ak+2
8 + 2

(
k + 1

4 + r
) (

k + r + 1
2

)
ak+1 + ak(k + r + 1) = 0

• Recursion relation that defines series solution to ODE

ak+2 = −
2
(
2 I

√
7 ak+1k+2 I

√
7 ak+1r+3 I

√
7 ak+1−8k2ak+1−16krak+1−8r2ak+1−4kak−6kak+1−4rak−6rak+1−4ak−ak+1

)
−10+14 I

√
7+8 I

√
7 k2+16 I

√
7 kr+23 I

√
7 k+23 I

√
7 r+8 I

√
7 r2−5k−5r

• Recursion relation for r = 0

ak+2 = −
2
(
2 I

√
7 ak+1k+3 I

√
7 ak+1−8k2ak+1−4kak−6kak+1−4ak−ak+1

)
−10+14 I

√
7+8 I

√
7 k2+23 I

√
7 k−5k

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −

2
(
2 I

√
7 ak+1k+3 I

√
7 ak+1−8k2ak+1−4kak−6kak+1−4ak−ak+1

)
−10+14 I

√
7+8 I

√
7 k2+23 I

√
7 k−5k ,−

I
√
7
(
5 I

√
7−7

)
a1

56 −
(
I
√
7−3

)
a0

4 = 0
]

• Revert the change of variables u = I
√
7

4 + x− 11
4[

y =
∞∑
k=0

ak
(

I
√
7

4 + x− 11
4

)k
, ak+2 = −

2
(
2 I

√
7 ak+1k+3 I

√
7 ak+1−8k2ak+1−4kak−6kak+1−4ak−ak+1

)
−10+14 I

√
7+8 I

√
7 k2+23 I

√
7 k−5k ,−

I
√
7
(
5 I

√
7−7

)
a1

56 −
(
I
√
7−3

)
a0

4 = 0
]

• Recursion relation for r = 9
8 −

5 I
√
7

56

ak+2 = −
2
(
2 I

√
7 ak+1k+2 I

√
7 ak+1

(
9
8−

5 I
√
7

56

)
+3 I

√
7 ak+1−8k2ak+1−16k

(
9
8−

5 I
√
7

56

)
ak+1−8

(
9
8−

5 I
√
7

56

)2
ak+1−4kak−6kak+1−4

(
9
8−

5 I
√
7

56

)
ak−6

(
9
8−

5 I
√

7
56

)
ak+1−4ak−ak+1

)
− 125

8 + 809 I
√
7

56 +8 I
√
7 k2+16 I

√
7 k
(

9
8−

5 I
√
7

56

)
+23 I

√
7 k+23 I

√
7
(

9
8−

5 I
√

7
56

)
+8 I

√
7
(

9
8−

5 I
√
7

56

)2
−5k

• Solution for r = 9
8 −

5 I
√
7

56[
y(u) =

∞∑
k=0

aku
k+ 9

8−
5 I

√
7

56 , ak+2 = −
2
(
2 I

√
7 ak+1k+2 I

√
7 ak+1

(
9
8−

5 I
√
7

56

)
+3 I

√
7 ak+1−8k2ak+1−16k

(
9
8−

5 I
√

7
56

)
ak+1−8

(
9
8−

5 I
√
7

56

)2
ak+1−4kak−6kak+1−4

(
9
8−

5 I
√

7
56

)
ak−6

(
9
8−

5 I
√
7

56

)
ak+1−4ak−ak+1

)
− 125

8 + 809 I
√
7

56 +8 I
√
7 k2+16 I

√
7 k
(

9
8−

5 I
√

7
56

)
+23 I

√
7 k+23 I

√
7
(

9
8−

5 I
√

7
56

)
+8 I

√
7
(

9
8−

5 I
√
7

56

)2
−5k

,−I
√
7
(

17
8 − 5 I

√
7

56

)
a1 −

(
33
4 +2 I

(
9
8−

5 I
√
7

56

)√
7+ 3 I

√
7

28 −8
(

9
8−

5 I
√
7

56

)2)
a0

4 = 0
]

• Revert the change of variables u = I
√
7

4 + x− 11
4[

y =
∞∑
k=0

ak
(

I
√
7

4 + x− 11
4

)k+ 9
8−

5 I
√
7

56
, ak+2 = −

2
(
2 I

√
7 ak+1k+2 I

√
7 ak+1

(
9
8−

5 I
√
7

56

)
+3 I

√
7 ak+1−8k2ak+1−16k

(
9
8−

5 I
√
7

56

)
ak+1−8

(
9
8−

5 I
√

7
56

)2
ak+1−4kak−6kak+1−4

(
9
8−

5 I
√
7

56

)
ak−6

(
9
8−

5 I
√
7

56

)
ak+1−4ak−ak+1

)
− 125

8 + 809 I
√

7
56 +8 I

√
7 k2+16 I

√
7 k
(

9
8−

5 I
√
7

56

)
+23 I

√
7 k+23 I

√
7
(

9
8−

5 I
√
7

56

)
+8 I

√
7
(

9
8−

5 I
√
7

56

)2
−5k

,−I
√
7
(

17
8 − 5 I

√
7

56

)
a1 −

(
33
4 +2 I

(
9
8−

5 I
√
7

56

)√
7+ 3 I

√
7

28 −8
(

9
8−

5 I
√

7
56

)2)
a0

4 = 0
]

• Combine solutions and rename parameters
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[
y =

(
∞∑
k=0

ak
(

I
√
7

4 + x− 11
4

)k)
+
(

∞∑
k=0

bk
(

I
√
7

4 + x− 11
4

)k+ 9
8−

5 I
√
7

56

)
, ak+2 = −

2
(
2 I

√
7 a1+kk+3 I

√
7 a1+k−8k2a1+k−4kak−6ka1+k−4ak−a1+k

)
−10+14 I

√
7+8 I

√
7 k2+23 I

√
7 k−5k ,−

I
√
7
(
5 I

√
7−7

)
a1

56 −
(
I
√
7−3

)
a0

4 = 0, bk+2 = −
2
(
2 I

√
7 b1+kk+2 I

√
7 b1+k

(
9
8−

5 I
√
7

56

)
+3 I

√
7 b1+k−8k2b1+k−16k

(
9
8−

5 I
√

7
56

)
b1+k−8

(
9
8−

5 I
√
7

56

)2
b1+k−4kbk−6kb1+k−4

(
9
8−

5 I
√
7

56

)
bk−6

(
9
8−

5 I
√

7
56

)
b1+k−4bk−b1+k

)
− 125

8 + 809 I
√

7
56 +8 I

√
7 k2+16 I

√
7 k
(

9
8−

5 I
√

7
56

)
+23 I

√
7 k+23 I

√
7
(

9
8−

5 I
√
7

56

)
+8 I

√
7
(

9
8−

5 I
√
7

56

)2
−5k

,−I
√
7
(

17
8 − 5 I

√
7

56

)
b1 −

(
33
4 +2 I

(
9
8−

5 I
√
7

56

)√
7+ 3 I

√
7

28 −8
(

9
8−

5 I
√

7
56

)2)
b0

4 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0 `� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 20� �
Order:=6;
dsolve([(16-11*x+2*x^2)*diff(y(x),x$2)+(10-6*x+x^2)*diff(y(x),x)-(2-x)*y(x)=0,y(3) = 1, D(y)(3) = -2],y(x),type='series',x=3);� �
y(x) = 1− 2(x− 3) + 1

2(x− 3)2 − 1
6(x− 3)3 + 1

4(x− 3)4 − 1
6(x− 3)5 +O

(
(x− 3)6

)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 46� �
AsymptoticDSolveValue[{(16-11*x+2*x^2)*y''[x]+(10-6*x+x^2)*y'[x]-(2-x)*y[x]==0,{y[3]==1,y'[3]==-2}},y[x],{x,3,5}]� �

y(x) → −1
6(x− 3)5 + 1

4(x− 3)4 − 1
6(x− 3)3 + 1

2(x− 3)2 − 2(x− 3) + 1
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14 Chapter 7 Series Solutions of Linear Second
Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358

14.1 problem Example 7.5.1 page 353 . . . . . . . . . . . . . . . . . . . . . . . 4650
14.2 problem Example 7.5.2 page 354 . . . . . . . . . . . . . . . . . . . . . . . 4665
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14.23problem 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4970
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14.1 problem Example 7.5.1 page 353
14.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4660

Internal problem ID [1292]
Internal file name [OUTPUT/1293_Sunday_June_05_2022_02_08_34_AM_4314040/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: Example 7.5.1 page 353.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2x2(x2 + x+ 1
)
y′′ + x

(
11x2 + 11x+ 9

)
y′ +

(
7x2 + 10x+ 6

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

2x4 + 2x3 + 2x2) y′′ + (11x3 + 11x2 + 9x
)
y′ +

(
7x2 + 10x+ 6

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 11x2 + 11x+ 9
2 (x2 + x+ 1)x

q(x) = 7x2 + 10x+ 6
2x2 (x2 + x+ 1)
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Table 530: Table p(x), q(x) singularites.

p(x) = 11x2+11x+9
2(x2+x+1)x

singularity type
x = 0 “regular”

x = −1
2 −

i
√
3

2 “regular”

x = −1
2 +

i
√
3

2 “regular”

q(x) = 7x2+10x+6
2x2(x2+x+1)

singularity type
x = 0 “regular”

x = −1
2 −

i
√
3

2 “regular”

x = −1
2 +

i
√
3

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−1

2 −
i
√
3

2 ,−1
2 +

i
√
3

2 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x2(x2 + x+ 1
)
y′′ +

(
11x3 + 11x2 + 9x

)
y′ +

(
7x2 + 10x+ 6

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

2x2(x2 + x+ 1
)( ∞∑

n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
11x3 + 11x2 + 9x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
7x2 + 10x+ 6

)( ∞∑
n=0

anx
n+r

)
= 0

(1)
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Which simplifies to

(2A)

(
∞∑
n=0

2xn+r+2an(n+r) (n+r−1)
)
+
(

∞∑
n=0

2x1+n+ran(n+r) (n+r−1)
)

+
(

∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

11xn+r+2an(n+ r)
)

+
(

∞∑
n=0

11x1+n+ran(n+ r)
)

+
(

∞∑
n=0

9xn+ran(n+ r)
)

+
(

∞∑
n=0

7xn+r+2an

)
+
(

∞∑
n=0

10x1+n+ran

)
+
(

∞∑
n=0

6anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

2an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

2x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

11xn+r+2an(n+ r) =
∞∑
n=2

11an−2(n+ r − 2)xn+r

∞∑
n =0

11x1+n+ran(n+ r) =
∞∑
n=1

11an−1(n+ r − 1)xn+r

∞∑
n =0

7xn+r+2an =
∞∑
n=2

7an−2x
n+r

∞∑
n =0

10x1+n+ran =
∞∑
n=1

10an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

2an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

11an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=1

11an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

9xn+ran(n+ r)
)

+
(

∞∑
n=2

7an−2x
n+r

)
+
(

∞∑
n=1

10an−1x
n+r

)
+
(

∞∑
n=0

6anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+ran(n+ r) (n+ r − 1) + 9xn+ran(n+ r) + 6anxn+r = 0

When n = 0 the above becomes

2xra0r(−1 + r) + 9xra0r + 6a0xr = 0

Or
(2xrr(−1 + r) + 9xrr + 6xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
2r2 + 7r + 6

)
xr = 0

Since the above is true for all x then the indicial equation becomes

2r2 + 7r + 6 = 0

Solving for r gives the roots of the indicial equation as

r1 = −3
2

r2 = −2

Since a0 6= 0 then the indicial equation becomes(
2r2 + 7r + 6

)
xr = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n− 3

2

y2(x) =
∞∑
n=0

bnx
n−2

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 =
−r − 2
r + 3

For 2 ≤ n the recursive equation is

(3)2an−2(n+r−2) (n−3+r)+2an−1(n+r−1) (n+r−2)+2an(n+r) (n+r−1)
+11an−2(n+r−2)+11an−1(n+r−1)+9an(n+r)+7an−2+10an−1+6an = 0

Solving for an from recursive equation (4) gives

an = −nan−2 + nan−1 + ran−2 + ran−1 − an−2 + an−1

n+ r + 2 (4)

Which for the root r = −3
2 becomes

an = (−2an−2 − 2an−1)n+ 5an−2 + an−1

2n+ 1 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −3

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

−r−2
r+3 −1

3
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For n = 2, using the above recursive equation gives

a2 =
1

4 + r

Which for the root r = −3
2 becomes

a2 =
2
5

And the table now becomes

n an,r an

a0 1 1
a1

−r−2
r+3 −1

3

a2
1

4+r
2
5

For n = 3, using the above recursive equation gives

a3 =
r2 + 3r + 1

(r + 3) (5 + r)

Which for the root r = −3
2 becomes

a3 = − 5
21

And the table now becomes

n an,r an

a0 1 1
a1

−r−2
r+3 −1

3

a2
1

4+r
2
5

a3
r2+3r+1

(r+3)(5+r) − 5
21

For n = 4, using the above recursive equation gives

a4 =
−r3 − 8r2 − 19r − 13
(6 + r) (r + 3) (4 + r)

Which for the root r = −3
2 becomes

a4 =
7
135
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And the table now becomes

n an,r an

a0 1 1
a1

−r−2
r+3 −1

3

a2
1

4+r
2
5

a3
r2+3r+1

(r+3)(5+r) − 5
21

a4
−r3−8r2−19r−13
(6+r)(r+3)(4+r)

7
135

For n = 5, using the above recursive equation gives

a5 =
2r3 + 18r2 + 52r + 49

(r + 3) (4 + r) (5 + r) (7 + r)

Which for the root r = −3
2 becomes

a5 =
76
1155

And the table now becomes

n an,r an

a0 1 1
a1

−r−2
r+3 −1

3

a2
1

4+r
2
5

a3
r2+3r+1

(r+3)(5+r) − 5
21

a4
−r3−8r2−19r−13
(6+r)(r+3)(4+r)

7
135

a5
2r3+18r2+52r+49

(r+3)(4+r)(5+r)(7+r)
76

1155

Using the above table, then the solution y1(x) is

y1(x) =
1
x

3
2

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
1− x

3 +
2x2

5 − 5x3

21 + 7x4

135 +
76x5

1155 +O(x6)
x

3
2
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Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 =
−r − 2
r + 3

For 2 ≤ n the recursive equation is

(3)2bn−2(n+r−2) (n−3+r)+2bn−1(n+r−1) (n+r−2)+2bn(n+r) (n+r−1)
+11bn−2(n+ r− 2)+11bn−1(n+ r− 1)+9bn(n+ r)+7bn−2+10bn−1+6bn = 0

Solving for bn from recursive equation (4) gives

bn = −nbn−2 + nbn−1 + rbn−2 + rbn−1 − bn−2 + bn−1

n+ r + 2 (4)

Which for the root r = −2 becomes

bn = (−bn−2 − bn−1)n+ 3bn−2 + bn−1

n
(5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1

−r−2
r+3 0

For n = 2, using the above recursive equation gives

b2 =
1

4 + r

Which for the root r = −2 becomes

b2 =
1
2

And the table now becomes

n bn,r bn

b0 1 1
b1

−r−2
r+3 0

b2
1

4+r
1
2
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For n = 3, using the above recursive equation gives

b3 =
r2 + 3r + 1

(r + 3) (5 + r)

Which for the root r = −2 becomes

b3 = −1
3

And the table now becomes

n bn,r bn

b0 1 1
b1

−r−2
r+3 0

b2
1

4+r
1
2

b3
r2+3r+1

(r+3)(5+r) −1
3

For n = 4, using the above recursive equation gives

b4 =
−r3 − 8r2 − 19r − 13
(6 + r) (r + 3) (4 + r)

Which for the root r = −2 becomes

b4 =
1
8

And the table now becomes

n bn,r bn

b0 1 1
b1

−r−2
r+3 0

b2
1

4+r
1
2

b3
r2+3r+1

(r+3)(5+r) −1
3

b4
−r3−8r2−19r−13
(6+r)(r+3)(4+r)

1
8

For n = 5, using the above recursive equation gives

b5 =
2r3 + 18r2 + 52r + 49

(r + 3) (4 + r) (5 + r) (7 + r)
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Which for the root r = −2 becomes

b5 =
1
30

And the table now becomes

n bn,r bn

b0 1 1
b1

−r−2
r+3 0

b2
1

4+r
1
2

b3
r2+3r+1

(r+3)(5+r) −1
3

b4
−r3−8r2−19r−13
(6+r)(r+3)(4+r)

1
8

b5
2r3+18r2+52r+49

(r+3)(4+r)(5+r)(7+r)
1
30

Using the above table, then the solution y2(x) is

y2(x) =
1
x

3
2

(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1 + x2

2 − x3

3 + x4

8 + x5

30 +O(x6)
x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
1− x

3 +
2x2

5 − 5x3

21 + 7x4

135 +
76x5

1155 +O(x6)
)

x
3
2

+
c2
(
1 + x2

2 − x3

3 + x4

8 + x5

30 +O(x6)
)

x2

Hence the final solution is

y = yh

=
c1
(
1− x

3 +
2x2

5 − 5x3

21 + 7x4

135 +
76x5

1155 +O(x6)
)

x
3
2

+
c2
(
1 + x2

2 − x3

3 + x4

8 + x5

30 +O(x6)
)

x2
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Summary
The solution(s) found are the following

(1)
y =

c1
(
1− x

3 +
2x2

5 − 5x3

21 + 7x4

135 +
76x5

1155 +O(x6)
)

x
3
2

+
c2
(
1 + x2

2 − x3

3 + x4

8 + x5

30 +O(x6)
)

x2

Verification of solutions

y =
c1
(
1− x

3 +
2x2

5 − 5x3

21 + 7x4

135 +
76x5

1155 +O(x6)
)

x
3
2

+
c2
(
1 + x2

2 − x3

3 + x4

8 + x5

30 +O(x6)
)

x2

Verified OK.

14.1.1 Maple step by step solution

Let’s solve
2x2(x2 + x+ 1) y′′ + (11x3 + 11x2 + 9x) y′ + (7x2 + 10x+ 6) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
7x2+10x+6

)
y

2x2(x2+x+1) −
(
11x2+11x+9

)
y′

2x(x2+x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
11x2+11x+9

)
y′

2x(x2+x+1) +
(
7x2+10x+6

)
y

2x2(x2+x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 11x2+11x+9
2(x2+x+1)x , P3(x) = 7x2+10x+6

2x2(x2+x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 9
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3

◦ x = 0is a regular singular point

4660



Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
2x2(x2 + x+ 1) y′′ + x(11x2 + 11x+ 9) y′ + (7x2 + 10x+ 6) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(2 + r) (3 + 2r)xr + (a1(3 + r) (5 + 2r) + a0(5 + 2r) (2 + r))x1+r +
(

∞∑
k=2

(ak(k + r + 2) (2k + 2r + 3) + ak−1(2k + 2r + 3) (k + r + 1) + ak−2(2k + 2r + 3) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−2,−3

2

}
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• Each term must be 0
a1(3 + r) (5 + 2r) + a0(5 + 2r) (2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = − (2+r)a0

3+r

• Each term in the series must be 0, giving the recursion relation
2
(
k + r + 3

2

)
((ak + ak−2 + ak−1) k + (ak + ak−2 + ak−1) r + 2ak − ak−2 + ak−1) = 0

• Shift index using k− >k + 2
2
(
k + 7

2 + r
)
((ak+2 + ak + ak+1) (k + 2) + (ak+2 + ak + ak+1) r + 2ak+2 − ak + ak+1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −kak+kak+1+rak+rak+1+ak+3ak+1

k+4+r

• Recursion relation for r = −2
ak+2 = −kak+kak+1−ak+ak+1

k+2

• Solution for r = −2[
y =

∞∑
k=0

akx
k−2, ak+2 = −kak+kak+1−ak+ak+1

k+2 , a1 = 0
]

• Recursion relation for r = −3
2

ak+2 = −kak+kak+1− 1
2ak+

3
2ak+1

k+ 5
2

• Solution for r = −3
2[

y =
∞∑
k=0

akx
k− 3

2 , ak+2 = −kak+kak+1− 1
2ak+

3
2ak+1

k+ 5
2

, a1 = −a0
3

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k− 3

2

)
, ak+2 = −kak+ka1+k−ak+a1+k

k+2 , a1 = 0, bk+2 = −kbk+kb1+k− 1
2 bk+

3
2 b1+k

k+ 5
2

, b1 = − b0
3

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <> 0, g <> 0, c = 0

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 45� �
Order:=6;
dsolve(2*x^2*(1+x+x^2)*diff(y(x),x$2)+x*(9+11*x+11*x^2)*diff(y(x),x)+(6+10*x+7*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1
(
1 + 1

2x
2 − 1

3x
3 + 1

8x
4 + 1

30x
5 +O(x6)

)
x2

+
c2
(
1− 1

3x+ 2
5x

2 − 5
21x

3 + 7
135x

4 + 76
1155x

5 +O(x6)
)

x
3
2
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3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 83� �
AsymptoticDSolveValue[2*x^2*(1+x+x^2)*y''[x]+x*(9+11*x+11*x^2)*y'[x]+(6+10*x+7*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) →
c2
(

x5

30 +
x4

8 − x3

3 + x2

2 + 1
)

x2 +
c1
(

76x5

1155 +
7x4

135 −
5x3

21 + 2x2

5 − x
3 + 1

)
x3/2
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14.2 problem Example 7.5.2 page 354
14.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4675

Internal problem ID [1293]
Internal file name [OUTPUT/1294_Sunday_June_05_2022_02_08_39_AM_34933700/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: Example 7.5.2 page 354.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

x2(x+ 3) y′′ + 5x(x+ 1) y′ − (−4x+ 1) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x3 + 3x2) y′′ + (5x2 + 5x
)
y′ + (4x− 1) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 5x+ 5
x (x+ 3)

q(x) = 4x− 1
x2 (x+ 3)
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Table 532: Table p(x), q(x) singularites.

p(x) = 5x+5
x(x+3)

singularity type
x = −3 “regular”
x = 0 “regular”

q(x) = 4x−1
x2(x+3)

singularity type
x = −3 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−3, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x+ 3) y′′ +
(
5x2 + 5x

)
y′ + (4x− 1) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x+ 3)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
5x2 + 5x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (4x− 1)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

5x1+n+ran(n+ r)
)

+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=0

4x1+n+ran

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

5x1+n+ran(n+ r) =
∞∑
n=1

5an−1(n+ r − 1)xn+r

∞∑
n =0

4x1+n+ran =
∞∑
n=1

4an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

3xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

5an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=1

4an−1x
n+r

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

3xn+ran(n+ r) (n+ r − 1) + 5xn+ran(n+ r)− anx
n+r = 0
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When n = 0 the above becomes

3xra0r(−1 + r) + 5xra0r − a0x
r = 0

Or
(3xrr(−1 + r) + 5xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
3r2 + 2r − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

3r2 + 2r − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 = −1

Since a0 6= 0 then the indicial equation becomes(
3r2 + 2r − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) =
∞∑
n=0

bnx
n−1

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an−1(n+ r − 1) (n+ r − 2) + 3an(n+ r) (n+ r − 1)
+ 5an−1(n+ r − 1) + 5an(n+ r) + 4an−1 − an = 0
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Solving for an from recursive equation (4) gives

an = −(1 + n+ r) an−1

3n+ 3r − 1 (4)

Which for the root r = 1
3 becomes

an = −(4 + 3n) an−1

9n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−2− r

2 + 3r

Which for the root r = 1
3 becomes

a1 = −7
9

And the table now becomes

n an,r an

a0 1 1
a1

−2−r
2+3r −7

9

For n = 2, using the above recursive equation gives

a2 =
r2 + 5r + 6

9r2 + 21r + 10

Which for the root r = 1
3 becomes

a2 =
35
81

And the table now becomes
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n an,r an

a0 1 1
a1

−2−r
2+3r −7

9

a2
r2+5r+6

9r2+21r+10
35
81

For n = 3, using the above recursive equation gives

a3 =
−r3 − 9r2 − 26r − 24

27r3 + 135r2 + 198r + 80
Which for the root r = 1

3 becomes

a3 = − 455
2187

And the table now becomes

n an,r an

a0 1 1
a1

−2−r
2+3r −7

9

a2
r2+5r+6

9r2+21r+10
35
81

a3
−r3−9r2−26r−24

27r3+135r2+198r+80 − 455
2187

For n = 4, using the above recursive equation gives

a4 =
r4 + 14r3 + 71r2 + 154r + 120

81r4 + 702r3 + 2079r2 + 2418r + 880
Which for the root r = 1

3 becomes

a4 =
1820
19683

And the table now becomes

n an,r an

a0 1 1
a1

−2−r
2+3r −7

9

a2
r2+5r+6

9r2+21r+10
35
81

a3
−r3−9r2−26r−24

27r3+135r2+198r+80 − 455
2187

a4
r4+14r3+71r2+154r+120

81r4+702r3+2079r2+2418r+880
1820
19683
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For n = 5, using the above recursive equation gives

a5 =
−r5 − 20r4 − 155r3 − 580r2 − 1044r − 720

243r5 + 3240r4 + 16065r3 + 36360r2 + 36492r + 12320

Which for the root r = 1
3 becomes

a5 = − 6916
177147

And the table now becomes

n an,r an

a0 1 1
a1

−2−r
2+3r −7

9

a2
r2+5r+6

9r2+21r+10
35
81

a3
−r3−9r2−26r−24

27r3+135r2+198r+80 − 455
2187

a4
r4+14r3+71r2+154r+120

81r4+702r3+2079r2+2418r+880
1820
19683

a5
−r5−20r4−155r3−580r2−1044r−720

243r5+3240r4+16065r3+36360r2+36492r+12320 − 6916
177147

Using the above table, then the solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
1− 7x

9 + 35x2

81 − 455x3

2187 + 1820x4

19683 − 6916x5

177147 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)bn−1(n+ r − 1) (n+ r − 2) + 3bn(n+ r) (n+ r − 1)
+ 5bn−1(n+ r − 1) + 5bn(n+ r) + 4bn−1 − bn = 0

Solving for bn from recursive equation (4) gives

bn = −(1 + n+ r) bn−1

3n+ 3r − 1 (4)

Which for the root r = −1 becomes

bn = − nbn−1

3n− 4 (5)
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At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
−2− r

2 + 3r
Which for the root r = −1 becomes

b1 = 1

And the table now becomes

n bn,r bn

b0 1 1
b1

−2−r
2+3r 1

For n = 2, using the above recursive equation gives

b2 =
r2 + 5r + 6

9r2 + 21r + 10
Which for the root r = −1 becomes

b2 = −1

And the table now becomes

n bn,r bn

b0 1 1
b1

−2−r
2+3r 1

b2
r2+5r+6

9r2+21r+10 −1

For n = 3, using the above recursive equation gives

b3 =
−r3 − 9r2 − 26r − 24

27r3 + 135r2 + 198r + 80
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Which for the root r = −1 becomes

b3 =
3
5

And the table now becomes

n bn,r bn

b0 1 1
b1

−2−r
2+3r 1

b2
r2+5r+6

9r2+21r+10 −1

b3
−r3−9r2−26r−24

27r3+135r2+198r+80
3
5

For n = 4, using the above recursive equation gives

b4 =
r4 + 14r3 + 71r2 + 154r + 120

81r4 + 702r3 + 2079r2 + 2418r + 880

Which for the root r = −1 becomes

b4 = − 3
10

And the table now becomes

n bn,r bn

b0 1 1
b1

−2−r
2+3r 1

b2
r2+5r+6

9r2+21r+10 −1

b3
−r3−9r2−26r−24

27r3+135r2+198r+80
3
5

b4
r4+14r3+71r2+154r+120

81r4+702r3+2079r2+2418r+880 − 3
10

For n = 5, using the above recursive equation gives

b5 =
−r5 − 20r4 − 155r3 − 580r2 − 1044r − 720

243r5 + 3240r4 + 16065r3 + 36360r2 + 36492r + 12320

Which for the root r = −1 becomes

b5 =
3
22
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And the table now becomes

n bn,r bn

b0 1 1
b1

−2−r
2+3r 1

b2
r2+5r+6

9r2+21r+10 −1

b3
−r3−9r2−26r−24

27r3+135r2+198r+80
3
5

b4
r4+14r3+71r2+154r+120

81r4+702r3+2079r2+2418r+880 − 3
10

b5
−r5−20r4−155r3−580r2−1044r−720

243r5+3240r4+16065r3+36360r2+36492r+12320
3
22

Using the above table, then the solution y2(x) is

y2(x) = x
1
3
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1 + x− x2 + 3x3

5 − 3x4

10 + 3x5

22 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3

(
1− 7x

9 + 35x2

81 − 455x3

2187 + 1820x4

19683 − 6916x5

177147 +O
(
x6))

+
c2
(
1 + x− x2 + 3x3

5 − 3x4

10 + 3x5

22 +O(x6)
)

x

Hence the final solution is

y = yh

= c1x
1
3

(
1− 7x

9 + 35x2

81 − 455x3

2187 + 1820x4

19683 − 6916x5

177147 +O
(
x6))

+
c2
(
1 + x− x2 + 3x3

5 − 3x4

10 + 3x5

22 +O(x6)
)

x
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Summary
The solution(s) found are the following

(1)
y = c1x

1
3

(
1− 7x

9 + 35x2

81 − 455x3

2187 + 1820x4

19683 − 6916x5

177147 +O
(
x6))

+
c2
(
1 + x− x2 + 3x3

5 − 3x4

10 + 3x5

22 +O(x6)
)

x

Verification of solutions

y = c1x
1
3

(
1− 7x

9 + 35x2

81 − 455x3

2187 + 1820x4

19683 − 6916x5

177147 +O
(
x6))

+
c2
(
1 + x− x2 + 3x3

5 − 3x4

10 + 3x5

22 +O(x6)
)

x

Verified OK.

14.2.1 Maple step by step solution

Let’s solve
x2(x+ 3) y′′ + (5x2 + 5x) y′ + (4x− 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (4x−1)y
x2(x+3) −

5(x+1)y′
x(x+3)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 5(x+1)y′
x(x+3) + (4x−1)y

x2(x+3) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5(x+1)
x(x+3) , P3(x) = 4x−1

x2(x+3)

]
◦ (x+ 3) · P2(x) is analytic at x = −3

((x+ 3) · P2(x))
∣∣∣∣
x=−3

= 10
3

◦ (x+ 3)2 · P3(x) is analytic at x = −3(
(x+ 3)2 · P3(x)

) ∣∣∣∣
x=−3

= 0
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◦ x = −3is a regular singular point
Check to see if x0 is a regular singular point
x0 = −3

• Multiply by denominators
x2(x+ 3) y′′ + 5x(x+ 1) y′ + (4x− 1) y = 0

• Change variables using x = u− 3 so that the regular singular point is at u = 0

(u3 − 6u2 + 9u)
(

d2

du2y(u)
)
+ (5u2 − 25u+ 30)

(
d
du
y(u)

)
+ (4u− 13) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

3a0r(7 + 3r)u−1+r + (3a1(1 + r) (10 + 3r)− a0(13 + 6r) (1 + r))ur +
(

∞∑
k=1

(
3ak+1(k + r + 1) (3k + 10 + 3r)− ak(6k + 6r + 13) (k + r + 1) + ak−1(k + r + 1)2

)
uk+r

)
= 0
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• a0cannot be 0 by assumption, giving the indicial equation
3r(7 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−7

3

}
• Each term must be 0

3a1(1 + r) (10 + 3r)− a0(13 + 6r) (1 + r) = 0
• Each term in the series must be 0, giving the recursion relation

−6
((

ak − ak−1
6 − 3ak+1

2

)
k +

(
ak − ak−1

6 − 3ak+1
2

)
r + 13ak

6 − ak−1
6 − 5ak+1

)
(k + r + 1) = 0

• Shift index using k− >k + 1

−6
((

ak+1 − ak
6 − 3ak+2

2

)
(k + 1) +

(
ak+1 − ak

6 − 3ak+2
2

)
r + 13ak+1

6 − ak
6 − 5ak+2

)
(k + r + 2) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −kak−6kak+1+rak−6rak+1+2ak−19ak+1

3(3k+13+3r)

• Recursion relation for r = 0
ak+2 = −kak−6kak+1+2ak−19ak+1

3(3k+13)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −kak−6kak+1+2ak−19ak+1

3(3k+13) , 30a1 − 13a0 = 0
]

• Revert the change of variables u = x+ 3[
y =

∞∑
k=0

ak(x+ 3)k , ak+2 = −kak−6kak+1+2ak−19ak+1
3(3k+13) , 30a1 − 13a0 = 0

]
• Recursion relation for r = −7

3

ak+2 = −kak−6kak+1− 1
3ak−5ak+1

3(3k+6)

• Solution for r = −7
3[

y(u) =
∞∑
k=0

aku
k− 7

3 , ak+2 = −kak−6kak+1− 1
3ak−5ak+1

3(3k+6) ,−12a1 − 4a0
3 = 0

]
• Revert the change of variables u = x+ 3[

y =
∞∑
k=0

ak(x+ 3)k−
7
3 , ak+2 = −kak−6kak+1− 1

3ak−5ak+1
3(3k+6) ,−12a1 − 4a0

3 = 0
]

• Combine solutions and rename parameters
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[
y =

(
∞∑
k=0

ak(x+ 3)k
)
+
(

∞∑
k=0

bk(x+ 3)k−
7
3

)
, ak+2 = −kak−6ka1+k+2ak−19a1+k

3(3k+13) , 30a1 − 13a0 = 0, bk+2 = −kbk−6kb1+k− 1
3 bk−5b1+k

3(3k+6) ,−12b1 − 4b0
3 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]

One independent solution has integrals. Trying a hypergeometric solution free of integrals...
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 47� �
Order:=6;
dsolve(x^2*(3+x)*diff(y(x),x$2)+5*x*(1+x)*diff(y(x),x)-(1-4*x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c2x

4
3
(
1− 7

9x+ 35
81x

2 − 455
2187x

3 + 1820
19683x

4 − 6916
177147x

5 +O(x6)
)
+ c1

(
1 + x− x2 + 3

5x
3 − 3

10x
4 + 3

22x
5 +O(x6)

)
x

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 82� �
AsymptoticDSolveValue[x^2*(3+x)*y''[x]+5*x*(1+x)*y'[x]-(1-4*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
3
√
x

(
−6916x5

177147 + 1820x4

19683 − 455x3

2187 + 35x2

81 − 7x
9 + 1

)

+
c2
(

3x5

22 − 3x4

10 + 3x3

5 − x2 + x+ 1
)

x
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14.3 problem Example 7.5.3 page 356
14.3.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4689

Internal problem ID [1294]
Internal file name [OUTPUT/1295_Sunday_June_05_2022_02_08_42_AM_15958053/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: Example 7.5.3 page 356.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(−x2 + 2
)
y′′ − x

(
4x2 + 3

)
y′ + (2 + 2x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−x4 + 2x2) y′′ + (−4x3 − 3x
)
y′ + (2 + 2x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 4x2 + 3
x (x2 − 2)

q(x) = − 2(x+ 1)
x2 (x2 − 2)
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Table 534: Table p(x), q(x) singularites.

p(x) = 4x2+3
x(x2−2)

singularity type
x = 0 “regular”
x =

√
2 “regular”

x = −
√
2 “regular”

q(x) = − 2(x+1)
x2(x2−2)

singularity type
x = 0 “regular”
x =

√
2 “regular”

x = −
√
2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,
√
2,−

√
2,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x2(x2 − 2
)
+
(
−4x3 − 3x

)
y′ + (2 + 2x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2(x2 − 2

)
+
(
−4x3 − 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (2 + 2x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−xn+r+2an(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−4xn+r+2an(n+ r)

)
+

∞∑
n =0

(
−3xn+ran(n+ r)

)
+
(

∞∑
n=0

2anxn+r

)
+
(

∞∑
n=0

2x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−xn+r+2an(n+ r) (n+ r − 1)

)
=

∞∑
n=2

(
−an−2(n+ r − 2) (n− 3 + r)xn+r

)
∞∑

n =0

(
−4xn+r+2an(n+ r)

)
=

∞∑
n=2

(
−4an−2(n+ r − 2)xn+r

)
∞∑

n =0

2x1+n+ran =
∞∑
n=1

2an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =2

(
−an−2(n+r−2) (n−3+r)xn+r

)
+
(

∞∑
n=0

2xn+ran(n+r) (n+r−1)
)

+
∞∑

n =2

(
−4an−2(n+ r − 2)xn+r

)
+

∞∑
n =0

(
−3xn+ran(n+ r)

)
+
(

∞∑
n=0

2anxn+r

)
+
(

∞∑
n=1

2an−1x
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+ran(n+ r) (n+ r − 1)− 3xn+ran(n+ r) + 2anxn+r = 0
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When n = 0 the above becomes

2xra0r(−1 + r)− 3xra0r + 2a0xr = 0

Or
(2xrr(−1 + r)− 3xrr + 2xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
2r2 − 5r + 2

)
xr = 0

Since the above is true for all x then the indicial equation becomes

2r2 − 5r + 2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 2

r2 =
1
2

Since a0 6= 0 then the indicial equation becomes(
2r2 − 5r + 2

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+2

y2(x) =
∞∑
n=0

bnx
n+ 1

2

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = − 2
2r2 − r − 1
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For 2 ≤ n the recursive equation is

(3)−an−2(n+ r − 2) (n− 3 + r) + 2an(n+ r) (n+ r − 1)
− 4an−2(n+ r − 2)− 3an(n+ r) + 2an + 2an−1 = 0

Solving for an from recursive equation (4) gives

an = n2an−2 + 2nran−2 + r2an−2 − nan−2 − ran−2 − 2an−2 − 2an−1

2n2 + 4nr + 2r2 − 5n− 5r + 2 (4)

Which for the root r = 2 becomes

an = n2an−2 + 3nan−2 − 2an−1

n (2n+ 3) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 − 2

2r2−r−1 −2
5

For n = 2, using the above recursive equation gives

a2 =
2r4 + 5r3 − 4r2 − 3r + 4
4r4 + 4r3 − 5r2 − 3r

Which for the root r = 2 becomes
a2 =

27
35

And the table now becomes

n an,r an

a0 1 1
a1 − 2

2r2−r−1 −2
5

a2
2r4+5r3−4r2−3r+4
4r4+4r3−5r2−3r

27
35

For n = 3, using the above recursive equation gives

a3 =
−8r3 − 28r2 − 10r − 8

(2r + 5) r (4r3 + 4r2 − 5r − 3)
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Which for the root r = 2 becomes

a3 = − 34
105

And the table now becomes

n an,r an

a0 1 1
a1 − 2

2r2−r−1 −2
5

a2
2r4+5r3−4r2−3r+4
4r4+4r3−5r2−3r

27
35

a3
−8r3−28r2−10r−8

(2r+5)r(4r3+4r2−5r−3) − 34
105

For n = 4, using the above recursive equation gives

a4 =
4r7 + 48r6 + 197r5 + 293r4 − 3r3 − 233r2 + 90r + 216

(2r + 5) r (4r3 + 4r2 − 5r − 3) (2r2 + 11r + 14)

Which for the root r = 2 becomes

a4 =
584
1155

And the table now becomes

n an,r an

a0 1 1
a1 − 2

2r2−r−1 −2
5

a2
2r4+5r3−4r2−3r+4
4r4+4r3−5r2−3r

27
35

a3
−8r3−28r2−10r−8

(2r+5)r(4r3+4r2−5r−3) − 34
105

a4
4r7+48r6+197r5+293r4−3r3−233r2+90r+216

(2r+5)r(4r3+4r2−5r−3)(2r2+11r+14)
584
1155

For n = 5, using the above recursive equation gives

a5 = −6(4r7 + 64r6 + 403r5 + 1276r4 + 2134r3 + 1837r2 + 882r + 408)
(2r + 5) r (4r3 + 4r2 − 5r − 3) (2r2 + 11r + 14) (2r2 + 15r + 27)

Which for the root r = 2 becomes

a5 = − 768
3575
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And the table now becomes

n an,r an

a0 1 1
a1 − 2

2r2−r−1 −2
5

a2
2r4+5r3−4r2−3r+4
4r4+4r3−5r2−3r

27
35

a3
−8r3−28r2−10r−8

(2r+5)r(4r3+4r2−5r−3) − 34
105

a4
4r7+48r6+197r5+293r4−3r3−233r2+90r+216

(2r+5)r(4r3+4r2−5r−3)(2r2+11r+14)
584
1155

a5 −6
(
4r7+64r6+403r5+1276r4+2134r3+1837r2+882r+408

)
(2r+5)r(4r3+4r2−5r−3)(2r2+11r+14)(2r2+15r+27) − 768

3575

Using the above table, then the solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2

(
1− 2x

5 + 27x2

35 − 34x3

105 + 584x4

1155 − 768x5

3575 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = − 2
2r2 − r − 1

For 2 ≤ n the recursive equation is

(3)−bn−2(n+ r − 2) (n− 3 + r) + 2bn(n+ r) (n+ r − 1)
− 4bn−2(n+ r − 2)− 3bn(n+ r) + 2bn + 2bn−1 = 0

Solving for bn from recursive equation (4) gives

bn = n2bn−2 + 2nrbn−2 + r2bn−2 − nbn−2 − rbn−2 − 2bn−2 − 2bn−1

2n2 + 4nr + 2r2 − 5n− 5r + 2 (4)

Which for the root r = 1
2 becomes

bn = 4n2bn−2 − 9bn−2 − 8bn−1

8n2 − 12n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.
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n bn,r bn

b0 1 1
b1 − 2

2r2−r−1 2

For n = 2, using the above recursive equation gives

b2 =
2r4 + 5r3 − 4r2 − 3r + 4
4r4 + 4r3 − 5r2 − 3r

Which for the root r = 1
2 becomes

b2 = −9
8

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

2r2−r−1 2

b2
2r4+5r3−4r2−3r+4
4r4+4r3−5r2−3r −9

8

For n = 3, using the above recursive equation gives

b3 =
−8r3 − 28r2 − 10r − 8

(2r + 5) r (4r3 + 4r2 − 5r − 3)

Which for the root r = 1
2 becomes

b3 =
7
4

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

2r2−r−1 2

b2
2r4+5r3−4r2−3r+4
4r4+4r3−5r2−3r −9

8

b3
−8r3−28r2−10r−8

(2r+5)r(4r3+4r2−5r−3)
7
4

For n = 4, using the above recursive equation gives

b4 =
4r7 + 48r6 + 197r5 + 293r4 − 3r3 − 233r2 + 90r + 216

(2r + 5) r (4r3 + 4r2 − 5r − 3) (2r2 + 11r + 14)
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Which for the root r = 1
2 becomes

b4 = −607
640

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

2r2−r−1 2

b2
2r4+5r3−4r2−3r+4
4r4+4r3−5r2−3r −9

8

b3
−8r3−28r2−10r−8

(2r+5)r(4r3+4r2−5r−3)
7
4

b4
4r7+48r6+197r5+293r4−3r3−233r2+90r+216

(2r+5)r(4r3+4r2−5r−3)(2r2+11r+14) −607
640

For n = 5, using the above recursive equation gives

b5 = −6(4r7 + 64r6 + 403r5 + 1276r4 + 2134r3 + 1837r2 + 882r + 408)
(2r + 5) r (4r3 + 4r2 − 5r − 3) (2r2 + 11r + 14) (2r2 + 15r + 27)

Which for the root r = 1
2 becomes

b5 =
13347
11200

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

2r2−r−1 2

b2
2r4+5r3−4r2−3r+4
4r4+4r3−5r2−3r −9

8

b3
−8r3−28r2−10r−8

(2r+5)r(4r3+4r2−5r−3)
7
4

b4
4r7+48r6+197r5+293r4−3r3−233r2+90r+216

(2r+5)r(4r3+4r2−5r−3)(2r2+11r+14) −607
640

b5 −6
(
4r7+64r6+403r5+1276r4+2134r3+1837r2+882r+408

)
(2r+5)r(4r3+4r2−5r−3)(2r2+11r+14)(2r2+15r+27)

13347
11200

Using the above table, then the solution y2(x) is

y2(x) = x2(b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

)
=

√
x

(
1 + 2x− 9x2

8 + 7x3

4 − 607x4

640 + 13347x5

11200 +O
(
x6))
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
(
1− 2x

5 + 27x2

35 − 34x3

105 + 584x4

1155 − 768x5

3575 +O
(
x6))

+ c2
√
x

(
1 + 2x− 9x2

8 + 7x3

4 − 607x4

640 + 13347x5

11200 +O
(
x6))

Hence the final solution is

y = yh

= c1x
2
(
1− 2x

5 + 27x2

35 − 34x3

105 + 584x4

1155 − 768x5

3575 +O
(
x6))

+ c2
√
x

(
1 + 2x− 9x2

8 + 7x3

4 − 607x4

640 + 13347x5

11200 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

2
(
1− 2x

5 + 27x2

35 − 34x3

105 + 584x4

1155 − 768x5

3575 +O
(
x6))

+ c2
√
x

(
1 + 2x− 9x2

8 + 7x3

4 − 607x4

640 + 13347x5

11200 +O
(
x6))

Verification of solutions

y = c1x
2
(
1− 2x

5 + 27x2

35 − 34x3

105 + 584x4

1155 − 768x5

3575 +O
(
x6))

+ c2
√
x

(
1 + 2x− 9x2

8 + 7x3

4 − 607x4

640 + 13347x5

11200 +O
(
x6))

Verified OK.
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14.3.1 Maple step by step solution

Let’s solve
−y′′x2(x2 − 2) + (−4x3 − 3x) y′ + (2 + 2x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = 2(x+1)y
x2(x2−2) −

(
4x2+3

)
y′

x(x2−2)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
4x2+3

)
y′

x(x2−2) − 2(x+1)y
x2(x2−2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 4x2+3
x(x2−2) , P3(x) = − 2(x+1)

x2(x2−2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x2(x2 − 2) + x(4x2 + 3) y′ + (−2x− 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(−1 + 2r) (−2 + r)xr + (−a1(1 + 2r) (−1 + r)− 2a0)x1+r +
(

∞∑
k=2

(−ak(2k + 2r − 1) (k + r − 2)− 2ak−1 + ak−2(k + r − 2) (k + 1 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−1 + 2r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
2, 12
}

• Each term must be 0
−a1(1 + 2r) (−1 + r)− 2a0 = 0

• Solve for the dependent coefficient(s)
a1 = − 2a0

2r2−r−1

• Each term in the series must be 0, giving the recursion relation
ak−2(k + r − 2) (k + 1 + r)− 2(k + r − 2)

(
k + r − 1

2

)
ak − 2ak−1 = 0

• Shift index using k− >k + 2
ak(k + r) (k + r + 3)− 2(k + r)

(
k + 3

2 + r
)
ak+2 − 2ak+1 = 0

• Recursion relation that defines series solution to ODE
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ak+2 = k2ak+2krak+r2ak+3kak+3rak−2ak+1
(k+r)(2k+3+2r)

• Recursion relation for r = 2

ak+2 = k2ak+7kak+10ak−2ak+1
(k+2)(2k+7)

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+2 = k2ak+7kak+10ak−2ak+1

(k+2)(2k+7) , a1 = −2a0
5

]
• Recursion relation for r = 1

2

ak+2 =
k2ak+4kak+ 7

4ak−2ak+1(
k+ 1

2
)
(2k+4)

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 =
k2ak+4kak+ 7

4ak−2ak+1(
k+ 1

2
)
(2k+4) , a1 = 2a0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k+2
)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = k2ak+7kak+10ak−2a1+k

(k+2)(2k+7) , a1 = −2a0
5 , bk+2 =

k2bk+4kbk+ 7
4 bk−2b1+k(

k+ 1
2
)
(2k+4) , b1 = 2b0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <> 0, g <> 0, c = 0 `� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 47� �
Order:=6;
dsolve(x^2*(2-x^2)*diff(y(x),x$2)-x*(3+4*x^2)*diff(y(x),x)+(2+2*x)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1
√
x

(
1 + 2x− 9

8x
2 + 7

4x
3 − 607

640x
4 + 13347

11200x
5 +O

(
x6))

+ c2x
2
(
1− 2

5x+ 27
35x

2 − 34
105x

3 + 584
1155x

4 − 768
3575x

5 +O
(
x6))
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3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 86� �
AsymptoticDSolveValue[x^2*(2-x^2)*y''[x]-x*(3+4*x^2)*y'[x]+(2+2*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
−768x5

3575 + 584x4

1155 − 34x3

105 + 27x2

35 − 2x
5 + 1

)
x2

+ c2

(
13347x5

11200 − 607x4

640 + 7x3

4 − 9x2

8 + 2x+ 1
)√

x
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14.4 problem 1
14.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4702

Internal problem ID [1295]
Internal file name [OUTPUT/1296_Sunday_June_05_2022_02_08_46_AM_84605145/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Complex roots"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2x2(x2 + x+ 1
)
y′′ + x

(
5x2 + 3x+ 3

)
y′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

2x4 + 2x3 + 2x2) y′′ + (5x3 + 3x2 + 3x
)
y′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 5x2 + 3x+ 3
2 (x2 + x+ 1)x

q(x) = 1
2x2 (x2 + x+ 1)
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Table 536: Table p(x), q(x) singularites.

p(x) = 5x2+3x+3
2(x2+x+1)x

singularity type
x = 0 “regular”

x = −1
2 −

i
√
3

2 “regular”

x = −1
2 +

i
√
3

2 “regular”

q(x) = 1
2x2(x2+x+1)

singularity type
x = 0 “regular”

x = −1
2 −

i
√
3

2 “regular”

x = −1
2 +

i
√
3

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−1

2 −
i
√
3

2 ,−1
2 +

i
√
3

2 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x2(x2 + x+ 1
)
y′′ +

(
5x3 + 3x2 + 3x

)
y′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2x2(x2 + x+ 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
5x3 + 3x2 + 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2xn+r+2an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

2x1+n+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

5xn+r+2an(n+ r)
)

+
(

∞∑
n=0

3x1+n+ran(n+ r)
)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

2an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

2x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

5xn+r+2an(n+ r) =
∞∑
n=2

5an−2(n+ r − 2)xn+r

∞∑
n =0

3x1+n+ran(n+ r) =
∞∑
n=1

3an−1(n+ r − 1)xn+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

2an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

5an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=1

3an−1(n+r−1)xn+r

)
+
(

∞∑
n=0

3xn+ran(n+r)
)
+
(

∞∑
n=0

anx
n+r

)
=0
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The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+ran(n+ r) (n+ r − 1) + 3xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

2xra0r(−1 + r) + 3xra0r + a0x
r = 0

Or
(2xrr(−1 + r) + 3xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
2r2 + r + 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

2r2 + r + 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
i
√
7

4 − 1
4

r2 = −i
√
7

4 − 1
4

Since a0 6= 0 then the indicial equation becomes(
2r2 + r + 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since the roots are complex
conjugates, then two linearly independent solutions can be constructed using

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ i

√
7

4 − 1
4

y2(x) =
∞∑
n=0

bnx
n− i

√
7

4 − 1
4
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y1(x) is found first. Eq (2B) derived above is now used to find all an coefficients. The
case n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 =
−2r2 − r

2r2 + 5r + 4

For 2 ≤ n the recursive equation is

(3)2an−2(n+r−2) (n−3+r)+2an−1(n+r−1) (n+r−2)+2an(n+r) (n+r−1)
+ 5an−2(n+ r − 2) + 3an−1(n+ r − 1) + 3an(n+ r) + an = 0

Solving for an from recursive equation (4) gives

an = −2n2an−2 + 2n2an−1 + 4nran−2 + 4nran−1 + 2r2an−2 + 2r2an−1 − 5nan−2 − 3nan−1 − 5ran−2 − 3ran−1 + 2an−2 + an−1

2n2 + 4nr + 2r2 + n+ r + 1
(4)

Which for the root r = i
√
7

4 − 1
4 becomes

an = i(2(−an−2 − an−1)n+ 3an−2 + 2an−1)
√
7 + 4(−an−2 − an−1)n2 + 4(3an−2 + 2an−1)n− 5an−2 − 2an−1

2n
(
i
√
7 + 2n

)
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = i

√
7

4 − 1
4 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

−2r2−r
2r2+5r+4

1
i
√
7+2

For n = 2, using the above recursive equation gives

a2 = − (2r + 3)2 r
4r4 + 28r3 + 75r2 + 91r + 44

Which for the root r = i
√
7

4 − 1
4 becomes

a2 = −
5
(
i
√
7− 1

) (
i
√
7 + 9

5

)
16
(
i
√
7 + 2

) (
i
√
7 + 4

)
And the table now becomes
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n an,r an

a0 1 1
a1

−2r2−r
2r2+5r+4

1
i
√
7+2

a2 − (2r+3)2r
4r4+28r3+75r2+91r+44 −

5
(
i
√
7−1

)(
i
√
7+ 9

5

)
16
(
i
√
7+2

)(
i
√
7+4

)

For n = 3, using the above recursive equation gives

a3 =
8r6 + 76r5 + 282r4 + 505r3 + 433r2 + 145r

8r6 + 108r5 + 602r4 + 1773r3 + 2921r2 + 2574r + 968

Which for the root r = i
√
7

4 − 1
4 becomes

a3 =
49i

√
7 + 89

432− 444i
√
7

And the table now becomes

n an,r an

a0 1 1
a1

−2r2−r
2r2+5r+4

1
i
√
7+2

a2 − (2r+3)2r
4r4+28r3+75r2+91r+44 −

5
(
i
√
7−1

)(
i
√
7+ 9

5

)
16
(
i
√
7+2

)(
i
√
7+4

)
a3

8r6+76r5+282r4+505r3+433r2+145r
8r6+108r5+602r4+1773r3+2921r2+2574r+968

49i
√
7+89

432−444i
√
7

For n = 4, using the above recursive equation gives

a4 = − (16r7 + 240r6 + 1480r5 + 4800r4 + 8645r3 + 8269r2 + 3466r + 273) r
(2r2 + 17r + 37) (8r6 + 108r5 + 602r4 + 1773r3 + 2921r2 + 2574r + 968)

Which for the root r = i
√
7

4 − 1
4 becomes

a4 =
1553i+ 395

√
7

26256i+ 12480
√
7

And the table now becomes
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n an,r an

a0 1 1
a1

−2r2−r
2r2+5r+4

1
i
√
7+2

a2 − (2r+3)2r
4r4+28r3+75r2+91r+44 −

5
(
i
√
7−1

)(
i
√
7+ 9

5

)
16
(
i
√
7+2

)(
i
√
7+4

)
a3

8r6+76r5+282r4+505r3+433r2+145r
8r6+108r5+602r4+1773r3+2921r2+2574r+968

49i
√
7+89

432−444i
√
7

a4 −
(
16r7+240r6+1480r5+4800r4+8645r3+8269r2+3466r+273

)
r

(2r2+17r+37)(8r6+108r5+602r4+1773r3+2921r2+2574r+968)
1553i+395

√
7

26256i+12480
√
7

For n = 5, using the above recursive equation gives

a5 = −
64
(
r7 + 18r6 + 136r5 + 559r4 + 21571

16 r3 + 7619
4 r2 + 23343

16 r + 15003
32

) (
r + 9

2

)
r

(2r2 + 17r + 37) (8r6 + 108r5 + 602r4 + 1773r3 + 2921r2 + 2574r + 968) (2r2 + 21r + 56)

Which for the root r = i
√
7

4 − 1
4 becomes

a5 =
42423i

√
7 + 45275

492720i
√
7− 1749600

And the table now becomes

n an,r an

a0 1 1
a1

−2r2−r
2r2+5r+4

1
i
√
7+2

a2 − (2r+3)2r
4r4+28r3+75r2+91r+44 −

5
(
i
√
7−1

)(
i
√
7+ 9

5

)
16
(
i
√
7+2

)(
i
√
7+4

)
a3

8r6+76r5+282r4+505r3+433r2+145r
8r6+108r5+602r4+1773r3+2921r2+2574r+968

49i
√
7+89

432−444i
√
7

a4 −
(
16r7+240r6+1480r5+4800r4+8645r3+8269r2+3466r+273

)
r

(2r2+17r+37)(8r6+108r5+602r4+1773r3+2921r2+2574r+968)
1553i+395

√
7

26256i+12480
√
7

a5 − 64
(
r7+18r6+136r5+559r4+ 21571

16 r3+ 7619
4 r2+ 23343

16 r+ 15003
32

)(
r+ 9

2
)
r

(2r2+17r+37)(8r6+108r5+602r4+1773r3+2921r2+2574r+968)(2r2+21r+56)
42423i

√
7+45275

492720i
√
7−1749600

Using the above table, then the solution y1(x) is

y1(x) = x
i
√
7

4 − 1
4
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)
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= x
i
√
7

4 − 1
4

(
1 + x

i
√
7 + 2

−
5
(
i
√
7− 1

) (
i
√
7 + 9

5

)
x2

16
(
i
√
7 + 2

) (
i
√
7 + 4

) +
(
49i

√
7 + 89

)
x3

432− 444i
√
7

+
(
1553i+ 395

√
7
)
x4

26256i+ 12480
√
7

+
(
42423i

√
7 + 45275

)
x5

492720i
√
7− 1749600

+O
(
x6))

The second solution y2(x) is found by taking the complex conjugate of y1(x) which
gives

y2(x) = x− i
√
7

4 − 1
4

(
1 + x

−i
√
7 + 2

−
5
(
−i

√
7− 1

) (
−i

√
7 + 9

5

)
x2

16
(
−i

√
7 + 2

) (
−i

√
7 + 4

) +
(
−49i

√
7 + 89

)
x3

432 + 444i
√
7

+
(
−1553i+ 395

√
7
)
x4

−26256i+ 12480
√
7

+
(
−42423i

√
7 + 45275

)
x5

−492720i
√
7− 1749600

+O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
i
√
7

4 − 1
4

(
1 + x

i
√
7 + 2

−
5
(
i
√
7− 1

) (
i
√
7 + 9

5

)
x2

16
(
i
√
7 + 2

) (
i
√
7 + 4

) +
(
49i

√
7 + 89

)
x3

432− 444i
√
7

+
(
1553i+ 395

√
7
)
x4

26256i+ 12480
√
7

+
(
42423i

√
7 + 45275

)
x5

492720i
√
7− 1749600

+O
(
x6))

+c2x
− i

√
7

4 − 1
4

(
1+ x

−i
√
7 + 2

−
5
(
−i

√
7− 1

) (
−i

√
7 + 9

5

)
x2

16
(
−i

√
7 + 2

) (
−i

√
7 + 4

) +
(
−49i

√
7 + 89

)
x3

432 + 444i
√
7

+
(
−1553i+ 395

√
7
)
x4

−26256i+ 12480
√
7

+
(
−42423i

√
7 + 45275

)
x5

−492720i
√
7− 1749600

+O
(
x6))

Hence the final solution is
y = yh

= c1x
i
√
7

4 − 1
4

(
1 + x

i
√
7 + 2

−
5
(
i
√
7− 1

) (
i
√
7 + 9

5

)
x2

16
(
i
√
7 + 2

) (
i
√
7 + 4

) +
(
49i

√
7 + 89

)
x3

432− 444i
√
7

+
(
1553i+ 395

√
7
)
x4

26256i+ 12480
√
7

+
(
42423i

√
7 + 45275

)
x5

492720i
√
7− 1749600

+O
(
x6))

+ c2x
− i

√
7

4 − 1
4

(
1 + x

−i
√
7 + 2

−
5
(
−i

√
7− 1

) (
−i

√
7 + 9

5

)
x2

16
(
−i

√
7 + 2

) (
−i

√
7 + 4

) +
(
−49i

√
7 + 89

)
x3

432 + 444i
√
7

+
(
−1553i+ 395

√
7
)
x4

−26256i+ 12480
√
7

+
(
−42423i

√
7 + 45275

)
x5

−492720i
√
7− 1749600

+O
(
x6))
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Summary
The solution(s) found are the following

(1)

y = c1x
i
√
7

4 − 1
4

(
1 + x

i
√
7 + 2

−
5
(
i
√
7− 1

) (
i
√
7 + 9

5

)
x2

16
(
i
√
7 + 2

) (
i
√
7 + 4

) +
(
49i

√
7 + 89

)
x3

432− 444i
√
7

+
(
1553i+ 395

√
7
)
x4

26256i+ 12480
√
7

+
(
42423i

√
7 + 45275

)
x5

492720i
√
7− 1749600

+O
(
x6))

+c2x
− i

√
7

4 − 1
4

(
1+ x

−i
√
7 + 2

−
5
(
−i

√
7− 1

) (
−i

√
7 + 9

5

)
x2

16
(
−i

√
7 + 2

) (
−i

√
7 + 4

) +
(
−49i

√
7 + 89

)
x3

432 + 444i
√
7

+
(
−1553i+ 395

√
7
)
x4

−26256i+ 12480
√
7

+
(
−42423i

√
7 + 45275

)
x5

−492720i
√
7− 1749600

+O
(
x6))

Verification of solutions

y = c1x
i
√
7

4 − 1
4

(
1 + x

i
√
7 + 2

−
5
(
i
√
7− 1

) (
i
√
7 + 9

5

)
x2

16
(
i
√
7 + 2

) (
i
√
7 + 4

) +
(
49i

√
7 + 89

)
x3

432− 444i
√
7

+
(
1553i+ 395

√
7
)
x4

26256i+ 12480
√
7

+
(
42423i

√
7 + 45275

)
x5

492720i
√
7− 1749600

+O
(
x6))

+ c2x
− i

√
7

4 − 1
4

(
1 + x

−i
√
7 + 2

−
5
(
−i

√
7− 1

) (
−i

√
7 + 9

5

)
x2

16
(
−i

√
7 + 2

) (
−i

√
7 + 4

) +
(
−49i

√
7 + 89

)
x3

432 + 444i
√
7

+
(
−1553i+ 395

√
7
)
x4

−26256i+ 12480
√
7

+
(
−42423i

√
7 + 45275

)
x5

−492720i
√
7− 1749600

+O
(
x6))

Verified OK.

14.4.1 Maple step by step solution

Let’s solve
2x2(x2 + x+ 1) y′′ + (5x3 + 3x2 + 3x) y′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − y
2x2(x2+x+1) −

(
5x2+3x+3

)
y′

2x(x2+x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
5x2+3x+3

)
y′

2x(x2+x+1) + y
2x2(x2+x+1) = 0
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� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5x2+3x+3
2(x2+x+1)x , P3(x) = 1

2x2(x2+x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
2

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
2x2(x2 + x+ 1) y′′ + x(5x2 + 3x+ 3) y′ + y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions
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a0(2r2 + r + 1)xr + ((2r2 + 5r + 4) a1 + a0r(1 + 2r))x1+r +
(

∞∑
k=2

(ak(2k2 + 4kr + 2r2 + k + r + 1) + ak−1(k + r − 1) (2k − 1 + 2r) + ak−2(k − 2 + r) (2k − 1 + 2r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2r2 + r + 1 = 0

• Values of r that satisfy the indicial equation

r ∈
{
− I

√
7

4 − 1
4 ,

I
√
7

4 − 1
4

}
• Each term must be 0

(2r2 + 5r + 4) a1 + a0r(1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = −a0r(1+2r)
2r2+5r+4

• Each term in the series must be 0, giving the recursion relation
(2ak + 2ak−2 + 2ak−1) k2 + ((4ak + 4ak−2 + 4ak−1) r + ak − 5ak−2 − 3ak−1) k + (2ak + 2ak−2 + 2ak−1) r2 + (ak − 5ak−2 − 3ak−1) r + ak + 2ak−2 + ak−1 = 0

• Shift index using k− >k + 2
(2ak+2 + 2ak + 2ak+1) (k + 2)2 + ((4ak+2 + 4ak + 4ak+1) r + ak+2 − 5ak − 3ak+1) (k + 2) + (2ak+2 + 2ak + 2ak+1) r2 + (ak+2 − 5ak − 3ak+1) r + ak+2 + 2ak + ak+1 = 0

• Recursion relation that defines series solution to ODE

ak+2 = −2k2ak+2k2ak+1+4krak+4krak+1+2r2ak+2r2ak+1+3kak+5kak+1+3rak+5rak+1+3ak+1
2k2+4kr+2r2+9k+9r+11

• Recursion relation for r = − I
√
7

4 − 1
4

ak+2 = −
2k2ak+2k2ak+1+4k

(
− I

√
7

4 − 1
4

)
ak+4k

(
− I

√
7

4 − 1
4

)
ak+1+2

(
− I

√
7

4 − 1
4

)2
ak+2

(
− I

√
7

4 − 1
4

)2
ak+1+3kak+5kak+1+3

(
− I

√
7

4 − 1
4

)
ak+5

(
− I

√
7

4 − 1
4

)
ak+1+3ak+1

2k2+4k
(
− I

√
7

4 − 1
4

)
+2
(
− I

√
7

4 − 1
4

)2
+9k− 9 I

√
7

4 + 35
4

• Solution for r = − I
√
7

4 − 1
4[

y =
∞∑
k=0

akx
k− I

√
7

4 − 1
4 , ak+2 = −

2k2ak+2k2ak+1+4k
(
− I

√
7

4 − 1
4

)
ak+4k

(
− I

√
7

4 − 1
4

)
ak+1+2

(
− I

√
7

4 − 1
4

)2
ak+2

(
− I

√
7

4 − 1
4

)2
ak+1+3kak+5kak+1+3

(
− I

√
7

4 − 1
4

)
ak+5

(
− I

√
7

4 − 1
4

)
ak+1+3ak+1

2k2+4k
(
− I

√
7

4 − 1
4

)
+2
(
− I

√
7

4 − 1
4

)2
+9k− 9 I

√
7

4 + 35
4

, a1 = −
a0
(
− I

√
7

4 − 1
4

)(
− I

√
7

2 + 1
2

)
2
(
− I

√
7

4 − 1
4

)2
− 5 I

√
7

4 + 11
4

]
• Recursion relation for r = I

√
7

4 − 1
4

ak+2 = −
2k2ak+2k2ak+1+4k

(
I
√
7

4 − 1
4

)
ak+4k

(
I
√
7

4 − 1
4

)
ak+1+2

(
I
√
7

4 − 1
4

)2
ak+2

(
I
√
7

4 − 1
4

)2
ak+1+3kak+5kak+1+3

(
I
√
7

4 − 1
4

)
ak+5

(
I
√
7

4 − 1
4

)
ak+1+3ak+1

2k2+4k
(

I
√
7

4 − 1
4

)
+2
(

I
√
7

4 − 1
4

)2
+9k+ 9 I

√
7

4 + 35
4

• Solution for r = I
√
7

4 − 1
4[

y =
∞∑
k=0

akx
k+ I

√
7

4 − 1
4 , ak+2 = −

2k2ak+2k2ak+1+4k
(

I
√
7

4 − 1
4

)
ak+4k

(
I
√

7
4 − 1

4

)
ak+1+2

(
I
√
7

4 − 1
4

)2
ak+2

(
I
√

7
4 − 1

4

)2
ak+1+3kak+5kak+1+3

(
I
√
7

4 − 1
4

)
ak+5

(
I
√
7

4 − 1
4

)
ak+1+3ak+1

2k2+4k
(

I
√
7

4 − 1
4

)
+2
(

I
√
7

4 − 1
4

)2
+9k+ 9 I

√
7

4 + 35
4

, a1 = −
a0
(

I
√
7

4 − 1
4

)(
I
√
7

2 + 1
2

)
2
(

I
√
7

4 − 1
4

)2
+ 5 I

√
7

4 + 11
4

]
• Combine solutions and rename parameters

4704



[
y =

(
∞∑
k=0

akx
k− I

√
7

4 − 1
4

)
+
(

∞∑
k=0

bkx
k+ I

√
7

4 − 1
4

)
, ak+2 = −

2k2ak+2k2a1+k+4k
(
− I

√
7

4 − 1
4

)
ak+4k

(
− I

√
7

4 − 1
4

)
a1+k+2

(
− I

√
7

4 − 1
4

)2
ak+2

(
− I

√
7

4 − 1
4

)2
a1+k+3kak+5ka1+k+3

(
− I

√
7

4 − 1
4

)
ak+5

(
− I

√
7

4 − 1
4

)
a1+k+3a1+k

2k2+4k
(
− I

√
7

4 − 1
4

)
+2
(
− I

√
7

4 − 1
4

)2
+9k− 9 I

√
7

4 + 35
4

, a1 = −
a0
(
− I

√
7

4 − 1
4

)(
− I

√
7

2 + 1
2

)
2
(
− I

√
7

4 − 1
4

)2
− 5 I

√
7

4 + 11
4

, bk+2 = −
2k2bk+2k2b1+k+4k

(
I
√
7

4 − 1
4

)
bk+4k

(
I
√

7
4 − 1

4

)
b1+k+2

(
I
√
7

4 − 1
4

)2
bk+2

(
I
√
7

4 − 1
4

)2
b1+k+3kbk+5kb1+k+3

(
I
√
7

4 − 1
4

)
bk+5

(
I
√

7
4 − 1

4

)
b1+k+3b1+k

2k2+4k
(

I
√

7
4 − 1

4

)
+2
(

I
√

7
4 − 1

4

)2
+9k+ 9 I

√
7

4 + 35
4

, b1 = −
b0
(

I
√
7

4 − 1
4

)(
I
√

7
2 + 1

2

)
2
(

I
√

7
4 − 1

4

)2
+ 5 I

√
7

4 + 11
4

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <> 0, g <> 0, c = 0 `� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 1243� �
Order:=6;
dsolve(2*x^2*(1+x+x^2)*diff(y(x),x$2)+x*(3+3*x+5*x^2)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c2x

i
√
7

4

(
1 + 1

2+i
√
7x+ 1

4
11−i

√
7(

2+i
√
7
)(

i
√
7+4

)x2 − 1
12

49i
√
7+89(

2+i
√
7
)(

i
√
7+4

)(
i
√
7+6

)x3 + 1
48

395i
√
7−1553(

2+i
√
7
)(

i
√
7+4

)(
i
√
7+6

)(
i
√
7+8

)x4 + 1
240

42423i
√
7+45275(

2+i
√
7
)(

i
√
7+4

)(
i
√
7+6

)(
i
√
7+8

)(
i
√
7+10

)x5 +O(x6)
)
+ c1x

− i
√
7

4

(
1 + 1

2−i
√
7x+ −11−i

√
7

−4+24i
√
7x

2 + 49
√
7+89i

432i−444
√
7x

3 − 1
48

395i
√
7+1553(

2i+
√
7
)(√

7+4i
)(√

7+6i
)(√

7+8i
)x4 + −42423

√
7−45275i

1749600i−492720
√
7x

5 +O(x6)
)

x
1
4
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3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 4838� �
AsymptoticDSolveValue[2*x^2*(1+x+x^2)*y''[x]+x*(3+3*x+5*x^2)*y'[x]+y[x]==0,y[x],{x,0,5}]� �
Too large to display
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14.5 problem 2
14.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4717

Internal problem ID [1296]
Internal file name [OUTPUT/1297_Sunday_June_05_2022_02_08_51_AM_48638098/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries], [_2nd_order , _linear , `

_with_symmetry_ [0,F(x)]`]]

3x2y′′ + 2x
(
−2x2 + x+ 1

)
y′ +

(
−8x2 + 2x

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

3x2y′′ +
(
−4x3 + 2x2 + 2x

)
y′ +

(
−8x2 + 2x

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −2(2x2 − x− 1)
3x

q(x) = −2(4x− 1)
3x
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Table 538: Table p(x), q(x) singularites.

p(x) = −2
(
2x2−x−1

)
3x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = −2(4x−1)
3x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

3x2y′′ +
(
−4x3 + 2x2 + 2x

)
y′ +

(
−8x2 + 2x

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
3x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−4x3+2x2+2x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
−8x2+2x

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

3xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−4xn+r+2an(n+ r)

)
+
(

∞∑
n=0

2x1+n+ran(n+ r)
)

+
(

∞∑
n=0

2xn+ran(n+ r)
)

+
∞∑

n =0

(
−8xn+r+2an

)
+
(

∞∑
n=0

2x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−4xn+r+2an(n+ r)

)
=

∞∑
n=2

(
−4an−2(n+ r − 2)xn+r

)
∞∑

n =0

2x1+n+ran(n+ r) =
∞∑
n=1

2an−1(n+ r − 1)xn+r

∞∑
n =0

(
−8xn+r+2an

)
=

∞∑
n=2

(
−8an−2x

n+r
)

∞∑
n =0

2x1+n+ran =
∞∑
n=1

2an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

3xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =2

(
−4an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=1

2an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

2xn+ran(n+ r)
)

+
∞∑

n =2

(
−8an−2x

n+r
)
+
(

∞∑
n=1

2an−1x
n+r

)
= 0
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The indicial equation is obtained from n = 0. From Eq (2B) this gives

3xn+ran(n+ r) (n+ r − 1) + 2xn+ran(n+ r) = 0

When n = 0 the above becomes

3xra0r(−1 + r) + 2xra0r = 0

Or
(3xrr(−1 + r) + 2xrr) a0 = 0

Since a0 6= 0 then the above simplifies to

xrr(−1 + 3r) = 0

Since the above is true for all x then the indicial equation becomes

3r2 − r = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 = 0

Since a0 6= 0 then the indicial equation becomes

xrr(−1 + 3r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) =
∞∑
n=0

bnx
n
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We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = − 2
3r + 2

For 2 ≤ n the recursive equation is

(3)3an(n+ r) (n+ r − 1)− 4an−2(n+ r − 2)
+ 2an−1(n+ r − 1) + 2an(n+ r)− 8an−2 + 2an−1 = 0

Solving for an from recursive equation (4) gives

an = 4an−2 − 2an−1

3n− 1 + 3r (4)

Which for the root r = 1
3 becomes

an = 4an−2 − 2an−1

3n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 − 2

3r+2 −2
3

For n = 2, using the above recursive equation gives

a2 =
12 + 12r

9r2 + 21r + 10
Which for the root r = 1

3 becomes
a2 =

8
9

And the table now becomes

n an,r an

a0 1 1
a1 − 2

3r+2 −2
3

a2
12+12r

9r2+21r+10
8
9
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For n = 3, using the above recursive equation gives

a3 =
−64− 48r

27r3 + 135r2 + 198r + 80

Which for the root r = 1
3 becomes

a3 = −40
81

And the table now becomes

n an,r an

a0 1 1
a1 − 2

3r+2 −2
3

a2
12+12r

9r2+21r+10
8
9

a3
−64−48r

27r3+135r2+198r+80 −40
81

For n = 4, using the above recursive equation gives

a4 =
144r2 + 624r + 512

81r4 + 702r3 + 2079r2 + 2418r + 880

Which for the root r = 1
3 becomes

a4 =
92
243

And the table now becomes

n an,r an

a0 1 1
a1 − 2

3r+2 −2
3

a2
12+12r

9r2+21r+10
8
9

a3
−64−48r

27r3+135r2+198r+80 −40
81

a4
144r2+624r+512

81r4+702r3+2079r2+2418r+880
92
243

For n = 5, using the above recursive equation gives

a5 =
−864r2 − 4128r − 3840

243r5 + 3240r4 + 16065r3 + 36360r2 + 36492r + 12320
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Which for the root r = 1
3 becomes

a5 = − 664
3645

And the table now becomes

n an,r an

a0 1 1
a1 − 2

3r+2 −2
3

a2
12+12r

9r2+21r+10
8
9

a3
−64−48r

27r3+135r2+198r+80 −40
81

a4
144r2+624r+512

81r4+702r3+2079r2+2418r+880
92
243

a5
−864r2−4128r−3840

243r5+3240r4+16065r3+36360r2+36492r+12320 − 664
3645

Using the above table, then the solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
1− 2x

3 + 8x2

9 − 40x3

81 + 92x4

243 − 664x5

3645 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = − 2
3r + 2

For 2 ≤ n the recursive equation is

(3)3bn(n+ r) (n+ r − 1)− 4bn−2(n+ r − 2)
+ 2bn−1(n+ r − 1) + 2bn(n+ r)− 8bn−2 + 2bn−1 = 0

Solving for bn from recursive equation (4) gives

bn = 4bn−2 − 2bn−1

3n− 1 + 3r (4)

Which for the root r = 0 becomes

bn = 4bn−2 − 2bn−1

3n− 1 (5)
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At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 − 2

3r+2 −1

For n = 2, using the above recursive equation gives

b2 =
12 + 12r

9r2 + 21r + 10

Which for the root r = 0 becomes
b2 =

6
5

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

3r+2 −1

b2
12+12r

9r2+21r+10
6
5

For n = 3, using the above recursive equation gives

b3 =
−64− 48r

27r3 + 135r2 + 198r + 80

Which for the root r = 0 becomes
b3 = −4

5
And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

3r+2 −1

b2
12+12r

9r2+21r+10
6
5

b3
−64−48r

27r3+135r2+198r+80 −4
5
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For n = 4, using the above recursive equation gives

b4 =
144r2 + 624r + 512

81r4 + 702r3 + 2079r2 + 2418r + 880
Which for the root r = 0 becomes

b4 =
32
55

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

3r+2 −1

b2
12+12r

9r2+21r+10
6
5

b3
−64−48r

27r3+135r2+198r+80 −4
5

b4
144r2+624r+512

81r4+702r3+2079r2+2418r+880
32
55

For n = 5, using the above recursive equation gives

b5 =
−864r2 − 4128r − 3840

243r5 + 3240r4 + 16065r3 + 36360r2 + 36492r + 12320
Which for the root r = 0 becomes

b5 = −24
77

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

3r+2 −1

b2
12+12r

9r2+21r+10
6
5

b3
−64−48r

27r3+135r2+198r+80 −4
5

b4
144r2+624r+512

81r4+702r3+2079r2+2418r+880
32
55

b5
−864r2−4128r−3840

243r5+3240r4+16065r3+36360r2+36492r+12320 −24
77

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1− x+ 6x2

5 − 4x3

5 + 32x4

55 − 24x5

77 +O
(
x6)
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3

(
1− 2x

3 + 8x2

9 − 40x3

81 + 92x4

243 − 664x5

3645 +O
(
x6))

+ c2

(
1− x+ 6x2

5 − 4x3

5 + 32x4

55 − 24x5

77 +O
(
x6))

Hence the final solution is

y = yh

= c1x
1
3

(
1− 2x

3 + 8x2

9 − 40x3

81 + 92x4

243 − 664x5

3645 +O
(
x6))

+ c2

(
1− x+ 6x2

5 − 4x3

5 + 32x4

55 − 24x5

77 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

1
3

(
1− 2x

3 + 8x2

9 − 40x3

81 + 92x4

243 − 664x5

3645 +O
(
x6))

+ c2

(
1− x+ 6x2

5 − 4x3

5 + 32x4

55 − 24x5

77 +O
(
x6))

Verification of solutions

y = c1x
1
3

(
1− 2x

3 + 8x2

9 − 40x3

81 + 92x4

243 − 664x5

3645 +O
(
x6))

+ c2

(
1− x+ 6x2

5 − 4x3

5 + 32x4

55 − 24x5

77 +O
(
x6))

Verified OK.
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14.5.1 Maple step by step solution

Let’s solve
3x2y′′ + (−4x3 + 2x2 + 2x) y′ + (−8x2 + 2x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = 2(4x−1)y
3x + 2

(
2x2−x−1

)
y′

3x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − 2
(
2x2−x−1

)
y′

3x − 2(4x−1)y
3x = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2
(
2x2−x−1

)
3x , P3(x) = −2(4x−1)

3x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
3y′′x+ (−4x2 + 2x+ 2) y′ + (−8x+ 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 0..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−1 + 3r)x−1+r + (a1(1 + r) (2 + 3r) + 2a0(1 + r))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (3k + 2 + 3r) + 2ak(k + 1 + r)− 4ak−1(k + 1 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 13
}

• Each term must be 0
a1(1 + r) (2 + 3r) + 2a0(1 + r) = 0

• Each term in the series must be 0, giving the recursion relation
(k + 1 + r) (3kak+1 + 3rak+1 + 2ak − 4ak−1 + 2ak+1) = 0

• Shift index using k− >k + 1
(k + r + 2) (3(k + 1) ak+2 + 3rak+2 + 2ak+1 − 4ak + 2ak+2) = 0

• Recursion relation that defines series solution to ODE

ak+2 = 2(−ak+1+2ak)
3k+5+3r

• Recursion relation for r = 0

ak+2 = 2(−ak+1+2ak)
3k+5
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• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = 2(−ak+1+2ak)

3k+5 , 2a1 + 2a0 = 0
]

• Recursion relation for r = 1
3

ak+2 = 2(−ak+1+2ak)
3k+6

• Solution for r = 1
3[

y =
∞∑
k=0

akx
k+ 1

3 , ak+2 = 2(−ak+1+2ak)
3k+6 , 4a1 + 8a0

3 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 = 2(−a1+k+2ak)

3k+5 , 2a1 + 2a0 = 0, bk+2 = 2(−b1+k+2bk)
3k+6 , 4b1 + 8b0

3 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 44� �
Order:=6;
dsolve(3*x^2*diff(y(x),x$2)+2*x*(1+x-2*x^2)*diff(y(x),x)+(2*x-8*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
1
3

(
1− 2

3x+ 8
9x

2 − 40
81x

3 + 92
243x

4 − 664
3645x

5 +O
(
x6))

+ c2

(
1− x+ 6

5x
2 − 4

5x
3 + 32

55x
4 − 24

77x
5 +O

(
x6))
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3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 83� �
AsymptoticDSolveValue[3*x^2*y''[x]+2*x*(1+x-2*x^2)*y'[x]+(2*x-8*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
3
√
x

(
−664x5

3645 + 92x4

243 − 40x3

81 + 8x2

9 − 2x
3 + 1

)
+ c2

(
−24x5

77 + 32x4

55 − 4x3

5 + 6x2

5 − x+ 1
)
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14.6 problem 3
14.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4732

Internal problem ID [1297]
Internal file name [OUTPUT/1298_Sunday_June_05_2022_02_08_54_AM_14302186/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x2 + 3x+ 3
)
y′′ + x

(
7x2 + 8x+ 5

)
y′ −

(
−9x2 − 2x+ 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

x4 + 3x3 + 3x2) y′′ + (7x3 + 8x2 + 5x
)
y′ +

(
9x2 + 2x− 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 7x2 + 8x+ 5
x (x2 + 3x+ 3)

q(x) = 9x2 + 2x− 1
x2 (x2 + 3x+ 3)
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Table 540: Table p(x), q(x) singularites.

p(x) = 7x2+8x+5
x(x2+3x+3)

singularity type
x = 0 “regular”

x = − i
√
3

2 − 3
2 “regular”

x = i
√
3

2 − 3
2 “regular”

q(x) = 9x2+2x−1
x2(x2+3x+3)

singularity type
x = 0 “regular”

x = − i
√
3

2 − 3
2 “regular”

x = i
√
3

2 − 3
2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,− i

√
3

2 − 3
2 ,

i
√
3

2 − 3
2 ,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 + 3x+ 3
)
y′′ +

(
7x3 + 8x2 + 5x

)
y′ +

(
9x2 + 2x− 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x2 + 3x+ 3

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
7x3+8x2+5x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
9x2+2x−1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

3x1+n+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

3xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

7xn+r+2an(n+ r)
)

+
(

∞∑
n=0

8x1+n+ran(n+ r)
)

+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=0

9xn+r+2an

)
+
(

∞∑
n=0

2x1+n+ran

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

3x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

3an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

7xn+r+2an(n+ r) =
∞∑
n=2

7an−2(n+ r − 2)xn+r

∞∑
n =0

8x1+n+ran(n+ r) =
∞∑
n=1

8an−1(n+ r − 1)xn+r

∞∑
n =0

9xn+r+2an =
∞∑
n=2

9an−2x
n+r

∞∑
n =0

2x1+n+ran =
∞∑
n=1

2an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=1

3an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

3xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

7an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=1

8an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=2

9an−2x
n+r

)
+
(

∞∑
n=1

2an−1x
n+r

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

3xn+ran(n+ r) (n+ r − 1) + 5xn+ran(n+ r)− anx
n+r = 0

When n = 0 the above becomes

3xra0r(−1 + r) + 5xra0r − a0x
r = 0

Or
(3xrr(−1 + r) + 5xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
3r2 + 2r − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

3r2 + 2r − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 = −1

Since a0 6= 0 then the indicial equation becomes(
3r2 + 2r − 1

)
xr = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) =
∞∑
n=0

bnx
n−1

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 =
−1− r

r + 2
For 2 ≤ n the recursive equation is

(3)an−2(n+r−2) (n−3+r)+3an−1(n+r−1) (n+r−2)+3an(n+r) (n+r−1)
+ 7an−2(n+ r − 2) + 8an−1(n+ r − 1) + 5an(n+ r) + 9an−2 + 2an−1 − an = 0

Solving for an from recursive equation (4) gives

an = −n2an−2 + 3n2an−1 + 2nran−2 + 6nran−1 + r2an−2 + 3r2an−1 + 2nan−2 − nan−1 + 2ran−2 − ran−1 + an−2

3n2 + 6nr + 3r2 + 2n+ 2r − 1
(4)

Which for the root r = 1
3 becomes

an = (−9an−2 − 27an−1)n2 + (−24an−2 − 9an−1)n− 16an−2

27n2 + 36n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

−1−r
r+2 −4

7
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For n = 2, using the above recursive equation gives

a2 =
2r2 + 2r − 4
3r2 + 14r + 15

Which for the root r = 1
3 becomes

a2 = − 7
45

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
r+2 −4

7

a2
2r2+2r−4

3r2+14r+15 − 7
45

For n = 3, using the above recursive equation gives

a3 =
−3r4 − 2r3 + 69r2 + 192r + 144
9r4 + 93r3 + 346r2 + 552r + 320

Which for the root r = 1
3 becomes

a3 =
970
2457

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
r+2 −4

7

a2
2r2+2r−4

3r2+14r+15 − 7
45

a3
−3r4−2r3+69r2+192r+144
9r4+93r3+346r2+552r+320

970
2457

For n = 4, using the above recursive equation gives

a4 =
3r6 − 28r5 − 606r4 − 3196r3 − 7445r2 − 7976r − 3152

(3r2 + 26r + 55) (9r3 + 57r2 + 118r + 80) (r + 3)

Which for the root r = 1
3 becomes

a4 = − 5707
22680
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And the table now becomes

n an,r an

a0 1 1
a1

−1−r
r+2 −4

7

a2
2r2+2r−4

3r2+14r+15 − 7
45

a3
−3r4−2r3+69r2+192r+144
9r4+93r3+346r2+552r+320

970
2457

a4
3r6−28r5−606r4−3196r3−7445r2−7976r−3152

(3r2+26r+55)(9r3+57r2+118r+80)(r+3) − 5707
22680

For n = 5, using the above recursive equation gives

a5 =
180r6 + 3066r5 + 20450r4 + 66790r3 + 107050r2 + 68544r + 2720

(3r2 + 32r + 84) (r + 3) (9r2 + 39r + 40) (3r + 11) (r + 4)

Which for the root r = 1
3 becomes

a5 =
13568
300105

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
r+2 −4

7

a2
2r2+2r−4

3r2+14r+15 − 7
45

a3
−3r4−2r3+69r2+192r+144
9r4+93r3+346r2+552r+320

970
2457

a4
3r6−28r5−606r4−3196r3−7445r2−7976r−3152

(3r2+26r+55)(9r3+57r2+118r+80)(r+3) − 5707
22680

a5
180r6+3066r5+20450r4+66790r3+107050r2+68544r+2720

(3r2+32r+84)(r+3)(9r2+39r+40)(3r+11)(r+4)
13568
300105

Using the above table, then the solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
1− 4x

7 − 7x2

45 + 970x3

2457 − 5707x4

22680 + 13568x5

300105 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 =
−1− r

r + 2
For 2 ≤ n the recursive equation is

(3)bn−2(n+ r−2) (n−3+ r)+3bn−1(n+ r−1) (n+ r−2)+3bn(n+ r) (n+ r−1)
+ 7bn−2(n+ r − 2) + 8bn−1(n+ r − 1) + 5bn(n+ r) + 9bn−2 + 2bn−1 − bn = 0

Solving for bn from recursive equation (4) gives

bn = −n2bn−2 + 3n2bn−1 + 2nrbn−2 + 6nrbn−1 + r2bn−2 + 3r2bn−1 + 2nbn−2 − nbn−1 + 2rbn−2 − rbn−1 + bn−2

3n2 + 6nr + 3r2 + 2n+ 2r − 1
(4)

Which for the root r = −1 becomes

bn = (−bn−2 − 3bn−1)n2 + 7nbn−1 − 4bn−1

3n2 − 4n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1

−1−r
r+2 0

For n = 2, using the above recursive equation gives

b2 =
2r2 + 2r − 4
3r2 + 14r + 15

Which for the root r = −1 becomes

b2 = −1

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
r+2 0

b2
2r2+2r−4

3r2+14r+15 −1
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For n = 3, using the above recursive equation gives

b3 =
−3r4 − 2r3 + 69r2 + 192r + 144
9r4 + 93r3 + 346r2 + 552r + 320

Which for the root r = −1 becomes

b3 =
2
3

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
r+2 0

b2
2r2+2r−4

3r2+14r+15 −1

b3
−3r4−2r3+69r2+192r+144
9r4+93r3+346r2+552r+320

2
3

For n = 4, using the above recursive equation gives

b4 =
3r6 − 28r5 − 606r4 − 3196r3 − 7445r2 − 7976r − 3152

(3r2 + 26r + 55) (9r3 + 57r2 + 118r + 80) (r + 3)

Which for the root r = −1 becomes

b4 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
r+2 0

b2
2r2+2r−4

3r2+14r+15 −1

b3
−3r4−2r3+69r2+192r+144
9r4+93r3+346r2+552r+320

2
3

b4
3r6−28r5−606r4−3196r3−7445r2−7976r−3152

(3r2+26r+55)(9r3+57r2+118r+80)(r+3) 0

For n = 5, using the above recursive equation gives

b5 =
180r6 + 3066r5 + 20450r4 + 66790r3 + 107050r2 + 68544r + 2720

(3r2 + 32r + 84) (r + 3) (9r2 + 39r + 40) (3r + 11) (r + 4)
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Which for the root r = −1 becomes

b5 = −10
33

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
r+2 0

b2
2r2+2r−4

3r2+14r+15 −1

b3
−3r4−2r3+69r2+192r+144
9r4+93r3+346r2+552r+320

2
3

b4
3r6−28r5−606r4−3196r3−7445r2−7976r−3152

(3r2+26r+55)(9r3+57r2+118r+80)(r+3) 0

b5
180r6+3066r5+20450r4+66790r3+107050r2+68544r+2720

(3r2+32r+84)(r+3)(9r2+39r+40)(3r+11)(r+4) −10
33

Using the above table, then the solution y2(x) is

y2(x) = x
1
3
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x2 + 2x3

3 − 10x5

33 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3

(
1− 4x

7 − 7x2

45 + 970x3

2457 − 5707x4

22680 + 13568x5

300105 +O
(
x6))

+
c2
(
1− x2 + 2x3

3 − 10x5

33 +O(x6)
)

x

Hence the final solution is

y = yh

= c1x
1
3

(
1− 4x

7 − 7x2

45 + 970x3

2457 − 5707x4

22680 + 13568x5

300105 +O
(
x6))

+
c2
(
1− x2 + 2x3

3 − 10x5

33 +O(x6)
)

x
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Summary
The solution(s) found are the following

(1)
y = c1x

1
3

(
1− 4x

7 − 7x2

45 + 970x3

2457 − 5707x4

22680 + 13568x5

300105 +O
(
x6))

+
c2
(
1− x2 + 2x3

3 − 10x5

33 +O(x6)
)

x

Verification of solutions

y = c1x
1
3

(
1− 4x

7 − 7x2

45 + 970x3

2457 − 5707x4

22680 + 13568x5

300105 +O
(
x6))

+
c2
(
1− x2 + 2x3

3 − 10x5

33 +O(x6)
)

x

Verified OK.

14.6.1 Maple step by step solution

Let’s solve
x2(x2 + 3x+ 3) y′′ + (7x3 + 8x2 + 5x) y′ + (9x2 + 2x− 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
9x2+2x−1

)
y

x2(x2+3x+3) −
(
7x2+8x+5

)
y′

x(x2+3x+3)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
7x2+8x+5

)
y′

x(x2+3x+3) +
(
9x2+2x−1

)
y

x2(x2+3x+3) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 7x2+8x+5
x(x2+3x+3) , P3(x) = 9x2+2x−1

x2(x2+3x+3)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
3

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= −1
3

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(x2 + 3x+ 3) y′′ + x(7x2 + 8x+ 5) y′ + (9x2 + 2x− 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + 3r)xr + (a1(2 + r) (2 + 3r) + a0(1 + r) (2 + 3r))x1+r +
(

∞∑
k=2

(
ak(k + r + 1) (3k + 3r − 1) + ak−1(k + r) (3k + 3r − 1) + ak−2(k + r + 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(1 + r) (−1 + 3r) = 0
• Values of r that satisfy the indicial equation

r ∈
{
−1, 13

}
• Each term must be 0

a1(2 + r) (2 + 3r) + a0(1 + r) (2 + 3r) = 0
• Solve for the dependent coefficient(s)

a1 = − (1+r)a0
2+r

• Each term in the series must be 0, giving the recursion relation
ak−2(k + r + 1)2 + 3

(
k + r − 1

3

)
(ak(k + r + 1) + ak−1(k + r)) = 0

• Shift index using k− >k + 2
ak(k + r + 3)2 + 3

(
k + 5

3 + r
)
(ak+2(k + r + 3) + ak+1(k + 2 + r)) = 0

• Recursion relation that defines series solution to ODE

ak+2 = −k2ak+3k2ak+1+2krak+6krak+1+r2ak+3r2ak+1+6kak+11kak+1+6rak+11rak+1+9ak+10ak+1
(3k+5+3r)(k+r+3)

• Recursion relation for r = −1

ak+2 = −k2ak+3k2ak+1+4kak+5kak+1+4ak+2ak+1
(3k+2)(k+2)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = −k2ak+3k2ak+1+4kak+5kak+1+4ak+2ak+1

(3k+2)(k+2) , a1 = 0
]

• Recursion relation for r = 1
3

ak+2 = −k2ak+3k2ak+1+ 20
3 kak+13kak+1+ 100

9 ak+14ak+1
(3k+6)

(
k+ 10

3
)

• Solution for r = 1
3[

y =
∞∑
k=0

akx
k+ 1

3 , ak+2 = −k2ak+3k2ak+1+ 20
3 kak+13kak+1+ 100

9 ak+14ak+1
(3k+6)

(
k+ 10

3
) , a1 = −4a0

7

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 = −k2ak+3k2a1+k+4kak+5ka1+k+4ak+2a1+k

(3k+2)(k+2) , a1 = 0, bk+2 = −k2bk+3k2b1+k+ 20
3 kbk+13kb1+k+ 100

9 bk+14b1+k

(3k+6)
(
k+ 10

3
) , b1 = −4b0

7

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <> 0, g <> 0, c = 0 `� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 43� �
Order:=6;
dsolve(x^2*(3+3*x+x^2)*diff(y(x),x$2)+x*(5+8*x+7*x^2)*diff(y(x),x)-(1-2*x-9*x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c2x

4
3
(
1− 4

7x− 7
45x

2 + 970
2457x

3 − 5707
22680x

4 + 13568
300105x

5 +O(x6)
)
+ c1

(
1− x2 + 2

3x
3 − 10

33x
5 +O(x6)

)
x
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3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 74� �
AsymptoticDSolveValue[x^2*(3+3*x+x^2)*y''[x]+x*(5+8*x+7*x^2)*y'[x]-(1-2*x-9*x^2)*y[x]==0,y[x],{x,0,5}]� �
y(x)→

c2
(
−10x5

33 + 2x3

3 − x2 + 1
)

x
+c1

3
√
x

(
13568x5

300105 − 5707x4

22680 + 970x3

2457 − 7x2

45 − 4x
7 +1

)
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14.7 problem 4
14.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4747

Internal problem ID [1298]
Internal file name [OUTPUT/1299_Sunday_June_05_2022_02_08_58_AM_10712497/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2y′′ + x
(
4x2 + 2x+ 7

)
y′ −

(
−7x2 − 4x+ 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

4x2y′′ +
(
4x3 + 2x2 + 7x

)
y′ +

(
7x2 + 4x− 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 4x2 + 2x+ 7
4x

q(x) = 7x2 + 4x− 1
4x2
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Table 542: Table p(x), q(x) singularites.

p(x) = 4x2+2x+7
4x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = 7x2+4x−1
4x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2y′′ +
(
4x3 + 2x2 + 7x

)
y′ +

(
7x2 + 4x− 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
4x3+2x2+7x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
7x2+4x−1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+r+2an(n+ r)
)

+
(

∞∑
n=0

2x1+n+ran(n+ r)
)

+
(

∞∑
n=0

7xn+ran(n+ r)
)

+
(

∞∑
n=0

7xn+r+2an

)
+
(

∞∑
n=0

4x1+n+ran

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4xn+r+2an(n+ r) =
∞∑
n=2

4an−2(n+ r − 2)xn+r

∞∑
n =0

2x1+n+ran(n+ r) =
∞∑
n=1

2an−1(n+ r − 1)xn+r

∞∑
n =0

7xn+r+2an =
∞∑
n=2

7an−2x
n+r

∞∑
n =0

4x1+n+ran =
∞∑
n=1

4an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

4an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=1

2an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

7xn+ran(n+ r)
)

+
(

∞∑
n=2

7an−2x
n+r

)
+
(

∞∑
n=1

4an−1x
n+r

)
+

∞∑
n =0

(
−anx

n+r
)
= 0
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The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + 7xn+ran(n+ r)− anx
n+r = 0

When n = 0 the above becomes

4xra0r(−1 + r) + 7xra0r − a0x
r = 0

Or
(4xrr(−1 + r) + 7xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 + 3r − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

4r2 + 3r − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
4

r2 = −1

Since a0 6= 0 then the indicial equation becomes(
4r2 + 3r − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 5
4 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 1

4

y2(x) =
∞∑
n=0

bnx
n−1
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We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = − 2
4r + 3

For 2 ≤ n the recursive equation is

(3)4an(n+ r) (n+ r − 1) + 4an−2(n+ r − 2)
+ 2an−1(n+ r − 1) + 7an(n+ r) + 7an−2 + 4an−1 − an = 0

Solving for an from recursive equation (4) gives

an = −4nan−2 + 2nan−1 + 4ran−2 + 2ran−1 − an−2 + 2an−1

4n2 + 8nr + 4r2 + 3n+ 3r − 1 (4)

Which for the root r = 1
4 becomes

an = (−8an−2 − 4an−1)n− 5an−1

8n2 + 10n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

4 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 − 2

4r+3 −1
2

For n = 2, using the above recursive equation gives

a2 =
−16r2 − 36r − 9

16r3 + 88r2 + 141r + 63
Which for the root r = 1

4 becomes

a2 = − 19
104

And the table now becomes

n an,r an

a0 1 1
a1 − 2

4r+3 −1
2

a2
−16r2−36r−9

16r3+88r2+141r+63 − 19
104
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For n = 3, using the above recursive equation gives

a3 =
64r3 + 440r2 + 892r + 534

64r5 + 784r4 + 3644r3 + 7931r2 + 7905r + 2772

Which for the root r = 1
4 becomes

a3 =
1571
10608

And the table now becomes

n an,r an

a0 1 1
a1 − 2

4r+3 −1
2

a2
−16r2−36r−9

16r3+88r2+141r+63 − 19
104

a3
64r3+440r2+892r+534

64r5+784r4+3644r3+7931r2+7905r+2772
1571
10608

For n = 4, using the above recursive equation gives

a4 =
256r5 + 3136r4 + 13968r3 + 26804r2 + 19001r + 600

256r7 + 5376r6 + 46816r5 + 218064r4 + 582505r3 + 882588r2 + 689895r + 207900

Which for the root r = 1
4 becomes

a4 =
3225
198016

And the table now becomes

n an,r an

a0 1 1
a1 − 2

4r+3 −1
2

a2
−16r2−36r−9

16r3+88r2+141r+63 − 19
104

a3
64r3+440r2+892r+534

64r5+784r4+3644r3+7931r2+7905r+2772
1571
10608

a4
256r5+3136r4+13968r3+26804r2+19001r+600

256r7+5376r6+46816r5+218064r4+582505r3+882588r2+689895r+207900
3225

198016

For n = 5, using the above recursive equation gives

a5 =
−1536r6 − 30208r5 − 236640r4 − 938240r3 − 1962774r2 − 2015622r − 768150

(4r2 + 43r + 114) (256r7 + 5376r6 + 46816r5 + 218064r4 + 582505r3 + 882588r2 + 689895r + 207900)

4742



Which for the root r = 1
4 becomes

a5 = − 752183
29702400

And the table now becomes

n an,r an

a0 1 1
a1 − 2

4r+3 −1
2

a2
−16r2−36r−9

16r3+88r2+141r+63 − 19
104

a3
64r3+440r2+892r+534

64r5+784r4+3644r3+7931r2+7905r+2772
1571
10608

a4
256r5+3136r4+13968r3+26804r2+19001r+600

256r7+5376r6+46816r5+218064r4+582505r3+882588r2+689895r+207900
3225

198016

a5
−1536r6−30208r5−236640r4−938240r3−1962774r2−2015622r−768150

(4r2+43r+114)(256r7+5376r6+46816r5+218064r4+582505r3+882588r2+689895r+207900) − 752183
29702400

Using the above table, then the solution y1(x) is

y1(x) = x
1
4
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
4

(
1− x

2 − 19x2

104 + 1571x3

10608 + 3225x4

198016 − 752183x5

29702400 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = − 2
4r + 3

For 2 ≤ n the recursive equation is

(3)4bn(n+ r) (n+ r − 1) + 4bn−2(n+ r − 2)
+ 2bn−1(n+ r − 1) + 7bn(n+ r) + 7bn−2 + 4bn−1 − bn = 0

Solving for bn from recursive equation (4) gives

bn = −4nbn−2 + 2nbn−1 + 4rbn−2 + 2rbn−1 − bn−2 + 2bn−1

4n2 + 8nr + 4r2 + 3n+ 3r − 1 (4)

Which for the root r = −1 becomes

bn = (−4bn−2 − 2bn−1)n+ 5bn−2

4n2 − 5n (5)
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At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 − 2

4r+3 2

For n = 2, using the above recursive equation gives

b2 =
−16r2 − 36r − 9

16r3 + 88r2 + 141r + 63
Which for the root r = −1 becomes

b2 = −11
6

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

4r+3 2

b2
−16r2−36r−9

16r3+88r2+141r+63 −11
6

For n = 3, using the above recursive equation gives

b3 =
64r3 + 440r2 + 892r + 534

64r5 + 784r4 + 3644r3 + 7931r2 + 7905r + 2772
Which for the root r = −1 becomes

b3 = −1
7

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

4r+3 2

b2
−16r2−36r−9

16r3+88r2+141r+63 −11
6

b3
64r3+440r2+892r+534

64r5+784r4+3644r3+7931r2+7905r+2772 −1
7
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For n = 4, using the above recursive equation gives

b4 =
256r5 + 3136r4 + 13968r3 + 26804r2 + 19001r + 600

256r7 + 5376r6 + 46816r5 + 218064r4 + 582505r3 + 882588r2 + 689895r + 207900

Which for the root r = −1 becomes

b4 =
895
1848

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

4r+3 2

b2
−16r2−36r−9

16r3+88r2+141r+63 −11
6

b3
64r3+440r2+892r+534

64r5+784r4+3644r3+7931r2+7905r+2772 −1
7

b4
256r5+3136r4+13968r3+26804r2+19001r+600

256r7+5376r6+46816r5+218064r4+582505r3+882588r2+689895r+207900
895
1848

For n = 5, using the above recursive equation gives

b5 =
−1536r6 − 30208r5 − 236640r4 − 938240r3 − 1962774r2 − 2015622r − 768150

(4r2 + 43r + 114) (256r7 + 5376r6 + 46816r5 + 218064r4 + 582505r3 + 882588r2 + 689895r + 207900)

Which for the root r = −1 becomes

b5 = − 499
13860

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

4r+3 2

b2
−16r2−36r−9

16r3+88r2+141r+63 −11
6

b3
64r3+440r2+892r+534

64r5+784r4+3644r3+7931r2+7905r+2772 −1
7

b4
256r5+3136r4+13968r3+26804r2+19001r+600

256r7+5376r6+46816r5+218064r4+582505r3+882588r2+689895r+207900
895
1848

b5
−1536r6−30208r5−236640r4−938240r3−1962774r2−2015622r−768150

(4r2+43r+114)(256r7+5376r6+46816r5+218064r4+582505r3+882588r2+689895r+207900) − 499
13860
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Using the above table, then the solution y2(x) is

y2(x) = x
1
4
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1 + 2x− 11x2

6 − x3

7 + 895x4

1848 − 499x5

13860 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
4

(
1− x

2 − 19x2

104 + 1571x3

10608 + 3225x4

198016 − 752183x5

29702400 +O
(
x6))

+
c2
(
1 + 2x− 11x2

6 − x3

7 + 895x4

1848 − 499x5

13860 +O(x6)
)

x

Hence the final solution is

y = yh

= c1x
1
4

(
1− x

2 − 19x2

104 + 1571x3

10608 + 3225x4

198016 − 752183x5

29702400 +O
(
x6))

+
c2
(
1 + 2x− 11x2

6 − x3

7 + 895x4

1848 − 499x5

13860 +O(x6)
)

x

Summary
The solution(s) found are the following

(1)
y = c1x

1
4

(
1− x

2 − 19x2

104 + 1571x3

10608 + 3225x4

198016 − 752183x5

29702400 +O
(
x6))

+
c2
(
1 + 2x− 11x2

6 − x3

7 + 895x4

1848 − 499x5

13860 +O(x6)
)

x

Verification of solutions

y = c1x
1
4

(
1− x

2 − 19x2

104 + 1571x3

10608 + 3225x4

198016 − 752183x5

29702400 +O
(
x6))

+
c2
(
1 + 2x− 11x2

6 − x3

7 + 895x4

1848 − 499x5

13860 +O(x6)
)

x

Verified OK.
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14.7.1 Maple step by step solution

Let’s solve
4x2y′′ + (4x3 + 2x2 + 7x) y′ + (7x2 + 4x− 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
7x2+4x−1

)
y

4x2 −
(
4x2+2x+7

)
y′

4x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
4x2+2x+7

)
y′

4x +
(
7x2+4x−1

)
y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 4x2+2x+7
4x , P3(x) = 7x2+4x−1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 7
4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2y′′ + x(4x2 + 2x+ 7) y′ + (7x2 + 4x− 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + 4r)xr + (a1(2 + r) (3 + 4r) + 2a0(2 + r))x1+r +
(

∞∑
k=2

(ak(k + r + 1) (4k + 4r − 1) + 2ak−1(k + r + 1) + ak−2(4k + 4r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1, 14

}
• Each term must be 0

a1(2 + r) (3 + 4r) + 2a0(2 + r) = 0
• Solve for the dependent coefficient(s)

a1 = − 2a0
3+4r

• Each term in the series must be 0, giving the recursion relation
4
(
k + r − 1

4

)
(k + r + 1) ak + (4ak−2 + 2ak−1) k + (4ak−2 + 2ak−1) r − ak−2 + 2ak−1 = 0

• Shift index using k− >k + 2
4
(
k + 7

4 + r
)
(k + 3 + r) ak+2 + (4ak + 2ak+1) (k + 2) + (4ak + 2ak+1) r − ak + 2ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −4kak+2kak+1+4rak+2rak+1+7ak+6ak+1

(4k+4r+7)(k+3+r)

• Recursion relation for r = −1
ak+2 = −4kak+2kak+1+3ak+4ak+1

(4k+3)(k+2)
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• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = −4kak+2kak+1+3ak+4ak+1

(4k+3)(k+2) , a1 = 2a0
]

• Recursion relation for r = 1
4

ak+2 = −4kak+2kak+1+8ak+ 13
2 ak+1

(4k+8)
(
k+ 13

4
)

• Solution for r = 1
4[

y =
∞∑
k=0

akx
k+ 1

4 , ak+2 = −4kak+2kak+1+8ak+ 13
2 ak+1

(4k+8)
(
k+ 13

4
) , a1 = −a0

2

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+ 1

4

)
, ak+2 = −4kak+2ka1+k+3ak+4a1+k

(4k+3)(k+2) , a1 = 2a0, bk+2 = −4kbk+2kb1+k+8bk+ 13
2 b1+k

(4k+8)
(
k+ 13

4
) , b1 = − b0

2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0 `� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 47� �
Order:=6;
dsolve(4*x^2*diff(y(x),x$2)+x*(7+2*x+4*x^2)*diff(y(x),x)-(1-4*x-7*x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c2x

5
4
(
1− 1

2x− 19
104x

2 + 1571
10608x

3 + 3225
198016x

4 − 752183
29702400x

5 +O(x6)
)
+ c1

(
1 + 2x− 11

6 x
2 − 1

7x
3 + 895

1848x
4 − 499

13860x
5 +O(x6)

)
x
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3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 86� �
AsymptoticDSolveValue[4*x^2*y''[x]+x*(7+2*x+4*x^2)*y'[x]-(1-4*x-7*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
4
√
x

(
−752183x5

29702400 + 3225x4

198016 + 1571x3

10608 − 19x2

104 − x

2 + 1
)

+
c2
(
−499x5

13860 +
895x4

1848 − x3

7 − 11x2

6 + 2x+ 1
)

x
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14.8 problem 5
14.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4762

Internal problem ID [1299]
Internal file name [OUTPUT/1300_Sunday_June_05_2022_02_09_01_AM_25601244/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

12x2(x+ 1) y′′ + x
(
3x2 + 35x+ 11

)
y′ −

(
−5x2 − 10x+ 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

12x3 + 12x2) y′′ + (3x3 + 35x2 + 11x
)
y′ +

(
5x2 + 10x− 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3x2 + 35x+ 11
12x (x+ 1)

q(x) = 5x2 + 10x− 1
12x2 (x+ 1)
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Table 544: Table p(x), q(x) singularites.

p(x) = 3x2+35x+11
12x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

q(x) = 5x2+10x−1
12x2(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

12x2(x+ 1) y′′ +
(
3x3 + 35x2 + 11x

)
y′ +

(
5x2 + 10x− 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

12x2(x+ 1)
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
3x3 + 35x2 + 11x

)( ∞∑
n=0

(n+ r) anxn+r−1

)

+
(
5x2 + 10x− 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

12x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

12xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3xn+r+2an(n+ r)
)

+
(

∞∑
n=0

35x1+n+ran(n+ r)
)

+
(

∞∑
n=0

11xn+ran(n+ r)
)

+
(

∞∑
n=0

5xn+r+2an

)
+
(

∞∑
n=0

10x1+n+ran

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

12x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

12an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

3xn+r+2an(n+ r) =
∞∑
n=2

3an−2(n+ r − 2)xn+r

∞∑
n =0

35x1+n+ran(n+ r) =
∞∑
n=1

35an−1(n+ r − 1)xn+r

∞∑
n =0

5xn+r+2an =
∞∑
n=2

5an−2x
n+r

∞∑
n =0

10x1+n+ran =
∞∑
n=1

10an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

12an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

12xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

3an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=1

35an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

11xn+ran(n+ r)
)

+
(

∞∑
n=2

5an−2x
n+r

)
+
(

∞∑
n=1

10an−1x
n+r

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

12xn+ran(n+ r) (n+ r − 1) + 11xn+ran(n+ r)− anx
n+r = 0

When n = 0 the above becomes

12xra0r(−1 + r) + 11xra0r − a0x
r = 0

Or
(12xrr(−1 + r) + 11xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
12r2 − r − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

12r2 − r − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 = −1
4

Since a0 6= 0 then the indicial equation becomes(
12r2 − r − 1

)
xr = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 7
12 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) =
∞∑
n=0

bnx
n− 1

4

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = −1

For 2 ≤ n the recursive equation is

(3)12an−1(n+ r − 1) (n+ r − 2) + 12an(n+ r) (n+ r − 1) + 3an−2(n+ r − 2)
+ 35an−1(n+ r − 1) + 11an(n+ r) + 5an−2 + 10an−1 − an = 0

Solving for an from recursive equation (4) gives

an = −4nan−1 + 4ran−1 + an−2 + an−1

4n+ 4r + 1 (4)

Which for the root r = 1
3 becomes

an = (−12n− 7) an−1 − 3an−2

12n+ 7 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 −1 −1
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For n = 2, using the above recursive equation gives

a2 =
4r + 8
9 + 4r

Which for the root r = 1
3 becomes

a2 =
28
31

And the table now becomes

n an,r an

a0 1 1
a1 −1 −1
a2

4r+8
9+4r

28
31

For n = 3, using the above recursive equation gives

a3 =
−16r2 − 80r − 95
16r2 + 88r + 117

Which for the root r = 1
3 becomes

a3 = −1111
1333

And the table now becomes

n an,r an

a0 1 1
a1 −1 −1
a2

4r+8
9+4r

28
31

a3
−16r2−80r−95
16r2+88r+117 −1111

1333

For n = 4, using the above recursive equation gives

a4 =
64r3 + 576r2 + 1656r + 1511
64r3 + 624r2 + 1964r + 1989

Which for the root r = 1
3 becomes

a4 =
57493
73315
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And the table now becomes

n an,r an

a0 1 1
a1 −1 −1
a2

4r+8
9+4r

28
31

a3
−16r2−80r−95
16r2+88r+117 −1111

1333

a4
64r3+576r2+1656r+1511
64r3+624r2+1964r+1989

57493
73315

For n = 5, using the above recursive equation gives

a5 = −4(64r4 + 896r3 + 4532r2 + 9770r + 7529)
(16r2 + 88r + 117) (17 + 4r) (21 + 4r)

Which for the root r = 1
3 becomes

a5 = −3668716
4912105

And the table now becomes

n an,r an

a0 1 1
a1 −1 −1
a2

4r+8
9+4r

28
31

a3
−16r2−80r−95
16r2+88r+117 −1111

1333

a4
64r3+576r2+1656r+1511
64r3+624r2+1964r+1989

57493
73315

a5 −4
(
64r4+896r3+4532r2+9770r+7529

)
(16r2+88r+117)(17+4r)(21+4r) −3668716

4912105

Using the above table, then the solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
1− x+ 28x2

31 − 1111x3

1333 + 57493x4

73315 − 3668716x5

4912105 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = −1

For 2 ≤ n the recursive equation is

(3)12bn−1(n+ r − 1) (n+ r − 2) + 12bn(n+ r) (n+ r − 1) + 3bn−2(n+ r − 2)
+ 35bn−1(n+ r − 1) + 11bn(n+ r) + 5bn−2 + 10bn−1 − bn = 0

Solving for bn from recursive equation (4) gives

bn = −4nbn−1 + 4rbn−1 + bn−2 + bn−1

4n+ 4r + 1 (4)

Which for the root r = −1
4 becomes

bn = −4nbn−1 − bn−2

4n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

4 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 −1 −1

For n = 2, using the above recursive equation gives

b2 =
4r + 8
9 + 4r

Which for the root r = −1
4 becomes

b2 =
7
8

And the table now becomes

n bn,r bn

b0 1 1
b1 −1 −1
b2

4r+8
9+4r

7
8
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For n = 3, using the above recursive equation gives

b3 =
−16r2 − 80r − 95
16r2 + 88r + 117

Which for the root r = −1
4 becomes

b3 = −19
24

And the table now becomes

n bn,r bn

b0 1 1
b1 −1 −1
b2

4r+8
9+4r

7
8

b3
−16r2−80r−95
16r2+88r+117 −19

24

For n = 4, using the above recursive equation gives

b4 =
64r3 + 576r2 + 1656r + 1511
64r3 + 624r2 + 1964r + 1989

Which for the root r = −1
4 becomes

b4 =
283
384

And the table now becomes

n bn,r bn

b0 1 1
b1 −1 −1
b2

4r+8
9+4r

7
8

b3
−16r2−80r−95
16r2+88r+117 −19

24

b4
64r3+576r2+1656r+1511
64r3+624r2+1964r+1989

283
384

For n = 5, using the above recursive equation gives

b5 = −4(64r4 + 896r3 + 4532r2 + 9770r + 7529)
(16r2 + 88r + 117) (17 + 4r) (21 + 4r)
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Which for the root r = −1
4 becomes

b5 = −1339
1920

And the table now becomes

n bn,r bn

b0 1 1
b1 −1 −1
b2

4r+8
9+4r

7
8

b3
−16r2−80r−95
16r2+88r+117 −19

24

b4
64r3+576r2+1656r+1511
64r3+624r2+1964r+1989

283
384

b5 −4
(
64r4+896r3+4532r2+9770r+7529

)
(16r2+88r+117)(17+4r)(21+4r) −1339

1920

Using the above table, then the solution y2(x) is

y2(x) = x
1
3
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x+ 7x2

8 − 19x3

24 + 283x4

384 − 1339x5

1920 +O(x6)
x

1
4

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3

(
1− x+ 28x2

31 − 1111x3

1333 + 57493x4

73315 − 3668716x5

4912105 +O
(
x6))

+
c2
(
1− x+ 7x2

8 − 19x3

24 + 283x4

384 − 1339x5

1920 +O(x6)
)

x
1
4

Hence the final solution is

y = yh

= c1x
1
3

(
1− x+ 28x2

31 − 1111x3

1333 + 57493x4

73315 − 3668716x5

4912105 +O
(
x6))

+
c2
(
1− x+ 7x2

8 − 19x3

24 + 283x4

384 − 1339x5

1920 +O(x6)
)

x
1
4
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Summary
The solution(s) found are the following

(1)
y = c1x

1
3

(
1− x+ 28x2

31 − 1111x3

1333 + 57493x4

73315 − 3668716x5

4912105 +O
(
x6))

+
c2
(
1− x+ 7x2

8 − 19x3

24 + 283x4

384 − 1339x5

1920 +O(x6)
)

x
1
4

Verification of solutions

y = c1x
1
3

(
1− x+ 28x2

31 − 1111x3

1333 + 57493x4

73315 − 3668716x5

4912105 +O
(
x6))

+
c2
(
1− x+ 7x2

8 − 19x3

24 + 283x4

384 − 1339x5

1920 +O(x6)
)

x
1
4

Verified OK.

14.8.1 Maple step by step solution

Let’s solve
12x2(x+ 1) y′′ + (3x3 + 35x2 + 11x) y′ + (5x2 + 10x− 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
5x2+10x−1

)
y

12x2(x+1) −
(
3x2+35x+11

)
y′

12x(x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
3x2+35x+11

)
y′

12x(x+1) +
(
5x2+10x−1

)
y

12x2(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3x2+35x+11
12x(x+1) , P3(x) = 5x2+10x−1

12x2(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 7
4

◦ (x+ 1)2 · P3(x) is analytic at x = −1
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(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
12x2(x+ 1) y′′ + x(3x2 + 35x+ 11) y′ + (5x2 + 10x− 1) y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(12u3 − 24u2 + 12u)
(

d2

du2y(u)
)
+ (3u3 + 26u2 − 50u+ 21)

(
d
du
y(u)

)
+ (5u2 − 6) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..3

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions
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3a0r(3 + 4r)u−1+r + (3a1(1 + r) (7 + 4r)− 2a0(3 + 4r) (1 + 3r))ur + (3a2(2 + r) (11 + 4r)− 2a1(7 + 4r) (4 + 3r) + 2a0r(7 + 6r))u1+r +
(

∞∑
k=2

(3ak+1(k + 1 + r) (4k + 7 + 4r)− 2ak(4k + 4r + 3) (3k + 3r + 1) + 2ak−1(k + r − 1) (6k + 1 + 6r) + ak−2(3k − 1 + 3r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
3r(3 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−3

4

}
• The coefficients of each power of u must be 0

[3a1(1 + r) (7 + 4r)− 2a0(3 + 4r) (1 + 3r) = 0, 3a2(2 + r) (11 + 4r)− 2a1(7 + 4r) (4 + 3r) + 2a0r(7 + 6r) = 0]
• Solve for the dependent coefficient(s){

a1 = 2a0
(
12r2+13r+3

)
3(4r2+11r+7) , a2 = 2a0

(
54r3+135r2+101r+24

)
9(4r3+23r2+41r+22)

}
• Each term in the series must be 0, giving the recursion relation

12(−2ak + ak−1 + ak+1) k2 + (24(−2ak + ak−1 + ak+1) r − 26ak + 3ak−2 − 10ak−1 + 33ak+1) k + 12(−2ak + ak−1 + ak+1) r2 + (−26ak + 3ak−2 − 10ak−1 + 33ak+1) r − 6ak − ak−2 − 2ak−1 + 21ak+1 = 0
• Shift index using k− >k + 2

12(−2ak+2 + ak+1 + ak+3) (k + 2)2 + (24(−2ak+2 + ak+1 + ak+3) r − 26ak+2 + 3ak − 10ak+1 + 33ak+3) (k + 2) + 12(−2ak+2 + ak+1 + ak+3) r2 + (−26ak+2 + 3ak − 10ak+1 + 33ak+3) r − 6ak+2 − ak − 2ak+1 + 21ak+3 = 0
• Recursion relation that defines series solution to ODE

ak+3 = −12k2ak+1−24k2ak+2+24krak+1−48krak+2+12r2ak+1−24r2ak+2+3kak+38kak+1−122kak+2+3rak+38rak+1−122rak+2+5ak+26ak+1−154ak+2
3(4k2+8kr+4r2+27k+27r+45)

• Recursion relation for r = 0

ak+3 = −12k2ak+1−24k2ak+2+3kak+38kak+1−122kak+2+5ak+26ak+1−154ak+2
3(4k2+27k+45)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+3 = −12k2ak+1−24k2ak+2+3kak+38kak+1−122kak+2+5ak+26ak+1−154ak+2

3(4k2+27k+45) , a1 = 2a0
7 , a2 = 8a0

33

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k , ak+3 = −12k2ak+1−24k2ak+2+3kak+38kak+1−122kak+2+5ak+26ak+1−154ak+2
3(4k2+27k+45) , a1 = 2a0

7 , a2 = 8a0
33

]
• Recursion relation for r = −3

4

ak+3 = −12k2ak+1−24k2ak+2+3kak+20kak+1−86kak+2+ 11
4 ak+ 17

4 ak+1−76ak+2
3(4k2+21k+27)

• Solution for r = −3
4[

y(u) =
∞∑
k=0

aku
k− 3

4 , ak+3 = −12k2ak+1−24k2ak+2+3kak+20kak+1−86kak+2+ 11
4 ak+ 17

4 ak+1−76ak+2
3(4k2+21k+27) , a1 = 0, a2 = a0

8

]
• Revert the change of variables u = x+ 1
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[
y =

∞∑
k=0

ak(x+ 1)k−
3
4 , ak+3 = −12k2ak+1−24k2ak+2+3kak+20kak+1−86kak+2+ 11

4 ak+ 17
4 ak+1−76ak+2

3(4k2+21k+27) , a1 = 0, a2 = a0
8

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k−
3
4

)
, ak+3 = −12k2a1+k−24k2ak+2+3kak+38ka1+k−122kak+2+5ak+26a1+k−154ak+2

3(4k2+27k+45) , a1 = 2a0
7 , a2 = 8a0

33 , bk+3 = −12k2b1+k−24k2bk+2+3kbk+20kb1+k−86kbk+2+ 11
4 bk+ 17

4 b1+k−76bk+2
3(4k2+21k+27) , b1 = 0, b2 = b0

8

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 47� �
Order:=6;
dsolve(12*x^2*(1+x)*diff(y(x),x$2)+x*(11+35*x+3*x^2)*diff(y(x),x)-(1-10*x-5*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1
(
1− x+ 7

8x
2 − 19

24x
3 + 283

384x
4 − 1339

1920x
5 +O(x6)

)
x

1
4

+ c2x
1
3

(
1− x+ 28

31x
2 − 1111

1333x
3 + 57493

73315x
4 − 3668716

4912105x
5 +O

(
x6))

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 86� �
AsymptoticDSolveValue[12*x^2*(1+x)*y''[x]+x*(11+35*x+3*x^2)*y'[x]-(1-10*x-5*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
3
√
x

(
−3668716x5

4912105 + 57493x4

73315 − 1111x3

1333 + 28x2

31 − x+ 1
)

+
c2
(
−1339x5

1920 + 283x4

384 − 19x3

24 + 7x2

8 − x+ 1
)

4
√
x
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14.9 problem 6
14.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4777

Internal problem ID [1300]
Internal file name [OUTPUT/1301_Sunday_June_05_2022_02_09_05_AM_93571922/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries], [_2nd_order , _linear , `

_with_symmetry_ [0,F(x)]`]]

x2(10x2 + x+ 5
)
y′′ + x

(
48x2 + 3x+ 4

)
y′ +

(
36x2 + x

)
y = 0

With the expansion point for the power series method at x = 0.

The ODE is(
10x4 + x3 + 5x2) y′′ + (48x3 + 3x2 + 4x

)
y′ +

(
36x2 + x

)
y = 0

Or
x
(
10y′′x3 + 48y′x2 + x2y′′ + 36yx+ 3y′x+ 5y′′x+ y + 4y′

)
= 0

For x 6= 0 the above simplifies to(
10x3 + x2 + 5x

)
y′′ +

(
48x2 + 3x+ 4

)
y′ + (36x+ 1) y = 0

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

10x4 + x3 + 5x2) y′′ + (48x3 + 3x2 + 4x
)
y′ +

(
36x2 + x

)
y = 0
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The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 48x2 + 3x+ 4
x (10x2 + x+ 5)

q(x) = 36x+ 1
x (10x2 + x+ 5)

Table 546: Table p(x), q(x) singularites.

p(x) = 48x2+3x+4
x(10x2+x+5)

singularity type
x = 0 “regular”

x = − i
√
199
20 − 1

20 “regular”

x = i
√
199
20 − 1

20 “regular”

q(x) = 36x+1
x(10x2+x+5)

singularity type
x = 0 “regular”

x = − i
√
199
20 − 1

20 “regular”

x = i
√
199
20 − 1

20 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,− i

√
199
20 − 1

20 ,
i
√
199
20 − 1

20 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(10x2 + x+ 5
)
y′′ +

(
48x3 + 3x2 + 4x

)
y′ +

(
36x2 + x

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2
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Substituting the above back into the ode gives

(1)
x2(10x2 + x+ 5

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
48x3 + 3x2 + 4x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
36x2 + x

)( ∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

10xn+r+2an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

x1+n+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

5xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

48xn+r+2an(n+ r)
)

+
(

∞∑
n=0

3x1+n+ran(n+ r)
)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
(

∞∑
n=0

36xn+r+2an

)
+
(

∞∑
n=0

x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

10xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

10an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

48xn+r+2an(n+ r) =
∞∑
n=2

48an−2(n+ r − 2)xn+r

∞∑
n =0

3x1+n+ran(n+ r) =
∞∑
n=1

3an−1(n+ r − 1)xn+r

∞∑
n =0

36xn+r+2an =
∞∑
n=2

36an−2x
n+r
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∞∑
n =0

x1+n+ran =
∞∑
n=1

an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

10an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=1

an−1(n+r−1) (n+r−2)xn+r

)
+
(

∞∑
n=0

5xn+ran(n+r) (n+r−1)
)

+
(

∞∑
n=2

48an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=1

3an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
(

∞∑
n=2

36an−2x
n+r

)
+
(

∞∑
n=1

an−1x
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

5xn+ran(n+ r) (n+ r − 1) + 4xn+ran(n+ r) = 0

When n = 0 the above becomes

5xra0r(−1 + r) + 4xra0r = 0

Or
(5xrr(−1 + r) + 4xrr) a0 = 0

Since a0 6= 0 then the above simplifies to

xrr(−1 + 5r) = 0

Since the above is true for all x then the indicial equation becomes

5r2 − r = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
5

r2 = 0
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Since a0 6= 0 then the indicial equation becomes

xrr(−1 + 5r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
5 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 1

5

y2(x) =
∞∑
n=0

bnx
n

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 =
−1− r

5r + 4

For 2 ≤ n the recursive equation is

(3)10an−2(n+r−2) (n−3+r)+an−1(n+r−1) (n+r−2)+5an(n+r) (n+r−1)
+ 48an−2(n+ r − 2) + 3an−1(n+ r − 1) + 4an(n+ r) + 36an−2 + an−1 = 0

Solving for an from recursive equation (4) gives

an = −10nan−2 + nan−1 + 10ran−2 + ran−1 − 2an−2

5n− 1 + 5r (4)

Which for the root r = 1
5 becomes

an = (−50an−2 − 5an−1)n− an−1

25n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

5 and after as more terms are found using the above recursive equation.
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n an,r an

a0 1 1
a1

−1−r
5r+4 − 6

25

For n = 2, using the above recursive equation gives

a2 =
−49r2 − 127r − 70
25r2 + 65r + 36

Which for the root r = 1
5 becomes

a2 = −1217
625

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
5r+4 − 6

25

a2
−49r2−127r−70
25r2+65r+36 −1217

625

For n = 3, using the above recursive equation gives

a3 =
99r3 + 554r2 + 933r + 462
125r3 + 675r2 + 1090r + 504

Which for the root r = 1
5 becomes

a3 =
41972
46875

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
5r+4 − 6

25

a2
−49r2−127r−70
25r2+65r+36 −1217

625

a3
99r3+554r2+933r+462

125r3+675r2+1090r+504
41972
46875
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For n = 4, using the above recursive equation gives

a4 =
2351r4 + 21570r3 + 68329r2 + 86470r + 35392
625r4 + 5750r3 + 18275r2 + 23230r + 9576

Which for the root r = 1
5 becomes

a4 =
1447799
390625

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
5r+4 − 6

25

a2
−49r2−127r−70
25r2+65r+36 −1217

625

a3
99r3+554r2+933r+462

125r3+675r2+1090r+504
41972
46875

a4
2351r4+21570r3+68329r2+86470r+35392
625r4+5750r3+18275r2+23230r+9576

1447799
390625

For n = 5, using the above recursive equation gives

a5 =
−7301r5 − 103595r4 − 551337r3 − 1357653r2 − 1517298r − 598304

3125r5 + 43750r4 + 229375r3 + 554750r2 + 605400r + 229824

Which for the root r = 1
5 becomes

a5 = −375253322
146484375

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
5r+4 − 6

25

a2
−49r2−127r−70
25r2+65r+36 −1217

625

a3
99r3+554r2+933r+462

125r3+675r2+1090r+504
41972
46875

a4
2351r4+21570r3+68329r2+86470r+35392
625r4+5750r3+18275r2+23230r+9576

1447799
390625

a5
−7301r5−103595r4−551337r3−1357653r2−1517298r−598304

3125r5+43750r4+229375r3+554750r2+605400r+229824 −375253322
146484375
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Using the above table, then the solution y1(x) is

y1(x) = x
1
5
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
5

(
1− 6x

25 − 1217x2

625 + 41972x3

46875 + 1447799x4

390625 − 375253322x5

146484375 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 =
−1− r

5r + 4
For 2 ≤ n the recursive equation is

(3)10bn−2(n+r−2) (n−3+r)+bn−1(n+r−1) (n+r−2)+5bn(n+r) (n+r−1)
+ 48bn−2(n+ r − 2) + 3bn−1(n+ r − 1) + 4bn(n+ r) + 36bn−2 + bn−1 = 0

Solving for bn from recursive equation (4) gives

bn = −10nbn−2 + nbn−1 + 10rbn−2 + rbn−1 − 2bn−2

5n− 1 + 5r (4)

Which for the root r = 0 becomes

bn = (−10bn−2 − bn−1)n+ 2bn−2

5n− 1 (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1

−1−r
5r+4 −1

4

For n = 2, using the above recursive equation gives

b2 =
−49r2 − 127r − 70
25r2 + 65r + 36

Which for the root r = 0 becomes

b2 = −35
18
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And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
5r+4 −1

4

b2
−49r2−127r−70
25r2+65r+36 −35

18

For n = 3, using the above recursive equation gives

b3 =
99r3 + 554r2 + 933r + 462
125r3 + 675r2 + 1090r + 504

Which for the root r = 0 becomes
b3 =

11
12

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
5r+4 −1

4

b2
−49r2−127r−70
25r2+65r+36 −35

18

b3
99r3+554r2+933r+462

125r3+675r2+1090r+504
11
12

For n = 4, using the above recursive equation gives

b4 =
2351r4 + 21570r3 + 68329r2 + 86470r + 35392
625r4 + 5750r3 + 18275r2 + 23230r + 9576

Which for the root r = 0 becomes
b4 =

632
171

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
5r+4 −1

4

b2
−49r2−127r−70
25r2+65r+36 −35

18

b3
99r3+554r2+933r+462

125r3+675r2+1090r+504
11
12

b4
2351r4+21570r3+68329r2+86470r+35392
625r4+5750r3+18275r2+23230r+9576

632
171
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For n = 5, using the above recursive equation gives

b5 =
−7301r5 − 103595r4 − 551337r3 − 1357653r2 − 1517298r − 598304

3125r5 + 43750r4 + 229375r3 + 554750r2 + 605400r + 229824
Which for the root r = 0 becomes

b5 = −2671
1026

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
5r+4 −1

4

b2
−49r2−127r−70
25r2+65r+36 −35

18

b3
99r3+554r2+933r+462

125r3+675r2+1090r+504
11
12

b4
2351r4+21570r3+68329r2+86470r+35392
625r4+5750r3+18275r2+23230r+9576

632
171

b5
−7301r5−103595r4−551337r3−1357653r2−1517298r−598304

3125r5+43750r4+229375r3+554750r2+605400r+229824 −2671
1026

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1− x

4 − 35x2

18 + 11x3

12 + 632x4

171 − 2671x5

1026 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
5

(
1− 6x

25 − 1217x2

625 + 41972x3

46875 + 1447799x4

390625 − 375253322x5

146484375 +O
(
x6))

+ c2

(
1− x

4 − 35x2

18 + 11x3

12 + 632x4

171 − 2671x5

1026 +O
(
x6))

Hence the final solution is

y = yh

= c1x
1
5

(
1− 6x

25 − 1217x2

625 + 41972x3

46875 + 1447799x4

390625 − 375253322x5

146484375 +O
(
x6))

+ c2

(
1− x

4 − 35x2

18 + 11x3

12 + 632x4

171 − 2671x5

1026 +O
(
x6))
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Summary
The solution(s) found are the following

(1)
y = c1x

1
5

(
1− 6x

25 − 1217x2

625 + 41972x3

46875 + 1447799x4

390625 − 375253322x5

146484375 +O
(
x6))

+ c2

(
1− x

4 − 35x2

18 + 11x3

12 + 632x4

171 − 2671x5

1026 +O
(
x6))

Verification of solutions

y = c1x
1
5

(
1− 6x

25 − 1217x2

625 + 41972x3

46875 + 1447799x4

390625 − 375253322x5

146484375 +O
(
x6))

+ c2

(
1− x

4 − 35x2

18 + 11x3

12 + 632x4

171 − 2671x5

1026 +O
(
x6))

Verified OK.

14.9.1 Maple step by step solution

Let’s solve
x2(10x2 + x+ 5) y′′ + (48x3 + 3x2 + 4x) y′ + (36x2 + x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (36x+1)y
x(10x2+x+5) −

(
48x2+3x+4

)
y′

x(10x2+x+5)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
48x2+3x+4

)
y′

x(10x2+x+5) + (36x+1)y
x(10x2+x+5) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 48x2+3x+4
x(10x2+x+5) , P3(x) = 36x+1

x(10x2+x+5)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4
5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0
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◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
(36x+ 1) y + (48x2 + 3x+ 4) y′ + x(10x2 + x+ 5) y′′ = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 0..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(−1 + 5r)x−1+r +
(
a1(1 + r) (4 + 5r) + a0(1 + r)2

)
xr +

(
∞∑
k=1

(
ak+1(k + r + 1) (5k + 4 + 5r) + ak(k + r + 1)2 + 2ak−1(k + r + 1) (5k + 4 + 5r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + 5r) = 0

• Values of r that satisfy the indicial equation
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r ∈
{
0, 15
}

• Each term must be 0
a1(1 + r) (4 + 5r) + a0(1 + r)2 = 0

• Each term in the series must be 0, giving the recursion relation
((ak + 10ak−1 + 5ak+1) k + (ak + 10ak−1 + 5ak+1) r + ak + 8ak−1 + 4ak+1) (k + r + 1) = 0

• Shift index using k− >k + 1
((ak+1 + 10ak + 5ak+2) (k + 1) + (ak+1 + 10ak + 5ak+2) r + ak+1 + 8ak + 4ak+2) (k + r + 2) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −10kak+kak+1+10rak+rak+1+18ak+2ak+1

5k+5r+9

• Recursion relation for r = 0
ak+2 = −10kak+kak+1+18ak+2ak+1

5k+9

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = −10kak+kak+1+18ak+2ak+1

5k+9 , 4a1 + a0 = 0
]

• Recursion relation for r = 1
5

ak+2 = −10kak+kak+1+20ak+ 11
5 ak+1

5k+10

• Solution for r = 1
5[

y =
∞∑
k=0

akx
k+ 1

5 , ak+2 = −10kak+kak+1+20ak+ 11
5 ak+1

5k+10 , 6a1 + 36a0
25 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 1

5

)
, ak+2 = −10kak+ka1+k+18ak+2a1+k

5k+9 , 4a1 + a0 = 0, bk+2 = −10kbk+kb1+k+20bk+ 11
5 b1+k

5k+10 , 6b1 + 36b0
25 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <> 0, g <> 0, c = 0

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 44� �
Order:=6;
dsolve(x^2*(5+x+10*x^2)*diff(y(x),x$2)+x*(4+3*x+48*x^2)*diff(y(x),x)+(x+36*x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x) = c1x

1
5

(
1− 6

25x− 1217
625 x2 + 41972

46875x
3 + 1447799

390625 x4 − 375253322
146484375x

5 +O
(
x6))

+ c2

(
1− 1

4x− 35
18x

2 + 11
12x

3 + 632
171x

4 − 2671
1026x

5 +O
(
x6))
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3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 85� �
AsymptoticDSolveValue[x^2*(5+x+10*x^2)*y''[x]+x*(4+3*x+48*x^2)*y'[x]+(x+36*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
5
√
x

(
−375253322x5

146484375 + 1447799x4

390625 + 41972x3

46875 − 1217x2

625 − 6x
25 + 1

)
+ c2

(
−2671x5

1026 + 632x4

171 + 11x3

12 − 35x2

18 − x

4 + 1
)
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14.10 problem 7
14.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4792

Internal problem ID [1301]
Internal file name [OUTPUT/1302_Sunday_June_05_2022_02_09_10_AM_6451977/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

8x2y′′ − 2x
(
−x2 − 4x+ 3

)
y′ +

(
x2 + 6x+ 3

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

8x2y′′ +
(
2x3 + 8x2 − 6x

)
y′ +

(
x2 + 6x+ 3

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x2 + 4x− 3
4x

q(x) = x2 + 6x+ 3
8x2
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Table 548: Table p(x), q(x) singularites.

p(x) = x2+4x−3
4x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = x2+6x+3
8x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

8x2y′′ +
(
2x3 + 8x2 − 6x

)
y′ +

(
x2 + 6x+ 3

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
8x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
2x3 +8x2 − 6x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
x2 +6x+3

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

8xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+r+2an(n+ r)
)

+
(

∞∑
n=0

8x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−6xn+ran(n+ r)

)
+
(

∞∑
n=0

xn+r+2an

)
+
(

∞∑
n=0

6x1+n+ran

)
+
(

∞∑
n=0

3anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2xn+r+2an(n+ r) =
∞∑
n=2

2an−2(n+ r − 2)xn+r

∞∑
n =0

8x1+n+ran(n+ r) =
∞∑
n=1

8an−1(n+ r − 1)xn+r

∞∑
n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

∞∑
n =0

6x1+n+ran =
∞∑
n=1

6an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

8xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

2an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=1

8an−1(n+ r − 1)xn+r

)
+

∞∑
n =0

(
−6xn+ran(n+ r)

)
+
(

∞∑
n=2

an−2x
n+r

)
+
(

∞∑
n=1

6an−1x
n+r

)
+
(

∞∑
n=0

3anxn+r

)
= 0
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The indicial equation is obtained from n = 0. From Eq (2B) this gives

8xn+ran(n+ r) (n+ r − 1)− 6xn+ran(n+ r) + 3anxn+r = 0

When n = 0 the above becomes

8xra0r(−1 + r)− 6xra0r + 3a0xr = 0

Or
(8xrr(−1 + r)− 6xrr + 3xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
8r2 − 14r + 3

)
xr = 0

Since the above is true for all x then the indicial equation becomes

8r2 − 14r + 3 = 0

Solving for r gives the roots of the indicial equation as

r1 =
3
2

r2 =
1
4

Since a0 6= 0 then the indicial equation becomes(
8r2 − 14r + 3

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 5
4 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 3

2

y2(x) =
∞∑
n=0

bnx
n+ 1

4
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We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = − 2
2r − 1

For 2 ≤ n the recursive equation is

(3)8an(n+ r) (n+ r − 1) + 2an−2(n+ r − 2)
+ 8an−1(n+ r − 1)− 6an(n+ r) + an−2 + 6an−1 + 3an = 0

Solving for an from recursive equation (4) gives

an = −2nan−2 + 8nan−1 + 2ran−2 + 8ran−1 − 3an−2 − 2an−1

8n2 + 16nr + 8r2 − 14n− 14r + 3 (4)

Which for the root r = 3
2 becomes

an = (−an−2 − 4an−1)n− 5an−1

4n2 + 5n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 − 2

2r−1 −1

For n = 2, using the above recursive equation gives

a2 =
−4r2 + 16r + 29

16r3 + 28r2 − 4r − 7
Which for the root r = 3

2 becomes
a2 =

11
26

And the table now becomes

n an,r an

a0 1 1
a1 − 2

2r−1 −1

a2
−4r2+16r+29

16r3+28r2−4r−7
11
26
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For n = 3, using the above recursive equation gives

a3 =
64r3 + 80r2 − 448r − 596

128r5 + 768r4 + 1448r3 + 732r2 − 370r − 231

Which for the root r = 3
2 becomes

a3 = − 109
1326

And the table now becomes

n an,r an

a0 1 1
a1 − 2

2r−1 −1

a2
−4r2+16r+29

16r3+28r2−4r−7
11
26

a3
64r3+80r2−448r−596

128r5+768r4+1448r3+732r2−370r−231 − 109
1326

For n = 4, using the above recursive equation gives

a4 =
64r5 − 336r4 − 3808r3 − 5064r2 + 8724r + 13095

(128r5 + 768r4 + 1448r3 + 732r2 − 370r − 231) (8r2 + 50r + 75)

Which for the root r = 3
2 becomes

a4 =
5

12376
And the table now becomes

n an,r an

a0 1 1
a1 − 2

2r−1 −1

a2
−4r2+16r+29

16r3+28r2−4r−7
11
26

a3
64r3+80r2−448r−596

128r5+768r4+1448r3+732r2−370r−231 − 109
1326

a4
64r5−336r4−3808r3−5064r2+8724r+13095

(128r5+768r4+1448r3+732r2−370r−231)(8r2+50r+75)
5

12376

For n = 5, using the above recursive equation gives

a5 =
−1536r6 − 11008r5 + 5920r4 + 191040r3 + 397616r2 + 96928r − 184710

(128r5 + 768r4 + 1448r3 + 732r2 − 370r − 231) (8r2 + 50r + 75) (8r2 + 66r + 133)
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Which for the root r = 3
2 becomes

a5 =
229
71400

And the table now becomes

n an,r an

a0 1 1
a1 − 2

2r−1 −1

a2
−4r2+16r+29

16r3+28r2−4r−7
11
26

a3
64r3+80r2−448r−596

128r5+768r4+1448r3+732r2−370r−231 − 109
1326

a4
64r5−336r4−3808r3−5064r2+8724r+13095

(128r5+768r4+1448r3+732r2−370r−231)(8r2+50r+75)
5

12376

a5
−1536r6−11008r5+5920r4+191040r3+397616r2+96928r−184710

(128r5+768r4+1448r3+732r2−370r−231)(8r2+50r+75)(8r2+66r+133)
229

71400

Using the above table, then the solution y1(x) is

y1(x) = x
3
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
3
2

(
1− x+ 11x2

26 − 109x3

1326 + 5x4

12376 + 229x5

71400 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = − 2
2r − 1

For 2 ≤ n the recursive equation is

(3)8bn(n+ r) (n+ r − 1) + 2bn−2(n+ r − 2)
+ 8bn−1(n+ r − 1)− 6bn(n+ r) + bn−2 + 6bn−1 + 3bn = 0

Solving for bn from recursive equation (4) gives

bn = −2nbn−2 + 8nbn−1 + 2rbn−2 + 8rbn−1 − 3bn−2 − 2bn−1

8n2 + 16nr + 8r2 − 14n− 14r + 3 (4)

Which for the root r = 1
4 becomes

bn = (−4bn−2 − 16bn−1)n+ 5bn−2

16n2 − 20n (5)
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At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

4 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 − 2

2r−1 4

For n = 2, using the above recursive equation gives

b2 =
−4r2 + 16r + 29

16r3 + 28r2 − 4r − 7

Which for the root r = 1
4 becomes

b2 = −131
24

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

2r−1 4

b2
−4r2+16r+29

16r3+28r2−4r−7 −131
24

For n = 3, using the above recursive equation gives

b3 =
64r3 + 80r2 − 448r − 596

128r5 + 768r4 + 1448r3 + 732r2 − 370r − 231

Which for the root r = 1
4 becomes

b3 =
39
14

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

2r−1 4

b2
−4r2+16r+29

16r3+28r2−4r−7 −131
24

b3
64r3+80r2−448r−596

128r5+768r4+1448r3+732r2−370r−231
39
14
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For n = 4, using the above recursive equation gives

b4 =
64r5 − 336r4 − 3808r3 − 5064r2 + 8724r + 13095

(128r5 + 768r4 + 1448r3 + 732r2 − 370r − 231) (8r2 + 50r + 75)

Which for the root r = 1
4 becomes

b4 = −19865
29568

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

2r−1 4

b2
−4r2+16r+29

16r3+28r2−4r−7 −131
24

b3
64r3+80r2−448r−596

128r5+768r4+1448r3+732r2−370r−231
39
14

b4
64r5−336r4−3808r3−5064r2+8724r+13095

(128r5+768r4+1448r3+732r2−370r−231)(8r2+50r+75) −19865
29568

For n = 5, using the above recursive equation gives

b5 =
−1536r6 − 11008r5 + 5920r4 + 191040r3 + 397616r2 + 96928r − 184710

(128r5 + 768r4 + 1448r3 + 732r2 − 370r − 231) (8r2 + 50r + 75) (8r2 + 66r + 133)

Which for the root r = 1
4 becomes

b5 =
4421
110880

And the table now becomes

n bn,r bn

b0 1 1
b1 − 2

2r−1 4

b2
−4r2+16r+29

16r3+28r2−4r−7 −131
24

b3
64r3+80r2−448r−596

128r5+768r4+1448r3+732r2−370r−231
39
14

b4
64r5−336r4−3808r3−5064r2+8724r+13095

(128r5+768r4+1448r3+732r2−370r−231)(8r2+50r+75) −19865
29568

b5
−1536r6−11008r5+5920r4+191040r3+397616r2+96928r−184710

(128r5+768r4+1448r3+732r2−370r−231)(8r2+50r+75)(8r2+66r+133)
4421

110880
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Using the above table, then the solution y2(x) is

y2(x) = x
3
2
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x
1
4

(
1 + 4x− 131x2

24 + 39x3

14 − 19865x4

29568 + 4421x5

110880 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3
2

(
1− x+ 11x2

26 − 109x3

1326 + 5x4

12376 + 229x5

71400 +O
(
x6))

+ c2x
1
4

(
1 + 4x− 131x2

24 + 39x3

14 − 19865x4

29568 + 4421x5

110880 +O
(
x6))

Hence the final solution is

y = yh

= c1x
3
2

(
1− x+ 11x2

26 − 109x3

1326 + 5x4

12376 + 229x5

71400 +O
(
x6))

+ c2x
1
4

(
1 + 4x− 131x2

24 + 39x3

14 − 19865x4

29568 + 4421x5

110880 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

3
2

(
1− x+ 11x2

26 − 109x3

1326 + 5x4

12376 + 229x5

71400 +O
(
x6))

+ c2x
1
4

(
1 + 4x− 131x2

24 + 39x3

14 − 19865x4

29568 + 4421x5

110880 +O
(
x6))

Verification of solutions

y = c1x
3
2

(
1− x+ 11x2

26 − 109x3

1326 + 5x4

12376 + 229x5

71400 +O
(
x6))

+ c2x
1
4

(
1 + 4x− 131x2

24 + 39x3

14 − 19865x4

29568 + 4421x5

110880 +O
(
x6))

Verified OK.

4791



14.10.1 Maple step by step solution

Let’s solve
8x2y′′ + (2x3 + 8x2 − 6x) y′ + (x2 + 6x+ 3) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2+6x+3

)
y

8x2 −
(
x2+4x−3

)
y′

4x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
x2+4x−3

)
y′

4x +
(
x2+6x+3

)
y

8x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x2+4x−3
4x , P3(x) = x2+6x+3

8x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3
4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
8

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
8x2y′′ + 2x(x2 + 4x− 3) y′ + (x2 + 6x+ 3) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 4r) (−3 + 2r)xr + (a1(3 + 4r) (−1 + 2r) + 2a0(3 + 4r))x1+r +
(

∞∑
k=2

(ak(4k + 4r − 1) (2k + 2r − 3) + 2ak−1(4k + 4r − 1) + ak−2(2k + 2r − 3))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 4r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
4 ,

3
2

}
• Each term must be 0

a1(3 + 4r) (−1 + 2r) + 2a0(3 + 4r) = 0
• Solve for the dependent coefficient(s)

a1 = − 2a0
−1+2r

• Each term in the series must be 0, giving the recursion relation
8
(
k + r − 1

4

) (
k + r − 3

2

)
ak + (2ak−2 + 8ak−1) k + (2ak−2 + 8ak−1) r − 3ak−2 − 2ak−1 = 0

• Shift index using k− >k + 2
8
(
k + 7

4 + r
) (

k + 1
2 + r

)
ak+2 + (2ak + 8ak+1) (k + 2) + (2ak + 8ak+1) r − 3ak − 2ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2kak+8kak+1+2rak+8rak+1+ak+14ak+1

(4k+7+4r)(2k+2r+1)

• Recursion relation for r = 1
4

ak+2 = −2kak+8kak+1+ 3
2ak+16ak+1

(4k+8)
(
2k+ 3

2
)
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• Solution for r = 1
4[

y =
∞∑
k=0

akx
k+ 1

4 , ak+2 = −2kak+8kak+1+ 3
2ak+16ak+1

(4k+8)
(
2k+ 3

2
) , a1 = 4a0

]
• Recursion relation for r = 3

2

ak+2 = −2kak+8kak+1+4ak+26ak+1
(4k+13)(2k+4)

• Solution for r = 3
2[

y =
∞∑
k=0

akx
k+ 3

2 , ak+2 = −2kak+8kak+1+4ak+26ak+1
(4k+13)(2k+4) , a1 = −a0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k+ 1

4

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+2 = −2kak+8ka1+k+ 3

2ak+16a1+k

(4k+8)
(
2k+ 3

2
) , a1 = 4a0, bk+2 = −2kbk+8kb1+k+4bk+26b1+k

(4k+13)(2k+4) , b1 = −b0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0 `� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 47� �
Order:=6;
dsolve(8*x^2*diff(y(x),x$2)-2*x*(3-4*x-x^2)*diff(y(x),x)+(3+6*x+x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
1
4

(
1 + 4x− 131

24 x2 + 39
14x

3 − 19865
29568x

4 + 4421
110880x

5 +O
(
x6))

+ c2x
3
2

(
1− x+ 11

26x
2 − 109

1326x
3 + 5

12376x
4 + 229

71400x
5 +O

(
x6))

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 86� �
AsymptoticDSolveValue[8*x^2*y''[x]-2*x*(3-4*x-x^2)*y'[x]+(3+6*x+x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
4421x5

110880 − 19865x4

29568 + 39x3

14 − 131x2

24 + 4x+ 1
)

4
√
x

+ c1

(
229x5

71400 + 5x4

12376 − 109x3

1326 + 11x2

26 − x+ 1
)
x3/2
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14.11 problem 8
14.11.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4806

Internal problem ID [1302]
Internal file name [OUTPUT/1303_Sunday_June_05_2022_02_09_14_AM_20394662/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

18x2(x+ 1) y′′ + 3x
(
x2 + 11x+ 5

)
y′ −

(
−5x2 − 2x+ 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

18x3 + 18x2) y′′ + (3x3 + 33x2 + 15x
)
y′ +

(
5x2 + 2x− 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x2 + 11x+ 5
6x (x+ 1)

q(x) = 5x2 + 2x− 1
18x2 (x+ 1)
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Table 550: Table p(x), q(x) singularites.

p(x) = x2+11x+5
6x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

q(x) = 5x2+2x−1
18x2(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

18x2(x+ 1) y′′ +
(
3x3 + 33x2 + 15x

)
y′ +

(
5x2 + 2x− 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
18x2(x+ 1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
3x3+33x2+15x

)( ∞∑
n=0

(n+r) anxn+r−1

)
+
(
5x2+2x−1

)( ∞∑
n=0

anx
n+r

)
=0
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Which simplifies to

(2A)

(
∞∑
n=0

18x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

18xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3xn+r+2an(n+ r)
)

+
(

∞∑
n=0

33x1+n+ran(n+ r)
)

+
(

∞∑
n=0

15xn+ran(n+ r)
)

+
(

∞∑
n=0

5xn+r+2an

)
+
(

∞∑
n=0

2x1+n+ran

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

18x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

18an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

3xn+r+2an(n+ r) =
∞∑
n=2

3an−2(n+ r − 2)xn+r

∞∑
n =0

33x1+n+ran(n+ r) =
∞∑
n=1

33an−1(n+ r − 1)xn+r

∞∑
n =0

5xn+r+2an =
∞∑
n=2

5an−2x
n+r

∞∑
n =0

2x1+n+ran =
∞∑
n=1

2an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

18an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

18xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

3an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=1

33an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

15xn+ran(n+ r)
)

+
(

∞∑
n=2

5an−2x
n+r

)
+
(

∞∑
n=1

2an−1x
n+r

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

18xn+ran(n+ r) (n+ r − 1) + 15xn+ran(n+ r)− anx
n+r = 0

When n = 0 the above becomes

18xra0r(−1 + r) + 15xra0r − a0x
r = 0

Or
(18xrr(−1 + r) + 15xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
18r2 − 3r − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

18r2 − 3r − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 = −1
6

Since a0 6= 0 then the indicial equation becomes(
18r2 − 3r − 1

)
xr = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) =
∞∑
n=0

bnx
n− 1

6

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 =
−1− 6r
6r + 7

For 2 ≤ n the recursive equation is

(3)18an−1(n+ r − 1) (n+ r − 2) + 18an(n+ r) (n+ r − 1) + 3an−2(n+ r − 2)
+ 33an−1(n+ r − 1) + 15an(n+ r) + 5an−2 + 2an−1 − an = 0

Solving for an from recursive equation (4) gives

an = −6nan−1 + 6ran−1 + an−2 − 5an−1

6n+ 6r + 1 (4)

Which for the root r = 1
3 becomes

an = (−6n+ 3) an−1 − an−2

6n+ 3 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

−1−6r
6r+7 −1

3
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For n = 2, using the above recursive equation gives

a2 =
6r

13 + 6r

Which for the root r = 1
3 becomes

a2 =
2
15

And the table now becomes

n an,r an

a0 1 1
a1

−1−6r
6r+7 −1

3

a2
6r

13+6r
2
15

For n = 3, using the above recursive equation gives

a3 =
−36r2 − 36r + 1
(19 + 6r) (6r + 7)

Which for the root r = 1
3 becomes

a3 = − 5
63

And the table now becomes

n an,r an

a0 1 1
a1

−1−6r
6r+7 −1

3

a2
6r

13+6r
2
15

a3
−36r2−36r+1
(19+6r)(6r+7) − 5

63

For n = 4, using the above recursive equation gives

a4 =
216r3 + 648r2 + 420r − 13
(6r + 7) (13 + 6r) (25 + 6r)

Which for the root r = 1
3 becomes

a4 =
23
405
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And the table now becomes

n an,r an

a0 1 1
a1

−1−6r
6r+7 −1

3

a2
6r

13+6r
2
15

a3
−36r2−36r+1
(19+6r)(6r+7) − 5

63

a4
216r3+648r2+420r−13
(6r+7)(13+6r)(25+6r)

23
405

For n = 5, using the above recursive equation gives

a5 =
−1296r4 − 7776r3 − 14148r2 − 7440r + 234

(6r + 7) (13 + 6r) (19 + 6r) (31 + 6r)

Which for the root r = 1
3 becomes

a5 = − 458
10395

And the table now becomes

n an,r an

a0 1 1
a1

−1−6r
6r+7 −1

3

a2
6r

13+6r
2
15

a3
−36r2−36r+1
(19+6r)(6r+7) − 5

63

a4
216r3+648r2+420r−13
(6r+7)(13+6r)(25+6r)

23
405

a5
−1296r4−7776r3−14148r2−7440r+234

(6r+7)(13+6r)(19+6r)(31+6r) − 458
10395

Using the above table, then the solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
1− x

3 + 2x2

15 − 5x3

63 + 23x4

405 − 458x5

10395 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 =
−1− 6r
6r + 7

For 2 ≤ n the recursive equation is

(3)18bn−1(n+ r − 1) (n+ r − 2) + 18bn(n+ r) (n+ r − 1) + 3bn−2(n+ r − 2)
+ 33bn−1(n+ r − 1) + 15bn(n+ r) + 5bn−2 + 2bn−1 − bn = 0

Solving for bn from recursive equation (4) gives

bn = −6nbn−1 + 6rbn−1 + bn−2 − 5bn−1

6n+ 6r + 1 (4)

Which for the root r = −1
6 becomes

bn = (−6n+ 6) bn−1 − bn−2

6n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

6 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1

−1−6r
6r+7 0

For n = 2, using the above recursive equation gives

b2 =
6r

13 + 6r

Which for the root r = −1
6 becomes

b2 = − 1
12

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−6r
6r+7 0

b2
6r

13+6r − 1
12
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For n = 3, using the above recursive equation gives

b3 =
−36r2 − 36r + 1
(19 + 6r) (6r + 7)

Which for the root r = −1
6 becomes

b3 =
1
18

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−6r
6r+7 0

b2
6r

13+6r − 1
12

b3
−36r2−36r+1
(19+6r)(6r+7)

1
18

For n = 4, using the above recursive equation gives

b4 =
216r3 + 648r2 + 420r − 13
(6r + 7) (13 + 6r) (25 + 6r)

Which for the root r = −1
6 becomes

b4 = − 11
288

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−6r
6r+7 0

b2
6r

13+6r − 1
12

b3
−36r2−36r+1
(19+6r)(6r+7)

1
18

b4
216r3+648r2+420r−13
(6r+7)(13+6r)(25+6r) − 11

288

For n = 5, using the above recursive equation gives

b5 =
−1296r4 − 7776r3 − 14148r2 − 7440r + 234

(6r + 7) (13 + 6r) (19 + 6r) (31 + 6r)
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Which for the root r = −1
6 becomes

b5 =
31
1080

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−6r
6r+7 0

b2
6r

13+6r − 1
12

b3
−36r2−36r+1
(19+6r)(6r+7)

1
18

b4
216r3+648r2+420r−13
(6r+7)(13+6r)(25+6r) − 11

288

b5
−1296r4−7776r3−14148r2−7440r+234

(6r+7)(13+6r)(19+6r)(31+6r)
31

1080

Using the above table, then the solution y2(x) is

y2(x) = x
1
3
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x2

12 +
x3

18 −
11x4

288 + 31x5

1080 +O(x6)
x

1
6

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3

(
1− x

3 + 2x2

15 − 5x3

63 + 23x4

405 − 458x5

10395 +O
(
x6))

+
c2
(
1− x2

12 +
x3

18 −
11x4

288 + 31x5

1080 +O(x6)
)

x
1
6

Hence the final solution is

y = yh

= c1x
1
3

(
1− x

3 + 2x2

15 − 5x3

63 + 23x4

405 − 458x5

10395 +O
(
x6))

+
c2
(
1− x2

12 +
x3

18 −
11x4

288 + 31x5

1080 +O(x6)
)

x
1
6
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Summary
The solution(s) found are the following

(1)
y = c1x

1
3

(
1− x

3 + 2x2

15 − 5x3

63 + 23x4

405 − 458x5

10395 +O
(
x6))

+
c2
(
1− x2

12 +
x3

18 −
11x4

288 + 31x5

1080 +O(x6)
)

x
1
6

Verification of solutions

y = c1x
1
3

(
1− x

3 + 2x2

15 − 5x3

63 + 23x4

405 − 458x5

10395 +O
(
x6))

+
c2
(
1− x2

12 +
x3

18 −
11x4

288 + 31x5

1080 +O(x6)
)

x
1
6

Verified OK.

14.11.1 Maple step by step solution

Let’s solve
18x2(x+ 1) y′′ + (3x3 + 33x2 + 15x) y′ + (5x2 + 2x− 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
5x2+2x−1

)
y

18x2(x+1) −
(
x2+11x+5

)
y′

6x(x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
x2+11x+5

)
y′

6x(x+1) +
(
5x2+2x−1

)
y

18x2(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = x2+11x+5
6x(x+1) , P3(x) = 5x2+2x−1

18x2(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 5
6

◦ (x+ 1)2 · P3(x) is analytic at x = −1
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(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
18x2(x+ 1) y′′ + 3x(x2 + 11x+ 5) y′ + (5x2 + 2x− 1) y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(18u3 − 36u2 + 18u)
(

d2

du2y(u)
)
+ (3u3 + 24u2 − 42u+ 15)

(
d
du
y(u)

)
+ (5u2 − 8u+ 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..3

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions
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3a0r(−1 + 6r)u−1+r + (3a1(1 + r) (5 + 6r)− 2a0(1 + 3r) (−1 + 6r))ur + (3a2(2 + r) (11 + 6r)− 2a1(4 + 3r) (5 + 6r) + 2a0(9r2 + 3r − 4))u1+r +
(

∞∑
k=2

(
3ak+1(k + 1 + r) (6k + 5 + 6r)− 2ak(3k + 3r + 1) (6k + 6r − 1) + 2ak−1

(
9(k − 1)2 + 18(k − 1) r + 9r2 + 3k − 7 + 3r

)
+ ak−2(3k − 1 + 3r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
3r(−1 + 6r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 16
}

• The coefficients of each power of u must be 0
[3a1(1 + r) (5 + 6r)− 2a0(1 + 3r) (−1 + 6r) = 0, 3a2(2 + r) (11 + 6r)− 2a1(4 + 3r) (5 + 6r) + 2a0(9r2 + 3r − 4) = 0]

• Solve for the dependent coefficient(s){
a1 = 2a0

(
18r2+3r−1

)
3(6r2+11r+5) , a2 = 2a0

(
81r3+126r2+21r+4

)
9(6r3+29r2+45r+22)

}
• Each term in the series must be 0, giving the recursion relation

18(−2ak + ak−1 + ak+1) k2 + 3(12(−2ak + ak−1 + ak+1) r − 2ak + ak−2 − 10ak−1 + 11ak+1) k + 18(−2ak + ak−1 + ak+1) r2 + 3(−2ak + ak−2 − 10ak−1 + 11ak+1) r + 2ak − ak−2 + 4ak−1 + 15ak+1 = 0
• Shift index using k− >k + 2

18(−2ak+2 + ak+1 + ak+3) (k + 2)2 + 3(12(−2ak+2 + ak+1 + ak+3) r − 2ak+2 + ak − 10ak+1 + 11ak+3) (k + 2) + 18(−2ak+2 + ak+1 + ak+3) r2 + 3(−2ak+2 + ak − 10ak+1 + 11ak+3) r + 2ak+2 − ak + 4ak+1 + 15ak+3 = 0
• Recursion relation that defines series solution to ODE

ak+3 = −18k2ak+1−36k2ak+2+36krak+1−72krak+2+18r2ak+1−36r2ak+2+3kak+42kak+1−150kak+2+3rak+42rak+1−150rak+2+5ak+16ak+1−154ak+2
3(6k2+12kr+6r2+35k+35r+51)

• Recursion relation for r = 0

ak+3 = −18k2ak+1−36k2ak+2+3kak+42kak+1−150kak+2+5ak+16ak+1−154ak+2
3(6k2+35k+51)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+3 = −18k2ak+1−36k2ak+2+3kak+42kak+1−150kak+2+5ak+16ak+1−154ak+2

3(6k2+35k+51) , a1 = −2a0
15 , a2 =

4a0
99

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k , ak+3 = −18k2ak+1−36k2ak+2+3kak+42kak+1−150kak+2+5ak+16ak+1−154ak+2
3(6k2+35k+51) , a1 = −2a0

15 , a2 =
4a0
99

]
• Recursion relation for r = 1

6

ak+3 = −18k2ak+1−36k2ak+2+3kak+48kak+1−162kak+2+ 11
2 ak+ 47

2 ak+1−180ak+2
3(6k2+37k+57)

• Solution for r = 1
6[

y(u) =
∞∑
k=0

aku
k+ 1

6 , ak+3 = −18k2ak+1−36k2ak+2+3kak+48kak+1−162kak+2+ 11
2 ak+ 47

2 ak+1−180ak+2
3(6k2+37k+57) , a1 = 0, a2 = a0

12

]
• Revert the change of variables u = x+ 1
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[
y =

∞∑
k=0

ak(x+ 1)k+
1
6 , ak+3 = −18k2ak+1−36k2ak+2+3kak+48kak+1−162kak+2+ 11

2 ak+ 47
2 ak+1−180ak+2

3(6k2+37k+57) , a1 = 0, a2 = a0
12

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k+
1
6

)
, ak+3 = −18k2a1+k−36k2ak+2+3kak+42ka1+k−150kak+2+5ak+16a1+k−154ak+2

3(6k2+35k+51) , a1 = −2a0
15 , a2 =

4a0
99 , bk+3 = −18k2b1+k−36k2bk+2+3kbk+48kb1+k−162kbk+2+ 11

2 bk+ 47
2 b1+k−180bk+2

3(6k2+37k+57) , b1 = 0, b2 = b0
12

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 45� �
Order:=6;
dsolve(18*x^2*(1+x)*diff(y(x),x$2)+3*x*(5+11*x+x^2)*diff(y(x),x)-(1-2*x-5*x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c2
√
x
(
1− 1

3x+ 2
15x

2 − 5
63x

3 + 23
405x

4 − 458
10395x

5 +O(x6)
)
+ c1

(
1− 1

12x
2 + 1

18x
3 − 11

288x
4 + 31

1080x
5 +O(x6)

)
x

1
6

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 85� �
AsymptoticDSolveValue[18*x^2*(1+x)*y''[x]+3*x*(5+11*x+x^2)*y'[x]-(1-2*x-5*x^2)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

3
√
x

(
−458x5

10395 + 23x4

405 − 5x3

63 + 2x2

15 − x

3 + 1
)
+

c2
(

31x5

1080 −
11x4

288 + x3

18 −
x2

12 + 1
)

6
√
x
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14.12 problem 9
14.12.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4821

Internal problem ID [1303]
Internal file name [OUTPUT/1304_Sunday_June_05_2022_02_09_17_AM_49582011/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x
(
x2 + x+ 3

)
y′′ +

(
−x2 + x+ 4

)
y′ + yx = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x3 + x2 + 3x
)
y′′ +

(
−x2 + x+ 4

)
y′ + yx = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − x2 − x− 4
x (x2 + x+ 3)

q(x) = 1
x2 + x+ 3
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Table 552: Table p(x), q(x) singularites.

p(x) = − x2−x−4
x(x2+x+3)

singularity type
x = 0 “regular”

x = − i
√
11
2 − 1

2 “regular”

x = i
√
11
2 − 1

2 “regular”

q(x) = 1
x2+x+3

singularity type

x = − i
√
11
2 − 1

2 “regular”

x = i
√
11
2 − 1

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,− i

√
11
2 − 1

2 ,
i
√
11
2 − 1

2 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x
(
x2 + x+ 3

)
y′′ +

(
−x2 + x+ 4

)
y′ + yx = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x
(
x2 + x+ 3

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−x2 + x+ 4

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
x = 0
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Which simplifies to

(2A)

(
∞∑
n=0

x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−x1+n+ran(n

+ r)
)
+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

4(n+ r) anxn+r−1

)
+
(

∞∑
n=0

x1+n+ran

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r−1

∞∑
n =0

xn+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r−1

∞∑
n =0

(
−x1+n+ran(n+ r)

)
=

∞∑
n=2

(
−an−2(n+ r − 2)xn+r−1)

∞∑
n =0

xn+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r−1

∞∑
n =0

x1+n+ran =
∞∑
n=2

an−2x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r−1

)

+
(

∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r−1

)

+
(

∞∑
n=0

3xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =2

(
−an−2(n+ r − 2)xn+r−1)+( ∞∑

n=1

an−1(n+ r − 1)xn+r−1

)

+
(

∞∑
n=0

4(n+ r) anxn+r−1

)
+
(

∞∑
n=2

an−2x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

3xn+r−1an(n+ r) (n+ r − 1) + 4(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

3x−1+ra0r(−1 + r) + 4ra0x−1+r = 0

Or (
3x−1+rr(−1 + r) + 4r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to(
3r2 + r

)
x−1+r = 0

Since the above is true for all x then the indicial equation becomes

3r2 + r = 0

Solving for r gives the roots of the indicial equation as

r1 = 0

r2 = −1
3

Since a0 6= 0 then the indicial equation becomes(
3r2 + r

)
x−1+r = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n

y2(x) =
∞∑
n=0

bnx
n− 1

3

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = − r2

3r2 + 7r + 4
For 2 ≤ n the recursive equation is

(3)an−2(n+ r−2) (n−3+ r)+an−1(n+ r−1) (n+ r−2)+3an(n+ r) (n+ r−1)
− an−2(n+ r − 2) + an−1(n+ r − 1) + 4an(n+ r) + an−2 = 0

Solving for an from recursive equation (4) gives

an = −n2an−2 + n2an−1 + 2nran−2 + 2nran−1 + r2an−2 + r2an−1 − 6nan−2 − 2nan−1 − 6ran−2 − 2ran−1 + 9an−2 + an−1

3n2 + 6nr + 3r2 + n+ r
(4)

Which for the root r = 0 becomes

an = (−an−2 − an−1)n2 + (6an−2 + 2an−1)n− 9an−2 − an−1

3n2 + n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 − r2

3r2+7r+4 0
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For n = 2, using the above recursive equation gives

a2 =
−2r3 + 3r2 + 5r − 4
9r3 + 51r2 + 94r + 56

Which for the root r = 0 becomes

a2 = − 1
14

And the table now becomes

n an,r an

a0 1 1
a1 − r2

3r2+7r+4 0

a2
−2r3+3r2+5r−4
9r3+51r2+94r+56 − 1

14

For n = 3, using the above recursive equation gives

a3 =
5r5 + 10r4 − 10r3 − 17r2 + 2r + 8

(3r2 + 19r + 30) (9r2 + 33r + 28) (1 + r)

Which for the root r = 0 becomes

a3 =
1
105

And the table now becomes

n an,r an

a0 1 1
a1 − r2

3r2+7r+4 0

a2
−2r3+3r2+5r−4
9r3+51r2+94r+56 − 1

14

a3
5r5+10r4−10r3−17r2+2r+8

(3r2+19r+30)(9r2+33r+28)(1+r)
1

105

For n = 4, using the above recursive equation gives

a4 =
r7 − 6r6 − 64r5 − 127r4 − 55r3 + 45r2 + 30r − 8

(3r2 + 25r + 52) (1 + r) (9r2 + 33r + 28) (3r + 10) (r + 2)

Which for the root r = 0 becomes

a4 = − 1
3640

4816



And the table now becomes

n an,r an

a0 1 1
a1 − r2

3r2+7r+4 0

a2
−2r3+3r2+5r−4
9r3+51r2+94r+56 − 1

14

a3
5r5+10r4−10r3−17r2+2r+8

(3r2+19r+30)(9r2+33r+28)(1+r)
1

105

a4
r7−6r6−64r5−127r4−55r3+45r2+30r−8

(3r2+25r+52)(1+r)(9r2+33r+28)(3r+10)(r+2) − 1
3640

For n = 5, using the above recursive equation gives

a5 =
−16r9 − 186r8 − 756r7 − 1032r6 + 1053r5 + 4476r4 + 3939r3 − 246r2 − 1952r − 736

(3r2 + 31r + 80) (r + 2) (3r + 10) (3r + 13) (1 + r) (9r2 + 33r + 28) (r + 3)

Which for the root r = 0 becomes

a5 = − 23
54600

And the table now becomes

n an,r an

a0 1 1
a1 − r2

3r2+7r+4 0

a2
−2r3+3r2+5r−4
9r3+51r2+94r+56 − 1

14

a3
5r5+10r4−10r3−17r2+2r+8

(3r2+19r+30)(9r2+33r+28)(1+r)
1

105

a4
r7−6r6−64r5−127r4−55r3+45r2+30r−8

(3r2+25r+52)(1+r)(9r2+33r+28)(3r+10)(r+2) − 1
3640

a5
−16r9−186r8−756r7−1032r6+1053r5+4476r4+3939r3−246r2−1952r−736

(3r2+31r+80)(r+2)(3r+10)(3r+13)(1+r)(9r2+33r+28)(r+3) − 23
54600

Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− x2

14 + x3

105 − x4

3640 − 23x5

54600 +O
(
x6)

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = − r2

3r2 + 7r + 4
For 2 ≤ n the recursive equation is

(3)bn−2(n+ r− 2) (n− 3+ r)+ bn−1(n+ r− 1) (n+ r− 2)+3bn(n+ r) (n+ r− 1)
− bn−2(n+ r − 2) + bn−1(n+ r − 1) + 4(n+ r) bn + bn−2 = 0

Solving for bn from recursive equation (4) gives

bn = −n2bn−2 + n2bn−1 + 2nrbn−2 + 2nrbn−1 + r2bn−2 + r2bn−1 − 6nbn−2 − 2nbn−1 − 6rbn−2 − 2rbn−1 + 9bn−2 + bn−1

3n2 + 6nr + 3r2 + n+ r
(4)

Which for the root r = −1
3 becomes

bn = (−9bn−2 − 9bn−1)n2 + (60bn−2 + 24bn−1)n− 100bn−2 − 16bn−1

27n2 − 9n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 − r2

3r2+7r+4 − 1
18

For n = 2, using the above recursive equation gives

b2 =
−2r3 + 3r2 + 5r − 4
9r3 + 51r2 + 94r + 56

Which for the root r = −1
3 becomes

b2 = − 71
405

And the table now becomes

n bn,r bn

b0 1 1
b1 − r2

3r2+7r+4 − 1
18

b2
−2r3+3r2+5r−4
9r3+51r2+94r+56 − 71

405
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For n = 3, using the above recursive equation gives

b3 =
5r5 + 10r4 − 10r3 − 17r2 + 2r + 8

(3r2 + 19r + 30) (9r2 + 33r + 28) (1 + r)

Which for the root r = −1
3 becomes

b3 =
719
34992

And the table now becomes

n bn,r bn

b0 1 1
b1 − r2

3r2+7r+4 − 1
18

b2
−2r3+3r2+5r−4
9r3+51r2+94r+56 − 71

405

b3
5r5+10r4−10r3−17r2+2r+8

(3r2+19r+30)(9r2+33r+28)(1+r)
719

34992

For n = 4, using the above recursive equation gives

b4 =
r7 − 6r6 − 64r5 − 127r4 − 55r3 + 45r2 + 30r − 8

(3r2 + 25r + 52) (1 + r) (9r2 + 33r + 28) (3r + 10) (r + 2)

Which for the root r = −1
3 becomes

b4 = − 1678
1082565

And the table now becomes

n bn,r bn

b0 1 1
b1 − r2

3r2+7r+4 − 1
18

b2
−2r3+3r2+5r−4
9r3+51r2+94r+56 − 71

405

b3
5r5+10r4−10r3−17r2+2r+8

(3r2+19r+30)(9r2+33r+28)(1+r)
719

34992

b4
r7−6r6−64r5−127r4−55r3+45r2+30r−8

(3r2+25r+52)(1+r)(9r2+33r+28)(3r+10)(r+2) − 1678
1082565

For n = 5, using the above recursive equation gives

b5 =
−16r9 − 186r8 − 756r7 − 1032r6 + 1053r5 + 4476r4 + 3939r3 − 246r2 − 1952r − 736

(3r2 + 31r + 80) (r + 2) (3r + 10) (3r + 13) (1 + r) (9r2 + 33r + 28) (r + 3)

4819



Which for the root r = −1
3 becomes

b5 = − 513547
992023200

And the table now becomes

n bn,r bn

b0 1 1
b1 − r2

3r2+7r+4 − 1
18

b2
−2r3+3r2+5r−4
9r3+51r2+94r+56 − 71

405

b3
5r5+10r4−10r3−17r2+2r+8

(3r2+19r+30)(9r2+33r+28)(1+r)
719

34992

b4
r7−6r6−64r5−127r4−55r3+45r2+30r−8

(3r2+25r+52)(1+r)(9r2+33r+28)(3r+10)(r+2) − 1678
1082565

b5
−16r9−186r8−756r7−1032r6+1053r5+4476r4+3939r3−246r2−1952r−736

(3r2+31r+80)(r+2)(3r+10)(3r+13)(1+r)(9r2+33r+28)(r+3) − 513547
992023200

Using the above table, then the solution y2(x) is

y2(x) = 1
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x

18 −
71x2

405 + 719x3

34992 −
1678x4

1082565 −
513547x5

992023200 +O(x6)
x

1
3

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− x2

14 + x3

105 − x4

3640 − 23x5

54600 +O
(
x6))

+
c2
(
1− x

18 −
71x2

405 + 719x3

34992 −
1678x4

1082565 −
513547x5

992023200 +O(x6)
)

x
1
3

Hence the final solution is

y = yh

= c1

(
1− x2

14 + x3

105 − x4

3640 − 23x5

54600 +O
(
x6))

+
c2
(
1− x

18 −
71x2

405 + 719x3

34992 −
1678x4

1082565 −
513547x5

992023200 +O(x6)
)

x
1
3
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Summary
The solution(s) found are the following

(1)
y = c1

(
1− x2

14 + x3

105 − x4

3640 − 23x5

54600 +O
(
x6))

+
c2
(
1− x

18 −
71x2

405 + 719x3

34992 −
1678x4

1082565 −
513547x5

992023200 +O(x6)
)

x
1
3

Verification of solutions

y = c1

(
1− x2

14 + x3

105 − x4

3640 − 23x5

54600 +O
(
x6))

+
c2
(
1− x

18 −
71x2

405 + 719x3

34992 −
1678x4

1082565 −
513547x5

992023200 +O(x6)
)

x
1
3

Verified OK.

14.12.1 Maple step by step solution

Let’s solve
x(x2 + x+ 3) y′′ + (−x2 + x+ 4) y′ + yx = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − y
x2+x+3 +

(
x2−x−4

)
y′

x(x2+x+3)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ −
(
x2−x−4

)
y′

x(x2+x+3) + y
x2+x+3 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x2−x−4
x(x2+x+3) , P3(x) = 1

x2+x+3

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4
3

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x(x2 + x+ 3) y′′ + (−x2 + x+ 4) y′ + yx = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k+r

◦ Convert xm · y′ to series expansion form = 0..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(1 + 3r)x−1+r + (a1(1 + r) (4 + 3r) + a0r
2)xr +

(
∞∑
k=1

(
ak+1(k + r + 1) (3k + 4 + 3r) + ak(k + r)2 + ak−1(k − 2 + r)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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r(1 + 3r) = 0
• Values of r that satisfy the indicial equation

r ∈
{
0,−1

3

}
• Each term must be 0

a1(1 + r) (4 + 3r) + a0r
2 = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + r + 1) (3k + 4 + 3r) + ak(k + r)2 + ak−1(k − 2 + r)2 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (3k + 7 + 3r) + ak+1(k + r + 1)2 + ak(k + r − 1)2 = 0

• Recursion relation that defines series solution to ODE

ak+2 = −k2ak+k2ak+1+2krak+2krak+1+r2ak+r2ak+1−2kak+2kak+1−2rak+2rak+1+ak+ak+1
(k+2+r)(3k+7+3r)

• Recursion relation for r = 0

ak+2 = −k2ak+k2ak+1−2kak+2kak+1+ak+ak+1
(k+2)(3k+7)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = −k2ak+k2ak+1−2kak+2kak+1+ak+ak+1

(k+2)(3k+7) , 4a1 = 0
]

• Recursion relation for r = −1
3

ak+2 = −k2ak+k2ak+1− 8
3kak+

4
3kak+1+ 16

9 ak+ 4
9ak+1(

k+ 5
3
)
(3k+6)

• Solution for r = −1
3[

y =
∞∑
k=0

akx
k− 1

3 , ak+2 = −k2ak+k2ak+1− 8
3kak+

4
3kak+1+ 16

9 ak+ 4
9ak+1(

k+ 5
3
)
(3k+6) , 2a1 + a0

9 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k− 1

3

)
, ak+2 = −k2ak+k2a1+k−2kak+2ka1+k+ak+a1+k

(k+2)(3k+7) , 4a1 = 0, bk+2 = −k2bk+k2b1+k− 8
3kbk+

4
3kb1+k+ 16

9 bk+ 4
9 b1+k(

k+ 5
3
)
(3k+6) , 2b1 + b0

9 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <> 0, g <> 0, c = 0 `� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 42� �
Order:=6;
dsolve(x*(3+x+x^2)*diff(y(x),x$2)+(4+x-x^2)*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1
(
1− 1

18x− 71
405x

2 + 719
34992x

3 − 1678
1082565x

4 − 513547
992023200x

5 +O(x6)
)

x
1
3

+ c2

(
1− 1

14x
2 + 1

105x
3 − 1

3640x
4 − 23

54600x
5 +O

(
x6))
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 80� �
AsymptoticDSolveValue[x*(3+x+x^2)*y''[x]+(4+x-x^2)*y'[x]+x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
− 23x5

54600 − x4

3640 + x3

105 − x2

14 + 1
)

+
c2
(
− 513547x5

992023200 −
1678x4

1082565 +
719x3

34992 −
71x2

405 − x
18 + 1

)
3
√
x
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14.13 problem 10
14.13.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4836

Internal problem ID [1304]
Internal file name [OUTPUT/1305_Sunday_June_05_2022_02_09_21_AM_89487669/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

10x2(2x2 + x+ 1
)
y′′ + x

(
66x2 + 13x+ 13

)
y′ −

(
10x2 + 4x+ 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

20x4 + 10x3 + 10x2) y′′ + (66x3 + 13x2 + 13x
)
y′ +

(
−10x2 − 4x− 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 66x2 + 13x+ 13
10x (2x2 + x+ 1)

q(x) = − 10x2 + 4x+ 1
10x2 (2x2 + x+ 1)
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Table 554: Table p(x), q(x) singularites.

p(x) = 66x2+13x+13
10x(2x2+x+1)

singularity type
x = 0 “regular”

x = − i
√
7

4 − 1
4 “regular”

x = i
√
7

4 − 1
4 “regular”

q(x) = − 10x2+4x+1
10x2(2x2+x+1)

singularity type
x = 0 “regular”

x = − i
√
7

4 − 1
4 “regular”

x = i
√
7

4 − 1
4 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,− i

√
7

4 − 1
4 ,

i
√
7

4 − 1
4 ,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

10x2(2x2 + x+ 1
)
y′′ +

(
66x3 + 13x2 + 13x

)
y′ +

(
−10x2 − 4x− 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

10x2(2x2 + x+ 1
)( ∞∑

n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
66x3 + 13x2 + 13x

)( ∞∑
n=0

(n+ r) anxn+r−1

)

+
(
−10x2 − 4x− 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

20xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

10x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

10xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

66xn+r+2an(n+ r)
)

+
(

∞∑
n=0

13x1+n+ran(n+ r)
)

+
(

∞∑
n=0

13xn+ran(n+ r)
)

+
∞∑

n =0

(
−10xn+r+2an

)
+

∞∑
n =0

(
−4x1+n+ran

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

20xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

20an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

10x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

10an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

66xn+r+2an(n+ r) =
∞∑
n=2

66an−2(n+ r − 2)xn+r

∞∑
n =0

13x1+n+ran(n+ r) =
∞∑
n=1

13an−1(n+ r − 1)xn+r

∞∑
n =0

(
−10xn+r+2an

)
=

∞∑
n=2

(
−10an−2x

n+r
)

∞∑
n =0

(
−4x1+n+ran

)
=

∞∑
n=1

(
−4an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

20an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=1

10an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

10xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

66an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=1

13an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

13xn+ran(n+ r)
)

+
∞∑

n =2

(
−10an−2x

n+r
)
+

∞∑
n =1

(
−4an−1x

n+r
)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

10xn+ran(n+ r) (n+ r − 1) + 13xn+ran(n+ r)− anx
n+r = 0

When n = 0 the above becomes

10xra0r(−1 + r) + 13xra0r − a0x
r = 0

Or
(10xrr(−1 + r) + 13xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
10r2 + 3r − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

10r2 + 3r − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
5

r2 = −1
2

Since a0 6= 0 then the indicial equation becomes(
10r2 + 3r − 1

)
xr = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 7
10 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

5

y2(x) =
∞∑
n=0

bnx
n− 1

2

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 =
1− 2r
2r + 3

For 2 ≤ n the recursive equation is

(3)20an−2(n+ r − 2) (n− 3 + r) + 10an−1(n+ r − 1) (n+ r − 2)
+ 10an(n+ r) (n+ r − 1) + 66an−2(n+ r − 2)
+ 13an−1(n+ r − 1) + 13an(n+ r)− 10an−2 − 4an−1 − an = 0

Solving for an from recursive equation (4) gives

an = −20n2an−2 + 10n2an−1 + 40nran−2 + 20nran−1 + 20r2an−2 + 10r2an−1 − 34nan−2 − 17nan−1 − 34ran−2 − 17ran−1 − 22an−2 + 3an−1

10n2 + 20nr + 10r2 + 3n+ 3r − 1
(4)

Which for the root r = 1
5 becomes

an = (−20an−2 − 10an−1)n2 + (26an−2 + 13an−1)n+ 28an−2

10n2 + 7n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

5 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

1−2r
2r+3

3
17
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For n = 2, using the above recursive equation gives

a2 =
−20r3 − 116r2 − 123r + 21
20r3 + 116r2 + 219r + 135

Which for the root r = 1
5 becomes

a2 = − 7
153

And the table now becomes

n an,r an

a0 1 1
a1

1−2r
2r+3

3
17

a2
−20r3−116r2−123r+21
20r3+116r2+219r+135 − 7

153

For n = 3, using the above recursive equation gives

a3 =
600r5 + 5260r4 + 15654r3 + 17349r2 + 3025r − 3402
200r5 + 2420r4 + 11458r3 + 26515r2 + 29967r + 13230

Which for the root r = 1
5 becomes

a3 = − 547
5661

And the table now becomes

n an,r an

a0 1 1
a1

1−2r
2r+3

3
17

a2
−20r3−116r2−123r+21
20r3+116r2+219r+135 − 7

153

a3
600r5+5260r4+15654r3+17349r2+3025r−3402

200r5+2420r4+11458r3+26515r2+29967r+13230 − 547
5661

For n = 4, using the above recursive equation gives

a4 =
−2000r7 − 16800r6 + 2360r5 + 433536r4 + 1687211r3 + 2569170r2 + 1406065r − 10206

2000r7 + 40800r6 + 349640r5 + 1629984r4 + 4459733r3 + 7153626r2 + 6222447r + 2262330
Which for the root r = 1

5 becomes

a4 =
26942
266067
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And the table now becomes

n an,r an

a0 1 1
a1

1−2r
2r+3

3
17

a2
−20r3−116r2−123r+21
20r3+116r2+219r+135 − 7

153

a3
600r5+5260r4+15654r3+17349r2+3025r−3402

200r5+2420r4+11458r3+26515r2+29967r+13230 − 547
5661

a4
−2000r7−16800r6+2360r5+433536r4+1687211r3+2569170r2+1406065r−10206

2000r7+40800r6+349640r5+1629984r4+4459733r3+7153626r2+6222447r+2262330
26942
266067

For n = 5, using the above recursive equation gives

a5 =
−100000r9 − 2710000r8 − 31054000r7 − 196182200r6 − 744265370r5 − 1721296863r4 − 2321242940r3 − 1556172021r2 − 211154622r + 180891144

(10r2 + 103r + 264) (2000r7 + 40800r6 + 349640r5 + 1629984r4 + 4459733r3 + 7153626r2 + 6222447r + 2262330)

Which for the root r = 1
5 becomes

a5 =
200432
3991005

And the table now becomes

n an,r an

a0 1 1
a1

1−2r
2r+3

3
17

a2
−20r3−116r2−123r+21
20r3+116r2+219r+135 − 7

153

a3
600r5+5260r4+15654r3+17349r2+3025r−3402

200r5+2420r4+11458r3+26515r2+29967r+13230 − 547
5661

a4
−2000r7−16800r6+2360r5+433536r4+1687211r3+2569170r2+1406065r−10206

2000r7+40800r6+349640r5+1629984r4+4459733r3+7153626r2+6222447r+2262330
26942
266067

a5
−100000r9−2710000r8−31054000r7−196182200r6−744265370r5−1721296863r4−2321242940r3−1556172021r2−211154622r+180891144

(10r2+103r+264)(2000r7+40800r6+349640r5+1629984r4+4459733r3+7153626r2+6222447r+2262330)
200432
3991005

Using the above table, then the solution y1(x) is

y1(x) = x
1
5
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
5

(
1 + 3x

17 − 7x2

153 − 547x3

5661 + 26942x4

266067 + 200432x5

3991005 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 =
1− 2r
2r + 3

For 2 ≤ n the recursive equation is

(3)20bn−2(n+ r − 2) (n− 3 + r) + 10bn−1(n+ r − 1) (n+ r − 2)
+ 10bn(n+ r) (n+ r − 1) + 66bn−2(n+ r − 2)
+ 13bn−1(n+ r − 1) + 13bn(n+ r)− 10bn−2 − 4bn−1 − bn = 0

Solving for bn from recursive equation (4) gives

bn = −20n2bn−2 + 10n2bn−1 + 40nrbn−2 + 20nrbn−1 + 20r2bn−2 + 10r2bn−1 − 34nbn−2 − 17nbn−1 − 34rbn−2 − 17rbn−1 − 22bn−2 + 3bn−1

10n2 + 20nr + 10r2 + 3n+ 3r − 1
(4)

Which for the root r = −1
2 becomes

bn = (−20bn−2 − 10bn−1)n2 + (54bn−2 + 27bn−1)n− 14bn−1

10n2 − 7n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1

1−2r
2r+3 1

For n = 2, using the above recursive equation gives

b2 =
−20r3 − 116r2 − 123r + 21
20r3 + 116r2 + 219r + 135

Which for the root r = −1
2 becomes

b2 =
14
13

And the table now becomes

n bn,r bn

b0 1 1
b1

1−2r
2r+3 1

b2
−20r3−116r2−123r+21
20r3+116r2+219r+135

14
13
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For n = 3, using the above recursive equation gives

b3 =
600r5 + 5260r4 + 15654r3 + 17349r2 + 3025r − 3402
200r5 + 2420r4 + 11458r3 + 26515r2 + 29967r + 13230

Which for the root r = −1
2 becomes

b3 = −556
897

And the table now becomes

n bn,r bn

b0 1 1
b1

1−2r
2r+3 1

b2
−20r3−116r2−123r+21
20r3+116r2+219r+135

14
13

b3
600r5+5260r4+15654r3+17349r2+3025r−3402

200r5+2420r4+11458r3+26515r2+29967r+13230 −556
897

For n = 4, using the above recursive equation gives

b4 =
−2000r7 − 16800r6 + 2360r5 + 433536r4 + 1687211r3 + 2569170r2 + 1406065r − 10206

2000r7 + 40800r6 + 349640r5 + 1629984r4 + 4459733r3 + 7153626r2 + 6222447r + 2262330

Which for the root r = −1
2 becomes

b4 = −5314
9867

And the table now becomes

n bn,r bn

b0 1 1
b1

1−2r
2r+3 1

b2
−20r3−116r2−123r+21
20r3+116r2+219r+135

14
13

b3
600r5+5260r4+15654r3+17349r2+3025r−3402

200r5+2420r4+11458r3+26515r2+29967r+13230 −556
897

b4
−2000r7−16800r6+2360r5+433536r4+1687211r3+2569170r2+1406065r−10206

2000r7+40800r6+349640r5+1629984r4+4459733r3+7153626r2+6222447r+2262330 −5314
9867

For n = 5, using the above recursive equation gives

b5 =
−100000r9 − 2710000r8 − 31054000r7 − 196182200r6 − 744265370r5 − 1721296863r4 − 2321242940r3 − 1556172021r2 − 211154622r + 180891144

(10r2 + 103r + 264) (2000r7 + 40800r6 + 349640r5 + 1629984r4 + 4459733r3 + 7153626r2 + 6222447r + 2262330)
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Which for the root r = −1
2 becomes

b5 =
2092186
2121405

And the table now becomes

n bn,r bn

b0 1 1
b1

1−2r
2r+3 1

b2
−20r3−116r2−123r+21
20r3+116r2+219r+135

14
13

b3
600r5+5260r4+15654r3+17349r2+3025r−3402

200r5+2420r4+11458r3+26515r2+29967r+13230 −556
897

b4
−2000r7−16800r6+2360r5+433536r4+1687211r3+2569170r2+1406065r−10206

2000r7+40800r6+349640r5+1629984r4+4459733r3+7153626r2+6222447r+2262330 −5314
9867

b5
−100000r9−2710000r8−31054000r7−196182200r6−744265370r5−1721296863r4−2321242940r3−1556172021r2−211154622r+180891144

(10r2+103r+264)(2000r7+40800r6+349640r5+1629984r4+4459733r3+7153626r2+6222447r+2262330)
2092186
2121405

Using the above table, then the solution y2(x) is

y2(x) = x
1
5
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1 + x+ 14x2

13 − 556x3

897 − 5314x4

9867 + 2092186x5

2121405 +O(x6)
√
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
5

(
1 + 3x

17 − 7x2

153 − 547x3

5661 + 26942x4

266067 + 200432x5

3991005 +O
(
x6))

+
c2
(
1 + x+ 14x2

13 − 556x3

897 − 5314x4

9867 + 2092186x5

2121405 +O(x6)
)

√
x

Hence the final solution is

y = yh

= c1x
1
5

(
1 + 3x

17 − 7x2

153 − 547x3

5661 + 26942x4

266067 + 200432x5

3991005 +O
(
x6))

+
c2
(
1 + x+ 14x2

13 − 556x3

897 − 5314x4

9867 + 2092186x5

2121405 +O(x6)
)

√
x
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Summary
The solution(s) found are the following

(1)
y = c1x

1
5

(
1 + 3x

17 − 7x2

153 − 547x3

5661 + 26942x4

266067 + 200432x5

3991005 +O
(
x6))

+
c2
(
1 + x+ 14x2

13 − 556x3

897 − 5314x4

9867 + 2092186x5

2121405 +O(x6)
)

√
x

Verification of solutions

y = c1x
1
5

(
1 + 3x

17 − 7x2

153 − 547x3

5661 + 26942x4

266067 + 200432x5

3991005 +O
(
x6))

+
c2
(
1 + x+ 14x2

13 − 556x3

897 − 5314x4

9867 + 2092186x5

2121405 +O(x6)
)

√
x

Verified OK.

14.13.1 Maple step by step solution

Let’s solve
10x2(2x2 + x+ 1) y′′ + (66x3 + 13x2 + 13x) y′ + (−10x2 − 4x− 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ =
(
10x2+4x+1

)
y

10x2(2x2+x+1) −
(
66x2+13x+13

)
y′

10x(2x2+x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
66x2+13x+13

)
y′

10x(2x2+x+1) −
(
10x2+4x+1

)
y

10x2(2x2+x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 66x2+13x+13
10x(2x2+x+1) , P3(x) = − 10x2+4x+1

10x2(2x2+x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 13
10

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= − 1
10

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
10x2(2x2 + x+ 1) y′′ + x(66x2 + 13x+ 13) y′ + (−10x2 − 4x− 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 5r)xr + (a1(3 + 2r) (4 + 5r) + a0(4 + 5r) (−1 + 2r))x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (5k + 5r − 1) + ak−1(5k + 5r − 1) (2k − 3 + 2r) + 2ak−2(2k + 2r + 1) (5k − 11 + 5r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(1 + 2r) (−1 + 5r) = 0
• Values of r that satisfy the indicial equation

r ∈
{
−1

2 ,
1
5

}
• Each term must be 0

a1(3 + 2r) (4 + 5r) + a0(4 + 5r) (−1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = − (−1+2r)a0
3+2r

• Each term in the series must be 0, giving the recursion relation
ak(2k + 2r + 1) (5k + 5r − 1) + ak−1(5k + 5r − 1) (2k − 3 + 2r) + 2ak−2(2k + 2r + 1) (5k − 11 + 5r) = 0

• Shift index using k− >k + 2
ak+2(2k + 2r + 5) (5k + 9 + 5r) + ak+1(5k + 9 + 5r) (2k + 2r + 1) + 2ak(2k + 2r + 5) (5k + 5r − 1) = 0

• Recursion relation that defines series solution to ODE

ak+2 = −20k2ak+10k2ak+1+40krak+20krak+1+20r2ak+10r2ak+1+46kak+23kak+1+46rak+23rak+1−10ak+9ak+1
(2k+2r+5)(5k+9+5r)

• Recursion relation for r = −1
2

ak+2 = −20k2ak+10k2ak+1+26kak+13kak+1−28ak
(2k+4)

(
5k+ 13

2
)

• Solution for r = −1
2[

y =
∞∑
k=0

akx
k− 1

2 , ak+2 = −20k2ak+10k2ak+1+26kak+13kak+1−28ak
(2k+4)

(
5k+ 13

2
) , a1 = a0

]
• Recursion relation for r = 1

5

ak+2 = −20k2ak+10k2ak+1+54kak+27kak+1+14ak+1(
2k+ 27

5
)
(5k+10)

• Solution for r = 1
5[

y =
∞∑
k=0

akx
k+ 1

5 , ak+2 = −20k2ak+10k2ak+1+54kak+27kak+1+14ak+1(
2k+ 27

5
)
(5k+10) , a1 = 3a0

17

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

5

)
, ak+2 = −20k2ak+10k2a1+k+26kak+13ka1+k−28ak

(2k+4)
(
5k+ 13

2
) , a1 = a0, bk+2 = −20k2bk+10k2b1+k+54kbk+27kb1+k+14b1+k(

2k+ 27
5
)
(5k+10) , b1 = 3b0

17

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <> 0, g <> 0, c = 0 `� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 47� �
Order:=6;
dsolve(10*x^2*(1+x+2*x^2)*diff(y(x),x$2)+x*(13+13*x+66*x^2)*diff(y(x),x)-(1+4*x+10*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1
(
1 + x+ 14

13x
2 − 556

897x
3 − 5314

9867x
4 + 2092186

2121405x
5 +O(x6)

)
√
x

+ c2x
1
5

(
1 + 3

17x− 7
153x

2 − 547
5661x

3 + 26942
266067x

4 + 200432
3991005x

5 +O
(
x6))
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3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 86� �
AsymptoticDSolveValue[10*x^2*(1+x+2*x^2)*y''[x]+x*(13+13*x+66*x^2)*y'[x]-(1+4*x+10*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
5
√
x

(
200432x5

3991005 + 26942x4

266067 − 547x3

5661 − 7x2

153 + 3x
17 + 1

)

+
c2
(

2092186x5

2121405 − 5314x4

9867 − 556x3

897 + 14x2

13 + x+ 1
)

√
x
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14.14 problem 14
14.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4851

Internal problem ID [1305]
Internal file name [OUTPUT/1306_Sunday_June_05_2022_02_09_25_AM_54010958/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2x2y′′ + x(2x+ 3) y′ − (1− x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

2x2y′′ +
(
2x2 + 3x

)
y′ + y(x− 1) = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2x+ 3
2x

q(x) = x− 1
2x2
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Table 556: Table p(x), q(x) singularites.

p(x) = 2x+3
2x

singularity type
x = 0 “regular”

q(x) = x−1
2x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x2y′′ +
(
2x2 + 3x

)
y′ + y(x− 1) = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
2x2 + 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
(x− 1) = 0
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Which simplifies to

(2A)

(
∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2x1+n+ran(n+ r)
)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=0

x1+n+ran

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2x1+n+ran(n+ r) =
∞∑
n=1

2an−1(n+ r − 1)xn+r

∞∑
n =0

x1+n+ran =
∞∑
n=1

an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

2an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=1

an−1x
n+r

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+ran(n+ r) (n+ r − 1) + 3xn+ran(n+ r)− anx
n+r = 0

When n = 0 the above becomes

2xra0r(−1 + r) + 3xra0r − a0x
r = 0

Or
(2xrr(−1 + r) + 3xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
2r2 + r − 1

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

2r2 + r − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = −1

Since a0 6= 0 then the indicial equation becomes(
2r2 + r − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n−1

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)2an(n+ r) (n+ r − 1) + 2an−1(n+ r − 1) + 3an(n+ r) + an−1 − an = 0

Solving for an from recursive equation (4) gives

an = − an−1

1 + n+ r
(4)

Which for the root r = 1
2 becomes

an = − 2an−1

3 + 2n (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 1
2 + r

Which for the root r = 1
2 becomes

a1 = −2
5

And the table now becomes

n an,r an

a0 1 1
a1 − 1

2+r
−2

5

For n = 2, using the above recursive equation gives

a2 =
1

(2 + r) (3 + r)

Which for the root r = 1
2 becomes

a2 =
4
35

And the table now becomes

n an,r an

a0 1 1
a1 − 1

2+r
−2

5

a2
1

(2+r)(3+r)
4
35

For n = 3, using the above recursive equation gives

a3 = − 1
(2 + r) (3 + r) (4 + r)
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Which for the root r = 1
2 becomes

a3 = − 8
315

And the table now becomes

n an,r an

a0 1 1
a1 − 1

2+r
−2

5

a2
1

(2+r)(3+r)
4
35

a3 − 1
(2+r)(3+r)(4+r) − 8

315

For n = 4, using the above recursive equation gives

a4 =
1

(2 + r) (3 + r) (4 + r) (5 + r)

Which for the root r = 1
2 becomes

a4 =
16
3465

And the table now becomes

n an,r an

a0 1 1
a1 − 1

2+r
−2

5

a2
1

(2+r)(3+r)
4
35

a3 − 1
(2+r)(3+r)(4+r) − 8

315

a4
1

(2+r)(3+r)(4+r)(5+r)
16

3465

For n = 5, using the above recursive equation gives

a5 = − 1
(2 + r) (3 + r) (4 + r) (5 + r) (6 + r)

Which for the root r = 1
2 becomes

a5 = − 32
45045
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And the table now becomes

n an,r an

a0 1 1
a1 − 1

2+r
−2

5

a2
1

(2+r)(3+r)
4
35

a3 − 1
(2+r)(3+r)(4+r) − 8

315

a4
1

(2+r)(3+r)(4+r)(5+r)
16

3465

a5 − 1
(2+r)(3+r)(4+r)(5+r)(6+r) − 32

45045

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− 2x

5 + 4x2

35 − 8x3

315 + 16x4

3465 − 32x5

45045 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)2bn(n+ r) (n+ r − 1) + 2bn−1(n+ r − 1) + 3bn(n+ r) + bn−1 − bn = 0

Solving for bn from recursive equation (4) gives

bn = − bn−1

1 + n+ r
(4)

Which for the root r = −1 becomes

bn = −bn−1

n
(5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
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For n = 1, using the above recursive equation gives

b1 = − 1
2 + r

Which for the root r = −1 becomes

b1 = −1

And the table now becomes

n bn,r bn

b0 1 1
b1 − 1

2+r
−1

For n = 2, using the above recursive equation gives

b2 =
1

(2 + r) (3 + r)

Which for the root r = −1 becomes

b2 =
1
2

And the table now becomes

n bn,r bn

b0 1 1
b1 − 1

2+r
−1

b2
1

(2+r)(3+r)
1
2

For n = 3, using the above recursive equation gives

b3 = − 1
(2 + r) (3 + r) (4 + r)

Which for the root r = −1 becomes

b3 = −1
6

And the table now becomes
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n bn,r bn

b0 1 1
b1 − 1

2+r
−1

b2
1

(2+r)(3+r)
1
2

b3 − 1
(2+r)(3+r)(4+r) −1

6

For n = 4, using the above recursive equation gives

b4 =
1

(2 + r) (3 + r) (4 + r) (5 + r)

Which for the root r = −1 becomes

b4 =
1
24

And the table now becomes

n bn,r bn

b0 1 1
b1 − 1

2+r
−1

b2
1

(2+r)(3+r)
1
2

b3 − 1
(2+r)(3+r)(4+r) −1

6

b4
1

(2+r)(3+r)(4+r)(5+r)
1
24

For n = 5, using the above recursive equation gives

b5 = − 1
(2 + r) (3 + r) (4 + r) (5 + r) (6 + r)

Which for the root r = −1 becomes

b5 = − 1
120

And the table now becomes
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n bn,r bn

b0 1 1
b1 − 1

2+r
−1

b2
1

(2+r)(3+r)
1
2

b3 − 1
(2+r)(3+r)(4+r) −1

6

b4
1

(2+r)(3+r)(4+r)(5+r)
1
24

b5 − 1
(2+r)(3+r)(4+r)(5+r)(6+r) − 1

120

Using the above table, then the solution y2(x) is

y2(x) =
√
x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x+ x2

2 − x3

6 + x4

24 −
x5

120 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− 2x

5 + 4x2

35 − 8x3

315 + 16x4

3465 − 32x5

45045 +O
(
x6))

+
c2
(
1− x+ x2

2 − x3

6 + x4

24 −
x5

120 +O(x6)
)

x

Hence the final solution is
y = yh

= c1
√
x

(
1− 2x

5 + 4x2

35 − 8x3

315 + 16x4

3465 − 32x5

45045 +O
(
x6))

+
c2
(
1− x+ x2

2 − x3

6 + x4

24 −
x5

120 +O(x6)
)

x

Summary
The solution(s) found are the following

(1)
y = c1

√
x

(
1− 2x

5 + 4x2

35 − 8x3

315 + 16x4

3465 − 32x5

45045 +O
(
x6))

+
c2
(
1− x+ x2

2 − x3

6 + x4

24 −
x5

120 +O(x6)
)

x
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Verification of solutions

y = c1
√
x

(
1− 2x

5 + 4x2

35 − 8x3

315 + 16x4

3465 − 32x5

45045 +O
(
x6))

+
c2
(
1− x+ x2

2 − x3

6 + x4

24 −
x5

120 +O(x6)
)

x

Verified OK.

14.14.1 Maple step by step solution

Let’s solve
2x2y′′ + (2x2 + 3x) y′ + y(x− 1) = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (x−1)y
2x2 − (2x+3)y′

2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (2x+3)y′
2x + (x−1)y

2x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2x+3
2x , P3(x) = x−1

2x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
2x2y′′ + x(2x+ 3) y′ + y(x− 1) = 0

• Assume series solution for y
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y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + 2r)xr +
(

∞∑
k=1

(ak(k + r + 1) (2k + 2r − 1) + ak−1(2k + 2r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1, 12

}
• Each term in the series must be 0, giving the recursion relation

2
(
k + r − 1

2

)
(ak(k + r + 1) + ak−1) = 0

• Shift index using k− >k + 1
2
(
k + 1

2 + r
)
(ak+1(k + 2 + r) + ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

k+2+r

• Recursion relation for r = −1
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ak+1 = − ak
k+1

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+1 = − ak

k+1

]
• Recursion relation for r = 1

2

ak+1 = − ak
k+ 5

2

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+1 = − ak
k+ 5

2

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, a1+k = − ak

1+k
, b1+k = − bk

k+ 5
2

]

4853



Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 47� �
Order:=6;
dsolve(2*x^2*diff(y(x),x$2)+x*(3+2*x)*diff(y(x),x)-(1-x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c2x

3
2
(
1− 2

5x+ 4
35x

2 − 8
315x

3 + 16
3465x

4 − 32
45045x

5 +O(x6)
)
+ c1

(
1− x+ 1

2x
2 − 1

6x
3 + 1

24x
4 − 1

120x
5 +O(x6)

)
x
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 86� �
AsymptoticDSolveValue[2*x^2*y''[x]+x*(3+2*x)*y'[x]-(1-x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x

(
− 32x5

45045 + 16x4

3465 − 8x3

315 + 4x2

35 − 2x
5 + 1

)

+
c2
(
− x5

120 +
x4

24 −
x3

6 + x2

2 − x+ 1
)

x
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14.15 problem 15
14.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4866

Internal problem ID [1306]
Internal file name [OUTPUT/1307_Sunday_June_05_2022_02_09_29_AM_98679901/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

x2(x+ 3) y′′ + x(4x+ 5) y′ − (1− 2x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x3 + 3x2) y′′ + (4x2 + 5x
)
y′ + y(2x− 1) = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 4x+ 5
x (x+ 3)

q(x) = 2x− 1
x2 (x+ 3)
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Table 558: Table p(x), q(x) singularites.

p(x) = 4x+5
x(x+3)

singularity type
x = −3 “regular”
x = 0 “regular”

q(x) = 2x−1
x2(x+3)

singularity type
x = −3 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−3, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x+ 3) y′′ +
(
4x2 + 5x

)
y′ + y(2x− 1) = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x+ 3)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
4x2 + 5x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
(2x− 1) = 0
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Which simplifies to

(2A)

(
∞∑
n=0

x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4x1+n+ran(n+ r)
)

+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=0

2x1+n+ran

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

4x1+n+ran(n+ r) =
∞∑
n=1

4an−1(n+ r − 1)xn+r

∞∑
n =0

2x1+n+ran =
∞∑
n=1

2an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

3xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

4an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=1

2an−1x
n+r

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

3xn+ran(n+ r) (n+ r − 1) + 5xn+ran(n+ r)− anx
n+r = 0
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When n = 0 the above becomes

3xra0r(−1 + r) + 5xra0r − a0x
r = 0

Or
(3xrr(−1 + r) + 5xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
3r2 + 2r − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

3r2 + 2r − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 = −1

Since a0 6= 0 then the indicial equation becomes(
3r2 + 2r − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) =
∞∑
n=0

bnx
n−1

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an−1(n+ r − 1) (n+ r − 2) + 3an(n+ r) (n+ r − 1)
+ 4an−1(n+ r − 1) + 5an(n+ r) + 2an−1 − an = 0
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Solving for an from recursive equation (4) gives

an = −(n+ r) an−1

3n+ 3r − 1 (4)

Which for the root r = 1
3 becomes

an = −(3n+ 1) an−1

9n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−1− r

2 + 3r

Which for the root r = 1
3 becomes

a1 = −4
9

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
2+3r −4

9

For n = 2, using the above recursive equation gives

a2 =
r2 + 3r + 2

9r2 + 21r + 10

Which for the root r = 1
3 becomes

a2 =
14
81

And the table now becomes
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n an,r an

a0 1 1
a1

−1−r
2+3r −4

9

a2
r2+3r+2

9r2+21r+10
14
81

For n = 3, using the above recursive equation gives

a3 =
−r3 − 6r2 − 11r − 6

27r3 + 135r2 + 198r + 80
Which for the root r = 1

3 becomes

a3 = − 140
2187

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
2+3r −4

9

a2
r2+3r+2

9r2+21r+10
14
81

a3
−r3−6r2−11r−6

27r3+135r2+198r+80 − 140
2187

For n = 4, using the above recursive equation gives

a4 =
r4 + 10r3 + 35r2 + 50r + 24

81r4 + 702r3 + 2079r2 + 2418r + 880
Which for the root r = 1

3 becomes

a4 =
455
19683

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
2+3r −4

9

a2
r2+3r+2

9r2+21r+10
14
81

a3
−r3−6r2−11r−6

27r3+135r2+198r+80 − 140
2187

a4
r4+10r3+35r2+50r+24

81r4+702r3+2079r2+2418r+880
455

19683
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For n = 5, using the above recursive equation gives

a5 =
−r5 − 15r4 − 85r3 − 225r2 − 274r − 120

243r5 + 3240r4 + 16065r3 + 36360r2 + 36492r + 12320

Which for the root r = 1
3 becomes

a5 = − 1456
177147

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
2+3r −4

9

a2
r2+3r+2

9r2+21r+10
14
81

a3
−r3−6r2−11r−6

27r3+135r2+198r+80 − 140
2187

a4
r4+10r3+35r2+50r+24

81r4+702r3+2079r2+2418r+880
455

19683

a5
−r5−15r4−85r3−225r2−274r−120

243r5+3240r4+16065r3+36360r2+36492r+12320 − 1456
177147

Using the above table, then the solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
1− 4x

9 + 14x2

81 − 140x3

2187 + 455x4

19683 − 1456x5

177147 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)bn−1(n+ r − 1) (n+ r − 2) + 3bn(n+ r) (n+ r − 1)
+ 4bn−1(n+ r − 1) + 5bn(n+ r) + 2bn−1 − bn = 0

Solving for bn from recursive equation (4) gives

bn = −(n+ r) bn−1

3n+ 3r − 1 (4)

Which for the root r = −1 becomes

bn = −(n− 1) bn−1

3n− 4 (5)
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At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
−1− r

2 + 3r
Which for the root r = −1 becomes

b1 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
2+3r 0

For n = 2, using the above recursive equation gives

b2 =
r2 + 3r + 2

9r2 + 21r + 10
Which for the root r = −1 becomes

b2 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
2+3r 0

b2
r2+3r+2

9r2+21r+10 0

For n = 3, using the above recursive equation gives

b3 =
−r3 − 6r2 − 11r − 6

27r3 + 135r2 + 198r + 80
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Which for the root r = −1 becomes

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
2+3r 0

b2
r2+3r+2

9r2+21r+10 0

b3
−r3−6r2−11r−6

27r3+135r2+198r+80 0

For n = 4, using the above recursive equation gives

b4 =
r4 + 10r3 + 35r2 + 50r + 24

81r4 + 702r3 + 2079r2 + 2418r + 880

Which for the root r = −1 becomes

b4 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
2+3r 0

b2
r2+3r+2

9r2+21r+10 0

b3
−r3−6r2−11r−6

27r3+135r2+198r+80 0

b4
r4+10r3+35r2+50r+24

81r4+702r3+2079r2+2418r+880 0

For n = 5, using the above recursive equation gives

b5 =
−r5 − 15r4 − 85r3 − 225r2 − 274r − 120

243r5 + 3240r4 + 16065r3 + 36360r2 + 36492r + 12320

Which for the root r = −1 becomes

b5 = 0
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And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
2+3r 0

b2
r2+3r+2

9r2+21r+10 0

b3
−r3−6r2−11r−6

27r3+135r2+198r+80 0

b4
r4+10r3+35r2+50r+24

81r4+702r3+2079r2+2418r+880 0

b5
−r5−15r4−85r3−225r2−274r−120

243r5+3240r4+16065r3+36360r2+36492r+12320 0

Using the above table, then the solution y2(x) is

y2(x) = x
1
3
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= 1 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3

(
1− 4x

9 + 14x2

81 − 140x3

2187 + 455x4

19683 − 1456x5

177147 +O
(
x6))+ c2(1 +O(x6))

x

Hence the final solution is

y = yh

= c1x
1
3

(
1− 4x

9 + 14x2

81 − 140x3

2187 + 455x4

19683 − 1456x5

177147 +O
(
x6))+ c2(1 +O(x6))

x

Summary
The solution(s) found are the following

(1)y = c1x
1
3

(
1− 4x

9 + 14x2

81 − 140x3

2187 + 455x4

19683 − 1456x5

177147 +O
(
x6))+ c2(1 +O(x6))

x

Verification of solutions

y = c1x
1
3

(
1− 4x

9 + 14x2

81 − 140x3

2187 + 455x4

19683 − 1456x5

177147 +O
(
x6))+ c2(1 +O(x6))

x

Verified OK.

4865



14.15.1 Maple step by step solution

Let’s solve
x2(x+ 3) y′′ + (4x2 + 5x) y′ + y(2x− 1) = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (2x−1)y
x2(x+3) −

(4x+5)y′
x(x+3)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (4x+5)y′
x(x+3) + (2x−1)y

x2(x+3) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 4x+5
x(x+3) , P3(x) = 2x−1

x2(x+3)

]
◦ (x+ 3) · P2(x) is analytic at x = −3

((x+ 3) · P2(x))
∣∣∣∣
x=−3

= 7
3

◦ (x+ 3)2 · P3(x) is analytic at x = −3(
(x+ 3)2 · P3(x)

) ∣∣∣∣
x=−3

= 0

◦ x = −3is a regular singular point
Check to see if x0 is a regular singular point
x0 = −3

• Multiply by denominators
x2(x+ 3) y′′ + x(4x+ 5) y′ + y(2x− 1) = 0

• Change variables using x = u− 3 so that the regular singular point is at u = 0

(u3 − 6u2 + 9u)
(

d2

du2y(u)
)
+ (4u2 − 19u+ 21)

(
d
du
y(u)

)
+ (2u− 7) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

3a0r(4 + 3r)u−1+r + (3a1(1 + r) (7 + 3r)− a0(7 + 6r) (1 + r))ur +
(

∞∑
k=1

(3ak+1(k + r + 1) (3k + 7 + 3r)− ak(6k + 6r + 7) (k + r + 1) + ak−1(k + r + 1) (k + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
3r(4 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−4

3

}
• Each term must be 0

3a1(1 + r) (7 + 3r)− a0(7 + 6r) (1 + r) = 0
• Each term in the series must be 0, giving the recursion relation

−6
((

ak − ak−1
6 − 3ak+1

2

)
k +

(
ak − ak−1

6 − 3ak+1
2

)
r + 7ak

6 − 7ak+1
2

)
(k + r + 1) = 0

• Shift index using k− >k + 1

−6
((

ak+1 − ak
6 − 3ak+2

2

)
(k + 1) +

(
ak+1 − ak

6 − 3ak+2
2

)
r + 7ak+1

6 − 7ak+2
2

)
(k + r + 2) = 0
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• Recursion relation that defines series solution to ODE
ak+2 = −kak−6kak+1+rak−6rak+1+ak−13ak+1

3(3k+10+3r)

• Recursion relation for r = 0
ak+2 = −kak−6kak+1+ak−13ak+1

3(3k+10)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −kak−6kak+1+ak−13ak+1

3(3k+10) , 21a1 − 7a0 = 0
]

• Revert the change of variables u = x+ 3[
y =

∞∑
k=0

ak(x+ 3)k , ak+2 = −kak−6kak+1+ak−13ak+1
3(3k+10) , 21a1 − 7a0 = 0

]
• Recursion relation for r = −4

3

ak+2 = −kak−6kak+1− 1
3ak−5ak+1

3(3k+6)

• Solution for r = −4
3[

y(u) =
∞∑
k=0

aku
k− 4

3 , ak+2 = −kak−6kak+1− 1
3ak−5ak+1

3(3k+6) ,−3a1 − a0
3 = 0

]
• Revert the change of variables u = x+ 3[

y =
∞∑
k=0

ak(x+ 3)k−
4
3 , ak+2 = −kak−6kak+1− 1

3ak−5ak+1
3(3k+6) ,−3a1 − a0

3 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak(x+ 3)k
)
+
(

∞∑
k=0

bk(x+ 3)k−
4
3

)
, ak+2 = −kak−6ka1+k+ak−13a1+k

3(3k+10) , 21a1 − 7a0 = 0, bk+2 = −kbk−6kb1+k− 1
3 bk−5b1+k

3(3k+6) ,−3b1 − b0
3 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 37� �
Order:=6;
dsolve(x^2*(3+x)*diff(y(x),x$2)+x*(5+4*x)*diff(y(x),x)-(1-2*x)*y(x)=0,y(x),type='series',x=0);� �
y(x) =

c2x
4
3
(
1− 4

9x+ 14
81x

2 − 140
2187x

3 + 455
19683x

4 − 1456
177147x

5 +O(x6)
)
+ c1(1 + O (x6))

x

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 53� �
AsymptoticDSolveValue[x^2*(3+x)*y''[x]+x*(5+4*x)*y'[x]-(1-2*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
3
√
x

(
−1456x5

177147 + 455x4

19683 − 140x3

2187 + 14x2

81 − 4x
9 + 1

)
+ c2

x
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14.16 problem 16
14.16.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4880

Internal problem ID [1307]
Internal file name [OUTPUT/1308_Sunday_June_05_2022_02_09_32_AM_98310107/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 16.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2x2y′′ + x(x+ 5) y′ − (−3x+ 2) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

2x2y′′ +
(
x2 + 5x

)
y′ + (3x− 2) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x+ 5
2x

q(x) = 3x− 2
2x2
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Table 560: Table p(x), q(x) singularites.

p(x) = x+5
2x

singularity type
x = 0 “regular”

q(x) = 3x−2
2x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x2y′′ +
(
x2 + 5x

)
y′ + (3x− 2) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x2 + 5x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (3x− 2)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

x1+n+ran(n+ r)
)

+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=0

3x1+n+ran

)
+

∞∑
n =0

(
−2anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r

∞∑
n =0

3x1+n+ran =
∞∑
n=1

3an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=1

3an−1x
n+r

)
+

∞∑
n =0

(
−2anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+ran(n+ r) (n+ r − 1) + 5xn+ran(n+ r)− 2anxn+r = 0

When n = 0 the above becomes

2xra0r(−1 + r) + 5xra0r − 2a0xr = 0

Or
(2xrr(−1 + r) + 5xrr − 2xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
2r2 + 3r − 2

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

2r2 + 3r − 2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = −2

Since a0 6= 0 then the indicial equation becomes(
2r2 + 3r − 2

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 5
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n−2

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)2an(n+ r) (n+ r − 1) + an−1(n+ r − 1) + 5an(n+ r) + 3an−1 − 2an = 0

Solving for an from recursive equation (4) gives

an = − an−1

2n+ 2r − 1 (4)

Which for the root r = 1
2 becomes

an = −an−1

2n (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 1
1 + 2r

Which for the root r = 1
2 becomes

a1 = −1
2

And the table now becomes

n an,r an

a0 1 1
a1 − 1

1+2r −1
2

For n = 2, using the above recursive equation gives

a2 =
1

4r2 + 8r + 3

Which for the root r = 1
2 becomes

a2 =
1
8

And the table now becomes

n an,r an

a0 1 1
a1 − 1

1+2r −1
2

a2
1

4r2+8r+3
1
8

For n = 3, using the above recursive equation gives

a3 = − 1
8r3 + 36r2 + 46r + 15
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Which for the root r = 1
2 becomes

a3 = − 1
48

And the table now becomes

n an,r an

a0 1 1
a1 − 1

1+2r −1
2

a2
1

4r2+8r+3
1
8

a3 − 1
8r3+36r2+46r+15 − 1

48

For n = 4, using the above recursive equation gives

a4 =
1

16r4 + 128r3 + 344r2 + 352r + 105

Which for the root r = 1
2 becomes

a4 =
1
384

And the table now becomes

n an,r an

a0 1 1
a1 − 1

1+2r −1
2

a2
1

4r2+8r+3
1
8

a3 − 1
8r3+36r2+46r+15 − 1

48

a4
1

16r4+128r3+344r2+352r+105
1

384

For n = 5, using the above recursive equation gives

a5 = − 1
32r5 + 400r4 + 1840r3 + 3800r2 + 3378r + 945

Which for the root r = 1
2 becomes

a5 = − 1
3840
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And the table now becomes

n an,r an

a0 1 1
a1 − 1

1+2r −1
2

a2
1

4r2+8r+3
1
8

a3 − 1
8r3+36r2+46r+15 − 1

48

a4
1

16r4+128r3+344r2+352r+105
1

384

a5 − 1
32r5+400r4+1840r3+3800r2+3378r+945 − 1

3840

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− x

2 + x2

8 − x3

48 + x4

384 − x5

3840 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)2bn(n+ r) (n+ r − 1) + bn−1(n+ r − 1) + 5bn(n+ r) + 3bn−1 − 2bn = 0

Solving for bn from recursive equation (4) gives

bn = − bn−1

2n+ 2r − 1 (4)

Which for the root r = −2 becomes

bn = − bn−1

2n− 5 (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
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For n = 1, using the above recursive equation gives

b1 = − 1
1 + 2r

Which for the root r = −2 becomes

b1 =
1
3

And the table now becomes

n bn,r bn

b0 1 1
b1 − 1

1+2r
1
3

For n = 2, using the above recursive equation gives

b2 =
1

4r2 + 8r + 3

Which for the root r = −2 becomes

b2 =
1
3

And the table now becomes

n bn,r bn

b0 1 1
b1 − 1

1+2r
1
3

b2
1

4r2+8r+3
1
3

For n = 3, using the above recursive equation gives

b3 = − 1
8r3 + 36r2 + 46r + 15

Which for the root r = −2 becomes

b3 = −1
3

And the table now becomes
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n bn,r bn

b0 1 1
b1 − 1

1+2r
1
3

b2
1

4r2+8r+3
1
3

b3 − 1
8r3+36r2+46r+15 −1

3

For n = 4, using the above recursive equation gives

b4 =
1

16r4 + 128r3 + 344r2 + 352r + 105

Which for the root r = −2 becomes

b4 =
1
9

And the table now becomes

n bn,r bn

b0 1 1
b1 − 1

1+2r
1
3

b2
1

4r2+8r+3
1
3

b3 − 1
8r3+36r2+46r+15 −1

3

b4
1

16r4+128r3+344r2+352r+105
1
9

For n = 5, using the above recursive equation gives

b5 = − 1
32r5 + 400r4 + 1840r3 + 3800r2 + 3378r + 945

Which for the root r = −2 becomes

b5 = − 1
45

And the table now becomes
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n bn,r bn

b0 1 1
b1 − 1

1+2r
1
3

b2
1

4r2+8r+3
1
3

b3 − 1
8r3+36r2+46r+15 −1

3

b4
1

16r4+128r3+344r2+352r+105
1
9

b5 − 1
32r5+400r4+1840r3+3800r2+3378r+945 − 1

45

Using the above table, then the solution y2(x) is

y2(x) =
√
x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1 + x

3 +
x2

3 − x3

3 + x4

9 − x5

45 +O(x6)
x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− x

2 + x2

8 − x3

48 + x4

384 − x5

3840 +O
(
x6))

+
c2
(
1 + x

3 +
x2

3 − x3

3 + x4

9 − x5

45 +O(x6)
)

x2

Hence the final solution is

y = yh

= c1
√
x

(
1− x

2 + x2

8 − x3

48 + x4

384 − x5

3840 +O
(
x6))

+
c2
(
1 + x

3 +
x2

3 − x3

3 + x4

9 − x5

45 +O(x6)
)

x2

Summary
The solution(s) found are the following

(1)
y = c1

√
x

(
1− x

2 + x2

8 − x3

48 + x4

384 − x5

3840 +O
(
x6))

+
c2
(
1 + x

3 +
x2

3 − x3

3 + x4

9 − x5

45 +O(x6)
)

x2
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Verification of solutions

y = c1
√
x

(
1− x

2 + x2

8 − x3

48 + x4

384 − x5

3840 +O
(
x6))

+
c2
(
1 + x

3 +
x2

3 − x3

3 + x4

9 − x5

45 +O(x6)
)

x2

Verified OK.

14.16.1 Maple step by step solution

Let’s solve
2x2y′′ + (x2 + 5x) y′ + (3x− 2) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (3x−2)y
2x2 − (x+5)y′

2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (x+5)y′
2x + (3x−2)y

2x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x+5
2x , P3(x) = 3x−2

2x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
2x2y′′ + x(x+ 5) y′ + (3x− 2) y = 0

• Assume series solution for y
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y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−1 + 2r)xr +
(

∞∑
k=1

(ak(k + r + 2) (2k + 2r − 1) + ak−1(k + r + 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−2, 12

}
• Each term in the series must be 0, giving the recursion relation

2(k + r + 2)
((
k + r − 1

2

)
ak + ak−1

2

)
= 0

• Shift index using k− >k + 1
2(k + r + 3)

((
k + 1

2 + r
)
ak+1 + ak

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

2k+1+2r

• Recursion relation for r = −2
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ak+1 = − ak
2k−3

• Solution for r = −2[
y =

∞∑
k=0

akx
k−2, ak+1 = − ak

2k−3

]
• Recursion relation for r = 1

2

ak+1 = − ak
2k+2

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+1 = − ak
2k+2

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, a1+k = − ak

2k−3 , b1+k = − bk
2k+2

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 47� �
Order:=6;
dsolve(2*x^2*diff(y(x),x$2)+x*(5+x)*diff(y(x),x)-(2-3*x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c2x

5
2
(
1− 1

2x+ 1
8x

2 − 1
48x

3 + 1
384x

4 − 1
3840x

5 +O(x6)
)
+ c1

(
1 + 1

3x+ 1
3x

2 − 1
3x

3 + 1
9x

4 − 1
45x

5 +O(x6)
)

x2

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 88� �
AsymptoticDSolveValue[2*x^2*y''[x]+x*(5+x)*y'[x]-(2-3*x)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

√
x

(
− x5

3840 + x4

384 − x3

48 + x2

8 − x

2 + 1
)
+

c2
(
−x5

45 +
x4

9 − x3

3 + x2

3 + x
3 + 1

)
x2
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14.17 problem 17
14.17.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4894

Internal problem ID [1308]
Internal file name [OUTPUT/1309_Sunday_June_05_2022_02_09_35_AM_11476737/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

3x2y′′ + x(x+ 1) y′ − y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

3x2y′′ +
(
x2 + x

)
y′ − y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x+ 1
3x

q(x) = − 1
3x2
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Table 562: Table p(x), q(x) singularites.

p(x) = x+1
3x

singularity type
x = 0 “regular”

q(x) = − 1
3x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

3x2y′′ +
(
x2 + x

)
y′ − y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
3x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x2 + x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
−

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

3xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

x1+n+ran(n+ r)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
∞∑

n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

3xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
∞∑

n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

3xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− anx
n+r = 0

When n = 0 the above becomes

3xra0r(−1 + r) + xra0r − a0x
r = 0

Or
(3xrr(−1 + r) + xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
3r2 − 2r − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

3r2 − 2r − 1 = 0
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Solving for r gives the roots of the indicial equation as

r1 = 1

r2 = −1
3

Since a0 6= 0 then the indicial equation becomes(
3r2 − 2r − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
1+n

y2(x) =
∞∑
n=0

bnx
n− 1

3

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)3an(n+ r) (n+ r − 1) + an−1(n+ r − 1) + an(n+ r)− an = 0

Solving for an from recursive equation (4) gives

an = − an−1

3n+ 3r + 1 (4)

Which for the root r = 1 becomes

an = − an−1

3n+ 4 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.
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n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 1
4 + 3r

Which for the root r = 1 becomes
a1 = −1

7
And the table now becomes

n an,r an

a0 1 1
a1 − 1

4+3r −1
7

For n = 2, using the above recursive equation gives

a2 =
1

9r2 + 33r + 28

Which for the root r = 1 becomes
a2 =

1
70

And the table now becomes

n an,r an

a0 1 1
a1 − 1

4+3r −1
7

a2
1

9r2+33r+28
1
70

For n = 3, using the above recursive equation gives

a3 = − 1
27r3 + 189r2 + 414r + 280

Which for the root r = 1 becomes

a3 = − 1
910
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And the table now becomes

n an,r an

a0 1 1
a1 − 1

4+3r −1
7

a2
1

9r2+33r+28
1
70

a3 − 1
27r3+189r2+414r+280 − 1

910

For n = 4, using the above recursive equation gives

a4 =
1

81r4 + 918r3 + 3699r2 + 6222r + 3640

Which for the root r = 1 becomes

a4 =
1

14560

And the table now becomes

n an,r an

a0 1 1
a1 − 1

4+3r −1
7

a2
1

9r2+33r+28
1
70

a3 − 1
27r3+189r2+414r+280 − 1

910

a4
1

81r4+918r3+3699r2+6222r+3640
1

14560

For n = 5, using the above recursive equation gives

a5 = − 1
243r5 + 4050r4 + 25785r3 + 77850r2 + 110472r + 58240

Which for the root r = 1 becomes

a5 = − 1
276640

And the table now becomes
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n an,r an

a0 1 1
a1 − 1

4+3r −1
7

a2
1

9r2+33r+28
1
70

a3 − 1
27r3+189r2+414r+280 − 1

910

a4
1

81r4+918r3+3699r2+6222r+3640
1

14560

a5 − 1
243r5+4050r4+25785r3+77850r2+110472r+58240 − 1

276640

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− x

7 + x2

70 − x3

910 + x4

14560 − x5

276640 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)3bn(n+ r) (n+ r − 1) + bn−1(n+ r − 1) + bn(n+ r)− bn = 0

Solving for bn from recursive equation (4) gives

bn = − bn−1

3n+ 3r + 1 (4)

Which for the root r = −1
3 becomes

bn = −bn−1

3n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = − 1
4 + 3r
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Which for the root r = −1
3 becomes

b1 = −1
3

And the table now becomes

n bn,r bn

b0 1 1
b1 − 1

4+3r −1
3

For n = 2, using the above recursive equation gives

b2 =
1

9r2 + 33r + 28
Which for the root r = −1

3 becomes

b2 =
1
18

And the table now becomes

n bn,r bn

b0 1 1
b1 − 1

4+3r −1
3

b2
1

9r2+33r+28
1
18

For n = 3, using the above recursive equation gives

b3 = − 1
27r3 + 189r2 + 414r + 280

Which for the root r = −1
3 becomes

b3 = − 1
162

And the table now becomes

n bn,r bn

b0 1 1
b1 − 1

4+3r −1
3

b2
1

9r2+33r+28
1
18

b3 − 1
27r3+189r2+414r+280 − 1

162
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For n = 4, using the above recursive equation gives

b4 =
1

81r4 + 918r3 + 3699r2 + 6222r + 3640

Which for the root r = −1
3 becomes

b4 =
1

1944

And the table now becomes

n bn,r bn

b0 1 1
b1 − 1

4+3r −1
3

b2
1

9r2+33r+28
1
18

b3 − 1
27r3+189r2+414r+280 − 1

162

b4
1

81r4+918r3+3699r2+6222r+3640
1

1944

For n = 5, using the above recursive equation gives

b5 = − 1
243r5 + 4050r4 + 25785r3 + 77850r2 + 110472r + 58240

Which for the root r = −1
3 becomes

b5 = − 1
29160

And the table now becomes

n bn,r bn

b0 1 1
b1 − 1

4+3r −1
3

b2
1

9r2+33r+28
1
18

b3 − 1
27r3+189r2+414r+280 − 1

162

b4
1

81r4+918r3+3699r2+6222r+3640
1

1944

b5 − 1
243r5+4050r4+25785r3+77850r2+110472r+58240 − 1

29160
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Using the above table, then the solution y2(x) is

y2(x) = x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x

3 +
x2

18 −
x3

162 +
x4

1944 −
x5

29160 +O(x6)
x

1
3

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− x

7 + x2

70 − x3

910 + x4

14560 − x5

276640 +O
(
x6))

+
c2
(
1− x

3 +
x2

18 −
x3

162 +
x4

1944 −
x5

29160 +O(x6)
)

x
1
3

Hence the final solution is

y = yh

= c1x

(
1− x

7 + x2

70 − x3

910 + x4

14560 − x5

276640 +O
(
x6))

+
c2
(
1− x

3 +
x2

18 −
x3

162 +
x4

1944 −
x5

29160 +O(x6)
)

x
1
3

Summary
The solution(s) found are the following

(1)
y = c1x

(
1− x

7 + x2

70 − x3

910 + x4

14560 − x5

276640 +O
(
x6))

+
c2
(
1− x

3 +
x2

18 −
x3

162 +
x4

1944 −
x5

29160 +O(x6)
)

x
1
3

Verification of solutions

y = c1x

(
1− x

7 + x2

70 − x3

910 + x4

14560 − x5

276640 +O
(
x6))

+
c2
(
1− x

3 +
x2

18 −
x3

162 +
x4

1944 −
x5

29160 +O(x6)
)

x
1
3

Verified OK.
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14.17.1 Maple step by step solution

Let’s solve
3x2y′′ + (x2 + x) y′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = y
3x2 − (x+1)y′

3x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (x+1)y′
3x − y

3x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x+1
3x , P3(x) = − 1

3x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
3

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
3x2y′′ + x(x+ 1) y′ − y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 3r) (−1 + r)xr +
(

∞∑
k=1

(ak(3k + 3r + 1) (k + r − 1) + ak−1(k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 3r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
1,−1

3

}
• Each term in the series must be 0, giving the recursion relation

3
((
k + r + 1

3

)
ak + ak−1

3

)
(k + r − 1) = 0

• Shift index using k− >k + 1
3
((
k + 4

3 + r
)
ak+1 + ak

3

)
(k + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

3k+4+3r

• Recursion relation for r = 1
ak+1 = − ak

3k+7

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+1 = − ak

3k+7

]
• Recursion relation for r = −1

3

ak+1 = − ak
3k+3

• Solution for r = −1
3[

y =
∞∑
k=0

akx
k− 1

3 , ak+1 = − ak
3k+3

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
1+k

)
+
(

∞∑
k=0

bkx
k− 1

3

)
, a1+k = − ak

3k+7 , b1+k = − bk
3k+3

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 45� �
Order:=6;
dsolve(3*x^2*diff(y(x),x$2)+x*(1+x)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1
(
1− 1

3x+ 1
18x

2 − 1
162x

3 + 1
1944x

4 − 1
29160x

5 +O(x6)
)

x
1
3

+ c2x

(
1− 1

7x+ 1
70x

2 − 1
910x

3 + 1
14560x

4 − 1
276640x

5 +O
(
x6))
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 86� �
AsymptoticDSolveValue[3*x^2*y''[x]+x*(1+x)*y'[x]-y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x

(
− x5

276640 + x4

14560 − x3

910 + x2

70 − x

7 + 1
)

+
c2
(
− x5

29160 +
x4

1944 −
x3

162 +
x2

18 −
x
3 + 1

)
3
√
x
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14.18 problem 18
14.18.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4908

Internal problem ID [1309]
Internal file name [OUTPUT/1310_Sunday_June_05_2022_02_09_38_AM_33333253/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2x2y′′ − y′x+ (1− 2x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

2x2y′′ − y′x+ (1− 2x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 1
2x

q(x) = −2x− 1
2x2
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Table 564: Table p(x), q(x) singularites.

p(x) = − 1
2x

singularity type
x = 0 “regular”

q(x) = −2x−1
2x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x2y′′ − y′x+ (1− 2x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

−

(
∞∑
n=0

(n+ r) anxn+r−1

)
x+ (1− 2x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

anx
n+r

)
+

∞∑
n =0

(
−2x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2x1+n+ran

)
=

∞∑
n=1

(
−2an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

anx
n+r

)
+

∞∑
n =1

(
−2an−1x

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+ran(n+ r) (n+ r − 1)− xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

2xra0r(−1 + r)− xra0r + a0x
r = 0

Or
(2xrr(−1 + r)− xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
2r2 − 3r + 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

2r2 − 3r + 1 = 0
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Solving for r gives the roots of the indicial equation as

r1 = 1

r2 =
1
2

Since a0 6= 0 then the indicial equation becomes(
2r2 − 3r + 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
1+n

y2(x) =
∞∑
n=0

bnx
n+ 1

2

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)2an(n+ r) (n+ r − 1)− an(n+ r) + an − 2an−1 = 0

Solving for an from recursive equation (4) gives

an = 2an−1

2n2 + 4nr + 2r2 − 3n− 3r + 1 (4)

Which for the root r = 1 becomes

an = 2an−1

2n2 + n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.
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n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
2

2r2 + r

Which for the root r = 1 becomes
a1 =

2
3

And the table now becomes

n an,r an

a0 1 1
a1

2
2r2+r

2
3

For n = 2, using the above recursive equation gives

a2 =
4

4r4 + 12r3 + 11r2 + 3r

Which for the root r = 1 becomes
a2 =

2
15

And the table now becomes

n an,r an

a0 1 1
a1

2
2r2+r

2
3

a2
4

4r4+12r3+11r2+3r
2
15

For n = 3, using the above recursive equation gives

a3 =
8

r (4r3 + 12r2 + 11r + 3) (2r2 + 9r + 10)

Which for the root r = 1 becomes

a3 =
4
315
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And the table now becomes

n an,r an

a0 1 1
a1

2
2r2+r

2
3

a2
4

4r4+12r3+11r2+3r
2
15

a3
8

r(4r3+12r2+11r+3)(2r2+9r+10)
4

315

For n = 4, using the above recursive equation gives

a4 =
16

r (4r3 + 12r2 + 11r + 3) (2r2 + 9r + 10) (2r2 + 13r + 21)

Which for the root r = 1 becomes

a4 =
2

2835

And the table now becomes

n an,r an

a0 1 1
a1

2
2r2+r

2
3

a2
4

4r4+12r3+11r2+3r
2
15

a3
8

r(4r3+12r2+11r+3)(2r2+9r+10)
4

315

a4
16

r(4r3+12r2+11r+3)(2r2+9r+10)(2r2+13r+21)
2

2835

For n = 5, using the above recursive equation gives

a5 =
32

r (4r3 + 12r2 + 11r + 3) (2r2 + 9r + 10) (2r2 + 13r + 21) (2r2 + 17r + 36)

Which for the root r = 1 becomes

a5 =
4

155925

And the table now becomes
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n an,r an

a0 1 1
a1

2
2r2+r

2
3

a2
4

4r4+12r3+11r2+3r
2
15

a3
8

r(4r3+12r2+11r+3)(2r2+9r+10)
4

315

a4
16

r(4r3+12r2+11r+3)(2r2+9r+10)(2r2+13r+21)
2

2835

a5
32

r(4r3+12r2+11r+3)(2r2+9r+10)(2r2+13r+21)(2r2+17r+36)
4

155925

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1 + 2x

3 + 2x2

15 + 4x3

315 + 2x4

2835 + 4x5

155925 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)2bn(n+ r) (n+ r − 1)− bn(n+ r) + bn − 2bn−1 = 0

Solving for bn from recursive equation (4) gives

bn = 2bn−1

2n2 + 4nr + 2r2 − 3n− 3r + 1 (4)

Which for the root r = 1
2 becomes

bn = 2bn−1

n (2n− 1) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
2

2r2 + r
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Which for the root r = 1
2 becomes

b1 = 2

And the table now becomes

n bn,r bn

b0 1 1
b1

2
2r2+r

2

For n = 2, using the above recursive equation gives

b2 =
4

4r4 + 12r3 + 11r2 + 3r

Which for the root r = 1
2 becomes

b2 =
2
3

And the table now becomes

n bn,r bn

b0 1 1
b1

2
2r2+r

2

b2
4

4r4+12r3+11r2+3r
2
3

For n = 3, using the above recursive equation gives

b3 =
8

r (4r3 + 12r2 + 11r + 3) (2r2 + 9r + 10)

Which for the root r = 1
2 becomes

b3 =
4
45

And the table now becomes

n bn,r bn

b0 1 1
b1

2
2r2+r

2

b2
4

4r4+12r3+11r2+3r
2
3

b3
8

r(4r3+12r2+11r+3)(2r2+9r+10)
4
45
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For n = 4, using the above recursive equation gives

b4 =
16

r (4r3 + 12r2 + 11r + 3) (2r2 + 9r + 10) (2r2 + 13r + 21)

Which for the root r = 1
2 becomes

b4 =
2
315

And the table now becomes

n bn,r bn

b0 1 1
b1

2
2r2+r

2

b2
4

4r4+12r3+11r2+3r
2
3

b3
8

r(4r3+12r2+11r+3)(2r2+9r+10)
4
45

b4
16

r(4r3+12r2+11r+3)(2r2+9r+10)(2r2+13r+21)
2

315

For n = 5, using the above recursive equation gives

b5 =
32

r (4r3 + 12r2 + 11r + 3) (2r2 + 9r + 10) (2r2 + 13r + 21) (2r2 + 17r + 36)

Which for the root r = 1
2 becomes

b5 =
4

14175

And the table now becomes

n bn,r bn

b0 1 1
b1

2
2r2+r

2

b2
4

4r4+12r3+11r2+3r
2
3

b3
8

r(4r3+12r2+11r+3)(2r2+9r+10)
4
45

b4
16

r(4r3+12r2+11r+3)(2r2+9r+10)(2r2+13r+21)
2

315

b5
32

r(4r3+12r2+11r+3)(2r2+9r+10)(2r2+13r+21)(2r2+17r+36)
4

14175
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Using the above table, then the solution y2(x) is

y2(x) = x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
√
x

(
1 + 2x+ 2x2

3 + 4x3

45 + 2x4

315 + 4x5

14175 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1 + 2x

3 + 2x2

15 + 4x3

315 + 2x4

2835 + 4x5

155925 +O
(
x6))

+ c2
√
x

(
1 + 2x+ 2x2

3 + 4x3

45 + 2x4

315 + 4x5

14175 +O
(
x6))

Hence the final solution is

y = yh

= c1x

(
1 + 2x

3 + 2x2

15 + 4x3

315 + 2x4

2835 + 4x5

155925 +O
(
x6))

+ c2
√
x

(
1 + 2x+ 2x2

3 + 4x3

45 + 2x4

315 + 4x5

14175 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

(
1 + 2x

3 + 2x2

15 + 4x3

315 + 2x4

2835 + 4x5

155925 +O
(
x6))

+ c2
√
x

(
1 + 2x+ 2x2

3 + 4x3

45 + 2x4

315 + 4x5

14175 +O
(
x6))

Verification of solutions

y = c1x

(
1 + 2x

3 + 2x2

15 + 4x3

315 + 2x4

2835 + 4x5

155925 +O
(
x6))

+ c2
√
x

(
1 + 2x+ 2x2

3 + 4x3

45 + 2x4

315 + 4x5

14175 +O
(
x6))

Verified OK.
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14.18.1 Maple step by step solution

Let’s solve
2x2y′′ − y′x+ (1− 2x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = (2x−1)y

2x2 + y′

2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − y′

2x − (2x−1)y
2x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = − 1
2x , P3(x) = −2x−1

2x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
2x2y′′ − y′x+ (1− 2x) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−1 + r)xr +
(

∞∑
k=1

(ak(2k + 2r − 1) (k + r − 1)− 2ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
1, 12
}

• Each term in the series must be 0, giving the recursion relation
2
(
k + r − 1

2

)
(k + r − 1) ak − 2ak−1 = 0

• Shift index using k− >k + 1
2
(
k + 1

2 + r
)
(k + r) ak+1 − 2ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak

(2k+1+2r)(k+r)

• Recursion relation for r = 1
ak+1 = 2ak

(2k+3)(k+1)

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+1 = 2ak

(2k+3)(k+1)

]
• Recursion relation for r = 1

2

ak+1 = 2ak
(2k+2)

(
k+ 1

2
)

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+1 = 2ak
(2k+2)

(
k+ 1

2
)
]
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• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
1+k

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, a1+k = 2ak

(2k+3)(1+k) , b1+k = 2bk
(2k+2)

(
k+ 1

2
)
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 45� �
Order:=6;
dsolve(2*x^2*diff(y(x),x$2)-x*diff(y(x),x)+(1-2*x)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1
√
x

(
1 + 2x+ 2

3x
2 + 4

45x
3 + 2

315x
4 + 4

14175x
5 +O

(
x6))

+ c2x

(
1 + 2

3x+ 2
15x

2 + 4
315x

3 + 2
2835x

4 + 4
155925x

5 +O
(
x6))

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 84� �
AsymptoticDSolveValue[2*x^2*y''[x]-x*y'[x]+(1-2*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x

(
4x5

155925 + 2x4

2835 + 4x3

315 + 2x2

15 + 2x
3 + 1

)
+ c2

√
x

(
4x5

14175 + 2x4

315 + 4x3

45 + 2x2

3 + 2x+ 1
)
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14.19 problem 19
14.19.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4921

Internal problem ID [1310]
Internal file name [OUTPUT/1311_Sunday_June_05_2022_02_09_41_AM_13881759/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

9x2y′′ + 9y′x− (3x+ 1) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

9x2y′′ + 9y′x+ (−3x− 1) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = −3x+ 1
9x2
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Table 566: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = −3x+1
9x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

9x2y′′ + 9y′x+ (−3x− 1) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
9x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 9
(

∞∑
n=0

(n+ r) anxn+r−1

)
x+ (−3x− 1)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

9xn+ran(n+ r)
)

+
∞∑

n =0

(
−3x1+n+ran

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−3x1+n+ran

)
=

∞∑
n=1

(
−3an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

9xn+ran(n+ r)
)

+
∞∑

n =1

(
−3an−1x

n+r
)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

9xn+ran(n+ r) (n+ r − 1) + 9xn+ran(n+ r)− anx
n+r = 0

When n = 0 the above becomes

9xra0r(−1 + r) + 9xra0r − a0x
r = 0

Or
(9xrr(−1 + r) + 9xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
9r2 − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

9r2 − 1 = 0
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Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 = −1
3

Since a0 6= 0 then the indicial equation becomes(
9r2 − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) =
∞∑
n=0

bnx
n− 1

3

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)9an(n+ r) (n+ r − 1) + 9an(n+ r)− 3an−1 − an = 0

Solving for an from recursive equation (4) gives

an = 3an−1

9n2 + 18nr + 9r2 − 1 (4)

Which for the root r = 1
3 becomes

an = an−1

n (3n+ 2) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.
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n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
3

9r2 + 18r + 8

Which for the root r = 1
3 becomes

a1 =
1
5

And the table now becomes

n an,r an

a0 1 1
a1

3
9r2+18r+8

1
5

For n = 2, using the above recursive equation gives

a2 =
9

(9r2 + 18r + 8) (9r2 + 36r + 35)

Which for the root r = 1
3 becomes

a2 =
1
80

And the table now becomes

n an,r an

a0 1 1
a1

3
9r2+18r+8

1
5

a2
9

(9r2+18r+8)(9r2+36r+35)
1
80

For n = 3, using the above recursive equation gives

a3 =
27

(9r2 + 18r + 8) (9r2 + 36r + 35) (9r2 + 54r + 80)

Which for the root r = 1
3 becomes

a3 =
1

2640
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And the table now becomes

n an,r an

a0 1 1
a1

3
9r2+18r+8

1
5

a2
9

(9r2+18r+8)(9r2+36r+35)
1
80

a3
27

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)
1

2640

For n = 4, using the above recursive equation gives

a4 =
81

(9r2 + 18r + 8) (9r2 + 36r + 35) (9r2 + 54r + 80) (9r2 + 72r + 143)

Which for the root r = 1
3 becomes

a4 =
1

147840

And the table now becomes

n an,r an

a0 1 1
a1

3
9r2+18r+8

1
5

a2
9

(9r2+18r+8)(9r2+36r+35)
1
80

a3
27

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)
1

2640

a4
81

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)(9r2+72r+143)
1

147840

For n = 5, using the above recursive equation gives

a5 =
243

(9r2 + 18r + 8) (9r2 + 36r + 35) (9r2 + 54r + 80) (9r2 + 72r + 143) (9r2 + 90r + 224)

Which for the root r = 1
3 becomes

a5 =
1

12566400

And the table now becomes
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n an,r an

a0 1 1
a1

3
9r2+18r+8

1
5

a2
9

(9r2+18r+8)(9r2+36r+35)
1
80

a3
27

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)
1

2640

a4
81

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)(9r2+72r+143)
1

147840

a5
243

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)(9r2+72r+143)(9r2+90r+224)
1

12566400

Using the above table, then the solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
1 + x

5 + x2

80 + x3

2640 + x4

147840 + x5

12566400 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)9bn(n+ r) (n+ r − 1) + 9bn(n+ r)− 3bn−1 − bn = 0

Solving for bn from recursive equation (4) gives

bn = 3bn−1

9n2 + 18nr + 9r2 − 1 (4)

Which for the root r = −1
3 becomes

bn = bn−1

n (3n− 2) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
3

9r2 + 18r + 8
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Which for the root r = −1
3 becomes

b1 = 1

And the table now becomes

n bn,r bn

b0 1 1
b1

3
9r2+18r+8 1

For n = 2, using the above recursive equation gives

b2 =
9

(9r2 + 18r + 8) (9r2 + 36r + 35)
Which for the root r = −1

3 becomes

b2 =
1
8

And the table now becomes

n bn,r bn

b0 1 1
b1

3
9r2+18r+8 1

b2
9

(9r2+18r+8)(9r2+36r+35)
1
8

For n = 3, using the above recursive equation gives

b3 =
27

(9r2 + 18r + 8) (9r2 + 36r + 35) (9r2 + 54r + 80)
Which for the root r = −1

3 becomes

b3 =
1
168

And the table now becomes

n bn,r bn

b0 1 1
b1

3
9r2+18r+8 1

b2
9

(9r2+18r+8)(9r2+36r+35)
1
8

b3
27

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)
1

168
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For n = 4, using the above recursive equation gives

b4 =
81

(9r2 + 18r + 8) (9r2 + 36r + 35) (9r2 + 54r + 80) (9r2 + 72r + 143)

Which for the root r = −1
3 becomes

b4 =
1

6720

And the table now becomes

n bn,r bn

b0 1 1
b1

3
9r2+18r+8 1

b2
9

(9r2+18r+8)(9r2+36r+35)
1
8

b3
27

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)
1

168

b4
81

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)(9r2+72r+143)
1

6720

For n = 5, using the above recursive equation gives

b5 =
243

(9r2 + 18r + 8) (9r2 + 36r + 35) (9r2 + 54r + 80) (9r2 + 72r + 143) (9r2 + 90r + 224)

Which for the root r = −1
3 becomes

b5 =
1

436800

And the table now becomes

n bn,r bn

b0 1 1
b1

3
9r2+18r+8 1

b2
9

(9r2+18r+8)(9r2+36r+35)
1
8

b3
27

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)
1

168

b4
81

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)(9r2+72r+143)
1

6720

b5
243

(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)(9r2+72r+143)(9r2+90r+224)
1

436800
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Using the above table, then the solution y2(x) is

y2(x) = x
1
3
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1 + x+ x2

8 + x3

168 +
x4

6720 +
x5

436800 +O(x6)
x

1
3

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3

(
1 + x

5 + x2

80 + x3

2640 + x4

147840 + x5

12566400 +O
(
x6))

+
c2
(
1 + x+ x2

8 + x3

168 +
x4

6720 +
x5

436800 +O(x6)
)

x
1
3

Hence the final solution is

y = yh

= c1x
1
3

(
1 + x

5 + x2

80 + x3

2640 + x4

147840 + x5

12566400 +O
(
x6))

+
c2
(
1 + x+ x2

8 + x3

168 +
x4

6720 +
x5

436800 +O(x6)
)

x
1
3

Summary
The solution(s) found are the following

(1)
y = c1x

1
3

(
1 + x

5 + x2

80 + x3

2640 + x4

147840 + x5

12566400 +O
(
x6))

+
c2
(
1 + x+ x2

8 + x3

168 +
x4

6720 +
x5

436800 +O(x6)
)

x
1
3

Verification of solutions

y = c1x
1
3

(
1 + x

5 + x2

80 + x3

2640 + x4

147840 + x5

12566400 +O
(
x6))

+
c2
(
1 + x+ x2

8 + x3

168 +
x4

6720 +
x5

436800 +O(x6)
)

x
1
3

Verified OK.
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14.19.1 Maple step by step solution

Let’s solve
9x2y′′ + 9y′x+ (−3x− 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = (3x+1)y

9x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x
− (3x+1)y

9x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = −3x+1

9x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
9x2y′′ + 9y′x+ (−3x− 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 3r) (−1 + 3r)xr +
(

∞∑
k=1

(ak(3k + 3r + 1) (3k + 3r − 1)− 3ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 3r) (−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

3 ,
1
3

}
• Each term in the series must be 0, giving the recursion relation

ak(3k + 3r + 1) (3k + 3r − 1)− 3ak−1 = 0
• Shift index using k− >k + 1

ak+1(3k + 4 + 3r) (3k + 2 + 3r)− 3ak = 0
• Recursion relation that defines series solution to ODE

ak+1 = 3ak
(3k+4+3r)(3k+2+3r)

• Recursion relation for r = −1
3

ak+1 = 3ak
(3k+3)(3k+1)

• Solution for r = −1
3[

y =
∞∑
k=0

akx
k− 1

3 , ak+1 = 3ak
(3k+3)(3k+1)

]
• Recursion relation for r = 1

3

ak+1 = 3ak
(3k+5)(3k+3)

• Solution for r = 1
3[

y =
∞∑
k=0

akx
k+ 1

3 , ak+1 = 3ak
(3k+5)(3k+3)

]

4922



• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k− 1

3

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, a1+k = 3ak

(3k+3)(3k+1) , b1+k = 3bk
(3k+5)(3k+3)

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 47� �
Order:=6;
dsolve(9*x^2*diff(y(x),x$2)+9*x*diff(y(x),x)-(1+3*x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c2x

2
3
(
1 + 1

5x+ 1
80x

2 + 1
2640x

3 + 1
147840x

4 + 1
12566400x

5 +O(x6)
)
+ c1

(
1 + x+ 1

8x
2 + 1

168x
3 + 1

6720x
4 + 1

436800x
5 +O(x6)

)
x

1
3
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 86� �
AsymptoticDSolveValue[9*x^2*y''[x]+9*x*y'[x]-(1+3*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
3
√
x

(
x5

12566400 + x4

147840 + x3

2640 + x2

80 + x

5 + 1
)

+
c2
(

x5

436800 +
x4

6720 +
x3

168 +
x2

8 + x+ 1
)

3
√
x
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14.20 problem 20
14.20.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4935

Internal problem ID [1311]
Internal file name [OUTPUT/1312_Sunday_June_05_2022_02_09_43_AM_25506030/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 20.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

3x2y′′ + x(x+ 1) y′ − (3x+ 1) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

3x2y′′ +
(
x2 + x

)
y′ + (−3x− 1) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x+ 1
3x

q(x) = −3x+ 1
3x2
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Table 568: Table p(x), q(x) singularites.

p(x) = x+1
3x

singularity type
x = 0 “regular”

q(x) = −3x+1
3x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

3x2y′′ +
(
x2 + x

)
y′ + (−3x− 1) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
3x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x2 + x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (−3x− 1)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

3xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

x1+n+ran(n+ r)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
∞∑

n =0

(
−3x1+n+ran

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r

∞∑
n =0

(
−3x1+n+ran

)
=

∞∑
n=1

(
−3an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

3xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
∞∑

n =1

(
−3an−1x

n+r
)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

3xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− anx
n+r = 0

When n = 0 the above becomes

3xra0r(−1 + r) + xra0r − a0x
r = 0

Or
(3xrr(−1 + r) + xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
3r2 − 2r − 1

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

3r2 − 2r − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1

r2 = −1
3

Since a0 6= 0 then the indicial equation becomes(
3r2 − 2r − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
1+n

y2(x) =
∞∑
n=0

bnx
n− 1

3

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)3an(n+ r) (n+ r − 1) + an−1(n+ r − 1) + an(n+ r)− 3an−1 − an = 0

Solving for an from recursive equation (4) gives

an = − an−1(n+ r − 4)
3n2 + 6nr + 3r2 − 2n− 2r − 1 (4)

Which for the root r = 1 becomes

an = −an−1(n− 3)
n (3n+ 4) (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
3− r

r (3r + 4)

Which for the root r = 1 becomes
a1 =

2
7

And the table now becomes

n an,r an

a0 1 1
a1

3−r
r(3r+4)

2
7

For n = 2, using the above recursive equation gives

a2 =
(−3 + r) (−2 + r)

9r4 + 42r3 + 61r2 + 28r

Which for the root r = 1 becomes
a2 =

1
70

And the table now becomes

n an,r an

a0 1 1
a1

3−r
r(3r+4)

2
7

a2
(−3+r)(−2+r)

9r4+42r3+61r2+28r
1
70

For n = 3, using the above recursive equation gives

a3 = − (−3 + r) (−2 + r) (−1 + r)
r (9r3 + 42r2 + 61r + 28) (3r2 + 16r + 20)
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Which for the root r = 1 becomes
a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1

3−r
r(3r+4)

2
7

a2
(−3+r)(−2+r)

9r4+42r3+61r2+28r
1
70

a3 − (−3+r)(−2+r)(−1+r)
r(9r3+42r2+61r+28)(3r2+16r+20) 0

For n = 4, using the above recursive equation gives

a4 =
(−3 + r) (−2 + r) (−1 + r)

(9r3 + 42r2 + 61r + 28) (3r2 + 16r + 20) (3r2 + 22r + 39)

Which for the root r = 1 becomes
a4 = 0

And the table now becomes

n an,r an

a0 1 1
a1

3−r
r(3r+4)

2
7

a2
(−3+r)(−2+r)

9r4+42r3+61r2+28r
1
70

a3 − (−3+r)(−2+r)(−1+r)
r(9r3+42r2+61r+28)(3r2+16r+20) 0

a4
(−3+r)(−2+r)(−1+r)

(9r3+42r2+61r+28)(3r2+16r+20)(3r2+22r+39) 0

For n = 5, using the above recursive equation gives

a5 = − (−3 + r) (−2 + r) (−1 + r)
(3r2 + 28r + 64) (3r2 + 22r + 39) (3r2 + 16r + 20) (9r2 + 33r + 28)

Which for the root r = 1 becomes
a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1

3−r
r(3r+4)

2
7

a2
(−3+r)(−2+r)

9r4+42r3+61r2+28r
1
70

a3 − (−3+r)(−2+r)(−1+r)
r(9r3+42r2+61r+28)(3r2+16r+20) 0

a4
(−3+r)(−2+r)(−1+r)

(9r3+42r2+61r+28)(3r2+16r+20)(3r2+22r+39) 0

a5 − (−3+r)(−2+r)(−1+r)
(3r2+28r+64)(3r2+22r+39)(3r2+16r+20)(9r2+33r+28) 0

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1 + 2x

7 + x2

70 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)3bn(n+ r) (n+ r − 1) + bn−1(n+ r − 1) + bn(n+ r)− 3bn−1 − bn = 0

Solving for bn from recursive equation (4) gives

bn = − bn−1(n+ r − 4)
3n2 + 6nr + 3r2 − 2n− 2r − 1 (4)

Which for the root r = −1
3 becomes

bn = −3nbn−1 + 13bn−1

9n2 − 12n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
3− r

r (3r + 4)
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Which for the root r = −1
3 becomes

b1 = −10
3

And the table now becomes

n bn,r bn

b0 1 1
b1

3−r
r(3r+4) −10

3

For n = 2, using the above recursive equation gives

b2 =
(−3 + r) (−2 + r)

9r4 + 42r3 + 61r2 + 28r

Which for the root r = −1
3 becomes

b2 = −35
18

And the table now becomes

n bn,r bn

b0 1 1
b1

3−r
r(3r+4) −10

3

b2
(−3+r)(−2+r)

9r4+42r3+61r2+28r −35
18

For n = 3, using the above recursive equation gives

b3 = − (−3 + r) (−2 + r) (−1 + r)
r (9r3 + 42r2 + 61r + 28) (3r2 + 16r + 20)

Which for the root r = −1
3 becomes

b3 = −14
81

And the table now becomes
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n bn,r bn

b0 1 1
b1

3−r
r(3r+4) −10

3

b2
(−3+r)(−2+r)

9r4+42r3+61r2+28r −35
18

b3 − (−3+r)(−2+r)(−1+r)
r(9r3+42r2+61r+28)(3r2+16r+20) −14

81

For n = 4, using the above recursive equation gives

b4 =
(−3 + r) (−2 + r) (−1 + r)

(9r3 + 42r2 + 61r + 28) (3r2 + 16r + 20) (3r2 + 22r + 39)

Which for the root r = −1
3 becomes

b4 = − 7
3888

And the table now becomes

n bn,r bn

b0 1 1
b1

3−r
r(3r+4) −10

3

b2
(−3+r)(−2+r)

9r4+42r3+61r2+28r −35
18

b3 − (−3+r)(−2+r)(−1+r)
r(9r3+42r2+61r+28)(3r2+16r+20) −14

81

b4
(−3+r)(−2+r)(−1+r)

(9r3+42r2+61r+28)(3r2+16r+20)(3r2+22r+39) − 7
3888

For n = 5, using the above recursive equation gives

b5 = − (−3 + r) (−2 + r) (−1 + r)
(3r2 + 28r + 64) (3r2 + 22r + 39) (3r2 + 16r + 20) (9r2 + 33r + 28)

Which for the root r = −1
3 becomes

b5 =
7

320760

And the table now becomes
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n bn,r bn

b0 1 1
b1

3−r
r(3r+4) −10

3

b2
(−3+r)(−2+r)

9r4+42r3+61r2+28r −35
18

b3 − (−3+r)(−2+r)(−1+r)
r(9r3+42r2+61r+28)(3r2+16r+20) −14

81

b4
(−3+r)(−2+r)(−1+r)

(9r3+42r2+61r+28)(3r2+16r+20)(3r2+22r+39) − 7
3888

b5 − (−3+r)(−2+r)(−1+r)
(3r2+28r+64)(3r2+22r+39)(3r2+16r+20)(9r2+33r+28)

7
320760

Using the above table, then the solution y2(x) is

y2(x) = x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− 10x

3 − 35x2

18 − 14x3

81 − 7x4

3888 +
7x5

320760 +O(x6)
x

1
3

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1+ 2x

7 + x2

70 +O
(
x6))+

c2
(
1− 10x

3 − 35x2

18 − 14x3

81 − 7x4

3888 +
7x5

320760 +O(x6)
)

x
1
3

Hence the final solution is

y = yh

= c1x

(
1 + 2x

7 + x2

70 +O
(
x6))+

c2
(
1− 10x

3 − 35x2

18 − 14x3

81 − 7x4

3888 +
7x5

320760 +O(x6)
)

x
1
3

Summary
The solution(s) found are the following

y = c1x

(
1 + 2x

7 + x2

70 +O
(
x6))+

c2
(
1− 10x

3 − 35x2

18 − 14x3

81 − 7x4

3888 +
7x5

320760 +O(x6)
)

x
1
3

(1)
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Verification of solutions

y = c1x

(
1 + 2x

7 + x2

70 +O
(
x6))+

c2
(
1− 10x

3 − 35x2

18 − 14x3

81 − 7x4

3888 +
7x5

320760 +O(x6)
)

x
1
3

Verified OK.

14.20.1 Maple step by step solution

Let’s solve
3x2y′′ + (x2 + x) y′ + (−3x− 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = (3x+1)y
3x2 − (x+1)y′

3x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (x+1)y′
3x − (3x+1)y

3x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x+1
3x , P3(x) = −3x+1

3x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
3

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
3x2y′′ + x(x+ 1) y′ + (−3x− 1) y = 0

• Assume series solution for y
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y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 3r) (−1 + r)xr +
(

∞∑
k=1

(ak(3k + 3r + 1) (k + r − 1) + ak−1(k − 4 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 3r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
1,−1

3

}
• Each term in the series must be 0, giving the recursion relation

3
(
k + r + 1

3

)
(k + r − 1) ak + ak−1(k − 4 + r) = 0

• Shift index using k− >k + 1
3
(
k + 4

3 + r
)
(k + r) ak+1 + ak(k + r − 3) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r−3)

(3k+4+3r)(k+r)

• Recursion relation for r = 1 ; series terminates at k = 2
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ak+1 = − ak(k−2)
(3k+7)(k+1)

• Apply recursion relation for k = 0
a1 = 2a0

7

• Apply recursion relation for k = 1
a2 = a1

20

• Express in terms of a0
a2 = a0

70

• Terminating series solution of the ODE for r = 1 . Use reduction of order to find the second linearly independent solution
y = a0 ·

(
1 + 2

7x+ 1
70x

2)
• Recursion relation for r = −1

3

ak+1 = − ak
(
k− 10

3
)

(3k+3)
(
k− 1

3
)

• Solution for r = −1
3[

y =
∞∑
k=0

akx
k− 1

3 , ak+1 = − ak
(
k− 10

3
)

(3k+3)
(
k− 1

3
)
]

• Combine solutions and rename parameters[
y = a0 ·

(
1 + 2

7x+ 1
70x

2)+ ( ∞∑
k=0

bkx
k− 1

3

)
, b1+k = − bk

(
k− 10

3
)

(3k+3)
(
k− 1

3
)
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 39� �
Order:=6;
dsolve(3*x^2*diff(y(x),x$2)+x*(1+x)*diff(y(x),x)-(1+3*x)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1
(
1− 10

3 x− 35
18x

2 − 14
81x

3 − 7
3888x

4 + 7
320760x

5 +O(x6)
)

x
1
3

+ c2x

(
1 + 2

7x+ 1
70x

2 +O
(
x6))
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 65� �
AsymptoticDSolveValue[3*x^2*y''[x]+x*(1+x)*y'[x]-(1+3*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x

(
x2

70 + 2x
7 + 1

)
+

c2
(

7x5

320760 −
7x4

3888 −
14x3

81 − 35x2

18 − 10x
3 + 1

)
3
√
x
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14.21 problem 21
14.21.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4950

Internal problem ID [1312]
Internal file name [OUTPUT/1313_Sunday_June_05_2022_02_09_46_AM_32578457/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 21.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2x2(x+ 3) y′′ + x(1 + 5x) y′ + (x+ 1) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

2x3 + 6x2) y′′ + (5x2 + x
)
y′ + (x+ 1) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1 + 5x
2x (x+ 3)

q(x) = x+ 1
2x2 (x+ 3)
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Table 570: Table p(x), q(x) singularites.

p(x) = 1+5x
2x(x+3)

singularity type
x = −3 “regular”
x = 0 “regular”

q(x) = x+1
2x2(x+3)

singularity type
x = −3 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−3, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x2(x+ 3) y′′ +
(
5x2 + x

)
y′ + (x+ 1) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2x2(x+ 3)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
5x2 + x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (x+ 1)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

6xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

5x1+n+ran(n+ r)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

x1+n+ran

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

5x1+n+ran(n+ r) =
∞∑
n=1

5an−1(n+ r − 1)xn+r

∞∑
n =0

x1+n+ran =
∞∑
n=1

an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

6xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

5an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=1

an−1x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

6xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r) + anx
n+r = 0
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When n = 0 the above becomes

6xra0r(−1 + r) + xra0r + a0x
r = 0

Or
(6xrr(−1 + r) + xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
6r2 − 5r + 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

6r2 − 5r + 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 =
1
3

Since a0 6= 0 then the indicial equation becomes(
6r2 − 5r + 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
6 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n+ 1

3

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)2an−1(n+ r − 1) (n+ r − 2) + 6an(n+ r) (n+ r − 1)
+ 5an−1(n+ r − 1) + an(n+ r) + an−1 + an = 0
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Solving for an from recursive equation (4) gives

an = −(n+ r) an−1

3n+ 3r − 1 (4)

Which for the root r = 1
2 becomes

an = an−1(−1− 2n)
6n+ 1 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−1− r

2 + 3r

Which for the root r = 1
2 becomes

a1 = −3
7

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
2+3r −3

7

For n = 2, using the above recursive equation gives

a2 =
r2 + 3r + 2

9r2 + 21r + 10

Which for the root r = 1
2 becomes

a2 =
15
91

And the table now becomes
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n an,r an

a0 1 1
a1

−1−r
2+3r −3

7

a2
r2+3r+2

9r2+21r+10
15
91

For n = 3, using the above recursive equation gives

a3 =
−r3 − 6r2 − 11r − 6

27r3 + 135r2 + 198r + 80
Which for the root r = 1

2 becomes

a3 = − 15
247

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
2+3r −3

7

a2
r2+3r+2

9r2+21r+10
15
91

a3
−r3−6r2−11r−6

27r3+135r2+198r+80 − 15
247

For n = 4, using the above recursive equation gives

a4 =
r4 + 10r3 + 35r2 + 50r + 24

81r4 + 702r3 + 2079r2 + 2418r + 880
Which for the root r = 1

2 becomes

a4 =
27
1235

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
2+3r −3

7

a2
r2+3r+2

9r2+21r+10
15
91

a3
−r3−6r2−11r−6

27r3+135r2+198r+80 − 15
247

a4
r4+10r3+35r2+50r+24

81r4+702r3+2079r2+2418r+880
27

1235
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For n = 5, using the above recursive equation gives

a5 =
−r5 − 15r4 − 85r3 − 225r2 − 274r − 120

243r5 + 3240r4 + 16065r3 + 36360r2 + 36492r + 12320

Which for the root r = 1
2 becomes

a5 = − 297
38285

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
2+3r −3

7

a2
r2+3r+2

9r2+21r+10
15
91

a3
−r3−6r2−11r−6

27r3+135r2+198r+80 − 15
247

a4
r4+10r3+35r2+50r+24

81r4+702r3+2079r2+2418r+880
27

1235

a5
−r5−15r4−85r3−225r2−274r−120

243r5+3240r4+16065r3+36360r2+36492r+12320 − 297
38285

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− 3x

7 + 15x2

91 − 15x3

247 + 27x4

1235 − 297x5

38285 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)2bn−1(n+ r − 1) (n+ r − 2) + 6bn(n+ r) (n+ r − 1)
+ 5bn−1(n+ r − 1) + bn(n+ r) + bn−1 + bn = 0

Solving for bn from recursive equation (4) gives

bn = −(n+ r) bn−1

3n+ 3r − 1 (4)

Which for the root r = 1
3 becomes

bn = −(3n+ 1) bn−1

9n (5)
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At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
−1− r

2 + 3r

Which for the root r = 1
3 becomes

b1 = −4
9

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
2+3r −4

9

For n = 2, using the above recursive equation gives

b2 =
r2 + 3r + 2

9r2 + 21r + 10

Which for the root r = 1
3 becomes

b2 =
14
81

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
2+3r −4

9

b2
r2+3r+2

9r2+21r+10
14
81

For n = 3, using the above recursive equation gives

b3 =
−r3 − 6r2 − 11r − 6

27r3 + 135r2 + 198r + 80
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Which for the root r = 1
3 becomes

b3 = − 140
2187

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
2+3r −4

9

b2
r2+3r+2

9r2+21r+10
14
81

b3
−r3−6r2−11r−6

27r3+135r2+198r+80 − 140
2187

For n = 4, using the above recursive equation gives

b4 =
r4 + 10r3 + 35r2 + 50r + 24

81r4 + 702r3 + 2079r2 + 2418r + 880

Which for the root r = 1
3 becomes

b4 =
455
19683

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
2+3r −4

9

b2
r2+3r+2

9r2+21r+10
14
81

b3
−r3−6r2−11r−6

27r3+135r2+198r+80 − 140
2187

b4
r4+10r3+35r2+50r+24

81r4+702r3+2079r2+2418r+880
455

19683

For n = 5, using the above recursive equation gives

b5 =
−r5 − 15r4 − 85r3 − 225r2 − 274r − 120

243r5 + 3240r4 + 16065r3 + 36360r2 + 36492r + 12320

Which for the root r = 1
3 becomes

b5 = − 1456
177147
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And the table now becomes

n bn,r bn

b0 1 1
b1

−1−r
2+3r −4

9

b2
r2+3r+2

9r2+21r+10
14
81

b3
−r3−6r2−11r−6

27r3+135r2+198r+80 − 140
2187

b4
r4+10r3+35r2+50r+24

81r4+702r3+2079r2+2418r+880
455

19683

b5
−r5−15r4−85r3−225r2−274r−120

243r5+3240r4+16065r3+36360r2+36492r+12320 − 1456
177147

Using the above table, then the solution y2(x) is

y2(x) =
√
x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x
1
3

(
1− 4x

9 + 14x2

81 − 140x3

2187 + 455x4

19683 − 1456x5

177147 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− 3x

7 + 15x2

91 − 15x3

247 + 27x4

1235 − 297x5

38285 +O
(
x6))

+ c2x
1
3

(
1− 4x

9 + 14x2

81 − 140x3

2187 + 455x4

19683 − 1456x5

177147 +O
(
x6))

Hence the final solution is
y = yh

= c1
√
x

(
1− 3x

7 + 15x2

91 − 15x3

247 + 27x4

1235 − 297x5

38285 +O
(
x6))

+ c2x
1
3

(
1− 4x

9 + 14x2

81 − 140x3

2187 + 455x4

19683 − 1456x5

177147 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1

√
x

(
1− 3x

7 + 15x2

91 − 15x3

247 + 27x4

1235 − 297x5

38285 +O
(
x6))

+ c2x
1
3

(
1− 4x

9 + 14x2

81 − 140x3

2187 + 455x4

19683 − 1456x5

177147 +O
(
x6))
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Verification of solutions

y = c1
√
x

(
1− 3x

7 + 15x2

91 − 15x3

247 + 27x4

1235 − 297x5

38285 +O
(
x6))

+ c2x
1
3

(
1− 4x

9 + 14x2

81 − 140x3

2187 + 455x4

19683 − 1456x5

177147 +O
(
x6))

Verified OK.

14.21.1 Maple step by step solution

Let’s solve
2x2(x+ 3) y′′ + (5x2 + x) y′ + (x+ 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (x+1)y
2x2(x+3) −

(1+5x)y′
2x(x+3)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (1+5x)y′
2x(x+3) +

(x+1)y
2x2(x+3) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 1+5x
2x(x+3) , P3(x) = x+1

2x2(x+3)

]
◦ (x+ 3) · P2(x) is analytic at x = −3

((x+ 3) · P2(x))
∣∣∣∣
x=−3

= 7
3

◦ (x+ 3)2 · P3(x) is analytic at x = −3(
(x+ 3)2 · P3(x)

) ∣∣∣∣
x=−3

= 0

◦ x = −3is a regular singular point
Check to see if x0 is a regular singular point
x0 = −3

• Multiply by denominators
2x2(x+ 3) y′′ + x(1 + 5x) y′ + (x+ 1) y = 0
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• Change variables using x = u− 3 so that the regular singular point is at u = 0

(2u3 − 12u2 + 18u)
(

d2

du2y(u)
)
+ (5u2 − 29u+ 42)

(
d
du
y(u)

)
+ (u− 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

6a0r(4 + 3r)u−1+r + (6a1(1 + r) (7 + 3r)− a0(12r2 + 17r + 2))ur +
(

∞∑
k=1

(6ak+1(k + r + 1) (3k + 7 + 3r)− ak(12k2 + 24kr + 12r2 + 17k + 17r + 2) + ak−1(k + r) (2k − 1 + 2r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
6r(4 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−4

3

}
• Each term must be 0
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6a1(1 + r) (7 + 3r)− a0(12r2 + 17r + 2) = 0
• Each term in the series must be 0, giving the recursion relation

2(−6ak + ak−1 + 9ak+1) k2 + (4(−6ak + ak−1 + 9ak+1) r − 17ak − ak−1 + 60ak+1) k + 2(−6ak + ak−1 + 9ak+1) r2 + (−17ak − ak−1 + 60ak+1) r − 2ak + 42ak+1 = 0
• Shift index using k− >k + 1

2(−6ak+1 + ak + 9ak+2) (k + 1)2 + (4(−6ak+1 + ak + 9ak+2) r − 17ak+1 − ak + 60ak+2) (k + 1) + 2(−6ak+1 + ak + 9ak+2) r2 + (−17ak+1 − ak + 60ak+2) r − 2ak+1 + 42ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −2k2ak−12k2ak+1+4krak−24krak+1+2r2ak−12r2ak+1+3kak−41kak+1+3rak−41rak+1+ak−31ak+1
6(3k2+6kr+3r2+16k+16r+20)

• Recursion relation for r = 0

ak+2 = −2k2ak−12k2ak+1+3kak−41kak+1+ak−31ak+1
6(3k2+16k+20)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −2k2ak−12k2ak+1+3kak−41kak+1+ak−31ak+1

6(3k2+16k+20) , 42a1 − 2a0 = 0
]

• Revert the change of variables u = x+ 3[
y =

∞∑
k=0

ak(x+ 3)k , ak+2 = −2k2ak−12k2ak+1+3kak−41kak+1+ak−31ak+1
6(3k2+16k+20) , 42a1 − 2a0 = 0

]
• Recursion relation for r = −4

3

ak+2 = −2k2ak−12k2ak+1− 7
3kak−9kak+1+ 5

9ak+
7
3ak+1

6(3k2+8k+4)

• Solution for r = −4
3[

y(u) =
∞∑
k=0

aku
k− 4

3 , ak+2 = −2k2ak−12k2ak+1− 7
3kak−9kak+1+ 5

9ak+
7
3ak+1

6(3k2+8k+4) ,−6a1 − 2a0
3 = 0

]
• Revert the change of variables u = x+ 3[

y =
∞∑
k=0

ak(x+ 3)k−
4
3 , ak+2 = −2k2ak−12k2ak+1− 7

3kak−9kak+1+ 5
9ak+

7
3ak+1

6(3k2+8k+4) ,−6a1 − 2a0
3 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x+ 3)k
)
+
(

∞∑
k=0

bk(x+ 3)k−
4
3

)
, ak+2 = −2k2ak−12k2a1+k+3kak−41ka1+k+ak−31a1+k

6(3k2+16k+20) , 42a1 − 2a0 = 0, bk+2 = −2k2bk−12k2b1+k− 7
3kbk−9kb1+k+ 5

9 bk+
7
3 b1+k

6(3k2+8k+4) ,−6b1 − 2b0
3 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 47� �
Order:=6;
dsolve(2*x^2*(3+x)*diff(y(x),x$2)+x*(1+5*x)*diff(y(x),x)+(1+x)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
1
3

(
1− 4

9x+ 14
81x

2 − 140
2187x

3 + 455
19683x

4 − 1456
177147x

5 +O
(
x6))

+ c2
√
x

(
1− 3

7x+ 15
91x

2 − 15
247x

3 + 27
1235x

4 − 297
38285x

5 +O
(
x6))
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3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 90� �
AsymptoticDSolveValue[2*x^2*(3+x)*y''[x]+x*(1+5*x)*y'[x]+(1+x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x

(
−297x5

38285 + 27x4

1235 − 15x3

247 + 15x2

91 − 3x
7 + 1

)
+ c2

3
√
x

(
−1456x5

177147 + 455x4

19683 − 140x3

2187 + 14x2

81 − 4x
9 + 1

)
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14.22 problem 22
14.22.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4965

Internal problem ID [1313]
Internal file name [OUTPUT/1314_Sunday_June_05_2022_02_09_49_AM_62221154/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 22.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x+ 4) y′′ − x(−3x+ 1) y′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x3 + 4x2) y′′ + (3x2 − x
)
y′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3x− 1
x (x+ 4)

q(x) = 1
x2 (x+ 4)
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Table 572: Table p(x), q(x) singularites.

p(x) = 3x−1
x(x+4)

singularity type
x = −4 “regular”
x = 0 “regular”

q(x) = 1
x2(x+4)

singularity type
x = −4 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−4, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x+ 4) y′′ +
(
3x2 − x

)
y′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x+ 4)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
3x2 − x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

3x1+n+ran(n+ r) =
∞∑
n=1

3an−1(n+ r − 1)xn+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

an−1(n+ r− 1) (n+ r− 2)xn+r

)
+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=1

3an−1(n+ r− 1)xn+r

)
+

∞∑
n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1)− xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

4xra0r(−1 + r)− xra0r + a0x
r = 0

Or
(4xrr(−1 + r)− xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 − 5r + 1

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

4r2 − 5r + 1 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1

r2 =
1
4

Since a0 6= 0 then the indicial equation becomes(
4r2 − 5r + 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3
4 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
1+n

y2(x) =
∞∑
n=0

bnx
n+ 1

4

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an−1(n+ r − 1) (n+ r − 2) + 4an(n+ r) (n+ r − 1)
+ 3an−1(n+ r − 1)− an(n+ r) + an = 0

Solving for an from recursive equation (4) gives

an = −(1 + n+ r) an−1

4n+ 4r − 1 (4)

Which for the root r = 1 becomes

an = −(2 + n) an−1

4n+ 3 (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−2− r

3 + 4r

Which for the root r = 1 becomes
a1 = −3

7
And the table now becomes

n an,r an

a0 1 1
a1

−2−r
3+4r −3

7

For n = 2, using the above recursive equation gives

a2 =
r2 + 5r + 6

16r2 + 40r + 21

Which for the root r = 1 becomes
a2 =

12
77

And the table now becomes

n an,r an

a0 1 1
a1

−2−r
3+4r −3

7

a2
r2+5r+6

16r2+40r+21
12
77

For n = 3, using the above recursive equation gives

a3 =
−r3 − 9r2 − 26r − 24

64r3 + 336r2 + 524r + 231

4959



Which for the root r = 1 becomes

a3 = − 4
77

And the table now becomes

n an,r an

a0 1 1
a1

−2−r
3+4r −3

7

a2
r2+5r+6

16r2+40r+21
12
77

a3
−r3−9r2−26r−24

64r3+336r2+524r+231 − 4
77

For n = 4, using the above recursive equation gives

a4 =
r4 + 14r3 + 71r2 + 154r + 120

256r4 + 2304r3 + 7136r2 + 8784r + 3465

Which for the root r = 1 becomes

a4 =
24
1463

And the table now becomes

n an,r an

a0 1 1
a1

−2−r
3+4r −3

7

a2
r2+5r+6

16r2+40r+21
12
77

a3
−r3−9r2−26r−24

64r3+336r2+524r+231 − 4
77

a4
r4+14r3+71r2+154r+120

256r4+2304r3+7136r2+8784r+3465
24

1463

For n = 5, using the above recursive equation gives

a5 =
−r5 − 20r4 − 155r3 − 580r2 − 1044r − 720

1024r5 + 14080r4 + 72320r3 + 170720r2 + 180756r + 65835

Which for the root r = 1 becomes

a5 = − 24
4807
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And the table now becomes

n an,r an

a0 1 1
a1

−2−r
3+4r −3

7

a2
r2+5r+6

16r2+40r+21
12
77

a3
−r3−9r2−26r−24

64r3+336r2+524r+231 − 4
77

a4
r4+14r3+71r2+154r+120

256r4+2304r3+7136r2+8784r+3465
24

1463

a5
−r5−20r4−155r3−580r2−1044r−720

1024r5+14080r4+72320r3+170720r2+180756r+65835 − 24
4807

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− 3x

7 + 12x2

77 − 4x3

77 + 24x4

1463 − 24x5

4807 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)bn−1(n+ r − 1) (n+ r − 2) + 4bn(n+ r) (n+ r − 1)
+ 3bn−1(n+ r − 1)− bn(n+ r) + bn = 0

Solving for bn from recursive equation (4) gives

bn = −(1 + n+ r) bn−1

4n+ 4r − 1 (4)

Which for the root r = 1
4 becomes

bn = −(5 + 4n) bn−1

16n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

4 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
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For n = 1, using the above recursive equation gives

b1 =
−2− r

3 + 4r

Which for the root r = 1
4 becomes

b1 = − 9
16

And the table now becomes

n bn,r bn

b0 1 1
b1

−2−r
3+4r − 9

16

For n = 2, using the above recursive equation gives

b2 =
r2 + 5r + 6

16r2 + 40r + 21

Which for the root r = 1
4 becomes

b2 =
117
512

And the table now becomes

n bn,r bn

b0 1 1
b1

−2−r
3+4r − 9

16

b2
r2+5r+6

16r2+40r+21
117
512

For n = 3, using the above recursive equation gives

b3 =
−r3 − 9r2 − 26r − 24

64r3 + 336r2 + 524r + 231

Which for the root r = 1
4 becomes

b3 = − 663
8192
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And the table now becomes

n bn,r bn

b0 1 1
b1

−2−r
3+4r − 9

16

b2
r2+5r+6

16r2+40r+21
117
512

b3
−r3−9r2−26r−24

64r3+336r2+524r+231 − 663
8192

For n = 4, using the above recursive equation gives

b4 =
r4 + 14r3 + 71r2 + 154r + 120

256r4 + 2304r3 + 7136r2 + 8784r + 3465

Which for the root r = 1
4 becomes

b4 =
13923
524288

And the table now becomes

n bn,r bn

b0 1 1
b1

−2−r
3+4r − 9

16

b2
r2+5r+6

16r2+40r+21
117
512

b3
−r3−9r2−26r−24

64r3+336r2+524r+231 − 663
8192

b4
r4+14r3+71r2+154r+120

256r4+2304r3+7136r2+8784r+3465
13923
524288

For n = 5, using the above recursive equation gives

b5 =
−r5 − 20r4 − 155r3 − 580r2 − 1044r − 720

1024r5 + 14080r4 + 72320r3 + 170720r2 + 180756r + 65835

Which for the root r = 1
4 becomes

b5 = − 69615
8388608

And the table now becomes
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n bn,r bn

b0 1 1
b1

−2−r
3+4r − 9

16

b2
r2+5r+6

16r2+40r+21
117
512

b3
−r3−9r2−26r−24

64r3+336r2+524r+231 − 663
8192

b4
r4+14r3+71r2+154r+120

256r4+2304r3+7136r2+8784r+3465
13923
524288

b5
−r5−20r4−155r3−580r2−1044r−720

1024r5+14080r4+72320r3+170720r2+180756r+65835 − 69615
8388608

Using the above table, then the solution y2(x) is

y2(x) = x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x
1
4

(
1− 9x

16 + 117x2

512 − 663x3

8192 + 13923x4

524288 − 69615x5

8388608 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− 3x

7 + 12x2

77 − 4x3

77 + 24x4

1463 − 24x5

4807 +O
(
x6))

+ c2x
1
4

(
1− 9x

16 + 117x2

512 − 663x3

8192 + 13923x4

524288 − 69615x5

8388608 +O
(
x6))

Hence the final solution is

y = yh

= c1x

(
1− 3x

7 + 12x2

77 − 4x3

77 + 24x4

1463 − 24x5

4807 +O
(
x6))

+ c2x
1
4

(
1− 9x

16 + 117x2

512 − 663x3

8192 + 13923x4

524288 − 69615x5

8388608 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

(
1− 3x

7 + 12x2

77 − 4x3

77 + 24x4

1463 − 24x5

4807 +O
(
x6))

+ c2x
1
4

(
1− 9x

16 + 117x2

512 − 663x3

8192 + 13923x4

524288 − 69615x5

8388608 +O
(
x6))

4964



Verification of solutions

y = c1x

(
1− 3x

7 + 12x2

77 − 4x3

77 + 24x4

1463 − 24x5

4807 +O
(
x6))

+ c2x
1
4

(
1− 9x

16 + 117x2

512 − 663x3

8192 + 13923x4

524288 − 69615x5

8388608 +O
(
x6))

Verified OK.

14.22.1 Maple step by step solution

Let’s solve
x2(x+ 4) y′′ + (3x2 − x) y′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − y
x2(x+4) −

(3x−1)y′
x(x+4)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (3x−1)y′
x(x+4) + y

x2(x+4) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3x−1
x(x+4) , P3(x) = 1

x2(x+4)

]
◦ (x+ 4) · P2(x) is analytic at x = −4

((x+ 4) · P2(x))
∣∣∣∣
x=−4

= 13
4

◦ (x+ 4)2 · P3(x) is analytic at x = −4(
(x+ 4)2 · P3(x)

) ∣∣∣∣
x=−4

= 0

◦ x = −4is a regular singular point
Check to see if x0 is a regular singular point
x0 = −4

• Multiply by denominators
x2(x+ 4) y′′ + x(3x− 1) y′ + y = 0
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• Change variables using x = u− 4 so that the regular singular point is at u = 0

(u3 − 8u2 + 16u)
(

d2

du2y(u)
)
+ (3u2 − 25u+ 52)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(9 + 4r)u−1+r + (4a1(1 + r) (13 + 4r)− a0(8r2 + 17r − 1))ur +
(

∞∑
k=1

(4ak+1(k + 1 + r) (4k + 13 + 4r)− ak(8k2 + 16kr + 8r2 + 17k + 17r − 1) + ak−1(k + r − 1) (k + 1 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(9 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−9

4

}
• Each term must be 0

4a1(1 + r) (13 + 4r)− a0(8r2 + 17r − 1) = 0
• Each term in the series must be 0, giving the recursion relation

(−8ak + ak−1 + 16ak+1) k2 + (2(−8ak + ak−1 + 16ak+1) r − 17ak + 68ak+1) k + (−8ak + ak−1 + 16ak+1) r2 + 17(−ak + 4ak+1) r + ak − ak−1 + 52ak+1 = 0
• Shift index using k− >k + 1

(−8ak+1 + ak + 16ak+2) (k + 1)2 + (2(−8ak+1 + ak + 16ak+2) r − 17ak+1 + 68ak+2) (k + 1) + (−8ak+1 + ak + 16ak+2) r2 + 17(−ak+1 + 4ak+2) r + ak+1 − ak + 52ak+2 = 0
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• Recursion relation that defines series solution to ODE

ak+2 = −k2ak−8k2ak+1+2krak−16krak+1+r2ak−8r2ak+1+2kak−33kak+1+2rak−33rak+1−24ak+1
4(4k2+8kr+4r2+25k+25r+34)

• Recursion relation for r = 0

ak+2 = −k2ak−8k2ak+1+2kak−33kak+1−24ak+1
4(4k2+25k+34)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−8k2ak+1+2kak−33kak+1−24ak+1

4(4k2+25k+34) , 52a1 + a0 = 0
]

• Revert the change of variables u = x+ 4[
y =

∞∑
k=0

ak(x+ 4)k , ak+2 = −k2ak−8k2ak+1+2kak−33kak+1−24ak+1
4(4k2+25k+34) , 52a1 + a0 = 0

]
• Recursion relation for r = −9

4

ak+2 = −k2ak−8k2ak+1− 5
2kak+3kak+1+ 9

16ak+
39
4 ak+1

4(4k2+7k−2)

• Solution for r = −9
4[

y(u) =
∞∑
k=0

aku
k− 9

4 , ak+2 = −k2ak−8k2ak+1− 5
2kak+3kak+1+ 9

16ak+
39
4 ak+1

4(4k2+7k−2) ,−20a1 − 5a0
4 = 0

]
• Revert the change of variables u = x+ 4[

y =
∞∑
k=0

ak(x+ 4)k−
9
4 , ak+2 = −k2ak−8k2ak+1− 5

2kak+3kak+1+ 9
16ak+

39
4 ak+1

4(4k2+7k−2) ,−20a1 − 5a0
4 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x+ 4)k
)
+
(

∞∑
k=0

bk(x+ 4)k−
9
4

)
, ak+2 = −k2ak−8k2a1+k+2kak−33ka1+k−24a1+k

4(4k2+25k+34) , 52a1 + a0 = 0, bk+2 = −k2bk−8k2b1+k− 5
2kbk+3kb1+k+ 9

16 bk+
39
4 b1+k

4(4k2+7k−2) ,−20b1 − 5b0
4 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 45� �
Order:=6;
dsolve(x^2*(4+x)*diff(y(x),x$2)-x*(1-3*x)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
1
4

(
1− 9

16x+ 117
512x

2 − 663
8192x

3 + 13923
524288x

4 − 69615
8388608x

5 +O
(
x6))

+ c2x

(
1− 3

7x+ 12
77x

2 − 4
77x

3 + 24
1463x

4 − 24
4807x

5 +O
(
x6))
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 86� �
AsymptoticDSolveValue[x^2*(4+x)*y''[x]-x*(1-3*x)*y'[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x

(
−24x5

4807 + 24x4

1463 − 4x3

77 + 12x2

77 − 3x
7 + 1

)
+ c2

4
√
x

(
−69615x5

8388608 + 13923x4

524288 − 663x3

8192 + 117x2

512 − 9x
16 + 1

)
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14.23 problem 23
14.23.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4980

Internal problem ID [1314]
Internal file name [OUTPUT/1315_Sunday_June_05_2022_02_09_52_AM_93027207/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2x2y′′ + 5y′x+ (x+ 1) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

2x2y′′ + 5y′x+ (x+ 1) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 5
2x

q(x) = x+ 1
2x2
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Table 574: Table p(x), q(x) singularites.

p(x) = 5
2x

singularity type
x = 0 “regular”

q(x) = x+1
2x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x2y′′ + 5y′x+ (x+ 1) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 5
(

∞∑
n=0

(n+ r) anxn+r−1

)
x+ (x+ 1)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=0

x1+n+ran

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran =
∞∑
n=1

an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=1

an−1x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+ran(n+ r) (n+ r − 1) + 5xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

2xra0r(−1 + r) + 5xra0r + a0x
r = 0

Or
(2xrr(−1 + r) + 5xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
2r2 + 3r + 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

2r2 + 3r + 1 = 0
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Solving for r gives the roots of the indicial equation as

r1 = −1
2

r2 = −1

Since a0 6= 0 then the indicial equation becomes(
2r2 + 3r + 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n− 1

2

y2(x) =
∞∑
n=0

bnx
n−1

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)2an(n+ r) (n+ r − 1) + 5an(n+ r) + an−1 + an = 0

Solving for an from recursive equation (4) gives

an = − an−1

2n2 + 4nr + 2r2 + 3n+ 3r + 1 (4)

Which for the root r = −1
2 becomes

an = − an−1

2n2 + n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1

2 and after as more terms are found using the above recursive equation.

4973



n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 1
2r2 + 7r + 6

Which for the root r = −1
2 becomes

a1 = −1
3

And the table now becomes

n an,r an

a0 1 1
a1 − 1

2r2+7r+6 −1
3

For n = 2, using the above recursive equation gives

a2 =
1

4r4 + 36r3 + 119r2 + 171r + 90

Which for the root r = −1
2 becomes

a2 =
1
30

And the table now becomes

n an,r an

a0 1 1
a1 − 1

2r2+7r+6 −1
3

a2
1

4r4+36r3+119r2+171r+90
1
30

For n = 3, using the above recursive equation gives

a3 = − 1
8r6 + 132r5 + 890r4 + 3135r3 + 6077r2 + 6138r + 2520
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Which for the root r = −1
2 becomes

a3 = − 1
630

And the table now becomes

n an,r an

a0 1 1
a1 − 1

2r2+7r+6 −1
3

a2
1

4r4+36r3+119r2+171r+90
1
30

a3 − 1
8r6+132r5+890r4+3135r3+6077r2+6138r+2520 − 1

630

For n = 4, using the above recursive equation gives

a4 =
1

16r8 + 416r7 + 4648r6 + 29120r5 + 111769r4 + 268814r3 + 395127r2 + 324090r + 113400

Which for the root r = −1
2 becomes

a4 =
1

22680
And the table now becomes

n an,r an

a0 1 1
a1 − 1

2r2+7r+6 −1
3

a2
1

4r4+36r3+119r2+171r+90
1
30

a3 − 1
8r6+132r5+890r4+3135r3+6077r2+6138r+2520 − 1

630

a4
1

16r8+416r7+4648r6+29120r5+111769r4+268814r3+395127r2+324090r+113400
1

22680

For n = 5, using the above recursive equation gives

a5 = − 1
(16r8 + 416r7 + 4648r6 + 29120r5 + 111769r4 + 268814r3 + 395127r2 + 324090r + 113400) (2r2 + 23r + 66)

Which for the root r = −1
2 becomes

a5 = − 1
1247400
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And the table now becomes

n an,r an

a0 1 1
a1 − 1

2r2+7r+6 −1
3

a2
1

4r4+36r3+119r2+171r+90
1
30

a3 − 1
8r6+132r5+890r4+3135r3+6077r2+6138r+2520 − 1

630

a4
1

16r8+416r7+4648r6+29120r5+111769r4+268814r3+395127r2+324090r+113400
1

22680

a5 − 1
(16r8+416r7+4648r6+29120r5+111769r4+268814r3+395127r2+324090r+113400)(2r2+23r+66) − 1

1247400

Using the above table, then the solution y1(x) is

y1(x) =
1√
x

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
1− x

3 +
x2

30 −
x3

630 +
x4

22680 −
x5

1247400 +O(x6)
√
x

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)2bn(n+ r) (n+ r − 1) + 5bn(n+ r) + bn−1 + bn = 0

Solving for bn from recursive equation (4) gives

bn = − bn−1

2n2 + 4nr + 2r2 + 3n+ 3r + 1 (4)

Which for the root r = −1 becomes

bn = − bn−1

n (2n− 1) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
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For n = 1, using the above recursive equation gives

b1 = − 1
2r2 + 7r + 6

Which for the root r = −1 becomes

b1 = −1

And the table now becomes

n bn,r bn

b0 1 1
b1 − 1

2r2+7r+6 −1

For n = 2, using the above recursive equation gives

b2 =
1

4r4 + 36r3 + 119r2 + 171r + 90

Which for the root r = −1 becomes

b2 =
1
6

And the table now becomes

n bn,r bn

b0 1 1
b1 − 1

2r2+7r+6 −1

b2
1

4r4+36r3+119r2+171r+90
1
6

For n = 3, using the above recursive equation gives

b3 = − 1
8r6 + 132r5 + 890r4 + 3135r3 + 6077r2 + 6138r + 2520

Which for the root r = −1 becomes

b3 = − 1
90

And the table now becomes
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n bn,r bn

b0 1 1
b1 − 1

2r2+7r+6 −1

b2
1

4r4+36r3+119r2+171r+90
1
6

b3 − 1
8r6+132r5+890r4+3135r3+6077r2+6138r+2520 − 1

90

For n = 4, using the above recursive equation gives

b4 =
1

16r8 + 416r7 + 4648r6 + 29120r5 + 111769r4 + 268814r3 + 395127r2 + 324090r + 113400

Which for the root r = −1 becomes

b4 =
1

2520

And the table now becomes

n bn,r bn

b0 1 1
b1 − 1

2r2+7r+6 −1

b2
1

4r4+36r3+119r2+171r+90
1
6

b3 − 1
8r6+132r5+890r4+3135r3+6077r2+6138r+2520 − 1

90

b4
1

16r8+416r7+4648r6+29120r5+111769r4+268814r3+395127r2+324090r+113400
1

2520

For n = 5, using the above recursive equation gives

b5 = − 1
(16r8 + 416r7 + 4648r6 + 29120r5 + 111769r4 + 268814r3 + 395127r2 + 324090r + 113400) (2r2 + 23r + 66)

Which for the root r = −1 becomes

b5 = − 1
113400

And the table now becomes
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n bn,r bn

b0 1 1
b1 − 1

2r2+7r+6 −1

b2
1

4r4+36r3+119r2+171r+90
1
6

b3 − 1
8r6+132r5+890r4+3135r3+6077r2+6138r+2520 − 1

90

b4
1

16r8+416r7+4648r6+29120r5+111769r4+268814r3+395127r2+324090r+113400
1

2520

b5 − 1
(16r8+416r7+4648r6+29120r5+111769r4+268814r3+395127r2+324090r+113400)(2r2+23r+66) − 1

113400

Using the above table, then the solution y2(x) is

y2(x) =
1√
x

(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x+ x2

6 − x3

90 +
x4

2520 −
x5

113400 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
1− x

3 +
x2

30 −
x3

630 +
x4

22680 −
x5

1247400 +O(x6)
)

√
x

+
c2
(
1− x+ x2

6 − x3

90 +
x4

2520 −
x5

113400 +O(x6)
)

x

Hence the final solution is

y = yh

=
c1
(
1− x

3 +
x2

30 −
x3

630 +
x4

22680 −
x5

1247400 +O(x6)
)

√
x

+
c2
(
1− x+ x2

6 − x3

90 +
x4

2520 −
x5

113400 +O(x6)
)

x
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Summary
The solution(s) found are the following

(1)
y =

c1
(
1− x

3 +
x2

30 −
x3

630 +
x4

22680 −
x5

1247400 +O(x6)
)

√
x

+
c2
(
1− x+ x2

6 − x3

90 +
x4

2520 −
x5

113400 +O(x6)
)

x

Verification of solutions

y =
c1
(
1− x

3 +
x2

30 −
x3

630 +
x4

22680 −
x5

1247400 +O(x6)
)

√
x

+
c2
(
1− x+ x2

6 − x3

90 +
x4

2520 −
x5

113400 +O(x6)
)

x

Verified OK.

14.23.1 Maple step by step solution

Let’s solve
2x2y′′ + 5y′x+ (x+ 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −5y′

2x − (x+1)y
2x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 5y′

2x + (x+1)y
2x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 5
2x , P3(x) = x+1

2x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
2

◦ x2 · P3(x) is analytic at x = 0

4980



(x2 · P3(x))
∣∣∣∣
x=0

= 1
2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
2x2y′′ + 5y′x+ (x+ 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (1 + 2r)xr +
(

∞∑
k=1

(ak(k + r + 1) (2k + 2r + 1) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1,−1

2

}
• Each term in the series must be 0, giving the recursion relation

2
(
k + r + 1

2

)
(k + r + 1) ak + ak−1 = 0
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• Shift index using k− >k + 1
2
(
k + 3

2 + r
)
(k + 2 + r) ak+1 + ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

(2k+3+2r)(k+2+r)

• Recursion relation for r = −1
ak+1 = − ak

(2k+1)(k+1)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+1 = − ak

(2k+1)(k+1)

]
• Recursion relation for r = −1

2

ak+1 = − ak
(2k+2)

(
k+ 3

2
)

• Solution for r = −1
2[

y =
∞∑
k=0

akx
k− 1

2 , ak+1 = − ak
(2k+2)

(
k+ 3

2
)
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k− 1

2

)
, a1+k = − ak

(2k+1)(1+k) , b1+k = − bk
(2k+2)

(
k+ 3

2
)
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 47� �
Order:=6;
dsolve(2*x^2*diff(y(x),x$2)+5*x*diff(y(x),x)+(1+x)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1
(
1− x+ 1

6x
2 − 1

90x
3 + 1

2520x
4 − 1

113400x
5 +O(x6)

)
x

+
c2
(
1− 1

3x+ 1
30x

2 − 1
630x

3 + 1
22680x

4 − 1
1247400x

5 +O(x6)
)

√
x

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 86� �
AsymptoticDSolveValue[2*x^2*y''[x]+5*x*y'[x]+(1+x)*y[x]==0,y[x],{x,0,5}]� �

y(x) →
c1
(
− x5

1247400 +
x4

22680 −
x3

630 +
x2

30 −
x
3 + 1

)
√
x

+
c2
(
− x5

113400 +
x4

2520 −
x3

90 +
x2

6 − x+ 1
)

x
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14.24 problem 24
14.24.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4994

Internal problem ID [1315]
Internal file name [OUTPUT/1316_Sunday_June_05_2022_02_09_55_AM_82404606/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 24.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

x2(4x+ 3) y′′ + x(5 + 18x) y′ − (1− 12x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

4x3 + 3x2) y′′ + (18x2 + 5x
)
y′ + (12x− 1) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 5 + 18x
x (4x+ 3)

q(x) = 12x− 1
x2 (4x+ 3)
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Table 576: Table p(x), q(x) singularites.

p(x) = 5+18x
x(4x+3)

singularity type
x = 0 “regular”
x = −3

4 “regular”

q(x) = 12x−1
x2(4x+3)

singularity type
x = 0 “regular”
x = −3

4 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−3

4 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(4x+ 3) y′′ +
(
18x2 + 5x

)
y′ + (12x− 1) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(4x+ 3)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
18x2 + 5x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (12x− 1)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

18x1+n+ran(n+ r)
)

+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=0

12x1+n+ran

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

4an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

18x1+n+ran(n+ r) =
∞∑
n=1

18an−1(n+ r − 1)xn+r

∞∑
n =0

12x1+n+ran =
∞∑
n=1

12an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

4an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

3xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

18an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=1

12an−1x
n+r

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

3xn+ran(n+ r) (n+ r − 1) + 5xn+ran(n+ r)− anx
n+r = 0
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When n = 0 the above becomes

3xra0r(−1 + r) + 5xra0r − a0x
r = 0

Or
(3xrr(−1 + r) + 5xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
3r2 + 2r − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

3r2 + 2r − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 = −1

Since a0 6= 0 then the indicial equation becomes(
3r2 + 2r − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) =
∞∑
n=0

bnx
n−1

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)4an−1(n+ r − 1) (n+ r − 2) + 3an(n+ r) (n+ r − 1)
+ 18an−1(n+ r − 1) + 5an(n+ r) + 12an−1 − an = 0
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Solving for an from recursive equation (4) gives

an = −2(2n+ 2r + 1) an−1

3n+ 3r − 1 (4)

Which for the root r = 1
3 becomes

an = −2(6n+ 5) an−1

9n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−4r − 6
2 + 3r

Which for the root r = 1
3 becomes

a1 = −22
9

And the table now becomes

n an,r an

a0 1 1
a1

−4r−6
2+3r −22

9

For n = 2, using the above recursive equation gives

a2 =
16r2 + 64r + 60
9r2 + 21r + 10

Which for the root r = 1
3 becomes

a2 =
374
81

And the table now becomes
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n an,r an

a0 1 1
a1

−4r−6
2+3r −22

9

a2
16r2+64r+60
9r2+21r+10

374
81

For n = 3, using the above recursive equation gives

a3 =
−64r3 − 480r2 − 1136r − 840
27r3 + 135r2 + 198r + 80

Which for the root r = 1
3 becomes

a3 = −17204
2187

And the table now becomes

n an,r an

a0 1 1
a1

−4r−6
2+3r −22

9

a2
16r2+64r+60
9r2+21r+10

374
81

a3
−64r3−480r2−1136r−840
27r3+135r2+198r+80 −17204

2187

For n = 4, using the above recursive equation gives

a4 =
256r4 + 3072r3 + 13184r2 + 23808r + 15120

81r4 + 702r3 + 2079r2 + 2418r + 880
Which for the root r = 1

3 becomes

a4 =
249458
19683

And the table now becomes

n an,r an

a0 1 1
a1

−4r−6
2+3r −22

9

a2
16r2+64r+60
9r2+21r+10

374
81

a3
−64r3−480r2−1136r−840
27r3+135r2+198r+80 −17204

2187

a4
256r4+3072r3+13184r2+23808r+15120

81r4+702r3+2079r2+2418r+880
249458
19683
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For n = 5, using the above recursive equation gives

a5 =
−1024r5 − 17920r4 − 120320r3 − 385280r2 − 584256r − 332640

243r5 + 3240r4 + 16065r3 + 36360r2 + 36492r + 12320

Which for the root r = 1
3 becomes

a5 = −3492412
177147

And the table now becomes

n an,r an

a0 1 1
a1

−4r−6
2+3r −22

9

a2
16r2+64r+60
9r2+21r+10

374
81

a3
−64r3−480r2−1136r−840
27r3+135r2+198r+80 −17204

2187

a4
256r4+3072r3+13184r2+23808r+15120

81r4+702r3+2079r2+2418r+880
249458
19683

a5
−1024r5−17920r4−120320r3−385280r2−584256r−332640

243r5+3240r4+16065r3+36360r2+36492r+12320 −3492412
177147

Using the above table, then the solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
1− 22x

9 + 374x2

81 − 17204x3

2187 + 249458x4

19683 − 3492412x5

177147 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)4bn−1(n+ r − 1) (n+ r − 2) + 3bn(n+ r) (n+ r − 1)
+ 18bn−1(n+ r − 1) + 5bn(n+ r) + 12bn−1 − bn = 0

Solving for bn from recursive equation (4) gives

bn = −2(2n+ 2r + 1) bn−1

3n+ 3r − 1 (4)

Which for the root r = −1 becomes

bn = (−4n+ 2) bn−1

3n− 4 (5)
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At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
−4r − 6
2 + 3r

Which for the root r = −1 becomes

b1 = 2

And the table now becomes

n bn,r bn

b0 1 1
b1

−4r−6
2+3r 2

For n = 2, using the above recursive equation gives

b2 =
16r2 + 64r + 60
9r2 + 21r + 10

Which for the root r = −1 becomes

b2 = −6

And the table now becomes

n bn,r bn

b0 1 1
b1

−4r−6
2+3r 2

b2
16r2+64r+60
9r2+21r+10 −6

For n = 3, using the above recursive equation gives

b3 =
−64r3 − 480r2 − 1136r − 840
27r3 + 135r2 + 198r + 80
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Which for the root r = −1 becomes

b3 = 12

And the table now becomes

n bn,r bn

b0 1 1
b1

−4r−6
2+3r 2

b2
16r2+64r+60
9r2+21r+10 −6

b3
−64r3−480r2−1136r−840
27r3+135r2+198r+80 12

For n = 4, using the above recursive equation gives

b4 =
256r4 + 3072r3 + 13184r2 + 23808r + 15120

81r4 + 702r3 + 2079r2 + 2418r + 880

Which for the root r = −1 becomes

b4 = −21

And the table now becomes

n bn,r bn

b0 1 1
b1

−4r−6
2+3r 2

b2
16r2+64r+60
9r2+21r+10 −6

b3
−64r3−480r2−1136r−840
27r3+135r2+198r+80 12

b4
256r4+3072r3+13184r2+23808r+15120

81r4+702r3+2079r2+2418r+880 −21

For n = 5, using the above recursive equation gives

b5 =
−1024r5 − 17920r4 − 120320r3 − 385280r2 − 584256r − 332640

243r5 + 3240r4 + 16065r3 + 36360r2 + 36492r + 12320

Which for the root r = −1 becomes

b5 =
378
11
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And the table now becomes

n bn,r bn

b0 1 1
b1

−4r−6
2+3r 2

b2
16r2+64r+60
9r2+21r+10 −6

b3
−64r3−480r2−1136r−840
27r3+135r2+198r+80 12

b4
256r4+3072r3+13184r2+23808r+15120

81r4+702r3+2079r2+2418r+880 −21

b5
−1024r5−17920r4−120320r3−385280r2−584256r−332640

243r5+3240r4+16065r3+36360r2+36492r+12320
378
11

Using the above table, then the solution y2(x) is

y2(x) = x
1
3
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1 + 2x− 6x2 + 12x3 − 21x4 + 378x5

11 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3

(
1− 22x

9 + 374x2

81 − 17204x3

2187 + 249458x4

19683 − 3492412x5

177147 +O
(
x6))

+
c2
(
1 + 2x− 6x2 + 12x3 − 21x4 + 378x5

11 +O(x6)
)

x

Hence the final solution is

y = yh

= c1x
1
3

(
1− 22x

9 + 374x2

81 − 17204x3

2187 + 249458x4

19683 − 3492412x5

177147 +O
(
x6))

+
c2
(
1 + 2x− 6x2 + 12x3 − 21x4 + 378x5

11 +O(x6)
)

x

4993



Summary
The solution(s) found are the following

(1)
y = c1x

1
3

(
1− 22x

9 + 374x2

81 − 17204x3

2187 + 249458x4

19683 − 3492412x5

177147 +O
(
x6))

+
c2
(
1 + 2x− 6x2 + 12x3 − 21x4 + 378x5

11 +O(x6)
)

x

Verification of solutions

y = c1x
1
3

(
1− 22x

9 + 374x2

81 − 17204x3

2187 + 249458x4

19683 − 3492412x5

177147 +O
(
x6))

+
c2
(
1 + 2x− 6x2 + 12x3 − 21x4 + 378x5

11 +O(x6)
)

x

Verified OK.

14.24.1 Maple step by step solution

Let’s solve
x2(4x+ 3) y′′ + (18x2 + 5x) y′ + (12x− 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (12x−1)y
x2(4x+3) −

(5+18x)y′
x(4x+3)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (5+18x)y′
x(4x+3) + (12x−1)y

x2(4x+3) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5+18x
x(4x+3) , P3(x) = 12x−1

x2(4x+3)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
3
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◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(4x+ 3) y′′ + x(5 + 18x) y′ + (12x− 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + 3r)xr +
(

∞∑
k=1

(ak(k + r + 1) (3k + 3r − 1) + 2ak−1(k + r + 1) (2k + 1 + 2r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + 3r) = 0

• Values of r that satisfy the indicial equation
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r ∈
{
−1, 13

}
• Each term in the series must be 0, giving the recursion relation

3
(

2ak−1(2k+1+2r)
3 + ak

(
k + r − 1

3

))
(k + r + 1) = 0

• Shift index using k− >k + 1

3
(

2ak(2k+2r+3)
3 + ak+1

(
k + 2

3 + r
))

(k + r + 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = −2ak(2k+2r+3)

3k+2+3r

• Recursion relation for r = −1
ak+1 = −2ak(2k+1)

3k−1

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+1 = −2ak(2k+1)

3k−1

]
• Recursion relation for r = 1

3

ak+1 = −2ak
(
2k+ 11

3
)

3k+3

• Solution for r = 1
3[

y =
∞∑
k=0

akx
k+ 1

3 , ak+1 = −2ak
(
2k+ 11

3
)

3k+3

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, a1+k = −2ak(2k+1)

3k−1 , b1+k = −2bk
(
2k+ 11

3
)

3k+3

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 47� �
Order:=6;
dsolve(x^2*(3+4*x)*diff(y(x),x$2)+x*(5+18*x)*diff(y(x),x)-(1-12*x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c2x

4
3
(
1− 22

9 x+ 374
81 x

2 − 17204
2187 x

3 + 249458
19683 x

4 − 3492412
177147 x

5 +O(x6)
)
+ c1

(
1 + 2x− 6x2 + 12x3 − 21x4 + 378

11 x
5 +O(x6)

)
x

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 80� �
AsymptoticDSolveValue[x^2*(3+4*x)*y''[x]+x*(5+18*x)*y'[x]-(1-12*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
3
√
x

(
−3492412x5

177147 + 249458x4

19683 − 17204x3

2187 + 374x2

81 − 22x
9 + 1

)

+
c2
(

378x5

11 − 21x4 + 12x3 − 6x2 + 2x+ 1
)

x
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14.25 problem 25
14.25.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5008

Internal problem ID [1316]
Internal file name [OUTPUT/1317_Sunday_June_05_2022_02_09_58_AM_51900119/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 25.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

6x2y′′ + x(10− x) y′ − (2 + x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

6x2y′′ +
(
−x2 + 10x

)
y′ + (−x− 2) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −x− 10
6x

q(x) = −2 + x

6x2

4998



Table 578: Table p(x), q(x) singularites.

p(x) = −x−10
6x

singularity type
x = 0 “regular”

q(x) = −2+x
6x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

6x2y′′ +
(
−x2 + 10x

)
y′ + (−x− 2) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
6x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−x2 + 10x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (−x− 2)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

6xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−x1+n+ran(n+ r)

)
+
(

∞∑
n=0

10xn+ran(n+ r)
)

+
∞∑

n =0

(
−x1+n+ran

)
+

∞∑
n =0

(
−2anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−an−1(n+ r − 1)xn+r

)
∞∑

n =0

(
−x1+n+ran

)
=

∞∑
n=1

(
−an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

6xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

10xn+ran(n+ r)
)

+
∞∑

n =1

(
−an−1x

n+r
)
+

∞∑
n =0

(
−2anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

6xn+ran(n+ r) (n+ r − 1) + 10xn+ran(n+ r)− 2anxn+r = 0

When n = 0 the above becomes

6xra0r(−1 + r) + 10xra0r − 2a0xr = 0

Or
(6xrr(−1 + r) + 10xrr − 2xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
6r2 + 4r − 2

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

6r2 + 4r − 2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 = −1

Since a0 6= 0 then the indicial equation becomes(
6r2 + 4r − 2

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) =
∞∑
n=0

bnx
n−1

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)6an(n+ r) (n+ r − 1)− an−1(n+ r − 1) + 10an(n+ r)− an−1 − 2an = 0

Solving for an from recursive equation (4) gives

an = an−1(n+ r)
6n2 + 12nr + 6r2 + 4n+ 4r − 2 (4)

Which for the root r = 1
3 becomes

an = an−1(3n+ 1)
6n (3n+ 4) (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
1 + r

6r2 + 16r + 8

Which for the root r = 1
3 becomes

a1 =
2
21

And the table now becomes

n an,r an

a0 1 1
a1

1+r
6r2+16r+8

2
21

For n = 2, using the above recursive equation gives

a2 =
1 + r

36r3 + 192r2 + 292r + 120

Which for the root r = 1
3 becomes

a2 =
1
180

And the table now becomes

n an,r an

a0 1 1
a1

1+r
6r2+16r+8

2
21

a2
1+r

36r3+192r2+292r+120
1

180

For n = 3, using the above recursive equation gives

a3 =
1 + r

216r4 + 1944r3 + 5904r2 + 6976r + 2560
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Which for the root r = 1
3 becomes

a3 =
1

4212
And the table now becomes

n an,r an

a0 1 1
a1

1+r
6r2+16r+8

2
21

a2
1+r

36r3+192r2+292r+120
1

180

a3
1+r

216r4+1944r3+5904r2+6976r+2560
1

4212

For n = 4, using the above recursive equation gives

a4 =
1 + r

1296r5 + 17712r4 + 89424r3 + 205008r2 + 207520r + 70400

Which for the root r = 1
3 becomes

a4 =
1

124416
And the table now becomes

n an,r an

a0 1 1
a1

1+r
6r2+16r+8

2
21

a2
1+r

36r3+192r2+292r+120
1

180

a3
1+r

216r4+1944r3+5904r2+6976r+2560
1

4212

a4
1+r

1296r5+17712r4+89424r3+205008r2+207520r+70400
1

124416

For n = 5, using the above recursive equation gives

a5 =
1 + r

32 (3r2 + 32r + 84) (81r4 + 702r3 + 2079r2 + 2418r + 880)

Which for the root r = 1
3 becomes

a5 =
1

4432320
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And the table now becomes

n an,r an

a0 1 1
a1

1+r
6r2+16r+8

2
21

a2
1+r

36r3+192r2+292r+120
1

180

a3
1+r

216r4+1944r3+5904r2+6976r+2560
1

4212

a4
1+r

1296r5+17712r4+89424r3+205008r2+207520r+70400
1

124416

a5
1+r

32(3r2+32r+84)(81r4+702r3+2079r2+2418r+880)
1

4432320

Using the above table, then the solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
1 + 2x

21 + x2

180 + x3

4212 + x4

124416 + x5

4432320 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)6bn(n+ r) (n+ r − 1)− bn−1(n+ r − 1) + 10bn(n+ r)− bn−1 − 2bn = 0

Solving for bn from recursive equation (4) gives

bn = bn−1(n+ r)
6n2 + 12nr + 6r2 + 4n+ 4r − 2 (4)

Which for the root r = −1 becomes

bn = bn−1(n− 1)
6n2 − 8n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
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For n = 1, using the above recursive equation gives

b1 =
1 + r

6r2 + 16r + 8

Which for the root r = −1 becomes

b1 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

1+r
6r2+16r+8 0

For n = 2, using the above recursive equation gives

b2 =
1 + r

36r3 + 192r2 + 292r + 120

Which for the root r = −1 becomes

b2 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

1+r
6r2+16r+8 0

b2
1+r

36r3+192r2+292r+120 0

For n = 3, using the above recursive equation gives

b3 =
1 + r

216r4 + 1944r3 + 5904r2 + 6976r + 2560

Which for the root r = −1 becomes

b3 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1

1+r
6r2+16r+8 0

b2
1+r

36r3+192r2+292r+120 0

b3
1+r

216r4+1944r3+5904r2+6976r+2560 0

For n = 4, using the above recursive equation gives

b4 =
1 + r

1296r5 + 17712r4 + 89424r3 + 205008r2 + 207520r + 70400

Which for the root r = −1 becomes

b4 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

1+r
6r2+16r+8 0

b2
1+r

36r3+192r2+292r+120 0

b3
1+r

216r4+1944r3+5904r2+6976r+2560 0

b4
1+r

1296r5+17712r4+89424r3+205008r2+207520r+70400 0

For n = 5, using the above recursive equation gives

b5 =
1 + r

32 (3r2 + 32r + 84) (81r4 + 702r3 + 2079r2 + 2418r + 880)

Which for the root r = −1 becomes

b5 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1

1+r
6r2+16r+8 0

b2
1+r

36r3+192r2+292r+120 0

b3
1+r

216r4+1944r3+5904r2+6976r+2560 0

b4
1+r

1296r5+17712r4+89424r3+205008r2+207520r+70400 0

b5
1+r

32(3r2+32r+84)(81r4+702r3+2079r2+2418r+880) 0

Using the above table, then the solution y2(x) is

y2(x) = x
1
3
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= 1 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3

(
1 + 2x

21 + x2

180 + x3

4212 + x4

124416 + x5

4432320 +O
(
x6))+ c2(1 +O(x6))

x

Hence the final solution is

y = yh

= c1x
1
3

(
1 + 2x

21 + x2

180 + x3

4212 + x4

124416 + x5

4432320 +O
(
x6))+ c2(1 +O(x6))

x

Summary
The solution(s) found are the following

(1)y = c1x
1
3

(
1 + 2x

21 + x2

180 + x3

4212 + x4

124416 + x5

4432320 +O
(
x6))+ c2(1 +O(x6))

x

Verification of solutions

y = c1x
1
3

(
1 + 2x

21 + x2

180 + x3

4212 + x4

124416 + x5

4432320 +O
(
x6))+ c2(1 +O(x6))

x

Verified OK.
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14.25.1 Maple step by step solution

Let’s solve
6x2y′′ + (−x2 + 10x) y′ + (−x− 2) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = (2+x)y
6x2 + (x−10)y′

6x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (x−10)y′
6x − (2+x)y

6x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −x−10
6x , P3(x) = −2+x

6x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
3

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
6x2y′′ − x(x− 10) y′ + (−x− 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

2a0(1 + r) (−1 + 3r)xr +
(

∞∑
k=1

(2ak(k + r + 1) (3k + 3r − 1)− ak−1(k + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2(1 + r) (−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1, 13

}
• Each term in the series must be 0, giving the recursion relation

6
(
k + r − 1

3

)
(k + r + 1) ak − ak−1(k + r) = 0

• Shift index using k− >k + 1
6
(
k + 2

3 + r
)
(k + 2 + r) ak+1 − ak(k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r+1)

2(3k+2+3r)(k+2+r)

• Recursion relation for r = −1
ak+1 = akk

2(3k−1)(k+1)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+1 = akk

2(3k−1)(k+1)

]
• Recursion relation for r = 1

3

ak+1 =
ak
(
k+ 4

3
)

2(3k+3)
(
k+ 7

3
)
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• Solution for r = 1
3[

y =
∞∑
k=0

akx
k+ 1

3 , ak+1 =
ak
(
k+ 4

3
)

2(3k+3)
(
k+ 7

3
)
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, a1+k = akk

2(3k−1)(1+k) , b1+k =
bk
(
k+ 4

3
)

2(3k+3)
(
k+ 7

3
)
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 37� �
Order:=6;
dsolve(6*x^2*diff(y(x),x$2)+x*(10-x)*diff(y(x),x)-(2+x)*y(x)=0,y(x),type='series',x=0);� �
y(x) =

c2x
4
3
(
1 + 2

21x+ 1
180x

2 + 1
4212x

3 + 1
124416x

4 + 1
4432320x

5 +O(x6)
)
+ c1(1 + O (x6))

x

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 53� �
AsymptoticDSolveValue[6*x^2*y''[x]+x*(10-x)*y'[x]-(2+x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
3
√
x

(
x5

4432320 + x4

124416 + x3

4212 + x2

180 + 2x
21 + 1

)
+ c2

x
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14.26 problem 28
14.26.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5023

Internal problem ID [1317]
Internal file name [OUTPUT/1318_Sunday_June_05_2022_02_10_02_AM_83461413/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 28.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x+ 8) y′′ + x(3x+ 2) y′ + (x+ 1) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x3 + 8x2) y′′ + (3x2 + 2x
)
y′ + (x+ 1) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3x+ 2
x (x+ 8)

q(x) = x+ 1
x2 (x+ 8)
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Table 580: Table p(x), q(x) singularites.

p(x) = 3x+2
x(x+8)

singularity type
x = −8 “regular”
x = 0 “regular”

q(x) = x+1
x2(x+8)

singularity type
x = −8 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−8, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x+ 8) y′′ +
(
3x2 + 2x

)
y′ + (x+ 1) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x+ 8)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
3x2 + 2x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (x+ 1)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

8xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3x1+n+ran(n+ r)
)

+
(

∞∑
n=0

2xn+ran(n+ r)
)

+
(

∞∑
n=0

x1+n+ran

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

3x1+n+ran(n+ r) =
∞∑
n=1

3an−1(n+ r − 1)xn+r

∞∑
n =0

x1+n+ran =
∞∑
n=1

an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

8xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

3an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

2xn+ran(n+ r)
)

+
(

∞∑
n=1

an−1x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

8xn+ran(n+ r) (n+ r − 1) + 2xn+ran(n+ r) + anx
n+r = 0
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When n = 0 the above becomes

8xra0r(−1 + r) + 2xra0r + a0x
r = 0

Or
(8xrr(−1 + r) + 2xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
8r2 − 6r + 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

8r2 − 6r + 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 =
1
4

Since a0 6= 0 then the indicial equation becomes(
8r2 − 6r + 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
4 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n+ 1

4

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an−1(n+ r − 1) (n+ r − 2) + 8an(n+ r) (n+ r − 1)
+ 3an−1(n+ r − 1) + 2an(n+ r) + an−1 + an = 0
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Solving for an from recursive equation (4) gives

an = − an−1(n2 + 2nr + r2)
8n2 + 16nr + 8r2 − 6n− 6r + 1 (4)

Which for the root r = 1
2 becomes

an = −an−1(2n+ 1)2

32n2 + 8n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − (r + 1)2

8r2 + 10r + 3

Which for the root r = 1
2 becomes

a1 = − 9
40

And the table now becomes

n an,r an

a0 1 1

a1 − (r+1)2
8r2+10r+3 − 9

40

For n = 2, using the above recursive equation gives

a2 =
(r + 1)2 (r + 2)2

64r4 + 288r3 + 452r2 + 288r + 63

Which for the root r = 1
2 becomes

a2 =
5
128

And the table now becomes
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n an,r an

a0 1 1

a1 − (r+1)2
8r2+10r+3 − 9

40

a2
(r+1)2(r+2)2

64r4+288r3+452r2+288r+63
5

128

For n = 3, using the above recursive equation gives

a3 = − (r + 1)2 (r + 2)2 (r + 3)2

512r6 + 4992r5 + 19232r4 + 37128r3 + 37460r2 + 18486r + 3465

Which for the root r = 1
2 becomes

a3 = − 245
39936

And the table now becomes

n an,r an

a0 1 1

a1 − (r+1)2
8r2+10r+3 − 9

40

a2
(r+1)2(r+2)2

64r4+288r3+452r2+288r+63
5

128

a3 − (r+1)2(r+2)2(r+3)2
512r6+4992r5+19232r4+37128r3+37460r2+18486r+3465 − 245

39936

For n = 4, using the above recursive equation gives

a4 =
(r + 1)2 (r + 2)2 (r + 3)2 (r + 4)2

(512r6 + 4992r5 + 19232r4 + 37128r3 + 37460r2 + 18486r + 3465) (8r2 + 58r + 105)

Which for the root r = 1
2 becomes

a4 =
6615

7241728

And the table now becomes
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n an,r an

a0 1 1

a1 − (r+1)2
8r2+10r+3 − 9

40

a2
(r+1)2(r+2)2

64r4+288r3+452r2+288r+63
5

128

a3 − (r+1)2(r+2)2(r+3)2
512r6+4992r5+19232r4+37128r3+37460r2+18486r+3465 − 245

39936

a4
(r+1)2(r+2)2(r+3)2(r+4)2

(512r6+4992r5+19232r4+37128r3+37460r2+18486r+3465)(8r2+58r+105)
6615

7241728

For n = 5, using the above recursive equation gives

a5 = − (r + 1)2 (r + 2)2 (r + 3)2 (r + 4)2 (r + 5)2

(512r6 + 4992r5 + 19232r4 + 37128r3 + 37460r2 + 18486r + 3465) (8r2 + 58r + 105) (8r2 + 74r + 171)

Which for the root r = 1
2 becomes

a5 = − 7623
57933824

And the table now becomes

n an,r an

a0 1 1

a1 − (r+1)2
8r2+10r+3 − 9

40

a2
(r+1)2(r+2)2

64r4+288r3+452r2+288r+63
5

128

a3 − (r+1)2(r+2)2(r+3)2
512r6+4992r5+19232r4+37128r3+37460r2+18486r+3465 − 245

39936

a4
(r+1)2(r+2)2(r+3)2(r+4)2

(512r6+4992r5+19232r4+37128r3+37460r2+18486r+3465)(8r2+58r+105)
6615

7241728

a5 − (r+1)2(r+2)2(r+3)2(r+4)2(r+5)2
(512r6+4992r5+19232r4+37128r3+37460r2+18486r+3465)(8r2+58r+105)(8r2+74r+171) − 7623

57933824

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− 9x

40 + 5x2

128 − 245x3

39936 + 6615x4

7241728 − 7623x5

57933824 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)bn−1(n+ r − 1) (n+ r − 2) + 8bn(n+ r) (n+ r − 1)
+ 3bn−1(n+ r − 1) + 2bn(n+ r) + bn−1 + bn = 0

Solving for bn from recursive equation (4) gives

bn = − bn−1(n2 + 2nr + r2)
8n2 + 16nr + 8r2 − 6n− 6r + 1 (4)

Which for the root r = 1
4 becomes

bn = −bn−1(4n+ 1)2

128n2 − 32n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

4 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = − (r + 1)2

8r2 + 10r + 3

Which for the root r = 1
4 becomes

b1 = −25
96

And the table now becomes

n bn,r bn

b0 1 1

b1 − (r+1)2
8r2+10r+3 −25

96

For n = 2, using the above recursive equation gives

b2 =
(r + 1)2 (r + 2)2

64r4 + 288r3 + 452r2 + 288r + 63
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Which for the root r = 1
4 becomes

b2 =
675
14336

And the table now becomes

n bn,r bn

b0 1 1

b1 − (r+1)2
8r2+10r+3 −25

96

b2
(r+1)2(r+2)2

64r4+288r3+452r2+288r+63
675

14336

For n = 3, using the above recursive equation gives

b3 = − (r + 1)2 (r + 2)2 (r + 3)2

512r6 + 4992r5 + 19232r4 + 37128r3 + 37460r2 + 18486r + 3465

Which for the root r = 1
4 becomes

b3 = − 38025
5046272

And the table now becomes

n bn,r bn

b0 1 1

b1 − (r+1)2
8r2+10r+3 −25

96

b2
(r+1)2(r+2)2

64r4+288r3+452r2+288r+63
675

14336

b3 − (r+1)2(r+2)2(r+3)2
512r6+4992r5+19232r4+37128r3+37460r2+18486r+3465 − 38025

5046272

For n = 4, using the above recursive equation gives

b4 =
(r + 1)2 (r + 2)2 (r + 3)2 (r + 4)2

(512r6 + 4992r5 + 19232r4 + 37128r3 + 37460r2 + 18486r + 3465) (8r2 + 58r + 105)

Which for the root r = 1
4 becomes

b4 =
732615

645922816
And the table now becomes
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n bn,r bn

b0 1 1

b1 − (r+1)2
8r2+10r+3 −25

96

b2
(r+1)2(r+2)2

64r4+288r3+452r2+288r+63
675

14336

b3 − (r+1)2(r+2)2(r+3)2
512r6+4992r5+19232r4+37128r3+37460r2+18486r+3465 − 38025

5046272

b4
(r+1)2(r+2)2(r+3)2(r+4)2

(512r6+4992r5+19232r4+37128r3+37460r2+18486r+3465)(8r2+58r+105)
732615

645922816

For n = 5, using the above recursive equation gives

b5 = − (r + 1)2 (r + 2)2 (r + 3)2 (r + 4)2 (r + 5)2

(512r6 + 4992r5 + 19232r4 + 37128r3 + 37460r2 + 18486r + 3465) (8r2 + 58r + 105) (8r2 + 74r + 171)

Which for the root r = 1
4 becomes

b5 = − 9230949
56103010304

And the table now becomes

n bn,r bn

b0 1 1

b1 − (r+1)2
8r2+10r+3 −25

96

b2
(r+1)2(r+2)2

64r4+288r3+452r2+288r+63
675

14336

b3 − (r+1)2(r+2)2(r+3)2
512r6+4992r5+19232r4+37128r3+37460r2+18486r+3465 − 38025

5046272

b4
(r+1)2(r+2)2(r+3)2(r+4)2

(512r6+4992r5+19232r4+37128r3+37460r2+18486r+3465)(8r2+58r+105)
732615

645922816

b5 − (r+1)2(r+2)2(r+3)2(r+4)2(r+5)2
(512r6+4992r5+19232r4+37128r3+37460r2+18486r+3465)(8r2+58r+105)(8r2+74r+171) − 9230949

56103010304

Using the above table, then the solution y2(x) is

y2(x) =
√
x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x
1
4

(
1− 25x

96 + 675x2

14336 − 38025x3

5046272 + 732615x4

645922816 − 9230949x5

56103010304 +O
(
x6))

5021



Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− 9x

40 + 5x2

128 − 245x3

39936 + 6615x4

7241728 − 7623x5

57933824 +O
(
x6))

+ c2x
1
4

(
1− 25x

96 + 675x2

14336 − 38025x3

5046272 + 732615x4

645922816 − 9230949x5

56103010304 +O
(
x6))

Hence the final solution is

y = yh

= c1
√
x

(
1− 9x

40 + 5x2

128 − 245x3

39936 + 6615x4

7241728 − 7623x5

57933824 +O
(
x6))

+ c2x
1
4

(
1− 25x

96 + 675x2

14336 − 38025x3

5046272 + 732615x4

645922816 − 9230949x5

56103010304 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1

√
x

(
1− 9x

40 + 5x2

128 − 245x3

39936 + 6615x4

7241728 − 7623x5

57933824 +O
(
x6))

+ c2x
1
4

(
1− 25x

96 + 675x2

14336 − 38025x3

5046272 + 732615x4

645922816 − 9230949x5

56103010304 +O
(
x6))

Verification of solutions

y = c1
√
x

(
1− 9x

40 + 5x2

128 − 245x3

39936 + 6615x4

7241728 − 7623x5

57933824 +O
(
x6))

+ c2x
1
4

(
1− 25x

96 + 675x2

14336 − 38025x3

5046272 + 732615x4

645922816 − 9230949x5

56103010304 +O
(
x6))

Verified OK.
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14.26.1 Maple step by step solution

Let’s solve
x2(x+ 8) y′′ + (3x2 + 2x) y′ + (x+ 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (x+1)y
x2(x+8) −

(3x+2)y′
x(x+8)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (3x+2)y′
x(x+8) + (x+1)y

x2(x+8) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3x+2
x(x+8) , P3(x) = x+1

x2(x+8)

]
◦ (x+ 8) · P2(x) is analytic at x = −8

((x+ 8) · P2(x))
∣∣∣∣
x=−8

= 11
4

◦ (x+ 8)2 · P3(x) is analytic at x = −8(
(x+ 8)2 · P3(x)

) ∣∣∣∣
x=−8

= 0

◦ x = −8is a regular singular point
Check to see if x0 is a regular singular point
x0 = −8

• Multiply by denominators
x2(x+ 8) y′′ + x(3x+ 2) y′ + (x+ 1) y = 0

• Change variables using x = u− 8 so that the regular singular point is at u = 0

(u3 − 16u2 + 64u)
(

d2

du2y(u)
)
+ (3u2 − 46u+ 176)

(
d
du
y(u)

)
+ (u− 7) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

16a0r(7 + 4r)u−1+r + (16a1(1 + r) (11 + 4r)− a0(16r2 + 30r + 7))ur +
(

∞∑
k=1

(
16ak+1(k + r + 1) (4k + 11 + 4r)− ak(16k2 + 32kr + 16r2 + 30k + 30r + 7) + ak−1(k + r)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
16r(7 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−7

4

}
• Each term must be 0

16a1(1 + r) (11 + 4r)− a0(16r2 + 30r + 7) = 0
• Each term in the series must be 0, giving the recursion relation

64
(
k + 11

4 + r
)
(k + r + 1) ak+1 − ak(16k2 + 32kr + 16r2 + 30k + 30r + 7) + ak−1(k + r)2 = 0

• Shift index using k− >k + 1
64
(
k + 15

4 + r
)
(k + 2 + r) ak+2 − ak+1

(
16(k + 1)2 + 32(k + 1) r + 16r2 + 30k + 37 + 30r

)
+ ak(k + r + 1)2 = 0

• Recursion relation that defines series solution to ODE
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ak+2 = −k2ak−16k2ak+1+2krak−32krak+1+r2ak−16r2ak+1+2kak−62kak+1+2rak−62rak+1+ak−53ak+1
16(4k+15+4r)(k+2+r)

• Recursion relation for r = 0

ak+2 = −k2ak−16k2ak+1+2kak−62kak+1+ak−53ak+1
16(4k+15)(k+2)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−16k2ak+1+2kak−62kak+1+ak−53ak+1

16(4k+15)(k+2) , 176a1 − 7a0 = 0
]

• Revert the change of variables u = x+ 8[
y =

∞∑
k=0

ak(x+ 8)k , ak+2 = −k2ak−16k2ak+1+2kak−62kak+1+ak−53ak+1
16(4k+15)(k+2) , 176a1 − 7a0 = 0

]
• Recursion relation for r = −7

4

ak+2 = −k2ak−16k2ak+1− 3
2kak−6kak+1+ 9

16ak+
13
2 ak+1

16(4k+8)
(
k+ 1

4
)

• Solution for r = −7
4[

y(u) =
∞∑
k=0

aku
k− 7

4 , ak+2 = −k2ak−16k2ak+1− 3
2kak−6kak+1+ 9

16ak+
13
2 ak+1

16(4k+8)
(
k+ 1

4
) ,−48a1 − 7a0

2 = 0
]

• Revert the change of variables u = x+ 8[
y =

∞∑
k=0

ak(x+ 8)k−
7
4 , ak+2 = −k2ak−16k2ak+1− 3

2kak−6kak+1+ 9
16ak+

13
2 ak+1

16(4k+8)
(
k+ 1

4
) ,−48a1 − 7a0

2 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak(x+ 8)k
)
+
(

∞∑
k=0

bk(x+ 8)k−
7
4

)
, ak+2 = −k2ak−16k2a1+k+2kak−62ka1+k+ak−53a1+k

16(4k+15)(k+2) , 176a1 − 7a0 = 0, bk+2 = −k2bk−16k2b1+k− 3
2kbk−6kb1+k+ 9

16 bk+
13
2 b1+k

16(4k+8)
(
k+ 1

4
) ,−48b1 − 7b0

2 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 47� �
Order:=6;
dsolve(x^2*(8+x)*diff(y(x),x$2)+x*(2+3*x)*diff(y(x),x)+(1+x)*y(x)=0,y(x),type='series',x=0);� �
y(x) = c1x

1
4

(
1− 25

96x+ 675
14336x

2 − 38025
5046272x

3 + 732615
645922816x

4 − 9230949
56103010304x

5

+O
(
x6))

+ c2
√
x

(
1− 9

40x+ 5
128x

2 − 245
39936x

3 + 6615
7241728x

4 − 7623
57933824x

5 +O
(
x6))
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 90� �
AsymptoticDSolveValue[x^2*(8+x)*y''[x]+x*(2+3*x)*y'[x]+(1+x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x

(
− 7623x5

57933824 + 6615x4

7241728 − 245x3

39936 + 5x2

128 − 9x
40 + 1

)
+ c2

4
√
x

(
− 9230949x5

56103010304 + 732615x4

645922816 − 38025x3

5046272 + 675x2

14336 − 25x
96 + 1

)
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14.27 problem 29
14.27.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5039

Internal problem ID [1318]
Internal file name [OUTPUT/1319_Sunday_June_05_2022_02_10_05_AM_13927065/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 29.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(4x+ 3) y′′ + x(11 + 4x) y′ − (4x+ 3) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

4x3 + 3x2) y′′ + (4x2 + 11x
)
y′ + (−4x− 3) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 11 + 4x
x (4x+ 3)

q(x) = − 1
x2
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Table 582: Table p(x), q(x) singularites.

p(x) = 11+4x
x(4x+3)

singularity type
x = 0 “regular”
x = −3

4 “regular”

q(x) = − 1
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−3

4 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(4x+ 3) y′′ +
(
4x2 + 11x

)
y′ + (−4x− 3) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(4x+ 3)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
4x2 + 11x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (−4x− 3)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4x1+n+ran(n+ r)
)

+
(

∞∑
n=0

11xn+ran(n+ r)
)

+
∞∑

n =0

(
−4x1+n+ran

)
+

∞∑
n =0

(
−3anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

4an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

4x1+n+ran(n+ r) =
∞∑
n=1

4an−1(n+ r − 1)xn+r

∞∑
n =0

(
−4x1+n+ran

)
=

∞∑
n=1

(
−4an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

4an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

3xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

4an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

11xn+ran(n+ r)
)

+
∞∑

n =1

(
−4an−1x

n+r
)
+

∞∑
n =0

(
−3anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

3xn+ran(n+ r) (n+ r − 1) + 11xn+ran(n+ r)− 3anxn+r = 0
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When n = 0 the above becomes

3xra0r(−1 + r) + 11xra0r − 3a0xr = 0

Or
(3xrr(−1 + r) + 11xrr − 3xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
3r2 + 8r − 3

)
xr = 0

Since the above is true for all x then the indicial equation becomes

3r2 + 8r − 3 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 = −3

Since a0 6= 0 then the indicial equation becomes(
3r2 + 8r − 3

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 10
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) =
∞∑
n=0

bnx
n−3

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)4an−1(n+ r − 1) (n+ r − 2) + 3an(n+ r) (n+ r − 1)
+ 4an−1(n+ r − 1) + 11an(n+ r)− 4an−1 − 3an = 0
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Solving for an from recursive equation (4) gives

an = −4an−1(n2 + 2nr + r2 − 2n− 2r)
3n2 + 6nr + 3r2 + 8n+ 8r − 3 (4)

Which for the root r = 1
3 becomes

an = −4an−1(9n2 − 12n− 5)
27n2 + 90n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−4r2 + 4

3r2 + 14r + 8

Which for the root r = 1
3 becomes

a1 =
32
117

And the table now becomes

n an,r an

a0 1 1
a1

−4r2+4
3r2+14r+8

32
117

For n = 2, using the above recursive equation gives

a2 =
16(r2 − 1) r(r + 2)

(3r2 + 14r + 8) (3r2 + 20r + 25)

Which for the root r = 1
3 becomes

a2 = − 28
1053

And the table now becomes
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n an,r an

a0 1 1
a1

−4r2+4
3r2+14r+8

32
117

a2
16
(
r2−1

)
r(r+2)

(3r2+14r+8)(3r2+20r+25) − 28
1053

For n = 3, using the above recursive equation gives

a3 = − 64(r2 − 1) r(r + 2) (r2 + 4r + 3)
(3r2 + 14r + 8) (3r2 + 20r + 25) (3r2 + 26r + 48)

Which for the root r = 1
3 becomes

a3 =
4480
540189

And the table now becomes

n an,r an

a0 1 1
a1

−4r2+4
3r2+14r+8

32
117

a2
16
(
r2−1

)
r(r+2)

(3r2+14r+8)(3r2+20r+25) − 28
1053

a3 − 64
(
r2−1

)
r(r+2)

(
r2+4r+3

)
(3r2+14r+8)(3r2+20r+25)(3r2+26r+48)

4480
540189

For n = 4, using the above recursive equation gives

a4 =
256(r + 2)2 (−1 + r) (r + 1)2 r(r + 3)

(3r2 + 32r + 77) (3r2 + 26r + 48) (3r2 + 20r + 25) (3r + 2)

Which for the root r = 1
3 becomes

a4 = − 15680
4113747

And the table now becomes
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n an,r an

a0 1 1
a1

−4r2+4
3r2+14r+8

32
117

a2
16
(
r2−1

)
r(r+2)

(3r2+14r+8)(3r2+20r+25) − 28
1053

a3 − 64
(
r2−1

)
r(r+2)

(
r2+4r+3

)
(3r2+14r+8)(3r2+20r+25)(3r2+26r+48)

4480
540189

a4
256(r+2)2(−1+r)(r+1)2r(r+3)

(3r2+32r+77)(3r2+26r+48)(3r2+20r+25)(3r+2) − 15680
4113747

For n = 5, using the above recursive equation gives

a5 = − 1024(r + 3)2 (r + 2)2 (−1 + r) (r + 1)2 r
(3r2 + 38r + 112) (3r + 2) (3r + 5) (3r2 + 26r + 48) (3r2 + 32r + 77)

Which for the root r = 1
3 becomes

a5 =
401408

185118615
And the table now becomes

n an,r an

a0 1 1
a1

−4r2+4
3r2+14r+8

32
117

a2
16
(
r2−1

)
r(r+2)

(3r2+14r+8)(3r2+20r+25) − 28
1053

a3 − 64
(
r2−1

)
r(r+2)

(
r2+4r+3

)
(3r2+14r+8)(3r2+20r+25)(3r2+26r+48)

4480
540189

a4
256(r+2)2(−1+r)(r+1)2r(r+3)

(3r2+32r+77)(3r2+26r+48)(3r2+20r+25)(3r+2) − 15680
4113747

a5 − 1024(r+3)2(r+2)2(−1+r)(r+1)2r
(3r2+38r+112)(3r+2)(3r+5)(3r2+26r+48)(3r2+32r+77)

401408
185118615

Using the above table, then the solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
1 + 32x

117 − 28x2

1053 + 4480x3

540189 − 15680x4

4113747 + 401408x5

185118615 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)4bn−1(n+ r − 1) (n+ r − 2) + 3bn(n+ r) (n+ r − 1)
+ 4bn−1(n+ r − 1) + 11bn(n+ r)− 4bn−1 − 3bn = 0

Solving for bn from recursive equation (4) gives

bn = −4bn−1(n2 + 2nr + r2 − 2n− 2r)
3n2 + 6nr + 3r2 + 8n+ 8r − 3 (4)

Which for the root r = −3 becomes

bn = −4bn−1(n2 − 8n+ 15)
n (3n− 10) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
−4r2 + 4

3r2 + 14r + 8

Which for the root r = −3 becomes

b1 =
32
7

And the table now becomes

n bn,r bn

b0 1 1
b1

−4r2+4
3r2+14r+8

32
7

For n = 2, using the above recursive equation gives

b2 =
16(r2 − 1) r(r + 2)

(3r2 + 14r + 8) (3r2 + 20r + 25)
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Which for the root r = −3 becomes

b2 =
48
7

And the table now becomes

n bn,r bn

b0 1 1
b1

−4r2+4
3r2+14r+8

32
7

b2
16
(
r2−1

)
r(r+2)

(3r2+14r+8)(3r2+20r+25)
48
7

For n = 3, using the above recursive equation gives

b3 = − 64(r2 − 1) r(r + 2) (r2 + 4r + 3)
(3r2 + 14r + 8) (3r2 + 20r + 25) (3r2 + 26r + 48)

Which for the root r = −3 becomes

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−4r2+4
3r2+14r+8

32
7

b2
16
(
r2−1

)
r(r+2)

(3r2+14r+8)(3r2+20r+25)
48
7

b3 − 64
(
r2−1

)
r(r+2)

(
r2+4r+3

)
(3r2+14r+8)(3r2+20r+25)(3r2+26r+48) 0

For n = 4, using the above recursive equation gives

b4 =
256(r + 2)2 (−1 + r) (r + 1)2 r(r + 3)

(3r2 + 32r + 77) (3r2 + 26r + 48) (3r2 + 20r + 25) (3r + 2)

Which for the root r = −3 becomes

b4 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1

−4r2+4
3r2+14r+8

32
7

b2
16
(
r2−1

)
r(r+2)

(3r2+14r+8)(3r2+20r+25)
48
7

b3 − 64
(
r2−1

)
r(r+2)

(
r2+4r+3

)
(3r2+14r+8)(3r2+20r+25)(3r2+26r+48) 0

b4
256(r+2)2(−1+r)(r+1)2r(r+3)

(3r2+32r+77)(3r2+26r+48)(3r2+20r+25)(3r+2) 0

For n = 5, using the above recursive equation gives

b5 = − 1024(r + 3)2 (r + 2)2 (−1 + r) (r + 1)2 r
(3r2 + 38r + 112) (3r + 2) (3r + 5) (3r2 + 26r + 48) (3r2 + 32r + 77)

Which for the root r = −3 becomes

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−4r2+4
3r2+14r+8

32
7

b2
16
(
r2−1

)
r(r+2)

(3r2+14r+8)(3r2+20r+25)
48
7

b3 − 64
(
r2−1

)
r(r+2)

(
r2+4r+3

)
(3r2+14r+8)(3r2+20r+25)(3r2+26r+48) 0

b4
256(r+2)2(−1+r)(r+1)2r(r+3)

(3r2+32r+77)(3r2+26r+48)(3r2+20r+25)(3r+2) 0

b5 − 1024(r+3)2(r+2)2(−1+r)(r+1)2r
(3r2+38r+112)(3r+2)(3r+5)(3r2+26r+48)(3r2+32r+77) 0

Using the above table, then the solution y2(x) is

y2(x) = x
1
3
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1 + 32x

7 + 48x2

7 +O(x6)
x3
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3

(
1 + 32x

117 − 28x2

1053 + 4480x3

540189 − 15680x4

4113747 + 401408x5

185118615 +O
(
x6))

+
c2
(
1 + 32x

7 + 48x2

7 +O(x6)
)

x3

Hence the final solution is

y = yh

= c1x
1
3

(
1 + 32x

117 − 28x2

1053 + 4480x3

540189 − 15680x4

4113747 + 401408x5

185118615 +O
(
x6))

+
c2
(
1 + 32x

7 + 48x2

7 +O(x6)
)

x3

Summary
The solution(s) found are the following

(1)
y = c1x

1
3

(
1 + 32x

117 − 28x2

1053 + 4480x3

540189 − 15680x4

4113747 + 401408x5

185118615 +O
(
x6))

+
c2
(
1 + 32x

7 + 48x2

7 +O(x6)
)

x3

Verification of solutions

y = c1x
1
3

(
1 + 32x

117 − 28x2

1053 + 4480x3

540189 − 15680x4

4113747 + 401408x5

185118615 +O
(
x6))

+
c2
(
1 + 32x

7 + 48x2

7 +O(x6)
)

x3

Verified OK.
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14.27.1 Maple step by step solution

Let’s solve
x2(4x+ 3) y′′ + (4x2 + 11x) y′ + (−4x− 3) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = y
x2 − (11+4x)y′

x(4x+3)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (11+4x)y′
x(4x+3) − y

x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 11+4x
x(4x+3) , P3(x) = − 1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 11
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(4x+ 3) y′′ + x(11 + 4x) y′ + (−4x− 3) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(3 + r) (−1 + 3r)xr +
(

∞∑
k=1

(ak(k + r + 3) (3k + 3r − 1) + 4ak−1(k + r) (k − 2 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(3 + r) (−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−3, 13

}
• Each term in the series must be 0, giving the recursion relation

3(k + r + 3)
(
k + r − 1

3

)
ak + 4ak−1(k + r) (k − 2 + r) = 0

• Shift index using k− >k + 1
3(k + 4 + r)

(
k + 2

3 + r
)
ak+1 + 4ak(k + r + 1) (k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = −4ak(k+r+1)(k+r−1)

(k+4+r)(3k+2+3r)

• Recursion relation for r = −3 ; series terminates at k = 2
ak+1 = −4ak(k−2)(k−4)

(k+1)(3k−7)

• Apply recursion relation for k = 0
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a1 = 32a0
7

• Apply recursion relation for k = 1
a2 = 3a1

2

• Express in terms of a0
a2 = 48a0

7

• Terminating series solution of the ODE for r = −3 . Use reduction of order to find the second linearly independent solution
y = a0 ·

(
1 + 32

7 x+ 48
7 x

2)
• Recursion relation for r = 1

3

ak+1 = −4ak
(
k+ 4

3
)(
k− 2

3
)(

k+ 13
3
)
(3k+3)

• Solution for r = 1
3[

y =
∞∑
k=0

akx
k+ 1

3 , ak+1 = −4ak
(
k+ 4

3
)(
k− 2

3
)(

k+ 13
3
)
(3k+3)

]
• Combine solutions and rename parameters[

y = a0 ·
(
1 + 32

7 x+ 48
7 x

2)+ ( ∞∑
k=0

bkx
k+ 1

3

)
, b1+k = −4bk

(
k+ 4

3
)(
k− 2

3
)(

k+ 13
3
)
(3k+3)

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 41� �
Order:=6;
dsolve(x^2*(3+4*x)*diff(y(x),x$2)+x*(11+4*x)*diff(y(x),x)-(3+4*x)*y(x)=0,y(x),type='series',x=0);� �
y(x) =

c1
(
1 + 32

7 x+ 48
7 x

2 +O(x6)
)

x3

+ c2x
1
3

(
1+ 32

117x−
28
1053x

2+ 4480
540189x

3− 15680
4113747x

4+ 401408
185118615x

5+O
(
x6))
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3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 67� �
AsymptoticDSolveValue[x^2*(3+4*x)*y''[x]+x*(11+4*x)*y'[x]-(3+4*x)*y[x]==0,y[x],{x,0,5}]� �
y(x)→

c2
(

48x2

7 + 32x
7 + 1

)
x3 +c1

3
√
x

(
401408x5

185118615−
15680x4

4113747 +
4480x3

540189−
28x2

1053 +
32x
117 +1

)
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14.28 problem 30
14.28.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5055

Internal problem ID [1319]
Internal file name [OUTPUT/1320_Sunday_June_05_2022_02_10_08_AM_27791504/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 30.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2x2(3x+ 2) y′′ + x(4 + 11x) y′ − (1− x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

6x3 + 4x2) y′′ + (11x2 + 4x
)
y′ + y(x− 1) = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 4 + 11x
2x (3x+ 2)

q(x) = x− 1
2x2 (3x+ 2)
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Table 584: Table p(x), q(x) singularites.

p(x) = 4+11x
2x(3x+2)

singularity type
x = 0 “regular”
x = −2

3 “regular”

q(x) = x−1
2x2(3x+2)

singularity type
x = 0 “regular”
x = −2

3 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−2

3 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x2(3x+ 2) y′′ +
(
11x2 + 4x

)
y′ + y(x− 1) = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2x2(3x+ 2)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
11x2 + 4x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
(x− 1) = 0
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Which simplifies to

(2A)

(
∞∑
n=0

6x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

11x1+n+ran(n+ r)
)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
(

∞∑
n=0

x1+n+ran

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

6x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

6an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

11x1+n+ran(n+ r) =
∞∑
n=1

11an−1(n+ r − 1)xn+r

∞∑
n =0

x1+n+ran =
∞∑
n=1

an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

6an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

11an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
(

∞∑
n=1

an−1x
n+r

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + 4xn+ran(n+ r)− anx
n+r = 0
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When n = 0 the above becomes

4xra0r(−1 + r) + 4xra0r − a0x
r = 0

Or
(4xrr(−1 + r) + 4xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

4r2 − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = −1
2

Since a0 6= 0 then the indicial equation becomes(
4r2 − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
√
x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

√
x

Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n− 1

2

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)6an−1(n+ r − 1) (n+ r − 2) + 4an(n+ r) (n+ r − 1)
+ 11an−1(n+ r − 1) + 4an(n+ r) + an−1 − an = 0

Solving for an from recursive equation (4) gives

an = −(3n+ 3r − 2) an−1

2n+ 2r + 1 (4)

Which for the root r = 1
2 becomes

an = −6nan−1 + an−1

4 + 4n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−1− 3r
3 + 2r

Which for the root r = 1
2 becomes

a1 = −5
8

And the table now becomes

n an,r an

a0 1 1
a1

−1−3r
3+2r −5

8

For n = 2, using the above recursive equation gives

a2 =
9r2 + 15r + 4
4r2 + 16r + 15
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Which for the root r = 1
2 becomes

a2 =
55
96

And the table now becomes

n an,r an

a0 1 1
a1

−1−3r
3+2r −5

8

a2
9r2+15r+4
4r2+16r+15

55
96

For n = 3, using the above recursive equation gives

a3 =
−27r3 − 108r2 − 117r − 28
8r3 + 60r2 + 142r + 105

Which for the root r = 1
2 becomes

a3 = − 935
1536

And the table now becomes

n an,r an

a0 1 1
a1

−1−3r
3+2r −5

8

a2
9r2+15r+4
4r2+16r+15

55
96

a3
−27r3−108r2−117r−28
8r3+60r2+142r+105 − 935

1536

For n = 4, using the above recursive equation gives

a4 =
81r4 + 594r3 + 1431r2 + 1254r + 280
(4r2 + 16r + 15) (7 + 2r) (9 + 2r)

Which for the root r = 1
2 becomes

a4 =
4301
6144

And the table now becomes
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n an,r an

a0 1 1
a1

−1−3r
3+2r −5

8

a2
9r2+15r+4
4r2+16r+15

55
96

a3
−27r3−108r2−117r−28
8r3+60r2+142r+105 − 935

1536

a4
81r4+594r3+1431r2+1254r+280

(4r2+16r+15)(7+2r)(9+2r)
4301
6144

For n = 5, using the above recursive equation gives

a5 =
−243r5 − 2835r4 − 12015r3 − 22365r2 − 17142r − 3640

(4r2 + 16r + 15) (7 + 2r) (11 + 2r) (9 + 2r)

Which for the root r = 1
2 becomes

a5 = −124729
147456

And the table now becomes

n an,r an

a0 1 1
a1

−1−3r
3+2r −5

8

a2
9r2+15r+4
4r2+16r+15

55
96

a3
−27r3−108r2−117r−28
8r3+60r2+142r+105 − 935

1536

a4
81r4+594r3+1431r2+1254r+280

(4r2+16r+15)(7+2r)(9+2r)
4301
6144

a5
−243r5−2835r4−12015r3−22365r2−17142r−3640

(4r2+16r+15)(7+2r)(11+2r)(9+2r) −124729
147456

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− 5x

8 + 55x2

96 − 935x3

1536 + 4301x4

6144 − 124729x5

147456 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N
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Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= −1− 3r
3 + 2r

Therefore

lim
r→r2

−1− 3r
3 + 2r = lim

r→− 1
2

−1− 3r
3 + 2r

= 1
4

The limit is 1
4 . Since the limit exists then the log term is not needed and we can set

C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n− 1

2

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)6bn−1(n+ r − 1) (n+ r − 2) + 4bn(n+ r) (n+ r − 1)
+ 11bn−1(n+ r − 1) + 4bn(n+ r) + bn−1 − bn = 0

Which for for the root r = −1
2 becomes

(4A)6bn−1

(
n− 3

2

)(
n− 5

2

)
+ 4bn

(
n− 1

2

)(
n− 3

2

)
+ 11bn−1

(
n− 3

2

)
+ 4bn

(
n− 1

2

)
+ bn−1 − bn = 0

Solving for bn from the recursive equation (4) gives

bn = −(3n+ 3r − 2) bn−1

2n+ 2r + 1 (5)
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Which for the root r = −1
2 becomes

bn = −
(
3n− 7

2

)
bn−1

2n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = −1 + 3r
3 + 2r

Which for the root r = −1
2 becomes

b1 =
1
4

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−3r
3+2r

1
4

For n = 2, using the above recursive equation gives

b2 =
9r2 + 15r + 4

(3 + 2r) (5 + 2r)

Which for the root r = −1
2 becomes

b2 = − 5
32

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−3r
3+2r

1
4

b2
9r2+15r+4
4r2+16r+15 − 5

32
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For n = 3, using the above recursive equation gives

b3 = −27r3 + 108r2 + 117r + 28
(3 + 2r) (7 + 2r) (5 + 2r)

Which for the root r = −1
2 becomes

b3 =
55
384

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−3r
3+2r

1
4

b2
9r2+15r+4
4r2+16r+15 − 5

32

b3
−27r3−108r2−117r−28
8r3+60r2+142r+105

55
384

For n = 4, using the above recursive equation gives

b4 =
81r4 + 594r3 + 1431r2 + 1254r + 280
(3 + 2r) (5 + 2r) (7 + 2r) (9 + 2r)

Which for the root r = −1
2 becomes

b4 = − 935
6144

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−3r
3+2r

1
4

b2
9r2+15r+4
4r2+16r+15 − 5

32

b3
−27r3−108r2−117r−28
8r3+60r2+142r+105

55
384

b4
81r4+594r3+1431r2+1254r+280
16r4+192r3+824r2+1488r+945 − 935

6144

For n = 5, using the above recursive equation gives

b5 = −243r5 + 2835r4 + 12015r3 + 22365r2 + 17142r + 3640
(3 + 2r) (7 + 2r) (5 + 2r) (11 + 2r) (9 + 2r)
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Which for the root r = −1
2 becomes

b5 =
4301
24576

And the table now becomes

n bn,r bn

b0 1 1
b1

−1−3r
3+2r

1
4

b2
9r2+15r+4
4r2+16r+15 − 5

32

b3
−27r3−108r2−117r−28
8r3+60r2+142r+105

55
384

b4
81r4+594r3+1431r2+1254r+280
16r4+192r3+824r2+1488r+945 − 935

6144

b5
−243r5−2835r4−12015r3−22365r2−17142r−3640

(3+2r)(7+2r)(5+2r)(11+2r)(9+2r)
4301
24576

Using the above table, then the solution y2(x) is

y2(x) =
√
x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1 + x

4 −
5x2

32 + 55x3

384 − 935x4

6144 + 4301x5

24576 +O(x6)
√
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− 5x

8 + 55x2

96 − 935x3

1536 + 4301x4

6144 − 124729x5

147456 +O
(
x6))

+
c2
(
1 + x

4 −
5x2

32 + 55x3

384 − 935x4

6144 + 4301x5

24576 +O(x6)
)

√
x

Hence the final solution is

y = yh

= c1
√
x

(
1− 5x

8 + 55x2

96 − 935x3

1536 + 4301x4

6144 − 124729x5

147456 +O
(
x6))

+
c2
(
1 + x

4 −
5x2

32 + 55x3

384 − 935x4

6144 + 4301x5

24576 +O(x6)
)

√
x
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Summary
The solution(s) found are the following

(1)
y = c1

√
x

(
1− 5x

8 + 55x2

96 − 935x3

1536 + 4301x4

6144 − 124729x5

147456 +O
(
x6))

+
c2
(
1 + x

4 −
5x2

32 + 55x3

384 − 935x4

6144 + 4301x5

24576 +O(x6)
)

√
x

Verification of solutions

y = c1
√
x

(
1− 5x

8 + 55x2

96 − 935x3

1536 + 4301x4

6144 − 124729x5

147456 +O
(
x6))

+
c2
(
1 + x

4 −
5x2

32 + 55x3

384 − 935x4

6144 + 4301x5

24576 +O(x6)
)

√
x

Verified OK.

14.28.1 Maple step by step solution

Let’s solve
2x2(3x+ 2) y′′ + (11x2 + 4x) y′ + y(x− 1) = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − y(x−1)
2x2(3x+2) −

(4+11x)y′
2x(3x+2)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (4+11x)y′
2x(3x+2) +

y(x−1)
2x2(3x+2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 4+11x
2x(3x+2) , P3(x) = x−1

2x2(3x+2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
2x2(3x+ 2) y′′ + x(4 + 11x) y′ + y(x− 1) = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr +
(

∞∑
k=1

(ak(2k + 2r + 1) (2k + 2r − 1) + ak−1(2k + 2r − 1) (3k − 2 + 3r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(1 + 2r) (−1 + 2r) = 0
• Values of r that satisfy the indicial equation

r ∈
{
−1

2 ,
1
2

}
• Each term in the series must be 0, giving the recursion relation

4
(
k + r − 1

2

) ((3k
2 + 3r

2 − 1
)
ak−1 + ak

(
k + r + 1

2

))
= 0

• Shift index using k− >k + 1
4
(
k + r + 1

2

) ((3k
2 + 1

2 +
3r
2

)
ak + ak+1

(
k + 3

2 + r
))

= 0

• Recursion relation that defines series solution to ODE
ak+1 = − (3k+3r+1)ak

2k+3+2r

• Recursion relation for r = −1
2

ak+1 = −
(
3k− 1

2
)
ak

2k+2

• Solution for r = −1
2[

y =
∞∑
k=0

akx
k− 1

2 , ak+1 = −
(
3k− 1

2
)
ak

2k+2

]
• Recursion relation for r = 1

2

ak+1 = −
(
3k+ 5

2
)
ak

2k+4

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+1 = −
(
3k+ 5

2
)
ak

2k+4

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, a1+k = −

(
3k− 1

2
)
ak

2k+2 , b1+k = −
(
3k+ 5

2
)
bk

2k+4

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 47� �
Order:=6;
dsolve(2*x^2*(2+3*x)*diff(y(x),x$2)+x*(4+11*x)*diff(y(x),x)-(1-x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1x
(
1− 5

8x+ 55
96x

2 − 935
1536x

3 + 4301
6144x

4 − 124729
147456x

5 +O(x6)
)
+ c2

(
1− 5

4x+ 25
32x

2 − 275
384x

3 + 4675
6144x

4 − 21505
24576x

5 +O(x6)
)

√
x

3 Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 94� �
AsymptoticDSolveValue[2*x^2*(2+3*x)*y''[x]+x*(4+11*x)*y'[x]-(1-x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
−935x7/2

6144 + 55x5/2

384 − 5x3/2

32 +
√
x

4

+ 1√
x

)
+ c2

(
4301x9/2

6144 − 935x7/2

1536 + 55x5/2

96 − 5x3/2

8 +
√
x

)
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14.29 problem 31
14.29.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5069

Internal problem ID [1320]
Internal file name [OUTPUT/1321_Sunday_June_05_2022_02_10_11_AM_33254565/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 31.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(2 + x) y′′ + 5x(1− x) y′ − (−8x+ 2) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x3 + 2x2) y′′ + (−5x2 + 5x
)
y′ + (8x− 2) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 5(x− 1)
x (2 + x)

q(x) = 8x− 2
x2 (2 + x)
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Table 586: Table p(x), q(x) singularites.

p(x) = − 5(x−1)
x(2+x)

singularity type
x = −2 “regular”
x = 0 “regular”

q(x) = 8x−2
x2(2+x)

singularity type
x = −2 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−2, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(2 + x) y′′ +
(
−5x2 + 5x

)
y′ + (8x− 2) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(2 + x)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−5x2 + 5x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (8x− 2)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−5x1+n+ran(n+ r)

)
+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=0

8x1+n+ran

)
+

∞∑
n =0

(
−2anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

(
−5x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−5an−1(n+ r − 1)xn+r

)
∞∑

n =0

8x1+n+ran =
∞∑
n=1

8an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

an−1(n+ r−1) (n+ r−2)xn+r

)
+
(

∞∑
n=0

2xn+ran(n+ r) (n+ r−1)
)

+
∞∑

n =1

(
−5an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=1

8an−1x
n+r

)
+

∞∑
n =0

(
−2anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+ran(n+ r) (n+ r − 1) + 5xn+ran(n+ r)− 2anxn+r = 0

5061



When n = 0 the above becomes

2xra0r(−1 + r) + 5xra0r − 2a0xr = 0

Or
(2xrr(−1 + r) + 5xrr − 2xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
2r2 + 3r − 2

)
xr = 0

Since the above is true for all x then the indicial equation becomes

2r2 + 3r − 2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = −2

Since a0 6= 0 then the indicial equation becomes(
2r2 + 3r − 2

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 5
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n−2

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an−1(n+ r − 1) (n+ r − 2) + 2an(n+ r) (n+ r − 1)
− 5an−1(n+ r − 1) + 5an(n+ r) + 8an−1 − 2an = 0
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Solving for an from recursive equation (4) gives

an = −an−1(n2 + 2nr + r2 − 8n− 8r + 15)
2n2 + 4nr + 2r2 + 3n+ 3r − 2 (4)

Which for the root r = 1
2 becomes

an = −an−1(4n2 − 28n+ 45)
8n2 + 20n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−r2 + 6r − 8
2r2 + 7r + 3

Which for the root r = 1
2 becomes

a1 = −3
4

And the table now becomes

n an,r an

a0 1 1
a1

−r2+6r−8
2r2+7r+3 −3

4

For n = 2, using the above recursive equation gives

a2 =
r4 − 10r3 + 35r2 − 50r + 24

(2r2 + 7r + 3) (2r2 + 11r + 12)

Which for the root r = 1
2 becomes

a2 =
5
96

And the table now becomes
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n an,r an

a0 1 1
a1

−r2+6r−8
2r2+7r+3 −3

4

a2
r4−10r3+35r2−50r+24

(2r2+7r+3)(2r2+11r+12)
5
96

For n = 3, using the above recursive equation gives

a3 = − (−1 + r) (r − 2)2 (r − 3) (r − 4) r
8r6 + 132r5 + 854r4 + 2739r3 + 4502r2 + 3465r + 900

Which for the root r = 1
2 becomes

a3 =
5

4224

And the table now becomes

n an,r an

a0 1 1
a1

−r2+6r−8
2r2+7r+3 −3

4

a2
r4−10r3+35r2−50r+24

(2r2+7r+3)(2r2+11r+12)
5
96

a3 − (−1+r)(r−2)2(r−3)(r−4)r
8r6+132r5+854r4+2739r3+4502r2+3465r+900

5
4224

For n = 4, using the above recursive equation gives

a4 =
(−1 + r)2 (r − 2)2 (r − 3) (r − 4) r(r + 1)

16r8 + 416r7 + 4552r6 + 27248r5 + 96913r4 + 207506r3 + 256719r2 + 162630r + 37800

Which for the root r = 1
2 becomes

a4 =
5

292864

And the table now becomes
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n an,r an

a0 1 1
a1

−r2+6r−8
2r2+7r+3 −3

4

a2
r4−10r3+35r2−50r+24

(2r2+7r+3)(2r2+11r+12)
5
96

a3 − (−1+r)(r−2)2(r−3)(r−4)r
8r6+132r5+854r4+2739r3+4502r2+3465r+900

5
4224

a4
(−1+r)2(r−2)2(r−3)(r−4)r(r+1)

16r8+416r7+4552r6+27248r5+96913r4+207506r3+256719r2+162630r+37800
5

292864

For n = 5, using the above recursive equation gives

a5 = − (−1 + r)2 (r − 2)2 (r − 3) (r − 4) r2(r + 1) (r + 2)
(16r8 + 416r7 + 4552r6 + 27248r5 + 96913r4 + 207506r3 + 256719r2 + 162630r + 37800) (2r2 + 23r + 63)

Which for the root r = 1
2 becomes

a5 = − 1
3514368

And the table now becomes

n an,r an

a0 1 1
a1

−r2+6r−8
2r2+7r+3 −3

4

a2
r4−10r3+35r2−50r+24

(2r2+7r+3)(2r2+11r+12)
5
96

a3 − (−1+r)(r−2)2(r−3)(r−4)r
8r6+132r5+854r4+2739r3+4502r2+3465r+900

5
4224

a4
(−1+r)2(r−2)2(r−3)(r−4)r(r+1)

16r8+416r7+4552r6+27248r5+96913r4+207506r3+256719r2+162630r+37800
5

292864

a5 − (−1+r)2(r−2)2(r−3)(r−4)r2(r+1)(r+2)
(16r8+416r7+4552r6+27248r5+96913r4+207506r3+256719r2+162630r+37800)(2r2+23r+63) − 1

3514368

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− 3x

4 + 5x2

96 + 5x3

4224 + 5x4

292864 − x5

3514368 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)bn−1(n+ r − 1) (n+ r − 2) + 2bn(n+ r) (n+ r − 1)
− 5bn−1(n+ r − 1) + 5bn(n+ r) + 8bn−1 − 2bn = 0

Solving for bn from recursive equation (4) gives

bn = −bn−1(n2 + 2nr + r2 − 8n− 8r + 15)
2n2 + 4nr + 2r2 + 3n+ 3r − 2 (4)

Which for the root r = −2 becomes

bn = −bn−1(n2 − 12n+ 35)
n (2n− 5) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
−r2 + 6r − 8
2r2 + 7r + 3

Which for the root r = −2 becomes

b1 = 8

And the table now becomes

n bn,r bn

b0 1 1
b1

−r2+6r−8
2r2+7r+3 8

For n = 2, using the above recursive equation gives

b2 =
r4 − 10r3 + 35r2 − 50r + 24

(2r2 + 7r + 3) (2r2 + 11r + 12)
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Which for the root r = −2 becomes

b2 = 60

And the table now becomes

n bn,r bn

b0 1 1
b1

−r2+6r−8
2r2+7r+3 8

b2
r4−10r3+35r2−50r+24

(2r2+7r+3)(2r2+11r+12) 60

For n = 3, using the above recursive equation gives

b3 = − (−1 + r) (r − 2)2 (r − 3) (r − 4) r
8r6 + 132r5 + 854r4 + 2739r3 + 4502r2 + 3465r + 900

Which for the root r = −2 becomes

b3 = −160

And the table now becomes

n bn,r bn

b0 1 1
b1

−r2+6r−8
2r2+7r+3 8

b2
r4−10r3+35r2−50r+24

(2r2+7r+3)(2r2+11r+12) 60

b3 − (−1+r)(r−2)2(r−3)(r−4)r
8r6+132r5+854r4+2739r3+4502r2+3465r+900 −160

For n = 4, using the above recursive equation gives

b4 =
(−1 + r)2 (r − 2)2 (r − 3) (r − 4) r(r + 1)

16r8 + 416r7 + 4552r6 + 27248r5 + 96913r4 + 207506r3 + 256719r2 + 162630r + 37800

Which for the root r = −2 becomes

b4 = 40

And the table now becomes

5067



n bn,r bn

b0 1 1
b1

−r2+6r−8
2r2+7r+3 8

b2
r4−10r3+35r2−50r+24

(2r2+7r+3)(2r2+11r+12) 60

b3 − (−1+r)(r−2)2(r−3)(r−4)r
8r6+132r5+854r4+2739r3+4502r2+3465r+900 −160

b4
(−1+r)2(r−2)2(r−3)(r−4)r(r+1)

16r8+416r7+4552r6+27248r5+96913r4+207506r3+256719r2+162630r+37800 40

For n = 5, using the above recursive equation gives

b5 = − (−1 + r)2 (r − 2)2 (r − 3) (r − 4) r2(r + 1) (r + 2)
(16r8 + 416r7 + 4552r6 + 27248r5 + 96913r4 + 207506r3 + 256719r2 + 162630r + 37800) (2r2 + 23r + 63)

Which for the root r = −2 becomes

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−r2+6r−8
2r2+7r+3 8

b2
r4−10r3+35r2−50r+24

(2r2+7r+3)(2r2+11r+12) 60

b3 − (−1+r)(r−2)2(r−3)(r−4)r
8r6+132r5+854r4+2739r3+4502r2+3465r+900 −160

b4
(−1+r)2(r−2)2(r−3)(r−4)r(r+1)

16r8+416r7+4552r6+27248r5+96913r4+207506r3+256719r2+162630r+37800 40

b5 − (−1+r)2(r−2)2(r−3)(r−4)r2(r+1)(r+2)
(16r8+416r7+4552r6+27248r5+96913r4+207506r3+256719r2+162630r+37800)(2r2+23r+63) 0

Using the above table, then the solution y2(x) is

y2(x) =
√
x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= 1 + 8x+ 60x2 − 160x3 + 40x4 +O(x6)
x2
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− 3x

4 + 5x2

96 + 5x3

4224 + 5x4

292864 − x5

3514368 +O
(
x6))

+ c2(1 + 8x+ 60x2 − 160x3 + 40x4 +O(x6))
x2

Hence the final solution is

y = yh

= c1
√
x

(
1− 3x

4 + 5x2

96 + 5x3

4224 + 5x4

292864 − x5

3514368 +O
(
x6))

+ c2(1 + 8x+ 60x2 − 160x3 + 40x4 +O(x6))
x2

Summary
The solution(s) found are the following

(1)
y = c1

√
x

(
1− 3x

4 + 5x2

96 + 5x3

4224 + 5x4

292864 − x5

3514368 +O
(
x6))

+ c2(1 + 8x+ 60x2 − 160x3 + 40x4 +O(x6))
x2

Verification of solutions

y = c1
√
x

(
1− 3x

4 + 5x2

96 + 5x3

4224 + 5x4

292864 − x5

3514368 +O
(
x6))

+ c2(1 + 8x+ 60x2 − 160x3 + 40x4 +O(x6))
x2

Verified OK.

14.29.1 Maple step by step solution

Let’s solve
x2(2 + x) y′′ + (−5x2 + 5x) y′ + (8x− 2) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
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y′′ = −2(4x−1)y
x2(2+x) + 5(x−1)y′

x(2+x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − 5(x−1)y′
x(2+x) + 2(4x−1)y

x2(2+x) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 5(x−1)
x(2+x) , P3(x) = 2(4x−1)

x2(2+x)

]
◦ (2 + x) · P2(x) is analytic at x = −2

((2 + x) · P2(x))
∣∣∣∣
x=−2

= −15
2

◦ (2 + x)2 · P3(x) is analytic at x = −2(
(2 + x)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators
x2(2 + x) y′′ − 5x(x− 1) y′ + (8x− 2) y = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(u3 − 4u2 + 4u)
(

d2

du2y(u)
)
+ (−5u2 + 25u− 30)

(
d
du
y(u)

)
+ (8u− 18) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2
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um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

2a0r(−17 + 2r)u−1+r + (2a1(1 + r) (−15 + 2r)− a0(4r2 − 29r + 18))ur +
(

∞∑
k=1

(2ak+1(k + 1 + r) (2k − 15 + 2r)− ak(4k2 + 8kr + 4r2 − 29k − 29r + 18) + ak−1(k − 3 + r) (k − 5 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2r(−17 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 172

}
• Each term must be 0

2a1(1 + r) (−15 + 2r)− a0(4r2 − 29r + 18) = 0
• Each term in the series must be 0, giving the recursion relation

(−4ak + ak−1 + 4ak+1) k2 + ((−8ak + 2ak−1 + 8ak+1) r + 29ak − 8ak−1 − 26ak+1) k + (−4ak + ak−1 + 4ak+1) r2 + (29ak − 8ak−1 − 26ak+1) r − 18ak + 15ak−1 − 30ak+1 = 0
• Shift index using k− >k + 1

(−4ak+1 + ak + 4ak+2) (k + 1)2 + ((−8ak+1 + 2ak + 8ak+2) r + 29ak+1 − 8ak − 26ak+2) (k + 1) + (−4ak+1 + ak + 4ak+2) r2 + (29ak+1 − 8ak − 26ak+2) r − 18ak+1 + 15ak − 30ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −k2ak−4k2ak+1+2krak−8krak+1+r2ak−4r2ak+1−6kak+21kak+1−6rak+21rak+1+8ak+7ak+1
2(2k2+4kr+2r2−9k−9r−26)

• Recursion relation for r = 0

ak+2 = −k2ak−4k2ak+1−6kak+21kak+1+8ak+7ak+1
2(2k2−9k−26)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−4k2ak+1−6kak+21kak+1+8ak+7ak+1

2(2k2−9k−26) ,−30a1 − 18a0 = 0
]
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• Revert the change of variables u = 2 + x[
y =

∞∑
k=0

ak(2 + x)k , ak+2 = −k2ak−4k2ak+1−6kak+21kak+1+8ak+7ak+1
2(2k2−9k−26) ,−30a1 − 18a0 = 0

]
• Recursion relation for r = 17

2

ak+2 = −k2ak−4k2ak+1+11kak−47kak+1+ 117
4 ak− 207

2 ak+1
2(2k2+25k+42)

• Solution for r = 17
2[

y(u) =
∞∑
k=0

aku
k+ 17

2 , ak+2 = −k2ak−4k2ak+1+11kak−47kak+1+ 117
4 ak− 207

2 ak+1
2(2k2+25k+42) , 38a1 − 121a0

2 = 0
]

• Revert the change of variables u = 2 + x[
y =

∞∑
k=0

ak(2 + x)k+
17
2 , ak+2 = −k2ak−4k2ak+1+11kak−47kak+1+ 117

4 ak− 207
2 ak+1

2(2k2+25k+42) , 38a1 − 121a0
2 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(2 + x)k
)
+
(

∞∑
k=0

bk(2 + x)k+
17
2

)
, ak+2 = −k2ak−4k2a1+k−6kak+21ka1+k+8ak+7a1+k

2(2k2−9k−26) ,−30a1 − 18a0 = 0, bk+2 = −k2bk−4k2b1+k+11kbk−47kb1+k+ 117
4 bk− 207

2 b1+k

2(2k2+25k+42) , 38b1 − 121b0
2 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 45� �
Order:=6;
dsolve(x^2*(2+x)*diff(y(x),x$2)+5*x*(1-x)*diff(y(x),x)-(2-8*x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c2x

5
2
(
1− 3

4x+ 5
96x

2 + 5
4224x

3 + 5
292864x

4 − 1
3514368x

5 +O(x6)
)
+ c1(1 + 8x+ 60x2 − 160x3 + 40x4 +O(x6))

x2
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3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 73� �
AsymptoticDSolveValue[x^2*(2+x)*y''[x]+5*x*(1-x)*y'[x]-(2-8*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2(40x4 − 160x3 + 60x2 + 8x+ 1)
x2

+ c1
√
x

(
− x5

3514368 + 5x4

292864 + 5x3

4224 + 5x2

96 − 3x
4 + 1

)
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14.30 problem 32
14.30.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5086

Internal problem ID [1321]
Internal file name [OUTPUT/1322_Sunday_June_05_2022_02_10_15_AM_64338585/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 32.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x+ 6) y′′ + x(11 + 4x) y′ + (1 + 2x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x3 + 6x2) y′′ + (4x2 + 11x
)
y′ + (1 + 2x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 11 + 4x
x (x+ 6)

q(x) = 1 + 2x
x2 (x+ 6)
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Table 588: Table p(x), q(x) singularites.

p(x) = 11+4x
x(x+6)

singularity type
x = −6 “regular”
x = 0 “regular”

q(x) = 1+2x
x2(x+6)

singularity type
x = −6 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−6, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x+ 6) y′′ +
(
4x2 + 11x

)
y′ + (1 + 2x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x+ 6)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
4x2 + 11x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (1 + 2x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

6xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4x1+n+ran(n+ r)
)

+
(

∞∑
n=0

11xn+ran(n+ r)
)

+
(

∞∑
n=0

anx
n+r

)
+
(

∞∑
n=0

2x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

4x1+n+ran(n+ r) =
∞∑
n=1

4an−1(n+ r − 1)xn+r

∞∑
n =0

2x1+n+ran =
∞∑
n=1

2an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

6xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

4an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

11xn+ran(n+ r)
)

+
(

∞∑
n=0

anx
n+r

)
+
(

∞∑
n=1

2an−1x
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

6xn+ran(n+ r) (n+ r − 1) + 11xn+ran(n+ r) + anx
n+r = 0
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When n = 0 the above becomes

6xra0r(−1 + r) + 11xra0r + a0x
r = 0

Or
(6xrr(−1 + r) + 11xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
6r2 + 5r + 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

6r2 + 5r + 1 = 0

Solving for r gives the roots of the indicial equation as

r1 = −1
3

r2 = −1
2

Since a0 6= 0 then the indicial equation becomes(
6r2 + 5r + 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
6 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n− 1

3

y2(x) =
∞∑
n=0

bnx
n− 1

2

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an−1(n+ r − 1) (n+ r − 2) + 6an(n+ r) (n+ r − 1)
+ 4an−1(n+ r − 1) + 11an(n+ r) + an + 2an−1 = 0
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Solving for an from recursive equation (4) gives

an = − an−1(n2 + 2nr + r2 + n+ r)
6n2 + 12nr + 6r2 + 5n+ 5r + 1 (4)

Which for the root r = −1
3 becomes

an = −an−1(9n2 + 3n− 2)
54n2 + 9n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−r2 − 3r − 2
6r2 + 17r + 12

Which for the root r = −1
3 becomes

a1 = −10
63

And the table now becomes

n an,r an

a0 1 1
a1

−r2−3r−2
6r2+17r+12 −10

63

For n = 2, using the above recursive equation gives

a2 =
(r + 3) (r + 1) (r + 2)2

36r4 + 276r3 + 775r2 + 943r + 420

Which for the root r = −1
3 becomes

a2 =
200
7371

And the table now becomes

5079



n an,r an

a0 1 1
a1

−r2−3r−2
6r2+17r+12 −10

63

a2
(r+3)(r+1)(r+2)2

36r4+276r3+775r2+943r+420
200
7371

For n = 3, using the above recursive equation gives

a3 = − (r + 3)2 (r + 1) (r + 2)2 (r + 4)
216r6 + 3132r5 + 18486r4 + 56753r3 + 95433r2 + 83230r + 29400

Which for the root r = −1
3 becomes

a3 = − 17600
3781323

And the table now becomes

n an,r an

a0 1 1
a1

−r2−3r−2
6r2+17r+12 −10

63

a2
(r+3)(r+1)(r+2)2

36r4+276r3+775r2+943r+420
200
7371

a3 − (r+3)2(r+1)(r+2)2(r+4)
216r6+3132r5+18486r4+56753r3+95433r2+83230r+29400 − 17600

3781323

For n = 4, using the above recursive equation gives

a4 =
(r + 3)2 (r + 1) (r + 2)2 (r + 4)2 (r + 5)

(216r6 + 3132r5 + 18486r4 + 56753r3 + 95433r2 + 83230r + 29400) (6r2 + 53r + 117)

Which for the root r = −1
3 becomes

a4 =
3872

4861701

And the table now becomes
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n an,r an

a0 1 1
a1

−r2−3r−2
6r2+17r+12 −10

63

a2
(r+3)(r+1)(r+2)2

36r4+276r3+775r2+943r+420
200
7371

a3 − (r+3)2(r+1)(r+2)2(r+4)
216r6+3132r5+18486r4+56753r3+95433r2+83230r+29400 − 17600

3781323

a4
(r+3)2(r+1)(r+2)2(r+4)2(r+5)

(216r6+3132r5+18486r4+56753r3+95433r2+83230r+29400)(6r2+53r+117)
3872

4861701

For n = 5, using the above recursive equation gives

a5 = − (r + 3)2 (r + 1) (r + 2)2 (r + 4)2 (r + 5)2 (6 + r)
(216r6 + 3132r5 + 18486r4 + 56753r3 + 95433r2 + 83230r + 29400) (6r2 + 53r + 117) (6r2 + 65r + 176)

Which for the root r = −1
3 becomes

a5 = − 921536
6782072895

And the table now becomes

n an,r an

a0 1 1
a1

−r2−3r−2
6r2+17r+12 −10

63

a2
(r+3)(r+1)(r+2)2

36r4+276r3+775r2+943r+420
200
7371

a3 − (r+3)2(r+1)(r+2)2(r+4)
216r6+3132r5+18486r4+56753r3+95433r2+83230r+29400 − 17600

3781323

a4
(r+3)2(r+1)(r+2)2(r+4)2(r+5)

(216r6+3132r5+18486r4+56753r3+95433r2+83230r+29400)(6r2+53r+117)
3872

4861701

a5 − (r+3)2(r+1)(r+2)2(r+4)2(r+5)2(6+r)
(216r6+3132r5+18486r4+56753r3+95433r2+83230r+29400)(6r2+53r+117)(6r2+65r+176) − 921536

6782072895

Using the above table, then the solution y1(x) is

y1(x) =
1
x

1
3

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
1− 10x

63 + 200x2

7371 − 17600x3

3781323 +
3872x4

4861701 −
921536x5

6782072895 +O(x6)
x

1
3

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)bn−1(n+ r − 1) (n+ r − 2) + 6bn(n+ r) (n+ r − 1)
+ 4bn−1(n+ r − 1) + 11bn(n+ r) + bn + 2bn−1 = 0

Solving for bn from recursive equation (4) gives

bn = − bn−1(n2 + 2nr + r2 + n+ r)
6n2 + 12nr + 6r2 + 5n+ 5r + 1 (4)

Which for the root r = −1
2 becomes

bn = −4n2bn−1 + bn−1

24n2 − 4n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
−r2 − 3r − 2
6r2 + 17r + 12

Which for the root r = −1
2 becomes

b1 = − 3
20

And the table now becomes

n bn,r bn

b0 1 1
b1

−r2−3r−2
6r2+17r+12 − 3

20

For n = 2, using the above recursive equation gives

b2 =
(r + 3) (r + 1) (r + 2)2

36r4 + 276r3 + 775r2 + 943r + 420
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Which for the root r = −1
2 becomes

b2 =
9
352

And the table now becomes

n bn,r bn

b0 1 1
b1

−r2−3r−2
6r2+17r+12 − 3

20

b2
(r+3)(r+1)(r+2)2

36r4+276r3+775r2+943r+420
9

352

For n = 3, using the above recursive equation gives

b3 = − (r + 3)2 (r + 1) (r + 2)2 (r + 4)
216r6 + 3132r5 + 18486r4 + 56753r3 + 95433r2 + 83230r + 29400

Which for the root r = −1
2 becomes

b3 = − 105
23936

And the table now becomes

n bn,r bn

b0 1 1
b1

−r2−3r−2
6r2+17r+12 − 3

20

b2
(r+3)(r+1)(r+2)2

36r4+276r3+775r2+943r+420
9

352

b3 − (r+3)2(r+1)(r+2)2(r+4)
216r6+3132r5+18486r4+56753r3+95433r2+83230r+29400 − 105

23936

For n = 4, using the above recursive equation gives

b4 =
(r + 3)2 (r + 1) (r + 2)2 (r + 4)2 (r + 5)

(216r6 + 3132r5 + 18486r4 + 56753r3 + 95433r2 + 83230r + 29400) (6r2 + 53r + 117)

Which for the root r = −1
2 becomes

b4 =
6615

8808448
And the table now becomes
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n bn,r bn

b0 1 1
b1

−r2−3r−2
6r2+17r+12 − 3

20

b2
(r+3)(r+1)(r+2)2

36r4+276r3+775r2+943r+420
9

352

b3 − (r+3)2(r+1)(r+2)2(r+4)
216r6+3132r5+18486r4+56753r3+95433r2+83230r+29400 − 105

23936

b4
(r+3)2(r+1)(r+2)2(r+4)2(r+5)

(216r6+3132r5+18486r4+56753r3+95433r2+83230r+29400)(6r2+53r+117)
6615

8808448

For n = 5, using the above recursive equation gives

b5 = − (r + 3)2 (r + 1) (r + 2)2 (r + 4)2 (r + 5)2 (6 + r)
(216r6 + 3132r5 + 18486r4 + 56753r3 + 95433r2 + 83230r + 29400) (6r2 + 53r + 117) (6r2 + 65r + 176)

Which for the root r = −1
2 becomes

b5 = − 11907
92889088

And the table now becomes

n bn,r bn

b0 1 1
b1

−r2−3r−2
6r2+17r+12 − 3

20

b2
(r+3)(r+1)(r+2)2

36r4+276r3+775r2+943r+420
9

352

b3 − (r+3)2(r+1)(r+2)2(r+4)
216r6+3132r5+18486r4+56753r3+95433r2+83230r+29400 − 105

23936

b4
(r+3)2(r+1)(r+2)2(r+4)2(r+5)

(216r6+3132r5+18486r4+56753r3+95433r2+83230r+29400)(6r2+53r+117)
6615

8808448

b5 − (r+3)2(r+1)(r+2)2(r+4)2(r+5)2(6+r)
(216r6+3132r5+18486r4+56753r3+95433r2+83230r+29400)(6r2+53r+117)(6r2+65r+176) − 11907

92889088

Using the above table, then the solution y2(x) is

y2(x) =
1
x

1
3

(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− 3x

20 +
9x2

352 −
105x3

23936 +
6615x4

8808448 −
11907x5

92889088 +O(x6)
√
x
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
1− 10x

63 + 200x2

7371 − 17600x3

3781323 +
3872x4

4861701 −
921536x5

6782072895 +O(x6)
)

x
1
3

+
c2
(
1− 3x

20 +
9x2

352 −
105x3

23936 +
6615x4

8808448 −
11907x5

92889088 +O(x6)
)

√
x

Hence the final solution is

y = yh

=
c1
(
1− 10x

63 + 200x2

7371 − 17600x3

3781323 +
3872x4

4861701 −
921536x5

6782072895 +O(x6)
)

x
1
3

+
c2
(
1− 3x

20 +
9x2

352 −
105x3

23936 +
6615x4

8808448 −
11907x5

92889088 +O(x6)
)

√
x

Summary
The solution(s) found are the following

(1)
y =

c1
(
1− 10x

63 + 200x2

7371 − 17600x3

3781323 +
3872x4

4861701 −
921536x5

6782072895 +O(x6)
)

x
1
3

+
c2
(
1− 3x

20 +
9x2

352 −
105x3

23936 +
6615x4

8808448 −
11907x5

92889088 +O(x6)
)

√
x

Verification of solutions

y =
c1
(
1− 10x

63 + 200x2

7371 − 17600x3

3781323 +
3872x4

4861701 −
921536x5

6782072895 +O(x6)
)

x
1
3

+
c2
(
1− 3x

20 +
9x2

352 −
105x3

23936 +
6615x4

8808448 −
11907x5

92889088 +O(x6)
)

√
x

Verified OK.
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14.30.1 Maple step by step solution

Let’s solve
x2(x+ 6) y′′ + (4x2 + 11x) y′ + (1 + 2x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (1+2x)y
x2(x+6) −

(11+4x)y′
x(x+6)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (11+4x)y′
x(x+6) + (1+2x)y

x2(x+6) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 11+4x
x(x+6) , P3(x) = 1+2x

x2(x+6)

]
◦ (x+ 6) · P2(x) is analytic at x = −6

((x+ 6) · P2(x))
∣∣∣∣
x=−6

= 13
6

◦ (x+ 6)2 · P3(x) is analytic at x = −6(
(x+ 6)2 · P3(x)

) ∣∣∣∣
x=−6

= 0

◦ x = −6is a regular singular point
Check to see if x0 is a regular singular point
x0 = −6

• Multiply by denominators
x2(x+ 6) y′′ + x(11 + 4x) y′ + (1 + 2x) y = 0

• Change variables using x = u− 6 so that the regular singular point is at u = 0

(u3 − 12u2 + 36u)
(

d2

du2y(u)
)
+ (4u2 − 37u+ 78)

(
d
du
y(u)

)
+ (−11 + 2u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

6a0r(7 + 6r)u−1+r + (6a1(1 + r) (13 + 6r)− a0(12r2 + 25r + 11))ur +
(

∞∑
k=1

(6ak+1(k + r + 1) (6k + 13 + 6r)− ak(12k2 + 24kr + 12r2 + 25k + 25r + 11) + ak−1(k + r + 1) (k + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
6r(7 + 6r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−7

6

}
• Each term must be 0

6a1(1 + r) (13 + 6r)− a0(12r2 + 25r + 11) = 0
• Each term in the series must be 0, giving the recursion relation

(−12ak + ak−1 + 36ak+1) k2 + ((−24ak + 2ak−1 + 72ak+1) r − 25ak + ak−1 + 114ak+1) k + (−12ak + ak−1 + 36ak+1) r2 + (−25ak + ak−1 + 114ak+1) r − 11ak + 78ak+1 = 0
• Shift index using k− >k + 1

(−12ak+1 + ak + 36ak+2) (k + 1)2 + ((−24ak+1 + 2ak + 72ak+2) r − 25ak+1 + ak + 114ak+2) (k + 1) + (−12ak+1 + ak + 36ak+2) r2 + (−25ak+1 + ak + 114ak+2) r − 11ak+1 + 78ak+2 = 0
• Recursion relation that defines series solution to ODE
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ak+2 = −k2ak−12k2ak+1+2krak−24krak+1+r2ak−12r2ak+1+3kak−49kak+1+3rak−49rak+1+2ak−48ak+1
6(6k2+12kr+6r2+31k+31r+38)

• Recursion relation for r = 0

ak+2 = −k2ak−12k2ak+1+3kak−49kak+1+2ak−48ak+1
6(6k2+31k+38)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−12k2ak+1+3kak−49kak+1+2ak−48ak+1

6(6k2+31k+38) , 78a1 − 11a0 = 0
]

• Revert the change of variables u = x+ 6[
y =

∞∑
k=0

ak(x+ 6)k , ak+2 = −k2ak−12k2ak+1+3kak−49kak+1+2ak−48ak+1
6(6k2+31k+38) , 78a1 − 11a0 = 0

]
• Recursion relation for r = −7

6

ak+2 = −k2ak−12k2ak+1+ 2
3kak−21kak+1− 5

36ak−
43
6 ak+1

6(6k2+17k+10)

• Solution for r = −7
6[

y(u) =
∞∑
k=0

aku
k− 7

6 , ak+2 = −k2ak−12k2ak+1+ 2
3kak−21kak+1− 5

36ak−
43
6 ak+1

6(6k2+17k+10) ,−6a1 + 11a0
6 = 0

]
• Revert the change of variables u = x+ 6[

y =
∞∑
k=0

ak(x+ 6)k−
7
6 , ak+2 = −k2ak−12k2ak+1+ 2

3kak−21kak+1− 5
36ak−

43
6 ak+1

6(6k2+17k+10) ,−6a1 + 11a0
6 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x+ 6)k
)
+
(

∞∑
k=0

bk(x+ 6)k−
7
6

)
, ak+2 = −k2ak−12k2a1+k+3kak−49ka1+k+2ak−48a1+k

6(6k2+31k+38) , 78a1 − 11a0 = 0, bk+2 = −k2bk−12k2b1+k+ 2
3kbk−21kb1+k− 5

36 bk−
43
6 b1+k

6(6k2+17k+10) ,−6b1 + 11b0
6 = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 47� �
Order:=6;
dsolve(x^2*(6+x)*diff(y(x),x$2)+x*(11+4*x)*diff(y(x),x)+(1+2*x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c2
(
1− 10

63x+ 200
7371x

2 − 17600
3781323x

3 + 3872
4861701x

4 − 921536
6782072895x

5 +O(x6)
)
x

1
6 + c1

(
1− 3

20x+ 9
352x

2 − 105
23936x

3 + 6615
8808448x

4 − 11907
92889088x

5 +O(x6)
)

√
x
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3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 90� �
AsymptoticDSolveValue[x^2*(6+x)*y''[x]+x*(11+4*x)*y'[x]+(1+2*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) →
c1
(
− 921536x5

6782072895 +
3872x4

4861701 −
17600x3

3781323 +
200x2

7371 − 10x
63 + 1

)
3
√
x

+
c2
(
− 11907x5

92889088 +
6615x4

8808448 −
105x3

23936 +
9x2

352 −
3x
20 + 1

)
√
x
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14.31 problem 33
14.31.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5100

Internal problem ID [1322]
Internal file name [OUTPUT/1323_Sunday_June_05_2022_02_10_18_AM_572790/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 33.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

8x2y′′ + x
(
x2 + 2

)
y′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

8x2y′′ +
(
x3 + 2x

)
y′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x2 + 2
8x

q(x) = 1
8x2
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Table 590: Table p(x), q(x) singularites.

p(x) = x2+2
8x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = 1
8x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

8x2y′′ +
(
x3 + 2x

)
y′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
8x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x3 + 2x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

8xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+r+2an(n+ r)
)

+
(

∞∑
n=0

2xn+ran(n+ r)
)

+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) =
∞∑
n=2

an−2(n+ r − 2)xn+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

8xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=0

2xn+ran(n+ r)
)

+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

8xn+ran(n+ r) (n+ r − 1) + 2xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

8xra0r(−1 + r) + 2xra0r + a0x
r = 0

Or
(8xrr(−1 + r) + 2xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
8r2 − 6r + 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

8r2 − 6r + 1 = 0
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Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 =
1
4

Since a0 6= 0 then the indicial equation becomes(
8r2 − 6r + 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
4 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n+ 1

4

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)8an(n+ r) (n+ r − 1) + an−2(n+ r − 2) + 2an(n+ r) + an = 0

Solving for an from recursive equation (4) gives

an = − an−2(n+ r − 2)
8n2 + 16nr + 8r2 − 6n− 6r + 1 (4)

Which for the root r = 1
2 becomes

an = −2nan−2 + 3an−2

16n2 + 4n (5)

5094



At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − r

8r2 + 26r + 21

Which for the root r = 1
2 becomes

a2 = − 1
72

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − r

8r2+26r+21 − 1
72

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − r

8r2+26r+21 − 1
72

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
r(2 + r)

(8r2 + 26r + 21) (8r2 + 58r + 105)
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Which for the root r = 1
2 becomes

a4 =
5

19584

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − r

8r2+26r+21 − 1
72

a3 0 0
a4

r(2+r)
(8r2+26r+21)(8r2+58r+105)

5
19584

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − r

8r2+26r+21 − 1
72

a3 0 0
a4

r(2+r)
(8r2+26r+21)(8r2+58r+105)

5
19584

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− x2

72 + 5x4

19584 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)8bn(n+ r) (n+ r − 1) + bn−2(n+ r − 2) + 2bn(n+ r) + bn = 0

Solving for bn from recursive equation (4) gives

bn = − bn−2(n+ r − 2)
8n2 + 16nr + 8r2 − 6n− 6r + 1 (4)

Which for the root r = 1
4 becomes

bn = −4nbn−2 + 7bn−2

32n2 − 8n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

4 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − r

8r2 + 26r + 21

Which for the root r = 1
4 becomes

b2 = − 1
112

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − r

8r2+26r+21 − 1
112
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For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − r

8r2+26r+21 − 1
112

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
r(2 + r)

(8r2 + 26r + 21) (8r2 + 58r + 105)

Which for the root r = 1
4 becomes

b4 =
3

17920

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − r

8r2+26r+21 − 1
112

b3 0 0
b4

r(2+r)
(8r2+26r+21)(8r2+58r+105)

3
17920

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2 − r

8r2+26r+21 − 1
112

b3 0 0
b4

r(2+r)
(8r2+26r+21)(8r2+58r+105)

3
17920

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) =
√
x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x
1
4

(
1− x2

112 + 3x4

17920 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− x2

72 + 5x4

19584 +O
(
x6))+ c2x

1
4

(
1− x2

112 + 3x4

17920 +O
(
x6))

Hence the final solution is

y = yh

= c1
√
x

(
1− x2

72 + 5x4

19584 +O
(
x6))+ c2x

1
4

(
1− x2

112 + 3x4

17920 +O
(
x6))

Summary
The solution(s) found are the following

(1)y = c1
√
x

(
1− x2

72 + 5x4

19584 +O
(
x6))+ c2x

1
4

(
1− x2

112 + 3x4

17920 +O
(
x6))

Verification of solutions

y = c1
√
x

(
1− x2

72 + 5x4

19584 +O
(
x6))+ c2x

1
4

(
1− x2

112 + 3x4

17920 +O
(
x6))

Verified OK.
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14.31.1 Maple step by step solution

Let’s solve
8x2y′′ + (x3 + 2x) y′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − y
8x2 −

(
x2+2

)
y′

8x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
x2+2

)
y′

8x + y
8x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x2+2
8x , P3(x) = 1

8x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
8

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
8x2y′′ + x(x2 + 2) y′ + y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m
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◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 4r) (−1 + 2r)xr + a1(3 + 4r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(4k + 4r − 1) (2k + 2r − 1) + ak−2(k − 2 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 4r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

1
4

}
• Each term must be 0

a1(3 + 4r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

8
(
k + r − 1

2

) (
k + r − 1

4

)
ak + ak−2(k − 2 + r) = 0

• Shift index using k− >k + 2
8
(
k + 3

2 + r
) (

k + 7
4 + r

)
ak+2 + ak(k + r) = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak(k+r)

(2k+3+2r)(4k+7+4r)

• Recursion relation for r = 1
2

ak+2 = − ak
(
k+ 1

2
)

(2k+4)(4k+9)

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − ak
(
k+ 1

2
)

(2k+4)(4k+9) , a1 = 0
]

• Recursion relation for r = 1
4

ak+2 = − ak
(
k+ 1

4
)(

2k+ 7
2
)
(4k+8)
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• Solution for r = 1
4[

y =
∞∑
k=0

akx
k+ 1

4 , ak+2 = − ak
(
k+ 1

4
)(

2k+ 7
2
)
(4k+8) , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

4

)
, ak+2 = − ak

(
k+ 1

2
)

(2k+4)(4k+9) , a1 = 0, bk+2 = − bk
(
k+ 1

4
)(

2k+ 7
2
)
(4k+8) , b1 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
Order:=6;
dsolve(8*x^2*diff(y(x),x$2)+x*(2+x^2)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �
y(x) = c1x

1
4

(
1− 1

112x
2 + 3

17920x
4 +O

(
x6))+ c2

√
x

(
1− 1

72x
2 + 5

19584x
4 +O

(
x6))
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 52� �
AsymptoticDSolveValue[8*x^2*y''[x]+x*(2+x^2)*y'[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x

(
5x4

19584 − x2

72 + 1
)
+ c2

4
√
x

(
3x4

17920 − x2

112 + 1
)
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14.32 problem 34
14.32.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5113

Internal problem ID [1323]
Internal file name [OUTPUT/1324_Sunday_June_05_2022_02_10_21_AM_82739945/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 34.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

8x2(−x2 + 1
)
y′′ + 2x

(
−13x2 + 1

)
y′ +

(
−9x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

−8x4 + 8x2) y′′ + (−26x3 + 2x
)
y′ +

(
−9x2 + 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 13x2 − 1
4x (x2 − 1)

q(x) = 9x2 − 1
8x2 (x2 − 1)
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Table 592: Table p(x), q(x) singularites.

p(x) = 13x2−1
4x(x2−1)

singularity type
x = −1 “regular”
x = 0 “regular”
x = 1 “regular”

q(x) = 9x2−1
8x2(x2−1)

singularity type
x = −1 “regular”
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−8y′′x2(x2 − 1
)
+
(
−26x3 + 2x

)
y′ +

(
−9x2 + 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−8
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2(x2 − 1

)
+
(
−26x3 + 2x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
−9x2 + 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−8xn+r+2an(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

8xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−26xn+r+2an(n+ r)

)
+
(

∞∑
n=0

2xn+ran(n+ r)
)

+
∞∑

n =0

(
−9xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−8xn+r+2an(n+ r) (n+ r − 1)

)
=

∞∑
n=2

(
−8an−2(n+ r − 2) (n− 3 + r)xn+r

)
∞∑

n =0

(
−26xn+r+2an(n+ r)

)
=

∞∑
n=2

(
−26an−2(n+ r − 2)xn+r

)
∞∑

n =0

(
−9xn+r+2an

)
=

∞∑
n=2

(
−9an−2x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =2

(
−8an−2(n+ r − 2) (n− 3 + r)xn+r

)
+
(

∞∑
n=0

8xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =2

(
−26an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=0

2xn+ran(n+ r)
)

+
∞∑

n =2

(
−9an−2x

n+r
)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

8xn+ran(n+ r) (n+ r − 1) + 2xn+ran(n+ r) + anx
n+r = 0

5106



When n = 0 the above becomes

8xra0r(−1 + r) + 2xra0r + a0x
r = 0

Or
(8xrr(−1 + r) + 2xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
8r2 − 6r + 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

8r2 − 6r + 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 =
1
4

Since a0 6= 0 then the indicial equation becomes(
8r2 − 6r + 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
4 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n+ 1

4

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)−8an−2(n+ r − 2) (n− 3 + r) + 8an(n+ r) (n+ r − 1)
− 26an−2(n+ r − 2) + 2an(n+ r)− 9an−2 + an = 0

Solving for an from recursive equation (4) gives

an = (4n+ 4r − 5) an−2

4n+ 4r − 1 (4)

Which for the root r = 1
2 becomes

an = (4n− 3) an−2

4n+ 1 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
3 + 4r
7 + 4r

Which for the root r = 1
2 becomes

a2 =
5
9

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

3+4r
7+4r

5
9

For n = 3, using the above recursive equation gives

a3 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

3+4r
7+4r

5
9

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
16r2 + 56r + 33
16r2 + 88r + 105

Which for the root r = 1
2 becomes

a4 =
65
153

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

3+4r
7+4r

5
9

a3 0 0
a4

16r2+56r+33
16r2+88r+105

65
153

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

3+4r
7+4r

5
9

a3 0 0
a4

16r2+56r+33
16r2+88r+105

65
153

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1 + 5x2

9 + 65x4

153 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)−8bn−2(n+ r − 2) (n− 3 + r) + 8bn(n+ r) (n+ r − 1)
− 26bn−2(n+ r − 2) + 2bn(n+ r)− 9bn−2 + bn = 0

Solving for bn from recursive equation (4) gives

bn = (4n+ 4r − 5) bn−2

4n+ 4r − 1 (4)

Which for the root r = 1
4 becomes

bn = (n− 1) bn−2

n
(5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

4 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 =
3 + 4r
7 + 4r

Which for the root r = 1
4 becomes

b2 =
1
2
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

3+4r
7+4r

1
2

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

3+4r
7+4r

1
2

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
16r2 + 56r + 33
16r2 + 88r + 105

Which for the root r = 1
4 becomes

b4 =
3
8

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

3+4r
7+4r

1
2

b3 0 0
b4

16r2+56r+33
16r2+88r+105

3
8
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For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

3+4r
7+4r

1
2

b3 0 0
b4

16r2+56r+33
16r2+88r+105

3
8

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) =
√
x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x
1
4

(
1 + x2

2 + 3x4

8 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1 + 5x2

9 + 65x4

153 +O
(
x6))+ c2x

1
4

(
1 + x2

2 + 3x4

8 +O
(
x6))

Hence the final solution is
y = yh

= c1
√
x

(
1 + 5x2

9 + 65x4

153 +O
(
x6))+ c2x

1
4

(
1 + x2

2 + 3x4

8 +O
(
x6))

Summary
The solution(s) found are the following

(1)y = c1
√
x

(
1 + 5x2

9 + 65x4

153 +O
(
x6))+ c2x

1
4

(
1 + x2

2 + 3x4

8 +O
(
x6))

Verification of solutions

y = c1
√
x

(
1 + 5x2

9 + 65x4

153 +O
(
x6))+ c2x

1
4

(
1 + x2

2 + 3x4

8 +O
(
x6))

Verified OK.
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14.32.1 Maple step by step solution

Let’s solve
−8y′′x2(x2 − 1) + (−26x3 + 2x) y′ + (−9x2 + 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
9x2−1

)
y

8x2(x2−1) −
(
13x2−1

)
y′

4x(x2−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
13x2−1

)
y′

4x(x2−1) +
(
9x2−1

)
y

8x2(x2−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 13x2−1
4x(x2−1) , P3(x) = 9x2−1

8x2(x2−1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 3
2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
8y′′x2(x2 − 1) + 2x(13x2 − 1) y′ + y(9x2 − 1) = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(8u4 − 32u3 + 40u2 − 16u)
(

d2

du2y(u)
)
+ (26u3 − 78u2 + 76u− 24)

(
d
du
y(u)

)
+ (9u2 − 18u+ 8) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..3

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..4

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−8a0r(1 + 2r)u−1+r + (−8a1(1 + r) (3 + 2r) + 4a0(1 + 2r) (2 + 5r))ur + (−8a2(2 + r) (5 + 2r) + 4a1(3 + 2r) (7 + 5r)− 2a0(16r2 + 23r + 9))u1+r +
(

∞∑
k=2

(
−8ak+1(k + 1 + r) (2k + 2r + 3) + 4ak(2k + 2r + 1) (5k + 5r + 2)− 2ak−1

(
16(k − 1)2 + 32(k − 1) r + 16r2 + 23k − 14 + 23r

)
+ ak−2(2k − 1 + 2r) (4k − 5 + 4r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−8r(1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−1

2

}
• The coefficients of each power of u must be 0

[−8a1(1 + r) (3 + 2r) + 4a0(1 + 2r) (2 + 5r) = 0,−8a2(2 + r) (5 + 2r) + 4a1(3 + 2r) (7 + 5r)− 2a0(16r2 + 23r + 9) = 0]
• Solve for the dependent coefficient(s){

a1 = a0
(
10r2+9r+2

)
2(2r2+5r+3) , a2 = a0

(
34r3+76r2+41r+5

)
4(2r3+11r2+19r+10)

}
• Each term in the series must be 0, giving the recursion relation

8(5ak + ak−2 − 4ak−1 − 2ak+1) k2 + 2(8(5ak + ak−2 − 4ak−1 − 2ak+1) r + 18ak − 7ak−2 + 9ak−1 − 20ak+1) k + 8(5ak + ak−2 − 4ak−1 − 2ak+1) r2 + 2(18ak − 7ak−2 + 9ak−1 − 20ak+1) r + 8ak + 5ak−2 − 4ak−1 − 24ak+1 = 0
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• Shift index using k− >k + 2
8(5ak+2 + ak − 4ak+1 − 2ak+3) (k + 2)2 + 2(8(5ak+2 + ak − 4ak+1 − 2ak+3) r + 18ak+2 − 7ak + 9ak+1 − 20ak+3) (k + 2) + 8(5ak+2 + ak − 4ak+1 − 2ak+3) r2 + 2(18ak+2 − 7ak + 9ak+1 − 20ak+3) r + 8ak+2 + 5ak − 4ak+1 − 24ak+3 = 0

• Recursion relation that defines series solution to ODE

ak+3 = 8k2ak−32k2ak+1+40k2ak+2+16krak−64krak+1+80krak+2+8r2ak−32r2ak+1+40r2ak+2+18kak−110kak+1+196kak+2+18rak−110rak+1+196rak+2+9ak−96ak+1+240ak+2
8(2k2+4kr+2r2+13k+13r+21)

• Recursion relation for r = 0

ak+3 = 8k2ak−32k2ak+1+40k2ak+2+18kak−110kak+1+196kak+2+9ak−96ak+1+240ak+2
8(2k2+13k+21)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+3 = 8k2ak−32k2ak+1+40k2ak+2+18kak−110kak+1+196kak+2+9ak−96ak+1+240ak+2

8(2k2+13k+21) , a1 = a0
3 , a2 =

a0
8

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k , ak+3 = 8k2ak−32k2ak+1+40k2ak+2+18kak−110kak+1+196kak+2+9ak−96ak+1+240ak+2
8(2k2+13k+21) , a1 = a0

3 , a2 =
a0
8

]
• Recursion relation for r = −1

2

ak+3 = 8k2ak−32k2ak+1+40k2ak+2+10kak−78kak+1+156kak+2+2ak−49ak+1+152ak+2
8(2k2+11k+15)

• Solution for r = −1
2[

y(u) =
∞∑
k=0

aku
k− 1

2 , ak+3 = 8k2ak−32k2ak+1+40k2ak+2+10kak−78kak+1+156kak+2+2ak−49ak+1+152ak+2
8(2k2+11k+15) , a1 = 0, a2 = −a0

16

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k−
1
2 , ak+3 = 8k2ak−32k2ak+1+40k2ak+2+10kak−78kak+1+156kak+2+2ak−49ak+1+152ak+2

8(2k2+11k+15) , a1 = 0, a2 = −a0
16

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k−
1
2

)
, ak+3 = 8k2ak−32k2a1+k+40k2ak+2+18kak−110ka1+k+196kak+2+9ak−96a1+k+240ak+2

8(2k2+13k+21) , a1 = a0
3 , a2 =

a0
8 , bk+3 = 8k2bk−32k2b1+k+40k2bk+2+10kbk−78kb1+k+156kbk+2+2bk−49b1+k+152bk+2

8(2k2+11k+15) , b1 = 0, b2 = − b0
16

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 35� �
Order:=6;
dsolve(8*x^2*(1-x^2)*diff(y(x),x$2)+2*x*(1-13*x^2)*diff(y(x),x)+(1-9*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
1
4

(
1 + 1

2x
2 + 3

8x
4 +O

(
x6))+ c2

√
x

(
1 + 5

9x
2 + 65

153x
4 +O

(
x6))
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3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 52� �
AsymptoticDSolveValue[8*x^2*(1-x^2)*y''[x]+2*x*(1-13*x^2)*y'[x]+(1-9*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x

(
65x4

153 + 5x2

9 + 1
)
+ c2

4
√
x

(
3x4

8 + x2

2 + 1
)
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14.33 problem 35
14.33.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5127

Internal problem ID [1324]
Internal file name [OUTPUT/1325_Sunday_June_05_2022_02_10_24_AM_5215957/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 35.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x2 + 1
)
y′′ − 2x

(
−x2 + 2

)
y′ + 4y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x4 + x2) y′′ + (2x3 − 4x
)
y′ + 4y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2x2 − 4
x (x2 + 1)

q(x) = 4
x2 (x2 + 1)

5118



Table 594: Table p(x), q(x) singularites.

p(x) = 2x2−4
x(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

q(x) = 4
x2(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 + 1
)
y′′ +

(
2x3 − 4x

)
y′ + 4y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
2x3 − 4x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ 4
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+r+2an(n+ r)
)

+
∞∑

n =0

(
−4xn+ran(n+ r)

)
+
(

∞∑
n=0

4anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

2xn+r+2an(n+ r) =
∞∑
n=2

2an−2(n+ r − 2)xn+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

2an−2(n+r−2)xn+r

)
+

∞∑
n =0

(
−4xn+ran(n+r)

)
+
(

∞∑
n=0

4anxn+r

)
=0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 4xn+ran(n+ r) + 4anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− 4xra0r + 4a0xr = 0

Or
(xrr(−1 + r)− 4xrr + 4xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 5r + 4

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

r2 − 5r + 4 = 0

Solving for r gives the roots of the indicial equation as

r1 = 4
r2 = 1

Since a0 6= 0 then the indicial equation becomes(
r2 − 5r + 4

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x4

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + x

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+4

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+1

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r) + an(n+ r) (n+ r − 1)
+ 2an−2(n+ r − 2)− 4an(n+ r) + 4an = 0

Solving for an from recursive equation (4) gives

an = −an−2(n+ r − 2)
n+ r − 4 (4)

Which for the root r = 4 becomes

an = −an−2(n+ 2)
n

(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 4 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − r

r − 2

Which for the root r = 4 becomes
a2 = −2

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − r

r−2 −2

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − r

r−2 −2

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
2 + r

r − 2

Which for the root r = 4 becomes
a4 = 3

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − r

r−2 −2

a3 0 0
a4

2+r
r−2 3

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − r

r−2 −2

a3 0 0
a4

2+r
r−2 3

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) = x4(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x4(1− 2x2 + 3x4 +O

(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 3. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a3(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a3

= 0

Therefore

lim
r→r2

0 = lim
r→1

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n+1

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)bn−2(n+ r − 2) (n− 3 + r) + bn(n+ r) (n+ r − 1)
+ 2bn−2(n+ r − 2)− 4bn(n+ r) + 4bn = 0

Which for for the root r = 1 becomes

(4A)bn−2(n− 1) (n− 2) + bn(n+ 1)n+ 2bn−2(n− 1)− 4bn(n+ 1) + 4bn = 0
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Solving for bn from the recursive equation (4) gives

bn = −bn−2(n+ r − 2)
n+ r − 4 (5)

Which for the root r = 1 becomes

bn = −bn−2(n− 1)
n− 3 (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − r

r − 2
Which for the root r = 1 becomes

b2 = 1
And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − r

r−2 1

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − r

r−2 1

b3 0 0
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For n = 4, using the above recursive equation gives

b4 =
2 + r

r − 2
Which for the root r = 1 becomes

b4 = −3
And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − r

r−2 1

b3 0 0
b4

2+r
r−2 −3

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − r

r−2 1

b3 0 0
b4

2+r
r−2 −3

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x4(b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

)
= x

(
1 + x2 − 3x4 +O

(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
4(1− 2x2 + 3x4 +O

(
x6))+ c2x

(
1 + x2 − 3x4 +O

(
x6))
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Hence the final solution is

y = yh

= c1x
4(1− 2x2 + 3x4 +O

(
x6))+ c2x

(
1 + x2 − 3x4 +O

(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
4(1− 2x2 + 3x4 +O

(
x6))+ c2x

(
1 + x2 − 3x4 +O

(
x6))

Verification of solutions

y = c1x
4(1− 2x2 + 3x4 +O

(
x6))+ c2x

(
1 + x2 − 3x4 +O

(
x6))

Verified OK.

14.33.1 Maple step by step solution

Let’s solve
x2(x2 + 1) y′′ + (2x3 − 4x) y′ + 4y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 4y
x2(x2+1) −

2
(
x2−2

)
y′

x(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2
(
x2−2

)
y′

x(x2+1) + 4y
x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2
(
x2−2

)
x(x2+1) , P3(x) = 4

x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4
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◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(x2 + 1) y′′ + 2x(x2 − 2) y′ + 4y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−4 + r)xr + a1r(−3 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 1) (k + r − 4) + ak−2(k − 2 + r) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−4 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 4}

• Each term must be 0
a1r(−3 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0
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• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak(k + r − 4) + ak−2(k − 2 + r)) = 0

• Shift index using k− >k + 2
(k + r + 1) (ak+2(k − 2 + r) + ak(k + r)) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r)

k−2+r

• Recursion relation for r = 1
ak+2 = −ak(k+1)

k−1

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = −ak(k+1)

k−1 , a1 = 0
]

• Recursion relation for r = 4
ak+2 = −ak(k+4)

k+2

• Solution for r = 4[
y =

∞∑
k=0

akx
k+4, ak+2 = −ak(k+4)

k+2 , a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
1+k

)
+
(

∞∑
k=0

bkx
4+k

)
, ak+2 = −ak(1+k)

k−1 , a1 = 0, bk+2 = − bk(4+k)
k+2 , b1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 33� �
Order:=6;
dsolve(x^2*(1+x^2)*diff(y(x),x$2)-2*x*(2-x^2)*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
4(1− 2x2 + 3x4 +O

(
x6))+ c2x

(
12 + 12x2 − 36x4 +O

(
x6))

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 34� �
AsymptoticDSolveValue[x^2*(1+x^2)*y''[x]-2*x*(2-x^2)*y'[x]+4*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
(
−3x5 + x3 + x

)
+ c2

(
3x8 − 2x6 + x4)
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14.34 problem 36
14.34.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5140

Internal problem ID [1325]
Internal file name [OUTPUT/1326_Sunday_June_05_2022_02_10_26_AM_97069197/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 36.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

x
(
x2 + 3

)
y′′ +

(
−x2 + 2

)
y′ − 8yx = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x3 + 3x
)
y′′ +

(
−x2 + 2

)
y′ − 8yx = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − x2 − 2
x (x2 + 3)

q(x) = − 8
x2 + 3
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Table 596: Table p(x), q(x) singularites.

p(x) = − x2−2
x(x2+3)

singularity type
x = 0 “regular”

x = −i
√
3 “regular”

x = i
√
3 “regular”

q(x) = − 8
x2+3

singularity type
x = −i

√
3 “regular”

x = i
√
3 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−i

√
3, i

√
3,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x
(
x2 + 3

)
y′′ +

(
−x2 + 2

)
y′ − 8yx = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x
(
x2 + 3

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−x2 + 2

)( ∞∑
n=0

(n+ r) anxn+r−1

)
− 8
(

∞∑
n=0

anx
n+r

)
x = 0
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Which simplifies to

(2A)

(
∞∑
n=0

x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−x1+n+ran(n+r)

)
+
(

∞∑
n=0

2(n+r) anxn+r−1

)
+

∞∑
n =0

(
−8x1+n+ran

)
=0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r−1

∞∑
n =0

(
−x1+n+ran(n+ r)

)
=

∞∑
n=2

(
−an−2(n+ r − 2)xn+r−1)

∞∑
n =0

(
−8x1+n+ran

)
=

∞∑
n=2

(
−8an−2x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r−1

)

+
(

∞∑
n=0

3xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =2

(
−an−2(n+ r − 2)xn+r−1)

+
(

∞∑
n=0

2(n+ r) anxn+r−1

)
+

∞∑
n =2

(
−8an−2x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

3xn+r−1an(n+ r) (n+ r − 1) + 2(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

3x−1+ra0r(−1 + r) + 2ra0x−1+r = 0
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Or (
3x−1+rr(−1 + r) + 2r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(−1 + 3r) = 0

Since the above is true for all x then the indicial equation becomes

3r2 − r = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(−1 + 3r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) =
∞∑
n=0

bnx
n

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r) + 3an(n+ r) (n+ r − 1)
− an−2(n+ r − 2) + 2an(n+ r)− 8an−2 = 0
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Solving for an from recursive equation (4) gives

an = −(n+ r − 6) an−2

3n− 1 + 3r (4)

Which for the root r = 1
3 becomes

an = −(3n− 17) an−2

9n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
4− r

5 + 3r
Which for the root r = 1

3 becomes
a2 =

11
18

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

4−r
5+3r

11
18

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

4−r
5+3r

11
18

a3 0 0
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For n = 4, using the above recursive equation gives

a4 =
r2 − 6r + 8

9r2 + 48r + 55

Which for the root r = 1
3 becomes

a4 =
55
648

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

4−r
5+3r

11
18

a3 0 0
a4

r2−6r+8
9r2+48r+55

55
648

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

4−r
5+3r

11
18

a3 0 0
a4

r2−6r+8
9r2+48r+55

55
648

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
1 + 11x2

18 + 55x4

648 +O
(
x6))
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Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)bn−2(n+ r − 2) (n− 3 + r) + 3bn(n+ r) (n+ r − 1)
− bn−2(n+ r − 2) + 2(n+ r) bn − 8bn−2 = 0

Solving for bn from recursive equation (4) gives

bn = −(n+ r − 6) bn−2

3n− 1 + 3r (4)

Which for the root r = 0 becomes

bn = −(n− 6) bn−2

3n− 1 (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 =
4− r

5 + 3r
Which for the root r = 0 becomes

b2 =
4
5

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

4−r
5+3r

4
5
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For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

4−r
5+3r

4
5

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
r2 − 6r + 8

9r2 + 48r + 55

Which for the root r = 0 becomes
b4 =

8
55

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

4−r
5+3r

4
5

b3 0 0
b4

r2−6r+8
9r2+48r+55

8
55

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2

4−r
5+3r

4
5

b3 0 0
b4

r2−6r+8
9r2+48r+55

8
55

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1 + 4x2

5 + 8x4

55 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3

(
1 + 11x2

18 + 55x4

648 +O
(
x6))+ c2

(
1 + 4x2

5 + 8x4

55 +O
(
x6))

Hence the final solution is

y = yh

= c1x
1
3

(
1 + 11x2

18 + 55x4

648 +O
(
x6))+ c2

(
1 + 4x2

5 + 8x4

55 +O
(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
1
3

(
1 + 11x2

18 + 55x4

648 +O
(
x6))+ c2

(
1 + 4x2

5 + 8x4

55 +O
(
x6))

Verification of solutions

y = c1x
1
3

(
1 + 11x2

18 + 55x4

648 +O
(
x6))+ c2

(
1 + 4x2

5 + 8x4

55 +O
(
x6))

Verified OK.
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14.34.1 Maple step by step solution

Let’s solve
x(x2 + 3) y′′ + (−x2 + 2) y′ − 8yx = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ =
(
x2−2

)
y′

x(x2+3) + 8y
x2+3

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ −
(
x2−2

)
y′

x(x2+3) − 8y
x2+3 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x2−2
x(x2+3) , P3(x) = − 8

x2+3

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x(x2 + 3) y′′ + (−x2 + 2) y′ − 8yx = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+r+1
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◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k+r

◦ Convert xm · y′ to series expansion form = 0..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(−1 + 3r)x−1+r + a1(1 + r) (2 + 3r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (3k + 2 + 3r) + ak−1(k + r + 1) (k − 5 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 13
}

• Each term must be 0
a1(1 + r) (2 + 3r) = 0

• Each term in the series must be 0, giving the recursion relation(
ak−1(k − 5 + r) + 3

(
k + 2

3 + r
)
ak+1

)
(k + r + 1) = 0

• Shift index using k− >k + 1(
ak(k + r − 4) + 3

(
k + 5

3 + r
)
ak+2

)
(k + r + 2) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r−4)

3k+5+3r

• Recursion relation for r = 0 ; series terminates at k = 4
ak+2 = −ak(k−4)

3k+5
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• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = −ak(k−4)

3k+5 , 2a1 = 0
]

• Recursion relation for r = 1
3

ak+2 = −ak
(
k− 11

3
)

3k+6

• Solution for r = 1
3[

y =
∞∑
k=0

akx
k+ 1

3 , ak+2 = −ak
(
k− 11

3
)

3k+6 , 4a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 = −ak(−4+k)

3k+5 , 2a1 = 0, bk+2 = − bk
(
k− 11

3
)

3k+6 , 4b1 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 32� �
Order:=6;
dsolve(x*(3+x^2)*diff(y(x),x$2)+(2-x^2)*diff(y(x),x)-8*x*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
1
3

(
1 + 11

18x
2 + 55

648x
4 +O

(
x6))+ c2

(
1 + 4

5x
2 + 8

55x
4 +O

(
x6))
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 47� �
AsymptoticDSolveValue[x*(3+x^2)*y''[x]+(2-x^2)*y'[x]-8*x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
3
√
x

(
55x4

648 + 11x2

18 + 1
)
+ c2

(
8x4

55 + 4x2

5 + 1
)
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14.35 problem 37
14.35.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5153

Internal problem ID [1326]
Internal file name [OUTPUT/1327_Sunday_June_05_2022_02_10_28_AM_98618836/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 37.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2(−x2 + 1
)
y′′ + x

(
−19x2 + 7

)
y′ −

(
14x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

−4x4 + 4x2) y′′ + (−19x3 + 7x
)
y′ +

(
−14x2 − 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 19x2 − 7
4x (x2 − 1)

q(x) = 14x2 + 1
4x2 (x2 − 1)
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Table 598: Table p(x), q(x) singularites.

p(x) = 19x2−7
4x(x2−1)

singularity type
x = −1 “regular”
x = 0 “regular”
x = 1 “regular”

q(x) = 14x2+1
4x2(x2−1)

singularity type
x = −1 “regular”
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−4y′′x2(x2 − 1
)
+
(
−19x3 + 7x

)
y′ +

(
−14x2 − 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−4
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2(x2 − 1

)
+
(
−19x3 + 7x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
−14x2 − 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−4xn+r+2an(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−19xn+r+2an(n+ r)

)
+
(

∞∑
n=0

7xn+ran(n+ r)
)

+
∞∑

n =0

(
−14xn+r+2an

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−4xn+r+2an(n+ r) (n+ r − 1)

)
=

∞∑
n=2

(
−4an−2(n+ r − 2) (n− 3 + r)xn+r

)
∞∑

n =0

(
−19xn+r+2an(n+ r)

)
=

∞∑
n=2

(
−19an−2(n+ r − 2)xn+r

)
∞∑

n =0

(
−14xn+r+2an

)
=

∞∑
n=2

(
−14an−2x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =2

(
−4an−2(n+r−2) (n−3+r)xn+r

)
+
(

∞∑
n=0

4xn+ran(n+r) (n+r−1)
)

+
∞∑

n =2

(
−19an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=0

7xn+ran(n+ r)
)

+
∞∑

n =2

(
−14an−2x

n+r
)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + 7xn+ran(n+ r)− anx
n+r = 0
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When n = 0 the above becomes

4xra0r(−1 + r) + 7xra0r − a0x
r = 0

Or
(4xrr(−1 + r) + 7xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 + 3r − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

4r2 + 3r − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
4

r2 = −1

Since a0 6= 0 then the indicial equation becomes(
4r2 + 3r − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 5
4 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

4

y2(x) =
∞∑
n=0

bnx
n−1

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)−4an−2(n+ r − 2) (n− 3 + r) + 4an(n+ r) (n+ r − 1)
− 19an−2(n+ r − 2) + 7an(n+ r)− 14an−2 − an = 0

Solving for an from recursive equation (4) gives

an = (n+ r) an−2

n+ 1 + r
(4)

Which for the root r = 1
4 becomes

an = (4n+ 1) an−2

4n+ 5 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

4 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
2 + r

3 + r

Which for the root r = 1
4 becomes

a2 =
9
13

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

2+r
3+r

9
13

For n = 3, using the above recursive equation gives

a3 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

2+r
3+r

9
13

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
r2 + 6r + 8

(3 + r) (5 + r)
Which for the root r = 1

4 becomes
a4 =

51
91

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

2+r
3+r

9
13

a3 0 0
a4

r2+6r+8
(3+r)(5+r)

51
91

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

2+r
3+r

9
13

a3 0 0
a4

r2+6r+8
(3+r)(5+r)

51
91

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) = x
1
4
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
4

(
1 + 9x2

13 + 51x4

91 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)−4bn−2(n+ r − 2) (n− 3 + r) + 4bn(n+ r) (n+ r − 1)
− 19bn−2(n+ r − 2) + 7bn(n+ r)− 14bn−2 − bn = 0

Solving for bn from recursive equation (4) gives

bn = (n+ r) bn−2

n+ 1 + r
(4)

Which for the root r = −1 becomes

bn = (n− 1) bn−2

n
(5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 =
2 + r

3 + r

Which for the root r = −1 becomes

b2 =
1
2

5150



And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

2+r
3+r

1
2

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

2+r
3+r

1
2

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
r2 + 6r + 8

(3 + r) (5 + r)

Which for the root r = −1 becomes

b4 =
3
8

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

2+r
3+r

1
2

b3 0 0
b4

r2+6r+8
(3+r)(5+r)

3
8
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For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

2+r
3+r

1
2

b3 0 0
b4

r2+6r+8
(3+r)(5+r)

3
8

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x
1
4
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1 + x2

2 + 3x4

8 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
4

(
1 + 9x2

13 + 51x4

91 +O
(
x6))+

c2
(
1 + x2

2 + 3x4

8 +O(x6)
)

x

Hence the final solution is

y = yh

= c1x
1
4

(
1 + 9x2

13 + 51x4

91 +O
(
x6))+

c2
(
1 + x2

2 + 3x4

8 +O(x6)
)

x

Summary
The solution(s) found are the following

(1)y = c1x
1
4

(
1 + 9x2

13 + 51x4

91 +O
(
x6))+

c2
(
1 + x2

2 + 3x4

8 +O(x6)
)

x
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Verification of solutions

y = c1x
1
4

(
1 + 9x2

13 + 51x4

91 +O
(
x6))+

c2
(
1 + x2

2 + 3x4

8 +O(x6)
)

x

Verified OK.

14.35.1 Maple step by step solution

Let’s solve
−4y′′x2(x2 − 1) + (−19x3 + 7x) y′ + (−14x2 − 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
14x2+1

)
y

4x2(x2−1) −
(
19x2−7

)
y′

4x(x2−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
19x2−7

)
y′

4x(x2−1) +
(
14x2+1

)
y

4x2(x2−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 19x2−7
4x(x2−1) , P3(x) = 14x2+1

4x2(x2−1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 3
2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
4y′′x2(x2 − 1) + x(19x2 − 7) y′ + (14x2 + 1) y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

5153



(4u4 − 16u3 + 20u2 − 8u)
(

d2

du2y(u)
)
+ (19u3 − 57u2 + 50u− 12)

(
d
du
y(u)

)
+ (14u2 − 28u+ 15) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..3

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..4

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−4a0r(1 + 2r)u−1+r + (−4a1(1 + r) (3 + 2r) + 5a0(4r2 + 6r + 3))ur + (−4a2(2 + r) (5 + 2r) + 5a1(4r2 + 14r + 13)− a0(16r2 + 41r + 28))u1+r +
(

∞∑
k=2

(
−4ak+1(k + 1 + r) (2k + 3 + 2r) + 5ak(4k2 + 8kr + 4r2 + 6k + 6r + 3)− ak−1

(
16(k − 1)2 + 32(k − 1) r + 16r2 + 41k − 13 + 41r

)
+ ak−2(k + r) (4k − 1 + 4r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−4r(1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−1

2

}
• The coefficients of each power of u must be 0

[−4a1(1 + r) (3 + 2r) + 5a0(4r2 + 6r + 3) = 0,−4a2(2 + r) (5 + 2r) + 5a1(4r2 + 14r + 13)− a0(16r2 + 41r + 28) = 0]
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• Solve for the dependent coefficient(s){
a1 = 5a0

(
4r2+6r+3

)
4(2r2+5r+3) , a2 = a0

(
272r4+1352r3+2464r2+1948r+639

)
16(4r4+28r3+71r2+77r+30)

}
• Each term in the series must be 0, giving the recursion relation

4(5ak + ak−2 − 4ak−1 − 2ak+1) k2 + (8(5ak + ak−2 − 4ak−1 − 2ak+1) r + 30ak − ak−2 − 9ak−1 − 20ak+1) k + 4(5ak + ak−2 − 4ak−1 − 2ak+1) r2 + (30ak − ak−2 − 9ak−1 − 20ak+1) r + 15ak − 3ak−1 − 12ak+1 = 0
• Shift index using k− >k + 2

4(5ak+2 + ak − 4ak+1 − 2ak+3) (k + 2)2 + (8(5ak+2 + ak − 4ak+1 − 2ak+3) r + 30ak+2 − ak − 9ak+1 − 20ak+3) (k + 2) + 4(5ak+2 + ak − 4ak+1 − 2ak+3) r2 + (30ak+2 − ak − 9ak+1 − 20ak+3) r + 15ak+2 − 3ak+1 − 12ak+3 = 0
• Recursion relation that defines series solution to ODE

ak+3 = 4k2ak−16k2ak+1+20k2ak+2+8krak−32krak+1+40krak+2+4r2ak−16r2ak+1+20r2ak+2+15kak−73kak+1+110kak+2+15rak−73rak+1+110rak+2+14ak−85ak+1+155ak+2
4(2k2+4kr+2r2+13k+13r+21)

• Recursion relation for r = 0

ak+3 = 4k2ak−16k2ak+1+20k2ak+2+15kak−73kak+1+110kak+2+14ak−85ak+1+155ak+2
4(2k2+13k+21)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+3 = 4k2ak−16k2ak+1+20k2ak+2+15kak−73kak+1+110kak+2+14ak−85ak+1+155ak+2

4(2k2+13k+21) , a1 = 5a0
4 , a2 = 213a0

160

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k , ak+3 = 4k2ak−16k2ak+1+20k2ak+2+15kak−73kak+1+110kak+2+14ak−85ak+1+155ak+2
4(2k2+13k+21) , a1 = 5a0

4 , a2 = 213a0
160

]
• Recursion relation for r = −1

2

ak+3 =
4k2ak−16k2ak+1+20k2ak+2+11kak−57kak+1+90kak+2+ 15

2 ak− 105
2 ak+1+105ak+2

4(2k2+11k+15)

• Solution for r = −1
2[

y(u) =
∞∑
k=0

aku
k− 1

2 , ak+3 =
4k2ak−16k2ak+1+20k2ak+2+11kak−57kak+1+90kak+2+ 15

2 ak− 105
2 ak+1+105ak+2

4(2k2+11k+15) , a1 = 5a0
4 , a2 = 43a0

32

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k−
1
2 , ak+3 =

4k2ak−16k2ak+1+20k2ak+2+11kak−57kak+1+90kak+2+ 15
2 ak− 105

2 ak+1+105ak+2
4(2k2+11k+15) , a1 = 5a0

4 , a2 = 43a0
32

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k−
1
2

)
, ak+3 = 4k2ak−16k2a1+k+20k2ak+2+15kak−73ka1+k+110kak+2+14ak−85a1+k+155ak+2

4(2k2+13k+21) , a1 = 5a0
4 , a2 = 213a0

160 , bk+3 =
4k2bk−16k2b1+k+20k2bk+2+11kbk−57kb1+k+90kbk+2+ 15

2 bk− 105
2 b1+k+105bk+2

4(2k2+11k+15) , b1 = 5b0
4 , b2 = 43b0

32

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
Order:=6;
dsolve(4*x^2*(1-x^2)*diff(y(x),x$2)+x*(7-19*x^2)*diff(y(x),x)-(1+14*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c2x

5
4
(
1 + 9

13x
2 + 51

91x
4 +O(x6)

)
+ c1

(
1 + 1

2x
2 + 3

8x
4 +O(x6)

)
x
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3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 50� �
AsymptoticDSolveValue[4*x^2*(1-x^2)*y''[x]+x*(7-19*x^2)*y'[x]-(1+14*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
4
√
x

(
51x4

91 + 9x2

13 + 1
)
+

c2
(

3x4

8 + x2

2 + 1
)

x
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14.36 problem 38
14.36.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5167

Internal problem ID [1327]
Internal file name [OUTPUT/1328_Sunday_June_05_2022_02_10_31_AM_25923185/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 38.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

3x2(−x2 + 2
)
y′′ + x

(
−11x2 + 1

)
y′ +

(
−5x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

−3x4 + 6x2) y′′ + (−11x3 + x
)
y′ +

(
−5x2 + 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 11x2 − 1
3x (x2 − 2)

q(x) = 5x2 − 1
3x2 (x2 − 2)
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Table 600: Table p(x), q(x) singularites.

p(x) = 11x2−1
3x(x2−2)

singularity type
x = 0 “regular”
x =

√
2 “regular”

x = −
√
2 “regular”

q(x) = 5x2−1
3x2(x2−2)

singularity type
x = 0 “regular”
x =

√
2 “regular”

x = −
√
2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,
√
2,−

√
2,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−3y′′x2(x2 − 2
)
+
(
−11x3 + x

)
y′ +

(
−5x2 + 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−3
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2(x2 − 2

)
+
(
−11x3 + x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
−5x2 + 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−3xn+r+2an(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

6xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−11xn+r+2an(n+ r)

)
+
(

∞∑
n=0

xn+ran(n+ r)
)

+
∞∑

n =0

(
−5xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−3xn+r+2an(n+ r) (n+ r − 1)

)
=

∞∑
n=2

(
−3an−2(n+ r − 2) (n− 3 + r)xn+r

)
∞∑

n =0

(
−11xn+r+2an(n+ r)

)
=

∞∑
n=2

(
−11an−2(n+ r − 2)xn+r

)
∞∑

n =0

(
−5xn+r+2an

)
=

∞∑
n=2

(
−5an−2x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =2

(
−3an−2(n+ r − 2) (n− 3 + r)xn+r

)
+
(

∞∑
n=0

6xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =2

(
−11an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r)
)

+
∞∑

n =2

(
−5an−2x

n+r
)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

6xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r) + anx
n+r = 0
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When n = 0 the above becomes

6xra0r(−1 + r) + xra0r + a0x
r = 0

Or
(6xrr(−1 + r) + xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
6r2 − 5r + 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

6r2 − 5r + 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 =
1
3

Since a0 6= 0 then the indicial equation becomes(
6r2 − 5r + 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
6 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n+ 1

3

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)−3an−2(n+ r − 2) (n− 3 + r) + 6an(n+ r) (n+ r − 1)
− 11an−2(n+ r − 2) + an(n+ r)− 5an−2 + an = 0

Solving for an from recursive equation (4) gives

an = (n+ r − 1) an−2

2n+ 2r − 1 (4)

Which for the root r = 1
2 becomes

an = (2n− 1) an−2

4n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
1 + r

3 + 2r

Which for the root r = 1
2 becomes

a2 =
3
8

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1+r
3+2r

3
8

For n = 3, using the above recursive equation gives

a3 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1+r
3+2r

3
8

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
r2 + 4r + 3

4r2 + 20r + 21
Which for the root r = 1

2 becomes

a4 =
21
128

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1+r
3+2r

3
8

a3 0 0
a4

r2+4r+3
4r2+20r+21

21
128

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1+r
3+2r

3
8

a3 0 0
a4

r2+4r+3
4r2+20r+21

21
128

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1 + 3x2

8 + 21x4

128 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)−3bn−2(n+ r − 2) (n− 3 + r) + 6bn(n+ r) (n+ r − 1)
− 11bn−2(n+ r − 2) + bn(n+ r)− 5bn−2 + bn = 0

Solving for bn from recursive equation (4) gives

bn = (n+ r − 1) bn−2

2n+ 2r − 1 (4)

Which for the root r = 1
3 becomes

bn = (3n− 2) bn−2

6n− 1 (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 =
1 + r

3 + 2r

Which for the root r = 1
3 becomes

b2 =
4
11
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1+r
3+2r

4
11

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1+r
3+2r

4
11

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
r2 + 4r + 3

4r2 + 20r + 21

Which for the root r = 1
3 becomes

b4 =
40
253

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1+r
3+2r

4
11

b3 0 0
b4

r2+4r+3
4r2+20r+21

40
253
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For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1+r
3+2r

4
11

b3 0 0
b4

r2+4r+3
4r2+20r+21

40
253

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) =
√
x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x
1
3

(
1 + 4x2

11 + 40x4

253 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1 + 3x2

8 + 21x4

128 +O
(
x6))+ c2x

1
3

(
1 + 4x2

11 + 40x4

253 +O
(
x6))

Hence the final solution is
y = yh

= c1
√
x

(
1 + 3x2

8 + 21x4

128 +O
(
x6))+ c2x

1
3

(
1 + 4x2

11 + 40x4

253 +O
(
x6))

Summary
The solution(s) found are the following

(1)y = c1
√
x

(
1 + 3x2

8 + 21x4

128 +O
(
x6))+ c2x

1
3

(
1 + 4x2

11 + 40x4

253 +O
(
x6))

Verification of solutions

y = c1
√
x

(
1 + 3x2

8 + 21x4

128 +O
(
x6))+ c2x

1
3

(
1 + 4x2

11 + 40x4

253 +O
(
x6))

Verified OK.
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14.36.1 Maple step by step solution

Let’s solve
−3y′′x2(x2 − 2) + (−11x3 + x) y′ + (−5x2 + 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
5x2−1

)
y

3x2(x2−2) −
(
11x2−1

)
y′

3x(x2−2)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
11x2−1

)
y′

3x(x2−2) +
(
5x2−1

)
y

3x2(x2−2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 11x2−1
3x(x2−2) , P3(x) = 5x2−1

3x2(x2−2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
6

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
6

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
3y′′x2(x2 − 2) + x(11x2 − 1) y′ + (5x2 − 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(−1 + 3r) (−1 + 2r)xr − a1(2 + 3r) (1 + 2r)x1+r +
(

∞∑
k=2

(−ak(3k + 3r − 1) (2k + 2r − 1) + ak−2(3k + 3r − 1) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−1 + 3r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

1
3

}
• Each term must be 0

−a1(2 + 3r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

−6
(
k + r − 1

3

) ( (−k−r+1)ak−2
2 + ak

(
k + r − 1

2

))
= 0

• Shift index using k− >k + 2

−6
(
k + 5

3 + r
) ( (−k−1−r)ak

2 + ak+2
(
k + 3

2 + r
))

= 0

• Recursion relation that defines series solution to ODE
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ak+2 = (k+r+1)ak
2k+3+2r

• Recursion relation for r = 1
2

ak+2 =
(
k+ 3

2
)
ak

2k+4

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 =
(
k+ 3

2
)
ak

2k+4 , a1 = 0
]

• Recursion relation for r = 1
3

ak+2 =
(
k+ 4

3
)
ak

2k+ 11
3

• Solution for r = 1
3[

y =
∞∑
k=0

akx
k+ 1

3 , ak+2 =
(
k+ 4

3
)
ak

2k+ 11
3

, a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 =

(
k+ 3

2
)
ak

2k+4 , a1 = 0, bk+2 =
(
k+ 4

3
)
bk

2k+ 11
3
, b1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 35� �
Order:=6;
dsolve(3*x^2*(2-x^2)*diff(y(x),x$2)+x*(1-11*x^2)*diff(y(x),x)+(1-5*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
1
3

(
1 + 4

11x
2 + 40

253x
4 +O

(
x6))+ c2

√
x

(
1 + 3

8x
2 + 21

128x
4 +O

(
x6))
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 52� �
AsymptoticDSolveValue[3*x^2*(2-x^2)*y''[x]+x*(1-11*x^2)*y'[x]+(1-5*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x

(
21x4

128 + 3x2

8 + 1
)
+ c2

3
√
x

(
40x4

253 + 4x2

11 + 1
)
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14.37 problem 39
14.37.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5182

Internal problem ID [1328]
Internal file name [OUTPUT/1329_Sunday_June_05_2022_02_10_33_AM_35309778/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 39.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2x2(x2 + 2
)
y′′ − x

(
−7x2 + 12

)
y′ +

(
3x2 + 7

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

2x4 + 4x2) y′′ + (7x3 − 12x
)
y′ +

(
3x2 + 7

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 7x2 − 12
2 (x2 + 2)x

q(x) = 3x2 + 7
2x2 (x2 + 2)
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Table 602: Table p(x), q(x) singularites.

p(x) = 7x2−12
2(x2+2)x

singularity type
x = 0 “regular”

x = −i
√
2 “regular”

x = i
√
2 “regular”

q(x) = 3x2+7
2x2(x2+2)

singularity type
x = 0 “regular”

x = −i
√
2 “regular”

x = i
√
2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−i

√
2, i

√
2,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x2(x2 + 2
)
y′′ +

(
7x3 − 12x

)
y′ +

(
3x2 + 7

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2x2(x2 + 2

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
7x3 − 12x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
3x2 + 7

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

7xn+r+2an(n+ r)
)

+
∞∑

n =0

(
−12xn+ran(n+ r)

)
+
(

∞∑
n=0

3xn+r+2an

)
+
(

∞∑
n=0

7anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

2an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

7xn+r+2an(n+ r) =
∞∑
n=2

7an−2(n+ r − 2)xn+r

∞∑
n =0

3xn+r+2an =
∞∑
n=2

3an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

2an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

7an−2(n+ r − 2)xn+r

)

+
∞∑

n =0

(
−12xn+ran(n+ r)

)
+
(

∞∑
n=2

3an−2x
n+r

)
+
(

∞∑
n=0

7anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1)− 12xn+ran(n+ r) + 7anxn+r = 0
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When n = 0 the above becomes

4xra0r(−1 + r)− 12xra0r + 7a0xr = 0

Or
(4xrr(−1 + r)− 12xrr + 7xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 − 16r + 7

)
xr = 0

Since the above is true for all x then the indicial equation becomes

4r2 − 16r + 7 = 0

Solving for r gives the roots of the indicial equation as

r1 =
7
2

r2 =
1
2

Since a0 6= 0 then the indicial equation becomes(
4r2 − 16r + 7

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x
7
2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
√
x

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 7

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+ 1

2

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)2an−2(n+ r − 2) (n− 3 + r) + 4an(n+ r) (n+ r − 1)
+ 7an−2(n+ r − 2)− 12an(n+ r) + 3an−2 + 7an = 0

Solving for an from recursive equation (4) gives

an = −(n+ r − 1) an−2

2n+ 2r − 7 (4)

Which for the root r = 7
2 becomes

an = −(2n+ 5) an−2

4n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 7

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−1− r

−3 + 2r

Which for the root r = 7
2 becomes

a2 = −9
8

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−1−r
−3+2r −9

8
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For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−1−r
−3+2r −9

8

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
r2 + 4r + 3
4r2 − 4r − 3

Which for the root r = 7
2 becomes

a4 =
117
128

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−1−r
−3+2r −9

8

a3 0 0
a4

r2+4r+3
4r2−4r−3

117
128

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

−1−r
−3+2r −9

8

a3 0 0
a4

r2+4r+3
4r2−4r−3

117
128

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
7
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
7
2

(
1− 9x2

8 + 117x4

128 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 3. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a3(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a3

= 0

Therefore

lim
r→r2

0 = lim
r→ 1

2

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n+ 1

2
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Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)2bn−2(n+ r − 2) (n− 3 + r) + 4bn(n+ r) (n+ r − 1)
+ 7bn−2(n+ r − 2)− 12bn(n+ r) + 3bn−2 + 7bn = 0

Which for for the root r = 1
2 becomes

(4A)2bn−2

(
n− 3

2

)(
n− 5

2

)
+ 4bn

(
n+ 1

2

)(
n− 1

2

)
+ 7bn−2

(
n− 3

2

)
− 12bn

(
n+ 1

2

)
+ 3bn−2 + 7bn = 0

Solving for bn from the recursive equation (4) gives

bn = −(n+ r − 1) bn−2

2n+ 2r − 7 (5)

Which for the root r = 1
2 becomes

bn = −
(
n− 1

2

)
bn−2

2n− 6 (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 1 + r

−3 + 2r

Which for the root r = 1
2 becomes

b2 =
3
4
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−1−r
−3+2r

3
4

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−1−r
−3+2r

3
4

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
r2 + 4r + 3

(−3 + 2r) (1 + 2r)

Which for the root r = 1
2 becomes

b4 = −21
16

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−1−r
−3+2r

3
4

b3 0 0
b4

r2+4r+3
4r2−4r−3 −21

16
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For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−1−r
−3+2r

3
4

b3 0 0
b4

r2+4r+3
4r2−4r−3 −21

16

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x
7
2
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
√
x

(
1 + 3x2

4 − 21x4

16 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
7
2

(
1− 9x2

8 + 117x4

128 +O
(
x6))+ c2

√
x

(
1 + 3x2

4 − 21x4

16 +O
(
x6))

Hence the final solution is
y = yh

= c1x
7
2

(
1− 9x2

8 + 117x4

128 +O
(
x6))+ c2

√
x

(
1 + 3x2

4 − 21x4

16 +O
(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
7
2

(
1− 9x2

8 + 117x4

128 +O
(
x6))+ c2

√
x

(
1 + 3x2

4 − 21x4

16 +O
(
x6))

Verification of solutions

y = c1x
7
2

(
1− 9x2

8 + 117x4

128 +O
(
x6))+ c2

√
x

(
1 + 3x2

4 − 21x4

16 +O
(
x6))

Verified OK.

5181



14.37.1 Maple step by step solution

Let’s solve
2x2(x2 + 2) y′′ + (7x3 − 12x) y′ + (3x2 + 7) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
3x2+7

)
y

2x2(x2+2) −
(
7x2−12

)
y′

2x(x2+2)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
7x2−12

)
y′

2x(x2+2) +
(
3x2+7

)
y

2x2(x2+2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 7x2−12
2(x2+2)x , P3(x) = 3x2+7

2x2(x2+2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 7
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
2x2(x2 + 2) y′′ + x(7x2 − 12) y′ + (3x2 + 7) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−7 + 2r)xr + a1(1 + 2r) (−5 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r − 1) (2k + 2r − 7) + ak−2(2k + 2r − 1) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−7 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

7
2

}
• Each term must be 0

a1(1 + 2r) (−5 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
(

ak−2(k+r−1)
2 + ak

(
k + r − 7

2

)) (
k + r − 1

2

)
= 0

• Shift index using k− >k + 2

4
(

ak(k+r+1)
2 + ak+2

(
k − 3

2 + r
)) (

k + 3
2 + r

)
= 0

• Recursion relation that defines series solution to ODE
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ak+2 = −ak(k+r+1)
2k−3+2r

• Recursion relation for r = 1
2

ak+2 = −ak
(
k+ 3

2
)

2k−2

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −ak
(
k+ 3

2
)

2k−2 , a1 = 0
]

• Recursion relation for r = 7
2

ak+2 = −ak
(
k+ 9

2
)

2k+4

• Solution for r = 7
2[

y =
∞∑
k=0

akx
k+ 7

2 , ak+2 = −ak
(
k+ 9

2
)

2k+4 , a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 7

2

)
, ak+2 = −ak

(
k+ 3

2
)

2k−2 , a1 = 0, bk+2 = − bk
(
k+ 9

2
)

2k+4 , b1 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 35� �
Order:=6;
dsolve(2*x^2*(2+x^2)*diff(y(x),x$2)-x*(12-7*x^2)*diff(y(x),x)+(7+3*x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x) =

√
x

((
1− 9

8x
2 + 117

128x
4 +O

(
x6))x3c1 +

(
12 + 9x2 − 63

4 x4 +O
(
x6)) c2

)
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3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 58� �
AsymptoticDSolveValue[2*x^2*(2+x^2)*y''[x]-x*(12-7*x^2)*y'[x]+(7+3*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
−21x9/2

16 + 3x5/2

4 +
√
x

)
+ c2

(
117x15/2

128 − 9x11/2

8 + x7/2
)
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14.38 problem 40
14.38.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5197

Internal problem ID [1329]
Internal file name [OUTPUT/1330_Sunday_June_05_2022_02_10_36_AM_35752125/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 40.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2x2(x2 + 2
)
y′′ + x

(
7x2 + 4

)
y′ −

(
−3x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

2x4 + 4x2) y′′ + (7x3 + 4x
)
y′ +

(
3x2 − 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 7x2 + 4
2 (x2 + 2)x

q(x) = 3x2 − 1
2x2 (x2 + 2)
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Table 604: Table p(x), q(x) singularites.

p(x) = 7x2+4
2(x2+2)x

singularity type
x = 0 “regular”

x = −i
√
2 “regular”

x = i
√
2 “regular”

q(x) = 3x2−1
2x2(x2+2)

singularity type
x = 0 “regular”

x = −i
√
2 “regular”

x = i
√
2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−i

√
2, i

√
2,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x2(x2 + 2
)
y′′ +

(
7x3 + 4x

)
y′ +

(
3x2 − 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2x2(x2 + 2

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
7x3 + 4x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
3x2 − 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

7xn+r+2an(n+ r)
)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
(

∞∑
n=0

3xn+r+2an

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

2an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

7xn+r+2an(n+ r) =
∞∑
n=2

7an−2(n+ r − 2)xn+r

∞∑
n =0

3xn+r+2an =
∞∑
n=2

3an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

2an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

7an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
(

∞∑
n=2

3an−2x
n+r

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + 4xn+ran(n+ r)− anx
n+r = 0
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When n = 0 the above becomes

4xra0r(−1 + r) + 4xra0r − a0x
r = 0

Or
(4xrr(−1 + r) + 4xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

4r2 − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = −1
2

Since a0 6= 0 then the indicial equation becomes(
4r2 − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
√
x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

√
x

Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n− 1

2

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)2an−2(n+ r − 2) (n− 3 + r) + 4an(n+ r) (n+ r − 1)
+ 7an−2(n+ r − 2) + 4an(n+ r) + 3an−2 − an = 0

Solving for an from recursive equation (4) gives

an = −(n+ r − 1) an−2

2n+ 2r + 1 (4)

Which for the root r = 1
2 becomes

an = −2nan−2 + an−2

4n+ 4 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−1− r

5 + 2r

Which for the root r = 1
2 becomes

a2 = −1
4

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−1−r
5+2r −1

4
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For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−1−r
5+2r −1

4

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
r2 + 4r + 3

4r2 + 28r + 45

Which for the root r = 1
2 becomes

a4 =
7
80

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−1−r
5+2r −1

4

a3 0 0
a4

r2+4r+3
4r2+28r+45

7
80

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

−1−r
5+2r −1

4

a3 0 0
a4

r2+4r+3
4r2+28r+45

7
80

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− x2

4 + 7x4

80 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= 0

Therefore

lim
r→r2

0 = lim
r→− 1

2

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n− 1

2
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Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)2bn−2(n+ r − 2) (n− 3 + r) + 4bn(n+ r) (n+ r − 1)
+ 7bn−2(n+ r − 2) + 4bn(n+ r) + 3bn−2 − bn = 0

Which for for the root r = −1
2 becomes

(4A)2bn−2

(
n− 5

2

)(
n− 7

2

)
+ 4bn

(
n− 1

2

)(
n− 3

2

)
+ 7bn−2

(
n− 5

2

)
+ 4bn

(
n− 1

2

)
+ 3bn−2 − bn = 0

Solving for bn from the recursive equation (4) gives

bn = −(n+ r − 1) bn−2

2n+ 2r + 1 (5)

Which for the root r = −1
2 becomes

bn = −
(
n− 3

2

)
bn−2

2n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 1 + r

5 + 2r

Which for the root r = −1
2 becomes

b2 = −1
8
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−1−r
5+2r −1

8

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−1−r
5+2r −1

8

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
r2 + 4r + 3

(5 + 2r) (9 + 2r)

Which for the root r = −1
2 becomes

b4 =
5
128

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−1−r
5+2r −1

8

b3 0 0
b4

r2+4r+3
4r2+28r+45

5
128
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For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−1−r
5+2r −1

8

b3 0 0
b4

r2+4r+3
4r2+28r+45

5
128

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) =
√
x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x2

8 + 5x4

128 +O(x6)
√
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− x2

4 + 7x4

80 +O
(
x6))+

c2
(
1− x2

8 + 5x4

128 +O(x6)
)

√
x

Hence the final solution is

y = yh

= c1
√
x

(
1− x2

4 + 7x4

80 +O
(
x6))+

c2
(
1− x2

8 + 5x4

128 +O(x6)
)

√
x

Summary
The solution(s) found are the following

(1)y = c1
√
x

(
1− x2

4 + 7x4

80 +O
(
x6))+

c2
(
1− x2

8 + 5x4

128 +O(x6)
)

√
x
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Verification of solutions

y = c1
√
x

(
1− x2

4 + 7x4

80 +O
(
x6))+

c2
(
1− x2

8 + 5x4

128 +O(x6)
)

√
x

Verified OK.

14.38.1 Maple step by step solution

Let’s solve
2x2(x2 + 2) y′′ + (7x3 + 4x) y′ + (3x2 − 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
3x2−1

)
y

2x2(x2+2) −
(
7x2+4

)
y′

2x(x2+2)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
7x2+4

)
y′

2x(x2+2) +
(
3x2−1

)
y

2x2(x2+2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 7x2+4
2(x2+2)x , P3(x) = 3x2−1

2x2(x2+2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
2x2(x2 + 2) y′′ + x(7x2 + 4) y′ + (3x2 − 1) y = 0

• Assume series solution for y
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y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (2k + 2r − 1) + ak−2(2k + 2r − 1) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation
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4
(
k + r − 1

2

) (ak−2(k+r−1)
2 + ak

(
k + r + 1

2

))
= 0

• Shift index using k− >k + 2

4
(
k + 3

2 + r
) (ak(k+r+1)

2 + ak+2
(
k + 5

2 + r
))

= 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+1)

2k+5+2r

• Recursion relation for r = −1
2

ak+2 = −ak
(
k+ 1

2
)

2k+4

• Solution for r = −1
2[

y =
∞∑
k=0

akx
k− 1

2 , ak+2 = −ak
(
k+ 1

2
)

2k+4 , a1 = 0
]

• Recursion relation for r = 1
2

ak+2 = −ak
(
k+ 3

2
)

2k+6

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −ak
(
k+ 3

2
)

2k+6 , a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = −ak

(
k+ 1

2
)

2k+4 , a1 = 0, bk+2 = − bk
(
k+ 3

2
)

2k+6 , b1 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Legendre successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
Order:=6;
dsolve(2*x^2*(2+x^2)*diff(y(x),x$2)+x*(4+7*x^2)*diff(y(x),x)-(1-3*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1x
(
1− 1

4x
2 + 7

80x
4 +O(x6)

)
+ c2

(
1− 1

8x
2 + 5

128x
4 +O(x6)

)
√
x

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 58� �
AsymptoticDSolveValue[2*x^2*(2+x^2)*y''[x]+x*(4+7*x^2)*y'[x]-(1-3*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
5x7/2

128 − x3/2

8 + 1√
x

)
+ c2

(
7x9/2

80 − x5/2

4 +
√
x

)
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14.39 problem 41
14.39.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5210

Internal problem ID [1330]
Internal file name [OUTPUT/1331_Sunday_June_05_2022_02_10_39_AM_77927004/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 41.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2x2(2x2 + 1
)
y′′ + 5x

(
6x2 + 1

)
y′ −

(
−40x2 + 2

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

4x4 + 2x2) y′′ + (30x3 + 5x
)
y′ +

(
40x2 − 2

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) =
15x2 + 5

2
x (2x2 + 1)

q(x) = 20x2 − 1
x2 (2x2 + 1)
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Table 606: Table p(x), q(x) singularites.

p(x) = 15x2+ 5
2

x(2x2+1)

singularity type
x = 0 “regular”

x = − i
√
2

2 “regular”

x = i
√
2

2 “regular”

q(x) = 20x2−1
x2(2x2+1)

singularity type
x = 0 “regular”

x = − i
√
2

2 “regular”

x = i
√
2

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,− i

√
2

2 , i
√
2

2 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x2(2x2 + 1
)
y′′ +

(
30x3 + 5x

)
y′ +

(
40x2 − 2

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2x2(2x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
30x3 + 5x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
40x2 − 2

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

30xn+r+2an(n+ r)
)

+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=0

40xn+r+2an

)
+

∞∑
n =0

(
−2anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

4an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

30xn+r+2an(n+ r) =
∞∑
n=2

30an−2(n+ r − 2)xn+r

∞∑
n =0

40xn+r+2an =
∞∑
n=2

40an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

4an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

30an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=2

40an−2x
n+r

)
+

∞∑
n =0

(
−2anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+ran(n+ r) (n+ r − 1) + 5xn+ran(n+ r)− 2anxn+r = 0
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When n = 0 the above becomes

2xra0r(−1 + r) + 5xra0r − 2a0xr = 0

Or
(2xrr(−1 + r) + 5xrr − 2xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
2r2 + 3r − 2

)
xr = 0

Since the above is true for all x then the indicial equation becomes

2r2 + 3r − 2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = −2

Since a0 6= 0 then the indicial equation becomes(
2r2 + 3r − 2

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 5
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n−2

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)4an−2(n+ r − 2) (n− 3 + r) + 2an(n+ r) (n+ r − 1)
+ 30an−2(n+ r − 2) + 5an(n+ r) + 40an−2 − 2an = 0

Solving for an from recursive equation (4) gives

an = −2(2n+ 2r + 1) an−2

2n+ 2r − 1 (4)

Which for the root r = 1
2 becomes

an = −2(n+ 1) an−2

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−4r − 10
3 + 2r

Which for the root r = 1
2 becomes

a2 = −3

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4r−10
3+2r −3

For n = 3, using the above recursive equation gives

a3 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4r−10
3+2r −3

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
16r2 + 112r + 180
4r2 + 20r + 21

Which for the root r = 1
2 becomes

a4 =
15
2

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4r−10
3+2r −3

a3 0 0
a4

16r2+112r+180
4r2+20r+21

15
2

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4r−10
3+2r −3

a3 0 0
a4

16r2+112r+180
4r2+20r+21

15
2

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− 3x2 + 15x4

2 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)4bn−2(n+ r − 2) (n− 3 + r) + 2bn(n+ r) (n+ r − 1)
+ 30bn−2(n+ r − 2) + 5bn(n+ r) + 40bn−2 − 2bn = 0

Solving for bn from recursive equation (4) gives

bn = −2(2n+ 2r + 1) bn−2

2n+ 2r − 1 (4)

Which for the root r = −2 becomes

bn = (6− 4n) bn−2

2n− 5 (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 =
−4r − 10
3 + 2r

Which for the root r = −2 becomes

b2 = 2
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−4r−10
3+2r 2

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−4r−10
3+2r 2

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
16r2 + 112r + 180
4r2 + 20r + 21

Which for the root r = −2 becomes

b4 = −20
3

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−4r−10
3+2r 2

b3 0 0
b4

16r2+112r+180
4r2+20r+21 −20

3
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For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−4r−10
3+2r 2

b3 0 0
b4

16r2+112r+180
4r2+20r+21 −20

3

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) =
√
x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1 + 2x2 − 20x4

3 +O(x6)
x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− 3x2 + 15x4

2 +O
(
x6))+

c2
(
1 + 2x2 − 20x4

3 +O(x6)
)

x2

Hence the final solution is

y = yh

= c1
√
x

(
1− 3x2 + 15x4

2 +O
(
x6))+

c2
(
1 + 2x2 − 20x4

3 +O(x6)
)

x2

Summary
The solution(s) found are the following

(1)y = c1
√
x

(
1− 3x2 + 15x4

2 +O
(
x6))+

c2
(
1 + 2x2 − 20x4

3 +O(x6)
)

x2
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Verification of solutions

y = c1
√
x

(
1− 3x2 + 15x4

2 +O
(
x6))+

c2
(
1 + 2x2 − 20x4

3 +O(x6)
)

x2

Verified OK.

14.39.1 Maple step by step solution

Let’s solve
2x2(2x2 + 1) y′′ + (30x3 + 5x) y′ + (40x2 − 2) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
20x2−1

)
y

x2(2x2+1) −
5
(
6x2+1

)
y′

2x(2x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 5
(
6x2+1

)
y′

2x(2x2+1) +
(
20x2−1

)
y

x2(2x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5
(
6x2+1

)
2x(2x2+1) , P3(x) = 20x2−1

x2(2x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
2x2(2x2 + 1) y′′ + 5x(6x2 + 1) y′ + (40x2 − 2) y = 0

• Assume series solution for y
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y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−1 + 2r)xr + a1(3 + r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (2k + 2r − 1) + 2ak−2(k + r + 2) (2k + 1 + 2r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−2, 12

}
• Each term must be 0

a1(3 + r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation
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2(k + r + 2)
(
ak−2(2k + 1 + 2r) + ak

(
k + r − 1

2

))
= 0

• Shift index using k− >k + 2
2(k + r + 4)

(
ak(2k + 2r + 5) + ak+2

(
k + 3

2 + r
))

= 0

• Recursion relation that defines series solution to ODE
ak+2 = −2ak(2k+2r+5)

2k+3+2r

• Recursion relation for r = −2
ak+2 = −2ak(2k+1)

2k−1

• Solution for r = −2[
y =

∞∑
k=0

akx
k−2, ak+2 = −2ak(2k+1)

2k−1 , a1 = 0
]

• Recursion relation for r = 1
2

ak+2 = −2ak(2k+6)
2k+4

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −2ak(2k+6)
2k+4 , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k−2
)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = −2ak(2k+1)

2k−1 , a1 = 0, bk+2 = −2bk(2k+6)
2k+4 , b1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 35� �
Order:=6;
dsolve(2*x^2*(1+2*x^2)*diff(y(x),x$2)+5*x*(1+6*x^2)*diff(y(x),x)-(2-40*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c2x

5
2
(
1− 3x2 + 15

2 x
4 +O(x6)

)
+ c1

(
1 + 2x2 − 20

3 x
4 +O(x6)

)
x2
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 46� �
AsymptoticDSolveValue[2*x^2*(1+2*x^2)*y''[x]+5*x*(1+6*x^2)*y'[x]-(2-40*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x

(
15x4

2 − 3x2 + 1
)
+

c2
(
−20x4

3 + 2x2 + 1
)

x2
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14.40 problem 42
14.40.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5224

Internal problem ID [1331]
Internal file name [OUTPUT/1332_Sunday_June_05_2022_02_10_42_AM_62052714/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 42.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

3x2(x2 + 1
)
y′′ + 5x

(
x2 + 1

)
y′ −

(
−5x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

3x4 + 3x2) y′′ + (5x3 + 5x
)
y′ +

(
5x2 − 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 5
3x

q(x) = 5x2 − 1
3x2 (x2 + 1)
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Table 608: Table p(x), q(x) singularites.

p(x) = 5
3x

singularity type
x = 0 “regular”

q(x) = 5x2−1
3x2(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

3x2(x2 + 1
)
y′′ +

(
5x3 + 5x

)
y′ +

(
5x2 − 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
3x2(x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
5x3 + 5x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
5x2 − 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

3xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

5xn+r+2an(n+ r)
)

+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=0

5xn+r+2an

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

3xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

3an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

5xn+r+2an(n+ r) =
∞∑
n=2

5an−2(n+ r − 2)xn+r

∞∑
n =0

5xn+r+2an =
∞∑
n=2

5an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

3an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=0

3xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

5an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=2

5an−2x
n+r

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

3xn+ran(n+ r) (n+ r − 1) + 5xn+ran(n+ r)− anx
n+r = 0
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When n = 0 the above becomes

3xra0r(−1 + r) + 5xra0r − a0x
r = 0

Or
(3xrr(−1 + r) + 5xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
3r2 + 2r − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

3r2 + 2r − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 = −1

Since a0 6= 0 then the indicial equation becomes(
3r2 + 2r − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) =
∞∑
n=0

bnx
n−1

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)3an−2(n+ r − 2) (n− 3 + r) + 3an(n+ r) (n+ r − 1)
+ 5an−2(n+ r − 2) + 5an(n+ r) + 5an−2 − an = 0

Solving for an from recursive equation (4) gives

an = −an−2(3n2 + 6nr + 3r2 − 10n− 10r + 13)
3n2 + 6nr + 3r2 + 2n+ 2r − 1 (4)

Which for the root r = 1
3 becomes

an = −an−2(3n2 − 8n+ 10)
3n2 + 4n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−3r2 − 2r − 5
3r2 + 14r + 15

Which for the root r = 1
3 becomes

a2 = − 3
10

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−3r2−2r−5
3r2+14r+15 − 3

10

For n = 3, using the above recursive equation gives

a3 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−3r2−2r−5
3r2+14r+15 − 3

10

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
9r4 + 48r3 + 106r2 + 112r + 105
9r4 + 120r3 + 574r2 + 1160r + 825

Which for the root r = 1
3 becomes

a4 =
39
320

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−3r2−2r−5
3r2+14r+15 − 3

10

a3 0 0
a4

9r4+48r3+106r2+112r+105
9r4+120r3+574r2+1160r+825

39
320

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−3r2−2r−5
3r2+14r+15 − 3

10

a3 0 0
a4

9r4+48r3+106r2+112r+105
9r4+120r3+574r2+1160r+825

39
320

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
1− 3x2

10 + 39x4

320 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)3bn−2(n+ r − 2) (n− 3 + r) + 3bn(n+ r) (n+ r − 1)
+ 5bn−2(n+ r − 2) + 5bn(n+ r) + 5bn−2 − bn = 0

Solving for bn from recursive equation (4) gives

bn = −bn−2(3n2 + 6nr + 3r2 − 10n− 10r + 13)
3n2 + 6nr + 3r2 + 2n+ 2r − 1 (4)

Which for the root r = −1 becomes

bn = −bn−2(3n2 − 16n+ 26)
3n2 − 4n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 =
−3r2 − 2r − 5
3r2 + 14r + 15

Which for the root r = −1 becomes

b2 = −3
2
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−3r2−2r−5
3r2+14r+15 −3

2

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−3r2−2r−5
3r2+14r+15 −3

2

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
9r4 + 48r3 + 106r2 + 112r + 105
9r4 + 120r3 + 574r2 + 1160r + 825

Which for the root r = −1 becomes

b4 =
15
32

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−3r2−2r−5
3r2+14r+15 −3

2

b3 0 0
b4

9r4+48r3+106r2+112r+105
9r4+120r3+574r2+1160r+825

15
32
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For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−3r2−2r−5
3r2+14r+15 −3

2

b3 0 0
b4

9r4+48r3+106r2+112r+105
9r4+120r3+574r2+1160r+825

15
32

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x
1
3
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− 3x2

2 + 15x4

32 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3

(
1− 3x2

10 + 39x4

320 +O
(
x6))+

c2
(
1− 3x2

2 + 15x4

32 +O(x6)
)

x

Hence the final solution is

y = yh

= c1x
1
3

(
1− 3x2

10 + 39x4

320 +O
(
x6))+

c2
(
1− 3x2

2 + 15x4

32 +O(x6)
)

x

Summary
The solution(s) found are the following

(1)y = c1x
1
3

(
1− 3x2

10 + 39x4

320 +O
(
x6))+

c2
(
1− 3x2

2 + 15x4

32 +O(x6)
)

x
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Verification of solutions

y = c1x
1
3

(
1− 3x2

10 + 39x4

320 +O
(
x6))+

c2
(
1− 3x2

2 + 15x4

32 +O(x6)
)

x

Verified OK.

14.40.1 Maple step by step solution

Let’s solve
3x2(x2 + 1) y′′ + (5x3 + 5x) y′ + (5x2 − 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
5x2−1

)
y

3x2(x2+1) −
5y′
3x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 5y′
3x +

(
5x2−1

)
y

3x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5
3x , P3(x) = 5x2−1

3x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
3

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
3x2(x2 + 1) y′′ + 5x(x2 + 1) y′ + (5x2 − 1) y = 0

• Assume series solution for y
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y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + 3r)xr + a1(2 + r) (2 + 3r)x1+r +
(

∞∑
k=2

(
ak(k + r + 1) (3k + 3r − 1) + ak−2

(
3(k − 2)2 + 6(k − 2) r + 3r2 + 2k + 1 + 2r

))
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1, 13

}
• Each term must be 0

a1(2 + r) (2 + 3r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation
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(3k2 + (6r − 10) k + 3r2 − 10r + 13) ak−2 + 3(k + r + 1)
(
k + r − 1

3

)
ak = 0

• Shift index using k− >k + 2(
3(k + 2)2 + (6r − 10) (k + 2) + 3r2 − 10r + 13

)
ak + 3(k + 3 + r)

(
k + 5

3 + r
)
ak+2 = 0

• Recursion relation that defines series solution to ODE

ak+2 = −
(
3k2+6kr+3r2+2k+2r+5

)
ak

(k+3+r)(3k+5+3r)

• Recursion relation for r = −1

ak+2 = −
(
3k2−4k+6

)
ak

(k+2)(3k+2)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = −

(
3k2−4k+6

)
ak

(k+2)(3k+2) , a1 = 0
]

• Recursion relation for r = 1
3

ak+2 = −
(
3k2+4k+6

)
ak(

k+ 10
3
)
(3k+6)

• Solution for r = 1
3[

y =
∞∑
k=0

akx
k+ 1

3 , ak+2 = −
(
3k2+4k+6

)
ak(

k+ 10
3
)
(3k+6) , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 = −

(
3k2−4k+6

)
ak

(k+2)(3k+2) , a1 = 0, bk+2 = −
(
3k2+4k+6

)
bk(

k+ 10
3
)
(3k+6) , b1 = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
Order:=6;
dsolve(3*x^2*(1+x^2)*diff(y(x),x$2)+5*x*(1+x^2)*diff(y(x),x)-(1-5*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c2x

4
3
(
1− 3

10x
2 + 39

320x
4 +O(x6)

)
+ c1

(
1− 3

2x
2 + 15

32x
4 +O(x6)

)
x
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 50� �
AsymptoticDSolveValue[3*x^2*(1+x^2)*y''[x]+5*x*(1+x^2)*y'[x]-(1-5*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
3
√
x

(
39x4

320 − 3x2

10 + 1
)
+

c2
(

15x4

32 − 3x2

2 + 1
)

x
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14.41 problem 43
14.41.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5239

Internal problem ID [1332]
Internal file name [OUTPUT/1333_Sunday_June_05_2022_02_10_44_AM_72635037/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 43.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

x
(
x2 + 1

)
y′′ +

(
7x2 + 4

)
y′ + 8yx = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x3 + x
)
y′′ +

(
7x2 + 4

)
y′ + 8yx = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 7x2 + 4
x (x2 + 1)

q(x) = 8
x2 + 1
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Table 610: Table p(x), q(x) singularites.

p(x) = 7x2+4
x(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

q(x) = 8
x2+1

singularity type
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x
(
x2 + 1

)
y′′ +

(
7x2 + 4

)
y′ + 8yx = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x
(
x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
7x2 + 4

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ 8
(

∞∑
n=0

anx
n+r

)
x = 0
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Which simplifies to

(2A)

(
∞∑
n=0

x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

7x1+n+ran(n+ r)
)

+
(

∞∑
n=0

4(n+ r) anxn+r−1

)
+
(

∞∑
n=0

8x1+n+ran

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r−1

∞∑
n =0

7x1+n+ran(n+ r) =
∞∑
n=2

7an−2(n+ r − 2)xn+r−1

∞∑
n =0

8x1+n+ran =
∞∑
n=2

8an−2x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r−1

)

+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

7an−2(n+ r − 2)xn+r−1

)

+
(

∞∑
n=0

4(n+ r) anxn+r−1

)
+
(

∞∑
n=2

8an−2x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + 4(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + 4ra0x−1+r = 0
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Or (
x−1+rr(−1 + r) + 4r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(3 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(3 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = −3

Since a0 6= 0 then the indicial equation becomes

r x−1+r(3 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x3

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−3

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r) + an(n+ r) (n+ r − 1)
+ 7an−2(n+ r − 2) + 4an(n+ r) + 8an−2 = 0

Solving for an from recursive equation (4) gives

an = −(2 + n+ r) an−2

n+ 3 + r
(4)

Which for the root r = 0 becomes

an = −(2 + n) an−2

n+ 3 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−4− r

5 + r

Which for the root r = 0 becomes
a2 = −4

5
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4−r
5+r

−4
5
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For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4−r
5+r

−4
5

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
r2 + 10r + 24
(5 + r) (7 + r)

Which for the root r = 0 becomes
a4 =

24
35

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4−r
5+r

−4
5

a3 0 0
a4

r2+10r+24
(5+r)(7+r)

24
35

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

−4−r
5+r

−4
5

a3 0 0
a4

r2+10r+24
(5+r)(7+r)

24
35

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− 4x2

5 + 24x4

35 +O
(
x6)

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 3. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a3(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a3

= 0

Therefore

lim
r→r2

0 = lim
r→−3

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−3
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Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)bn−2(n+ r − 2) (n− 3 + r) + bn(n+ r) (n+ r − 1)
+ 7bn−2(n+ r − 2) + 4(n+ r) bn + 8bn−2 = 0

Which for for the root r = −3 becomes

(4A)bn−2(n− 5) (n− 6) + bn(n− 3) (n− 4) + 7bn−2(n− 5) + 4(n− 3) bn + 8bn−2 = 0

Solving for bn from the recursive equation (4) gives

bn = −(2 + n+ r) bn−2

n+ 3 + r
(5)

Which for the root r = −3 becomes

bn = −(−1 + n) bn−2

n
(6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = −4 + r

5 + r

Which for the root r = −3 becomes

b2 = −1
2

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2

−4−r
5+r

−1
2

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−4−r
5+r

−1
2

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
r2 + 10r + 24
(5 + r) (7 + r)

Which for the root r = −3 becomes

b4 =
3
8

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−4−r
5+r

−1
2

b3 0 0
b4

r2+10r+24
(5+r)(7+r)

3
8

For n = 5, using the above recursive equation gives

b5 = 0
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−4−r
5+r

−1
2

b3 0 0
b4

r2+10r+24
(5+r)(7+r)

3
8

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = 1
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x2

2 + 3x4

8 +O(x6)
x3

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− 4x2

5 + 24x4

35 +O
(
x6))+

c2
(
1− x2

2 + 3x4

8 +O(x6)
)

x3

Hence the final solution is
y = yh

= c1

(
1− 4x2

5 + 24x4

35 +O
(
x6))+

c2
(
1− x2

2 + 3x4

8 +O(x6)
)

x3

Summary
The solution(s) found are the following

(1)y = c1

(
1− 4x2

5 + 24x4

35 +O
(
x6))+

c2
(
1− x2

2 + 3x4

8 +O(x6)
)

x3

Verification of solutions

y = c1

(
1− 4x2

5 + 24x4

35 +O
(
x6))+

c2
(
1− x2

2 + 3x4

8 +O(x6)
)

x3

Verified OK.
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14.41.1 Maple step by step solution

Let’s solve
x(x2 + 1) y′′ + (7x2 + 4) y′ + 8yx = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 8y
x2+1 −

(
7x2+4

)
y′

x(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
7x2+4

)
y′

x(x2+1) + 8y
x2+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 7x2+4
x(x2+1) , P3(x) = 8

x2+1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x(x2 + 1) y′′ + (7x2 + 4) y′ + 8yx = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+r+1
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◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k+r

◦ Convert xm · y′ to series expansion form = 0..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(3 + r)x−1+r + a1(1 + r) (4 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + r + 4) + ak−1(k + r + 3) (k + r + 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3, 0}

• Each term must be 0
a1(1 + r) (4 + r) = 0

• Each term in the series must be 0, giving the recursion relation
(k + r + 1) (ak+1(k + r + 4) + ak−1(k + r + 3)) = 0

• Shift index using k− >k + 1
(k + r + 2) (ak+2(k + 5 + r) + ak(k + r + 4)) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+4)

k+5+r

• Recursion relation for r = −3
ak+2 = −ak(k+1)

k+2
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• Solution for r = −3[
y =

∞∑
k=0

akx
k−3, ak+2 = −ak(k+1)

k+2 ,−2a1 = 0
]

• Recursion relation for r = 0
ak+2 = −ak(k+4)

k+5

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = −ak(k+4)

k+5 , 4a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−3
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = −ak(1+k)

k+2 ,−2a1 = 0, bk+2 = − bk(4+k)
5+k

, 4b1 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 32� �
Order:=6;
dsolve(x*(1+x^2)*diff(y(x),x$2)+(4+7*x^2)*diff(y(x),x)+8*x*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1

(
1− 4

5x
2 + 24

35x
4 +O

(
x6))+

c2
(
12− 6x2 + 9

2x
4 +O(x6)

)
x3
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3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 42� �
AsymptoticDSolveValue[x*(1+x^2)*y''[x]+(4+7*x^2)*y'[x]+8*x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1
x3 + 3x

8 − 1
2x

)
+ c2

(
24x4

35 − 4x2

5 + 1
)
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14.42 problem 44
14.42.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5252

Internal problem ID [1333]
Internal file name [OUTPUT/1334_Sunday_June_05_2022_02_10_47_AM_37706204/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 44.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x2 + 2
)
y′′ + x

(
x2 + 3

)
y′ − y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x4 + 2x2) y′′ + (x3 + 3x
)
y′ − y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x2 + 3
(x2 + 2)x

q(x) = − 1
x2 (x2 + 2)
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Table 612: Table p(x), q(x) singularites.

p(x) = x2+3
(x2+2)x

singularity type
x = 0 “regular”

x = −i
√
2 “regular”

x = i
√
2 “regular”

q(x) = − 1
x2(x2+2)

singularity type
x = 0 “regular”

x = −i
√
2 “regular”

x = i
√
2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−i

√
2, i

√
2,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 + 2
)
y′′ +

(
x3 + 3x

)
y′ − y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x2 + 2

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x3 + 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
−

(
∞∑
n=0

anx
n+r

)
= 0

5244



Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+r+2an(n+ r)
)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
∞∑

n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

xn+r+2an(n+ r) =
∞∑
n=2

an−2(n+ r − 2)xn+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+ r− 2) (n− 3 + r)xn+r

)
+
(

∞∑
n=0

2xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=2

an−2(n+ r− 2)xn+r

)
+
(

∞∑
n=0

3xn+ran(n+ r)
)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+ran(n+ r) (n+ r − 1) + 3xn+ran(n+ r)− anx
n+r = 0

When n = 0 the above becomes

2xra0r(−1 + r) + 3xra0r − a0x
r = 0

Or
(2xrr(−1 + r) + 3xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
2r2 + r − 1

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

2r2 + r − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = −1

Since a0 6= 0 then the indicial equation becomes(
2r2 + r − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n−1

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r) + 2an(n+ r) (n+ r − 1)
+ an−2(n+ r − 2) + 3an(n+ r)− an = 0

Solving for an from recursive equation (4) gives

an = −an−2(n2 + 2nr + r2 − 4n− 4r + 4)
2n2 + 4nr + 2r2 + n+ r − 1 (4)
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Which for the root r = 1
2 becomes

an = −an−2(−3 + 2n)2

8n2 + 12n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − r2

2r2 + 9r + 9

Which for the root r = 1
2 becomes

a2 = − 1
56

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − r2

2r2+9r+9 − 1
56

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − r2

2r2+9r+9 − 1
56

a3 0 0
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For n = 4, using the above recursive equation gives

a4 =
r2(r + 2)2

4r4 + 52r3 + 241r2 + 468r + 315

Which for the root r = 1
2 becomes

a4 =
25
9856

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − r2

2r2+9r+9 − 1
56

a3 0 0

a4
r2(r+2)2

4r4+52r3+241r2+468r+315
25

9856

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − r2

2r2+9r+9 − 1
56

a3 0 0

a4
r2(r+2)2

4r4+52r3+241r2+468r+315
25

9856

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− x2

56 + 25x4

9856 +O
(
x6))
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Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)bn−2(n+ r − 2) (n− 3 + r) + 2bn(n+ r) (n+ r − 1)
+ bn−2(n+ r − 2) + 3bn(n+ r)− bn = 0

Solving for bn from recursive equation (4) gives

bn = −bn−2(n2 + 2nr + r2 − 4n− 4r + 4)
2n2 + 4nr + 2r2 + n+ r − 1 (4)

Which for the root r = −1 becomes

bn = −bn−2(n− 3)2

2n2 − 3n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − r2

2r2 + 9r + 9
Which for the root r = −1 becomes

b2 = −1
2

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − r2

2r2+9r+9 −1
2
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For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − r2

2r2+9r+9 −1
2

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
r2(r + 2)2

4r4 + 52r3 + 241r2 + 468r + 315

Which for the root r = −1 becomes

b4 =
1
40

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − r2

2r2+9r+9 −1
2

b3 0 0

b4
r2(r+2)2

4r4+52r3+241r2+468r+315
1
40

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2 − r2

2r2+9r+9 −1
2

b3 0 0

b4
r2(r+2)2

4r4+52r3+241r2+468r+315
1
40

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) =
√
x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x2

2 + x4

40 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− x2

56 + 25x4

9856 +O
(
x6))+

c2
(
1− x2

2 + x4

40 +O(x6)
)

x

Hence the final solution is

y = yh

= c1
√
x

(
1− x2

56 + 25x4

9856 +O
(
x6))+

c2
(
1− x2

2 + x4

40 +O(x6)
)

x

Summary
The solution(s) found are the following

(1)y = c1
√
x

(
1− x2

56 + 25x4

9856 +O
(
x6))+

c2
(
1− x2

2 + x4

40 +O(x6)
)

x

Verification of solutions

y = c1
√
x

(
1− x2

56 + 25x4

9856 +O
(
x6))+

c2
(
1− x2

2 + x4

40 +O(x6)
)

x

Verified OK.

5251



14.42.1 Maple step by step solution

Let’s solve
x2(x2 + 2) y′′ + (x3 + 3x) y′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = y
x2(x2+2) −

(
x2+3

)
y′

x(x2+2)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
x2+3

)
y′

x(x2+2) − y
x2(x2+2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = x2+3
(x2+2)x , P3(x) = − 1

x2(x2+2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
2

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(x2 + 2) y′′ + x(x2 + 3) y′ − y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m
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◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + 2r)xr + a1(2 + r) (1 + 2r)x1+r +
(

∞∑
k=2

(
ak(k + r + 1) (2k + 2r − 1) + ak−2(k − 2 + r)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1, 12

}
• Each term must be 0

a1(2 + r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(k + r + 1) (2k + 2r − 1) + ak−2(k − 2 + r)2 = 0
• Shift index using k− >k + 2

ak+2(k + 3 + r) (2k + 3 + 2r) + ak(k + r)2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = − ak(k+r)2
(k+3+r)(2k+3+2r)

• Recursion relation for r = −1

ak+2 = − ak(k−1)2
(k+2)(2k+1)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = − ak(k−1)2

(k+2)(2k+1) , a1 = 0
]

5253



• Recursion relation for r = 1
2

ak+2 = − ak
(
k+ 1

2
)2(

k+ 7
2
)
(2k+4)

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − ak
(
k+ 1

2
)2(

k+ 7
2
)
(2k+4) , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − ak(k−1)2

(k+2)(2k+1) , a1 = 0, bk+2 = − bk
(
k+ 1

2
)2(

k+ 7
2
)
(2k+4) , b1 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
Order:=6;
dsolve(x^2*(2+x^2)*diff(y(x),x$2)+x*(3+x^2)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);� �

y(x) =
c2x

3
2
(
1− 1

56x
2 + 25

9856x
4 +O(x6)

)
+ c1

(
1− 1

2x
2 + 1

40x
4 +O(x6)

)
x

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 50� �
AsymptoticDSolveValue[x^2*(2+x^2)*y''[x]+x*(3+x^2)*y'[x]-y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x

(
25x4

9856 − x2

56 + 1
)
+

c2
(

x4

40 −
x2

2 + 1
)

x
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14.43 problem 45
14.43.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5265

Internal problem ID [1334]
Internal file name [OUTPUT/1335_Sunday_June_05_2022_02_10_50_AM_29886199/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 45.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2x2(x2 + 1
)
y′′ + x

(
8x2 + 3

)
y′ −

(
−4x2 + 3

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

2x4 + 2x2) y′′ + (8x3 + 3x
)
y′ +

(
4x2 − 3

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 8x2 + 3
2x (x2 + 1)

q(x) = 4x2 − 3
2x2 (x2 + 1)
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Table 614: Table p(x), q(x) singularites.

p(x) = 8x2+3
2x(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

q(x) = 4x2−3
2x2(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x2(x2 + 1
)
y′′ +

(
8x3 + 3x

)
y′ +

(
4x2 − 3

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2x2(x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
8x3 + 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
4x2 − 3

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

8xn+r+2an(n+ r)
)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=0

4xn+r+2an

)
+

∞∑
n =0

(
−3anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

2an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

8xn+r+2an(n+ r) =
∞∑
n=2

8an−2(n+ r − 2)xn+r

∞∑
n =0

4xn+r+2an =
∞∑
n=2

4an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

2an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

8an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=2

4an−2x
n+r

)
+

∞∑
n =0

(
−3anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+ran(n+ r) (n+ r − 1) + 3xn+ran(n+ r)− 3anxn+r = 0
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When n = 0 the above becomes

2xra0r(−1 + r) + 3xra0r − 3a0xr = 0

Or
(2xrr(−1 + r) + 3xrr − 3xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
2r2 + r − 3

)
xr = 0

Since the above is true for all x then the indicial equation becomes

2r2 + r − 3 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1

r2 = −3
2

Since a0 6= 0 then the indicial equation becomes(
2r2 + r − 3

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 5
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+1

y2(x) =
∞∑
n=0

bnx
n− 3

2

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)2an−2(n+ r − 2) (n− 3 + r) + 2an(n+ r) (n+ r − 1)
+ 8an−2(n+ r − 2) + 3an(n+ r) + 4an−2 − 3an = 0

Solving for an from recursive equation (4) gives

an = −2(n+ r) an−2

2n+ 2r + 3 (4)

Which for the root r = 1 becomes

an = −2(n+ 1) an−2

2n+ 5 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−4− 2r
7 + 2r

Which for the root r = 1 becomes
a2 = −2

3
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4−2r
7+2r −2

3

For n = 3, using the above recursive equation gives

a3 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4−2r
7+2r −2

3

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
4r2 + 24r + 32
4r2 + 36r + 77

Which for the root r = 1 becomes
a4 =

20
39

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4−2r
7+2r −2

3

a3 0 0
a4

4r2+24r+32
4r2+36r+77

20
39

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4−2r
7+2r −2

3

a3 0 0
a4

4r2+24r+32
4r2+36r+77

20
39

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− 2x2

3 + 20x4

39 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)2bn−2(n+ r − 2) (n− 3 + r) + 2bn(n+ r) (n+ r − 1)
+ 8bn−2(n+ r − 2) + 3bn(n+ r) + 4bn−2 − 3bn = 0

Solving for bn from recursive equation (4) gives

bn = −2(n+ r) bn−2

2n+ 2r + 3 (4)

Which for the root r = −3
2 becomes

bn = −(2n− 3) bn−2

2n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −3

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 =
−4− 2r
7 + 2r

Which for the root r = −3
2 becomes

b2 = −1
4
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−4−2r
7+2r −1

4

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−4−2r
7+2r −1

4

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
4r2 + 24r + 32
4r2 + 36r + 77

Which for the root r = −3
2 becomes

b4 =
5
32

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−4−2r
7+2r −1

4

b3 0 0
b4

4r2+24r+32
4r2+36r+77

5
32
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For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−4−2r
7+2r −1

4

b3 0 0
b4

4r2+24r+32
4r2+36r+77

5
32

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x2

4 + 5x4

32 +O(x6)
x

3
2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− 2x2

3 + 20x4

39 +O
(
x6))+

c2
(
1− x2

4 + 5x4

32 +O(x6)
)

x
3
2

Hence the final solution is

y = yh

= c1x

(
1− 2x2

3 + 20x4

39 +O
(
x6))+

c2
(
1− x2

4 + 5x4

32 +O(x6)
)

x
3
2

Summary
The solution(s) found are the following

(1)y = c1x

(
1− 2x2

3 + 20x4

39 +O
(
x6))+

c2
(
1− x2

4 + 5x4

32 +O(x6)
)

x
3
2
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Verification of solutions

y = c1x

(
1− 2x2

3 + 20x4

39 +O
(
x6))+

c2
(
1− x2

4 + 5x4

32 +O(x6)
)

x
3
2

Verified OK.

14.43.1 Maple step by step solution

Let’s solve
2x2(x2 + 1) y′′ + (8x3 + 3x) y′ + (4x2 − 3) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
4x2−3

)
y

2x2(x2+1) −
(
8x2+3

)
y′

2x(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
8x2+3

)
y′

2x(x2+1) +
(
4x2−3

)
y

2x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 8x2+3
2x(x2+1) , P3(x) = 4x2−3

2x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −3
2

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
2x2(x2 + 1) y′′ + x(8x2 + 3) y′ + (4x2 − 3) y = 0

• Assume series solution for y
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y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(2r + 3) (−1 + r)xr + a1(5 + 2r) r x1+r +
(

∞∑
k=2

(ak(2k + 2r + 3) (k + r − 1) + 2ak−2(k + r) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2r + 3) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
1,−3

2

}
• Each term must be 0

a1(5 + 2r) r = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation
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2
((
k + r + 3

2

)
ak + ak−2(k + r)

)
(k + r − 1) = 0

• Shift index using k− >k + 2
2
((
k + 7

2 + r
)
ak+2 + ak(k + r + 2)

)
(k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2ak(k+r+2)

2k+7+2r

• Recursion relation for r = 1
ak+2 = −2ak(k+3)

2k+9

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = −2ak(k+3)

2k+9 , a1 = 0
]

• Recursion relation for r = −3
2

ak+2 = −2ak
(
k+ 1

2
)

2k+4

• Solution for r = −3
2[

y =
∞∑
k=0

akx
k− 3

2 , ak+2 = −2ak
(
k+ 1

2
)

2k+4 , a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
1+k

)
+
(

∞∑
k=0

bkx
k− 3

2

)
, ak+2 = −2ak(k+3)

2k+9 , a1 = 0, bk+2 = −2bk
(
k+ 1

2
)

2k+4 , b1 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 33� �
Order:=6;
dsolve(2*x^2*(1+x^2)*diff(y(x),x$2)+x*(3+8*x^2)*diff(y(x),x)-(3-4*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1
(
1− 1

4x
2 + 5

32x
4 +O(x6)

)
x

3
2

+ c2x

(
1− 2

3x
2 + 20

39x
4 +O

(
x6))
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3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 48� �
AsymptoticDSolveValue[2*x^2*(1+x^2)*y''[x]+x*(3+8*x^2)*y'[x]-(3-4*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x

(
20x4

39 − 2x2

3 + 1
)
+

c2
(

5x4

32 − x2

4 + 1
)

x3/2
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14.44 problem 46
14.44.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5279

Internal problem ID [1335]
Internal file name [OUTPUT/1336_Sunday_June_05_2022_02_10_53_AM_36193417/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 46.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

9x2y′′ + 3x
(
x2 + 3

)
y′ −

(
−5x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

9x2y′′ +
(
3x3 + 9x

)
y′ +

(
5x2 − 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x2 + 3
3x

q(x) = 5x2 − 1
9x2
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Table 616: Table p(x), q(x) singularites.

p(x) = x2+3
3x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = 5x2−1
9x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

9x2y′′ +
(
3x3 + 9x

)
y′ +

(
5x2 − 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
9x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
3x3 + 9x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
5x2 − 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3xn+r+2an(n+ r)
)

+
(

∞∑
n=0

9xn+ran(n+ r)
)

+
(

∞∑
n=0

5xn+r+2an

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

3xn+r+2an(n+ r) =
∞∑
n=2

3an−2(n+ r − 2)xn+r

∞∑
n =0

5xn+r+2an =
∞∑
n=2

5an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

3an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=0

9xn+ran(n+ r)
)

+
(

∞∑
n=2

5an−2x
n+r

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

9xn+ran(n+ r) (n+ r − 1) + 9xn+ran(n+ r)− anx
n+r = 0

When n = 0 the above becomes

9xra0r(−1 + r) + 9xra0r − a0x
r = 0

Or
(9xrr(−1 + r) + 9xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
9r2 − 1

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

9r2 − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 = −1
3

Since a0 6= 0 then the indicial equation becomes(
9r2 − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) =
∞∑
n=0

bnx
n− 1

3

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)9an(n+ r) (n+ r − 1) + 3an−2(n+ r − 2) + 9an(n+ r) + 5an−2 − an = 0

Solving for an from recursive equation (4) gives

an = − an−2

3n+ 3r + 1 (4)
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Which for the root r = 1
3 becomes

an = − an−2

3n+ 2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
7 + 3r

Which for the root r = 1
3 becomes

a2 = −1
8

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

7+3r −1
8

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

7+3r −1
8

a3 0 0
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For n = 4, using the above recursive equation gives

a4 =
1

9r2 + 60r + 91

Which for the root r = 1
3 becomes

a4 =
1
112

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

7+3r −1
8

a3 0 0
a4

1
9r2+60r+91

1
112

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

7+3r −1
8

a3 0 0
a4

1
9r2+60r+91

1
112

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
1− x2

8 + x4

112 +O
(
x6))
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Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)9bn(n+ r) (n+ r − 1) + 3bn−2(n+ r − 2) + 9bn(n+ r) + 5bn−2 − bn = 0

Solving for bn from recursive equation (4) gives

bn = − bn−2

3n+ 3r + 1 (4)

Which for the root r = −1
3 becomes

bn = −bn−2

3n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 1
7 + 3r

Which for the root r = −1
3 becomes

b2 = −1
6

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

7+3r −1
6
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For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

7+3r −1
6

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
1

9r2 + 60r + 91

Which for the root r = −1
3 becomes

b4 =
1
72

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 1

7+3r −1
6

b3 0 0
b4

1
9r2+60r+91

1
72

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2 − 1

7+3r −1
6

b3 0 0
b4

1
9r2+60r+91

1
72

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x
1
3
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x2

6 + x4

72 +O(x6)
x

1
3

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3

(
1− x2

8 + x4

112 +O
(
x6))+

c2
(
1− x2

6 + x4

72 +O(x6)
)

x
1
3

Hence the final solution is

y = yh

= c1x
1
3

(
1− x2

8 + x4

112 +O
(
x6))+

c2
(
1− x2

6 + x4

72 +O(x6)
)

x
1
3

Summary
The solution(s) found are the following

(1)y = c1x
1
3

(
1− x2

8 + x4

112 +O
(
x6))+

c2
(
1− x2

6 + x4

72 +O(x6)
)

x
1
3

Verification of solutions

y = c1x
1
3

(
1− x2

8 + x4

112 +O
(
x6))+

c2
(
1− x2

6 + x4

72 +O(x6)
)

x
1
3

Verified OK.
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14.44.1 Maple step by step solution

Let’s solve
9x2y′′ + (3x3 + 9x) y′ + (5x2 − 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2+3

)
y′

3x −
(
5x2−1

)
y

9x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
x2+3

)
y′

3x +
(
5x2−1

)
y

9x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x2+3
3x , P3(x) = 5x2−1

9x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
9x2y′′ + 3x(x2 + 3) y′ + (5x2 − 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 3r) (−1 + 3r)xr + a1(4 + 3r) (2 + 3r)x1+r +
(

∞∑
k=2

(ak(3k + 3r + 1) (3k + 3r − 1) + ak−2(3k + 3r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 3r) (−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

3 ,
1
3

}
• Each term must be 0

a1(4 + 3r) (2 + 3r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

(3k + 3r − 1) (3akk + 3akr + ak + ak−2) = 0
• Shift index using k− >k + 2

(3k + 3r + 5) (3ak+2(k + 2) + 3ak+2r + ak+2 + ak) = 0
• Recursion relation that defines series solution to ODE

ak+2 = − ak
3k+7+3r

• Recursion relation for r = −1
3

ak+2 = − ak
3k+6
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• Solution for r = −1
3[

y =
∞∑
k=0

akx
k− 1

3 , ak+2 = − ak
3k+6 , a1 = 0

]
• Recursion relation for r = 1

3

ak+2 = − ak
3k+8

• Solution for r = 1
3[

y =
∞∑
k=0

akx
k+ 1

3 , ak+2 = − ak
3k+8 , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k− 1

3

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 = − ak

3k+6 , a1 = 0, bk+2 = − bk
3k+8 , b1 = 0

]

5281



Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 35� �
Order:=6;
dsolve(9*x^2*diff(y(x),x$2)+3*x*(3+x^2)*diff(y(x),x)-(1-5*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c2x

2
3
(
1− 1

8x
2 + 1

112x
4 +O(x6)

)
+ c1

(
1− 1

6x
2 + 1

72x
4 +O(x6)

)
x

1
3
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 52� �
AsymptoticDSolveValue[9*x^2*y''[x]+3*x*(3+x^2)*y'[x]-(1-5*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
3
√
x

(
x4

112 − x2

8 + 1
)
+

c2
(

x4

72 −
x2

6 + 1
)

3
√
x
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14.45 problem 47
14.45.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5293

Internal problem ID [1336]
Internal file name [OUTPUT/1337_Sunday_June_05_2022_02_10_55_AM_9283402/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 47.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

6x2y′′ + x
(
6x2 + 1

)
y′ +

(
9x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

6x2y′′ +
(
6x3 + x

)
y′ +

(
9x2 + 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 6x2 + 1
6x

q(x) = 9x2 + 1
6x2
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Table 618: Table p(x), q(x) singularites.

p(x) = 6x2+1
6x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = 9x2+1
6x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

6x2y′′ +
(
6x3 + x

)
y′ +

(
9x2 + 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
6x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
6x3 + x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
9x2 + 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

6xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

6xn+r+2an(n+ r)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

9xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

6xn+r+2an(n+ r) =
∞∑
n=2

6an−2(n+ r − 2)xn+r

∞∑
n =0

9xn+r+2an =
∞∑
n=2

9an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

6xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

6an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

9an−2x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

6xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

6xra0r(−1 + r) + xra0r + a0x
r = 0

Or
(6xrr(−1 + r) + xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
6r2 − 5r + 1

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

6r2 − 5r + 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 =
1
3

Since a0 6= 0 then the indicial equation becomes(
6r2 − 5r + 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
6 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n+ 1

3

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)6an(n+ r) (n+ r − 1) + 6an−2(n+ r − 2) + an(n+ r) + 9an−2 + an = 0

Solving for an from recursive equation (4) gives

an = − 3an−2

3n+ 3r − 1 (4)
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Which for the root r = 1
2 becomes

an = − 6an−2

6n+ 1 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 3
5 + 3r

Which for the root r = 1
2 becomes

a2 = − 6
13

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 3

5+3r − 6
13

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 3

5+3r − 6
13

a3 0 0
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For n = 4, using the above recursive equation gives

a4 =
9

9r2 + 48r + 55

Which for the root r = 1
2 becomes

a4 =
36
325

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 3

5+3r − 6
13

a3 0 0
a4

9
9r2+48r+55

36
325

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 3

5+3r − 6
13

a3 0 0
a4

9
9r2+48r+55

36
325

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− 6x2

13 + 36x4

325 +O
(
x6))
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Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)6bn(n+ r) (n+ r − 1) + 6bn−2(n+ r − 2) + bn(n+ r) + 9bn−2 + bn = 0

Solving for bn from recursive equation (4) gives

bn = − 3bn−2

3n+ 3r − 1 (4)

Which for the root r = 1
3 becomes

bn = −bn−2

n
(5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − 3
5 + 3r

Which for the root r = 1
3 becomes

b2 = −1
2

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 3

5+3r −1
2
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For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 3

5+3r −1
2

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
9

9r2 + 48r + 55

Which for the root r = 1
3 becomes

b4 =
1
8

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − 3

5+3r −1
2

b3 0 0
b4

9
9r2+48r+55

1
8

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2 − 3

5+3r −1
2

b3 0 0
b4

9
9r2+48r+55

1
8

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) =
√
x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x
1
3

(
1− x2

2 + x4

8 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− 6x2

13 + 36x4

325 +O
(
x6))+ c2x

1
3

(
1− x2

2 + x4

8 +O
(
x6))

Hence the final solution is

y = yh

= c1
√
x

(
1− 6x2

13 + 36x4

325 +O
(
x6))+ c2x

1
3

(
1− x2

2 + x4

8 +O
(
x6))

Summary
The solution(s) found are the following

(1)y = c1
√
x

(
1− 6x2

13 + 36x4

325 +O
(
x6))+ c2x

1
3

(
1− x2

2 + x4

8 +O
(
x6))

Verification of solutions

y = c1
√
x

(
1− 6x2

13 + 36x4

325 +O
(
x6))+ c2x

1
3

(
1− x2

2 + x4

8 +O
(
x6))

Verified OK.
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14.45.1 Maple step by step solution

Let’s solve
6x2y′′ + (6x3 + x) y′ + (9x2 + 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
9x2+1

)
y

6x2 −
(
6x2+1

)
y′

6x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
6x2+1

)
y′

6x +
(
9x2+1

)
y

6x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 6x2+1
6x , P3(x) = 9x2+1

6x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
6

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
6

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
6x2y′′ + x(6x2 + 1) y′ + (9x2 + 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 3r) (−1 + 2r)xr + a1(2 + 3r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(3k + 3r − 1) (2k + 2r − 1) + 3ak−2(2k + 2r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 3r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

1
3

}
• Each term must be 0

a1(2 + 3r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

6
(
k + r − 1

2

) ((
k + r − 1

3

)
ak + ak−2

)
= 0

• Shift index using k− >k + 2
6
(
k + 3

2 + r
) ((

k + 5
3 + r

)
ak+2 + ak

)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = − 3ak

3k+5+3r

• Recursion relation for r = 1
2

ak+2 = − 3ak
3k+ 13

2
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• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − 3ak
3k+ 13

2
, a1 = 0

]
• Recursion relation for r = 1

3

ak+2 = − 3ak
3k+6

• Solution for r = 1
3[

y =
∞∑
k=0

akx
k+ 1

3 , ak+2 = − 3ak
3k+6 , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 = − 3ak

3k+ 13
2
, a1 = 0, bk+2 = − 3bk

3k+6 , b1 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 35� �
Order:=6;
dsolve(6*x^2*diff(y(x),x$2)+x*(1+6*x^2)*diff(y(x),x)+(1+9*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
1
3

(
1− 1

2x
2 + 1

8x
4 +O

(
x6))+ c2

√
x

(
1− 6

13x
2 + 36

325x
4 +O

(
x6))
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 52� �
AsymptoticDSolveValue[6*x^2*y''[x]+x*(1+6*x^2)*y'[x]+(1+9*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x

(
36x4

325 − 6x2

13 + 1
)
+ c2

3
√
x

(
x4

8 − x2

2 + 1
)
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14.46 problem 48
14.46.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5307

Internal problem ID [1337]
Internal file name [OUTPUT/1338_Sunday_June_05_2022_02_10_58_AM_50909819/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 48.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

x2(x2 + 8
)
y′′ + 7x

(
x2 + 2

)
y′ −

(
−9x2 + 2

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x4 + 8x2) y′′ + (7x3 + 14x
)
y′ +

(
9x2 − 2

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 7x2 + 14
x (x2 + 8)

q(x) = 9x2 − 2
x2 (x2 + 8)
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Table 620: Table p(x), q(x) singularites.

p(x) = 7x2+14
x(x2+8)

singularity type
x = 0 “regular”

x = −2i
√
2 “regular”

x = 2i
√
2 “regular”

q(x) = 9x2−2
x2(x2+8)

singularity type
x = 0 “regular”

x = −2i
√
2 “regular”

x = 2i
√
2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−2i

√
2, 2i

√
2,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 + 8
)
y′′ +

(
7x3 + 14x

)
y′ +

(
9x2 − 2

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x2 + 8

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
7x3 + 14x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
9x2 − 2

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

8xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

7xn+r+2an(n+ r)
)

+
(

∞∑
n=0

14xn+ran(n+ r)
)

+
(

∞∑
n=0

9xn+r+2an

)
+

∞∑
n =0

(
−2anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

7xn+r+2an(n+ r) =
∞∑
n=2

7an−2(n+ r − 2)xn+r

∞∑
n =0

9xn+r+2an =
∞∑
n=2

9an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+r−2) (n−3+r)xn+r

)
+
(

∞∑
n=0

8xn+ran(n+r) (n+r−1)
)

+
(

∞∑
n=2

7an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=0

14xn+ran(n+ r)
)

+
(

∞∑
n=2

9an−2x
n+r

)
+

∞∑
n =0

(
−2anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

8xn+ran(n+ r) (n+ r − 1) + 14xn+ran(n+ r)− 2anxn+r = 0
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When n = 0 the above becomes

8xra0r(−1 + r) + 14xra0r − 2a0xr = 0

Or
(8xrr(−1 + r) + 14xrr − 2xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
8r2 + 6r − 2

)
xr = 0

Since the above is true for all x then the indicial equation becomes

8r2 + 6r − 2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
4

r2 = −1

Since a0 6= 0 then the indicial equation becomes(
8r2 + 6r − 2

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 5
4 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

4

y2(x) =
∞∑
n=0

bnx
n−1

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r) + 8an(n+ r) (n+ r − 1)
+ 7an−2(n+ r − 2) + 14an(n+ r) + 9an−2 − 2an = 0

Solving for an from recursive equation (4) gives

an = −(1 + n+ r) an−2

2 (4n+ 4r − 1) (4)

Which for the root r = 1
4 becomes

an = −(5 + 4n) an−2

32n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

4 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−3− r

14 + 8r

Which for the root r = 1
4 becomes

a2 = −13
64

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−3−r
14+8r −13

64

For n = 3, using the above recursive equation gives

a3 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−3−r
14+8r −13

64

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
r2 + 8r + 15

64r2 + 352r + 420
Which for the root r = 1

4 becomes

a4 =
273
8192

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−3−r
14+8r −13

64

a3 0 0
a4

r2+8r+15
64r2+352r+420

273
8192

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−3−r
14+8r −13

64

a3 0 0
a4

r2+8r+15
64r2+352r+420

273
8192

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) = x
1
4
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
4

(
1− 13x2

64 + 273x4

8192 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)bn−2(n+ r − 2) (n− 3 + r) + 8bn(n+ r) (n+ r − 1)
+ 7bn−2(n+ r − 2) + 14bn(n+ r) + 9bn−2 − 2bn = 0

Solving for bn from recursive equation (4) gives

bn = −(1 + n+ r) bn−2

2 (4n+ 4r − 1) (4)

Which for the root r = −1 becomes

bn = − nbn−2

8n− 10 (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 =
−3− r

14 + 8r

Which for the root r = −1 becomes

b2 = −1
3
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−3−r
14+8r −1

3

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−3−r
14+8r −1

3

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
r2 + 8r + 15

64r2 + 352r + 420

Which for the root r = −1 becomes

b4 =
2
33

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−3−r
14+8r −1

3

b3 0 0
b4

r2+8r+15
64r2+352r+420

2
33

5305



For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−3−r
14+8r −1

3

b3 0 0
b4

r2+8r+15
64r2+352r+420

2
33

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x
1
4
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− x2

3 + 2x4

33 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
4

(
1− 13x2

64 + 273x4

8192 +O
(
x6))+

c2
(
1− x2

3 + 2x4

33 +O(x6)
)

x

Hence the final solution is

y = yh

= c1x
1
4

(
1− 13x2

64 + 273x4

8192 +O
(
x6))+

c2
(
1− x2

3 + 2x4

33 +O(x6)
)

x

Summary
The solution(s) found are the following

(1)y = c1x
1
4

(
1− 13x2

64 + 273x4

8192 +O
(
x6))+

c2
(
1− x2

3 + 2x4

33 +O(x6)
)

x
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Verification of solutions

y = c1x
1
4

(
1− 13x2

64 + 273x4

8192 +O
(
x6))+

c2
(
1− x2

3 + 2x4

33 +O(x6)
)

x

Verified OK.

14.46.1 Maple step by step solution

Let’s solve
x2(x2 + 8) y′′ + (7x3 + 14x) y′ + (9x2 − 2) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
9x2−2

)
y

x2(x2+8) −
7
(
x2+2

)
y′

x(x2+8)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 7
(
x2+2

)
y′

x(x2+8) +
(
9x2−2

)
y

x2(x2+8) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 7
(
x2+2

)
x(x2+8) , P3(x) = 9x2−2

x2(x2+8)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 7
4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(x2 + 8) y′′ + 7x(x2 + 2) y′ + (9x2 − 2) y = 0

• Assume series solution for y
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y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

2a0(1 + r) (−1 + 4r)xr + 2a1(2 + r) (3 + 4r)x1+r +
(

∞∑
k=2

(
2ak(k + r + 1) (4k + 4r − 1) + ak−2(k + r + 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2(1 + r) (−1 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1, 14

}
• Each term must be 0

2a1(2 + r) (3 + 4r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation
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8
(

ak−2(k+r+1)
8 + ak

(
k + r − 1

4

))
(k + r + 1) = 0

• Shift index using k− >k + 2

8
(

ak(k+r+3)
8 + ak+2

(
k + 7

4 + r
))

(k + r + 3) = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak(k+r+3)

2(4k+7+4r)

• Recursion relation for r = −1
ak+2 = −ak(k+2)

2(4k+3)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = −ak(k+2)

2(4k+3) , a1 = 0
]

• Recursion relation for r = 1
4

ak+2 = −ak
(
k+ 13

4
)

2(4k+8)

• Solution for r = 1
4[

y =
∞∑
k=0

akx
k+ 1

4 , ak+2 = −ak
(
k+ 13

4
)

2(4k+8) , a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+ 1

4

)
, ak+2 = −ak(k+2)

2(4k+3) , a1 = 0, bk+2 = − bk
(
k+ 13

4
)

2(4k+8) , b1 = 0
]

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
Order:=6;
dsolve(x^2*(8+x^2)*diff(y(x),x$2)+7*x*(2+x^2)*diff(y(x),x)-(2-9*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c2x

5
4
(
1− 13

64x
2 + 273

8192x
4 +O(x6)

)
+ c1

(
1− 1

3x
2 + 2

33x
4 +O(x6)

)
x
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 50� �
AsymptoticDSolveValue[x^2*(8+x^2)*y''[x]+7*x*(2+x^2)*y'[x]-(2-9*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
4
√
x

(
273x4

8192 − 13x2

64 + 1
)
+

c2
(

2x4

33 − x2

3 + 1
)

x
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14.47 problem 49
14.47.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5320

Internal problem ID [1338]
Internal file name [OUTPUT/1339_Sunday_June_05_2022_02_11_52_AM_625352/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 49.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

9x2(x2 + 1
)
y′′ + 3x

(
13x2 + 3

)
y′ −

(
−25x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

9x4 + 9x2) y′′ + (39x3 + 9x
)
y′ +

(
25x2 − 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 13x2 + 3
3x (x2 + 1)

q(x) = 25x2 − 1
9x2 (x2 + 1)
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Table 622: Table p(x), q(x) singularites.

p(x) = 13x2+3
3x(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

q(x) = 25x2−1
9x2(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

9x2(x2 + 1
)
y′′ +

(
39x3 + 9x

)
y′ +

(
25x2 − 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
9x2(x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
39x3 + 9x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
25x2 − 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

9xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

39xn+r+2an(n+ r)
)

+
(

∞∑
n=0

9xn+ran(n+ r)
)

+
(

∞∑
n=0

25xn+r+2an

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

9xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

9an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

39xn+r+2an(n+ r) =
∞∑
n=2

39an−2(n+ r − 2)xn+r

∞∑
n =0

25xn+r+2an =
∞∑
n=2

25an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

9an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

39an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=0

9xn+ran(n+ r)
)

+
(

∞∑
n=2

25an−2x
n+r

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

9xn+ran(n+ r) (n+ r − 1) + 9xn+ran(n+ r)− anx
n+r = 0
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When n = 0 the above becomes

9xra0r(−1 + r) + 9xra0r − a0x
r = 0

Or
(9xrr(−1 + r) + 9xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
9r2 − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

9r2 − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 = −1
3

Since a0 6= 0 then the indicial equation becomes(
9r2 − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) =
∞∑
n=0

bnx
n− 1

3

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)9an−2(n+ r − 2) (n− 3 + r) + 9an(n+ r) (n+ r − 1)
+ 39an−2(n+ r − 2) + 9an(n+ r) + 25an−2 − an = 0

Solving for an from recursive equation (4) gives

an = −(−1 + 3n+ 3r) an−2

3n+ 3r + 1 (4)

Which for the root r = 1
3 becomes

an = −3nan−2

3n+ 2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−5− 3r
7 + 3r

Which for the root r = 1
3 becomes

a2 = −3
4

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−5−3r
7+3r −3

4

For n = 3, using the above recursive equation gives

a3 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−5−3r
7+3r −3

4

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
9r2 + 48r + 55
9r2 + 60r + 91

Which for the root r = 1
3 becomes

a4 =
9
14

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−5−3r
7+3r −3

4

a3 0 0
a4

9r2+48r+55
9r2+60r+91

9
14

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−5−3r
7+3r −3

4

a3 0 0
a4

9r2+48r+55
9r2+60r+91

9
14

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
1− 3x2

4 + 9x4

14 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)9bn−2(n+ r − 2) (n− 3 + r) + 9bn(n+ r) (n+ r − 1)
+ 39bn−2(n+ r − 2) + 9bn(n+ r) + 25bn−2 − bn = 0

Solving for bn from recursive equation (4) gives

bn = −(−1 + 3n+ 3r) bn−2

3n+ 3r + 1 (4)

Which for the root r = −1
3 becomes

bn = −(−2 + 3n) bn−2

3n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 =
−5− 3r
7 + 3r

Which for the root r = −1
3 becomes

b2 = −2
3
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−5−3r
7+3r −2

3

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−5−3r
7+3r −2

3

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
9r2 + 48r + 55
9r2 + 60r + 91

Which for the root r = −1
3 becomes

b4 =
5
9

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−5−3r
7+3r −2

3

b3 0 0
b4

9r2+48r+55
9r2+60r+91

5
9
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For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−5−3r
7+3r −2

3

b3 0 0
b4

9r2+48r+55
9r2+60r+91

5
9

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x
1
3
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− 2x2

3 + 5x4

9 +O(x6)
x

1
3

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3

(
1− 3x2

4 + 9x4

14 +O
(
x6))+

c2
(
1− 2x2

3 + 5x4

9 +O(x6)
)

x
1
3

Hence the final solution is

y = yh

= c1x
1
3

(
1− 3x2

4 + 9x4

14 +O
(
x6))+

c2
(
1− 2x2

3 + 5x4

9 +O(x6)
)

x
1
3

Summary
The solution(s) found are the following

(1)y = c1x
1
3

(
1− 3x2

4 + 9x4

14 +O
(
x6))+

c2
(
1− 2x2

3 + 5x4

9 +O(x6)
)

x
1
3
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Verification of solutions

y = c1x
1
3

(
1− 3x2

4 + 9x4

14 +O
(
x6))+

c2
(
1− 2x2

3 + 5x4

9 +O(x6)
)

x
1
3

Verified OK.

14.47.1 Maple step by step solution

Let’s solve
9x2(x2 + 1) y′′ + (39x3 + 9x) y′ + (25x2 − 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
25x2−1

)
y

9x2(x2+1) −
(
13x2+3

)
y′

3x(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
13x2+3

)
y′

3x(x2+1) +
(
25x2−1

)
y

9x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 13x2+3
3x(x2+1) , P3(x) = 25x2−1

9x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
9

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
9x2(x2 + 1) y′′ + 3x(13x2 + 3) y′ + (25x2 − 1) y = 0

• Assume series solution for y

5320



y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + 3r) (−1 + 3r)xr + a1(4 + 3r) (2 + 3r)x1+r +
(

∞∑
k=2

(
ak(3k + 3r + 1) (3k + 3r − 1) + ak−2(3k + 3r − 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 3r) (−1 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

3 ,
1
3

}
• Each term must be 0

a1(4 + 3r) (2 + 3r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation
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9
((
k + r − 1

3

)
ak−2 + ak

(
k + r + 1

3

)) (
k + r − 1

3

)
= 0

• Shift index using k− >k + 2
9
((
k + 5

3 + r
)
ak + ak+2

(
k + 7

3 + r
)) (

k + 5
3 + r

)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = − (3k+3r+5)ak

3k+7+3r

• Recursion relation for r = −1
3

ak+2 = − (3k+4)ak
3k+6

• Solution for r = −1
3[

y =
∞∑
k=0

akx
k− 1

3 , ak+2 = − (3k+4)ak
3k+6 , a1 = 0

]
• Recursion relation for r = 1

3

ak+2 = − (3k+6)ak
3k+8

• Solution for r = 1
3[

y =
∞∑
k=0

akx
k+ 1

3 , ak+2 = − (3k+6)ak
3k+8 , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k− 1

3

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 = − (3k+4)ak

3k+6 , a1 = 0, bk+2 = − (3k+6)bk
3k+8 , b1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
Order:=6;
dsolve(9*x^2*(1+x^2)*diff(y(x),x$2)+3*x*(3+13*x^2)*diff(y(x),x)-(1-25*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c2x

2
3
(
1− 3

4x
2 + 9

14x
4 +O(x6)

)
+ c1

(
1− 2

3x
2 + 5

9x
4 +O(x6)

)
x

1
3
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 52� �
AsymptoticDSolveValue[9*x^2*(1+x^2)*y''[x]+3*x*(3+13*x^2)*y'[x]-(1-25*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
3
√
x

(
9x4

14 − 3x2

4 + 1
)
+

c2
(

5x4

9 − 2x2

3 + 1
)

3
√
x
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14.48 problem 50
14.48.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5335

Internal problem ID [1339]
Internal file name [OUTPUT/1340_Sunday_June_05_2022_02_11_55_AM_4748891/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 50.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2(x2 + 1
)
y′′ + 4x

(
6x2 + 1

)
y′ −

(
−25x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

4x4 + 4x2) y′′ + (24x3 + 4x
)
y′ +

(
25x2 − 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 6x2 + 1
x (x2 + 1)

q(x) = 25x2 − 1
4x2 (x2 + 1)
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Table 624: Table p(x), q(x) singularites.

p(x) = 6x2+1
x(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

q(x) = 25x2−1
4x2(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2(x2 + 1
)
y′′ +

(
24x3 + 4x

)
y′ +

(
25x2 − 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2(x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
24x3 + 4x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
25x2 − 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

24xn+r+2an(n+ r)
)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
(

∞∑
n=0

25xn+r+2an

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

4an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

24xn+r+2an(n+ r) =
∞∑
n=2

24an−2(n+ r − 2)xn+r

∞∑
n =0

25xn+r+2an =
∞∑
n=2

25an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

4an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

24an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
(

∞∑
n=2

25an−2x
n+r

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + 4xn+ran(n+ r)− anx
n+r = 0
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When n = 0 the above becomes

4xra0r(−1 + r) + 4xra0r − a0x
r = 0

Or
(4xrr(−1 + r) + 4xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

4r2 − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = −1
2

Since a0 6= 0 then the indicial equation becomes(
4r2 − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
√
x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

√
x

Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n− 1

2

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)4an−2(n+ r − 2) (n− 3 + r) + 4an(n+ r) (n+ r − 1)
+ 24an−2(n+ r − 2) + 4an(n+ r) + 25an−2 − an = 0

Solving for an from recursive equation (4) gives

an = −(1 + 2n+ 2r) an−2

2n+ 2r − 1 (4)

Which for the root r = 1
2 becomes

an = −(1 + n) an−2

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−5− 2r
3 + 2r

Which for the root r = 1
2 becomes

a2 = −3
2

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−5−2r
3+2r −3

2
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For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−5−2r
3+2r −3

2

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
4r2 + 28r + 45
4r2 + 20r + 21

Which for the root r = 1
2 becomes

a4 =
15
8

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−5−2r
3+2r −3

2

a3 0 0
a4

4r2+28r+45
4r2+20r+21

15
8

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

−5−2r
3+2r −3

2

a3 0 0
a4

4r2+28r+45
4r2+20r+21

15
8

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− 3x2

2 + 15x4

8 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= 0

Therefore

lim
r→r2

0 = lim
r→− 1

2

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n− 1

2
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Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)4bn−2(n+ r − 2) (n− 3 + r) + 4bn(n+ r) (n+ r − 1)
+ 24bn−2(n+ r − 2) + 4bn(n+ r) + 25bn−2 − bn = 0

Which for for the root r = −1
2 becomes

(4A)4bn−2

(
n− 5

2

)(
n− 7

2

)
+ 4bn

(
n− 1

2

)(
n− 3

2

)
+ 24bn−2

(
n− 5

2

)
+ 4bn

(
n− 1

2

)
+ 25bn−2 − bn = 0

Solving for bn from the recursive equation (4) gives

bn = −(1 + 2n+ 2r) bn−2

2n+ 2r − 1 (5)

Which for the root r = −1
2 becomes

bn = −2nbn−2

2n− 2 (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = −5 + 2r
3 + 2r

Which for the root r = −1
2 becomes

b2 = −2
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−5−2r
3+2r −2

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−5−2r
3+2r −2

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
4r2 + 28r + 45
(3 + 2r) (7 + 2r)

Which for the root r = −1
2 becomes

b4 =
8
3

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−5−2r
3+2r −2

b3 0 0
b4

4r2+28r+45
4r2+20r+21

8
3
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For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−5−2r
3+2r −2

b3 0 0
b4

4r2+28r+45
4r2+20r+21

8
3

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) =
√
x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− 2x2 + 8x4

3 +O(x6)
√
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− 3x2

2 + 15x4

8 +O
(
x6))+

c2
(
1− 2x2 + 8x4

3 +O(x6)
)

√
x

Hence the final solution is

y = yh

= c1
√
x

(
1− 3x2

2 + 15x4

8 +O
(
x6))+

c2
(
1− 2x2 + 8x4

3 +O(x6)
)

√
x

Summary
The solution(s) found are the following

(1)y = c1
√
x

(
1− 3x2

2 + 15x4

8 +O
(
x6))+

c2
(
1− 2x2 + 8x4

3 +O(x6)
)

√
x
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Verification of solutions

y = c1
√
x

(
1− 3x2

2 + 15x4

8 +O
(
x6))+

c2
(
1− 2x2 + 8x4

3 +O(x6)
)

√
x

Verified OK.

14.48.1 Maple step by step solution

Let’s solve
4x2(x2 + 1) y′′ + (24x3 + 4x) y′ + (25x2 − 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
25x2−1

)
y

4x2(x2+1) −
(
6x2+1

)
y′

x(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
6x2+1

)
y′

x(x2+1) +
(
25x2−1

)
y

4x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 6x2+1
x(x2+1) , P3(x) = 25x2−1

4x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2(x2 + 1) y′′ + 4x(6x2 + 1) y′ + (25x2 − 1) y = 0

• Assume series solution for y
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y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr + a1(3 + 2r) (1 + 2r)x1+r +
(

∞∑
k=2

(
ak(2k + 2r + 1) (2k + 2r − 1) + ak−2(2k + 2r + 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term must be 0

a1(3 + 2r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation
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4
(
k + r + 1

2

) ((
k + r + 1

2

)
ak−2 + ak

(
k + r − 1

2

))
= 0

• Shift index using k− >k + 2
4
(
k + 5

2 + r
) ((

k + 5
2 + r

)
ak + ak+2

(
k + 3

2 + r
))

= 0

• Recursion relation that defines series solution to ODE
ak+2 = − (2k+2r+5)ak

2k+3+2r

• Recursion relation for r = −1
2

ak+2 = − (2k+4)ak
2k+2

• Solution for r = −1
2[

y =
∞∑
k=0

akx
k− 1

2 , ak+2 = − (2k+4)ak
2k+2 , a1 = 0

]
• Recursion relation for r = 1

2

ak+2 = − (2k+6)ak
2k+4

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − (2k+6)ak
2k+4 , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+2 = − (2k+4)ak

2k+2 , a1 = 0, bk+2 = − (2k+6)bk
2k+4 , b1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
Order:=6;
dsolve(4*x^2*(1+x^2)*diff(y(x),x$2)+4*x*(1+6*x^2)*diff(y(x),x)-(1-25*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1x
(
1− 3

2x
2 + 15

8 x
4 +O(x6)

)
+ c2

(
1− 2x2 + 8

3x
4 +O(x6)

)
√
x

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 56� �
AsymptoticDSolveValue[4*x^2*(1+x^2)*y''[x]+4*x*(1+6*x^2)*y'[x]-(1-25*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
8x7/2

3 − 2x3/2 + 1√
x

)
+ c2

(
15x9/2

8 − 3x5/2

2 +
√
x

)
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14.49 problem 51
14.49.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5348

Internal problem ID [1340]
Internal file name [OUTPUT/1341_Sunday_June_05_2022_02_11_57_AM_26476703/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 51.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

8x2(2x2 + 1
)
y′′ + 2x

(
34x2 + 5

)
y′ −

(
−30x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

16x4 + 8x2) y′′ + (68x3 + 10x
)
y′ +

(
30x2 − 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 34x2 + 5
4x (2x2 + 1)

q(x) = 30x2 − 1
8x2 (2x2 + 1)
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Table 626: Table p(x), q(x) singularites.

p(x) = 34x2+5
4x(2x2+1)

singularity type
x = 0 “regular”

x = − i
√
2

2 “regular”

x = i
√
2

2 “regular”

q(x) = 30x2−1
8x2(2x2+1)

singularity type
x = 0 “regular”

x = − i
√
2

2 “regular”

x = i
√
2

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,− i

√
2

2 , i
√
2

2 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

8x2(2x2 + 1
)
y′′ +

(
68x3 + 10x

)
y′ +

(
30x2 − 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
8x2(2x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
68x3 + 10x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
30x2 − 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

16xn+r+2an(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

8xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

68xn+r+2an(n+ r)
)

+
(

∞∑
n=0

10xn+ran(n+ r)
)

+
(

∞∑
n=0

30xn+r+2an

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

16xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

16an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

68xn+r+2an(n+ r) =
∞∑
n=2

68an−2(n+ r − 2)xn+r

∞∑
n =0

30xn+r+2an =
∞∑
n=2

30an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

16an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=0

8xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

68an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=0

10xn+ran(n+ r)
)

+
(

∞∑
n=2

30an−2x
n+r

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

8xn+ran(n+ r) (n+ r − 1) + 10xn+ran(n+ r)− anx
n+r = 0
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When n = 0 the above becomes

8xra0r(−1 + r) + 10xra0r − a0x
r = 0

Or
(8xrr(−1 + r) + 10xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
8r2 + 2r − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

8r2 + 2r − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
4

r2 = −1
2

Since a0 6= 0 then the indicial equation becomes(
8r2 + 2r − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3
4 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

4

y2(x) =
∞∑
n=0

bnx
n− 1

2

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)16an−2(n+ r − 2) (n− 3 + r) + 8an(n+ r) (n+ r − 1)
+ 68an−2(n+ r − 2) + 10an(n+ r) + 30an−2 − an = 0

Solving for an from recursive equation (4) gives

an = −2(4n+ 4r − 5) an−2

4n+ 4r − 1 (4)

Which for the root r = 1
4 becomes

an = −2(n− 1) an−2

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

4 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−8r − 6
7 + 4r

Which for the root r = 1
4 becomes

a2 = −1

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−8r−6
7+4r −1

For n = 3, using the above recursive equation gives

a3 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−8r−6
7+4r −1

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
64r2 + 224r + 132
16r2 + 88r + 105

Which for the root r = 1
4 becomes

a4 =
3
2

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−8r−6
7+4r −1

a3 0 0
a4

64r2+224r+132
16r2+88r+105

3
2

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−8r−6
7+4r −1

a3 0 0
a4

64r2+224r+132
16r2+88r+105

3
2

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) = x
1
4
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
4

(
1− x2 + 3x4

2 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)16bn−2(n+ r − 2) (n− 3 + r) + 8bn(n+ r) (n+ r − 1)
+ 68bn−2(n+ r − 2) + 10bn(n+ r) + 30bn−2 − bn = 0

Solving for bn from recursive equation (4) gives

bn = −2(4n+ 4r − 5) bn−2

4n+ 4r − 1 (4)

Which for the root r = −1
2 becomes

bn = (−8n+ 14) bn−2

4n− 3 (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 =
−8r − 6
7 + 4r

Which for the root r = −1
2 becomes

b2 = −2
5
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−8r−6
7+4r −2

5

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−8r−6
7+4r −2

5

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
64r2 + 224r + 132
16r2 + 88r + 105

Which for the root r = −1
2 becomes

b4 =
36
65

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−8r−6
7+4r −2

5

b3 0 0
b4

64r2+224r+132
16r2+88r+105

36
65
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For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−8r−6
7+4r −2

5

b3 0 0
b4

64r2+224r+132
16r2+88r+105

36
65

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x
1
4
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− 2x2

5 + 36x4

65 +O(x6)
√
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
4

(
1− x2 + 3x4

2 +O
(
x6))+

c2
(
1− 2x2

5 + 36x4

65 +O(x6)
)

√
x

Hence the final solution is

y = yh

= c1x
1
4

(
1− x2 + 3x4

2 +O
(
x6))+

c2
(
1− 2x2

5 + 36x4

65 +O(x6)
)

√
x

Summary
The solution(s) found are the following

(1)y = c1x
1
4

(
1− x2 + 3x4

2 +O
(
x6))+

c2
(
1− 2x2

5 + 36x4

65 +O(x6)
)

√
x
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Verification of solutions

y = c1x
1
4

(
1− x2 + 3x4

2 +O
(
x6))+

c2
(
1− 2x2

5 + 36x4

65 +O(x6)
)

√
x

Verified OK.

14.49.1 Maple step by step solution

Let’s solve
8x2(2x2 + 1) y′′ + (68x3 + 10x) y′ + (30x2 − 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
30x2−1

)
y

8x2(2x2+1) −
(
34x2+5

)
y′

4x(2x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
34x2+5

)
y′

4x(2x2+1) +
(
30x2−1

)
y

8x2(2x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 34x2+5
4x(2x2+1) , P3(x) = 30x2−1

8x2(2x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
8

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
8x2(2x2 + 1) y′′ + 2x(34x2 + 5) y′ + (30x2 − 1) y = 0

• Assume series solution for y
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y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 4r)xr + a1(3 + 2r) (3 + 4r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 1) (4k + 4r − 1) + 2ak−2(2k + 2r + 1) (4k − 5 + 4r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
4

}
• Each term must be 0

a1(3 + 2r) (3 + 4r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation
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8
((
2k + 2r − 5

2

)
ak−2 + ak

(
k + r − 1

4

)) (
k + r + 1

2

)
= 0

• Shift index using k− >k + 2
8
((
2k + 3

2 + 2r
)
ak + ak+2

(
k + 7

4 + r
)) (

k + 5
2 + r

)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = −2(4k+4r+3)ak

4k+7+4r

• Recursion relation for r = −1
2

ak+2 = −2(4k+1)ak
4k+5

• Solution for r = −1
2[

y =
∞∑
k=0

akx
k− 1

2 , ak+2 = −2(4k+1)ak
4k+5 , a1 = 0

]
• Recursion relation for r = 1

4

ak+2 = −2(4k+4)ak
4k+8

• Solution for r = 1
4[

y =
∞∑
k=0

akx
k+ 1

4 , ak+2 = −2(4k+4)ak
4k+8 , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

4

)
, ak+2 = −2(4k+1)ak

4k+5 , a1 = 0, bk+2 = −2(4k+4)bk
4k+8 , b1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
Order:=6;
dsolve(8*x^2*(1+2*x^2)*diff(y(x),x$2)+2*x*(5+34*x^2)*diff(y(x),x)-(1-30*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c2x

3
4
(
1− x2 + 3

2x
4 +O(x6)

)
+ c1

(
1− 2

5x
2 + 36

65x
4 +O(x6)

)
√
x
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3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 50� �
AsymptoticDSolveValue[8*x^2*(1+2*x^2)*y''[x]+2*x*(5+34*x^2)*y'[x]-(1-30*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
4
√
x

(
3x4

2 − x2 + 1
)
+

c2
(

36x4

65 − 2x2

5 + 1
)

√
x
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14.50 problem 61
14.50.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5362

Internal problem ID [1341]
Internal file name [OUTPUT/1342_Sunday_June_05_2022_02_12_00_AM_46222525/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 61.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2x2(x+ 1) y′′ − x(−3x+ 1) y′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

2x3 + 2x2) y′′ + (3x2 − x
)
y′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3x− 1
2x (x+ 1)

q(x) = 1
2 (x+ 1)x2
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Table 628: Table p(x), q(x) singularites.

p(x) = 3x−1
2x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

q(x) = 1
2(x+1)x2

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x2(x+ 1) y′′ +
(
3x2 − x

)
y′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2x2(x+ 1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
3x2 − x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

3x1+n+ran(n+ r) =
∞∑
n=1

3an−1(n+ r − 1)xn+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

2an−1(n+ r− 1) (n+ r− 2)xn+r

)
+
(

∞∑
n=0

2xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=1

3an−1(n+ r− 1)xn+r

)
+

∞∑
n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+ran(n+ r) (n+ r − 1)− xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

2xra0r(−1 + r)− xra0r + a0x
r = 0

Or
(2xrr(−1 + r)− xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
2r2 − 3r + 1

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

2r2 − 3r + 1 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1

r2 =
1
2

Since a0 6= 0 then the indicial equation becomes(
2r2 − 3r + 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
1+n

y2(x) =
∞∑
n=0

bnx
n+ 1

2

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)2an−1(n+ r − 1) (n+ r − 2) + 2an(n+ r) (n+ r − 1)
+ 3an−1(n+ r − 1)− an(n+ r) + an = 0

Solving for an from recursive equation (4) gives

an = −an−1 (4)

Which for the root r = 1 becomes

an = −an−1 (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = −1

Which for the root r = 1 becomes
a1 = −1

And the table now becomes

n an,r an

a0 1 1
a1 −1 −1

For n = 2, using the above recursive equation gives

a2 = 1

Which for the root r = 1 becomes
a2 = 1

And the table now becomes

n an,r an

a0 1 1
a1 −1 −1
a2 1 1

For n = 3, using the above recursive equation gives

a3 = −1

Which for the root r = 1 becomes
a3 = −1
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And the table now becomes

n an,r an

a0 1 1
a1 −1 −1
a2 1 1
a3 −1 −1

For n = 4, using the above recursive equation gives

a4 = 1

Which for the root r = 1 becomes
a4 = 1

And the table now becomes

n an,r an

a0 1 1
a1 −1 −1
a2 1 1
a3 −1 −1
a4 1 1

For n = 5, using the above recursive equation gives

a5 = −1

Which for the root r = 1 becomes
a5 = −1

And the table now becomes

n an,r an

a0 1 1
a1 −1 −1
a2 1 1
a3 −1 −1
a4 1 1
a5 −1 −1
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Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
(
1− x+ x2 − x3 + x4 − x5 +O

(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)2bn−1(n+ r − 1) (n+ r − 2) + 2bn(n+ r) (n+ r − 1)
+ 3bn−1(n+ r − 1)− bn(n+ r) + bn = 0

Solving for bn from recursive equation (4) gives

bn = −bn−1 (4)

Which for the root r = 1
2 becomes

bn = −bn−1 (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = −1

Which for the root r = 1
2 becomes

b1 = −1

And the table now becomes

n bn,r bn

b0 1 1
b1 −1 −1

For n = 2, using the above recursive equation gives

b2 = 1
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Which for the root r = 1
2 becomes

b2 = 1
And the table now becomes

n bn,r bn

b0 1 1
b1 −1 −1
b2 1 1

For n = 3, using the above recursive equation gives

b3 = −1

Which for the root r = 1
2 becomes

b3 = −1
And the table now becomes

n bn,r bn

b0 1 1
b1 −1 −1
b2 1 1
b3 −1 −1

For n = 4, using the above recursive equation gives

b4 = 1

Which for the root r = 1
2 becomes

b4 = 1
And the table now becomes

n bn,r bn

b0 1 1
b1 −1 −1
b2 1 1
b3 −1 −1
b4 1 1
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For n = 5, using the above recursive equation gives

b5 = −1

Which for the root r = 1
2 becomes

b5 = −1

And the table now becomes

n bn,r bn

b0 1 1
b1 −1 −1
b2 1 1
b3 −1 −1
b4 1 1
b5 −1 −1

Using the above table, then the solution y2(x) is

y2(x) = x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
√
x
(
1− x+ x2 − x3 + x4 − x5 +O

(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
(
1−x+x2−x3+x4−x5+O

(
x6))+c2

√
x
(
1−x+x2−x3+x4−x5+O

(
x6))

Hence the final solution is

y = yh

= c1x
(
1− x+ x2 − x3 + x4 − x5 +O

(
x6))+ c2

√
x
(
1− x+ x2 − x3 + x4 − x5 +O

(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
(
1−x+x2−x3+x4−x5+O

(
x6))+ c2

√
x
(
1−x+x2−x3+x4−x5+O

(
x6))

Verification of solutions

y = c1x
(
1− x+ x2 − x3 + x4 − x5 +O

(
x6))+ c2

√
x
(
1− x+ x2 − x3 + x4 − x5 +O

(
x6))

Verified OK.
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14.50.1 Maple step by step solution

Let’s solve
2x2(x+ 1) y′′ + (3x2 − x) y′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − y
2x2(x+1) −

(3x−1)y′
2x(x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (3x−1)y′
2x(x+1) +

y
2x2(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3x−1
2x(x+1) , P3(x) = 1

2(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
2x2(x+ 1) y′′ + x(3x− 1) y′ + y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(2u3 − 4u2 + 2u)
(

d2

du2y(u)
)
+ (3u2 − 7u+ 4)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

2a0r(1 + r)u−1+r + (2a1(1 + r) (2 + r)− a0(1 + r) (−1 + 4r))ur +
(

∞∑
k=1

(2ak+1(k + r + 1) (k + 2 + r)− ak(k + r + 1) (4k + 4r − 1) + ak−1(k + r − 1) (2k − 1 + 2r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
2r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
2a1(1 + r) (2 + r)− a0(1 + r) (−1 + 4r) = 0

• Each term in the series must be 0, giving the recursion relation
(−4ak + 2ak−1 + 2ak+1) k2 + ((−8ak + 4ak−1 + 4ak+1) r − 3ak − 3ak−1 + 6ak+1) k + (−4ak + 2ak−1 + 2ak+1) r2 + (−3ak − 3ak−1 + 6ak+1) r + ak + ak−1 + 4ak+1 = 0

• Shift index using k− >k + 1
(−4ak+1 + 2ak + 2ak+2) (k + 1)2 + ((−8ak+1 + 4ak + 4ak+2) r − 3ak+1 − 3ak + 6ak+2) (k + 1) + (−4ak+1 + 2ak + 2ak+2) r2 + (−3ak+1 − 3ak + 6ak+2) r + ak+1 + ak + 4ak+2 = 0

• Recursion relation that defines series solution to ODE

ak+2 = −2k2ak−4k2ak+1+4krak−8krak+1+2r2ak−4r2ak+1+kak−11kak+1+rak−11rak+1−6ak+1
2(k2+2kr+r2+5k+5r+6)

• Recursion relation for r = −1

ak+2 = −2k2ak−4k2ak+1−3kak−3kak+1+ak+ak+1
2(k2+3k+2)

• Solution for r = −1
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[
y(u) =

∞∑
k=0

aku
k−1, ak+2 = −2k2ak−4k2ak+1−3kak−3kak+1+ak+ak+1

2(k2+3k+2) , 0 = 0
]

• Revert the change of variables u = x+ 1[
y =

∞∑
k=0

ak(x+ 1)k−1 , ak+2 = −2k2ak−4k2ak+1−3kak−3kak+1+ak+ak+1
2(k2+3k+2) , 0 = 0

]
• Recursion relation for r = 0

ak+2 = −2k2ak−4k2ak+1+kak−11kak+1−6ak+1
2(k2+5k+6)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −2k2ak−4k2ak+1+kak−11kak+1−6ak+1

2(k2+5k+6) , 4a1 + a0 = 0
]

• Revert the change of variables u = x+ 1[
y =

∞∑
k=0

ak(x+ 1)k , ak+2 = −2k2ak−4k2ak+1+kak−11kak+1−6ak+1
2(k2+5k+6) , 4a1 + a0 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x+ 1)k−1
)
+
(

∞∑
k=0

bk(x+ 1)k
)
, ak+2 = −2k2ak−4k2a1+k−3kak−3ka1+k+ak+a1+k

2(k2+3k+2) , 0 = 0, bk+2 = −2k2bk−4k2b1+k+kbk−11kb1+k−6b1+k

2(k2+5k+6) , 4b1 + b0 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 45� �
Order:=6;
dsolve(2*x^2*(1+x)*diff(y(x),x$2)-x*(1-3*x)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
−x5 + x4 − x3 + x2 − x+ 1

) (
c1
√
x+ c2x

)
+O

(
x6)

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 58� �
AsymptoticDSolveValue[2*x^2*(1+x)*y''[x]-x*(1-3*x)*y'[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x
(
−x5 + x4 − x3 + x2 − x+ 1

)
+ c2

√
x
(
−x5 + x4 − x3 + x2 − x+ 1

)
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14.51 problem 62
14.51.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5375

Internal problem ID [1342]
Internal file name [OUTPUT/1343_Sunday_June_05_2022_02_12_03_AM_85998779/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 62.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

6x2(2x2 + 1
)
y′′ + x

(
50x2 + 1

)
y′ +

(
30x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

12x4 + 6x2) y′′ + (50x3 + x
)
y′ +

(
30x2 + 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 50x2 + 1
6x (2x2 + 1)

q(x) = 30x2 + 1
6x2 (2x2 + 1)
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Table 630: Table p(x), q(x) singularites.

p(x) = 50x2+1
6x(2x2+1)

singularity type
x = 0 “regular”

x = − i
√
2

2 “regular”

x = i
√
2

2 “regular”

q(x) = 30x2+1
6x2(2x2+1)

singularity type
x = 0 “regular”

x = − i
√
2

2 “regular”

x = i
√
2

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,− i

√
2

2 , i
√
2

2 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

6x2(2x2 + 1
)
y′′ +

(
50x3 + x

)
y′ +

(
30x2 + 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
6x2(2x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
50x3 + x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
30x2 + 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

12xn+r+2an(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

6xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

50xn+r+2an(n+ r)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

30xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

12xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

12an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

50xn+r+2an(n+ r) =
∞∑
n=2

50an−2(n+ r − 2)xn+r

∞∑
n =0

30xn+r+2an =
∞∑
n=2

30an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

12an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=0

6xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

50an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

30an−2x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

6xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r) + anx
n+r = 0
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When n = 0 the above becomes

6xra0r(−1 + r) + xra0r + a0x
r = 0

Or
(6xrr(−1 + r) + xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
6r2 − 5r + 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

6r2 − 5r + 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 =
1
3

Since a0 6= 0 then the indicial equation becomes(
6r2 − 5r + 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
6 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n+ 1

3

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)12an−2(n+ r − 2) (n− 3 + r) + 6an(n+ r) (n+ r − 1)
+ 50an−2(n+ r − 2) + an(n+ r) + 30an−2 + an = 0

Solving for an from recursive equation (4) gives

an = −2an−2 (4)

Which for the root r = 1
2 becomes

an = −2an−2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = −2

Which for the root r = 1
2 becomes

a2 = −2

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 −2 −2

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 −2 −2
a3 0 0

For n = 4, using the above recursive equation gives

a4 = 4

Which for the root r = 1
2 becomes

a4 = 4

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 −2 −2
a3 0 0
a4 4 4

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 −2 −2
a3 0 0
a4 4 4
a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x
(
1− 2x2 + 4x4 +O

(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)12bn−2(n+ r − 2) (n− 3 + r) + 6bn(n+ r) (n+ r − 1)
+ 50bn−2(n+ r − 2) + bn(n+ r) + 30bn−2 + bn = 0

Solving for bn from recursive equation (4) gives

bn = −2bn−2 (4)

Which for the root r = 1
3 becomes

bn = −2bn−2 (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = −2

Which for the root r = 1
3 becomes

b2 = −2

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2 −2 −2

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 −2 −2
b3 0 0

For n = 4, using the above recursive equation gives

b4 = 4

Which for the root r = 1
3 becomes

b4 = 4

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 −2 −2
b3 0 0
b4 4 4

For n = 5, using the above recursive equation gives

b5 = 0
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 −2 −2
b3 0 0
b4 4 4
b5 0 0

Using the above table, then the solution y2(x) is

y2(x) =
√
x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x
1
3
(
1− 2x2 + 4x4 +O

(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x
(
1− 2x2 + 4x4 +O

(
x6))+ c2x

1
3
(
1− 2x2 + 4x4 +O

(
x6))

Hence the final solution is

y = yh

= c1
√
x
(
1− 2x2 + 4x4 +O

(
x6))+ c2x

1
3
(
1− 2x2 + 4x4 +O

(
x6))

Summary
The solution(s) found are the following

(1)y = c1
√
x
(
1− 2x2 + 4x4 +O

(
x6))+ c2x

1
3
(
1− 2x2 + 4x4 +O

(
x6))

Verification of solutions

y = c1
√
x
(
1− 2x2 + 4x4 +O

(
x6))+ c2x

1
3
(
1− 2x2 + 4x4 +O

(
x6))

Verified OK.
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14.51.1 Maple step by step solution

Let’s solve
6x2(2x2 + 1) y′′ + (50x3 + x) y′ + (30x2 + 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
30x2+1

)
y

6x2(2x2+1) −
(
50x2+1

)
y′

6x(2x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
50x2+1

)
y′

6x(2x2+1) +
(
30x2+1

)
y

6x2(2x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 50x2+1
6x(2x2+1) , P3(x) = 30x2+1

6x2(2x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
6

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
6

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
6x2(2x2 + 1) y′′ + x(50x2 + 1) y′ + (30x2 + 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + 3r) (−1 + 2r)xr + a1(2 + 3r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak(3k + 3r − 1) (2k + 2r − 1) + 2ak−2(3k + 3r − 1) (2k + 2r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 3r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

1
3

}
• Each term must be 0

a1(2 + 3r) (1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

(3k + 3r − 1) (2k + 2r − 1) (ak + 2ak−2) = 0
• Shift index using k− >k + 2

(3k + 3r + 5) (2k + 2r + 3) (ak+2 + 2ak) = 0
• Recursion relation that defines series solution to ODE

ak+2 = −2ak
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• Recursion relation for r = 1
2

ak+2 = −2ak
• Solution for r = 1

2[
y =

∞∑
k=0

akx
k+ 1

2 , ak+2 = −2ak, a1 = 0
]

• Recursion relation for r = 1
3

ak+2 = −2ak
• Solution for r = 1

3[
y =

∞∑
k=0

akx
k+ 1

3 , ak+2 = −2ak, a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

3

)
, ak+2 = −2ak, a1 = 0, bk+2 = −2bk, b1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 35� �
Order:=6;
dsolve(6*x^2*(1+2*x^2)*diff(y(x),x$2)+x*(1+50*x^2)*diff(y(x),x)+(1+30*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
4x4 − 2x2 + 1

)
x

1
3

(
c2x

1
6 + c1

)
+O

(
x6)
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 44� �
AsymptoticDSolveValue[6*x^2*(1+2*x^2)*y''[x]+x*(1+50*x^2)*y'[x]+(1+30*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x
(
4x4 − 2x2 + 1

)
+ c2

3
√
x
(
4x4 − 2x2 + 1

)
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14.52 problem 63
14.52.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5388

Internal problem ID [1343]
Internal file name [OUTPUT/1344_Sunday_June_05_2022_02_12_05_AM_33849928/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 63.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

28x2(−3x+ 1) y′′ − 7x(5 + 9x) y′ + 7(2 + 9x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

−84x3 + 28x2) y′′ + (−63x2 − 35x
)
y′ + (63x+ 14) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 5 + 9x
4x (3x− 1)

q(x) = − 2 + 9x
4x2 (3x− 1)
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Table 632: Table p(x), q(x) singularites.

p(x) = 5+9x
4x(3x−1)

singularity type
x = 0 “regular”
x = 1

3 “regular”

q(x) = − 2+9x
4x2(3x−1)

singularity type
x = 0 “regular”
x = 1

3 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0, 13 ,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−28y′′x2(3x− 1) +
(
−63x2 − 35x

)
y′ + (63x+ 14) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−28

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2(3x− 1)

+
(
−63x2 − 35x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (63x+ 14)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−84x1+n+ran(n+ r) (n+ r− 1)

)
+
(

∞∑
n=0

28xn+ran(n+ r) (n+ r− 1)
)

+
∞∑

n =0

(
−63x1+n+ran(n+ r)

)
+

∞∑
n =0

(
−35xn+ran(n+ r)

)
+
(

∞∑
n=0

63x1+n+ran

)
+
(

∞∑
n=0

14anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−84x1+n+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−84an−1(n+ r − 1) (n+ r − 2)xn+r

)
∞∑

n =0

(
−63x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−63an−1(n+ r − 1)xn+r

)
∞∑

n =0

63x1+n+ran =
∞∑
n=1

63an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =1

(
−84an−1(n+ r − 1) (n+ r − 2)xn+r

)
+
(

∞∑
n=0

28xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−63an−1(n+ r − 1)xn+r

)
+

∞∑
n =0

(
−35xn+ran(n+ r)

)
+
(

∞∑
n=1

63an−1x
n+r

)
+
(

∞∑
n=0

14anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

28xn+ran(n+ r) (n+ r − 1)− 35xn+ran(n+ r) + 14anxn+r = 0
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When n = 0 the above becomes

28xra0r(−1 + r)− 35xra0r + 14a0xr = 0

Or
(28xrr(−1 + r)− 35xrr + 14xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
28r2 − 63r + 14

)
xr = 0

Since the above is true for all x then the indicial equation becomes

28r2 − 63r + 14 = 0

Solving for r gives the roots of the indicial equation as

r1 = 2

r2 =
1
4

Since a0 6= 0 then the indicial equation becomes(
28r2 − 63r + 14

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 7
4 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+2

y2(x) =
∞∑
n=0

bnx
n+ 1

4

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)−84an−1(n+ r − 1) (n+ r − 2) + 28an(n+ r) (n+ r − 1)
− 63an−1(n+ r − 1)− 35an(n+ r) + 63an−1 + 14an = 0
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Solving for an from recursive equation (4) gives

an = 3an−1 (4)

Which for the root r = 2 becomes

an = 3an−1 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = 3

Which for the root r = 2 becomes
a1 = 3

And the table now becomes

n an,r an

a0 1 1
a1 3 3

For n = 2, using the above recursive equation gives

a2 = 9

Which for the root r = 2 becomes
a2 = 9

And the table now becomes

n an,r an

a0 1 1
a1 3 3
a2 9 9
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For n = 3, using the above recursive equation gives

a3 = 27

Which for the root r = 2 becomes
a3 = 27

And the table now becomes

n an,r an

a0 1 1
a1 3 3
a2 9 9
a3 27 27

For n = 4, using the above recursive equation gives

a4 = 81

Which for the root r = 2 becomes
a4 = 81

And the table now becomes

n an,r an

a0 1 1
a1 3 3
a2 9 9
a3 27 27
a4 81 81

For n = 5, using the above recursive equation gives

a5 = 243

Which for the root r = 2 becomes
a5 = 243

And the table now becomes
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n an,r an

a0 1 1
a1 3 3
a2 9 9
a3 27 27
a4 81 81
a5 243 243

Using the above table, then the solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2(1 + 3x+ 9x2 + 27x3 + 81x4 + 243x5 +O

(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)−84bn−1(n+ r − 1) (n+ r − 2) + 28bn(n+ r) (n+ r − 1)
− 63bn−1(n+ r − 1)− 35bn(n+ r) + 63bn−1 + 14bn = 0

Solving for bn from recursive equation (4) gives

bn = 3bn−1 (4)

Which for the root r = 1
4 becomes

bn = 3bn−1 (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

4 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = 3
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Which for the root r = 1
4 becomes

b1 = 3

And the table now becomes

n bn,r bn

b0 1 1
b1 3 3

For n = 2, using the above recursive equation gives

b2 = 9

Which for the root r = 1
4 becomes

b2 = 9

And the table now becomes

n bn,r bn

b0 1 1
b1 3 3
b2 9 9

For n = 3, using the above recursive equation gives

b3 = 27

Which for the root r = 1
4 becomes

b3 = 27

And the table now becomes

n bn,r bn

b0 1 1
b1 3 3
b2 9 9
b3 27 27
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For n = 4, using the above recursive equation gives

b4 = 81

Which for the root r = 1
4 becomes

b4 = 81

And the table now becomes

n bn,r bn

b0 1 1
b1 3 3
b2 9 9
b3 27 27
b4 81 81

For n = 5, using the above recursive equation gives

b5 = 243

Which for the root r = 1
4 becomes

b5 = 243

And the table now becomes

n bn,r bn

b0 1 1
b1 3 3
b2 9 9
b3 27 27
b4 81 81
b5 243 243

Using the above table, then the solution y2(x) is

y2(x) = x2(b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

)
= x

1
4
(
1 + 3x+ 9x2 + 27x3 + 81x4 + 243x5 +O

(
x6))
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2(1 + 3x+ 9x2 + 27x3 + 81x4 + 243x5 +O

(
x6))

+ c2x
1
4
(
1 + 3x+ 9x2 + 27x3 + 81x4 + 243x5 +O

(
x6))

Hence the final solution is

y = yh

= c1x
2(1 + 3x+ 9x2 + 27x3 + 81x4 + 243x5 +O

(
x6))

+ c2x
1
4
(
1 + 3x+ 9x2 + 27x3 + 81x4 + 243x5 +O

(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
2(1 + 3x+ 9x2 + 27x3 + 81x4 + 243x5 +O

(
x6))

+ c2x
1
4
(
1 + 3x+ 9x2 + 27x3 + 81x4 + 243x5 +O

(
x6))

Verification of solutions

y = c1x
2(1 + 3x+ 9x2 + 27x3 + 81x4 + 243x5 +O

(
x6))

+ c2x
1
4
(
1 + 3x+ 9x2 + 27x3 + 81x4 + 243x5 +O

(
x6))

Verified OK.

14.52.1 Maple step by step solution

Let’s solve
−28y′′x2(3x− 1) + (−63x2 − 35x) y′ + (63x+ 14) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = (2+9x)y
4x2(3x−1) −

(5+9x)y′
4x(3x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (5+9x)y′
4x(3x−1) −

(2+9x)y
4x2(3x−1) = 0

� Check to see if x0 is a regular singular point
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◦ Define functions[
P2(x) = 5+9x

4x(3x−1) , P3(x) = − 2+9x
4x2(3x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −5
4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
2

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
4y′′x2(3x− 1) + x(5 + 9x) y′ + (−9x− 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m
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◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(−1 + 4r) (−2 + r)xr +
(

∞∑
k=1

(−ak(4k + 4r − 1) (k + r − 2) + 3ak−1(4k + 4r − 1) (k + r − 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−1 + 4r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
2, 14
}

• Each term in the series must be 0, giving the recursion relation
−4
(
k + r − 1

4

)
(ak − 3ak−1) (k + r − 2) = 0

• Shift index using k− >k + 1
−4
(
k + 3

4 + r
)
(ak+1 − 3ak) (k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 3ak

• Recursion relation for r = 2
ak+1 = 3ak

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+1 = 3ak

]
• Recursion relation for r = 1

4

ak+1 = 3ak
• Solution for r = 1

4[
y =

∞∑
k=0

akx
k+ 1

4 , ak+1 = 3ak
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k+2
)
+
(

∞∑
k=0

bkx
k+ 1

4

)
, a1+k = 3ak, b1+k = 3bk

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 47� �
Order:=6;
dsolve(28*x^2*(1-3*x)*diff(y(x),x$2)-7*x*(5+9*x)*diff(y(x),x)+7*(2+9*x)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
243x5 + 81x4 + 27x3 + 9x2 + 3x+ 1

) (
c1x

1
4 + c2x

2
)
+O

(
x6)

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 68� �
AsymptoticDSolveValue[28*x^2*(1-3*x)*y''[x]-7*x*(5+9*x)*y'[x]+7*(2+9*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
(
243x5 + 81x4 + 27x3 + 9x2 + 3x+ 1

)
x2

+ c2
(
243x5 + 81x4 + 27x3 + 9x2 + 3x+ 1

)
4
√
x
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14.53 problem 64
14.53.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5403

Internal problem ID [1344]
Internal file name [OUTPUT/1345_Sunday_June_05_2022_02_12_07_AM_78276812/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 64.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

9x2(x+ 5) y′′ + 9x(5 + 9x) y′ − (5− 8x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

9x3 + 45x2) y′′ + (81x2 + 45x
)
y′ + (8x− 5) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 5 + 9x
x (x+ 5)

q(x) = 8x− 5
9x2 (x+ 5)
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Table 634: Table p(x), q(x) singularites.

p(x) = 5+9x
x(x+5)

singularity type
x = −5 “regular”
x = 0 “regular”

q(x) = 8x−5
9x2(x+5)

singularity type
x = −5 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−5, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

9x2(x+ 5) y′′ +
(
81x2 + 45x

)
y′ + (8x− 5) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
9x2(x+ 5)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
81x2 + 45x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (8x− 5)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

9x1+n+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

45xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

81x1+n+ran(n+ r)
)

+
(

∞∑
n=0

45xn+ran(n+ r)
)

+
(

∞∑
n=0

8x1+n+ran

)
+

∞∑
n =0

(
−5anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

9x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

9an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

81x1+n+ran(n+ r) =
∞∑
n=1

81an−1(n+ r − 1)xn+r

∞∑
n =0

8x1+n+ran =
∞∑
n=1

8an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

9an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

45xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

81an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

45xn+ran(n+ r)
)

+
(

∞∑
n=1

8an−1x
n+r

)
+

∞∑
n =0

(
−5anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

45xn+ran(n+ r) (n+ r − 1) + 45xn+ran(n+ r)− 5anxn+r = 0
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When n = 0 the above becomes

45xra0r(−1 + r) + 45xra0r − 5a0xr = 0

Or
(45xrr(−1 + r) + 45xrr − 5xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
45r2 − 5

)
xr = 0

Since the above is true for all x then the indicial equation becomes

45r2 − 5 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 = −1
3

Since a0 6= 0 then the indicial equation becomes(
45r2 − 5

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) =
∞∑
n=0

bnx
n− 1

3

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)9an−1(n+ r − 1) (n+ r − 2) + 45an(n+ r) (n+ r − 1)
+ 81an−1(n+ r − 1) + 45an(n+ r) + 8an−1 − 5an = 0
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Solving for an from recursive equation (4) gives

an = −an−1(9n2 + 18nr + 9r2 + 54n+ 54r − 55)
5 (9n2 + 18nr + 9r2 − 1) (4)

Which for the root r = 1
3 becomes

an = −
3an−1

(
n2 + 20

3 n− 4
)

15n2 + 10n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−9r2 − 72r − 8
45r2 + 90r + 40

Which for the root r = 1
3 becomes

a1 = −11
25

And the table now becomes

n an,r an

a0 1 1
a1

−9r2−72r−8
45r2+90r+40 −11

25

For n = 2, using the above recursive equation gives

a2 =
81r4 + 1458r3 + 7353r2 + 7128r + 712
25 (9r2 + 18r + 8) (9r2 + 36r + 35)

Which for the root r = 1
3 becomes

a2 =
11
50

And the table now becomes

5396



n an,r an

a0 1 1
a1

−9r2−72r−8
45r2+90r+40 −11

25

a2
81r4+1458r3+7353r2+7128r+712

25(9r2+18r+8)(9r2+36r+35)
11
50

For n = 3, using the above recursive equation gives

a3 = − (9r2 + 90r + 89) (9r2 + 72r + 8) (9r2 + 108r + 188)
125 (9r2 + 18r + 8) (9r2 + 36r + 35) (9r2 + 54r + 80)

Which for the root r = 1
3 becomes

a3 = − 1
10

And the table now becomes

n an,r an

a0 1 1
a1

−9r2−72r−8
45r2+90r+40 −11

25

a2
81r4+1458r3+7353r2+7128r+712

25(9r2+18r+8)(9r2+36r+35)
11
50

a3 −
(
9r2+90r+89

)(
9r2+72r+8

)(
9r2+108r+188

)
125(9r2+18r+8)(9r2+36r+35)(9r2+54r+80) − 1

10

For n = 4, using the above recursive equation gives

a4 =
(9r2 + 90r + 89) (9r2 + 72r + 8) (9r2 + 108r + 188) (9r2 + 126r + 305)
625 (9r2 + 18r + 8) (9r2 + 36r + 35) (9r2 + 54r + 80) (9r2 + 72r + 143)

Which for the root r = 1
3 becomes

a4 =
29
700

And the table now becomes
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n an,r an

a0 1 1
a1

−9r2−72r−8
45r2+90r+40 −11

25

a2
81r4+1458r3+7353r2+7128r+712

25(9r2+18r+8)(9r2+36r+35)
11
50

a3 −
(
9r2+90r+89

)(
9r2+72r+8

)(
9r2+108r+188

)
125(9r2+18r+8)(9r2+36r+35)(9r2+54r+80) − 1

10

a4
(
9r2+90r+89

)(
9r2+72r+8

)(
9r2+108r+188

)(
9r2+126r+305

)
625(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)(9r2+72r+143)

29
700

For n = 5, using the above recursive equation gives

a5 = − (9r2 + 90r + 89) (9r2 + 72r + 8) (9r2 + 108r + 188) (9r2 + 126r + 305) (9r2 + 144r + 440)
3125 (9r2 + 18r + 8) (9r2 + 36r + 35) (9r2 + 54r + 80) (9r2 + 72r + 143) (9r2 + 90r + 224)

Which for the root r = 1
3 becomes

a5 = − 4727
297500

And the table now becomes

n an,r an

a0 1 1
a1

−9r2−72r−8
45r2+90r+40 −11

25

a2
81r4+1458r3+7353r2+7128r+712

25(9r2+18r+8)(9r2+36r+35)
11
50

a3 −
(
9r2+90r+89

)(
9r2+72r+8

)(
9r2+108r+188

)
125(9r2+18r+8)(9r2+36r+35)(9r2+54r+80) − 1

10

a4
(
9r2+90r+89

)(
9r2+72r+8

)(
9r2+108r+188

)(
9r2+126r+305

)
625(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)(9r2+72r+143)

29
700

a5 −
(
9r2+90r+89

)(
9r2+72r+8

)(
9r2+108r+188

)(
9r2+126r+305

)(
9r2+144r+440

)
3125(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)(9r2+72r+143)(9r2+90r+224) − 4727

297500

Using the above table, then the solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
1− 11x

25 + 11x2

50 − x3

10 + 29x4

700 − 4727x5

297500 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)9bn−1(n+ r − 1) (n+ r − 2) + 45bn(n+ r) (n+ r − 1)
+ 81bn−1(n+ r − 1) + 45bn(n+ r) + 8bn−1 − 5bn = 0

Solving for bn from recursive equation (4) gives

bn = −bn−1(9n2 + 18nr + 9r2 + 54n+ 54r − 55)
5 (9n2 + 18nr + 9r2 − 1) (4)

Which for the root r = −1
3 becomes

bn = −
3
(
n2 + 16

3 n− 8
)
bn−1

15n2 − 10n (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
−9r2 − 72r − 8
45r2 + 90r + 40

Which for the root r = −1
3 becomes

b1 = 1

And the table now becomes

n bn,r bn

b0 1 1
b1

−9r2−72r−8
45r2+90r+40 1

For n = 2, using the above recursive equation gives

b2 =
81r4 + 1458r3 + 7353r2 + 7128r + 712
25 (9r2 + 18r + 8) (9r2 + 36r + 35)
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Which for the root r = −1
3 becomes

b2 = −1
2

And the table now becomes

n bn,r bn

b0 1 1
b1

−9r2−72r−8
45r2+90r+40 1

b2
81r4+1458r3+7353r2+7128r+712

25(9r2+18r+8)(9r2+36r+35) −1
2

For n = 3, using the above recursive equation gives

b3 = − (9r2 + 90r + 89) (9r2 + 72r + 8) (9r2 + 108r + 188)
125 (9r2 + 18r + 8) (9r2 + 36r + 35) (9r2 + 54r + 80)

Which for the root r = −1
3 becomes

b3 =
17
70

And the table now becomes

n bn,r bn

b0 1 1
b1

−9r2−72r−8
45r2+90r+40 1

b2
81r4+1458r3+7353r2+7128r+712

25(9r2+18r+8)(9r2+36r+35) −1
2

b3 −
(
9r2+90r+89

)(
9r2+72r+8

)(
9r2+108r+188

)
125(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)

17
70

For n = 4, using the above recursive equation gives

b4 =
(9r2 + 90r + 89) (9r2 + 72r + 8) (9r2 + 108r + 188) (9r2 + 126r + 305)
625 (9r2 + 18r + 8) (9r2 + 36r + 35) (9r2 + 54r + 80) (9r2 + 72r + 143)

Which for the root r = −1
3 becomes

b4 = − 187
1750

And the table now becomes
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n bn,r bn

b0 1 1
b1

−9r2−72r−8
45r2+90r+40 1

b2
81r4+1458r3+7353r2+7128r+712

25(9r2+18r+8)(9r2+36r+35) −1
2

b3 −
(
9r2+90r+89

)(
9r2+72r+8

)(
9r2+108r+188

)
125(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)

17
70

b4
(
9r2+90r+89

)(
9r2+72r+8

)(
9r2+108r+188

)(
9r2+126r+305

)
625(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)(9r2+72r+143) − 187

1750

For n = 5, using the above recursive equation gives

b5 = − (9r2 + 90r + 89) (9r2 + 72r + 8) (9r2 + 108r + 188) (9r2 + 126r + 305) (9r2 + 144r + 440)
3125 (9r2 + 18r + 8) (9r2 + 36r + 35) (9r2 + 54r + 80) (9r2 + 72r + 143) (9r2 + 90r + 224)

Which for the root r = −1
3 becomes

b5 =
24497
568750

And the table now becomes

n bn,r bn

b0 1 1
b1

−9r2−72r−8
45r2+90r+40 1

b2
81r4+1458r3+7353r2+7128r+712

25(9r2+18r+8)(9r2+36r+35) −1
2

b3 −
(
9r2+90r+89

)(
9r2+72r+8

)(
9r2+108r+188

)
125(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)

17
70

b4
(
9r2+90r+89

)(
9r2+72r+8

)(
9r2+108r+188

)(
9r2+126r+305

)
625(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)(9r2+72r+143) − 187

1750

b5 −
(
9r2+90r+89

)(
9r2+72r+8

)(
9r2+108r+188

)(
9r2+126r+305

)(
9r2+144r+440

)
3125(9r2+18r+8)(9r2+36r+35)(9r2+54r+80)(9r2+72r+143)(9r2+90r+224)

24497
568750

Using the above table, then the solution y2(x) is

y2(x) = x
1
3
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1 + x− x2

2 + 17x3

70 − 187x4

1750 + 24497x5

568750 +O(x6)
x

1
3
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3

(
1− 11x

25 + 11x2

50 − x3

10 + 29x4

700 − 4727x5

297500 +O
(
x6))

+
c2
(
1 + x− x2

2 + 17x3

70 − 187x4

1750 + 24497x5

568750 +O(x6)
)

x
1
3

Hence the final solution is

y = yh

= c1x
1
3

(
1− 11x

25 + 11x2

50 − x3

10 + 29x4

700 − 4727x5

297500 +O
(
x6))

+
c2
(
1 + x− x2

2 + 17x3

70 − 187x4

1750 + 24497x5

568750 +O(x6)
)

x
1
3

Summary
The solution(s) found are the following

(1)
y = c1x

1
3

(
1− 11x

25 + 11x2

50 − x3

10 + 29x4

700 − 4727x5

297500 +O
(
x6))

+
c2
(
1 + x− x2

2 + 17x3

70 − 187x4

1750 + 24497x5

568750 +O(x6)
)

x
1
3

Verification of solutions

y = c1x
1
3

(
1− 11x

25 + 11x2

50 − x3

10 + 29x4

700 − 4727x5

297500 +O
(
x6))

+
c2
(
1 + x− x2

2 + 17x3

70 − 187x4

1750 + 24497x5

568750 +O(x6)
)

x
1
3

Verified OK.

5402



14.53.1 Maple step by step solution

Let’s solve
9x2(x+ 5) y′′ + (81x2 + 45x) y′ + (8x− 5) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (8x−5)y
9x2(x+5) −

(5+9x)y′
x(x+5)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (5+9x)y′
x(x+5) + (8x−5)y

9x2(x+5) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5+9x
x(x+5) , P3(x) = 8x−5

9x2(x+5)

]
◦ (x+ 5) · P2(x) is analytic at x = −5

((x+ 5) · P2(x))
∣∣∣∣
x=−5

= 8

◦ (x+ 5)2 · P3(x) is analytic at x = −5(
(x+ 5)2 · P3(x)

) ∣∣∣∣
x=−5

= 0

◦ x = −5is a regular singular point
Check to see if x0 is a regular singular point
x0 = −5

• Multiply by denominators
9x2(x+ 5) y′′ + 9x(5 + 9x) y′ + (8x− 5) y = 0

• Change variables using x = u− 5 so that the regular singular point is at u = 0

(9u3 − 90u2 + 225u)
(

d2

du2y(u)
)
+ (81u2 − 765u+ 1800)

(
d
du
y(u)

)
+ (8u− 45) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

225a0r(7 + r)u−1+r + (225a1(1 + r) (8 + r)− 45a0(2r2 + 15r + 1))ur +
(

∞∑
k=1

(
225ak+1(k + 1 + r) (k + 8 + r)− 45ak(2k2 + 4kr + 2r2 + 15k + 15r + 1) + ak−1

(
9(k − 1)2 + 18(k − 1) r + 9r2 + 72k − 64 + 72r

))
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
225r(7 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−7, 0}

• Each term must be 0
225a1(1 + r) (8 + r)− 45a0(2r2 + 15r + 1) = 0

• Each term in the series must be 0, giving the recursion relation
9(−10ak + ak−1 + 25ak+1) k2 + 9(2(−10ak + ak−1 + 25ak+1) r − 75ak + 6ak−1 + 225ak+1) k + 9(−10ak + ak−1 + 25ak+1) r2 + 27(−25ak + 2ak−1 + 75ak+1) r − 45ak − 55ak−1 + 1800ak+1 = 0

• Shift index using k− >k + 1
9(−10ak+1 + ak + 25ak+2) (k + 1)2 + 9(2(−10ak+1 + ak + 25ak+2) r − 75ak+1 + 6ak + 225ak+2) (k + 1) + 9(−10ak+1 + ak + 25ak+2) r2 + 27(−25ak+1 + 2ak + 75ak+2) r − 45ak+1 − 55ak + 1800ak+2 = 0

• Recursion relation that defines series solution to ODE
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ak+2 = −9k2ak−90k2ak+1+18krak−180krak+1+9r2ak−90r2ak+1+72kak−855kak+1+72rak−855rak+1+8ak−810ak+1
225(k2+2kr+r2+11k+11r+18)

• Recursion relation for r = −7

ak+2 = −9k2ak−90k2ak+1−54kak+405kak+1−55ak+765ak+1
225(k2−3k−10)

• Series not valid for r = −7 , division by 0 in the recursion relation at k = 5

ak+2 = −9k2ak−90k2ak+1−54kak+405kak+1−55ak+765ak+1
225(k2−3k−10)

• Recursion relation for r = 0

ak+2 = −9k2ak−90k2ak+1+72kak−855kak+1+8ak−810ak+1
225(k2+11k+18)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −9k2ak−90k2ak+1+72kak−855kak+1+8ak−810ak+1

225(k2+11k+18) , 1800a1 − 45a0 = 0
]

• Revert the change of variables u = x+ 5[
y =

∞∑
k=0

ak(x+ 5)k , ak+2 = −9k2ak−90k2ak+1+72kak−855kak+1+8ak−810ak+1
225(k2+11k+18) , 1800a1 − 45a0 = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 47� �
Order:=6;
dsolve(9*x^2*(5+x)*diff(y(x),x$2)+9*x*(5+9*x)*diff(y(x),x)-(5-8*x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c2x

2
3
(
1− 11

25x+ 11
50x

2 − 1
10x

3 + 29
700x

4 − 4727
297500x

5 +O(x6)
)
+ c1

(
1 + x− 1

2x
2 + 17

70x
3 − 187

1750x
4 + 24497

568750x
5 +O(x6)

)
x

1
3
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3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 86� �
AsymptoticDSolveValue[9*x^2*(5+x)*y''[x]+9*x*(5+9*x)*y'[x]-(5-8*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
3
√
x

(
−4727x5

297500 + 29x4

700 − x3

10 + 11x2

50 − 11x
25 + 1

)

+
c2
(

24497x5

568750 − 187x4

1750 + 17x3

70 − x2

2 + x+ 1
)

3
√
x
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14.54 problem 65
14.54.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5417

Internal problem ID [1345]
Internal file name [OUTPUT/1346_Sunday_June_05_2022_02_12_10_AM_76298910/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 65.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

8x2(−x2 + 2
)
y′′ + 2x

(
−21x2 + 10

)
y′ −

(
35x2 + 2

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

−8x4 + 16x2) y′′ + (−42x3 + 20x
)
y′ +

(
−35x2 − 2

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 21x2 − 10
4x (x2 − 2)

q(x) = 35x2 + 2
8x2 (x2 − 2)
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Table 636: Table p(x), q(x) singularites.

p(x) = 21x2−10
4x(x2−2)

singularity type
x = 0 “regular”
x =

√
2 “regular”

x = −
√
2 “regular”

q(x) = 35x2+2
8x2(x2−2)

singularity type
x = 0 “regular”
x =

√
2 “regular”

x = −
√
2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,
√
2,−

√
2,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−8y′′x2(x2 − 2
)
+
(
−42x3 + 20x

)
y′ +

(
−35x2 − 2

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−8
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2(x2 − 2

)
+
(
−42x3 + 20x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
−35x2 − 2

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−8xn+r+2an(n+ r) (n+ r− 1)

)
+
(

∞∑
n=0

16xn+ran(n+ r) (n+ r− 1)
)

+
∞∑

n =0

(
−42xn+r+2an(n+ r)

)
+
(

∞∑
n=0

20xn+ran(n+ r)
)

+
∞∑

n =0

(
−35xn+r+2an

)
+

∞∑
n =0

(
−2anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−8xn+r+2an(n+ r) (n+ r − 1)

)
=

∞∑
n=2

(
−8an−2(n+ r − 2) (n− 3 + r)xn+r

)
∞∑

n =0

(
−42xn+r+2an(n+ r)

)
=

∞∑
n=2

(
−42an−2(n+ r − 2)xn+r

)
∞∑

n =0

(
−35xn+r+2an

)
=

∞∑
n=2

(
−35an−2x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =2

(
−8an−2(n+ r − 2) (n− 3 + r)xn+r

)
+
(

∞∑
n=0

16xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =2

(
−42an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=0

20xn+ran(n+ r)
)

+
∞∑

n =2

(
−35an−2x

n+r
)
+

∞∑
n =0

(
−2anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

16xn+ran(n+ r) (n+ r − 1) + 20xn+ran(n+ r)− 2anxn+r = 0
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When n = 0 the above becomes

16xra0r(−1 + r) + 20xra0r − 2a0xr = 0

Or
(16xrr(−1 + r) + 20xrr − 2xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
16r2 + 4r − 2

)
xr = 0

Since the above is true for all x then the indicial equation becomes

16r2 + 4r − 2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
4

r2 = −1
2

Since a0 6= 0 then the indicial equation becomes(
16r2 + 4r − 2

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3
4 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

4

y2(x) =
∞∑
n=0

bnx
n− 1

2

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)−8an−2(n+ r − 2) (n− 3 + r) + 16an(n+ r) (n+ r − 1)
− 42an−2(n+ r − 2) + 20an(n+ r)− 35an−2 − 2an = 0

Solving for an from recursive equation (4) gives

an = an−2

2 (4)

Which for the root r = 1
4 becomes

an = an−2

2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

4 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
1
2

Which for the root r = 1
4 becomes

a2 =
1
2

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1
2

1
2

For n = 3, using the above recursive equation gives

a3 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1
2

1
2

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1
4

Which for the root r = 1
4 becomes

a4 =
1
4

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1
2

1
2

a3 0 0
a4

1
4

1
4

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1
2

1
2

a3 0 0
a4

1
4

1
4

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) = x
1
4
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
4

(
1 + x2

2 + x4

4 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

For 2 ≤ n the recursive equation is

(3)−8bn−2(n+ r − 2) (n− 3 + r) + 16bn(n+ r) (n+ r − 1)
− 42bn−2(n+ r − 2) + 20bn(n+ r)− 35bn−2 − 2bn = 0

Solving for bn from recursive equation (4) gives

bn = bn−2

2 (4)

Which for the root r = −1
2 becomes

bn = bn−2

2 (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 =
1
2

Which for the root r = −1
2 becomes

b2 =
1
2
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1
2

1
2

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1
2

1
2

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
1
4

Which for the root r = −1
2 becomes

b4 =
1
4

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1
2

1
2

b3 0 0
b4

1
4

1
4
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For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1
2

1
2

b3 0 0
b4

1
4

1
4

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x
1
4
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1 + x2

2 + x4

4 +O(x6)
√
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
4

(
1 + x2

2 + x4

4 +O
(
x6))+

c2
(
1 + x2

2 + x4

4 +O(x6)
)

√
x

Hence the final solution is

y = yh

= c1x
1
4

(
1 + x2

2 + x4

4 +O
(
x6))+

c2
(
1 + x2

2 + x4

4 +O(x6)
)

√
x

Summary
The solution(s) found are the following

(1)y = c1x
1
4

(
1 + x2

2 + x4

4 +O
(
x6))+

c2
(
1 + x2

2 + x4

4 +O(x6)
)

√
x
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Verification of solutions

y = c1x
1
4

(
1 + x2

2 + x4

4 +O
(
x6))+

c2
(
1 + x2

2 + x4

4 +O(x6)
)

√
x

Verified OK.

14.54.1 Maple step by step solution

Let’s solve
−8y′′x2(x2 − 2) + (−42x3 + 20x) y′ + (−35x2 − 2) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
35x2+2

)
y

8x2(x2−2) −
(
21x2−10

)
y′

4x(x2−2)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
21x2−10

)
y′

4x(x2−2) +
(
35x2+2

)
y

8x2(x2−2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 21x2−10
4x(x2−2) , P3(x) = 35x2+2

8x2(x2−2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
8

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
8y′′x2(x2 − 2) + 2x(21x2 − 10) y′ + (35x2 + 2) y = 0

• Assume series solution for y
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y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−2a0(1 + 2r) (−1 + 4r)xr − 2a1(3 + 2r) (3 + 4r)x1+r +
(

∞∑
k=2

(−2ak(2k + 2r + 1) (4k + 4r − 1) + ak−2(2k + 2r + 1) (4k + 4r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2(1 + 2r) (−1 + 4r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
4

}
• Each term must be 0

−2a1(3 + 2r) (3 + 4r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

5418



−(2k + 2r + 1) (4k + 4r − 1) (2ak − ak−2) = 0
• Shift index using k− >k + 2

−(2k + 2r + 5) (4k + 4r + 7) (2ak+2 − ak) = 0
• Recursion relation that defines series solution to ODE

ak+2 = ak
2

• Recursion relation for r = −1
2

ak+2 = ak
2

• Solution for r = −1
2[

y =
∞∑
k=0

akx
k− 1

2 , ak+2 = ak
2 , a1 = 0

]
• Recursion relation for r = 1

4

ak+2 = ak
2

• Solution for r = 1
4[

y =
∞∑
k=0

akx
k+ 1

4 , ak+2 = ak
2 , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

4

)
, ak+2 = ak

2 , a1 = 0, bk+2 = bk
2 , b1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �

5419



3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
Order:=6;
dsolve(8*x^2*(2-x^2)*diff(y(x),x$2)+2*x*(10-21*x^2)*diff(y(x),x)-(2+35*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =

(
1 + 1

2x
2 + 1

4x
4) (x 3

4 c2 + c1
)

√
x

+O
(
x6)

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 52� �
AsymptoticDSolveValue[8*x^2*(2-x^2)*y''[x]+2*x*(10-21*x^2)*y'[x]-(2+35*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
4
√
x

(
x4

4 + x2

2 + 1
)
+

c2
(

x4

4 + x2

2 + 1
)

√
x
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14.55 problem 66
14.55.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5431

Internal problem ID [1346]
Internal file name [OUTPUT/1347_Sunday_June_05_2022_02_12_13_AM_27586300/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 66.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2(x2 + 3x+ 1
)
y′′ − 4x

(
−3x2 − 3x+ 1

)
y′ + 3

(
x2 − x+ 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

4x4 + 12x3 + 4x2) y′′ + (12x3 + 12x2 − 4x
)
y′ +

(
3x2 − 3x+ 3

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3x2 + 3x− 1
x (x2 + 3x+ 1)

q(x) =
3
4x

2 − 3
4x+ 3

4
x2 (x2 + 3x+ 1)
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Table 638: Table p(x), q(x) singularites.

p(x) = 3x2+3x−1
x(x2+3x+1)

singularity type
x = 0 “regular”

x = −3
2 −

√
5
2 “regular”

x =
√
5
2 − 3

2 “regular”

q(x) =
3
4x

2− 3
4x+

3
4

x2(x2+3x+1)

singularity type
x = 0 “regular”

x = −3
2 −

√
5
2 “regular”

x =
√
5
2 − 3

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−3

2 −
√
5
2 ,

√
5
2 − 3

2 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2(x2 + 3x+ 1
)
y′′ +

(
12x3 + 12x2 − 4x

)
y′ +

(
3x2 − 3x+ 3

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2(x2 + 3x+ 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
12x3+12x2−4x

)( ∞∑
n=0

(n+r) anxn+r−1

)
+
(
3x2−3x+3

)( ∞∑
n=0

anx
n+r

)
=0
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Which simplifies to

(2A)

(
∞∑
n=0

4xn+r+2an(n+r) (n+r−1)
)
+
(

∞∑
n=0

12x1+n+ran(n+r) (n+r−1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

12xn+r+2an(n+ r)
)

+
(

∞∑
n=0

12x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−4xn+ran(n+ r)

)
+
(

∞∑
n=0

3xn+r+2an

)
+

∞∑
n =0

(
−3x1+n+ran

)
+
(

∞∑
n=0

3anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

4an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

12x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

12an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

12xn+r+2an(n+ r) =
∞∑
n=2

12an−2(n+ r − 2)xn+r

∞∑
n =0

12x1+n+ran(n+ r) =
∞∑
n=1

12an−1(n+ r − 1)xn+r

∞∑
n =0

3xn+r+2an =
∞∑
n=2

3an−2x
n+r

∞∑
n =0

(
−3x1+n+ran

)
=

∞∑
n=1

(
−3an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

4an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=1

12an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

12an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=1

12an−1(n+ r − 1)xn+r

)
+

∞∑
n =0

(
−4xn+ran(n+ r)

)
+
(

∞∑
n=2

3an−2x
n+r

)
+

∞∑
n =1

(
−3an−1x

n+r
)
+
(

∞∑
n=0

3anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1)− 4xn+ran(n+ r) + 3anxn+r = 0

When n = 0 the above becomes

4xra0r(−1 + r)− 4xra0r + 3a0xr = 0

Or
(4xrr(−1 + r)− 4xrr + 3xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 − 8r + 3

)
xr = 0

Since the above is true for all x then the indicial equation becomes

4r2 − 8r + 3 = 0

Solving for r gives the roots of the indicial equation as

r1 =
3
2

r2 =
1
2

Since a0 6= 0 then the indicial equation becomes(
4r2 − 8r + 3

)
xr = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x
3
2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
√
x

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 3

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+ 1

2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = −3

For 2 ≤ n the recursive equation is

(3)4an−2(n+r−2) (n−3+r)+12an−1(n+r−1) (n+r−2)+4an(n+r) (n+r−1)
+12an−2(n+r−2)+12an−1(n+r−1)−4an(n+r)+3an−2−3an−1+3an = 0

Solving for an from recursive equation (4) gives

an = −an−2 − 3an−1 (4)

Which for the root r = 3
2 becomes

an = −an−2 − 3an−1 (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 3

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 −3 −3

For n = 2, using the above recursive equation gives

a2 = 8

Which for the root r = 3
2 becomes

a2 = 8

And the table now becomes

n an,r an

a0 1 1
a1 −3 −3
a2 8 8

For n = 3, using the above recursive equation gives

a3 = −21

Which for the root r = 3
2 becomes

a3 = −21

And the table now becomes

n an,r an

a0 1 1
a1 −3 −3
a2 8 8
a3 −21 −21

For n = 4, using the above recursive equation gives

a4 = 55
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Which for the root r = 3
2 becomes

a4 = 55

And the table now becomes

n an,r an

a0 1 1
a1 −3 −3
a2 8 8
a3 −21 −21
a4 55 55

For n = 5, using the above recursive equation gives

a5 = −144

Which for the root r = 3
2 becomes

a5 = −144

And the table now becomes

n an,r an

a0 1 1
a1 −3 −3
a2 8 8
a3 −21 −21
a4 55 55
a5 −144 −144

Using the above table, then the solution y1(x) is

y1(x) = x
3
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
3
2
(
1− 3x+ 8x2 − 21x3 + 55x4 − 144x5 +O

(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N
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Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= −3

Therefore

lim
r→r2

−3 = lim
r→ 1

2

−3

= −3

The limit is −3. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n+ 1

2

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = −3

For 2 ≤ n the recursive equation is

(4)4bn−2(n+r−2) (n−3+r)+12bn−1(n+r−1) (n+r−2)+4bn(n+r) (n+r−1)
+ 12bn−2(n+ r− 2)+ 12bn−1(n+ r− 1)− 4bn(n+ r)+ 3bn−2 − 3bn−1 +3bn = 0

Which for for the root r = 1
2 becomes

(4A)4bn−2

(
n− 3

2

)(
n− 5

2

)
+12bn−1

(
n− 1

2

)(
n− 3

2

)
+4bn

(
n+ 1

2

)(
n− 1

2

)
+12bn−2

(
n− 3

2

)
+12bn−1

(
n− 1

2

)
− 4bn

(
n+ 1

2

)
+3bn−2− 3bn−1+3bn = 0

Solving for bn from the recursive equation (4) gives

bn = −bn−2 − 3bn−1 (5)
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Which for the root r = 1
2 becomes

bn = −bn−2 − 3bn−1 (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 −3 −3

For n = 2, using the above recursive equation gives

b2 = 8

Which for the root r = 1
2 becomes

b2 = 8

And the table now becomes

n bn,r bn

b0 1 1
b1 −3 −3
b2 8 8

For n = 3, using the above recursive equation gives

b3 = −21

Which for the root r = 1
2 becomes

b3 = −21

And the table now becomes

n bn,r bn

b0 1 1
b1 −3 −3
b2 8 8
b3 −21 −21
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For n = 4, using the above recursive equation gives

b4 = 55

Which for the root r = 1
2 becomes

b4 = 55

And the table now becomes

n bn,r bn

b0 1 1
b1 −3 −3
b2 8 8
b3 −21 −21
b4 55 55

For n = 5, using the above recursive equation gives

b5 = −144

Which for the root r = 1
2 becomes

b5 = −144

And the table now becomes

n bn,r bn

b0 1 1
b1 −3 −3
b2 8 8
b3 −21 −21
b4 55 55
b5 −144 −144

Using the above table, then the solution y2(x) is

y2(x) = x
3
2
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
√
x
(
1− 3x+ 8x2 − 21x3 + 55x4 − 144x5 +O

(
x6))
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3
2
(
1− 3x+ 8x2 − 21x3 + 55x4 − 144x5 +O

(
x6))

+ c2
√
x
(
1− 3x+ 8x2 − 21x3 + 55x4 − 144x5 +O

(
x6))

Hence the final solution is

y = yh

= c1x
3
2
(
1− 3x+ 8x2 − 21x3 + 55x4 − 144x5 +O

(
x6))

+ c2
√
x
(
1− 3x+ 8x2 − 21x3 + 55x4 − 144x5 +O

(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
3
2
(
1− 3x+ 8x2 − 21x3 + 55x4 − 144x5 +O

(
x6))

+ c2
√
x
(
1− 3x+ 8x2 − 21x3 + 55x4 − 144x5 +O

(
x6))

Verification of solutions

y = c1x
3
2
(
1− 3x+ 8x2 − 21x3 + 55x4 − 144x5 +O

(
x6))

+ c2
√
x
(
1− 3x+ 8x2 − 21x3 + 55x4 − 144x5 +O

(
x6))

Verified OK.

14.55.1 Maple step by step solution

Let’s solve
4x2(x2 + 3x+ 1) y′′ + (12x3 + 12x2 − 4x) y′ + (3x2 − 3x+ 3) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 3
(
x2−x+1

)
y

4x2(x2+3x+1) −
(
3x2+3x−1

)
y′

x(x2+3x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
3x2+3x−1

)
y′

x(x2+3x+1) + 3
(
x2−x+1

)
y

4x2(x2+3x+1) = 0

� Check to see if x0 is a regular singular point
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◦ Define functions[
P2(x) = 3x2+3x−1

x(x2+3x+1) , P3(x) = 3
(
x2−x+1

)
4x2(x2+3x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2(x2 + 3x+ 1) y′′ + 4x(3x2 + 3x− 1) y′ + (3x2 − 3x+ 3) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m
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◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r) (−3 + 2r)xr + (a1(1 + 2r) (−1 + 2r) + 3a0(1 + 2r) (−1 + 2r))x1+r +
(

∞∑
k=2

(ak(2k + 2r − 1) (2k + 2r − 3) + 3ak−1(2k + 2r − 1) (2k + 2r − 3) + ak−2(2k + 2r − 1) (2k + 2r − 3))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
2 ,

3
2

}
• Each term must be 0

a1(1 + 2r) (−1 + 2r) + 3a0(1 + 2r) (−1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = −3a0
• Each term in the series must be 0, giving the recursion relation

(2k + 2r − 1) (2k + 2r − 3) (ak + 3ak−1 + ak−2) = 0
• Shift index using k− >k + 2

(2k + 2r + 3) (2k + 2r + 1) (ak+2 + 3ak+1 + ak) = 0
• Recursion relation that defines series solution to ODE

ak+2 = −3ak+1 − ak

• Recursion relation for r = 1
2

ak+2 = −3ak+1 − ak

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −3ak+1 − ak, a1 = −3a0
]

• Recursion relation for r = 3
2

ak+2 = −3ak+1 − ak

• Solution for r = 3
2[

y =
∞∑
k=0

akx
k+ 3

2 , ak+2 = −3ak+1 − ak, a1 = −3a0
]

• Combine solutions and rename parameters
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[
y =

(
∞∑
k=0

akx
k+ 1

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+2 = −3a1+k − ak, a1 = −3a0, bk+2 = −3b1+k − bk, b1 = −3b0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 47� �
Order:=6;
dsolve(4*x^2*(1+3*x+x^2)*diff(y(x),x$2)-4*x*(1-3*x-3*x^2)*diff(y(x),x)+3*(1-x+x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
√
x
(
x
(
1− 3x+ 8x2 − 21x3 + 55x4 − 144x5 +O

(
x6)) c1

+
(
1− 6x+ 17x2 − 45x3 + 118x4 − 309x5 +O

(
x6)) c2)

3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 78� �
AsymptoticDSolveValue[4*x^2*(1+3*x+x^2)*y''[x]-4*x*(1-3*x-3*x^2)*y'[x]+3*(1-x+x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
(
55x9/2 − 21x7/2 + 8x5/2 − 3x3/2

+
√
x
)
+ c2

(
55x11/2 − 21x9/2 + 8x7/2 − 3x5/2 + x3/2)
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14.56 problem 67
14.56.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5444

Internal problem ID [1347]
Internal file name [OUTPUT/1348_Sunday_June_05_2022_02_12_15_AM_28508719/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 67.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

3x2(x+ 1)2 y′′ − x
(
−11x2 − 10x+ 1

)
y′ +

(
5x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

3x4 + 6x3 + 3x2) y′′ + (11x3 + 10x2 − x
)
y′ +

(
5x2 + 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 11x− 1
3x (x+ 1)

q(x) = 5x2 + 1
3x2 (x+ 1)2
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Table 640: Table p(x), q(x) singularites.

p(x) = 11x−1
3x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

q(x) = 5x2+1
3x2(x+1)2

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

3x2(x2 + 2x+ 1
)
y′′ +

(
11x3 + 10x2 − x

)
y′ +

(
5x2 + 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
3x2(x2 + 2x+ 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
11x3 + 10x2 − x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
5x2 + 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

3xn+r+2an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

6x1+n+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

3xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

11xn+r+2an(n+ r)
)

+
(

∞∑
n=0

10x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

5xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

3xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

3an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

6x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

6an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

11xn+r+2an(n+ r) =
∞∑
n=2

11an−2(n+ r − 2)xn+r

∞∑
n =0

10x1+n+ran(n+ r) =
∞∑
n=1

10an−1(n+ r − 1)xn+r

∞∑
n =0

5xn+r+2an =
∞∑
n=2

5an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ r.(
∞∑
n=2

3an−2(n+ r− 2) (n− 3 + r)xn+r

)
+
(

∞∑
n=1

6an−1(n+ r− 1) (n+ r− 2)xn+r

)

+
(

∞∑
n=0

3xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

11an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=1

10an−1(n+ r − 1)xn+r

)
+

∞∑
n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=2

5an−2x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

3xn+ran(n+ r) (n+ r − 1)− xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

3xra0r(−1 + r)− xra0r + a0x
r = 0

Or
(3xrr(−1 + r)− xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
3r2 − 4r + 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

3r2 − 4r + 1 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1

r2 =
1
3

Since a0 6= 0 then the indicial equation becomes(
3r2 − 4r + 1

)
xr = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2
3 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
1+n

y2(x) =
∞∑
n=0

bnx
n+ 1

3

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = −2

For 2 ≤ n the recursive equation is

(3)3an−2(n+r−2) (n−3+r)+6an−1(n+r−1) (n+r−2)+3an(n+r) (n+r−1)
+ 11an−2(n+ r − 2) + 10an−1(n+ r − 1)− an(n+ r) + 5an−2 + an = 0

Solving for an from recursive equation (4) gives

an = −an−2 − 2an−1 (4)

Which for the root r = 1 becomes

an = −an−2 − 2an−1 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 −2 −2
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For n = 2, using the above recursive equation gives

a2 = 3

Which for the root r = 1 becomes
a2 = 3

And the table now becomes

n an,r an

a0 1 1
a1 −2 −2
a2 3 3

For n = 3, using the above recursive equation gives

a3 = −4

Which for the root r = 1 becomes
a3 = −4

And the table now becomes

n an,r an

a0 1 1
a1 −2 −2
a2 3 3
a3 −4 −4

For n = 4, using the above recursive equation gives

a4 = 5

Which for the root r = 1 becomes
a4 = 5

And the table now becomes
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n an,r an

a0 1 1
a1 −2 −2
a2 3 3
a3 −4 −4
a4 5 5

For n = 5, using the above recursive equation gives

a5 = −6

Which for the root r = 1 becomes
a5 = −6

And the table now becomes

n an,r an

a0 1 1
a1 −2 −2
a2 3 3
a3 −4 −4
a4 5 5
a5 −6 −6

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
(
1− 2x+ 3x2 − 4x3 + 5x4 − 6x5 +O

(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = −2
For 2 ≤ n the recursive equation is

(3)3bn−2(n+r−2) (n−3+r)+6bn−1(n+r−1) (n+r−2)+3bn(n+r) (n+r−1)
+ 11bn−2(n+ r − 2) + 10bn−1(n+ r − 1)− bn(n+ r) + 5bn−2 + bn = 0
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Solving for bn from recursive equation (4) gives

bn = −bn−2 − 2bn−1 (4)

Which for the root r = 1
3 becomes

bn = −bn−2 − 2bn−1 (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 −2 −2

For n = 2, using the above recursive equation gives

b2 = 3

Which for the root r = 1
3 becomes

b2 = 3
And the table now becomes

n bn,r bn

b0 1 1
b1 −2 −2
b2 3 3

For n = 3, using the above recursive equation gives

b3 = −4

Which for the root r = 1
3 becomes

b3 = −4
And the table now becomes

n bn,r bn

b0 1 1
b1 −2 −2
b2 3 3
b3 −4 −4
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For n = 4, using the above recursive equation gives

b4 = 5

Which for the root r = 1
3 becomes

b4 = 5

And the table now becomes

n bn,r bn

b0 1 1
b1 −2 −2
b2 3 3
b3 −4 −4
b4 5 5

For n = 5, using the above recursive equation gives

b5 = −6

Which for the root r = 1
3 becomes

b5 = −6

And the table now becomes

n bn,r bn

b0 1 1
b1 −2 −2
b2 3 3
b3 −4 −4
b4 5 5
b5 −6 −6

Using the above table, then the solution y2(x) is

y2(x) = x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x
1
3
(
1− 2x+ 3x2 − 4x3 + 5x4 − 6x5 +O

(
x6))
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
(
1− 2x+ 3x2 − 4x3 + 5x4 − 6x5 +O

(
x6))

+ c2x
1
3
(
1− 2x+ 3x2 − 4x3 + 5x4 − 6x5 +O

(
x6))

Hence the final solution is

y = yh

= c1x
(
1− 2x+ 3x2 − 4x3 + 5x4 − 6x5 +O

(
x6))

+ c2x
1
3
(
1− 2x+ 3x2 − 4x3 + 5x4 − 6x5 +O

(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
(
1− 2x+ 3x2 − 4x3 + 5x4 − 6x5 +O

(
x6))

+ c2x
1
3
(
1− 2x+ 3x2 − 4x3 + 5x4 − 6x5 +O

(
x6))

Verification of solutions

y = c1x
(
1− 2x+ 3x2 − 4x3 + 5x4 − 6x5 +O

(
x6))

+ c2x
1
3
(
1− 2x+ 3x2 − 4x3 + 5x4 − 6x5 +O

(
x6))

Verified OK.

14.56.1 Maple step by step solution

Let’s solve
3x2(x2 + 2x+ 1) y′′ + (11x3 + 10x2 − x) y′ + (5x2 + 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
5x2+1

)
y

3x2(x2+2x+1) −
y′(11x−1)
3x(x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′(11x−1)
3x(x+1) +

(
5x2+1

)
y

3x2(x2+2x+1) = 0

� Check to see if x0 is a regular singular point
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◦ Define functions[
P2(x) = 11x−1

3x(x+1) , P3(x) = 5x2+1
3x2(x2+2x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 4

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 2

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
3x2(x+ 1) (x2 + 2x+ 1) y′′ + (11x− 1)x(x2 + 2x+ 1) y′ + (5x2 + 1) (x+ 1) y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(3u5 − 6u4 + 3u3)
(

d2

du2y(u)
)
+ (11u4 − 23u3 + 12u2)

(
d
du
y(u)

)
+ (5u3 − 10u2 + 6u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 1..3

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 2..4

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r
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◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 3..5

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

3a0(2 + r) (1 + r)u1+r + (3a1(3 + r) (2 + r)− a0(2 + r) (5 + 6r))u2+r +
(

∞∑
k=3

(3ak−1(k + r + 1) (k + r)− ak−2(k + r) (6k − 7 + 6r) + ak−3(3k − 4 + 3r) (k − 2 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
3(2 + r) (1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2,−1}

• Each term must be 0
3a1(3 + r) (2 + r)− a0(2 + r) (5 + 6r) = 0

• Solve for the dependent coefficient(s)
a1 = a0(5+6r)

3(3+r)

• Each term in the series must be 0, giving the recursion relation
3ak−1(k + r + 1) (k + r)− 6(k + r) ak−2

(
k − 7

6 + r
)
+ ak−3(3k − 4 + 3r) (k − 2 + r) = 0

• Shift index using k− >k + 3
3ak+2(k + 4 + r) (k + 3 + r)− 6(k + 3 + r) ak+1

(
k + 11

6 + r
)
+ ak(3k + 3r + 5) (k + r + 1) = 0

• Recursion relation that defines series solution to ODE

ak+2 = −3k2ak−6k2ak+1+6krak−12krak+1+3r2ak−6r2ak+1+8kak−29kak+1+8rak−29rak+1+5ak−33ak+1
3(k+4+r)(k+3+r)

• Recursion relation for r = −2

ak+2 = −3k2ak−6k2ak+1−4kak−5kak+1+ak+ak+1
3(k+2)(k+1)

• Solution for r = −2[
y(u) =

∞∑
k=0

aku
k−2, ak+2 = −3k2ak−6k2ak+1−4kak−5kak+1+ak+ak+1

3(k+2)(k+1) , a1 = −7a0
3

]
• Revert the change of variables u = x+ 1
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[
y =

∞∑
k=0

ak(x+ 1)k−2 , ak+2 = −3k2ak−6k2ak+1−4kak−5kak+1+ak+ak+1
3(k+2)(k+1) , a1 = −7a0

3

]
• Recursion relation for r = −1

ak+2 = −3k2ak−6k2ak+1+2kak−17kak+1−10ak+1
3(k+3)(k+2)

• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+2 = −3k2ak−6k2ak+1+2kak−17kak+1−10ak+1

3(k+3)(k+2) , a1 = −a0
6

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k−1 , ak+2 = −3k2ak−6k2ak+1+2kak−17kak+1−10ak+1
3(k+3)(k+2) , a1 = −a0

6

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x+ 1)k−2
)
+
(

∞∑
k=0

bk(x+ 1)k−1
)
, ak+2 = −3k2ak−6k2a1+k−4kak−5ka1+k+ak+a1+k

3(k+2)(1+k) , a1 = −7a0
3 , bk+2 = −3k2bk−6k2b1+k+2kbk−17kb1+k−10b1+k

3(k+3)(k+2) , b1 = − b0
6

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 45� �
Order:=6;
dsolve(3*x^2*(1+x)^2*diff(y(x),x$2)-x*(1-10*x-11*x^2)*diff(y(x),x)+(1+5*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
−6x5 + 5x4 − 4x3 + 3x2 − 2x+ 1

) (
c1x

1
3 + c2x

)
+O

(
x6)
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3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 66� �
AsymptoticDSolveValue[3*x^2*(1+x)^2*y''[x]-x*(1-10*x-11*x^2)*y'[x]+(1+5*x^2)*y[x]==0,y[x],{x,0,5}]� �
y(x)→ c1x

(
−6x5+5x4− 4x3+3x2− 2x+1

)
+ c2

3
√
x
(
−6x5+5x4− 4x3+3x2− 2x+1

)
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14.57 problem 68
14.57.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5459

Internal problem ID [1348]
Internal file name [OUTPUT/1349_Sunday_June_05_2022_02_12_18_AM_35802698/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF
FROBENIUS I. Exercises 7.5. Page 358
Problem number: 68.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2(x2 + 2x+ 3
)
y′′ − x

(
−15x2 − 14x+ 3

)
y′ +

(
7x2 + 3

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

4x4 + 8x3 + 12x2) y′′ + (15x3 + 14x2 − 3x
)
y′ +

(
7x2 + 3

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 15x2 + 14x− 3
4x (x2 + 2x+ 3)

q(x) = 7x2 + 3
4x2 (x2 + 2x+ 3)
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Table 642: Table p(x), q(x) singularites.

p(x) = 15x2+14x−3
4x(x2+2x+3)

singularity type
x = 0 “regular”

x = −1− i
√
2 “regular”

x = −1 + i
√
2 “regular”

q(x) = 7x2+3
4x2(x2+2x+3)

singularity type
x = 0 “regular”

x = −1− i
√
2 “regular”

x = −1 + i
√
2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−1− i

√
2,−1 + i

√
2,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2(x2 + 2x+ 3
)
y′′ +

(
15x3 + 14x2 − 3x

)
y′ +

(
7x2 + 3

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2(x2 + 2x+ 3

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
15x3 + 14x2 − 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
7x2 + 3

)( ∞∑
n=0

anx
n+r

)
= 0

5450



Which simplifies to

(2A)

(
∞∑
n=0

4xn+r+2an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

8x1+n+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

12xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

15xn+r+2an(n+ r)
)

+
(

∞∑
n=0

14x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−3xn+ran(n+ r)

)
+
(

∞∑
n=0

7xn+r+2an

)
+
(

∞∑
n=0

3anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

4an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

8x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

8an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

15xn+r+2an(n+ r) =
∞∑
n=2

15an−2(n+ r − 2)xn+r

∞∑
n =0

14x1+n+ran(n+ r) =
∞∑
n=1

14an−1(n+ r − 1)xn+r

∞∑
n =0

7xn+r+2an =
∞∑
n=2

7an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

4an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=1

8an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

12xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

15an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=1

14an−1(n+ r − 1)xn+r

)
+

∞∑
n =0

(
−3xn+ran(n+ r)

)
+
(

∞∑
n=2

7an−2x
n+r

)
+
(

∞∑
n=0

3anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

12xn+ran(n+ r) (n+ r − 1)− 3xn+ran(n+ r) + 3anxn+r = 0

When n = 0 the above becomes

12xra0r(−1 + r)− 3xra0r + 3a0xr = 0

Or
(12xrr(−1 + r)− 3xrr + 3xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
12r2 − 15r + 3

)
xr = 0

Since the above is true for all x then the indicial equation becomes

12r2 − 15r + 3 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1

r2 =
1
4

Since a0 6= 0 then the indicial equation becomes(
12r2 − 15r + 3

)
xr = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3
4 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
1+n

y2(x) =
∞∑
n=0

bnx
n+ 1

4

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = −2
3

For 2 ≤ n the recursive equation is

(3)4an−2(n+r−2) (n−3+r)+8an−1(n+r−1) (n+r−2)+12an(n+r) (n+r−1)
+ 15an−2(n+ r − 2) + 14an−1(n+ r − 1)− 3an(n+ r) + 7an−2 + 3an = 0

Solving for an from recursive equation (4) gives

an = −an−2

3 − 2an−1

3 (4)

Which for the root r = 1 becomes

an = −an−2

3 − 2an−1

3 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 −2

3 −2
3
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For n = 2, using the above recursive equation gives

a2 =
1
9

Which for the root r = 1 becomes
a2 =

1
9

And the table now becomes

n an,r an

a0 1 1
a1 −2

3 −2
3

a2
1
9

1
9

For n = 3, using the above recursive equation gives

a3 =
4
27

Which for the root r = 1 becomes
a3 =

4
27

And the table now becomes

n an,r an

a0 1 1
a1 −2

3 −2
3

a2
1
9

1
9

a3
4
27

4
27

For n = 4, using the above recursive equation gives

a4 = −11
81

Which for the root r = 1 becomes

a4 = −11
81

And the table now becomes
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n an,r an

a0 1 1
a1 −2

3 −2
3

a2
1
9

1
9

a3
4
27

4
27

a4 −11
81 −11

81

For n = 5, using the above recursive equation gives

a5 =
10
243

Which for the root r = 1 becomes

a5 =
10
243

And the table now becomes

n an,r an

a0 1 1
a1 −2

3 −2
3

a2
1
9

1
9

a3
4
27

4
27

a4 −11
81 −11

81

a5
10
243

10
243

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− 2x

3 + x2

9 + 4x3

27 − 11x4

81 + 10x5

243 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = −2
3
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For 2 ≤ n the recursive equation is

(3)4bn−2(n+r−2) (n−3+r)+8bn−1(n+r−1) (n+r−2)+12bn(n+r) (n+r−1)
+ 15bn−2(n+ r − 2) + 14bn−1(n+ r − 1)− 3bn(n+ r) + 7bn−2 + 3bn = 0

Solving for bn from recursive equation (4) gives

bn = −bn−2

3 − 2bn−1

3 (4)

Which for the root r = 1
4 becomes

bn = −bn−2

3 − 2bn−1

3 (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

4 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 −2

3 −2
3

For n = 2, using the above recursive equation gives

b2 =
1
9

Which for the root r = 1
4 becomes

b2 =
1
9

And the table now becomes

n bn,r bn

b0 1 1
b1 −2

3 −2
3

b2
1
9

1
9

For n = 3, using the above recursive equation gives

b3 =
4
27
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Which for the root r = 1
4 becomes

b3 =
4
27

And the table now becomes

n bn,r bn

b0 1 1
b1 −2

3 −2
3

b2
1
9

1
9

b3
4
27

4
27

For n = 4, using the above recursive equation gives

b4 = −11
81

Which for the root r = 1
4 becomes

b4 = −11
81

And the table now becomes

n bn,r bn

b0 1 1
b1 −2

3 −2
3

b2
1
9

1
9

b3
4
27

4
27

b4 −11
81 −11

81

For n = 5, using the above recursive equation gives

b5 =
10
243

Which for the root r = 1
4 becomes

b5 =
10
243

And the table now becomes
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n bn,r bn

b0 1 1
b1 −2

3 −2
3

b2
1
9

1
9

b3
4
27

4
27

b4 −11
81 −11

81

b5
10
243

10
243

Using the above table, then the solution y2(x) is

y2(x) = x
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x
1
4

(
1− 2x

3 + x2

9 + 4x3

27 − 11x4

81 + 10x5

243 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− 2x

3 + x2

9 + 4x3

27 − 11x4

81 + 10x5

243 +O
(
x6))

+ c2x
1
4

(
1− 2x

3 + x2

9 + 4x3

27 − 11x4

81 + 10x5

243 +O
(
x6))

Hence the final solution is

y = yh

= c1x

(
1− 2x

3 + x2

9 + 4x3

27 − 11x4

81 + 10x5

243 +O
(
x6))

+ c2x
1
4

(
1− 2x

3 + x2

9 + 4x3

27 − 11x4

81 + 10x5

243 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

(
1− 2x

3 + x2

9 + 4x3

27 − 11x4

81 + 10x5

243 +O
(
x6))

+ c2x
1
4

(
1− 2x

3 + x2

9 + 4x3

27 − 11x4

81 + 10x5

243 +O
(
x6))
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Verification of solutions

y = c1x

(
1− 2x

3 + x2

9 + 4x3

27 − 11x4

81 + 10x5

243 +O
(
x6))

+ c2x
1
4

(
1− 2x

3 + x2

9 + 4x3

27 − 11x4

81 + 10x5

243 +O
(
x6))

Verified OK.

14.57.1 Maple step by step solution

Let’s solve
4x2(x2 + 2x+ 3) y′′ + (15x3 + 14x2 − 3x) y′ + (7x2 + 3) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
7x2+3

)
y

4x2(x2+2x+3) −
(
15x2+14x−3

)
y′

4x(x2+2x+3)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
15x2+14x−3

)
y′

4x(x2+2x+3) +
(
7x2+3

)
y

4x2(x2+2x+3) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 15x2+14x−3
4x(x2+2x+3) , P3(x) = 7x2+3

4x2(x2+2x+3)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2(x2 + 2x+ 3) y′′ + x(15x2 + 14x− 3) y′ + (7x2 + 3) y = 0
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• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

3a0(−1 + 4r) (−1 + r)xr + (3a1(3 + 4r) r + 2a0r(3 + 4r))x1+r +
(

∞∑
k=2

(3ak(4k + 4r − 1) (k + r − 1) + 2ak−1(k + r − 1) (4k + 4r − 1) + ak−2(4k + 4r − 1) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
3(−1 + 4r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
1, 14
}

• Each term must be 0
3a1(3 + 4r) r + 2a0r(3 + 4r) = 0

• Solve for the dependent coefficient(s)
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a1 = −2a0
3

• Each term in the series must be 0, giving the recursion relation
(4k + 4r − 1) (k + r − 1) (3ak + 2ak−1 + ak−2) = 0

• Shift index using k− >k + 2
(4k + 4r + 7) (k + r + 1) (3ak+2 + 2ak+1 + ak) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2ak+1

3 − ak
3

• Recursion relation for r = 1
ak+2 = −2ak+1

3 − ak
3

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = −2ak+1

3 − ak
3 , a1 = −2a0

3

]
• Recursion relation for r = 1

4

ak+2 = −2ak+1
3 − ak

3

• Solution for r = 1
4[

y =
∞∑
k=0

akx
k+ 1

4 , ak+2 = −2ak+1
3 − ak

3 , a1 = −2a0
3

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
1+k

)
+
(

∞∑
k=0

bkx
k+ 1

4

)
, ak+2 = −2a1+k

3 − ak
3 , a1 = −2a0

3 , bk+2 = −2b1+k

3 − bk
3 , b1 = −2b0

3

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 45� �
Order:=6;
dsolve(4*x^2*(3+2*x+x^2)*diff(y(x),x$2)-x*(3-14*x-15*x^2)*diff(y(x),x)+(3+7*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 2

3x+ 1
9x

2 + 4
27x

3 − 11
81x

4 + 10
243x

5
)(

c1x
1
4 + c2x

)
+O

(
x6)

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 86� �
AsymptoticDSolveValue[4*x^2*(3+2*x+x^2)*y''[x]-x*(3-14*x-15*x^2)*y'[x]+(3+7*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x

(
10x5

243 − 11x4

81 + 4x3

27 + x2

9 − 2x
3 + 1

)
+ c2

4
√
x

(
10x5

243 − 11x4

81 + 4x3

27 + x2

9 − 2x
3 + 1

)

5462



15 Chapter 7 Series Solutions of Linear Second
Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374

15.1 problem Example 7.6.1 page 367 . . . . . . . . . . . . . . . . . . . . . . . 5465
15.2 problem Example 7.6.2 page 369 . . . . . . . . . . . . . . . . . . . . . . . 5477
15.3 problem Example 7.6.3 page 370 . . . . . . . . . . . . . . . . . . . . . . . 5490
15.4 problem Example 7.6.4 page 372 . . . . . . . . . . . . . . . . . . . . . . . 5501
15.5 problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5513
15.6 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5527
15.7 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5542
15.8 problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5556
15.9 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5570
15.10problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5584
15.11problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5599
15.12problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5613
15.13problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5628
15.14problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5643
15.15problem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5658
15.16problem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5674
15.17problem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5686
15.18problem 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5699
15.19problem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5711
15.20problem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5723
15.21problem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5736
15.22problem 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5749
15.23problem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5762
15.24problem 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5774
15.25problem 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5787
15.26problem 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5800
15.27problem 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5813
15.28problem 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5828
15.29problem 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5843
15.30problem 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5858
15.31problem 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5872
15.32problem 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5887
15.33problem 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5898
15.34problem 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5909

5463



15.35problem 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5920
15.36problem 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5931
15.37problem 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5944
15.38problem 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5955
15.39problem 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5968
15.40problem 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5981
15.41problem 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5993
15.42problem 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6004
15.43problem 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6016
15.44problem 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6028
15.45problem 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6039
15.46problem 42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6052
15.47problem 43 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6065
15.48problem 44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6077
15.49problem 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6089
15.50problem 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6101
15.51problem 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6113
15.52problem 48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6126
15.53problem 49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6138
15.54problem 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6149
15.55problem 51 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6161
15.56problem 52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6172
15.57problem 58 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6184
15.58problem 59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6196
15.59problem 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6209
15.60problem 61 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6220
15.61problem 62 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6231
15.62problem 63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6242
15.63problem 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6254
15.64problem 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6266

5464



15.1 problem Example 7.6.1 page 367
15.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5473

Internal problem ID [1349]
Internal file name [OUTPUT/1350_Sunday_June_05_2022_02_12_20_AM_74780778/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: Example 7.6.1 page 367.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x2 − 2x+ 1
)
y′′ − x(x+ 3) y′ + (x+ 4) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x4 − 2x3 + x2) y′′ + (−x2 − 3x
)
y′ + (x+ 4) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − x+ 3
x (x− 1)2

q(x) = x+ 4
x2 (x− 1)2
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Table 644: Table p(x), q(x) singularites.

p(x) = − x+3
x(x−1)2

singularity type
x = 0 “regular”
x = 1 “irregular”

q(x) = x+4
x2(x−1)2

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞]

Irregular singular points : [1]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 − 2x+ 1
)
y′′ +

(
−x2 − 3x

)
y′ + (x+ 4) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x2 − 2x+ 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−x2 − 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (x+ 4)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r− 1)
)
+

∞∑
n =0

(
−2x1+n+ran(n+ r) (n+ r− 1)

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−x1+n+ran(n+ r)

)
+

∞∑
n =0

(
−3xn+ran(n+ r)

)
+
(

∞∑
n=0

x1+n+ran

)
+
(

∞∑
n=0

4anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

(
−2x1+n+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1) (n+ r − 2)xn+r

)
∞∑

n =0

(
−x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−an−1(n+ r − 1)xn+r

)
∞∑

n =0

x1+n+ran =
∞∑
n=1

an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
∞∑

n =1

(
−2an−1(n+ r − 1) (n+ r − 2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−an−1(n+ r − 1)xn+r

)
+

∞∑
n =0

(
−3xn+ran(n+ r)

)
+
(

∞∑
n=1

an−1x
n+r

)
+
(

∞∑
n=0

4anxn+r

)
= 0
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The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 3xn+ran(n+ r) + 4anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− 3xra0r + 4a0xr = 0

Or
(xrr(−1 + r)− 3xrr + 4xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r − 2)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(r − 2)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = 2

Since a0 6= 0 then the indicial equation becomes

(r − 2)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 2, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+2

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 =
2r + 1
−1 + r

For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r)− 2an−1(n+ r − 1) (n+ r − 2)
+ an(n+ r) (n+ r − 1)− an−1(n+ r − 1)− 3an(n+ r) + an−1 + 4an = 0

Solving for an from recursive equation (4) gives

an = −nan−2 − 2nan−1 + ran−2 − 2ran−1 − 3an−2 + an−1

n+ r − 2 (4)

Which for the root r = 2 becomes

an = (−an−2 + 2an−1)n+ an−2 + 3an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

2r+1
−1+r

5

For n = 2, using the above recursive equation gives

a2 =
3r2 + 10r + 2
r (−1 + r)
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Which for the root r = 2 becomes
a2 = 17

And the table now becomes

n an,r an

a0 1 1
a1

2r+1
−1+r

5

a2
3r2+10r+2
r(−1+r) 17

For n = 3, using the above recursive equation gives

a3 =
4r3 + 34r2 + 54r + 10

r3 − r

Which for the root r = 2 becomes

a3 =
143
3

And the table now becomes

n an,r an

a0 1 1
a1

2r+1
−1+r

5

a2
3r2+10r+2
r(−1+r) 17

a3
4r3+34r2+54r+10

r3−r
143
3

For n = 4, using the above recursive equation gives

a4 =
5r4 + 80r3 + 321r2 + 384r + 68

(2 + r) r (r2 − 1)

Which for the root r = 2 becomes

a4 =
355
3

And the table now becomes
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n an,r an

a0 1 1
a1

2r+1
−1+r

5

a2
3r2+10r+2
r(−1+r) 17

a3
4r3+34r2+54r+10

r3−r
143
3

a4
5r4+80r3+321r2+384r+68

(2+r)r(r2−1)
355
3

For n = 5, using the above recursive equation gives

a5 =
6r5 + 155r4 + 1156r3 + 3295r2 + 3336r + 572

r5 + 5r4 + 5r3 − 5r2 − 6r
Which for the root r = 2 becomes

a5 =
4043
15

And the table now becomes

n an,r an

a0 1 1
a1

2r+1
−1+r

5

a2
3r2+10r+2
r(−1+r) 17

a3
4r3+34r2+54r+10

r3−r
143
3

a4
5r4+80r3+321r2+384r+68

(2+r)r(r2−1)
355
3

a5
6r5+155r4+1156r3+3295r2+3336r+572

r5+5r4+5r3−5r2−6r
4043
15

Using the above table, then the first solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2

(
17x2 + 5x+ 1 + 143x3

3 + 355x4

3 + 4043x5

15 +O
(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
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Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 2. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 2)

b0 1 1 N/A since bn starts from 1 N/A
b1

2r+1
−1+r

5 − 3
(−1+r)2 −3

b2
3r2+10r+2
r(−1+r) 17 −13r2−4r+2

r2(−1+r)2 −29
2

b3
4r3+34r2+54r+10

r3−r
143
3

−34r4−116r3−64r2+10
r2(r2−1)2 −859

18

b4
5r4+80r3+321r2+384r+68

(2+r)r(r2−1)
355
3

−70r6−652r5−1904r4−2128r3−666r2+136r+136
(2+r)2r2(r2−1)2 −4693

36

b5
6r5+155r4+1156r3+3295r2+3336r+572

r5+5r4+5r3−5r2−6r
4043
15

−125r8−2252r7−14980r6−47988r5−77945r4−58672r3−11670r2+5720r+3432
r2(r4+5r3+5r2−5r−6)2 −285181

900

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x2
(
17x2 + 5x+ 1 + 143x3

3 + 355x4

3 + 4043x5

15 +O
(
x6)) ln (x)

+ x2
(
−3x− 29x2

2 − 859x3

18 − 4693x4

36 − 285181x5

900 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
(
17x2 + 5x+ 1 + 143x3

3 + 355x4

3 + 4043x5

15 +O
(
x6))

+ c2

(
x2
(
17x2 + 5x+ 1 + 143x3

3 + 355x4

3 + 4043x5

15 +O
(
x6)) ln (x)

+ x2
(
−3x− 29x2

2 − 859x3

18 − 4693x4

36 − 285181x5

900 +O
(
x6)))
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Hence the final solution is

y = yh

= c1x
2
(
17x2 + 5x+ 1 + 143x3

3 + 355x4

3 + 4043x5

15 +O
(
x6))

+ c2

(
x2
(
17x2 + 5x+ 1 + 143x3

3 + 355x4

3 + 4043x5

15 +O
(
x6)) ln (x)

+ x2
(
−3x− 29x2

2 − 859x3

18 − 4693x4

36 − 285181x5

900 +O
(
x6)))

Summary
The solution(s) found are the following

(1)

y = c1x
2
(
17x2 + 5x+ 1 + 143x3

3 + 355x4

3 + 4043x5

15 +O
(
x6))

+ c2

(
x2
(
17x2 + 5x+ 1 + 143x3

3 + 355x4

3 + 4043x5

15 +O
(
x6)) ln (x)

+ x2
(
−3x− 29x2

2 − 859x3

18 − 4693x4

36 − 285181x5

900 +O
(
x6)))

Verification of solutions

y = c1x
2
(
17x2 + 5x+ 1 + 143x3

3 + 355x4

3 + 4043x5

15 +O
(
x6))

+ c2

(
x2
(
17x2 + 5x+ 1 + 143x3

3 + 355x4

3 + 4043x5

15 +O
(
x6)) ln (x)

+ x2
(
−3x− 29x2

2 − 859x3

18 − 4693x4

36 − 285181x5

900 +O
(
x6)))

Verified OK.

15.1.1 Maple step by step solution

Let’s solve
x2(x2 − 2x+ 1) y′′ + (−x2 − 3x) y′ + (x+ 4) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (x+4)y
x2(x2−2x+1) +

(x+3)y′
x(x2−2x+1)
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (x+3)y′
x(x2−2x+1) +

(x+4)y
x2(x2−2x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x+3
x(x2−2x+1) , P3(x) = x+4

x2(x2−2x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(x2 − 2x+ 1) y′′ − x(x+ 3) y′ + (x+ 4) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r
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◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−2 + r)2 xr +
(
a1(−1 + r)2 − a0(1 + 2r) (−1 + r)

)
x1+r +

(
∞∑
k=2

(
ak(k + r − 2)2 − ak−1(2k − 1 + 2r) (k + r − 2) + ak−2(k + r − 2) (k − 3 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 2

• Each term must be 0
a1(−1 + r)2 − a0(1 + 2r) (−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = a0(1+2r)

−1+r

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) ((ak + ak−2 − 2ak−1) k + (ak + ak−2 − 2ak−1) r − 2ak − 3ak−2 + ak−1) = 0

• Shift index using k− >k + 2
(k + r) ((ak+2 + ak − 2ak+1) (k + 2) + (ak+2 + ak − 2ak+1) r − 2ak+2 − 3ak + ak+1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −kak−2kak+1+rak−2rak+1−ak−3ak+1

k+r

• Recursion relation for r = 2
ak+2 = −kak−2kak+1+ak−7ak+1

k+2

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+2 = −kak−2kak+1+ak−7ak+1

k+2 , a1 = 5a0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 69� �
Order:=6;
dsolve(x^2*(1-2*x+x^2)*diff(y(x),x$2)-x*(3+x)*diff(y(x),x)+(4+x)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
(c2 ln (x) + c1)

(
1 + 5x+ 17x2 + 143

3 x3 + 355
3 x4 + 4043

15 x5 +O
(
x6))

+
(
(−3)x− 29

2 x2 − 859
18 x3 − 4693

36 x4 − 285181
900 x5 +O

(
x6)) c2

)
x2

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 118� �
AsymptoticDSolveValue[x^2*(1-2*x+x^2)*y''[x]-x*(3+x)*y'[x]+(4+x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
4043x5

15 + 355x4

3 + 143x3

3 + 17x2 + 5x+ 1
)
x2

+ c2

((
−285181x5

900 − 4693x4

36 − 859x3

18 − 29x2

2 − 3x
)
x2

+
(
4043x5

15 + 355x4

3 + 143x3

3 + 17x2 + 5x+ 1
)
x2 log(x)

)
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15.2 problem Example 7.6.2 page 369
15.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5485

Internal problem ID [1350]
Internal file name [OUTPUT/1351_Sunday_June_05_2022_02_12_22_AM_98132168/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: Example 7.6.2 page 369.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2x2(2 + x) y′′ + 5y′x2 + (x+ 1) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

2x3 + 4x2) y′′ + 5y′x2 + (x+ 1) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 5
2 (2 + x)

q(x) = x+ 1
2x2 (2 + x)
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Table 646: Table p(x), q(x) singularites.

p(x) = 5
2(2+x)

singularity type
x = −2 “regular”

q(x) = x+1
2x2(2+x)

singularity type
x = −2 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−2, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x2(2 + x) y′′ + 5y′x2 + (x+ 1) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2x2(2 + x)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 5
(

∞∑
n=0

(n+ r) anxn+r−1

)
x2 + (x+ 1)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

5x1+n+ran(n+ r)
)

+
(

∞∑
n=0

x1+n+ran

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

5x1+n+ran(n+ r) =
∞∑
n=1

5an−1(n+ r − 1)xn+r

∞∑
n =0

x1+n+ran =
∞∑
n=1

an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

2an−1(n+ r− 1) (n+ r− 2)xn+r

)
+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=1

5an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=1

an−1x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + anx
n+r = 0

When n = 0 the above becomes

4xra0r(−1 + r) + a0x
r = 0

Or
(4xrr(−1 + r) + xr) a0 = 0
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Since a0 6= 0 then the above simplifies to

xr(2r − 1)2 = 0

Since the above is true for all x then the indicial equation becomes

(2r − 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 =
1
2

Since a0 6= 0 then the indicial equation becomes

xr(2r − 1)2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1

2 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+ 1

2

)
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We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)2an−1(n+r−1) (n+r−2)+4an(n+r) (n+r−1)+5an−1(n+r−1)+an−1+an = 0

Solving for an from recursive equation (4) gives

an = − (n+ r) an−1

−1 + 2n+ 2r (4)

Which for the root r = 1
2 becomes

an = −(2n+ 1) an−1

4n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−1− r

1 + 2r

Which for the root r = 1
2 becomes

a1 = −3
4

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
1+2r −3

4

For n = 2, using the above recursive equation gives

a2 =
r2 + 3r + 2
4r2 + 8r + 3
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Which for the root r = 1
2 becomes

a2 =
15
32

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
1+2r −3

4

a2
r2+3r+2
4r2+8r+3

15
32

For n = 3, using the above recursive equation gives

a3 =
−r3 − 6r2 − 11r − 6
8r3 + 36r2 + 46r + 15

Which for the root r = 1
2 becomes

a3 = − 35
128

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
1+2r −3

4

a2
r2+3r+2
4r2+8r+3

15
32

a3
−r3−6r2−11r−6
8r3+36r2+46r+15 − 35

128

For n = 4, using the above recursive equation gives

a4 =
r4 + 10r3 + 35r2 + 50r + 24

16r4 + 128r3 + 344r2 + 352r + 105

Which for the root r = 1
2 becomes

a4 =
315
2048

And the table now becomes
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n an,r an

a0 1 1
a1

−1−r
1+2r −3

4

a2
r2+3r+2
4r2+8r+3

15
32

a3
−r3−6r2−11r−6
8r3+36r2+46r+15 − 35

128

a4
r4+10r3+35r2+50r+24

16r4+128r3+344r2+352r+105
315
2048

For n = 5, using the above recursive equation gives

a5 =
−r5 − 15r4 − 85r3 − 225r2 − 274r − 120

32r5 + 400r4 + 1840r3 + 3800r2 + 3378r + 945
Which for the root r = 1

2 becomes

a5 = − 693
8192

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
1+2r −3

4

a2
r2+3r+2
4r2+8r+3

15
32

a3
−r3−6r2−11r−6
8r3+36r2+46r+15 − 35

128

a4
r4+10r3+35r2+50r+24

16r4+128r3+344r2+352r+105
315
2048

a5
−r5−15r4−85r3−225r2−274r−120

32r5+400r4+1840r3+3800r2+3378r+945 − 693
8192

Using the above table, then the first solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− 3x

4 + 15x2

32 − 35x3

128 + 315x4

2048 − 693x5

8192 +O
(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
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Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1
2 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = 1

2

)
b0 1 1 N/A since bn starts from 1 N/A
b1

−1−r
1+2r −3

4
1

(1+2r)2
1
4

b2
r2+3r+2
4r2+8r+3

15
32

−4r2−10r−7
(4r2+8r+3)2 −13

64

b3
−r3−6r2−11r−6
8r3+36r2+46r+15 − 35

128
12r4+84r3+219r2+252r+111

(8r3+36r2+46r+15)2
101
768

b4
r4+10r3+35r2+50r+24

16r4+128r3+344r2+352r+105
315
2048

−32r6−432r5−2384r4−6876r3−10946r2−9162r−3198
(16r4+128r3+344r2+352r+105)2 − 641

8192

b5
−r5−15r4−85r3−225r2−274r−120

32r5+400r4+1840r3+3800r2+3378r+945 − 693
8192

80r8+1760r7+16600r6+87560r5+282265r4+569360r3+702575r2+486750r+146430
(32r5+400r4+1840r3+3800r2+3378r+945)2

7303
163840

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
√
x

(
1− 3x

4 + 15x2

32 − 35x3

128 + 315x4

2048 − 693x5

8192 +O
(
x6)) ln (x)

+
√
x

(
x

4 − 13x2

64 + 101x3

768 − 641x4

8192 + 7303x5

163840 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− 3x

4 + 15x2

32 − 35x3

128 + 315x4

2048 − 693x5

8192 +O
(
x6))

+ c2

(√
x

(
1− 3x

4 + 15x2

32 − 35x3

128 + 315x4

2048 − 693x5

8192 +O
(
x6)) ln (x)

+
√
x

(
x

4 − 13x2

64 + 101x3

768 − 641x4

8192 + 7303x5

163840 +O
(
x6)))
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Hence the final solution is

y = yh

= c1
√
x

(
1− 3x

4 + 15x2

32 − 35x3

128 + 315x4

2048 − 693x5

8192 +O
(
x6))

+ c2

(√
x

(
1− 3x

4 + 15x2

32 − 35x3

128 + 315x4

2048 − 693x5

8192 +O
(
x6)) ln (x)

+
√
x

(
x

4 − 13x2

64 + 101x3

768 − 641x4

8192 + 7303x5

163840 +O
(
x6)))

Summary
The solution(s) found are the following

(1)

y = c1
√
x

(
1− 3x

4 + 15x2

32 − 35x3

128 + 315x4

2048 − 693x5

8192 +O
(
x6))

+ c2

(√
x

(
1− 3x

4 + 15x2

32 − 35x3

128 + 315x4

2048 − 693x5

8192 +O
(
x6)) ln (x)

+
√
x

(
x

4 − 13x2

64 + 101x3

768 − 641x4

8192 + 7303x5

163840 +O
(
x6)))

Verification of solutions

y = c1
√
x

(
1− 3x

4 + 15x2

32 − 35x3

128 + 315x4

2048 − 693x5

8192 +O
(
x6))

+ c2

(√
x

(
1− 3x

4 + 15x2

32 − 35x3

128 + 315x4

2048 − 693x5

8192 +O
(
x6)) ln (x)

+
√
x

(
x

4 − 13x2

64 + 101x3

768 − 641x4

8192 + 7303x5

163840 +O
(
x6)))

Verified OK.

15.2.1 Maple step by step solution

Let’s solve
2x2(2 + x) y′′ + 5y′x2 + (x+ 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − (x+1)y

2x2(2+x) −
5y′

2(2+x)
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 5y′

2(2+x) +
(x+1)y

2x2(2+x) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5
2(2+x) , P3(x) = x+1

2x2(2+x)

]
◦ (2 + x) · P2(x) is analytic at x = −2

((2 + x) · P2(x))
∣∣∣∣
x=−2

= 5
2

◦ (2 + x)2 · P3(x) is analytic at x = −2(
(2 + x)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators
2x2(2 + x) y′′ + 5y′x2 + (x+ 1) y = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(2u3 − 8u2 + 8u)
(

d2

du2y(u)
)
+ (5u2 − 20u+ 20)

(
d
du
y(u)

)
+ (u− 1) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m
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◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(3 + 2r)u−1+r + (4a1(1 + r) (5 + 2r)− a0(8r2 + 12r + 1))ur +
(

∞∑
k=1

(4ak+1(k + r + 1) (2k + 5 + 2r)− ak(8k2 + 16kr + 8r2 + 12k + 12r + 1) + ak−1(k + r) (2k − 1 + 2r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−3

2

}
• Each term must be 0

4a1(1 + r) (5 + 2r)− a0(8r2 + 12r + 1) = 0
• Each term in the series must be 0, giving the recursion relation

2(−4ak + ak−1 + 4ak+1) k2 + (4(−4ak + ak−1 + 4ak+1) r − 12ak − ak−1 + 28ak+1) k + 2(−4ak + ak−1 + 4ak+1) r2 + (−12ak − ak−1 + 28ak+1) r − ak + 20ak+1 = 0
• Shift index using k− >k + 1

2(−4ak+1 + ak + 4ak+2) (k + 1)2 + (4(−4ak+1 + ak + 4ak+2) r − 12ak+1 − ak + 28ak+2) (k + 1) + 2(−4ak+1 + ak + 4ak+2) r2 + (−12ak+1 − ak + 28ak+2) r − ak+1 + 20ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −2k2ak−8k2ak+1+4krak−16krak+1+2r2ak−8r2ak+1+3kak−28kak+1+3rak−28rak+1+ak−21ak+1
4(2k2+4kr+2r2+11k+11r+14)

• Recursion relation for r = 0

ak+2 = −2k2ak−8k2ak+1+3kak−28kak+1+ak−21ak+1
4(2k2+11k+14)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −2k2ak−8k2ak+1+3kak−28kak+1+ak−21ak+1

4(2k2+11k+14) , 20a1 − a0 = 0
]

• Revert the change of variables u = 2 + x
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[
y =

∞∑
k=0

ak(2 + x)k , ak+2 = −2k2ak−8k2ak+1+3kak−28kak+1+ak−21ak+1
4(2k2+11k+14) , 20a1 − a0 = 0

]
• Recursion relation for r = −3

2

ak+2 = −2k2ak−8k2ak+1−3kak−4kak+1+ak+3ak+1
4(2k2+5k+2)

• Solution for r = −3
2[

y(u) =
∞∑
k=0

aku
k− 3

2 , ak+2 = −2k2ak−8k2ak+1−3kak−4kak+1+ak+3ak+1
4(2k2+5k+2) ,−4a1 − a0 = 0

]
• Revert the change of variables u = 2 + x[

y =
∞∑
k=0

ak(2 + x)k−
3
2 , ak+2 = −2k2ak−8k2ak+1−3kak−4kak+1+ak+3ak+1

4(2k2+5k+2) ,−4a1 − a0 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak(2 + x)k
)
+
(

∞∑
k=0

bk(2 + x)k−
3
2

)
, ak+2 = −2k2ak−8k2a1+k+3kak−28ka1+k+ak−21a1+k

4(2k2+11k+14) , 20a1 − a0 = 0, bk+2 = −2k2bk−8k2b1+k−3kbk−4kb1+k+bk+3b1+k

4(2k2+5k+2) ,−4b1 − b0 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 69� �
Order:=6;
dsolve(2*x^2*(2+x)*diff(y(x),x$2)+5*x^2*diff(y(x),x)+(1+x)*y(x)=0,y(x),type='series',x=0);� �
y(x) =

√
x

(
(c2 ln (x) + c1)

(
1− 3

4x+ 15
32x

2 − 35
128x

3 + 315
2048x

4 − 693
8192x

5 +O
(
x6))

+
(
1
4x− 13

64x
2 + 101

768x
3 − 641

8192x
4 + 7303

163840x
5 +O

(
x6)) c2

)
3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 134� �
AsymptoticDSolveValue[2*x^2*(2+x)*y''[x]+5*x^2*y'[x]+(1+x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x

(
−693x5

8192 + 315x4

2048 − 35x3

128 + 15x2

32 − 3x
4 + 1

)
+ c2

(√
x

(
7303x5

163840 − 641x4

8192 + 101x3

768 − 13x2

64 + x

4

)
+
√
x

(
−693x5

8192 + 315x4

2048 − 35x3

128 + 15x2

32 − 3x
4 + 1

)
log(x)

)
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15.3 problem Example 7.6.3 page 370
15.3.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5498

Internal problem ID [1351]
Internal file name [OUTPUT/1352_Sunday_June_05_2022_02_12_25_AM_30929406/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: Example 7.6.3 page 370.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(−x2 + 2
)
y′′ − 2x

(
2x2 + 1

)
y′ +

(
−2x2 + 2

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

−x4 + 2x2) y′′ + (−4x3 − 2x
)
y′ +

(
−2x2 + 2

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 4x2 + 2
x (x2 − 2)

q(x) = 2x2 − 2
x2 (x2 − 2)
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Table 648: Table p(x), q(x) singularites.

p(x) = 4x2+2
x(x2−2)

singularity type
x = 0 “regular”
x =

√
2 “regular”

x = −
√
2 “regular”

q(x) = 2x2−2
x2(x2−2)

singularity type
x = 0 “regular”
x =

√
2 “regular”

x = −
√
2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,
√
2,−

√
2,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x2(x2 − 2
)
+
(
−4x3 − 2x

)
y′ +

(
−2x2 + 2

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2(x2 − 2

)
+
(
−4x3 − 2x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
−2x2 + 2

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−xn+r+2an(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−4xn+r+2an(n+ r)

)
+

∞∑
n =0

(
−2xn+ran(n+ r)

)
+

∞∑
n =0

(
−2xn+r+2an

)
+
(

∞∑
n=0

2anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−xn+r+2an(n+ r) (n+ r − 1)

)
=

∞∑
n=2

(
−an−2(n+ r − 2) (n− 3 + r)xn+r

)
∞∑

n =0

(
−4xn+r+2an(n+ r)

)
=

∞∑
n=2

(
−4an−2(n+ r − 2)xn+r

)
∞∑

n =0

(
−2xn+r+2an

)
=

∞∑
n=2

(
−2an−2x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =2

(
−an−2(n+r−2) (n−3+r)xn+r

)
+
(

∞∑
n=0

2xn+ran(n+r) (n+r−1)
)

+
∞∑

n =2

(
−4an−2(n+ r − 2)xn+r

)
+

∞∑
n =0

(
−2xn+ran(n+ r)

)
+

∞∑
n =2

(
−2an−2x

n+r
)
+
(

∞∑
n=0

2anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+ran(n+ r) (n+ r − 1)− 2xn+ran(n+ r) + 2anxn+r = 0
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When n = 0 the above becomes

2xra0r(−1 + r)− 2xra0r + 2a0xr = 0

Or
(2xrr(−1 + r)− 2xrr + 2xr) a0 = 0

Since a0 6= 0 then the above simplifies to

2xr(−1 + r)2 = 0

Since the above is true for all x then the indicial equation becomes

2(−1 + r)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 1

Since a0 6= 0 then the indicial equation becomes

2xr(−1 + r)2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+1

)
We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)−an−2(n+ r − 2) (n− 3 + r) + 2an(n+ r) (n+ r − 1)
− 4an−2(n+ r − 2)− 2an(n+ r)− 2an−2 + 2an = 0

Solving for an from recursive equation (4) gives

an = (n+ r) an−2

2n+ 2r − 2 (4)

Which for the root r = 1 becomes

an = (n+ 1) an−2

2n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
2 + r

2 + 2r
Which for the root r = 1 becomes

a2 =
3
4
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

2+r
2+2r

3
4

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

2+r
2+2r

3
4

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
r2 + 6r + 8

4 (3 + r) (1 + r)

Which for the root r = 1 becomes
a4 =

15
32

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

2+r
2+2r

3
4

a3 0 0
a4

r2+6r+8
4(3+r)(1+r)

15
32
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For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

2+r
2+2r

3
4

a3 0 0
a4

r2+6r+8
4(3+r)(1+r)

15
32

a5 0 0

Using the above table, then the first solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1 + 3x2

4 + 15x4

32 +O
(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
Where bn is found using

bn = d

dr
an,r

And the above is then evaluated at r = 1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 1)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2

2+r
2+2r

3
4 − 1

2(1+r)2 −1
8

b3 0 0 0 0
b4

r2+6r+8
4(3+r)(1+r)

15
32

−r2−5r−7
2(1+r)2(3+r)2 − 13

128

b5 0 0 0 0
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x

(
1 + 3x2

4 + 15x4

32 +O
(
x6)) ln (x) + x

(
−x2

8 − 13x4

128 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1 + 3x2

4 + 15x4

32 +O
(
x6))

+ c2

(
x

(
1 + 3x2

4 + 15x4

32 +O
(
x6)) ln (x) + x

(
−x2

8 − 13x4

128 +O
(
x6)))

Hence the final solution is

y = yh

= c1x

(
1 + 3x2

4 + 15x4

32 +O
(
x6))

+ c2

(
x

(
1 + 3x2

4 + 15x4

32 +O
(
x6)) ln (x) + x

(
−x2

8 − 13x4

128 +O
(
x6)))

Summary
The solution(s) found are the following

(1)
y = c1x

(
1 + 3x2

4 + 15x4

32 +O
(
x6))

+ c2

(
x

(
1 + 3x2

4 + 15x4

32 +O
(
x6)) ln (x) + x

(
−x2

8 − 13x4

128 +O
(
x6)))

Verification of solutions

y = c1x

(
1 + 3x2

4 + 15x4

32 +O
(
x6))

+ c2

(
x

(
1 + 3x2

4 + 15x4

32 +O
(
x6)) ln (x) + x

(
−x2

8 − 13x4

128 +O
(
x6)))

Verified OK.
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15.3.1 Maple step by step solution

Let’s solve
−y′′x2(x2 − 2) + (−4x3 − 2x) y′ + (−2x2 + 2) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −2
(
x2−1

)
y

x2(x2−2) −
2
(
2x2+1

)
y′

x(x2−2)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2
(
2x2+1

)
y′

x(x2−2) + 2
(
x2−1

)
y

x2(x2−2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2
(
2x2+1

)
x(x2−2) , P3(x) = 2

(
x2−1

)
x2(x2−2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x2(x2 − 2) + 2x(2x2 + 1) y′ + (2x2 − 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−2a0(−1 + r)2 xr − 2a1r2x1+r +
(

∞∑
k=2

(
−2ak(k + r − 1)2 + ak−2(k + r) (k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
−2a1r2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
−2ak(k + r − 1)2 + ak−2(k + r) (k + r − 1) = 0

• Shift index using k− >k + 2
−2ak+2(k + r + 1)2 + ak(k + r + 2) (k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak(k+r+2)

2(k+r+1)
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• Recursion relation for r = 1
ak+2 = ak(k+3)

2(k+2)

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = ak(k+3)

2(k+2) , a1 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 45� �
Order:=6;
dsolve(x^2*(2-x^2)*diff(y(x),x$2)-2*x*(1+2*x^2)*diff(y(x),x)+(2-2*x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x) =

(
(c2 ln (x)+ c1)

(
1+ 3

4x
2 + 15

32x
4 +O

(
x6))+

(
−1
8x

2− 13
128x

4 +O
(
x6)) c2

)
x

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 65� �
AsymptoticDSolveValue[x^2*(2-x^2)*y''[x]-2*x*(1+2*x^2)*y'[x]+(2-2*x^2)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1x

(
15x4

32 + 3x2

4 + 1
)
+ c2

(
x

(
−13x4

128 − x2

8

)
+ x

(
15x4

32 + 3x2

4 + 1
)
log(x)

)
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15.4 problem Example 7.6.4 page 372
15.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5509

Internal problem ID [1352]
Internal file name [OUTPUT/1353_Sunday_June_05_2022_02_12_28_AM_25208340/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: Example 7.6.4 page 372.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − x(5− x) y′ + (9− 4x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
x2 − 5x

)
y′ + (9− 4x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x− 5
x

q(x) = −4x− 9
x2
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Table 650: Table p(x), q(x) singularites.

p(x) = x−5
x

singularity type
x = 0 “regular”

q(x) = −4x−9
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
x2 − 5x

)
y′ + (9− 4x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x2 − 5x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (9− 4x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−5xn+ran(n+ r)

)
+
(

∞∑
n=0

9anxn+r

)
+

∞∑
n =0

(
−4x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r

∞∑
n =0

(
−4x1+n+ran

)
=

∞∑
n=1

(
−4an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r

)

+
∞∑

n =0

(
−5xn+ran(n+ r)

)
+
(

∞∑
n=0

9anxn+r

)
+

∞∑
n =1

(
−4an−1x

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 5xn+ran(n+ r) + 9anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− 5xra0r + 9a0xr = 0

Or
(xrr(−1 + r)− 5xrr + 9xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r − 3)2 xr = 0
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Since the above is true for all x then the indicial equation becomes

(r − 3)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 3
r2 = 3

Since a0 6= 0 then the indicial equation becomes

(r − 3)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 3, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+3

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+3

)
We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)an(n+ r) (n+ r − 1) + an−1(n+ r − 1)− 5an(n+ r) + 9an − 4an−1 = 0
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Solving for an from recursive equation (4) gives

an = − an−1(n+ r − 5)
n2 + 2nr + r2 − 6n− 6r + 9 (4)

Which for the root r = 3 becomes

an = −an−1(n− 2)
n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
4− r

(r − 2)2

Which for the root r = 3 becomes
a1 = 1

And the table now becomes

n an,r an

a0 1 1
a1

4−r
(r−2)2 1

For n = 2, using the above recursive equation gives

a2 =
(−4 + r) (r − 3)
(r − 2)2 (−1 + r)2

Which for the root r = 3 becomes
a2 = 0

And the table now becomes

n an,r an

a0 1 1
a1

4−r
(r−2)2 1

a2
(−4+r)(r−3)

(r−2)2(−1+r)2 0
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For n = 3, using the above recursive equation gives

a3 = − (−4 + r) (r − 3)
(r − 2) (−1 + r)2 r2

Which for the root r = 3 becomes
a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1

4−r
(r−2)2 1

a2
(−4+r)(r−3)

(r−2)2(−1+r)2 0

a3 − (−4+r)(r−3)
(r−2)(−1+r)2r2 0

For n = 4, using the above recursive equation gives

a4 =
(−4 + r) (r − 3)

(−1 + r) (r − 2) r2 (r + 1)2

Which for the root r = 3 becomes
a4 = 0

And the table now becomes

n an,r an

a0 1 1
a1

4−r
(r−2)2 1

a2
(−4+r)(r−3)

(r−2)2(−1+r)2 0

a3 − (−4+r)(r−3)
(r−2)(−1+r)2r2 0

a4
(−4+r)(r−3)

(−1+r)(r−2)r2(r+1)2 0

For n = 5, using the above recursive equation gives

a5 = − (−4 + r) (r − 3)
(−1 + r) (r − 2) r (r + 1)2 (r + 2)2
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Which for the root r = 3 becomes
a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1

4−r
(r−2)2 1

a2
(−4+r)(r−3)

(r−2)2(−1+r)2 0

a3 − (−4+r)(r−3)
(r−2)(−1+r)2r2 0

a4
(−4+r)(r−3)

(−1+r)(r−2)r2(r+1)2 0

a5 − (−4+r)(r−3)
(−1+r)(r−2)r(r+1)2(r+2)2 0

Using the above table, then the first solution y1(x) is

y1(x) = x3(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x3(x+ 1 +O

(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 3. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table
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n bn,r an bn,r = d
dr
an,r bn(r = 3)

b0 1 1 N/A since bn starts from 1 N/A
b1

4−r
(r−2)2 1 r−6

(r−2)3 −3

b2
(−4+r)(r−3)

(r−2)2(−1+r)2 0 −2r3+21r2−65r+58
(r−2)3(−1+r)3 −1

4

b3 − (−4+r)(r−3)
(r−2)(−1+r)2r2 0 3r4−33r3+116r2−146r+48

(r−2)2(−1+r)3r3
1
36

b4
(−4+r)(r−3)

(−1+r)(r−2)r2(r+1)2 0 −4r5+42r4−136r3+132r2+26r−48
(−1+r)2(r−2)2r3(r+1)3 − 1

288

b5 − (−4+r)(r−3)
(−1+r)(r−2)r(r+1)2(r+2)2 0 5r6−45r5+95r4+75r3−286r2+72r+48

(−1+r)2(r−2)2r2(r+1)3(r+2)3
1

2400

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x3(x+ 1 +O
(
x6)) ln (x) + x3

(
−3x− x2

4 + x3

36 − x4

288 + x5

2400 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3(x+ 1 +O

(
x6))

+ c2

(
x3(x+1+O

(
x6)) ln (x) + x3

(
−3x− x2

4 + x3

36 − x4

288 + x5

2400 +O
(
x6)))

Hence the final solution is

y = yh

= c1x
3(x+ 1 +O

(
x6))

+ c2

(
x3(x+ 1 +O

(
x6)) ln (x) + x3

(
−3x− x2

4 + x3

36 − x4

288 + x5

2400 +O
(
x6)))

Summary
The solution(s) found are the following

(1)
y = c1x

3(x+ 1 +O
(
x6))

+ c2

(
x3(x+ 1 +O

(
x6)) ln (x) + x3

(
−3x− x2

4 + x3

36 − x4

288 + x5

2400 +O
(
x6)))
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Verification of solutions

y = c1x
3(x+ 1 +O

(
x6))

+ c2

(
x3(x+ 1 +O

(
x6)) ln (x) + x3

(
−3x− x2

4 + x3

36 − x4

288 + x5

2400 +O
(
x6)))

Verified OK.

15.4.1 Maple step by step solution

Let’s solve
x2y′′ + (x2 − 5x) y′ + (9− 4x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = (4x−9)y
x2 − (x−5)y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (x−5)y′
x

− (4x−9)y
x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x−5
x
, P3(x) = −4x−9

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + x(x− 5) y′ + (9− 4x) y = 0

• Assume series solution for y
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y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−3 + r)2 xr +
(

∞∑
k=1

(
ak(k + r − 3)2 + ak−1(k − 5 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−3 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 3

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 3)2 + ak−1(k − 5 + r) = 0

• Shift index using k− >k + 1
ak+1(k − 2 + r)2 + ak(k + r − 4) = 0

• Recursion relation that defines series solution to ODE
ak+1 = −ak(k+r−4)

(k−2+r)2

• Recursion relation for r = 3 ; series terminates at k = 1
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ak+1 = −ak(k−1)
(k+1)2

• Apply recursion relation for k = 0
a1 = a0

• Terminating series solution of the ODE for r = 3 . Use reduction of order to find the second linearly independent solution
y = a0 · (x+ 1)

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 53� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)-x*(5-x)*diff(y(x),x)+(9-4*x)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
(c2 ln (x) + c1)

(
1 + x+O

(
x6))

+
(
(−3)x− 1

4x
2 + 1

36x
3 − 1

288x
4 + 1

2400x
5 +O

(
x6)) c2

)
x3
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3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 62� �
AsymptoticDSolveValue[x^2*y''[x]-x*(5-x)*y'[x]+(9-4*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1(x+ 1)x3 + c2

(
(x+ 1)x3 log(x) +

(
x5

2400 − x4

288 + x3

36 − x2

4 − 3x
)
x3
)
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15.5 problem 1
15.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5522

Internal problem ID [1353]
Internal file name [OUTPUT/1354_Sunday_June_05_2022_02_12_30_AM_89799754/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − x(1− x) y′ +
(
−x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
x2 − x

)
y′ +

(
−x2 + 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x− 1
x

q(x) = −x2 − 1
x2
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Table 652: Table p(x), q(x) singularites.

p(x) = x−1
x

singularity type
x = 0 “regular”

q(x) = −x2−1
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
x2 − x

)
y′ +

(
−x2 + 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x2 − x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
−x2 + 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+

∞∑
n =0

(
−xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r

∞∑
n =0

(
−xn+r+2an

)
=

∞∑
n=2

(
−an−2x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r

)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+

∞∑
n =2

(
−an−2x

n+r
)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− xra0r + a0x
r = 0

Or
(xrr(−1 + r)− xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

xr(−1 + r)2 = 0
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Since the above is true for all x then the indicial equation becomes

(−1 + r)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 1

Since a0 6= 0 then the indicial equation becomes

xr(−1 + r)2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
1+n

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
1+n

)
We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = −1
r
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For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an−1(n+ r − 1)− an(n+ r)− an−2 + an = 0

Solving for an from recursive equation (4) gives

an = −nan−1 + ran−1 − an−2 − an−1

n2 + 2nr + r2 − 2n− 2r + 1 (4)

Which for the root r = 1 becomes

an = −nan−1 + an−2

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 −1

r
−1

For n = 2, using the above recursive equation gives

a2 =
2r + 1

r (1 + r)2

Which for the root r = 1 becomes
a2 =

3
4

And the table now becomes

n an,r an

a0 1 1
a1 −1

r
−1

a2
2r+1

r(1+r)2
3
4

For n = 3, using the above recursive equation gives

a3 =
−3r2 − 7r − 3

r (1 + r)2 (r + 2)2
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Which for the root r = 1 becomes

a3 = −13
36

And the table now becomes

n an,r an

a0 1 1
a1 −1

r
−1

a2
2r+1

r(1+r)2
3
4

a3
−3r2−7r−3

r(1+r)2(r+2)2 −13
36

For n = 4, using the above recursive equation gives

a4 =
5r3 + 25r2 + 36r + 13

r (1 + r)2 (r + 2)2 (r + 3)2

Which for the root r = 1 becomes

a4 =
79
576

And the table now becomes

n an,r an

a0 1 1
a1 −1

r
−1

a2
2r+1

r(1+r)2
3
4

a3
−3r2−7r−3

r(1+r)2(r+2)2 −13
36

a4
5r3+25r2+36r+13

r(1+r)2(r+2)2(r+3)2
79
576

For n = 5, using the above recursive equation gives

a5 =
−8r4 − 70r3 − 208r2 − 238r − 79
r (1 + r)2 (r + 2)2 (r + 3)2 (r + 4)2

Which for the root r = 1 becomes

a5 = − 67
1600
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And the table now becomes

n an,r an

a0 1 1
a1 −1

r
−1

a2
2r+1

r(1+r)2
3
4

a3
−3r2−7r−3

r(1+r)2(r+2)2 −13
36

a4
5r3+25r2+36r+13

r(1+r)2(r+2)2(r+3)2
79
576

a5
−8r4−70r3−208r2−238r−79
r(1+r)2(r+2)2(r+3)2(r+4)2 − 67

1600

For n = 6, using the above recursive equation gives

a6 =
13r5 + 175r4 + 874r3 + 1979r2 + 1949r + 603
r (1 + r)2 (r + 2)2 (r + 3)2 (r + 4)2 (r + 5)2

Which for the root r = 1 becomes

a6 =
5593
518400

And the table now becomes

n an,r an

a0 1 1
a1 −1

r
−1

a2
2r+1

r(1+r)2
3
4

a3
−3r2−7r−3

r(1+r)2(r+2)2 −13
36

a4
5r3+25r2+36r+13

r(1+r)2(r+2)2(r+3)2
79
576

a5
−8r4−70r3−208r2−238r−79
r(1+r)2(r+2)2(r+3)2(r+4)2 − 67

1600

a6
13r5+175r4+874r3+1979r2+1949r+603

r(1+r)2(r+2)2(r+3)2(r+4)2(r+5)2
5593

518400

For n = 7, using the above recursive equation gives

a7 =
−21r6 − 403r5 − 3032r4 − 11291r3 − 21482r2 − 19037r − 5593

r (1 + r)2 (r + 2)2 (r + 3)2 (r + 4)2 (r + 5)2 (r + 6)2
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Which for the root r = 1 becomes

a7 = − 60859
25401600

And the table now becomes

n an,r an

a0 1 1
a1 −1

r
−1

a2
2r+1

r(1+r)2
3
4

a3
−3r2−7r−3

r(1+r)2(r+2)2 −13
36

a4
5r3+25r2+36r+13

r(1+r)2(r+2)2(r+3)2
79
576

a5
−8r4−70r3−208r2−238r−79
r(1+r)2(r+2)2(r+3)2(r+4)2 − 67

1600

a6
13r5+175r4+874r3+1979r2+1949r+603

r(1+r)2(r+2)2(r+3)2(r+4)2(r+5)2
5593

518400

a7
−21r6−403r5−3032r4−11291r3−21482r2−19037r−5593

r(1+r)2(r+2)2(r+3)2(r+4)2(r+5)2(r+6)2 − 60859
25401600

Using the above table, then the first solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7 + a8x

8. . .
)

= x

(
1− x+ 3x2

4 − 13x3

36 + 79x4

576 − 67x5

1600 + 5593x6

518400 − 60859x7

25401600 +O
(
x8))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table
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n bn,r an bn,r = d
dr
an,r bn(r = 1)

b0 1 1 N/A since bn starts from 1 N/A
b1 −1

r
−1 1

r2
1

b2
2r+1

r(1+r)2
3
4

−4r2−3r−1
r2(1+r)3 −1

b3
−3r2−7r−3

r(1+r)2(r+2)2 −13
36

9r4+37r3+51r2+27r+6
r2(1+r)3(r+2)3

65
108

b4
5r3+25r2+36r+13

r(1+r)2(r+2)2(r+3)2
79
576

−20r6−185r5−666r4−1170r3−1032r2−429r−78
r2(1+r)3(r+2)3(r+3)3 − 895

3456

b5
−8r4−70r3−208r2−238r−79
r(1+r)2(r+2)2(r+3)2(r+4)2 − 67

1600
40r8+660r7+4536r6+16804r5+36255r4+45890r3+32633r2+11850r+1896

r2(1+r)3(r+2)3(r+3)3(r+4)3
12547
144000

b6
13r5+175r4+874r3+1979r2+1949r+603

r(1+r)2(r+2)2(r+3)2(r+4)2(r+5)2
5593

518400
−78r10−2005r9−22327r8−141096r7−556696r6−1420698r5−2348220r4−2445371r3−1508947r2−495666r−72360

r2(1+r)3(r+2)3(r+3)3(r+4)3(r+5)3 − 41729
1728000

b7
−21r6−403r5−3032r4−11291r3−21482r2−19037r−5593

r(1+r)2(r+2)2(r+3)2(r+4)2(r+5)2(r+6)2 − 60859
25401600

147r12+5429r11+89091r10+856149r9+5344496r8+22718520r7+67008053r6+137054213r5+190873329r4+174075545r3+97110656r2+29598156r+4026960
r2(1+r)3(r+2)3(r+3)3(r+4)3(r+5)3(r+6)3

10121677
1778112000

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 + b8x
8. . .

= x

(
1− x+ 3x2

4 − 13x3

36 + 79x4

576 − 67x5

1600 + 5593x6

518400 − 60859x7

25401600 +O
(
x8)) ln (x)

+ x

(
−x2 + x+ 65x3

108 − 895x4

3456 + 12547x5

144000 − 41729x6

1728000 + 10121677x7

1778112000 +O
(
x8))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− x+ 3x2

4 − 13x3

36 + 79x4

576 − 67x5

1600 + 5593x6

518400 − 60859x7

25401600 +O
(
x8))

+c2

(
x

(
1−x+ 3x2

4 − 13x3

36 + 79x4

576 − 67x5

1600 +
5593x6

518400−
60859x7

25401600 +O
(
x8)) ln (x)

+x

(
−x2+x+ 65x3

108 − 895x4

3456 + 12547x5

144000 − 41729x6

1728000 + 10121677x7

1778112000 +O
(
x8)))

Hence the final solution is

y = yh
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= c1x

(
1− x+ 3x2

4 − 13x3

36 + 79x4

576 − 67x5

1600 + 5593x6

518400 − 60859x7

25401600 +O
(
x8))

+ c2

(
x

(
1− x+ 3x2

4 − 13x3

36 + 79x4

576 − 67x5

1600 + 5593x6

518400 − 60859x7

25401600 +O
(
x8)) ln (x)

+ x

(
−x2 + x+ 65x3

108 − 895x4

3456 + 12547x5

144000 − 41729x6

1728000 + 10121677x7

1778112000 +O
(
x8)))

Summary
The solution(s) found are the following

y = c1x

(
1− x+ 3x2

4 − 13x3

36 + 79x4

576 − 67x5

1600 + 5593x6

518400 − 60859x7

25401600 +O
(
x8))

+ c2

(
x

(
1− x+ 3x2

4 − 13x3

36 + 79x4

576 − 67x5

1600 + 5593x6

518400 − 60859x7

25401600 +O
(
x8)) ln (x)

+ x

(
−x2 + x+ 65x3

108 − 895x4

3456 + 12547x5

144000 − 41729x6

1728000 + 10121677x7

1778112000 +O
(
x8)))

(1)
Verification of solutions

y = c1x

(
1− x+ 3x2

4 − 13x3

36 + 79x4

576 − 67x5

1600 + 5593x6

518400 − 60859x7

25401600 +O
(
x8))

+ c2

(
x

(
1− x+ 3x2

4 − 13x3

36 + 79x4

576 − 67x5

1600 + 5593x6

518400 − 60859x7

25401600 +O
(
x8)) ln (x)

+ x

(
−x2 + x+ 65x3

108 − 895x4

3456 + 12547x5

144000 − 41729x6

1728000 + 10121677x7

1778112000 +O
(
x8)))

Verified OK.

15.5.1 Maple step by step solution

Let’s solve
x2y′′ + (x2 − x) y′ + (−x2 + 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ =
(
x2−1

)
y

x2 − (x−1)y′
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (x−1)y′
x

−
(
x2−1

)
y

x2 = 0
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� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x−1
x
, P3(x) = −x2−1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + x(x− 1) y′ + (−x2 + 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion
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x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r)2 xr + (a1r2 + a0r)x1+r +
(

∞∑
k=2

(
ak(k + r − 1)2 + ak−1(k + r − 1)− ak−2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
a1r

2 + a0r = 0
• Solve for the dependent coefficient(s)

a1 = −a0
r

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1)2 + ak−1(k + r − 1)− ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 1 + r)2 + ak+1(k + 1 + r)− ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = −kak+1+rak+1−ak+ak+1

(k+1+r)2

• Recursion relation for r = 1
ak+2 = −kak+1−ak+2ak+1

(k+2)2

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = −kak+1−ak+2ak+1

(k+2)2 , a1 = −a0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 75� �
Order:=8;
dsolve(x^2*diff(y(x),x$2)-x*(1-x)*diff(y(x),x)+(1-x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
(c2 ln (x) + c1)

(
1− x+ 3

4x
2 − 13

36x
3 + 79

576x
4 − 67

1600x
5 + 5593

518400x
6

− 60859
25401600x

7 +O
(
x8))+

(
x− x2 + 65

108x
3 − 895

3456x
4 + 12547

144000x
5

− 41729
1728000x

6 + 10121677
1778112000x

7 +O
(
x8)) c2

)
x
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3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 154� �
AsymptoticDSolveValue[x^2*y''[x]-x*(1-x)*y'[x]+(1-x^2)*y[x]==0,y[x],{x,0,7}]� �
y(x) → c1x

(
− 60859x7

25401600 + 5593x6

518400 − 67x5

1600 + 79x4

576 − 13x3

36 + 3x2

4 − x+ 1
)

+ c2

(
x

(
10121677x7

1778112000 − 41729x6

1728000 + 12547x5

144000 − 895x4

3456 + 65x3

108 − x2 + x

)
+ x

(
− 60859x7

25401600 + 5593x6

518400 − 67x5

1600 + 79x4

576 − 13x3

36 + 3x2

4 − x+ 1
)
log(x)

)
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15.6 problem 2
15.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5538

Internal problem ID [1354]
Internal file name [OUTPUT/1355_Sunday_June_05_2022_02_12_36_AM_42745091/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

x2(2x2 + x+ 1
)
y′′ + x

(
7x2 + 6x+ 3

)
y′ +

(
−3x2 + 6x+ 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

2x4 + x3 + x2) y′′ + (7x3 + 6x2 + 3x
)
y′ +

(
−3x2 + 6x+ 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 7x2 + 6x+ 3
x (2x2 + x+ 1)

q(x) = − 3x2 − 6x− 1
x2 (2x2 + x+ 1)
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Table 654: Table p(x), q(x) singularites.

p(x) = 7x2+6x+3
x(2x2+x+1)

singularity type
x = 0 “regular”

x = − i
√
7

4 − 1
4 “regular”

x = i
√
7

4 − 1
4 “regular”

q(x) = − 3x2−6x−1
x2(2x2+x+1)

singularity type
x = 0 “regular”

x = − i
√
7

4 − 1
4 “regular”

x = i
√
7

4 − 1
4 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,− i

√
7

4 − 1
4 ,

i
√
7

4 − 1
4 ,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(2x2 + x+ 1
)
y′′ +

(
7x3 + 6x2 + 3x

)
y′ +

(
−3x2 + 6x+ 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(2x2 + x+ 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
7x3+6x2+3x

)( ∞∑
n=0

(n+r) anxn+r−1

)
+
(
−3x2+6x+1

)( ∞∑
n=0

anx
n+r

)
=0
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Which simplifies to

(2A)

(
∞∑
n=0

2xn+r+2an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

x1+n+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

7xn+r+2an(n+ r)
)

+
(

∞∑
n=0

6x1+n+ran(n+ r)
)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
∞∑

n =0

(
−3xn+r+2an

)
+
(

∞∑
n=0

6x1+n+ran

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

2an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

7xn+r+2an(n+ r) =
∞∑
n=2

7an−2(n+ r − 2)xn+r

∞∑
n =0

6x1+n+ran(n+ r) =
∞∑
n=1

6an−1(n+ r − 1)xn+r

∞∑
n =0

(
−3xn+r+2an

)
=

∞∑
n=2

(
−3an−2x

n+r
)

∞∑
n =0

6x1+n+ran =
∞∑
n=1

6an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

2an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

7an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=1

6an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
∞∑

n =2

(
−3an−2x

n+r
)
+
(

∞∑
n=1

6an−1x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 3xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + 3xra0r + a0x
r = 0

Or
(xrr(−1 + r) + 3xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r + 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(r + 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = −1
r2 = −1

Since a0 6= 0 then the indicial equation becomes

(r + 1)2 xr = 0
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Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = −1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n−1

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n−1

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 =
−r − 3
r + 2

For 2 ≤ n the recursive equation is

(3)2an−2(n+ r−2) (n−3+ r)+an−1(n+ r−1) (n+ r−2)+an(n+ r) (n+ r−1)
+ 7an−2(n+ r − 2) + 6an−1(n+ r − 1) + 3an(n+ r)− 3an−2 + 6an−1 + an = 0

Solving for an from recursive equation (4) gives

an = −2nan−2 + nan−1 + 2ran−2 + ran−1 − 5an−2 + 2an−1

1 + n+ r
(4)
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Which for the root r = −1 becomes

an = (−2an−2 − an−1)n+ 7an−2 − an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

−r−3
r+2 −2

For n = 2, using the above recursive equation gives

a2 =
−r2 + 4r + 14
(r + 2) (r + 3)

Which for the root r = −1 becomes

a2 =
9
2

And the table now becomes

n an,r an

a0 1 1
a1

−r−3
r+2 −2

a2
−r2+4r+14
(r+2)(r+3)

9
2

For n = 3, using the above recursive equation gives

a3 =
3r3 + 14r2 − 10r − 61
(4 + r) (r + 2) (r + 3)

Which for the root r = −1 becomes

a3 = −20
3

And the table now becomes
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n an,r an

a0 1 1
a1

−r−3
r+2 −2

a2
−r2+4r+14
(r+2)(r+3)

9
2

a3
3r3+14r2−10r−61
(4+r)(r+2)(r+3) −20

3

For n = 4, using the above recursive equation gives

a4 =
−r4 − 29r3 − 134r2 − 81r + 198
(r + 2) (r + 3) (4 + r) (5 + r)

Which for the root r = −1 becomes

a4 =
173
24

And the table now becomes

n an,r an

a0 1 1
a1

−r−3
r+2 −2

a2
−r2+4r+14
(r+2)(r+3)

9
2

a3
3r3+14r2−10r−61
(4+r)(r+2)(r+3) −20

3

a4
−r4−29r3−134r2−81r+198

(r+2)(r+3)(4+r)(5+r)
173
24

For n = 5, using the above recursive equation gives

a5 =
−5r5 − 37r4 + 72r3 + 941r2 + 1534r + 139

(r + 2) (r + 3) (4 + r) (5 + r) (6 + r)

Which for the root r = −1 becomes

a5 = −93
20

And the table now becomes
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n an,r an

a0 1 1
a1

−r−3
r+2 −2

a2
−r2+4r+14
(r+2)(r+3)

9
2

a3
3r3+14r2−10r−61
(4+r)(r+2)(r+3) −20

3

a4
−r4−29r3−134r2−81r+198

(r+2)(r+3)(4+r)(5+r)
173
24

a5
−5r5−37r4+72r3+941r2+1534r+139

(r+2)(r+3)(4+r)(5+r)(6+r) −93
20

For n = 6, using the above recursive equation gives

a6 =
7r6 + 154r5 + 1085r4 + 2409r3 − 2291r2 − 12771r − 9428

(7 + r) (r + 2) (r + 3) (4 + r) (5 + r) (6 + r)

Which for the root r = −1 becomes

a6 = −419
720

And the table now becomes

n an,r an

a0 1 1
a1

−r−3
r+2 −2

a2
−r2+4r+14
(r+2)(r+3)

9
2

a3
3r3+14r2−10r−61
(4+r)(r+2)(r+3) −20

3

a4
−r4−29r3−134r2−81r+198

(r+2)(r+3)(4+r)(5+r)
173
24

a5
−5r5−37r4+72r3+941r2+1534r+139

(r+2)(r+3)(4+r)(5+r)(6+r) −93
20

a6
7r6+154r5+1085r4+2409r3−2291r2−12771r−9428

(7+r)(r+2)(r+3)(4+r)(5+r)(6+r) −419
720

For n = 7, using the above recursive equation gives

a7 =
3r7 − 28r6 − 1449r5 − 13381r4 − 48637r3 − 61453r2 + 24528r + 76095

(8 + r) (r + 2) (r + 3) (4 + r) (5 + r) (6 + r) (7 + r)

Which for the root r = −1 becomes

a7 =
6697
1260
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And the table now becomes

n an,r an

a0 1 1
a1

−r−3
r+2 −2

a2
−r2+4r+14
(r+2)(r+3)

9
2

a3
3r3+14r2−10r−61
(4+r)(r+2)(r+3) −20

3

a4
−r4−29r3−134r2−81r+198

(r+2)(r+3)(4+r)(5+r)
173
24

a5
−5r5−37r4+72r3+941r2+1534r+139

(r+2)(r+3)(4+r)(5+r)(6+r) −93
20

a6
7r6+154r5+1085r4+2409r3−2291r2−12771r−9428

(7+r)(r+2)(r+3)(4+r)(5+r)(6+r) −419
720

a7
3r7−28r6−1449r5−13381r4−48637r3−61453r2+24528r+76095

(8+r)(r+2)(r+3)(4+r)(5+r)(6+r)(7+r)
6697
1260

Using the above table, then the first solution y1(x) is

y1(x) =
1
x

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7 + a8x

8. . .
)

=
1− 2x+ 9x2

2 − 20x3

3 + 173x4

24 − 93x5

20 − 419x6

720 + 6697x7

1260 +O(x8)
x

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = −1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table
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n bn,r an bn,r = d
dr
an,r bn(r = −1)

b0 1 1 N/A since bn starts from 1 N/A
b1

−r−3
r+2 −2 1

(r+2)2 1

b2
−r2+4r+14
(r+2)(r+3)

9
2

−9r2−40r−46
(r+2)2(r+3)2 −15

4

b3
3r3+14r2−10r−61
(4+r)(r+2)(r+3) −20

3
13r4+176r3+853r2+1770r+1346

(r+2)2(r+3)2(4+r)2
133
18

b4
−r4−29r3−134r2−81r+198

(r+2)(r+3)(4+r)(5+r)
173
24

15r6+126r5−402r4−7936r3−33641r2−60276r−40212
(r+2)2(r+3)2(4+r)2(5+r)2 −3077

288

b5
−5r5−37r4+72r3+941r2+1534r+139

(r+2)(r+3)(4+r)(5+r)(6+r) −93
20

−63r8−1694r7−18698r6−107576r5−330714r4−442884r3+183569r2+1193800r+959364
(r+2)2(r+3)2(4+r)2(5+r)2(6+r)2

4217
400

b6
7r6+154r5+1085r4+2409r3−2291r2−12771r−9428

(7+r)(r+2)(r+3)(4+r)(5+r)(6+r) −419
720

35r10+1960r9+43873r8+534810r7+3984324r6+19020134r5+58697106r4+114204974r3+130307976r2+73147744r+11322144
(7+r)2(r+2)2(r+3)2(4+r)2(5+r)2(6+r)2 −70949

14400

b7
3r7−28r6−1449r5−13381r4−48637r3−61453r2+24528r+76095

(8+r)(r+2)(r+3)(4+r)(5+r)(6+r)(7+r)
6697
1260

133r12+5964r11+112775r10+1126906r9+5604900r8+544946r7−182629895r6−1287237756r5−4807375225r4−11024611260r3−15543973032r2−12391573320r−4281675120
(8+r)2(r+2)2(r+3)2(4+r)2(5+r)2(6+r)2(7+r)2 −125221

29400

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 + b8x
8. . .

=

(
1− 2x+ 9x2

2 − 20x3

3 + 173x4

24 − 93x5

20 − 419x6

720 + 6697x7

1260 +O(x8)
)
ln (x)

x

+
x− 15x2

4 + 133x3

18 − 3077x4

288 + 4217x5

400 − 70949x6

14400 − 125221x7

29400 +O(x8)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
1− 2x+ 9x2

2 − 20x3

3 + 173x4

24 − 93x5

20 − 419x6

720 + 6697x7

1260 +O(x8)
)

x

+ c2


(
1− 2x+ 9x2

2 − 20x3

3 + 173x4

24 − 93x5

20 − 419x6

720 + 6697x7

1260 +O(x8)
)
ln (x)

x

+
x− 15x2

4 + 133x3

18 − 3077x4

288 + 4217x5

400 − 70949x6

14400 − 125221x7

29400 +O(x8)
x
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Hence the final solution is

y = yh

=
c1
(
1− 2x+ 9x2

2 − 20x3

3 + 173x4

24 − 93x5

20 − 419x6

720 + 6697x7

1260 +O(x8)
)

x

+ c2


(
1− 2x+ 9x2

2 − 20x3

3 + 173x4

24 − 93x5

20 − 419x6

720 + 6697x7

1260 +O(x8)
)
ln (x)

x

+
x− 15x2

4 + 133x3

18 − 3077x4

288 + 4217x5

400 − 70949x6

14400 − 125221x7

29400 +O(x8)
x


Summary
The solution(s) found are the following

(1)

y =
c1
(
1− 2x+ 9x2

2 − 20x3

3 + 173x4

24 − 93x5

20 − 419x6

720 + 6697x7

1260 +O(x8)
)

x

+ c2


(
1− 2x+ 9x2

2 − 20x3

3 + 173x4

24 − 93x5

20 − 419x6

720 + 6697x7

1260 +O(x8)
)
ln (x)

x

+
x− 15x2

4 + 133x3

18 − 3077x4

288 + 4217x5

400 − 70949x6

14400 − 125221x7

29400 +O(x8)
x


Verification of solutions

y =
c1
(
1− 2x+ 9x2

2 − 20x3

3 + 173x4

24 − 93x5

20 − 419x6

720 + 6697x7

1260 +O(x8)
)

x

+ c2


(
1− 2x+ 9x2

2 − 20x3

3 + 173x4

24 − 93x5

20 − 419x6

720 + 6697x7

1260 +O(x8)
)
ln (x)

x

+
x− 15x2

4 + 133x3

18 − 3077x4

288 + 4217x5

400 − 70949x6

14400 − 125221x7

29400 +O(x8)
x


Verified OK.
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15.6.1 Maple step by step solution

Let’s solve
x2(2x2 + x+ 1) y′′ + (7x3 + 6x2 + 3x) y′ + (−3x2 + 6x+ 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ =
(
3x2−6x−1

)
y

x2(2x2+x+1) −
(
7x2+6x+3

)
y′

x(2x2+x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
7x2+6x+3

)
y′

x(2x2+x+1) −
(
3x2−6x−1

)
y

x2(2x2+x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 7x2+6x+3
x(2x2+x+1) , P3(x) = − 3x2−6x−1

x2(2x2+x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(2x2 + x+ 1) y′′ + x(7x2 + 6x+ 3) y′ + (−3x2 + 6x+ 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + r)2 xr +
(
a1(2 + r)2 + a0(3 + r) (2 + r)

)
x1+r +

(
∞∑
k=2

(
ak(k + r + 1)2 + ak−1(k + r + 2) (k + r + 1) + ak−2(k + r + 1) (2k − 5 + 2r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −1

• Each term must be 0
a1(2 + r)2 + a0(3 + r) (2 + r) = 0

• Solve for the dependent coefficient(s)
a1 = − (3+r)a0

2+r

• Each term in the series must be 0, giving the recursion relation
(k + r + 1) ((ak + 2ak−2 + ak−1) k + (ak + 2ak−2 + ak−1) r + ak − 5ak−2 + 2ak−1) = 0

• Shift index using k− >k + 2
(k + r + 3) ((ak+2 + 2ak + ak+1) (k + 2) + (ak+2 + 2ak + ak+1) r + ak+2 − 5ak + 2ak+1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2kak+kak+1+2rak+rak+1−ak+4ak+1

k+r+3
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• Recursion relation for r = −1
ak+2 = −2kak+kak+1−3ak+3ak+1

k+2

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = −2kak+kak+1−3ak+3ak+1

k+2 , a1 = −2a0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]

One independent solution has integrals. Trying a hypergeometric solution free of integrals...
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

No hypergeometric solution was found.
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 81� �
Order:=8;
dsolve(x^2*(1+x+2*x^2)*diff(y(x),x$2)+x*(3+6*x+7*x^2)*diff(y(x),x)+(1+6*x-3*x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
(c2 ln (x) + c1)

(
1− 2x+ 9

2x
2 − 20

3 x
3 + 173

24 x
4 − 93

20x
5 − 419

720x
6 + 6697

1260x
7 +O(x8)

)
+
(
x− 15

4 x
2 + 133

18 x
3 − 3077

288 x
4 + 4217

400 x
5 − 70949

14400x
6 − 125221

29400 x
7 +O(x8)

)
c2

x

5540



3 Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 162� �
AsymptoticDSolveValue[x^2*(1+x+2*x^2)*y''[x]+x*(3+6*x+7*x^2)*y'[x]+(1+6*x-3*x^2)*y[x]==0,y[x],{x,0,7}]� �

y(x) →
c1
(

6697x7

1260 − 419x6

720 − 93x5

20 + 173x4

24 − 20x3

3 + 9x2

2 − 2x+ 1
)

x

+ c2

−125221x7

29400 − 70949x6

14400 + 4217x5

400 − 3077x4

288 + 133x3

18 − 15x2

4 + x

x

+

(
6697x7

1260 − 419x6

720 − 93x5

20 + 173x4

24 − 20x3

3 + 9x2

2 − 2x+ 1
)
log(x)

x
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15.7 problem 3
15.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5552

Internal problem ID [1355]
Internal file name [OUTPUT/1356_Sunday_June_05_2022_02_12_41_AM_68323968/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries], [_2nd_order , _linear , `

_with_symmetry_ [0,F(x)]`]]

x2(x2 + 2x+ 1
)
y′′ + x

(
4x2 + 3x+ 1

)
y′ − x(1− 2x) y = 0

With the expansion point for the power series method at x = 0.

The ODE is
x2(x+ 1)2 y′′ +

(
4x3 + 3x2 + x

)
y′ +

(
2x2 − x

)
y = 0

Or
x
(
y′′x3 + 4y′x2 + 2x2y′′ + 2yx+ 3y′x+ y′′x− y + y′

)
= 0

For x 6= 0 the above simplifies to

y(2x− 1) +
(
4x2 + 3x+ 1

)
y′ + x(x+ 1)2 y′′ = 0

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

x4 + 2x3 + x2) y′′ + (4x3 + 3x2 + x
)
y′ +

(
2x2 − x

)
y = 0
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The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 4x2 + 3x+ 1
x (x+ 1)2

q(x) = 2x− 1
x (x+ 1)2

Table 656: Table p(x), q(x) singularites.

p(x) = 4x2+3x+1
x(x+1)2

singularity type
x = −1 “irregular”
x = 0 “regular”

q(x) = 2x−1
x(x+1)2

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞]

Irregular singular points : [−1]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 + 2x+ 1
)
y′′ +

(
4x3 + 3x2 + x

)
y′ +

(
2x2 − x

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2
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Substituting the above back into the ode gives

(1)
x2(x2 + 2x+ 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
4x3 + 3x2 + x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
2x2 − x

)( ∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

2x1+n+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+r+2an(n+ r)
)

+
(

∞∑
n=0

3x1+n+ran(n+ r)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

2xn+r+2an

)
+

∞∑
n =0

(
−x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

2x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

4xn+r+2an(n+ r) =
∞∑
n=2

4an−2(n+ r − 2)xn+r

∞∑
n =0

3x1+n+ran(n+ r) =
∞∑
n=1

3an−1(n+ r − 1)xn+r

∞∑
n =0

2xn+r+2an =
∞∑
n=2

2an−2x
n+r
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∞∑
n =0

(
−x1+n+ran

)
=

∞∑
n=1

(
−an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=1

2an−1(n+r−1) (n+r−2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+r) (n+r−1)
)

+
(

∞∑
n=2

4an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=1

3an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

2an−2x
n+r

)
+

∞∑
n =1

(
−an−1x

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r) = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r = 0

Or
(xrr(−1 + r) + xrr) a0 = 0

Since a0 6= 0 then the above simplifies to

xrr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0
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Since a0 6= 0 then the indicial equation becomes

xrr2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 =
−2r + 1
1 + r

For 2 ≤ n the recursive equation is

(3)an−2(n+ r−2) (n−3+ r)+2an−1(n+ r−1) (n+ r−2)+an(n+ r) (n+ r−1)
+ 4an−2(n+ r − 2) + 3an−1(n+ r − 1) + an(n+ r) + 2an−2 − an−1 = 0

Solving for an from recursive equation (4) gives

an = −nan−2 + 2nan−1 + ran−2 + 2ran−1 − an−2 − 3an−1

n+ r
(4)

Which for the root r = 0 becomes

an = (−an−2 − 2an−1)n+ an−2 + 3an−1

n
(5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

−2r+1
1+r

1

For n = 2, using the above recursive equation gives

a2 =
3r2 − 2r − 2
(2 + r) (1 + r)

Which for the root r = 0 becomes
a2 = −1

And the table now becomes

n an,r an

a0 1 1
a1

−2r+1
1+r

1

a2
3r2−2r−2
(2+r)(1+r) −1

For n = 3, using the above recursive equation gives

a3 =
−4r3 + 2r2 + 14r + 2
(1 + r) (2 + r) (3 + r)

Which for the root r = 0 becomes
a3 =

1
3

And the table now becomes

n an,r an

a0 1 1
a1

−2r+1
1+r

1

a2
3r2−2r−2
(2+r)(1+r) −1

a3
−4r3+2r2+14r+2
(1+r)(2+r)(3+r)

1
3
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For n = 4, using the above recursive equation gives

a4 =
5r4 − 51r2 − 44r + 8

(4 + r) (1 + r) (2 + r) (3 + r)

Which for the root r = 0 becomes
a4 =

1
3

And the table now becomes

n an,r an

a0 1 1
a1

−2r+1
1+r

1

a2
3r2−2r−2
(2+r)(1+r) −1

a3
−4r3+2r2+14r+2
(1+r)(2+r)(3+r)

1
3

a4
5r4−51r2−44r+8

(4+r)(1+r)(2+r)(3+r)
1
3

For n = 5, using the above recursive equation gives

a5 =
−6r5 − 5r4 + 136r3 + 299r2 + 52r − 88
(1 + r) (2 + r) (3 + r) (4 + r) (5 + r)

Which for the root r = 0 becomes

a5 = −11
15

And the table now becomes

n an,r an

a0 1 1
a1

−2r+1
1+r

1

a2
3r2−2r−2
(2+r)(1+r) −1

a3
−4r3+2r2+14r+2
(1+r)(2+r)(3+r)

1
3

a4
5r4−51r2−44r+8

(4+r)(1+r)(2+r)(3+r)
1
3

a5
−6r5−5r4+136r3+299r2+52r−88

(1+r)(2+r)(3+r)(4+r)(5+r) −11
15
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For n = 6, using the above recursive equation gives

a6 =
7r6 + 14r5 − 301r4 − 1268r3 − 1088r2 + 728r + 592

(6 + r) (1 + r) (2 + r) (3 + r) (4 + r) (5 + r)

Which for the root r = 0 becomes
a6 =

37
45

And the table now becomes

n an,r an

a0 1 1
a1

−2r+1
1+r

1

a2
3r2−2r−2
(2+r)(1+r) −1

a3
−4r3+2r2+14r+2
(1+r)(2+r)(3+r)

1
3

a4
5r4−51r2−44r+8

(4+r)(1+r)(2+r)(3+r)
1
3

a5
−6r5−5r4+136r3+299r2+52r−88

(1+r)(2+r)(3+r)(4+r)(5+r) −11
15

a6
7r6+14r5−301r4−1268r3−1088r2+728r+592

(6+r)(1+r)(2+r)(3+r)(4+r)(5+r)
37
45

For n = 7, using the above recursive equation gives

a7 =
−8r7 − 28r6 + 588r5 + 4096r4 + 7588r3 − 788r2 − 10008r − 3344

(1 + r) (2 + r) (3 + r) (4 + r) (5 + r) (6 + r) (7 + r)

Which for the root r = 0 becomes

a7 = −209
315

And the table now becomes
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n an,r an

a0 1 1
a1

−2r+1
1+r

1

a2
3r2−2r−2
(2+r)(1+r) −1

a3
−4r3+2r2+14r+2
(1+r)(2+r)(3+r)

1
3

a4
5r4−51r2−44r+8

(4+r)(1+r)(2+r)(3+r)
1
3

a5
−6r5−5r4+136r3+299r2+52r−88

(1+r)(2+r)(3+r)(4+r)(5+r) −11
15

a6
7r6+14r5−301r4−1268r3−1088r2+728r+592

(6+r)(1+r)(2+r)(3+r)(4+r)(5+r)
37
45

a7
−8r7−28r6+588r5+4096r4+7588r3−788r2−10008r−3344

(1+r)(2+r)(3+r)(4+r)(5+r)(6+r)(7+r) −209
315

Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7 + a8x
8. . .

= −x2 + x+ 1 + x3

3 + x4

3 − 11x5

15 + 37x6

45 − 209x7

315 +O
(
x8)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table
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n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1

−2r+1
1+r

1 − 3
(1+r)2 −3

b2
3r2−2r−2
(2+r)(1+r) −1 11r2+16r+2

(2+r)2(1+r)2
1
2

b3
−4r3+2r2+14r+2
(1+r)(2+r)(3+r)

1
3

−26r4−116r3−140r2+62
(1+r)2(2+r)2(3+r)2

31
18

b4
5r4−51r2−44r+8

(4+r)(1+r)(2+r)(3+r)
1
3

50r6+452r5+1392r4+1328r3−1250r2−3008r−1456
(1+r)2(2+r)2(3+r)2(4+r)2 −91

36

b5
−6r5−5r4+136r3+299r2+52r−88

(1+r)(2+r)(3+r)(4+r)(5+r) −11
15

−85r8−1292r7−7412r6−18004r5−4425r4+68568r3+141626r2+111360r+30352
(1+r)2(2+r)2(3+r)2(4+r)2(5+r)2

1897
900

b6
7r6+14r5−301r4−1268r3−1088r2+728r+592

(6+r)(1+r)(2+r)(3+r)(4+r)(5+r)
37
45

133r10+3052r9+28010r8+123660r7+195517r6−532528r5−3246404r4−6824944r3−7145744r2−3489536r−520128
(1+r)2(2+r)2(3+r)2(4+r)2(5+r)2(6+r)2 −301

300

b7
−8r7−28r6+588r5+4096r4+7588r3−788r2−10008r−3344

(1+r)(2+r)(3+r)(4+r)(5+r)(6+r)(7+r) −209
315 −4

(
49r12+1582r11+21202r10+146524r9+473440r8−280982r7−9023042r6−38501904r5−86151913r4−110650148r3−75941160r2−19970944r+1685232

)
(1+r)2(2+r)2(3+r)2(4+r)2(5+r)2(6+r)2(7+r)2 − 3901

14700

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 + b8x
8. . .

=
(
−x2 + x+ 1 + x3

3 + x4

3 − 11x5

15 + 37x6

45 − 209x7

315 +O
(
x8)) ln (x)

− 3x+ x2

2 + 31x3

18 − 91x4

36 + 1897x5

900 − 301x6

300 − 3901x7

14700 +O
(
x8)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
−x2 + x+ 1 + x3

3 + x4

3 − 11x5

15 + 37x6

45 − 209x7

315 +O
(
x8))

+ c2

((
−x2 + x+ 1 + x3

3 + x4

3 − 11x5

15 + 37x6

45 − 209x7

315 +O
(
x8)) ln (x)− 3x

+ x2

2 + 31x3

18 − 91x4

36 + 1897x5

900 − 301x6

300 − 3901x7

14700 +O
(
x8))

Hence the final solution is

y = yh
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= c1

(
−x2 + x+ 1 + x3

3 + x4

3 − 11x5

15 + 37x6

45 − 209x7

315 +O
(
x8))

+ c2

((
−x2 + x+ 1+ x3

3 + x4

3 − 11x5

15 + 37x6

45 − 209x7

315 +O
(
x8)) ln (x)− 3x+ x2

2

+ 31x3

18 − 91x4

36 + 1897x5

900 − 301x6

300 − 3901x7

14700 +O
(
x8))

Summary
The solution(s) found are the following

(1)

y = c1

(
−x2 + x+ 1 + x3

3 + x4

3 − 11x5

15 + 37x6

45 − 209x7

315 +O
(
x8))

+ c2

((
−x2 + x+ 1 + x3

3 + x4

3 − 11x5

15 + 37x6

45 − 209x7

315 +O
(
x8)) ln (x)− 3x

+ x2

2 + 31x3

18 − 91x4

36 + 1897x5

900 − 301x6

300 − 3901x7

14700 +O
(
x8))

Verification of solutions

y = c1

(
−x2 + x+ 1 + x3

3 + x4

3 − 11x5

15 + 37x6

45 − 209x7

315 +O
(
x8))

+ c2

((
−x2 + x+ 1+ x3

3 + x4

3 − 11x5

15 + 37x6

45 − 209x7

315 +O
(
x8)) ln (x)− 3x+ x2

2

+ 31x3

18 − 91x4

36 + 1897x5

900 − 301x6

300 − 3901x7

14700 +O
(
x8))

Verified OK.

15.7.1 Maple step by step solution

Let’s solve
x2(x2 + 2x+ 1) y′′ + (4x3 + 3x2 + x) y′ + (2x2 − x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (2x−1)y
x(x2+2x+1) −

(
4x2+3x+1

)
y′

x(x2+2x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
4x2+3x+1

)
y′

x(x2+2x+1) + (2x−1)y
x(x2+2x+1) = 0
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� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 4x2+3x+1
x(x2+2x+1) , P3(x) = 2x−1

x(x2+2x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
(x2 + 2x+ 1) y′′x+ (4x2 + 3x+ 1) y′ + y(2x− 1) = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 0..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..3
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xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r +

(
a1(1 + r)2 + a0(1 + r) (−1 + 2r)

)
xr +

(
∞∑
k=1

(
ak+1(k + r + 1)2 + ak(k + r + 1) (2k + 2r − 1) + ak−1(k + r + 1) (k + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 + a0(1 + r) (−1 + 2r) = 0

• Each term in the series must be 0, giving the recursion relation
(k + 1) (2kak + ak−1k + kak+1 − ak + ak+1) = 0

• Shift index using k− >k + 1
(k + 2) (2ak+1(k + 1) + ak(k + 1) + (k + 1) ak+2 − ak+1 + ak+2) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −kak+2kak+1+ak+ak+1

k+2

• Recursion relation for r = 0
ak+2 = −kak+2kak+1+ak+ak+1

k+2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = −kak+2kak+1+ak+ak+1

k+2 , a1 − a0 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 71� �
Order:=8;
dsolve(x^2*(1+2*x+x^2)*diff(y(x),x$2)+x*(1+3*x+4*x^2)*diff(y(x),x)-x*(1-2*x)*y(x)=0,y(x),type='series',x=0);� �
y(x) = (c2 ln (x) + c1)

(
1 + x− x2 + 1

3x
3 + 1

3x
4 − 11

15x
5 + 37

45x
6 − 209

315x
7 +O

(
x8))

+
(
(−3)x+ 1

2x
2 + 31

18x
3 − 91

36x
4 + 1897

900 x5 − 301
300x

6 − 3901
14700x

7 +O
(
x8)) c2

3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 145� �
AsymptoticDSolveValue[x^2*(1+2*x+x^2)*y''[x]+x*(1+3*x+4*x^2)*y'[x]-x*(1-2*x)*y[x]==0,y[x],{x,0,7}]� �

y(x) → c1

(
−209x7

315 + 37x6

45 − 11x5

15 + x4

3 + x3

3 − x2 + x+ 1
)

+ c2

(
−3901x7

14700 − 301x6

300 + 1897x5

900 − 91x4

36 + 31x3

18 + x2

2

+
(
−209x7

315 + 37x6

45 − 11x5

15 + x4

3 + x3

3 − x2 + x+ 1
)
log(x)− 3x

)
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15.8 problem 4
15.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5566

Internal problem ID [1356]
Internal file name [OUTPUT/1357_Sunday_June_05_2022_02_12_43_AM_60657887/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2(x2 + x+ 1
)
y′′ + 12x2(x+ 1) y′ +

(
3x2 + 3x+ 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

4x4 + 4x3 + 4x2) y′′ + (12x3 + 12x2) y′ + (3x2 + 3x+ 1
)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3 + 3x
x2 + x+ 1

q(x) = 3x2 + 3x+ 1
4x2 (x2 + x+ 1)
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Table 658: Table p(x), q(x) singularites.

p(x) = 3+3x
x2+x+1

singularity type

x = −1
2 −

i
√
3

2 “regular”

x = −1
2 +

i
√
3

2 “regular”

q(x) = 3x2+3x+1
4x2(x2+x+1)

singularity type
x = 0 “regular”

x = −1
2 −

i
√
3

2 “regular”

x = −1
2 +

i
√
3

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
−1

2 −
i
√
3

2 ,−1
2 +

i
√
3

2 , 0,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2(x2 + x+ 1
)
y′′ +

(
12x3 + 12x2) y′ + (3x2 + 3x+ 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2(x2 + x+ 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
12x3 + 12x2)( ∞∑

n=0

(n+ r) anxn+r−1

)
+
(
3x2 + 3x+ 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4xn+r+2an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

4x1+n+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

12xn+r+2an(n+ r)
)

+
(

∞∑
n=0

12x1+n+ran(n+ r)
)

+
(

∞∑
n=0

3xn+r+2an

)

+
(

∞∑
n=0

3x1+n+ran

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

4an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

4x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

4an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

12xn+r+2an(n+ r) =
∞∑
n=2

12an−2(n+ r − 2)xn+r

∞∑
n =0

12x1+n+ran(n+ r) =
∞∑
n=1

12an−1(n+ r − 1)xn+r

∞∑
n =0

3xn+r+2an =
∞∑
n=2

3an−2x
n+r

∞∑
n =0

3x1+n+ran =
∞∑
n=1

3an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ r.(
∞∑
n=2

4an−2(n+ r − 2) (n− 3 + r)xn+r

)
+
(

∞∑
n=1

4an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

12an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=1

12an−1(n+r−1)xn+r

)
+
(

∞∑
n=2

3an−2x
n+r

)
+
(

∞∑
n=1

3an−1x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + anx
n+r = 0

When n = 0 the above becomes

4xra0r(−1 + r) + a0x
r = 0

Or
(4xrr(−1 + r) + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(2r − 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(2r − 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 =
1
2

Since a0 6= 0 then the indicial equation becomes

(2r − 1)2 xr = 0
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Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1

2 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+ 1

2

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 =
−3− 2r
2r + 1

For 2 ≤ n the recursive equation is

(3)4an−2(n+r−2) (n−3+r)+4an−1(n+r−1) (n+r−2)+4an(n+r) (n+r−1)
+ 12an−2(n+ r − 2) + 12an−1(n+ r − 1) + 3an−2 + 3an−1 + an = 0

Solving for an from recursive equation (4) gives

an = −2nan−2 + 2nan−1 + 2ran−2 + 2ran−1 − 3an−2 + an−1

−1 + 2n+ 2r (4)
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Which for the root r = 1
2 becomes

an = (−an−2 − an−1)n+ an−2 − an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

−3−2r
2r+1 −2

For n = 2, using the above recursive equation gives

a2 =
12r + 14

4r2 + 8r + 3
Which for the root r = 1

2 becomes
a2 =

5
2

And the table now becomes

n an,r an

a0 1 1
a1

−3−2r
2r+1 −2

a2
12r+14

4r2+8r+3
5
2

For n = 3, using the above recursive equation gives

a3 =
8r3 + 12r2 − 58r − 71
8r3 + 36r2 + 46r + 15

Which for the root r = 1
2 becomes

a3 = −2
And the table now becomes

n an,r an

a0 1 1
a1

−3−2r
2r+1 −2

a2
12r+14

4r2+8r+3
5
2

a3
8r3+12r2−58r−71
8r3+36r2+46r+15 −2
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For n = 4, using the above recursive equation gives

a4 =
−16r4 − 144r3 − 288r2 + 84r + 289
16r4 + 128r3 + 344r2 + 352r + 105

Which for the root r = 1
2 becomes

a4 =
5
8

And the table now becomes

n an,r an

a0 1 1
a1

−3−2r
2r+1 −2

a2
12r+14

4r2+8r+3
5
2

a3
8r3+12r2−58r−71
8r3+36r2+46r+15 −2

a4
−16r4−144r3−288r2+84r+289
16r4+128r3+344r2+352r+105

5
8

For n = 5, using the above recursive equation gives

a5 =
192r4 + 1664r3 + 4320r2 + 3328r + 300

32r5 + 400r4 + 1840r3 + 3800r2 + 3378r + 945
Which for the root r = 1

2 becomes
a5 =

17
20

And the table now becomes

n an,r an

a0 1 1
a1

−3−2r
2r+1 −2

a2
12r+14

4r2+8r+3
5
2

a3
8r3+12r2−58r−71
8r3+36r2+46r+15 −2

a4
−16r4−144r3−288r2+84r+289
16r4+128r3+344r2+352r+105

5
8

a5
192r4+1664r3+4320r2+3328r+300

32r5+400r4+1840r3+3800r2+3378r+945
17
20

For n = 6, using the above recursive equation gives

a6 =
64r6 + 768r5 + 1808r4 − 8576r3 − 43668r2 − 61072r − 27309
64r6 + 1152r5 + 8080r4 + 27840r3 + 48556r2 + 39048r + 10395
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Which for the root r = 1
2 becomes

a6 = −121
80

And the table now becomes

n an,r an

a0 1 1
a1

−3−2r
2r+1 −2

a2
12r+14

4r2+8r+3
5
2

a3
8r3+12r2−58r−71
8r3+36r2+46r+15 −2

a4
−16r4−144r3−288r2+84r+289
16r4+128r3+344r2+352r+105

5
8

a5
192r4+1664r3+4320r2+3328r+300

32r5+400r4+1840r3+3800r2+3378r+945
17
20

a6
64r6+768r5+1808r4−8576r3−43668r2−61072r−27309

64r6+1152r5+8080r4+27840r3+48556r2+39048r+10395 −121
80

For n = 7, using the above recursive equation gives

a7 =
−128r7 − 3264r6 − 30240r5 − 123696r4 − 188760r3 + 106812r2 + 554810r + 373335
128r7 + 3136r6 + 31136r5 + 160720r4 + 459032r3 + 709324r2 + 528414r + 135135

Which for the root r = 1
2 becomes

a7 = 1

And the table now becomes

n an,r an

a0 1 1
a1

−3−2r
2r+1 −2

a2
12r+14

4r2+8r+3
5
2

a3
8r3+12r2−58r−71
8r3+36r2+46r+15 −2

a4
−16r4−144r3−288r2+84r+289
16r4+128r3+344r2+352r+105

5
8

a5
192r4+1664r3+4320r2+3328r+300

32r5+400r4+1840r3+3800r2+3378r+945
17
20

a6
64r6+768r5+1808r4−8576r3−43668r2−61072r−27309

64r6+1152r5+8080r4+27840r3+48556r2+39048r+10395 −121
80

a7
−128r7−3264r6−30240r5−123696r4−188760r3+106812r2+554810r+373335
128r7+3136r6+31136r5+160720r4+459032r3+709324r2+528414r+135135 1
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Using the above table, then the first solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7 + a8x

8. . .
)

=
√
x

(
1− 2x+ 5x2

2 − 2x3 + 5x4

8 + 17x5

20 − 121x6

80 + x7 +O
(
x8))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1
2 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = 1

2

)
b0 1 1 N/A since bn starts from 1 N/A
b1

−3−2r
2r+1 −2 4

(2r+1)2 1

b2
12r+14

4r2+8r+3
5
2

−48r2−112r−76
(4r2+8r+3)2 −9

4

b3
8r3+12r2−58r−71
8r3+36r2+46r+15 −2 192r4+1664r3+4704r2+5472r+2396

(8r3+36r2+46r+15)2
17
6

b4
−16r4−144r3−288r2+84r+289
16r4+128r3+344r2+352r+105

5
8

256r6−1792r5−33600r4−148096r3−286608r2−259312r−92908
(16r4+128r3+344r2+352r+105)2 −205

96

b5
192r4+1664r3+4320r2+3328r+300

32r5+400r4+1840r3+3800r2+3378r+945
17
20 −8

(
768r8+13312r7+90880r6+302848r5+465184r4+94912r3−626000r2−735600r−266445

)
(32r5+400r4+1840r3+3800r2+3378r+945)2

481
1200

b6
64r6+768r5+1808r4−8576r3−43668r2−61072r−27309

64r6+1152r5+8080r4+27840r3+48556r2+39048r+10395 −121
80

24576r10+802816r9+11114496r8+86130688r7+414456832r6+1297106944r5+2688699136r4+3688541184r3+3273669088r2+1744173888r+431518392
(64r6+1152r5+8080r4+27840r3+48556r2+39048r+10395)2

2109
1600

b7
−128r7−3264r6−30240r5−123696r4−188760r3+106812r2+554810r+373335
128r7+3136r6+31136r5+160720r4+459032r3+709324r2+528414r+135135 1 16384r12−229376r11−21012480r10−411738112r9−4250088448r8−27440492544r7−118548610048r6−352501101568r5−725070613056r4−1015710181760r3−927741475232r2−500762871840r−122301191340

(128r7+3136r6+31136r5+160720r4+459032r3+709324r2+528414r+135135)2 −1063
560

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 + b8x
8. . .

=
√
x

(
1− 2x+ 5x2

2 − 2x3 + 5x4

8 + 17x5

20 − 121x6

80 + x7 +O
(
x8)) ln (x)

+
√
x

(
x− 9x2

4 + 17x3

6 − 205x4

96 + 481x5

1200 + 2109x6

1600 − 1063x7

560 +O
(
x8))
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− 2x+ 5x2

2 − 2x3 + 5x4

8 + 17x5

20 − 121x6

80 + x7 +O
(
x8))

+ c2

(√
x

(
1− 2x+ 5x2

2 − 2x3 + 5x4

8 + 17x5

20 − 121x6

80 + x7 +O
(
x8)) ln (x)

+
√
x

(
x− 9x2

4 + 17x3

6 − 205x4

96 + 481x5

1200 + 2109x6

1600 − 1063x7

560 +O
(
x8)))

Hence the final solution is

y = yh

= c1
√
x

(
1− 2x+ 5x2

2 − 2x3 + 5x4

8 + 17x5

20 − 121x6

80 + x7 +O
(
x8))

+ c2

(√
x

(
1− 2x+ 5x2

2 − 2x3 + 5x4

8 + 17x5

20 − 121x6

80 + x7 +O
(
x8)) ln (x)

+
√
x

(
x− 9x2

4 + 17x3

6 − 205x4

96 + 481x5

1200 + 2109x6

1600 − 1063x7

560 +O
(
x8)))

Summary
The solution(s) found are the following

(1)

y = c1
√
x

(
1− 2x+ 5x2

2 − 2x3 + 5x4

8 + 17x5

20 − 121x6

80 + x7 +O
(
x8))

+ c2

(√
x

(
1− 2x+ 5x2

2 − 2x3 + 5x4

8 + 17x5

20 − 121x6

80 + x7 +O
(
x8)) ln (x)

+
√
x

(
x− 9x2

4 + 17x3

6 − 205x4

96 + 481x5

1200 + 2109x6

1600 − 1063x7

560 +O
(
x8)))

Verification of solutions

y = c1
√
x

(
1− 2x+ 5x2

2 − 2x3 + 5x4

8 + 17x5

20 − 121x6

80 + x7 +O
(
x8))

+ c2

(√
x

(
1− 2x+ 5x2

2 − 2x3 + 5x4

8 + 17x5

20 − 121x6

80 + x7 +O
(
x8)) ln (x)

+
√
x

(
x− 9x2

4 + 17x3

6 − 205x4

96 + 481x5

1200 + 2109x6

1600 − 1063x7

560 +O
(
x8)))

Verified OK.
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15.8.1 Maple step by step solution

Let’s solve
4x2(x2 + x+ 1) y′′ + (12x3 + 12x2) y′ + (3x2 + 3x+ 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
3x2+3x+1

)
y

4x2(x2+x+1) −
3(x+1)y′
x2+x+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 3(x+1)y′
x2+x+1 +

(
3x2+3x+1

)
y

4x2(x2+x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3(x+1)
x2+x+1 , P3(x) = 3x2+3x+1

4x2(x2+x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2(x2 + x+ 1) y′′ + 12x2(x+ 1) y′ + (3x2 + 3x+ 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 2..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r)2 xr +
(
a1(1 + 2r)2 + a0(3 + 2r) (1 + 2r)

)
x1+r +

(
∞∑
k=2

(
ak(2k + 2r − 1)2 + ak−1(2k + 2r + 1) (2k + 2r − 1) + ak−2(2k + 2r − 1) (2k − 3 + 2r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

2

• Each term must be 0
a1(1 + 2r)2 + a0(3 + 2r) (1 + 2r) = 0

• Solve for the dependent coefficient(s)
a1 = − (3+2r)a0

1+2r

• Each term in the series must be 0, giving the recursion relation

4
(
(ak + ak−2 + ak−1) k + (ak + ak−2 + ak−1) r − ak

2 − 3ak−2
2 + ak−1

2

) (
k + r − 1

2

)
= 0

• Shift index using k− >k + 2
4
(
(ak+2 + ak + ak+1) (k + 2) + (ak+2 + ak + ak+1) r − ak+2

2 − 3ak
2 + ak+1

2

) (
k + 3

2 + r
)
= 0

• Recursion relation that defines series solution to ODE
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ak+2 = −2kak+2kak+1+2rak+2rak+1+ak+5ak+1
2k+2r+3

• Recursion relation for r = 1
2

ak+2 = −2kak+2kak+1+2ak+6ak+1
2k+4

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −2kak+2kak+1+2ak+6ak+1
2k+4 , a1 = −2a0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 81� �
Order:=8;
dsolve(4*x^2*(1+x+x^2)*diff(y(x),x$2)+12*x^2*(1+x)*diff(y(x),x)+(1+3*x+3*x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x) =

√
x

(
(c2 ln (x) + c1)

(
1− 2x+ 5

2x
2 − 2x3 + 5

8x
4 + 17

20x
5 − 121

80 x6 + x7 +O
(
x8))

+
(
x− 9

4x
2 + 17

6 x3 − 205
96 x4 + 481

1200x
5 + 2109

1600x
6 − 1063

560 x7 +O
(
x8)) c2

)
3 Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 156� �
AsymptoticDSolveValue[4*x^2*(1+x+x^2)*y''[x]+12*x^2*(1+x)*y'[x]+(1+3*x+3*x^2)*y[x]==0,y[x],{x,0,7}]� �

y(x) → c1
√
x

(
x7 − 121x6

80 + 17x5

20 + 5x4

8 − 2x3 + 5x2

2 − 2x+ 1
)

+ c2

(√
x

(
−1063x7

560 + 2109x6

1600 + 481x5

1200 − 205x4

96 + 17x3

6 − 9x2

4 + x

)
+
√
x

(
x7 − 121x6

80 + 17x5

20 + 5x4

8 − 2x3 + 5x2

2 − 2x+ 1
)
log(x)

)
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15.9 problem 5
15.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5580

Internal problem ID [1357]
Internal file name [OUTPUT/1358_Sunday_June_05_2022_02_12_49_AM_75467743/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x2 + x+ 1
)
y′′ − x

(
−2x2 − 4x+ 1

)
y′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x4 + x3 + x2) y′′ + (2x3 + 4x2 − x
)
y′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2x2 + 4x− 1
(x2 + x+ 1)x

q(x) = 1
x2 (x2 + x+ 1)

5570



Table 660: Table p(x), q(x) singularites.

p(x) = 2x2+4x−1
(x2+x+1)x

singularity type
x = 0 “regular”

x = −1
2 −

i
√
3

2 “regular”

x = −1
2 +

i
√
3

2 “regular”

q(x) = 1
x2(x2+x+1)

singularity type
x = 0 “regular”

x = −1
2 −

i
√
3

2 “regular”

x = −1
2 +

i
√
3

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−1

2 −
i
√
3

2 ,−1
2 +

i
√
3

2 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 + x+ 1
)
y′′ +

(
2x3 + 4x2 − x

)
y′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x2 + x+ 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
2x3 + 4x2 − x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
= 0

5571



Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+r+2an(n+ r)
)

+
(

∞∑
n=0

4x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

2xn+r+2an(n+ r) =
∞∑
n=2

2an−2(n+ r − 2)xn+r

∞∑
n =0

4x1+n+ran(n+ r) =
∞∑
n=1

4an−1(n+ r − 1)xn+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=1

an−1(n+ r−1) (n+ r−2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r−1)
)

+
(

∞∑
n=2

2an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=1

4an−1(n+ r − 1)xn+r

)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

anx
n+r

)
= 0
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The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− xra0r + a0x
r = 0

Or
(xrr(−1 + r)− xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(−1 + r)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(−1 + r)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 1

Since a0 6= 0 then the indicial equation becomes

(−1 + r)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
1+n

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
1+n

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 =
−r − 3

r

For 2 ≤ n the recursive equation is

(3)an−2(n+ r− 2) (n− 3+ r)+ an−1(n+ r− 1) (n+ r− 2)+ an(n+ r) (n+ r− 1)
+ 2an−2(n+ r − 2) + 4an−1(n+ r − 1)− an(n+ r) + an = 0

Solving for an from recursive equation (4) gives

an = −nan−2 + nan−1 + ran−2 + ran−1 − 2an−2 + 2an−1

n+ r − 1 (4)

Which for the root r = 1 becomes

an = (−an−2 − an−1)n+ an−2 − 3an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

−r−3
r

−4

For n = 2, using the above recursive equation gives

a2 =
7r + 12
(1 + r) r
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Which for the root r = 1 becomes
a2 =

19
2

And the table now becomes

n an,r an

a0 1 1
a1

−r−3
r

−4
a2

7r+12
(1+r)r

19
2

For n = 3, using the above recursive equation gives

a3 =
r3 − 2r2 − 40r − 57
(2 + r) r (1 + r)

Which for the root r = 1 becomes

a3 = −49
3

And the table now becomes

n an,r an

a0 1 1
a1

−r−3
r

−4
a2

7r+12
(1+r)r

19
2

a3
r3−2r2−40r−57
(2+r)r(1+r) −49

3

For n = 4, using the above recursive equation gives

a4 =
−r4 − 11r3 + 12r2 + 221r + 294

r (1 + r) (2 + r) (r + 3)

Which for the root r = 1 becomes

a4 =
515
24

And the table now becomes

5575



n an,r an

a0 1 1
a1

−r−3
r

−4
a2

7r+12
(1+r)r

19
2

a3
r3−2r2−40r−57
(2+r)r(1+r) −49

3

a4
−r4−11r3+12r2+221r+294

r(1+r)(2+r)(r+3)
515
24

For n = 5, using the above recursive equation gives

a5 =
14r4 + 108r3 + 10r2 − 1139r − 1545

(4 + r) r (1 + r) (2 + r) (r + 3)

Which for the root r = 1 becomes

a5 = −319
15

And the table now becomes

n an,r an

a0 1 1
a1

−r−3
r

−4
a2

7r+12
(1+r)r

19
2

a3
r3−2r2−40r−57
(2+r)r(1+r) −49

3

a4
−r4−11r3+12r2+221r+294

r(1+r)(2+r)(r+3)
515
24

a5
14r4+108r3+10r2−1139r−1545

(4+r)r(1+r)(2+r)(r+3) −319
15

For n = 6, using the above recursive equation gives

a6 =
r6 + 5r5 − 128r4 − 1015r3 − 1195r2 + 4769r + 7656

(5 + r) r (1 + r) (2 + r) (r + 3) (4 + r)

Which for the root r = 1 becomes

a6 =
10093
720

And the table now becomes
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n an,r an

a0 1 1
a1

−r−3
r

−4
a2

7r+12
(1+r)r

19
2

a3
r3−2r2−40r−57
(2+r)r(1+r) −49

3

a4
−r4−11r3+12r2+221r+294

r(1+r)(2+r)(r+3)
515
24

a5
14r4+108r3+10r2−1139r−1545

(4+r)r(1+r)(2+r)(r+3) −319
15

a6
r6+5r5−128r4−1015r3−1195r2+4769r+7656

(5+r)r(1+r)(2+r)(r+3)(4+r)
10093
720

For n = 7, using the above recursive equation gives

a7 =
−r7 − 28r6 − 165r5 + 727r4 + 8669r3 + 18671r2 − 6652r − 30279

r (1 + r) (2 + r) (r + 3) (4 + r) (5 + r) (6 + r)
Which for the root r = 1 becomes

a7 = −647
360

And the table now becomes

n an,r an

a0 1 1
a1

−r−3
r

−4
a2

7r+12
(1+r)r

19
2

a3
r3−2r2−40r−57
(2+r)r(1+r) −49

3

a4
−r4−11r3+12r2+221r+294

r(1+r)(2+r)(r+3)
515
24

a5
14r4+108r3+10r2−1139r−1545

(4+r)r(1+r)(2+r)(r+3) −319
15

a6
r6+5r5−128r4−1015r3−1195r2+4769r+7656

(5+r)r(1+r)(2+r)(r+3)(4+r)
10093
720

a7
−r7−28r6−165r5+727r4+8669r3+18671r2−6652r−30279

r(1+r)(2+r)(r+3)(4+r)(5+r)(6+r) −647
360

Using the above table, then the first solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7 + a8x

8. . .
)

= x

(
−4x+ 1 + 19x2

2 − 49x3

3 + 515x4

24 − 319x5

15 + 10093x6

720 − 647x7

360 +O
(
x8))
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Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 1)

b0 1 1 N/A since bn starts from 1 N/A
b1

−r−3
r

−4 3
r2

3

b2
7r+12
(1+r)r

19
2

−7r2−24r−12
(1+r)2r2 −43

4

b3
r3−2r2−40r−57
(2+r)r(1+r) −49

3
5r4+84r3+287r2+342r+114

(2+r)2r2(1+r)2
208
9

b4
−r4−11r3+12r2+221r+294

r(1+r)(2+r)(r+3)
515
24

5r6−46r5−874r4−3960r3−7651r2−6468r−1764
r2(1+r)2(2+r)2(r+3)2 −10379

288

b5
14r4+108r3+10r2−1139r−1545

(4+r)r(1+r)(2+r)(r+3) −319
15

−14r8−216r7−620r6+5756r5+47953r4+146714r3+219415r2+154500r+37080
r2(1+r)2(2+r)2(r+3)2(4+r)2

76321
1800

b6
r6+5r5−128r4−1015r3−1195r2+4769r+7656

(5+r)r(1+r)(2+r)(r+3)(4+r)
10093
720

10r10+426r9+6065r8+38576r7+92115r6−196670r5−1845610r4−4992690r3−6617906r2−4195488r−918720
r2(1+r)2(2+r)2(r+3)2(4+r)2(5+r)2 −172499

4800

b7
−r7−28r6−165r5+727r4+8669r3+18671r2−6652r−30279

r(1+r)(2+r)(r+3)(4+r)(5+r)(6+r) −647
360

7r12−20r11−5821r10−112866r9−1033238r8−5300410r7−15056909r6−16885160r5+27702517r4+123109316r3+172696536r2+106824312r+21800880
r2(1+r)2(2+r)2(r+3)2(4+r)2(5+r)2(6+r)2

39091
2400

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 + b8x
8. . .

= x

(
−4x+1+ 19x2

2 − 49x3

3 + 515x4

24 − 319x5

15 + 10093x6

720 − 647x7

360 +O
(
x8)) ln (x)

+x

(
3x− 43x2

4 + 208x3

9 − 10379x4

288 + 76321x5

1800 − 172499x6

4800 + 39091x7

2400 +O
(
x8))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)
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= c1x

(
−4x+ 1 + 19x2

2 − 49x3

3 + 515x4

24 − 319x5

15 + 10093x6

720 − 647x7

360 +O
(
x8))

+c2

(
x

(
−4x+1+19x2

2 − 49x3

3 +515x4

24 − 319x5

15 +10093x6

720 − 647x7

360 +O
(
x8)) ln (x)

+x

(
3x− 43x2

4 + 208x3

9 − 10379x4

288 + 76321x5

1800 − 172499x6

4800 + 39091x7

2400 +O
(
x8)))

Hence the final solution is

y = yh

= c1x

(
−4x+ 1 + 19x2

2 − 49x3

3 + 515x4

24 − 319x5

15 + 10093x6

720 − 647x7

360 +O
(
x8))

+c2

(
x

(
−4x+1+ 19x2

2 − 49x3

3 + 515x4

24 − 319x5

15 + 10093x6

720 − 647x7

360 +O
(
x8)) ln (x)

+ x

(
3x− 43x2

4 + 208x3

9 − 10379x4

288 + 76321x5

1800 − 172499x6

4800 + 39091x7

2400 +O
(
x8)))

Summary
The solution(s) found are the following

(1)

y = c1x

(
−4x+ 1 + 19x2

2 − 49x3

3 + 515x4

24 − 319x5

15 + 10093x6

720 − 647x7

360 +O
(
x8))

+ c2

(
x

(
−4x+ 1 + 19x2

2 − 49x3

3 + 515x4

24 − 319x5

15 + 10093x6

720 − 647x7

360

+O
(
x8)) ln (x)

+x

(
3x− 43x2

4 + 208x3

9 − 10379x4

288 + 76321x5

1800 − 172499x6

4800 + 39091x7

2400 +O
(
x8)))

Verification of solutions

y = c1x

(
−4x+ 1 + 19x2

2 − 49x3

3 + 515x4

24 − 319x5

15 + 10093x6

720 − 647x7

360 +O
(
x8))

+c2

(
x

(
−4x+1+ 19x2

2 − 49x3

3 + 515x4

24 − 319x5

15 + 10093x6

720 − 647x7

360 +O
(
x8)) ln (x)

+ x

(
3x− 43x2

4 + 208x3

9 − 10379x4

288 + 76321x5

1800 − 172499x6

4800 + 39091x7

2400 +O
(
x8)))

Verified OK.

5579



15.9.1 Maple step by step solution

Let’s solve
x2(x2 + x+ 1) y′′ + (2x3 + 4x2 − x) y′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − y
x2(x2+x+1) −

(
2x2+4x−1

)
y′

x(x2+x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
2x2+4x−1

)
y′

x(x2+x+1) + y
x2(x2+x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x2+4x−1
(x2+x+1)x , P3(x) = 1

x2(x2+x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(x2 + x+ 1) y′′ + x(2x2 + 4x− 1) y′ + y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m
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◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + r)2 xr + (a1r2 + a0r(3 + r))x1+r +
(

∞∑
k=2

(
ak(k + r − 1)2 + ak−1(k + r − 1) (k + 2 + r) + ak−2(k − 2 + r) (k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
a1r

2 + a0r(3 + r) = 0
• Solve for the dependent coefficient(s)

a1 = − (3+r)a0
r

• Each term in the series must be 0, giving the recursion relation
((ak + ak−2 + ak−1) k + (ak + ak−2 + ak−1) r − ak − 2ak−2 + 2ak−1) (k + r − 1) = 0

• Shift index using k− >k + 2
((ak+2 + ak + ak+1) (k + 2) + (ak+2 + ak + ak+1) r − ak+2 − 2ak + 2ak+1) (k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −kak+kak+1+rak+rak+1+4ak+1

k+r+1

• Recursion relation for r = 1
ak+2 = −kak+kak+1+ak+5ak+1

k+2

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = −kak+kak+1+ak+5ak+1

k+2 , a1 = −4a0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 75� �
Order:=8;
dsolve(x^2*(1+x+x^2)*diff(y(x),x$2)-x*(1-4*x-2*x^2)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �
y(x) =

(
(c2 ln (x) + c1)

(
1− 4x+ 19

2 x2 − 49
3 x3 + 515

24 x4 − 319
15 x5 + 10093

720 x6 − 647
360x

7

+O
(
x8))+

(
3x− 43

4 x2 + 208
9 x3 − 10379

288 x4 + 76321
1800 x5 − 172499

4800 x6

+ 39091
2400 x7 +O

(
x8)) c2

)
x

3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 158� �
AsymptoticDSolveValue[x^2*(1+x+x^2)*y''[x]-x*(1-4*x-2*x^2)*y'[x]+y[x]==0,y[x],{x,0,7}]� �
y(x) → c1x

(
−647x7

360 + 10093x6

720 − 319x5

15 + 515x4

24 − 49x3

3 + 19x2

2 − 4x+ 1
)

+ c2

(
x

(
39091x7

2400 − 172499x6

4800 + 76321x5

1800 − 10379x4

288 + 208x3

9 − 43x2

4 + 3x
)

+ x

(
−647x7

360 + 10093x6

720 − 319x5

15 + 515x4

24 − 49x3

3 + 19x2

2 − 4x+ 1
)
log(x)

)
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15.10 problem 6
15.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5594

Internal problem ID [1358]
Internal file name [OUTPUT/1359_Sunday_June_05_2022_02_12_59_AM_1175149/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

9x2y′′ + 3x
(
−2x2 + 3x+ 5

)
y′ +

(
−14x2 + 12x+ 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

9x2y′′ +
(
−6x3 + 9x2 + 15x

)
y′ +

(
−14x2 + 12x+ 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −2x2 − 3x− 5
3x

q(x) = −14x2 − 12x− 1
9x2
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Table 662: Table p(x), q(x) singularites.

p(x) = −2x2−3x−5
3x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = −14x2−12x−1
9x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

9x2y′′ +
(
−6x3 + 9x2 + 15x

)
y′ +

(
−14x2 + 12x+ 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

9x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−6x3 + 9x2 + 15x

)( ∞∑
n=0

(n+ r) anxn+r−1

)

+
(
−14x2 + 12x+ 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−6xn+r+2an(n+ r)

)
+
(

∞∑
n=0

9x1+n+ran(n+ r)
)

+
(

∞∑
n=0

15xn+ran(n+ r)
)

+
∞∑

n =0

(
−14xn+r+2an

)
+
(

∞∑
n=0

12x1+n+ran

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−6xn+r+2an(n+ r)

)
=

∞∑
n=2

(
−6an−2(n+ r − 2)xn+r

)
∞∑

n =0

9x1+n+ran(n+ r) =
∞∑
n=1

9an−1(n+ r − 1)xn+r

∞∑
n =0

(
−14xn+r+2an

)
=

∞∑
n=2

(
−14an−2x

n+r
)

∞∑
n =0

12x1+n+ran =
∞∑
n=1

12an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =2

(
−6an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=1

9an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

15xn+ran(n+ r)
)

+
∞∑

n =2

(
−14an−2x

n+r
)
+
(

∞∑
n=1

12an−1x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0
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The indicial equation is obtained from n = 0. From Eq (2B) this gives

9xn+ran(n+ r) (n+ r − 1) + 15xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

9xra0r(−1 + r) + 15xra0r + a0x
r = 0

Or
(9xrr(−1 + r) + 15xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(3r + 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(3r + 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = −1
3

r2 = −1
3

Since a0 6= 0 then the indicial equation becomes

(3r + 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)
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In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = −1

3 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n− 1

3

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n− 1

3

)
We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = − 3
3r + 4

For 2 ≤ n the recursive equation is

(3)9an(n+ r) (n+ r − 1)− 6an−2(n+ r − 2) + 9an−1(n+ r − 1)
+ 15an(n+ r)− 14an−2 + 12an−1 + an = 0

Solving for an from recursive equation (4) gives

an = 2an−2 − 3an−1

1 + 3n+ 3r (4)

Which for the root r = −1
3 becomes

an = 2an−2 − 3an−1

3n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 − 3

3r+4 −1

For n = 2, using the above recursive equation gives

a2 =
6r + 17

9r2 + 33r + 28
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Which for the root r = −1
3 becomes

a2 =
5
6

And the table now becomes

n an,r an

a0 1 1
a1 − 3

3r+4 −1

a2
6r+17

9r2+33r+28
5
6

For n = 3, using the above recursive equation gives

a3 =
−36r − 93

27r3 + 189r2 + 414r + 280

Which for the root r = −1
3 becomes

a3 = −1
2

And the table now becomes

n an,r an

a0 1 1
a1 − 3

3r+4 −1

a2
6r+17

9r2+33r+28
5
6

a3
−36r−93

27r3+189r2+414r+280 −1
2

For n = 4, using the above recursive equation gives

a4 =
36r2 + 330r + 619

81r4 + 918r3 + 3699r2 + 6222r + 3640

Which for the root r = −1
3 becomes

a4 =
19
72

And the table now becomes
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n an,r an

a0 1 1
a1 − 3

3r+4 −1

a2
6r+17

9r2+33r+28
5
6

a3
−36r−93

27r3+189r2+414r+280 −1
2

a4
36r2+330r+619

81r4+918r3+3699r2+6222r+3640
19
72

For n = 5, using the above recursive equation gives

a5 =
−324r2 − 2484r − 4275

243r5 + 4050r4 + 25785r3 + 77850r2 + 110472r + 58240

Which for the root r = −1
3 becomes

a5 = − 43
360

And the table now becomes

n an,r an

a0 1 1
a1 − 3

3r+4 −1

a2
6r+17

9r2+33r+28
5
6

a3
−36r−93

27r3+189r2+414r+280 −1
2

a4
36r2+330r+619

81r4+918r3+3699r2+6222r+3640
19
72

a5
−324r2−2484r−4275

243r5+4050r4+25785r3+77850r2+110472r+58240 − 43
360

For n = 6, using the above recursive equation gives

a6 =
216r3 + 4104r2 + 21726r + 32633

729r6 + 16767r5 + 154305r4 + 723465r3 + 1810566r2 + 2273688r + 1106560

Which for the root r = −1
3 becomes

a6 =
319
6480

And the table now becomes
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n an,r an

a0 1 1
a1 − 3

3r+4 −1

a2
6r+17

9r2+33r+28
5
6

a3
−36r−93

27r3+189r2+414r+280 −1
2

a4
36r2+330r+619

81r4+918r3+3699r2+6222r+3640
19
72

a5
−324r2−2484r−4275

243r5+4050r4+25785r3+77850r2+110472r+58240 − 43
360

a6
216r3+4104r2+21726r+32633

729r6+16767r5+154305r4+723465r3+1810566r2+2273688r+1106560
319
6480

For n = 7, using the above recursive equation gives

a7 =
−2592r3 − 39528r2 − 185220r − 260349

2187r7 + 66339r6 + 831789r5 + 5565105r4 + 21347928r3 + 46653516r2 + 53340816r + 24344320
Which for the root r = −1

3 becomes

a7 = − 167
9072

And the table now becomes

n an,r an

a0 1 1
a1 − 3

3r+4 −1

a2
6r+17

9r2+33r+28
5
6

a3
−36r−93

27r3+189r2+414r+280 −1
2

a4
36r2+330r+619

81r4+918r3+3699r2+6222r+3640
19
72

a5
−324r2−2484r−4275

243r5+4050r4+25785r3+77850r2+110472r+58240 − 43
360

a6
216r3+4104r2+21726r+32633

729r6+16767r5+154305r4+723465r3+1810566r2+2273688r+1106560
319
6480

a7
−2592r3−39528r2−185220r−260349

2187r7+66339r6+831789r5+5565105r4+21347928r3+46653516r2+53340816r+24344320 − 167
9072

Using the above table, then the first solution y1(x) is

y1(x) =
1
x

1
3

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7 + a8x

8. . .
)

=
1− x+ 5x2

6 − x3

2 + 19x4

72 − 43x5

360 + 319x6

6480 − 167x7

9072 +O(x8)
x

1
3
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Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = −1
3 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = −1

3

)
b0 1 1 N/A since bn starts from 1 N/A
b1 − 3

3r+4 −1 9
(3r+4)2 1

b2
6r+17

9r2+33r+28
5
6

−54r2−306r−393
(9r2+33r+28)2 −11

12

b3
−36r−93

27r3+189r2+414r+280 −1
2

1944r3+14337r2+35154r+28422
(27r3+189r2+414r+280)2

25
36

b4
36r2+330r+619

81r4+918r3+3699r2+6222r+3640
19
72 −6

(
972r5+18873r4+134406r3+450234r2+719547r+441703

)
(81r4+918r3+3699r2+6222r+3640)2 −113

288

b5
−324r2−2484r−4275

243r5+4050r4+25785r3+77850r2+110472r+58240 − 43
360

236196r6+5038848r5+43729065r4+197354880r3+488279097r2+627877980r+327599640
(243r5+4050r4+25785r3+77850r2+110472r+58240)2

4211
21600

b6
216r3+4104r2+21726r+32633

729r6+16767r5+154305r4+723465r3+1810566r2+2273688r+1106560
319
6480 −9

(
52488r8+2134512r7+35439606r6+318487950r5+1707899661r4+5621723136r3+11123843391r2+12120639564r+5572904216

)
(729r6+16767r5+154305r4+723465r3+1810566r2+2273688r+1106560)2 − 32773

388800

b7
−2592r3−39528r2−185220r−260349

2187r7+66339r6+831789r5+5565105r4+21347928r3+46653516r2+53340816r+24344320 − 167
9072

22674816r9+948090744r8+17231442984r7+178483849677r6+1159838529066r5+4897998400617r4+13427085744756r3+23017142146968r2+22367827912248r+9378173154384
(2187r7+66339r6+831789r5+5565105r4+21347928r3+46653516r2+53340816r+24344320)2

126647
3810240

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 + b8x
8. . .

=

(
1− x+ 5x2

6 − x3

2 + 19x4

72 − 43x5

360 + 319x6

6480 − 167x7

9072 +O(x8)
)
ln (x)

x
1
3

+
x− 11x2

12 + 25x3

36 − 113x4

288 + 4211x5

21600 − 32773x6

388800 + 126647x7

3810240 +O(x8)
x

1
3

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)
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=
c1
(
1− x+ 5x2

6 − x3

2 + 19x4

72 − 43x5

360 + 319x6

6480 − 167x7

9072 +O(x8)
)

x
1
3

+ c2


(
1− x+ 5x2

6 − x3

2 + 19x4

72 − 43x5

360 + 319x6

6480 − 167x7

9072 +O(x8)
)
ln (x)

x
1
3

+
x− 11x2

12 + 25x3

36 − 113x4

288 + 4211x5

21600 − 32773x6

388800 + 126647x7

3810240 +O(x8)
x

1
3


Hence the final solution is

y = yh

=
c1
(
1− x+ 5x2

6 − x3

2 + 19x4

72 − 43x5

360 + 319x6

6480 − 167x7

9072 +O(x8)
)

x
1
3

+ c2


(
1− x+ 5x2

6 − x3

2 + 19x4

72 − 43x5

360 + 319x6

6480 − 167x7

9072 +O(x8)
)
ln (x)

x
1
3

+
x− 11x2

12 + 25x3

36 − 113x4

288 + 4211x5

21600 − 32773x6

388800 + 126647x7

3810240 +O(x8)
x

1
3


Summary
The solution(s) found are the following

(1)

y =
c1
(
1− x+ 5x2

6 − x3

2 + 19x4

72 − 43x5

360 + 319x6

6480 − 167x7

9072 +O(x8)
)

x
1
3

+ c2


(
1− x+ 5x2

6 − x3

2 + 19x4

72 − 43x5

360 + 319x6

6480 − 167x7

9072 +O(x8)
)
ln (x)

x
1
3

+
x− 11x2

12 + 25x3

36 − 113x4

288 + 4211x5

21600 − 32773x6

388800 + 126647x7

3810240 +O(x8)
x

1
3
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Verification of solutions

y =
c1
(
1− x+ 5x2

6 − x3

2 + 19x4

72 − 43x5

360 + 319x6

6480 − 167x7

9072 +O(x8)
)

x
1
3

+ c2


(
1− x+ 5x2

6 − x3

2 + 19x4

72 − 43x5

360 + 319x6

6480 − 167x7

9072 +O(x8)
)
ln (x)

x
1
3

+
x− 11x2

12 + 25x3

36 − 113x4

288 + 4211x5

21600 − 32773x6

388800 + 126647x7

3810240 +O(x8)
x

1
3


Verified OK.

15.10.1 Maple step by step solution

Let’s solve
9x2y′′ + (−6x3 + 9x2 + 15x) y′ + (−14x2 + 12x+ 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ =
(
14x2−12x−1

)
y

9x2 +
(
2x2−3x−5

)
y′

3x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ −
(
2x2−3x−5

)
y′

3x −
(
14x2−12x−1

)
y

9x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2x2−3x−5
3x , P3(x) = −14x2−12x−1

9x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
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x0 = 0
• Multiply by denominators

9x2y′′ − 3x(2x2 − 3x− 5) y′ + (−14x2 + 12x+ 1) y = 0
• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 3r)2 xr +
(
a1(4 + 3r)2 + 3a0(4 + 3r)

)
x1+r +

(
∞∑
k=2

(
ak(3k + 3r + 1)2 + 3ak−1(3k + 3r + 1)− 2ak−2(3k + 3r + 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 3r)2 = 0

• Values of r that satisfy the indicial equation
r = −1

3

• Each term must be 0
a1(4 + 3r)2 + 3a0(4 + 3r) = 0

• Solve for the dependent coefficient(s)
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a1 = − 3a0
4+3r

• Each term in the series must be 0, giving the recursion relation
ak(3k + 3r + 1)2 + (3k + 3r + 1) (−2ak−2 + 3ak−1) = 0

• Shift index using k− >k + 2
ak+2(3k + 3r + 7)2 + (3k + 3r + 7) (−2ak + 3ak+1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2ak−3ak+1

3k+3r+7

• Recursion relation for r = −1
3

ak+2 = 2ak−3ak+1
3k+6

• Solution for r = −1
3[

y =
∞∑
k=0

akx
k− 1

3 , ak+2 = 2ak−3ak+1
3k+6 , a1 = −a0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0

Special function solution also has integrals. Returning default Liouvillian solution.
<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 81� �
Order:=8;
dsolve(9*x^2*diff(y(x),x$2)+3*x*(5+3*x-2*x^2)*diff(y(x),x)+(1+12*x-14*x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
(c2 ln (x) + c1)

(
1− x+ 5

6x
2 − 1

2x
3 + 19

72x
4 − 43

360x
5 + 319

6480x
6 − 167

9072x
7 +O(x8)

)
+
(
x− 11

12x
2 + 25

36x
3 − 113

288x
4 + 4211

21600x
5 − 32773

388800x
6 + 126647

3810240x
7 +O(x8)

)
c2

x
1
3
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3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 168� �
AsymptoticDSolveValue[9*x^2*y''[x]+3*x*(5+3*x-2*x^2)*y'[x]+(1+12*x-14*x^2)*y[x]==0,y[x],{x,0,7}]� �

y(x) →
c1
(
−167x7

9072 + 319x6

6480 − 43x5

360 + 19x4

72 − x3

2 + 5x2

6 − x+ 1
)

3
√
x

+ c2

 126647x7

3810240 − 32773x6

388800 + 4211x5

21600 − 113x4

288 + 25x3

36 − 11x2

12 + x
3
√
x

+

(
−167x7

9072 + 319x6

6480 − 43x5

360 + 19x4

72 − x3

2 + 5x2

6 − x+ 1
)
log(x)

3
√
x
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15.11 problem 7
15.11.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5609

Internal problem ID [1359]
Internal file name [OUTPUT/1360_Sunday_June_05_2022_02_13_02_AM_25472708/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + x
(
x2 + x+ 1

)
y′ + x(2− x) y = 0

With the expansion point for the power series method at x = 0.

The ODE is
x2y′′ +

(
x3 + x2 + x

)
y′ +

(
−x2 + 2x

)
y = 0

Or
x
(
y′x2 + y′x− yx+ y′′x+ y′ + 2y

)
= 0

For x 6= 0 the above simplifies to

y′′x+
(
x2 + x+ 1

)
y′ − (−2 + x) y = 0

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
x3 + x2 + x

)
y′ +

(
−x2 + 2x

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0
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Where

p(x) = x2 + x+ 1
x

q(x) = −−2 + x

x

Table 664: Table p(x), q(x) singularites.

p(x) = x2+x+1
x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = −−2+x
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
x3 + x2 + x

)
y′ +

(
−x2 + 2x

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2
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Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x3 + x2 + x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
−x2 + 2x

)( ∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+r+2an(n+ r)
)

+
(

∞∑
n=0

x1+n+ran(n+ r)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
∞∑

n =0

(
−xn+r+2an

)
+
(

∞∑
n=0

2x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) =
∞∑
n=2

an−2(n+ r − 2)xn+r

∞∑
n =0

x1+n+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r

∞∑
n =0

(
−xn+r+2an

)
=

∞∑
n=2

(
−an−2x

n+r
)

∞∑
n =0

2x1+n+ran =
∞∑
n=1

2an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r)
)

+
∞∑

n =2

(
−an−2x

n+r
)
+
(

∞∑
n=1

2an−1x
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r) = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r = 0

Or
(xrr(−1 + r) + xrr) a0 = 0

Since a0 6= 0 then the above simplifies to

xrr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

xrr2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)
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Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 =
−2− r

(1 + r)2

For 2 ≤ n the recursive equation is

(3)an(n+r) (n+r−1)+an−2(n+r−2)+an−1(n+r−1)+an(n+r)−an−2+2an−1 = 0

Solving for an from recursive equation (4) gives

an = −nan−2 + nan−1 + ran−2 + ran−1 − 3an−2 + an−1

n2 + 2nr + r2
(4)

Which for the root r = 0 becomes

an = (−an−2 − an−1)n+ 3an−2 − an−1

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

−2−r
(1+r)2 −2

For n = 2, using the above recursive equation gives

a2 =
−r3 + 6r + 7

(1 + r)2 (r + 2)2
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Which for the root r = 0 becomes
a2 =

7
4

And the table now becomes

n an,r an

a0 1 1
a1

−2−r
(1+r)2 −2

a2
−r3+6r+7

(1+r)2(r+2)2
7
4

For n = 3, using the above recursive equation gives

a3 =
2r4 + 10r3 + 6r2 − 23r − 28
(1 + r)2 (r + 2)2 (r + 3)2

Which for the root r = 0 becomes
a3 = −7

9
And the table now becomes

n an,r an

a0 1 1
a1

−2−r
(1+r)2 −2

a2
−r3+6r+7

(1+r)2(r+2)2
7
4

a3
2r4+10r3+6r2−23r−28
(1+r)2(r+2)2(r+3)2 −7

9

For n = 4, using the above recursive equation gives

a4 =
r6 + 5r5 − 11r4 − 96r3 − 146r2 − 16r + 77

(1 + r)2 (r + 2)2 (r + 3)2 (r + 4)2

Which for the root r = 0 becomes

a4 =
77
576

And the table now becomes
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n an,r an

a0 1 1
a1

−2−r
(1+r)2 −2

a2
−r3+6r+7

(1+r)2(r+2)2
7
4

a3
2r4+10r3+6r2−23r−28
(1+r)2(r+2)2(r+3)2 −7

9

a4
r6+5r5−11r4−96r3−146r2−16r+77

(1+r)2(r+2)2(r+3)2(r+4)2
77
576

For n = 5, using the above recursive equation gives

a5 =
−3r7 − 41r6 − 189r5 − 259r4 + 468r3 + 1716r2 + 1651r + 434

(1 + r)2 (r + 2)2 (r + 3)2 (r + 4)2 (r + 5)2

Which for the root r = 0 becomes

a5 =
217
7200

And the table now becomes

n an,r an

a0 1 1
a1

−2−r
(1+r)2 −2

a2
−r3+6r+7

(1+r)2(r+2)2
7
4

a3
2r4+10r3+6r2−23r−28
(1+r)2(r+2)2(r+3)2 −7

9

a4
r6+5r5−11r4−96r3−146r2−16r+77

(1+r)2(r+2)2(r+3)2(r+4)2
77
576

a5
−3r7−41r6−189r5−259r4+468r3+1716r2+1651r+434

(1+r)2(r+2)2(r+3)2(r+4)2(r+5)2
217
7200

For n = 6, using the above recursive equation gives

a6 =
−r9 − 15r8 − 47r7 + 365r6 + 3206r5 + 9364r4 + 10369r3 − 2834r2 − 15026r − 8813

(1 + r)2 (r + 2)2 (r + 3)2 (r + 4)2 (r + 5)2 (r + 6)2

Which for the root r = 0 becomes

a6 = − 8813
518400

And the table now becomes

5605



n an,r an

a0 1 1
a1

−2−r
(1+r)2 −2

a2
−r3+6r+7

(1+r)2(r+2)2
7
4

a3
2r4+10r3+6r2−23r−28
(1+r)2(r+2)2(r+3)2 −7

9

a4
r6+5r5−11r4−96r3−146r2−16r+77

(1+r)2(r+2)2(r+3)2(r+4)2
77
576

a5
−3r7−41r6−189r5−259r4+468r3+1716r2+1651r+434

(1+r)2(r+2)2(r+3)2(r+4)2(r+5)2
217
7200

a6
−r9−15r8−47r7+365r6+3206r5+9364r4+10369r3−2834r2−15026r−8813

(1+r)2(r+2)2(r+3)2(r+4)2(r+5)2(r+6)2 − 8813
518400

For n = 7, using the above recursive equation gives

a7 =
4r10 + 112r9 + 1264r8 + 7170r7 + 19330r6 + 4756r5 − 116404r4 − 318504r3 − 355034r2 − 145179r + 8008

(1 + r)2 (r + 2)2 (r + 3)2 (r + 4)2 (r + 5)2 (r + 6)2 (r + 7)2

Which for the root r = 0 becomes

a7 =
143

453600

And the table now becomes

n an,r an

a0 1 1
a1

−2−r
(1+r)2 −2

a2
−r3+6r+7

(1+r)2(r+2)2
7
4

a3
2r4+10r3+6r2−23r−28
(1+r)2(r+2)2(r+3)2 −7

9

a4
r6+5r5−11r4−96r3−146r2−16r+77

(1+r)2(r+2)2(r+3)2(r+4)2
77
576

a5
−3r7−41r6−189r5−259r4+468r3+1716r2+1651r+434

(1+r)2(r+2)2(r+3)2(r+4)2(r+5)2
217
7200

a6
−r9−15r8−47r7+365r6+3206r5+9364r4+10369r3−2834r2−15026r−8813

(1+r)2(r+2)2(r+3)2(r+4)2(r+5)2(r+6)2 − 8813
518400

a7
4r10+112r9+1264r8+7170r7+19330r6+4756r5−116404r4−318504r3−355034r2−145179r+8008

(1+r)2(r+2)2(r+3)2(r+4)2(r+5)2(r+6)2(r+7)2
143

453600
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Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7 + a8x
8. . .

= 1− 2x+ 7x2

4 − 7x3

9 + 77x4

576 + 217x5

7200 − 8813x6

518400 + 143x7

453600 +O
(
x8)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1

−2−r
(1+r)2 −2 r+3

(1+r)3 3

b2
−r3+6r+7

(1+r)2(r+2)2
7
4

r4−3r3−24r2−46r−30
(1+r)3(r+2)3 −15

4

b3
2r4+10r3+6r2−23r−28
(1+r)2(r+2)2(r+3)2 −7

9
−4r6−30r5−40r4+201r3+762r2+997r+478

(1+r)3(r+2)3(r+3)3
239
108

b4
r6+5r5−11r4−96r3−146r2−16r+77

(1+r)2(r+2)2(r+3)2(r+4)2
77
576

−2r9−15r8+64r7+1075r6+4650r5+8812r4+4548r3−9852r2−16988r−8084
(1+r)3(r+2)3(r+3)3(r+4)3 −2021

3456

b5
−3r7−41r6−189r5−259r4+468r3+1716r2+1651r+434

(1+r)2(r+2)2(r+3)2(r+4)2(r+5)2
217
7200

9r11+209r10+1920r9+8034r8+5769r7−94779r6−473517r5−1121767r4−1522043r3−1167285r2−431134r−39712
(1+r)3(r+2)3(r+3)3(r+4)3(r+5)3 − 1241

54000

b6
−r9−15r8−47r7+365r6+3206r5+9364r4+10369r3−2834r2−15026r−8813

(1+r)2(r+2)2(r+3)2(r+4)2(r+5)2(r+6)2 − 8813
518400

3r14+81r13+690r12−1434r11−75047r10−683625r9−3350559r8−9722533r7−14651453r6+1600677r5+56328076r4+122022818r3+134469042r2+79674152r+20273544
(1+r)3(r+2)3(r+3)3(r+4)3(r+5)3(r+6)3

93859
1728000

b7
4r10+112r9+1264r8+7170r7+19330r6+4756r5−116404r4−318504r3−355034r2−145179r+8008

(1+r)2(r+2)2(r+3)2(r+4)2(r+5)2(r+6)2(r+7)2
143

453600
−16r16−784r15−16992r14−212142r13−1644632r12−7626912r11−13834248r10+71523314r9+668108016r8+2726754259r7+6982218308r6+11832092046r5+12839081488r4+7603715879r3+578454492r2−2102187772r−940999248

(1+r)3(r+2)3(r+3)3(r+4)3(r+5)3(r+6)3(r+7)3 − 311177
42336000

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 + b8x
8. . .

=
(
1− 2x+ 7x2

4 − 7x3

9 + 77x4

576 + 217x5

7200 − 8813x6

518400 + 143x7

453600 +O
(
x8)) ln (x)

+ 3x− 15x2

4 + 239x3

108 − 2021x4

3456 − 1241x5

54000 + 93859x6

1728000 − 311177x7

42336000 +O
(
x8)
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− 2x+ 7x2

4 − 7x3

9 + 77x4

576 + 217x5

7200 − 8813x6

518400 + 143x7

453600 +O
(
x8))

+ c2

((
1− 2x+ 7x2

4 − 7x3

9 + 77x4

576 + 217x5

7200 − 8813x6

518400 +
143x7

453600 +O
(
x8)) ln (x)

+ 3x− 15x2

4 + 239x3

108 − 2021x4

3456 − 1241x5

54000 + 93859x6

1728000 − 311177x7

42336000 +O
(
x8))

Hence the final solution is

y = yh

= c1

(
1− 2x+ 7x2

4 − 7x3

9 + 77x4

576 + 217x5

7200 − 8813x6

518400 + 143x7

453600 +O
(
x8))

+ c2

((
1− 2x+ 7x2

4 − 7x3

9 + 77x4

576 + 217x5

7200 − 8813x6

518400 + 143x7

453600 +O
(
x8)) ln (x)

+ 3x− 15x2

4 + 239x3

108 − 2021x4

3456 − 1241x5

54000 + 93859x6

1728000 − 311177x7

42336000 +O
(
x8))

Summary
The solution(s) found are the following

(1)

y = c1

(
1− 2x+ 7x2

4 − 7x3

9 + 77x4

576 + 217x5

7200 − 8813x6

518400 + 143x7

453600 +O
(
x8))

+ c2

((
1− 2x+ 7x2

4 − 7x3

9 + 77x4

576 + 217x5

7200 − 8813x6

518400 + 143x7

453600 +O
(
x8)) ln (x)

+ 3x− 15x2

4 + 239x3

108 − 2021x4

3456 − 1241x5

54000 + 93859x6

1728000 − 311177x7

42336000 +O
(
x8))

Verification of solutions

y = c1

(
1− 2x+ 7x2

4 − 7x3

9 + 77x4

576 + 217x5

7200 − 8813x6

518400 + 143x7

453600 +O
(
x8))

+ c2

((
1− 2x+ 7x2

4 − 7x3

9 + 77x4

576 + 217x5

7200 − 8813x6

518400 + 143x7

453600 +O
(
x8)) ln (x)

+ 3x− 15x2

4 + 239x3

108 − 2021x4

3456 − 1241x5

54000 + 93859x6

1728000 − 311177x7

42336000 +O
(
x8))

Verified OK.
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15.11.1 Maple step by step solution

Let’s solve
x2y′′ + (x3 + x2 + x) y′ + (−x2 + 2x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = (−2+x)y
x

−
(
x2+x+1

)
y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
x2+x+1

)
y′

x
− (−2+x)y

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x2+x+1
x

, P3(x) = −−2+x
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ (x2 + x+ 1) y′ + (2− x) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

5609



◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 0..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r +

(
a1(1 + r)2 + a0(2 + r)

)
xr +

(
∞∑
k=1

(
ak+1(k + 1 + r)2 + ak(k + r + 2) + ak−1(k − 2 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 + a0(2 + r) = 0

• Each term in the series must be 0, giving the recursion relation
k2ak+1 + (ak + ak−1 + 2ak+1) k + 2ak − 2ak−1 + ak+1 = 0

• Shift index using k− >k + 1
(k + 1)2 ak+2 + (ak+1 + ak + 2ak+2) (k + 1) + 2ak+1 − 2ak + ak+2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = −akk+kak+1−ak+3ak+1

k2+4k+4

• Recursion relation for r = 0
ak+2 = −akk+kak+1−ak+3ak+1

k2+4k+4
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• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = −akk+kak+1−ak+3ak+1

k2+4k+4 , a1 + 2a0 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0 `� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 71� �
Order:=8;
dsolve(x^2*diff(y(x),x$2)+x*(1+x+x^2)*diff(y(x),x)+x*(2-x)*y(x)=0,y(x),type='series',x=0);� �

y(x) = (c2 ln (x) + c1)
(
1− 2x+ 7

4x
2 − 7

9x
3 + 77

576x
4 + 217

7200x
5 − 8813

518400x
6

+ 143
453600x

7 +O
(
x8))+

(
3x− 15

4 x2 + 239
108x

3 − 2021
3456x

4 − 1241
54000x

5

+ 93859
1728000x

6 − 311177
42336000x

7 +O
(
x8)) c2

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 153� �
AsymptoticDSolveValue[x^2*y''[x]+x*(1+x+x^2)*y'[x]+x*(2-x)*y[x]==0,y[x],{x,0,7}]� �
y(x) → c1

(
143x7

453600 − 8813x6

518400 + 217x5

7200 + 77x4

576 − 7x3

9 + 7x2

4 − 2x+ 1
)

+ c2

(
−311177x7

42336000 + 93859x6

1728000 − 1241x5

54000 − 2021x4

3456 + 239x3

108 − 15x2

4

+
(

143x7

453600 − 8813x6

518400 + 217x5

7200 + 77x4

576 − 7x3

9 + 7x2

4 − 2x+ 1
)
log(x) + 3x

)
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15.12 problem 8
15.12.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5624

Internal problem ID [1360]
Internal file name [OUTPUT/1361_Sunday_June_05_2022_02_13_06_AM_50960082/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(1 + 2x) y′′ + x
(
3x2 + 14x+ 5

)
y′ +

(
12x2 + 18x+ 4

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

2x3 + x2) y′′ + (3x3 + 14x2 + 5x
)
y′ +

(
12x2 + 18x+ 4

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3x2 + 14x+ 5
x (1 + 2x)

q(x) = 12x2 + 18x+ 4
x2 (1 + 2x)

5613



Table 666: Table p(x), q(x) singularites.

p(x) = 3x2+14x+5
x(1+2x)

singularity type
x = 0 “regular”
x = −1

2 “regular”

q(x) = 12x2+18x+4
x2(1+2x)

singularity type
x = 0 “regular”
x = −1

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−1

2

]
Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(1 + 2x) y′′ +
(
3x3 + 14x2 + 5x

)
y′ +

(
12x2 + 18x+ 4

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

x2(1 + 2x)
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
3x3 + 14x2 + 5x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
12x2 + 18x+ 4

)( ∞∑
n=0

anx
n+r

)
= 0

(1)
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Which simplifies to

(2A)

(
∞∑
n=0

2x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3xn+r+2an(n+ r)
)

+
(

∞∑
n=0

14x1+n+ran(n+ r)
)

+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=0

12xn+r+2an

)

+
(

∞∑
n=0

18x1+n+ran

)
+
(

∞∑
n=0

4anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

3xn+r+2an(n+ r) =
∞∑
n=2

3an−2(n+ r − 2)xn+r

∞∑
n =0

14x1+n+ran(n+ r) =
∞∑
n=1

14an−1(n+ r − 1)xn+r

∞∑
n =0

12xn+r+2an =
∞∑
n=2

12an−2x
n+r

∞∑
n =0

18x1+n+ran =
∞∑
n=1

18an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

3an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=1

14an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=2

12an−2x
n+r

)
+
(

∞∑
n=1

18an−1x
n+r

)
+
(

∞∑
n=0

4anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 5xn+ran(n+ r) + 4anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + 5xra0r + 4a0xr = 0

Or
(xrr(−1 + r) + 5xrr + 4xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r + 2)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(r + 2)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = −2
r2 = −2

Since a0 6= 0 then the indicial equation becomes

(r + 2)2 xr = 0
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Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = −2, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n−2

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n−2

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = −2

For 2 ≤ n the recursive equation is

(3)2an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1) + 3an−2(n+ r − 2)
+ 14an−1(n+ r − 1) + 5an(n+ r) + 12an−2 + 18an−1 + 4an = 0

Solving for an from recursive equation (4) gives

an = −2nan−1 + 2ran−1 + 3an−2 + 4an−1

n+ r + 2 (4)
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Which for the root r = −2 becomes

an = −2nan−1 − 3an−2

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 −2 −2

For n = 2, using the above recursive equation gives

a2 =
4r + 13
4 + r

Which for the root r = −2 becomes

a2 =
5
2

And the table now becomes

n an,r an

a0 1 1
a1 −2 −2
a2

4r+13
4+r

5
2

For n = 3, using the above recursive equation gives

a3 =
−8r2 − 60r − 106
(4 + r) (5 + r)

Which for the root r = −2 becomes

a3 = −3

And the table now becomes

n an,r an

a0 1 1
a1 −2 −2
a2

4r+13
4+r

5
2

a3
−8r2−60r−106
(4+r)(5+r) −3
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For n = 4, using the above recursive equation gives

a4 =
16r3 + 204r2 + 833r + 1077

(6 + r) (4 + r) (5 + r)

Which for the root r = −2 becomes

a4 =
33
8

And the table now becomes

n an,r an

a0 1 1
a1 −2 −2
a2

4r+13
4+r

5
2

a3
−8r2−60r−106
(4+r)(5+r) −3

a4
16r3+204r2+833r+1077

(6+r)(4+r)(5+r)
33
8

For n = 5, using the above recursive equation gives

a5 =
−32r4 − 608r3 − 4198r2 − 12418r − 13170

(4 + r) (5 + r) (6 + r) (7 + r)

Which for the root r = −2 becomes

a5 = −129
20

And the table now becomes

n an,r an

a0 1 1
a1 −2 −2
a2

4r+13
4+r

5
2

a3
−8r2−60r−106
(4+r)(5+r) −3

a4
16r3+204r2+833r+1077

(6+r)(4+r)(5+r)
33
8

a5
−32r4−608r3−4198r2−12418r−13170

(4+r)(5+r)(6+r)(7+r) −129
20
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For n = 6, using the above recursive equation gives

a6 =
64r5 + 1680r4 + 17176r3 + 85221r2 + 204304r + 188103

(8 + r) (4 + r) (5 + r) (6 + r) (7 + r)

Which for the root r = −2 becomes

a6 =
867
80

And the table now becomes

n an,r an

a0 1 1
a1 −2 −2
a2

4r+13
4+r

5
2

a3
−8r2−60r−106
(4+r)(5+r) −3

a4
16r3+204r2+833r+1077

(6+r)(4+r)(5+r)
33
8

a5
−32r4−608r3−4198r2−12418r−13170

(4+r)(5+r)(6+r)(7+r) −129
20

a6
64r5+1680r4+17176r3+85221r2+204304r+188103

(8+r)(4+r)(5+r)(6+r)(7+r)
867
80

For n = 7, using the above recursive equation gives

a7 =
−128r6 − 4416r5 − 62000r4 − 452424r3 − 1804580r2 − 3716136r − 3069774

(4 + r) (5 + r) (6 + r) (7 + r) (8 + r) (9 + r)

Which for the root r = −2 becomes

a7 = −1059
56

And the table now becomes
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n an,r an

a0 1 1
a1 −2 −2
a2

4r+13
4+r

5
2

a3
−8r2−60r−106
(4+r)(5+r) −3

a4
16r3+204r2+833r+1077

(6+r)(4+r)(5+r)
33
8

a5
−32r4−608r3−4198r2−12418r−13170

(4+r)(5+r)(6+r)(7+r) −129
20

a6
64r5+1680r4+17176r3+85221r2+204304r+188103

(8+r)(4+r)(5+r)(6+r)(7+r)
867
80

a7
−128r6−4416r5−62000r4−452424r3−1804580r2−3716136r−3069774

(4+r)(5+r)(6+r)(7+r)(8+r)(9+r) −1059
56

Using the above table, then the first solution y1(x) is

y1(x) =
1
x2

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7 + a8x

8. . .
)

=
1− 2x+ 5x2

2 − 3x3 + 33x4

8 − 129x5

20 + 867x6

80 − 1059x7

56 +O(x8)
x2

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = −2. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table
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n bn,r an bn,r = d
dr
an,r bn(r = −2)

b0 1 1 N/A since bn starts from 1 N/A
b1 −2 −2 0 0
b2

4r+13
4+r

5
2

3
(4+r)2

3
4

b3
−8r2−60r−106
(4+r)(5+r) −3 −12r2−108r−246

(4+r)2(5+r)2 −13
6

b4
16r3+204r2+833r+1077

(6+r)(4+r)(5+r)
33
8

36r4+702r3+5130r2+16650r+20262
(6+r)2(4+r)2(5+r)2

407
96

b5
−32r4−608r3−4198r2−12418r−13170

(4+r)(5+r)(6+r)(7+r) −129
20 −6

(
16r6+510r5+6745r4+47376r3+186407r2+389630r+338110

)
(4+r)2(5+r)2(6+r)2(7+r)2 −9047

1200

b6
64r5+1680r4+17176r3+85221r2+204304r+188103

(8+r)(4+r)(5+r)(6+r)(7+r)
867
80

240r8+11088r7+222897r6+2546388r5+18081150r4+81718488r3+229582809r2+366623820r+254838648
(8+r)2(4+r)2(5+r)2(6+r)2(7+r)2

63851
4800

b7
−128r6−4416r5−62000r4−452424r3−1804580r2−3716136r−3069774

(4+r)(5+r)(6+r)(7+r)(8+r)(9+r) −1059
56 −6

(
96r10+6000r9+167748r8+2762496r7+29673842r6+217236534r5+1097661191r4+3780003348r3+8490832241r2+11234790708r+6650399016

)
(4+r)2(5+r)2(6+r)2(7+r)2(8+r)2(9+r)2 −559033

23520

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 + b8x
8. . .

=

(
1− 2x+ 5x2

2 − 3x3 + 33x4

8 − 129x5

20 + 867x6

80 − 1059x7

56 +O(x8)
)
ln (x)

x2

+
3x2

4 − 13x3

6 + 407x4

96 − 9047x5

1200 + 63851x6

4800 − 559033x7

23520 +O(x8)
x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
1− 2x+ 5x2

2 − 3x3 + 33x4

8 − 129x5

20 + 867x6

80 − 1059x7

56 +O(x8)
)

x2

+ c2


(
1− 2x+ 5x2

2 − 3x3 + 33x4

8 − 129x5

20 + 867x6

80 − 1059x7

56 +O(x8)
)
ln (x)

x2

+
3x2

4 − 13x3

6 + 407x4

96 − 9047x5

1200 + 63851x6

4800 − 559033x7

23520 +O(x8)
x2
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Hence the final solution is

y = yh

=
c1
(
1− 2x+ 5x2

2 − 3x3 + 33x4

8 − 129x5

20 + 867x6

80 − 1059x7

56 +O(x8)
)

x2

+ c2


(
1− 2x+ 5x2

2 − 3x3 + 33x4

8 − 129x5

20 + 867x6

80 − 1059x7

56 +O(x8)
)
ln (x)

x2

+
3x2

4 − 13x3

6 + 407x4

96 − 9047x5

1200 + 63851x6

4800 − 559033x7

23520 +O(x8)
x2


Summary
The solution(s) found are the following

(1)

y =
c1
(
1− 2x+ 5x2

2 − 3x3 + 33x4

8 − 129x5

20 + 867x6

80 − 1059x7

56 +O(x8)
)

x2

+ c2


(
1− 2x+ 5x2

2 − 3x3 + 33x4

8 − 129x5

20 + 867x6

80 − 1059x7

56 +O(x8)
)
ln (x)

x2

+
3x2

4 − 13x3

6 + 407x4

96 − 9047x5

1200 + 63851x6

4800 − 559033x7

23520 +O(x8)
x2


Verification of solutions

y =
c1
(
1− 2x+ 5x2

2 − 3x3 + 33x4

8 − 129x5

20 + 867x6

80 − 1059x7

56 +O(x8)
)

x2

+ c2


(
1− 2x+ 5x2

2 − 3x3 + 33x4

8 − 129x5

20 + 867x6

80 − 1059x7

56 +O(x8)
)
ln (x)

x2

+
3x2

4 − 13x3

6 + 407x4

96 − 9047x5

1200 + 63851x6

4800 − 559033x7

23520 +O(x8)
x2


Verified OK.
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15.12.1 Maple step by step solution

Let’s solve
x2(1 + 2x) y′′ + (3x3 + 14x2 + 5x) y′ + (12x2 + 18x+ 4) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −2
(
6x2+9x+2

)
y

x2(1+2x) −
(
3x2+14x+5

)
y′

x(1+2x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
3x2+14x+5

)
y′

x(1+2x) + 2
(
6x2+9x+2

)
y

x2(1+2x) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3x2+14x+5
x(1+2x) , P3(x) = 2

(
6x2+9x+2

)
x2(1+2x)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(1 + 2x) y′′ + x(3x2 + 14x+ 5) y′ + (12x2 + 18x+ 4) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(2 + r)2 xr +
(
a1(3 + r)2 + 2a0(3 + r)2

)
x1+r +

(
∞∑
k=2

(
ak(k + r + 2)2 + 2ak−1(k + r + 2)2 + 3ak−2(k + r + 2)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −2

• Each term must be 0
a1(3 + r)2 + 2a0(3 + r)2 = 0

• Solve for the dependent coefficient(s)
a1 = −2a0

• Each term in the series must be 0, giving the recursion relation
((2k + 2r + 4) ak−1 + ak(k + r + 2) + 3ak−2) (k + r + 2) = 0

• Shift index using k− >k + 2
((2k + 8 + 2r) ak+1 + ak+2(k + r + 4) + 3ak) (k + r + 4) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2kak+1+2rak+1+3ak+8ak+1

k+r+4
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• Recursion relation for r = −2
ak+2 = −2kak+1+3ak+4ak+1

k+2

• Solution for r = −2[
y =

∞∑
k=0

akx
k−2, ak+2 = −2kak+1+3ak+4ak+1

k+2 , a1 = −2a0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 79� �
Order:=8;
dsolve(x^2*(1+2*x)*diff(y(x),x$2)+x*(5+14*x+3*x^2)*diff(y(x),x)+(4+18*x+12*x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
(c2 ln (x) + c1)

(
1− 2x+ 5

2x
2 − 3x3 + 33

8 x
4 − 129

20 x
5 + 867

80 x
6 − 1059

56 x7 +O(x8)
)
+
(3
4x

2 − 13
6 x

3 + 407
96 x

4 − 9047
1200x

5 + 63851
4800 x

6 − 559033
23520 x

7 +O(x8)
)
c2

x2

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 157� �
AsymptoticDSolveValue[x^2*(1+2*x)*y''[x]+x*(5+14*x+3*x^2)*y'[x]+(4+18*x+12*x^2)*y[x]==0,y[x],{x,0,7}]� �

y(x) →
c1
(
−1059x7

56 + 867x6

80 − 129x5

20 + 33x4

8 − 3x3 + 5x2

2 − 2x+ 1
)

x2

+ c2

−559033x7

23520 + 63851x6

4800 − 9047x5

1200 + 407x4

96 − 13x3

6 + 3x2

4
x2

+

(
−1059x7

56 + 867x6

80 − 129x5

20 + 33x4

8 − 3x3 + 5x2

2 − 2x+ 1
)
log(x)

x2



5627



15.13 problem 9
15.13.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5639

Internal problem ID [1361]
Internal file name [OUTPUT/1362_Sunday_June_05_2022_02_13_10_AM_25547940/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2y′′ + 2x
(
x2 + x+ 4

)
y′ +

(
3x2 + 5x+ 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

4x2y′′ +
(
2x3 + 2x2 + 8x

)
y′ +

(
3x2 + 5x+ 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x2 + x+ 4
2x

q(x) = 3x2 + 5x+ 1
4x2
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Table 668: Table p(x), q(x) singularites.

p(x) = x2+x+4
2x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = 3x2+5x+1
4x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2y′′ +
(
2x3 + 2x2 + 8x

)
y′ +

(
3x2 + 5x+ 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
2x3+2x2+8x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
3x2+5x+1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+r+2an(n+ r)
)

+
(

∞∑
n=0

2x1+n+ran(n+ r)
)

+
(

∞∑
n=0

8xn+ran(n+ r)
)

+
(

∞∑
n=0

3xn+r+2an

)
+
(

∞∑
n=0

5x1+n+ran

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2xn+r+2an(n+ r) =
∞∑
n=2

2an−2(n+ r − 2)xn+r

∞∑
n =0

2x1+n+ran(n+ r) =
∞∑
n=1

2an−1(n+ r − 1)xn+r

∞∑
n =0

3xn+r+2an =
∞∑
n=2

3an−2x
n+r

∞∑
n =0

5x1+n+ran =
∞∑
n=1

5an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

2an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=1

2an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

8xn+ran(n+ r)
)

+
(

∞∑
n=2

3an−2x
n+r

)
+
(

∞∑
n=1

5an−1x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0
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The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + 8xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

4xra0r(−1 + r) + 8xra0r + a0x
r = 0

Or
(4xrr(−1 + r) + 8xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(2r + 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(2r + 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = −1
2

r2 = −1
2

Since a0 6= 0 then the indicial equation becomes

(2r + 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)
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In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = −1

2 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n− 1

2

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n− 1

2

)
We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 =
−2r − 5
(2r + 3)2

For 2 ≤ n the recursive equation is

(3)4an(n+ r) (n+ r − 1) + 2an−2(n+ r − 2)
+ 2an−1(n+ r − 1) + 8an(n+ r) + 3an−2 + 5an−1 + an = 0

Solving for an from recursive equation (4) gives

an = −2nan−2 + 2nan−1 + 2ran−2 + 2ran−1 − an−2 + 3an−1

4n2 + 8nr + 4r2 + 4n+ 4r + 1 (4)

Which for the root r = −1
2 becomes

an = (−an−2 − an−1)n+ an−2 − an−1

2n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

−2r−5
(2r+3)2 −1

For n = 2, using the above recursive equation gives

a2 =
−4r3 − 16r2 − 15r + 4
8
(
r + 3

2

)2 (
r + 5

2

)2
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Which for the root r = −1
2 becomes

a2 =
1
4

And the table now becomes

n an,r an

a0 1 1
a1

−2r−5
(2r+3)2 −1

a2
−4r3−16r2−15r+4
8
(
r+ 3

2
)2(

r+ 5
2
)2 1

4

For n = 3, using the above recursive equation gives

a3 =
32r4 + 296r3 + 948r2 + 1254r + 553

64
(
r + 3

2

)2 (
r + 5

2

)2 (
r + 7

2

)2
Which for the root r = −1

2 becomes

a3 =
1
18

And the table now becomes

n an,r an

a0 1 1
a1

−2r−5
(2r+3)2 −1

a2
−4r3−16r2−15r+4
8
(
r+ 3

2
)2(

r+ 5
2
)2 1

4

a3
32r4+296r3+948r2+1254r+553

64
(
r+ 3

2
)2(

r+ 5
2
)2(

r+ 7
2
)2 1

18

For n = 4, using the above recursive equation gives

a4 =
64r6 + 864r5 + 4336r4 + 9456r3 + 6188r2 − 6962r − 8827

(2r + 3)2 (2r + 5)2 (2r + 7)2 (4r2 + 36r + 81)

Which for the root r = −1
2 becomes

a4 = − 37
1152
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And the table now becomes

n an,r an

a0 1 1
a1

−2r−5
(2r+3)2 −1

a2
−4r3−16r2−15r+4
8
(
r+ 3

2
)2(

r+ 5
2
)2 1

4

a3
32r4+296r3+948r2+1254r+553

64
(
r+ 3

2
)2(

r+ 5
2
)2(

r+ 7
2
)2 1

18

a4
64r6+864r5+4336r4+9456r3+6188r2−6962r−8827

(2r+3)2(2r+5)2(2r+7)2(4r2+36r+81) − 37
1152

For n = 5, using the above recursive equation gives

a5 =
−192r7 − 4192r6 − 37504r5 − 177440r4 − 475836r3 − 713390r2 − 537382r − 144193

512
(
r + 3

2

)2 (
r + 5

2

)2 (11
2 + r

)2 (
r + 7

2

)2 (
r + 9

2

)2
Which for the root r = −1

2 becomes

a5 = − 17
28800

And the table now becomes

n an,r an

a0 1 1
a1

−2r−5
(2r+3)2 −1

a2
−4r3−16r2−15r+4
8
(
r+ 3

2
)2(

r+ 5
2
)2 1

4

a3
32r4+296r3+948r2+1254r+553

64
(
r+ 3

2
)2(

r+ 5
2
)2(

r+ 7
2
)2 1

18

a4
64r6+864r5+4336r4+9456r3+6188r2−6962r−8827

(2r+3)2(2r+5)2(2r+7)2(4r2+36r+81) − 37
1152

a5
−192r7−4192r6−37504r5−177440r4−475836r3−713390r2−537382r−144193

512
(
r+ 3

2
)2(

r+ 5
2
)2( 11

2 +r
)2(

r+ 7
2
)2(

r+ 9
2
)2 − 17

28800

For n = 6, using the above recursive equation gives

a6 =
−512r9 − 14592r8 − 172672r7 − 1084672r6 − 3760736r5 − 6170848r4 + 1039816r3 + 21534576r2 + 32373056r + 16074527

(4r2 + 52r + 169) (2r + 3)2 (2r + 5)2 (11 + 2r)2 (2r + 7)2 (2r + 9)2
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Which for the root r = −1
2 becomes

a6 =
593

259200

And the table now becomes

n an,r an

a0 1 1
a1

−2r−5
(2r+3)2 −1

a2
−4r3−16r2−15r+4
8
(
r+ 3

2
)2(

r+ 5
2
)2 1

4

a3
32r4+296r3+948r2+1254r+553

64
(
r+ 3

2
)2(

r+ 5
2
)2(

r+ 7
2
)2 1

18

a4
64r6+864r5+4336r4+9456r3+6188r2−6962r−8827

(2r+3)2(2r+5)2(2r+7)2(4r2+36r+81) − 37
1152

a5
−192r7−4192r6−37504r5−177440r4−475836r3−713390r2−537382r−144193

512
(
r+ 3

2
)2(

r+ 5
2
)2( 11

2 +r
)2(

r+ 7
2
)2(

r+ 9
2
)2 − 17

28800

a6
−512r9−14592r8−172672r7−1084672r6−3760736r5−6170848r4+1039816r3+21534576r2+32373056r+16074527

(4r2+52r+169)(2r+3)2(2r+5)2(11+2r)2(2r+7)2(2r+9)2
593

259200

For n = 7, using the above recursive equation gives

a7 =
4096r10 + 164864r9 + 2890752r8 + 28990080r7 + 183413312r6 + 760790176r5 + 2078667344r4 + 3646802552r3 + 3838600668r2 + 2071188906r + 360317083

16384
(
r + 3

2

)2 (
r + 15

2

)2 (
r + 5

2

)2 (11
2 + r

)2 (
r + 7

2

)2 (
r + 13

2

)2 (
r + 9

2

)2
Which for the root r = −1

2 becomes

a7 = − 1913
12700800

And the table now becomes
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n an,r an

a0 1 1
a1

−2r−5
(2r+3)2 −1

a2
−4r3−16r2−15r+4
8
(
r+ 3

2
)2(

r+ 5
2
)2 1

4

a3
32r4+296r3+948r2+1254r+553

64
(
r+ 3

2
)2(

r+ 5
2
)2(

r+ 7
2
)2 1

18

a4
64r6+864r5+4336r4+9456r3+6188r2−6962r−8827

(2r+3)2(2r+5)2(2r+7)2(4r2+36r+81) − 37
1152

a5
−192r7−4192r6−37504r5−177440r4−475836r3−713390r2−537382r−144193

512
(
r+ 3

2
)2(

r+ 5
2
)2( 11

2 +r
)2(

r+ 7
2
)2(

r+ 9
2
)2 − 17

28800

a6
−512r9−14592r8−172672r7−1084672r6−3760736r5−6170848r4+1039816r3+21534576r2+32373056r+16074527

(4r2+52r+169)(2r+3)2(2r+5)2(11+2r)2(2r+7)2(2r+9)2
593

259200

a7
4096r10+164864r9+2890752r8+28990080r7+183413312r6+760790176r5+2078667344r4+3646802552r3+3838600668r2+2071188906r+360317083

16384
(
r+ 3

2
)2(

r+ 15
2
)2(

r+ 5
2
)2( 11

2 +r
)2(

r+ 7
2
)2(

r+ 13
2
)2(

r+ 9
2
)2 − 1913

12700800

Using the above table, then the first solution y1(x) is

y1(x) =
1√
x

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7 + a8x

8. . .
)

=
1− x+ x2

4 + x3

18 −
37x4

1152 −
17x5

28800 +
593x6

259200 −
1913x7

12700800 +O(x8)
√
x

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = −1
2 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table
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n bn,r an bn,r = d
dr
an,r bn

(
r = −1

2

)
b0 1 1 N/A since bn starts from 1 N/A
b1

−2r−5
(2r+3)2 −1 4r+14

(2r+3)3
3
2

b2
−4r3−16r2−15r+4
8
(
r+ 3

2
)2(

r+ 5
2
)2 1

4
32r4+128r3−608r−706

(2r+3)3(2r+5)3 −13
16

b3
32r4+296r3+948r2+1254r+553

64
(
r+ 3

2
)2(

r+ 5
2
)2(

r+ 7
2
)2 1

18
−512r6−7104r5−39008r4−108448r3−159024r2−111708r−25382

(2r+3)3(2r+5)3(2r+7)3
1
54

b4
64r6+864r5+4336r4+9456r3+6188r2−6962r−8827

(2r+3)2(2r+5)2(2r+7)2(4r2+36r+81) − 37
1152

−2048r9−41472r8−337920r7−1328640r6−1820928r5+5221952r4+28076160r3+54186528r2+51148568r+19690062
(2r+3)3(2r+5)3(2r+7)3(2r+9)3

1103
13824

b5
−192r7−4192r6−37504r5−177440r4−475836r3−713390r2−537382r−144193

512
(
r+ 3

2
)2(

r+ 5
2
)2( 11

2 +r
)2(

r+ 7
2
)2(

r+ 9
2
)2 − 17

28800
36864r11+1288192r10+19947520r9+180280320r8+1053193728r7+4155296512r6+11206974720r5+20364921600r4+23722857104r3+15648572520r2+3848954672r−641468604

(2r+3)3(2r+5)3(11+2r)3(2r+7)3(2r+9)3 − 19507
1728000

b6
−512r9−14592r8−172672r7−1084672r6−3760736r5−6170848r4+1039816r3+21534576r2+32373056r+16074527

(4r2+52r+169)(2r+3)2(2r+5)2(11+2r)2(2r+7)2(2r+9)2
593

259200
12288r14+565248r13+11563008r12+137515008r11+1035142912r10+4919719424r9+12503602176r8−5334067712r7−184150708720r6−798954105504r5−1976636998320r4−3136747445936r3−3170341756011r2−1868576236054r−490544059152

32768
(
r+ 3

2
)3(

r+ 5
2
)3( 11

2 +r
)3(

r+ 7
2
)3(

r+ 13
2
)3(

r+ 9
2
)3 − 98531

20736000

b7
4096r10+164864r9+2890752r8+28990080r7+183413312r6+760790176r5+2078667344r4+3646802552r3+3838600668r2+2071188906r+360317083

16384
(
r+ 3

2
)2(

r+ 15
2
)2(

r+ 5
2
)2( 11

2 +r
)2(

r+ 7
2
)2(

r+ 13
2
)2(

r+ 9
2
)2 − 1913

12700800 −2
(
1048576r16+69271552r15+2107146240r14+39130800128r13+495840399360r12+4537799933952r11+30955620671488r10+160076715744768r9+631451871167232r8+1894290553466112r7+4263178189826688r6+6992087314461792r5+7882874247211120r4+5312426146035744r3+1111888597228080r2−1032382163796462r−606587551960635

)
(2r+3)3(2r+15)3(2r+5)3(11+2r)3(2r+7)3(2r+13)3(2r+9)3

982189
889056000

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 + b8x
8. . .

=

(
1− x+ x2

4 + x3

18 −
37x4

1152 −
17x5

28800 +
593x6

259200 −
1913x7

12700800 +O(x8)
)
ln (x)

√
x

+
3x
2 − 13x2

16 + x3

54 +
1103x4

13824 − 19507x5

1728000 −
98531x6

20736000 +
982189x7

889056000 +O(x8)
√
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
1− x+ x2

4 + x3

18 −
37x4

1152 −
17x5

28800 +
593x6

259200 −
1913x7

12700800 +O(x8)
)

√
x

+ c2


(
1− x+ x2

4 + x3

18 −
37x4

1152 −
17x5

28800 +
593x6

259200 −
1913x7

12700800 +O(x8)
)
ln (x)

√
x

+
3x
2 − 13x2

16 + x3

54 +
1103x4

13824 − 19507x5

1728000 −
98531x6

20736000 +
982189x7

889056000 +O(x8)
√
x
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Hence the final solution is

y = yh

=
c1
(
1− x+ x2

4 + x3

18 −
37x4

1152 −
17x5

28800 +
593x6

259200 −
1913x7

12700800 +O(x8)
)

√
x

+ c2


(
1− x+ x2

4 + x3

18 −
37x4

1152 −
17x5

28800 +
593x6

259200 −
1913x7

12700800 +O(x8)
)
ln (x)

√
x

+
3x
2 − 13x2

16 + x3

54 +
1103x4

13824 − 19507x5

1728000 −
98531x6

20736000 +
982189x7

889056000 +O(x8)
√
x


Summary
The solution(s) found are the following

(1)

y =
c1
(
1− x+ x2

4 + x3

18 −
37x4

1152 −
17x5

28800 +
593x6

259200 −
1913x7

12700800 +O(x8)
)

√
x

+ c2


(
1− x+ x2

4 + x3

18 −
37x4

1152 −
17x5

28800 +
593x6

259200 −
1913x7

12700800 +O(x8)
)
ln (x)

√
x

+
3x
2 − 13x2

16 + x3

54 +
1103x4

13824 − 19507x5

1728000 −
98531x6

20736000 +
982189x7

889056000 +O(x8)
√
x


Verification of solutions

y =
c1
(
1− x+ x2

4 + x3

18 −
37x4

1152 −
17x5

28800 +
593x6

259200 −
1913x7

12700800 +O(x8)
)

√
x

+ c2


(
1− x+ x2

4 + x3

18 −
37x4

1152 −
17x5

28800 +
593x6

259200 −
1913x7

12700800 +O(x8)
)
ln (x)

√
x

+
3x
2 − 13x2

16 + x3

54 +
1103x4

13824 − 19507x5

1728000 −
98531x6

20736000 +
982189x7

889056000 +O(x8)
√
x


Verified OK.
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15.13.1 Maple step by step solution

Let’s solve
4x2y′′ + (2x3 + 2x2 + 8x) y′ + (3x2 + 5x+ 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
3x2+5x+1

)
y

4x2 −
(
x2+x+4

)
y′

2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
x2+x+4

)
y′

2x +
(
3x2+5x+1

)
y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x2+x+4
2x , P3(x) = 3x2+5x+1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2y′′ + 2x(x2 + x+ 4) y′ + (3x2 + 5x+ 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r)2 xr +
(
a1(3 + 2r)2 + a0(5 + 2r)

)
x1+r +

(
∞∑
k=2

(
ak(2k + 2r + 1)2 + ak−1(2k + 2r + 3) + ak−2(2k − 1 + 2r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r)2 = 0

• Values of r that satisfy the indicial equation
r = −1

2

• Each term must be 0
a1(3 + 2r)2 + a0(5 + 2r) = 0

• Solve for the dependent coefficient(s)
a1 = − a0(5+2r)

4r2+12r+9

• Each term in the series must be 0, giving the recursion relation
ak(2k + 2r + 1)2 + ak−1(2k + 2r + 3) + ak−2(2k − 1 + 2r) = 0

• Shift index using k− >k + 2
ak+2(2k + 2r + 5)2 + ak+1(2k + 7 + 2r) + ak(2k + 2r + 3) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2kak+2kak+1+2rak+2rak+1+3ak+7ak+1

(2k+2r+5)2

• Recursion relation for r = −1
2

ak+2 = −2kak+2kak+1+2ak+6ak+1
(2k+4)2

5640



• Solution for r = −1
2[

y =
∞∑
k=0

akx
k− 1

2 , ak+2 = −2kak+2kak+1+2ak+6ak+1
(2k+4)2 , a1 = −a0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0 `� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 81� �
Order:=8;
dsolve(4*x^2*diff(y(x),x$2)+2*x*(4+x+x^2)*diff(y(x),x)+(1+5*x+3*x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
(c2 ln (x) + c1)

(
1− x+ 1

4x
2 + 1

18x
3 − 37

1152x
4 − 17

28800x
5 + 593

259200x
6 − 1913

12700800x
7 +O(x8)

)
+
(3
2x− 13

16x
2 + 1

54x
3 + 1103

13824x
4 − 19507

1728000x
5 − 98531

20736000x
6 + 982189

889056000x
7 +O(x8)

)
c2√

x
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3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 172� �
AsymptoticDSolveValue[4*x^2*y''[x]+2*x*(4+x+x^2)*y'[x]+(1+5*x+3*x^2)*y[x]==0,y[x],{x,0,7}]� �

y(x) →
c1
(
− 1913x7

12700800 +
593x6

259200 −
17x5

28800 −
37x4

1152 +
x3

18 +
x2

4 − x+ 1
)

√
x

+ c2

 982189x7

889056000 −
98531x6

20736000 −
19507x5

1728000 +
1103x4

13824 + x3

54 −
13x2

16 + 3x
2√

x

+

(
− 1913x7

12700800 +
593x6

259200 −
17x5

28800 −
37x4

1152 +
x3

18 +
x2

4 − x+ 1
)
log(x)

√
x
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15.14 problem 10
15.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5653

Internal problem ID [1362]
Internal file name [OUTPUT/1363_Sunday_June_05_2022_02_13_13_AM_74302315/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

16x2y′′ + 4x
(
2x2 + x+ 6

)
y′ +

(
18x2 + 5x+ 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

16x2y′′ +
(
8x3 + 4x2 + 24x

)
y′ +

(
18x2 + 5x+ 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2x2 + x+ 6
4x

q(x) = 18x2 + 5x+ 1
16x2
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Table 670: Table p(x), q(x) singularites.

p(x) = 2x2+x+6
4x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = 18x2+5x+1
16x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

16x2y′′ +
(
8x3 + 4x2 + 24x

)
y′ +

(
18x2 + 5x+ 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
16x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
8x3+4x2+24x

)( ∞∑
n=0

(n+r) anxn+r−1

)
+
(
18x2+5x+1

)( ∞∑
n=0

anx
n+r

)
=0
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Which simplifies to

(2A)

(
∞∑
n=0

16xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

8xn+r+2an(n+ r)
)

+
(

∞∑
n=0

4x1+n+ran(n+ r)
)

+
(

∞∑
n=0

24xn+ran(n+ r)
)

+
(

∞∑
n=0

18xn+r+2an

)
+
(

∞∑
n=0

5x1+n+ran

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

8xn+r+2an(n+ r) =
∞∑
n=2

8an−2(n+ r − 2)xn+r

∞∑
n =0

4x1+n+ran(n+ r) =
∞∑
n=1

4an−1(n+ r − 1)xn+r

∞∑
n =0

18xn+r+2an =
∞∑
n=2

18an−2x
n+r

∞∑
n =0

5x1+n+ran =
∞∑
n=1

5an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

16xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

8an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=1

4an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

24xn+ran(n+ r)
)

+
(

∞∑
n=2

18an−2x
n+r

)
+
(

∞∑
n=1

5an−1x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0
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The indicial equation is obtained from n = 0. From Eq (2B) this gives

16xn+ran(n+ r) (n+ r − 1) + 24xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

16xra0r(−1 + r) + 24xra0r + a0x
r = 0

Or
(16xrr(−1 + r) + 24xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(4r + 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(4r + 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = −1
4

r2 = −1
4

Since a0 6= 0 then the indicial equation becomes

(4r + 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)
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In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = −1

4 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n− 1

4

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n− 1

4

)
We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = − 1
4r + 5

For 2 ≤ n the recursive equation is

(3)16an(n+ r) (n+ r − 1) + 8an−2(n+ r − 2)
+ 4an−1(n+ r − 1) + 24an(n+ r) + 18an−2 + 5an−1 + an = 0

Solving for an from recursive equation (4) gives

an = −2an−2 + an−1

4n+ 4r + 1 (4)

Which for the root r = −1
4 becomes

an = −2an−2 − an−1

4n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1

4 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 − 1

4r+5 −1
4

For n = 2, using the above recursive equation gives

a2 =
−9− 8r

16r2 + 56r + 45
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Which for the root r = −1
4 becomes

a2 = − 7
32

And the table now becomes

n an,r an

a0 1 1
a1 − 1

4r+5 −1
4

a2
−9−8r

16r2+56r+45 − 7
32

For n = 3, using the above recursive equation gives

a3 =
16r + 27

64r3 + 432r2 + 908r + 585

Which for the root r = −1
4 becomes

a3 =
23
384

And the table now becomes

n an,r an

a0 1 1
a1 − 1

4r+5 −1
4

a2
−9−8r

16r2+56r+45 − 7
32

a3
16r+27

64r3+432r2+908r+585
23
384

For n = 4, using the above recursive equation gives

a4 =
64r2 + 264r + 207

256r4 + 2816r3 + 10976r2 + 17776r + 9945

Which for the root r = −1
4 becomes

a4 =
145
6144

And the table now becomes
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n an,r an

a0 1 1
a1 − 1

4r+5 −1
4

a2
−9−8r

16r2+56r+45 − 7
32

a3
16r+27

64r3+432r2+908r+585
23
384

a4
64r2+264r+207

256r4+2816r3+10976r2+17776r+9945
145
6144

For n = 5, using the above recursive equation gives

a5 =
−192r2 − 1024r − 1125

1024r5 + 16640r4 + 103040r3 + 301600r2 + 413076r + 208845

Which for the root r = −1
4 becomes

a5 = − 881
122880

And the table now becomes

n an,r an

a0 1 1
a1 − 1

4r+5 −1
4

a2
−9−8r

16r2+56r+45 − 7
32

a3
16r+27

64r3+432r2+908r+585
23
384

a4
64r2+264r+207

256r4+2816r3+10976r2+17776r+9945
145
6144

a5
−192r2−1024r−1125

1024r5+16640r4+103040r3+301600r2+413076r+208845 − 881
122880

For n = 6, using the above recursive equation gives

a6 =
−512r3 − 4608r2 − 11720r − 7569

4096r6 + 92160r5 + 828160r4 + 3782400r3 + 9192304r2 + 11162280r + 5221125

Which for the root r = −1
4 becomes

a6 = − 4919
2949120

And the table now becomes
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n an,r an

a0 1 1
a1 − 1

4r+5 −1
4

a2
−9−8r

16r2+56r+45 − 7
32

a3
16r+27

64r3+432r2+908r+585
23
384

a4
64r2+264r+207

256r4+2816r3+10976r2+17776r+9945
145
6144

a5
−192r2−1024r−1125

1024r5+16640r4+103040r3+301600r2+413076r+208845 − 881
122880

a6
−512r3−4608r2−11720r−7569

4096r6+92160r5+828160r4+3782400r3+9192304r2+11162280r+5221125 − 4919
2949120

For n = 7, using the above recursive equation gives

a7 =
2048r3 + 22400r2 + 71920r + 63819

16384r7 + 487424r6 + 5985280r5 + 39146240r4 + 146458816r3 + 311225936r2 + 344590620r + 151412625
Which for the root r = −1

4 becomes

a7 =
47207

82575360
And the table now becomes

n an,r an

a0 1 1
a1 − 1

4r+5 −1
4

a2
−9−8r

16r2+56r+45 − 7
32

a3
16r+27

64r3+432r2+908r+585
23
384

a4
64r2+264r+207

256r4+2816r3+10976r2+17776r+9945
145
6144

a5
−192r2−1024r−1125

1024r5+16640r4+103040r3+301600r2+413076r+208845 − 881
122880

a6
−512r3−4608r2−11720r−7569

4096r6+92160r5+828160r4+3782400r3+9192304r2+11162280r+5221125 − 4919
2949120

a7
2048r3+22400r2+71920r+63819

16384r7+487424r6+5985280r5+39146240r4+146458816r3+311225936r2+344590620r+151412625
47207

82575360

Using the above table, then the first solution y1(x) is

y1(x) =
1
x

1
4

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7 + a8x

8. . .
)

=
1− x

4 −
7x2

32 + 23x3

384 + 145x4

6144 − 881x5

122880 −
4919x6

2949120 +
47207x7

82575360 +O(x8)
x

1
4
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Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = −1
4 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = −1

4

)
b0 1 1 N/A since bn starts from 1 N/A
b1 − 1

4r+5 −1
4

4
(4r+5)2

1
4

b2
−9−8r

16r2+56r+45 − 7
32

128r2+288r+144
(16r2+56r+45)2

5
64

b3
16r+27

64r3+432r2+908r+585
23
384

−2048r3−12096r2−23328r−15156
(64r3+432r2+908r+585)2 − 157

2304

b4
64r2+264r+207

256r4+2816r3+10976r2+17776r+9945
145
6144 −8

(
4096r5+47872r4+212352r3+438592r2+408888r+131769

)
(256r4+2816r3+10976r2+17776r+9945)2 − 841

73728

b5
−192r2−1024r−1125

1024r5+16640r4+103040r3+301600r2+413076r+208845 − 881
122880

589824r6+10584064r5+76661760r4+285905920r3+577287808r2+598403520r+250853220
(1024r5+16640r4+103040r3+301600r2+413076r+208845)2

65017
7372800

b6
−512r3−4608r2−11720r−7569

4096r6+92160r5+828160r4+3782400r3+9192304r2+11162280r+5221125 − 4919
2949120

6291456r8+169869312r7+1938063360r6+12138799104r5+45328740352r4+102302653440r3+134165325440r2+91035209952r+23295712320
(4096r6+92160r5+828160r4+3782400r3+9192304r2+11162280r+5221125)2

50791
58982400

b7
2048r3+22400r2+71920r+63819

16384r7+487424r6+5985280r5+39146240r4+146458816r3+311225936r2+344590620r+151412625
47207

82575360 −4
(
33554432r9+1207435264r8+18814730240r7+166244814848r6+915559593984r5+3249838106368r4+7412072119040r3+10443706449008r2+8235242604792r+2775458196945

)
(16384r7+487424r6+5985280r5+39146240r4+146458816r3+311225936r2+344590620r+151412625)2 − 953509

1284505600

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 + b8x
8. . .

=

(
1− x

4 −
7x2

32 + 23x3

384 + 145x4

6144 − 881x5

122880 −
4919x6

2949120 +
47207x7

82575360 +O(x8)
)
ln (x)

x
1
4

+
x
4 +

5x2

64 − 157x3

2304 − 841x4

73728 +
65017x5

7372800 +
50791x6

58982400 −
953509x7

1284505600 +O(x8)
x

1
4

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)
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=
c1
(
1− x

4 −
7x2

32 + 23x3

384 + 145x4

6144 − 881x5

122880 −
4919x6

2949120 +
47207x7

82575360 +O(x8)
)

x
1
4

+ c2


(
1− x

4 −
7x2

32 + 23x3

384 + 145x4

6144 − 881x5

122880 −
4919x6

2949120 +
47207x7

82575360 +O(x8)
)
ln (x)

x
1
4

+
x
4 +

5x2

64 − 157x3

2304 − 841x4

73728 +
65017x5

7372800 +
50791x6

58982400 −
953509x7

1284505600 +O(x8)
x

1
4


Hence the final solution is

y = yh

=
c1
(
1− x

4 −
7x2

32 + 23x3

384 + 145x4

6144 − 881x5

122880 −
4919x6

2949120 +
47207x7

82575360 +O(x8)
)

x
1
4

+ c2


(
1− x

4 −
7x2

32 + 23x3

384 + 145x4

6144 − 881x5

122880 −
4919x6

2949120 +
47207x7

82575360 +O(x8)
)
ln (x)

x
1
4

+
x
4 +

5x2

64 − 157x3

2304 − 841x4

73728 +
65017x5

7372800 +
50791x6

58982400 −
953509x7

1284505600 +O(x8)
x

1
4


Summary
The solution(s) found are the following

(1)

y =
c1
(
1− x

4 −
7x2

32 + 23x3

384 + 145x4

6144 − 881x5

122880 −
4919x6

2949120 +
47207x7

82575360 +O(x8)
)

x
1
4

+ c2


(
1− x

4 −
7x2

32 + 23x3

384 + 145x4

6144 − 881x5

122880 −
4919x6

2949120 +
47207x7

82575360 +O(x8)
)
ln (x)

x
1
4

+
x
4 +

5x2

64 − 157x3

2304 − 841x4

73728 +
65017x5

7372800 +
50791x6

58982400 −
953509x7

1284505600 +O(x8)
x

1
4
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Verification of solutions

y =
c1
(
1− x

4 −
7x2

32 + 23x3

384 + 145x4

6144 − 881x5

122880 −
4919x6

2949120 +
47207x7

82575360 +O(x8)
)

x
1
4

+ c2


(
1− x

4 −
7x2

32 + 23x3

384 + 145x4

6144 − 881x5

122880 −
4919x6

2949120 +
47207x7

82575360 +O(x8)
)
ln (x)

x
1
4

+
x
4 +

5x2

64 − 157x3

2304 − 841x4

73728 +
65017x5

7372800 +
50791x6

58982400 −
953509x7

1284505600 +O(x8)
x

1
4


Verified OK.

15.14.1 Maple step by step solution

Let’s solve
16x2y′′ + (8x3 + 4x2 + 24x) y′ + (18x2 + 5x+ 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
18x2+5x+1

)
y

16x2 −
(
2x2+x+6

)
y′

4x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
2x2+x+6

)
y′

4x +
(
18x2+5x+1

)
y

16x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2x2+x+6
4x , P3(x) = 18x2+5x+1

16x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
16

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
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x0 = 0
• Multiply by denominators

16x2y′′ + 4x(2x2 + x+ 6) y′ + (18x2 + 5x+ 1) y = 0
• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 4r)2 xr +
(
a1(5 + 4r)2 + a0(5 + 4r)

)
x1+r +

(
∞∑
k=2

(
ak(4k + 4r + 1)2 + ak−1(4k + 4r + 1) + 2ak−2(4k + 4r + 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 4r)2 = 0

• Values of r that satisfy the indicial equation
r = −1

4

• Each term must be 0
a1(5 + 4r)2 + a0(5 + 4r) = 0

• Solve for the dependent coefficient(s)
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a1 = − a0
5+4r

• Each term in the series must be 0, giving the recursion relation
ak(4k + 4r + 1)2 + (4k + 4r + 1) (2ak−2 + ak−1) = 0

• Shift index using k− >k + 2
ak+2(4k + 4r + 9)2 + (4k + 4r + 9) (2ak + ak+1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −2ak+ak+1

4k+4r+9

• Recursion relation for r = −1
4

ak+2 = −2ak+ak+1
4k+8

• Solution for r = −1
4[

y =
∞∑
k=0

akx
k− 1

4 , ak+2 = −2ak+ak+1
4k+8 , a1 = −a0

4

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0

Special function solution also has integrals. Returning default Liouvillian solution.
<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.046 (sec). Leaf size: 81� �
Order:=8;
dsolve(16*x^2*diff(y(x),x$2)+4*x*(6+x+2*x^2)*diff(y(x),x)+(1+5*x+18*x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
(c2 ln (x) + c1)

(
1− 1

4x− 7
32x

2 + 23
384x

3 + 145
6144x

4 − 881
122880x

5 − 4919
2949120x

6 + 47207
82575360x

7 +O(x8)
)
+
(1
4x+ 5

64x
2 − 157

2304x
3 − 841

73728x
4 + 65017

7372800x
5 + 50791

58982400x
6 − 953509

1284505600x
7 +O(x8)

)
c2

x
1
4
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3 Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 176� �
AsymptoticDSolveValue[16*x^2*y''[x]+4*x*(6+x+2*x^2)*y'[x]+(1+5*x+18*x^2)*y[x]==0,y[x],{x,0,7}]� �

y(x) →
c1
(

47207x7

82575360 −
4919x6

2949120 −
881x5

122880 +
145x4

6144 + 23x3

384 − 7x2

32 − x
4 + 1

)
4
√
x

+ c2

− 953509x7

1284505600 +
50791x6

58982400 +
65017x5

7372800 −
841x4

73728 −
157x3

2304 + 5x2

64 + x
4

4
√
x

+

(
47207x7

82575360 −
4919x6

2949120 −
881x5

122880 +
145x4

6144 + 23x3

384 − 7x2

32 − x
4 + 1

)
log(x)

4
√
x
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15.15 problem 11
15.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5669

Internal problem ID [1363]
Internal file name [OUTPUT/1364_Sunday_June_05_2022_02_13_17_AM_2731518/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

9x2(x+ 1) y′′ + 3x
(
−x2 + 11x+ 5

)
y′ +

(
−7x2 + 16x+ 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

9x3 + 9x2) y′′ + (−3x3 + 33x2 + 15x
)
y′ +

(
−7x2 + 16x+ 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −x2 − 11x− 5
3x (x+ 1)

q(x) = −7x2 − 16x− 1
9x2 (x+ 1)
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Table 672: Table p(x), q(x) singularites.

p(x) = −x2−11x−5
3x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

q(x) = −7x2−16x−1
9x2(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

9x2(x+ 1) y′′ +
(
−3x3 + 33x2 + 15x

)
y′ +

(
−7x2 + 16x+ 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

9x2(x+ 1)
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−3x3 + 33x2 + 15x

)( ∞∑
n=0

(n+ r) anxn+r−1

)

+
(
−7x2 + 16x+ 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

9x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−3xn+r+2an(n+ r)

)
+
(

∞∑
n=0

33x1+n+ran(n+ r)
)

+
(

∞∑
n=0

15xn+ran(n+ r)
)

+
∞∑

n =0

(
−7xn+r+2an

)
+
(

∞∑
n=0

16x1+n+ran

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

9x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

9an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

(
−3xn+r+2an(n+ r)

)
=

∞∑
n=2

(
−3an−2(n+ r − 2)xn+r

)
∞∑

n =0

33x1+n+ran(n+ r) =
∞∑
n=1

33an−1(n+ r − 1)xn+r

∞∑
n =0

(
−7xn+r+2an

)
=

∞∑
n=2

(
−7an−2x

n+r
)

∞∑
n =0

16x1+n+ran =
∞∑
n=1

16an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

9an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =2

(
−3an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=1

33an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

15xn+ran(n+ r)
)

+
∞∑

n =2

(
−7an−2x

n+r
)
+
(

∞∑
n=1

16an−1x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

9xn+ran(n+ r) (n+ r − 1) + 15xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

9xra0r(−1 + r) + 15xra0r + a0x
r = 0

Or
(9xrr(−1 + r) + 15xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

xr(3r + 1)2 = 0

Since the above is true for all x then the indicial equation becomes

(3r + 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = −1
3

r2 = −1
3

Since a0 6= 0 then the indicial equation becomes

xr(3r + 1)2 = 0
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Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = −1

3 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n− 1

3

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n− 1

3

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = −1

For 2 ≤ n the recursive equation is

(3)9an−1(n+ r − 1) (n+ r − 2) + 9an(n+ r) (n+ r − 1)− 3an−2(n+ r − 2)
+ 33an−1(n+ r − 1) + 15an(n+ r)− 7an−2 + 16an−1 + an = 0

Solving for an from recursive equation (4) gives

an = −3nan−1 + 3ran−1 − an−2 + an−1

1 + 3n+ 3r (4)
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Which for the root r = −1
3 becomes

an = −3nan−1 + an−2

3n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 −1 −1

For n = 2, using the above recursive equation gives

a2 =
3r + 8
7 + 3r

Which for the root r = −1
3 becomes

a2 =
7
6

And the table now becomes

n an,r an

a0 1 1
a1 −1 −1
a2

3r+8
7+3r

7
6

For n = 3, using the above recursive equation gives

a3 =
−9r2 − 57r − 87
9r2 + 51r + 70

Which for the root r = −1
3 becomes

a3 = −23
18

And the table now becomes
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n an,r an

a0 1 1
a1 −1 −1
a2

3r+8
7+3r

7
6

a3
−9r2−57r−87
9r2+51r+70 −23

18

For n = 4, using the above recursive equation gives

a4 =
27r3 + 297r2 + 1056r + 1211
27r3 + 270r2 + 873r + 910

Which for the root r = −1
3 becomes

a4 =
11
8

And the table now becomes

n an,r an

a0 1 1
a1 −1 −1
a2

3r+8
7+3r

7
6

a3
−9r2−57r−87
9r2+51r+70 −23

18

a4
27r3+297r2+1056r+1211
27r3+270r2+873r+910

11
8

For n = 5, using the above recursive equation gives

a5 =
−81r4 − 1350r3 − 8208r2 − 21531r − 20507

(16 + 3r) (9r2 + 51r + 70) (13 + 3r)

Which for the root r = −1
3 becomes

a5 = −1577
1080

And the table now becomes
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n an,r an

a0 1 1
a1 −1 −1
a2

3r+8
7+3r

7
6

a3
−9r2−57r−87
9r2+51r+70 −23

18

a4
27r3+297r2+1056r+1211
27r3+270r2+873r+910

11
8

a5
−81r4−1350r3−8208r2−21531r−20507

(16+3r)(9r2+51r+70)(13+3r) −1577
1080

For n = 6, using the above recursive equation gives

a6 =
243r5 + 5670r4 + 51597r3 + 228465r2 + 491139r + 409009
243r5 + 5265r4 + 44415r3 + 181935r2 + 360942r + 276640

Which for the root r = −1
3 becomes

a6 =
3319
2160

And the table now becomes

n an,r an

a0 1 1
a1 −1 −1
a2

3r+8
7+3r

7
6

a3
−9r2−57r−87
9r2+51r+70 −23

18

a4
27r3+297r2+1056r+1211
27r3+270r2+873r+910

11
8

a5
−81r4−1350r3−8208r2−21531r−20507

(16+3r)(9r2+51r+70)(13+3r) −1577
1080

a6
243r5+5670r4+51597r3+228465r2+491139r+409009
243r5+5265r4+44415r3+181935r2+360942r+276640

3319
2160

For n = 7, using the above recursive equation gives

a7 =
−729r6 − 22599r5 − 285120r4 − 1870803r3 − 6720192r2 − 12502695r − 9387831

(22 + 3r) (13 + 3r) (9r2 + 51r + 70) (16 + 3r) (19 + 3r)

Which for the root r = −1
3 becomes

a7 = −72853
45360
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And the table now becomes

n an,r an

a0 1 1
a1 −1 −1
a2

3r+8
7+3r

7
6

a3
−9r2−57r−87
9r2+51r+70 −23

18

a4
27r3+297r2+1056r+1211
27r3+270r2+873r+910

11
8

a5
−81r4−1350r3−8208r2−21531r−20507

(16+3r)(9r2+51r+70)(13+3r) −1577
1080

a6
243r5+5670r4+51597r3+228465r2+491139r+409009
243r5+5265r4+44415r3+181935r2+360942r+276640

3319
2160

a7
−729r6−22599r5−285120r4−1870803r3−6720192r2−12502695r−9387831

(22+3r)(13+3r)(9r2+51r+70)(16+3r)(19+3r) −72853
45360

Using the above table, then the first solution y1(x) is

y1(x) =
1
x

1
3

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7 + a8x

8. . .
)

=
1− x+ 7x2

6 − 23x3

18 + 11x4

8 − 1577x5

1080 + 3319x6

2160 − 72853x7

45360 +O(x8)
x

1
3

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = −1
3 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table
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n bn,r an bn,r = d
dr
an,r bn

(
r = −1

3

)
b0 1 1 N/A since bn starts from 1 N/A
b1 −1 −1 0 0
b2

3r+8
7+3r

7
6 − 3

(7+3r)2 − 1
12

b3
−9r2−57r−87
9r2+51r+70 −23

18
54r2+306r+447
(9r2+51r+70)2

13
108

b4
27r3+297r2+1056r+1211
27r3+270r2+873r+910

11
8

−729r4−9882r3−50220r2−113400r−96243
(27r3+270r2+873r+910)2 −131

864

b5
−81r4−1350r3−8208r2−21531r−20507

(16+3r)(9r2+51r+70)(13+3r) −1577
1080

8748r6+205578r5+2001105r4+10325232r3+29787507r2+45579186r+28934526
(16+3r)2(9r2+51r+70)2(13+3r)2

11449
64800

b6
243r5+5670r4+51597r3+228465r2+491139r+409009
243r5+5265r4+44415r3+181935r2+360942r+276640

3319
2160

−98415r8−3490452r7−53745525r6−469145034r5−2538718200r4−8720362962r3−18569781900r2−22420989630r−11759833518
(243r5+5265r4+44415r3+181935r2+360942r+276640)2 − 76919

388800

b7
−729r6−22599r5−285120r4−1870803r3−6720192r2−12502695r−9387831

(22+3r)(13+3r)(9r2+51r+70)(16+3r)(19+3r) −72853
45360

1062882r10+52553610r9+1159663311r8+15034741452r7+126794500524r6+726656053590r5+2865553796322r4+7677332912286r3+13374342543807r2+13682424177432r+6244921647564
(22+3r)2(13+3r)2(9r2+51r+70)2(16+3r)2(19+3r)2

4118557
19051200

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 + b8x
8. . .

=

(
1− x+ 7x2

6 − 23x3

18 + 11x4

8 − 1577x5

1080 + 3319x6

2160 − 72853x7

45360 +O(x8)
)
ln (x)

x
1
3

+
−x2

12 +
13x3

108 − 131x4

864 + 11449x5

64800 − 76919x6

388800 + 4118557x7

19051200 +O(x8)
x

1
3

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
1− x+ 7x2

6 − 23x3

18 + 11x4

8 − 1577x5

1080 + 3319x6

2160 − 72853x7

45360 +O(x8)
)

x
1
3

+ c2


(
1− x+ 7x2

6 − 23x3

18 + 11x4

8 − 1577x5

1080 + 3319x6

2160 − 72853x7

45360 +O(x8)
)
ln (x)

x
1
3

+
−x2

12 +
13x3

108 − 131x4

864 + 11449x5

64800 − 76919x6

388800 + 4118557x7

19051200 +O(x8)
x

1
3



5667



Hence the final solution is

y = yh

=
c1
(
1− x+ 7x2

6 − 23x3

18 + 11x4

8 − 1577x5

1080 + 3319x6

2160 − 72853x7

45360 +O(x8)
)

x
1
3

+ c2


(
1− x+ 7x2

6 − 23x3

18 + 11x4

8 − 1577x5

1080 + 3319x6

2160 − 72853x7

45360 +O(x8)
)
ln (x)

x
1
3

+
−x2

12 +
13x3

108 − 131x4

864 + 11449x5

64800 − 76919x6

388800 + 4118557x7

19051200 +O(x8)
x

1
3


Summary
The solution(s) found are the following

(1)

y =
c1
(
1− x+ 7x2

6 − 23x3

18 + 11x4

8 − 1577x5

1080 + 3319x6

2160 − 72853x7

45360 +O(x8)
)

x
1
3

+ c2


(
1− x+ 7x2

6 − 23x3

18 + 11x4

8 − 1577x5

1080 + 3319x6

2160 − 72853x7

45360 +O(x8)
)
ln (x)

x
1
3

+
−x2

12 +
13x3

108 − 131x4

864 + 11449x5

64800 − 76919x6

388800 + 4118557x7

19051200 +O(x8)
x

1
3


Verification of solutions

y =
c1
(
1− x+ 7x2

6 − 23x3

18 + 11x4

8 − 1577x5

1080 + 3319x6

2160 − 72853x7

45360 +O(x8)
)

x
1
3

+ c2


(
1− x+ 7x2

6 − 23x3

18 + 11x4

8 − 1577x5

1080 + 3319x6

2160 − 72853x7

45360 +O(x8)
)
ln (x)

x
1
3

+
−x2

12 +
13x3

108 − 131x4

864 + 11449x5

64800 − 76919x6

388800 + 4118557x7

19051200 +O(x8)
x

1
3


Verified OK.
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15.15.1 Maple step by step solution

Let’s solve
9x2(x+ 1) y′′ + (−3x3 + 33x2 + 15x) y′ + (−7x2 + 16x+ 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ =
(
7x2−16x−1

)
y

9x2(x+1) +
(
x2−11x−5

)
y′

3x(x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ −
(
x2−11x−5

)
y′

3x(x+1) −
(
7x2−16x−1

)
y

9x2(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −x2−11x−5
3x(x+1) , P3(x) = −7x2−16x−1

9x2(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 7
3

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
9x2(x+ 1) y′′ − 3x(x2 − 11x− 5) y′ + (−7x2 + 16x+ 1) y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(9u3 − 18u2 + 9u)
(

d2

du2y(u)
)
+ (−3u3 + 42u2 − 60u+ 21)

(
d
du
y(u)

)
+ (−7u2 + 30u− 22) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions

5669



◦ Convert um · y(u) to series expansion form = 0..2

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..3

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

3a0r(4 + 3r)u−1+r + (3a1(1 + r) (7 + 3r)− 2a0(9r2 + 21r + 11))ur + (3a2(2 + r) (10 + 3r)− 2a1(9r2 + 39r + 41) + 3a0(2 + r) (5 + 3r))u1+r +
(

∞∑
k=2

(3ak+1(k + 1 + r) (3k + 3r + 7)− 2ak(9k2 + 18kr + 9r2 + 21k + 21r + 11) + 3ak−1(k + 1 + r) (3k + 2 + 3r)− ak−2(3k + 1 + 3r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
3r(4 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−4

3

}
• The coefficients of each power of u must be 0

[3a1(1 + r) (7 + 3r)− 2a0(9r2 + 21r + 11) = 0, 3a2(2 + r) (10 + 3r)− 2a1(9r2 + 39r + 41) + 3a0(2 + r) (5 + 3r) = 0]
• Solve for the dependent coefficient(s){

a1 = 2a0
(
9r2+21r+11

)
3(3r2+10r+7) , a2 = a0

(
243r4+1593r3+3699r2+3567r+1174

)
9(9r4+78r3+241r2+312r+140)

}
• Each term in the series must be 0, giving the recursion relation

9(−2ak + ak−1 + ak+1) k2 + 3(6(−2ak + ak−1 + ak+1) r − 14ak − ak−2 + 5ak−1 + 10ak+1) k + 9(−2ak + ak−1 + ak+1) r2 + 3(−14ak − ak−2 + 5ak−1 + 10ak+1) r − 22ak − ak−2 + 6ak−1 + 21ak+1 = 0
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• Shift index using k− >k + 2
9(−2ak+2 + ak+1 + ak+3) (k + 2)2 + 3(6(−2ak+2 + ak+1 + ak+3) r − 14ak+2 − ak + 5ak+1 + 10ak+3) (k + 2) + 9(−2ak+2 + ak+1 + ak+3) r2 + 3(−14ak+2 − ak + 5ak+1 + 10ak+3) r − 22ak+2 − ak + 6ak+1 + 21ak+3 = 0

• Recursion relation that defines series solution to ODE

ak+3 = −9k2ak+1−18k2ak+2+18krak+1−36krak+2+9r2ak+1−18r2ak+2−3kak+51kak+1−114kak+2−3rak+51rak+1−114rak+2−7ak+72ak+1−178ak+2
3(3k2+6kr+3r2+22k+22r+39)

• Recursion relation for r = 0

ak+3 = −9k2ak+1−18k2ak+2−3kak+51kak+1−114kak+2−7ak+72ak+1−178ak+2
3(3k2+22k+39)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+3 = −9k2ak+1−18k2ak+2−3kak+51kak+1−114kak+2−7ak+72ak+1−178ak+2

3(3k2+22k+39) , a1 = 22a0
21 , a2 = 587a0

630

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k , ak+3 = −9k2ak+1−18k2ak+2−3kak+51kak+1−114kak+2−7ak+72ak+1−178ak+2
3(3k2+22k+39) , a1 = 22a0

21 , a2 = 587a0
630

]
• Recursion relation for r = −4

3

ak+3 = −9k2ak+1−18k2ak+2−3kak+27kak+1−66kak+2−3ak+20ak+1−58ak+2
3(3k2+14k+15)

• Solution for r = −4
3[

y(u) =
∞∑
k=0

aku
k− 4

3 , ak+3 = −9k2ak+1−18k2ak+2−3kak+27kak+1−66kak+2−3ak+20ak+1−58ak+2
3(3k2+14k+15) , a1 = 2a0

3 , a2 = 7a0
18

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k−
4
3 , ak+3 = −9k2ak+1−18k2ak+2−3kak+27kak+1−66kak+2−3ak+20ak+1−58ak+2

3(3k2+14k+15) , a1 = 2a0
3 , a2 = 7a0

18

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k−
4
3

)
, ak+3 = −9k2a1+k−18k2ak+2−3kak+51ka1+k−114kak+2−7ak+72a1+k−178ak+2

3(3k2+22k+39) , a1 = 22a0
21 , a2 = 587a0

630 , bk+3 = −9k2b1+k−18k2bk+2−3kbk+27kb1+k−66kbk+2−3bk+20b1+k−58bk+2
3(3k2+14k+15) , b1 = 2b0

3 , b2 = 7b0
18

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c = 0

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.079 (sec). Leaf size: 79� �
Order:=8;
dsolve(9*x^2*(1+x)*diff(y(x),x$2)+3*x*(5+11*x-x^2)*diff(y(x),x)+(1+16*x-7*x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
(c2 ln (x) + c1)

(
1− x+ 7

6x
2 − 23

18x
3 + 11

8 x
4 − 1577

1080x
5 + 3319

2160x
6 − 72853

45360x
7 +O(x8)

)
+
(
− 1

12x
2 + 13

108x
3 − 131

864x
4 + 11449

64800x
5 − 76919

388800x
6 + 4118557

19051200x
7 +O(x8)

)
c2

x
1
3
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3 Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 167� �
AsymptoticDSolveValue[9*x^2*(1+x)*y''[x]+3*x*(5+11*x-x^2)*y'[x]+(1+16*x-7*x^2)*y[x]==0,y[x],{x,0,7}]� �

y(x) →
c1
(
−72853x7

45360 + 3319x6

2160 − 1577x5

1080 + 11x4

8 − 23x3

18 + 7x2

6 − x+ 1
)

3
√
x

+ c2

 4118557x7

19051200 − 76919x6

388800 + 11449x5

64800 − 131x4

864 + 13x3

108 − x2

12
3
√
x

+

(
−72853x7

45360 + 3319x6

2160 − 1577x5

1080 + 11x4

8 − 23x3

18 + 7x2

6 − x+ 1
)
log(x)

3
√
x
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15.16 problem 12
15.16.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5682

Internal problem ID [1364]
Internal file name [OUTPUT/1365_Sunday_June_05_2022_02_13_21_AM_36205429/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2y′′ + (4x+ 1) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

4x2y′′ + (4x+ 1) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = 4x+ 1
4x2
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Table 674: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = 4x+1
4x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2y′′ + (4x+ 1) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)4x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
+ (4x+ 1)

(
∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4x1+n+ran

)
+
(

∞∑
n=0

anx
n+r

)
= 0
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The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4x1+n+ran =
∞∑
n=1

4an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

4an−1x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + anx
n+r = 0

When n = 0 the above becomes

4xra0r(−1 + r) + a0x
r = 0

Or
(4xrr(−1 + r) + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(2r − 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(2r − 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 =
1
2

Since a0 6= 0 then the indicial equation becomes

(2r − 1)2 xr = 0
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Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1

2 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+ 1

2

)
We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)4an(n+ r) (n+ r − 1) + 4an−1 + an = 0

Solving for an from recursive equation (4) gives

an = − 4an−1

4n2 + 8nr + 4r2 − 4n− 4r + 1 (4)

Which for the root r = 1
2 becomes

an = −an−1

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.
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n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 4
(2r + 1)2

Which for the root r = 1
2 becomes

a1 = −1

And the table now becomes

n an,r an

a0 1 1
a1 − 4

(2r+1)2 −1

For n = 2, using the above recursive equation gives

a2 =
16

(2r + 1)2 (2r + 3)2

Which for the root r = 1
2 becomes

a2 =
1
4

And the table now becomes

n an,r an

a0 1 1
a1 − 4

(2r+1)2 −1

a2
16

(2r+1)2(2r+3)2
1
4

For n = 3, using the above recursive equation gives

a3 = − 64
(2r + 1)2 (2r + 3)2 (2r + 5)2

Which for the root r = 1
2 becomes

a3 = − 1
36
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And the table now becomes

n an,r an

a0 1 1
a1 − 4

(2r+1)2 −1

a2
16

(2r+1)2(2r+3)2
1
4

a3 − 64
(2r+1)2(2r+3)2(2r+5)2 − 1

36

For n = 4, using the above recursive equation gives

a4 =
256

(2r + 1)2 (2r + 3)2 (2r + 5)2 (2r + 7)2

Which for the root r = 1
2 becomes

a4 =
1
576

And the table now becomes

n an,r an

a0 1 1
a1 − 4

(2r+1)2 −1

a2
16

(2r+1)2(2r+3)2
1
4

a3 − 64
(2r+1)2(2r+3)2(2r+5)2 − 1

36

a4
256

(2r+1)2(2r+3)2(2r+5)2(2r+7)2
1

576

For n = 5, using the above recursive equation gives

a5 = − 1024
(2r + 1)2 (2r + 3)2 (2r + 5)2 (2r + 7)2 (2r + 9)2

Which for the root r = 1
2 becomes

a5 = − 1
14400

And the table now becomes
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n an,r an

a0 1 1
a1 − 4

(2r+1)2 −1

a2
16

(2r+1)2(2r+3)2
1
4

a3 − 64
(2r+1)2(2r+3)2(2r+5)2 − 1

36

a4
256

(2r+1)2(2r+3)2(2r+5)2(2r+7)2
1

576

a5 − 1024
(2r+1)2(2r+3)2(2r+5)2(2r+7)2(2r+9)2 − 1

14400

Using the above table, then the first solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1
2 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = 1

2

)
b0 1 1 N/A since bn starts from 1 N/A
b1 − 4

(2r+1)2 −1 16
(2r+1)3 2

b2
16

(2r+1)2(2r+3)2
1
4

−256r−256
(2r+1)3(2r+3)3 −3

4

b3 − 64
(2r+1)2(2r+3)2(2r+5)2 − 1

36
3072r2+9216r+5888

(2r+1)3(2r+3)3(2r+5)3
11
108

b4
256

(2r+1)2(2r+3)2(2r+5)2(2r+7)2
1

576 − 32768(2+r)
(
r2+4r+ 11

4
)

(2r+1)3(2r+3)3(2r+5)3(2r+7)3 − 25
3456

b5 − 1024
(2r+1)2(2r+3)2(2r+5)2(2r+7)2(2r+9)2 − 1

14400
327680r4+3276800r3+11304960r2+15564800r+6918144

(2r+1)3(2r+3)3(2r+5)3(2r+7)3(2r+9)3
137

432000
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
√
x

(
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6)) ln (x)

+
√
x

(
2x− 3x2

4 + 11x3

108 − 25x4

3456 + 137x5

432000 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6))

+ c2

(√
x

(
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6)) ln (x)

+
√
x

(
2x− 3x2

4 + 11x3

108 − 25x4

3456 + 137x5

432000 +O
(
x6)))

Hence the final solution is

y = yh

= c1
√
x

(
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6))

+ c2

(√
x

(
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6)) ln (x)

+
√
x

(
2x− 3x2

4 + 11x3

108 − 25x4

3456 + 137x5

432000 +O
(
x6)))

Summary
The solution(s) found are the following

(1)

y = c1
√
x

(
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6))

+ c2

(√
x

(
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6)) ln (x)

+
√
x

(
2x− 3x2

4 + 11x3

108 − 25x4

3456 + 137x5

432000 +O
(
x6)))
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Verification of solutions

y = c1
√
x

(
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6))

+ c2

(√
x

(
1− x+ x2

4 − x3

36 + x4

576 − x5

14400 +O
(
x6)) ln (x)

+
√
x

(
2x− 3x2

4 + 11x3

108 − 25x4

3456 + 137x5

432000 +O
(
x6)))

Verified OK.

15.16.1 Maple step by step solution

Let’s solve
4x2y′′ + (4x+ 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − (4x+1)y

4x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + (4x+1)y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = 4x+1
4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
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4x2y′′ + (4x+ 1) y = 0
• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r)2 xr +
(

∞∑
k=1

(
ak(2k + 2r − 1)2 + 4ak−1

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

2

• Each term in the series must be 0, giving the recursion relation

4
(
k + r − 1

2

)2
ak + 4ak−1 = 0

• Shift index using k− >k + 1

4
(
k + 1

2 + r
)2

ak+1 + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 4ak

(2k+1+2r)2

• Recursion relation for r = 1
2

ak+1 = − 4ak
(2k+2)2

• Solution for r = 1
2
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[
y =

∞∑
k=0

akx
k+ 1

2 , ak+1 = − 4ak
(2k+2)2

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 69� �
Order:=6;
dsolve(4*x^2*diff(y(x),x$2)+(1+4*x)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
√
x

(
(c2 ln (x) + c1)

(
1− x+ 1

4x
2 − 1

36x
3 + 1

576x
4 − 1

14400x
5 +O

(
x6))

+
(
2x− 3

4x
2 + 11

108x
3 − 25

3456x
4 + 137

432000x
5 +O

(
x6)) c2

)
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 128� �
AsymptoticDSolveValue[4*x^2*y''[x]+(1+4*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x

(
− x5

14400 + x4

576 − x3

36 + x2

4 − x+ 1
)

+ c2

(√
x

(
137x5

432000 − 25x4

3456 + 11x3

108 − 3x2

4 + 2x
)

+
√
x

(
− x5

14400 + x4

576 − x3

36 + x2

4 − x+ 1
)
log(x)

)
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15.17 problem 13
15.17.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5694

Internal problem ID [1365]
Internal file name [OUTPUT/1366_Sunday_June_05_2022_02_13_23_AM_50001526/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

36x2(1− 2x) y′′ + 24x(1− 9x) y′ + (1− 70x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

−72x3 + 36x2) y′′ + (−216x2 + 24x
)
y′ + (1− 70x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) =
6x− 2

3
x (2x− 1)

q(x) = 70x− 1
36x2 (2x− 1)
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Table 676: Table p(x), q(x) singularites.

p(x) = 6x− 2
3

x(2x−1)

singularity type
x = 0 “regular”
x = 1

2 “regular”

q(x) = 70x−1
36x2(2x−1)

singularity type
x = 0 “regular”
x = 1

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0, 12 ,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−36y′′x2(2x− 1) +
(
−216x2 + 24x

)
y′ + (1− 70x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−36

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2(2x− 1)

+
(
−216x2 + 24x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (1− 70x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−72x1+n+ran(n+ r) (n+ r− 1)

)
+
(

∞∑
n=0

36xn+ran(n+ r) (n+ r− 1)
)

+
∞∑

n =0

(
−216x1+n+ran(n+ r)

)
+
(

∞∑
n=0

24xn+ran(n+ r)
)

+
(

∞∑
n=0

anx
n+r

)
+

∞∑
n =0

(
−70x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−72x1+n+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−72an−1(n+ r − 1) (n+ r − 2)xn+r

)
∞∑

n =0

(
−216x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−216an−1(n+ r − 1)xn+r

)
∞∑

n =0

(
−70x1+n+ran

)
=

∞∑
n=1

(
−70an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =1

(
−72an−1(n+ r − 1) (n+ r − 2)xn+r

)
+
(

∞∑
n=0

36xn+ran(n+ r) (n+ r− 1)
)
+

∞∑
n =1

(
−216an−1(n+ r− 1)xn+r

)
+
(

∞∑
n=0

24xn+ran(n+ r)
)

+
(

∞∑
n=0

anx
n+r

)
+

∞∑
n =1

(
−70an−1x

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

36xn+ran(n+ r) (n+ r − 1) + 24xn+ran(n+ r) + anx
n+r = 0
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When n = 0 the above becomes

36xra0r(−1 + r) + 24xra0r + a0x
r = 0

Or
(36xrr(−1 + r) + 24xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(6r − 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(6r − 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
6

r2 =
1
6

Since a0 6= 0 then the indicial equation becomes

(6r − 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1

6 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+ 1

6

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+ 1

6

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)−72an−1(n+ r − 1) (n+ r − 2) + 36an(n+ r) (n+ r − 1)
− 216an−1(n+ r − 1) + 24an(n+ r) + an − 70an−1 = 0

Solving for an from recursive equation (4) gives

an = 2(6n+ 6r + 1) an−1

−1 + 6n+ 6r (4)

Which for the root r = 1
6 becomes

an = 2(3n+ 1) an−1

3n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

6 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
12r + 14
5 + 6r

Which for the root r = 1
6 becomes

a1 =
8
3

And the table now becomes
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n an,r an

a0 1 1
a1

12r+14
5+6r

8
3

For n = 2, using the above recursive equation gives

a2 =
144r2 + 480r + 364
36r2 + 96r + 55

Which for the root r = 1
6 becomes

a2 =
56
9

And the table now becomes

n an,r an

a0 1 1
a1

12r+14
5+6r

8
3

a2
144r2+480r+364
36r2+96r+55

56
9

For n = 3, using the above recursive equation gives

a3 =
1728r3 + 11232r2 + 22608r + 13832

216r3 + 1188r2 + 1962r + 935
Which for the root r = 1

6 becomes

a3 =
1120
81

And the table now becomes

n an,r an

a0 1 1
a1

12r+14
5+6r

8
3

a2
144r2+480r+364
36r2+96r+55

56
9

a3
1728r3+11232r2+22608r+13832

216r3+1188r2+1962r+935
1120
81

For n = 4, using the above recursive equation gives

a4 =
20736r4 + 221184r3 + 832896r2 + 1296384r + 691600

1296r4 + 12096r3 + 39096r2 + 50736r + 21505
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Which for the root r = 1
6 becomes

a4 =
7280
243

And the table now becomes

n an,r an

a0 1 1
a1

12r+14
5+6r

8
3

a2
144r2+480r+364
36r2+96r+55

56
9

a3
1728r3+11232r2+22608r+13832

216r3+1188r2+1962r+935
1120
81

a4
20736r4+221184r3+832896r2+1296384r+691600

1296r4+12096r3+39096r2+50736r+21505
7280
243

For n = 5, using the above recursive equation gives

a5 =
248832r5 + 3939840r4 + 23708160r3 + 67196160r2 + 88675008r + 42879200

7776r5 + 110160r4 + 585360r3 + 1438200r2 + 1600374r + 623645
Which for the root r = 1

6 becomes

a5 =
46592
729

And the table now becomes

n an,r an

a0 1 1
a1

12r+14
5+6r

8
3

a2
144r2+480r+364
36r2+96r+55

56
9

a3
1728r3+11232r2+22608r+13832

216r3+1188r2+1962r+935
1120
81

a4
20736r4+221184r3+832896r2+1296384r+691600

1296r4+12096r3+39096r2+50736r+21505
7280
243

a5
248832r5+3939840r4+23708160r3+67196160r2+88675008r+42879200

7776r5+110160r4+585360r3+1438200r2+1600374r+623645
46592
729

Using the above table, then the first solution y1(x) is

y1(x) = x
1
6
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
6

(
1 + 8x

3 + 56x2

9 + 1120x3

81 + 7280x4

243 + 46592x5

729 +O
(
x6))
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Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
Where bn is found using

bn = d

dr
an,r

And the above is then evaluated at r = 1
6 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = 1

6

)
b0 1 1 N/A since bn starts from 1 N/A
b1

12r+14
5+6r

8
3 − 24

(5+6r)2 −2
3

b2
144r2+480r+364
36r2+96r+55

56
9 −96

(
36r2+108r+89

)
(36r2+96r+55)2 −2

b3
1728r3+11232r2+22608r+13832

216r3+1188r2+1962r+935
1120
81 −288

(
1296r4+10368r3+31032r2+41184r+20833

)
(216r3+1188r2+1962r+935)2 −1192

243

b4
20736r4+221184r3+832896r2+1296384r+691600

1296r4+12096r3+39096r2+50736r+21505
7280
243 −768

(
46656r6+699840r5+4311792r4+13957920r3+25068636r2+23769180r+9388385

)
(1296r4+12096r3+39096r2+50736r+21505)2 −8168

729

b5
248832r5+3939840r4+23708160r3+67196160r2+88675008r+42879200

7776r5+110160r4+585360r3+1438200r2+1600374r+623645
46592
729 −1920

(
1679616r8+40310784r7+416358144r6+2415287808r5+8603000928r4+19268648064r3+26529316848r2+20585746080r+6938037217

)
(7776r5+110160r4+585360r3+1438200r2+1600374r+623645)2 −270112

10935

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x
1
6

(
1 + 8x

3 + 56x2

9 + 1120x3

81 + 7280x4

243 + 46592x5

729 +O
(
x6)) ln (x)

+ x
1
6

(
−2x

3 − 2x2 − 1192x3

243 − 8168x4

729 − 270112x5

10935 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
6

(
1 + 8x

3 + 56x2

9 + 1120x3

81 + 7280x4

243 + 46592x5

729 +O
(
x6))

+ c2

(
x

1
6

(
1 + 8x

3 + 56x2

9 + 1120x3

81 + 7280x4

243 + 46592x5

729 +O
(
x6)) ln (x)

+ x
1
6

(
−2x

3 − 2x2 − 1192x3

243 − 8168x4

729 − 270112x5

10935 +O
(
x6)))
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Hence the final solution is

y = yh

= c1x
1
6

(
1 + 8x

3 + 56x2

9 + 1120x3

81 + 7280x4

243 + 46592x5

729 +O
(
x6))

+ c2

(
x

1
6

(
1 + 8x

3 + 56x2

9 + 1120x3

81 + 7280x4

243 + 46592x5

729 +O
(
x6)) ln (x)

+ x
1
6

(
−2x

3 − 2x2 − 1192x3

243 − 8168x4

729 − 270112x5

10935 +O
(
x6)))

Summary
The solution(s) found are the following

(1)

y = c1x
1
6

(
1 + 8x

3 + 56x2

9 + 1120x3

81 + 7280x4

243 + 46592x5

729 +O
(
x6))

+ c2

(
x

1
6

(
1 + 8x

3 + 56x2

9 + 1120x3

81 + 7280x4

243 + 46592x5

729 +O
(
x6)) ln (x)

+ x
1
6

(
−2x

3 − 2x2 − 1192x3

243 − 8168x4

729 − 270112x5

10935 +O
(
x6)))

Verification of solutions

y = c1x
1
6

(
1 + 8x

3 + 56x2

9 + 1120x3

81 + 7280x4

243 + 46592x5

729 +O
(
x6))

+ c2

(
x

1
6

(
1 + 8x

3 + 56x2

9 + 1120x3

81 + 7280x4

243 + 46592x5

729 +O
(
x6)) ln (x)

+ x
1
6

(
−2x

3 − 2x2 − 1192x3

243 − 8168x4

729 − 270112x5

10935 +O
(
x6)))

Verified OK.

15.17.1 Maple step by step solution

Let’s solve
−36y′′x2(2x− 1) + (−216x2 + 24x) y′ + (1− 70x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (70x−1)y
36x2(2x−1) −

2(9x−1)y′
3x(2x−1)
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2(9x−1)y′
3x(2x−1) +

(70x−1)y
36x2(2x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2(9x−1)
3x(2x−1) , P3(x) = 70x−1

36x2(2x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
36

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
36y′′x2(2x− 1) + 24x(9x− 1) y′ + y(70x− 1) = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r
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◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(−1 + 6r)2 xr +
(

∞∑
k=1

(
−ak(6k + 6r − 1)2 + 2ak−1(6k + 1 + 6r) (6k + 6r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−1 + 6r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

6

• Each term in the series must be 0, giving the recursion relation
−36

((
−2k − 2r − 1

3

)
ak−1 + ak

(
k + r − 1

6

)) (
k + r − 1

6

)
= 0

• Shift index using k− >k + 1
−36

((
−2k − 7

3 − 2r
)
ak + ak+1

(
k + 5

6 + r
)) (

k + 5
6 + r

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = 2(6k+6r+7)ak

6k+6r+5

• Recursion relation for r = 1
6

ak+1 = 2(6k+8)ak
6k+6

• Solution for r = 1
6[

y =
∞∑
k=0

akx
k+ 1

6 , ak+1 = 2(6k+8)ak
6k+6

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful
-> solution has integrals; searching for one without integrals...

-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric solution without integrals succesful
<- hypergeometric successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 69� �
Order:=6;
dsolve(36*x^2*(1-2*x)*diff(y(x),x$2)+24*x*(1-9*x)*diff(y(x),x)+(1-70*x)*y(x)=0,y(x),type='series',x=0);� �
y(x) = x

1
6

(
(c2 ln (x) + c1)

(
1 + 8

3x+ 56
9 x2 + 1120

81 x3 + 7280
243 x4 + 46592

729 x5 +O
(
x6))

+
(
−2
3x− 2x2 − 1192

243 x3 − 8168
729 x4 − 270112

10935 x5 +O
(
x6)) c2

)
3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 132� �
AsymptoticDSolveValue[36*x^2*(1-2*x)*y''[x]+24*x*(1-9*x)*y'[x]+(1-70*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
6
√
x

(
46592x5

729 + 7280x4

243 + 1120x3

81 + 56x2

9 + 8x
3 + 1

)
+ c2

(
6
√
x

(
−270112x5

10935 − 8168x4

729 − 1192x3

243 − 2x2 − 2x
3

)
+ 6

√
x

(
46592x5

729 + 7280x4

243 + 1120x3

81 + 56x2

9 + 8x
3 + 1

)
log(x)

)
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15.18 problem 14
15.18.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5707

Internal problem ID [1366]
Internal file name [OUTPUT/1367_Sunday_June_05_2022_02_13_26_AM_29279783/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x+ 1) y′′ − x(3− x) y′ + 4y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x3 + x2) y′′ + (x2 − 3x
)
y′ + 4y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x− 3
x (x+ 1)

q(x) = 4
(x+ 1)x2
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Table 678: Table p(x), q(x) singularites.

p(x) = x−3
x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

q(x) = 4
(x+1)x2

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x+ 1) y′′ +
(
x2 − 3x

)
y′ + 4y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x+ 1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x2 − 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ 4
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−3xn+ran(n+ r)

)
+
(

∞∑
n=0

4anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

x1+n+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1(n+r−1)xn+r

)
+

∞∑
n =0

(
−3xn+ran(n+r)

)
+
(

∞∑
n=0

4anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 3xn+ran(n+ r) + 4anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− 3xra0r + 4a0xr = 0

Or
(xrr(−1 + r)− 3xrr + 4xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r − 2)2 xr = 0
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Since the above is true for all x then the indicial equation becomes

(r − 2)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = 2

Since a0 6= 0 then the indicial equation becomes

(r − 2)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 2, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+2

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
+ an−1(n+ r − 1)− 3an(n+ r) + 4an = 0

Solving for an from recursive equation (4) gives

an = −an−1(n2 + 2nr + r2 − 2n− 2r + 1)
n2 + 2nr + r2 − 4n− 4r + 4 (4)

Which for the root r = 2 becomes

an = −an−1(1 + n)2

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − r2

(−1 + r)2

Which for the root r = 2 becomes
a1 = −4

And the table now becomes

n an,r an

a0 1 1
a1 − r2

(−1+r)2 −4

For n = 2, using the above recursive equation gives

a2 =
(r + 1)2

(−1 + r)2

Which for the root r = 2 becomes
a2 = 9
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And the table now becomes

n an,r an

a0 1 1
a1 − r2

(−1+r)2 −4

a2
(r+1)2

(−1+r)2 9

For n = 3, using the above recursive equation gives

a3 = − (r + 2)2

(−1 + r)2

Which for the root r = 2 becomes

a3 = −16

And the table now becomes

n an,r an

a0 1 1
a1 − r2

(−1+r)2 −4

a2
(r+1)2

(−1+r)2 9

a3 − (r+2)2

(−1+r)2 −16

For n = 4, using the above recursive equation gives

a4 =
(r + 3)2

(−1 + r)2

Which for the root r = 2 becomes
a4 = 25

And the table now becomes
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n an,r an

a0 1 1
a1 − r2

(−1+r)2 −4

a2
(r+1)2

(−1+r)2 9

a3 − (r+2)2

(−1+r)2 −16

a4
(r+3)2

(−1+r)2 25

For n = 5, using the above recursive equation gives

a5 = − (r + 4)2

(−1 + r)2

Which for the root r = 2 becomes

a5 = −36

And the table now becomes

n an,r an

a0 1 1
a1 − r2

(−1+r)2 −4

a2
(r+1)2

(−1+r)2 9

a3 − (r+2)2

(−1+r)2 −16

a4
(r+3)2

(−1+r)2 25

a5 − (r+4)2

(−1+r)2 −36

Using the above table, then the first solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2(−36x5 + 25x4 − 16x3 + 9x2 − 4x+ 1 +O

(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
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Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 2. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 2)

b0 1 1 N/A since bn starts from 1 N/A
b1 − r2

(−1+r)2 −4 2r
(−1+r)3 4

b2
(r+1)2

(−1+r)2 9 −4r−4
(−1+r)3 −12

b3 − (r+2)2

(−1+r)2 −16 6r+12
(−1+r)3 24

b4
(r+3)2

(−1+r)2 25 −8r−24
(−1+r)3 −40

b5 − (r+4)2

(−1+r)2 −36 10r+40
(−1+r)3 60

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x2(−36x5 + 25x4 − 16x3 + 9x2 − 4x+ 1 +O
(
x6)) ln (x)

+ x2(60x5 − 40x4 + 24x3 − 12x2 + 4x+O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2(−36x5 + 25x4 − 16x3 + 9x2 − 4x+ 1 +O

(
x6))

+ c2
(
x2(−36x5 + 25x4 − 16x3 + 9x2 − 4x+ 1 +O

(
x6)) ln (x)

+ x2(60x5 − 40x4 + 24x3 − 12x2 + 4x+O
(
x6)))

Hence the final solution is

y = yh

= c1x
2(−36x5 + 25x4 − 16x3 + 9x2 − 4x+ 1 +O

(
x6))

+ c2
(
x2(−36x5 + 25x4 − 16x3 + 9x2 − 4x+ 1 +O

(
x6)) ln (x)

+ x2(60x5 − 40x4 + 24x3 − 12x2 + 4x+O
(
x6)))
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Summary
The solution(s) found are the following

(1)
y = c1x

2(−36x5 + 25x4 − 16x3 + 9x2 − 4x+ 1 +O
(
x6))

+ c2
(
x2(−36x5 + 25x4 − 16x3 + 9x2 − 4x+ 1 +O

(
x6)) ln (x)

+ x2(60x5 − 40x4 + 24x3 − 12x2 + 4x+O
(
x6)))

Verification of solutions

y = c1x
2(−36x5 + 25x4 − 16x3 + 9x2 − 4x+ 1 +O

(
x6))

+ c2
(
x2(−36x5 + 25x4 − 16x3 + 9x2 − 4x+ 1 +O

(
x6)) ln (x)

+ x2(60x5 − 40x4 + 24x3 − 12x2 + 4x+O
(
x6)))

Verified OK.

15.18.1 Maple step by step solution

Let’s solve
x2(x+ 1) y′′ + (x2 − 3x) y′ + 4y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 4y
x2(x+1) −

(x−3)y′
x(x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (x−3)y′
x(x+1) +

4y
x2(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = x−3
x(x+1) , P3(x) = 4

(x+1)x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 4

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
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Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
x2(x+ 1) y′′ + x(x− 3) y′ + 4y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 2u2 + u)
(

d2

du2y(u)
)
+ (u2 − 5u+ 4)

(
d
du
y(u)

)
+ 4y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(3 + r)u−1+r + (a1(1 + r) (4 + r)− a0(2r2 + 3r − 4))ur +
(

∞∑
k=1

(
ak+1(k + 1 + r) (k + 4 + r)− ak(2k2 + 4kr + 2r2 + 3k + 3r − 4) + ak−1(k + r − 1)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3, 0}

• Each term must be 0
a1(1 + r) (4 + r)− a0(2r2 + 3r − 4) = 0
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• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + 4 + r)− ak(2k2 + 4kr + 2r2 + 3k + 3r − 4) + ak−1(k + r − 1)2 = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 5 + r)− ak+1

(
2(k + 1)2 + 4(k + 1) r + 2r2 + 3k − 1 + 3r

)
+ ak(k + r)2 = 0

• Recursion relation that defines series solution to ODE

ak+2 = −k2ak−2k2ak+1+2krak−4krak+1+r2ak−2r2ak+1−7kak+1−7rak+1−ak+1
(k+2+r)(k+5+r)

• Recursion relation for r = −3

ak+2 = −k2ak−2k2ak+1−6kak+5kak+1+9ak+2ak+1
(k−1)(k+2)

• Series not valid for r = −3 , division by 0 in the recursion relation at k = 1

ak+2 = −k2ak−2k2ak+1−6kak+5kak+1+9ak+2ak+1
(k−1)(k+2)

• Recursion relation for r = 0

ak+2 = −k2ak−2k2ak+1−7kak+1−ak+1
(k+2)(k+5)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−2k2ak+1−7kak+1−ak+1

(k+2)(k+5) , 4a1 + 4a0 = 0
]

• Revert the change of variables u = x+ 1[
y =

∞∑
k=0

ak(x+ 1)k , ak+2 = −k2ak−2k2ak+1−7kak+1−ak+1
(k+2)(k+5) , 4a1 + 4a0 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 69� �
Order:=6;
dsolve(x^2*(1+x)*diff(y(x),x$2)-x*(3-x)*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);� �

y(x) = x2((c2 ln (x) + c1)
(
1− 4x+ 9x2 − 16x3 + 25x4 − 36x5 +O

(
x6))

+
(
4x− 12x2 + 24x3 − 40x4 + 60x5 +O

(
x6)) c2)

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 98� �
AsymptoticDSolveValue[x^2*(1+x)*y''[x]-x*(3-x)*y'[x]+4*y[x]==0,y[x],{x,0,5}]� �
y(x)→ c1

(
−36x5+25x4−16x3+9x2−4x+1

)
x2+c2

((
60x5−40x4+24x3−12x2+4x

)
x2

+
(
−36x5 + 25x4 − 16x3 + 9x2 − 4x+ 1

)
x2 log(x)

)
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15.19 problem 15
15.19.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5719

Internal problem ID [1367]
Internal file name [OUTPUT/1368_Sunday_June_05_2022_02_13_29_AM_77264433/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(1− 2x) y′′ − x(5− 4x) y′ + (9− 4x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−2x3 + x2) y′′ + (4x2 − 5x
)
y′ + (9− 4x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 4x− 5
x (2x− 1)

q(x) = 4x− 9
x2 (2x− 1)
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Table 680: Table p(x), q(x) singularites.

p(x) = − 4x−5
x(2x−1)

singularity type
x = 0 “regular”
x = 1

2 “regular”

q(x) = 4x−9
x2(2x−1)

singularity type
x = 0 “regular”
x = 1

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0, 12 ,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x2(2x− 1) +
(
4x2 − 5x

)
y′ + (9− 4x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2(2x− 1)

+
(
4x2 − 5x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (9− 4x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−2x1+n+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−5xn+ran(n+ r)

)
+
(

∞∑
n=0

9anxn+r

)
+

∞∑
n =0

(
−4x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2x1+n+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1) (n+ r − 2)xn+r

)
∞∑

n =0

4x1+n+ran(n+ r) =
∞∑
n=1

4an−1(n+ r − 1)xn+r

∞∑
n =0

(
−4x1+n+ran

)
=

∞∑
n=1

(
−4an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =1

(
−2an−1(n+r−1) (n+r−2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+r) (n+r−1)
)

+
(

∞∑
n=1

4an−1(n+ r − 1)xn+r

)
+

∞∑
n =0

(
−5xn+ran(n+ r)

)
+
(

∞∑
n=0

9anxn+r

)
+

∞∑
n =1

(
−4an−1x

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 5xn+ran(n+ r) + 9anxn+r = 0
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When n = 0 the above becomes

xra0r(−1 + r)− 5xra0r + 9a0xr = 0

Or
(xrr(−1 + r)− 5xrr + 9xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r − 3)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(r − 3)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 3
r2 = 3

Since a0 6= 0 then the indicial equation becomes

(r − 3)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of

5714



integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 3, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+3

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+3

)
We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)−2an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
+ 4an−1(n+ r − 1)− 5an(n+ r) + 9an − 4an−1 = 0

Solving for an from recursive equation (4) gives

an = 2(n+ r − 2) an−1

−3 + n+ r
(4)

Which for the root r = 3 becomes

an = 2(1 + n) an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−2 + 2r
r − 2

Which for the root r = 3 becomes
a1 = 4

And the table now becomes

n an,r an

a0 1 1
a1

−2+2r
r−2 4
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For n = 2, using the above recursive equation gives

a2 =
4r

r − 2

Which for the root r = 3 becomes
a2 = 12

And the table now becomes

n an,r an

a0 1 1
a1

−2+2r
r−2 4

a2
4r
r−2 12

For n = 3, using the above recursive equation gives

a3 =
8 + 8r
r − 2

Which for the root r = 3 becomes
a3 = 32

And the table now becomes

n an,r an

a0 1 1
a1

−2+2r
r−2 4

a2
4r
r−2 12

a3
8+8r
r−2 32

For n = 4, using the above recursive equation gives

a4 =
32 + 16r
r − 2

Which for the root r = 3 becomes
a4 = 80

And the table now becomes
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n an,r an

a0 1 1
a1

−2+2r
r−2 4

a2
4r
r−2 12

a3
8+8r
r−2 32

a4
32+16r
r−2 80

For n = 5, using the above recursive equation gives

a5 =
96 + 32r
r − 2

Which for the root r = 3 becomes
a5 = 192

And the table now becomes

n an,r an

a0 1 1
a1

−2+2r
r−2 4

a2
4r
r−2 12

a3
8+8r
r−2 32

a4
32+16r
r−2 80

a5
96+32r
r−2 192

Using the above table, then the first solution y1(x) is

y1(x) = x3(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x3(192x5 + 80x4 + 32x3 + 12x2 + 4x+ 1 +O

(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
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Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 3. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 3)

b0 1 1 N/A since bn starts from 1 N/A
b1

−2+2r
r−2 4 − 2

(r−2)2 −2

b2
4r
r−2 12 − 8

(r−2)2 −8

b3
8+8r
r−2 32 − 24

(r−2)2 −24

b4
32+16r
r−2 80 − 64

(r−2)2 −64

b5
96+32r
r−2 192 − 160

(r−2)2 −160

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x3(192x5 + 80x4 + 32x3 + 12x2 + 4x+ 1 +O
(
x6)) ln (x)

+ x3(−160x5 − 64x4 − 24x3 − 8x2 − 2x+O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3(192x5 + 80x4 + 32x3 + 12x2 + 4x+ 1 +O

(
x6))

+ c2
(
x3(192x5 + 80x4 + 32x3 + 12x2 + 4x+ 1 +O

(
x6)) ln (x)

+ x3(−160x5 − 64x4 − 24x3 − 8x2 − 2x+O
(
x6)))

Hence the final solution is

y = yh

= c1x
3(192x5 + 80x4 + 32x3 + 12x2 + 4x+ 1 +O

(
x6))

+ c2
(
x3(192x5 + 80x4 + 32x3 + 12x2 + 4x+ 1 +O

(
x6)) ln (x)

+ x3(−160x5 − 64x4 − 24x3 − 8x2 − 2x+O
(
x6)))
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Summary
The solution(s) found are the following

(1)
y = c1x

3(192x5 + 80x4 + 32x3 + 12x2 + 4x+ 1 +O
(
x6))

+ c2
(
x3(192x5 + 80x4 + 32x3 + 12x2 + 4x+ 1 +O

(
x6)) ln (x)

+ x3(−160x5 − 64x4 − 24x3 − 8x2 − 2x+O
(
x6)))

Verification of solutions

y = c1x
3(192x5 + 80x4 + 32x3 + 12x2 + 4x+ 1 +O

(
x6))

+ c2
(
x3(192x5 + 80x4 + 32x3 + 12x2 + 4x+ 1 +O

(
x6)) ln (x)

+ x3(−160x5 − 64x4 − 24x3 − 8x2 − 2x+O
(
x6)))

Verified OK.

15.19.1 Maple step by step solution

Let’s solve
−y′′x2(2x− 1) + (4x2 − 5x) y′ + (9− 4x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (4x−9)y
x2(2x−1) +

(4x−5)y′
x(2x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (4x−5)y′
x(2x−1) +

(4x−9)y
x2(2x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 4x−5
x(2x−1) , P3(x) = 4x−9

x2(2x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 9

◦ x = 0is a regular singular point

5719



Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x2(2x− 1)− x(4x− 5) y′ + (4x− 9) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(−3 + r)2 xr +
(

∞∑
k=1

(
−ak(k + r − 3)2 + 2ak−1(k + r − 2) (k + r − 3)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−3 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 3
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• Each term in the series must be 0, giving the recursion relation
−ak(k + r − 3)2 + 2ak−1(k + r − 2) (k + r − 3) = 0

• Shift index using k− >k + 1
−ak+1(k + r − 2)2 + 2ak(k + r − 1) (k + r − 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r−1)

k+r−2

• Recursion relation for r = 3
ak+1 = 2ak(k+2)

k+1

• Solution for r = 3[
y =

∞∑
k=0

akx
k+3, ak+1 = 2ak(k+2)

k+1

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 69� �
Order:=6;
dsolve(x^2*(1-2*x)*diff(y(x),x$2)-x*(5-4*x)*diff(y(x),x)+(9-4*x)*y(x)=0,y(x),type='series',x=0);� �

y(x) = x3((c2 ln (x) + c1)
(
1 + 4x+ 12x2 + 32x3 + 80x4 + 192x5 +O

(
x6))

+
(
(−2)x− 8x2 − 24x3 − 64x4 − 160x5 +O

(
x6)) c2)
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3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 98� �
AsymptoticDSolveValue[x^2*(1-2*x)*y''[x]-x*(5-4*x)*y'[x]+(9-4*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
(
192x5 + 80x4 + 32x3 + 12x2 + 4x+ 1

)
x3

+ c2
((
−160x5 − 64x4 − 24x3 − 8x2 − 2x

)
x3

+
(
192x5 + 80x4 + 32x3 + 12x2 + 4x+ 1

)
x3 log(x)

)
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15.20 problem 16
15.20.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5732

Internal problem ID [1368]
Internal file name [OUTPUT/1369_Sunday_June_05_2022_02_13_32_AM_16321906/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 16.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

25x2y′′ + x(15 + x) y′ + (x+ 1) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

25x2y′′ +
(
x2 + 15x

)
y′ + (x+ 1) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 15 + x

25x
q(x) = x+ 1

25x2
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Table 682: Table p(x), q(x) singularites.

p(x) = 15+x
25x

singularity type
x = 0 “regular”

q(x) = x+1
25x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

25x2y′′ +
(
x2 + 15x

)
y′ + (x+ 1) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
25x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x2 + 15x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (x+ 1)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

25xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

x1+n+ran(n+ r)
)

+
(

∞∑
n=0

15xn+ran(n+ r)
)

+
(

∞∑
n=0

x1+n+ran

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r

∞∑
n =0

x1+n+ran =
∞∑
n=1

an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

25xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

15xn+ran(n+ r)
)

+
(

∞∑
n=1

an−1x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

25xn+ran(n+ r) (n+ r − 1) + 15xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

25xra0r(−1 + r) + 15xra0r + a0x
r = 0

Or
(25xrr(−1 + r) + 15xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(5r − 1)2 xr = 0
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Since the above is true for all x then the indicial equation becomes

(5r − 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
5

r2 =
1
5

Since a0 6= 0 then the indicial equation becomes

(5r − 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1

5 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+ 1

5

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+ 1

5

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)25an(n+ r) (n+ r − 1) + an−1(n+ r − 1) + 15an(n+ r) + an−1 + an = 0

Solving for an from recursive equation (4) gives

an = − an−1(n+ r)
25n2 + 50nr + 25r2 − 10n− 10r + 1 (4)

Which for the root r = 1
5 becomes

an = −an−1(5n+ 1)
125n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

5 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−1− r

(5r + 4)2

Which for the root r = 1
5 becomes

a1 = − 6
125

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
(5r+4)2 − 6

125

For n = 2, using the above recursive equation gives

a2 =
(2 + r) (1 + r)

(5r + 4)2 (5r + 9)2
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Which for the root r = 1
5 becomes

a2 =
33

31250

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
(5r+4)2 − 6

125

a2
(2+r)(1+r)

(5r+4)2(5r+9)2
33

31250

For n = 3, using the above recursive equation gives

a3 = − (3 + r) (2 + r) (1 + r)
(5r + 4)2 (5r + 9)2 (5r + 14)2

Which for the root r = 1
5 becomes

a3 = − 88
5859375

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
(5r+4)2 − 6

125

a2
(2+r)(1+r)

(5r+4)2(5r+9)2
33

31250

a3 − (3+r)(2+r)(1+r)
(5r+4)2(5r+9)2(5r+14)2 − 88

5859375

For n = 4, using the above recursive equation gives

a4 =
(3 + r) (2 + r) (1 + r) (4 + r)

(5r + 4)2 (5r + 9)2 (5r + 14)2 (5r + 19)2

Which for the root r = 1
5 becomes

a4 =
77

488281250
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And the table now becomes

n an,r an

a0 1 1
a1

−1−r
(5r+4)2 − 6

125

a2
(2+r)(1+r)

(5r+4)2(5r+9)2
33

31250

a3 − (3+r)(2+r)(1+r)
(5r+4)2(5r+9)2(5r+14)2 − 88

5859375

a4
(3+r)(2+r)(1+r)(4+r)

(5r+4)2(5r+9)2(5r+14)2(5r+19)2
77

488281250

For n = 5, using the above recursive equation gives

a5 = − (3 + r) (2 + r) (1 + r) (4 + r) (5 + r)
(5r + 4)2 (5r + 9)2 (5r + 14)2 (5r + 19)2 (5r + 24)2

Which for the root r = 1
5 becomes

a5 = − 1001
762939453125

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
(5r+4)2 − 6

125

a2
(2+r)(1+r)

(5r+4)2(5r+9)2
33

31250

a3 − (3+r)(2+r)(1+r)
(5r+4)2(5r+9)2(5r+14)2 − 88

5859375

a4
(3+r)(2+r)(1+r)(4+r)

(5r+4)2(5r+9)2(5r+14)2(5r+19)2
77

488281250

a5 − (3+r)(2+r)(1+r)(4+r)(5+r)
(5r+4)2(5r+9)2(5r+14)2(5r+19)2(5r+24)2 − 1001

762939453125

Using the above table, then the first solution y1(x) is

y1(x) = x
1
5
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
5

(
1− 6x

125 + 33x2

31250 − 88x3

5859375 + 77x4

488281250 − 1001x5

762939453125 +O
(
x6))
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Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1
5 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = 1

5

)
b0 1 1 N/A since bn starts from 1 N/A
b1

−1−r
(5r+4)2 − 6

125
5r+6

(5r+4)3
7

125

b2
(2+r)(1+r)

(5r+4)2(5r+9)2
33

31250
−50r3−225r2−323r−152

(5r+9)3(5r+4)3 − 113
62500

b3 − (3+r)(2+r)(1+r)
(5r+4)2(5r+9)2(5r+14)2 − 88

5859375
375r5+3675r4+13885r3+25263r2+22142r+7536

(5r+4)3(5r+9)3(5r+14)3
1091

35156250

b4
(3+r)(2+r)(1+r)(4+r)

(5r+4)2(5r+9)2(5r+14)2(5r+19)2
77

488281250
−2500r7−42750r6−303750r5−1160040r4−2566146r3−3281970r2−2245580r−636240

(5r+9)3(5r+14)3(5r+19)3(5r+4)3 − 1721
4687500000

b5 − (3+r)(2+r)(1+r)(4+r)(5+r)
(5r+4)2(5r+9)2(5r+14)2(5r+19)2(5r+24)2 − 1001

762939453125
15625r9+412500r8+4713750r7+30545250r6+123443175r5+321942630r4+540632810r3+562549380r2+328738800r+82324224

(5r+4)3(5r+9)3(5r+14)3(5r+19)3(5r+24)3
609221

183105468750000

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x
1
5

(
1− 6x

125 + 33x2

31250 − 88x3

5859375 + 77x4

488281250 − 1001x5

762939453125 +O
(
x6)) ln (x)

+ x
1
5

(
7x
125 − 113x2

62500 + 1091x3

35156250 − 1721x4

4687500000 + 609221x5

183105468750000 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)
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= c1x
1
5

(
1− 6x

125 + 33x2

31250 − 88x3

5859375 + 77x4

488281250 − 1001x5

762939453125 +O
(
x6))

+ c2

(
x

1
5

(
1− 6x

125 + 33x2

31250 − 88x3

5859375 + 77x4

488281250 − 1001x5

762939453125

+O
(
x6)) ln (x)

+x
1
5

(
7x
125 −

113x2

62500 +
1091x3

35156250 −
1721x4

4687500000 +
609221x5

183105468750000 +O
(
x6)))

Hence the final solution is

y = yh

= c1x
1
5

(
1− 6x

125 + 33x2

31250 − 88x3

5859375 + 77x4

488281250 − 1001x5

762939453125 +O
(
x6))

+c2

(
x

1
5

(
1− 6x

125 +
33x2

31250−
88x3

5859375 +
77x4

488281250−
1001x5

762939453125 +O
(
x6)) ln (x)

+ x
1
5

(
7x
125 − 113x2

62500 + 1091x3

35156250 − 1721x4

4687500000 + 609221x5

183105468750000 +O
(
x6)))

Summary
The solution(s) found are the following

(1)

y = c1x
1
5

(
1− 6x

125 + 33x2

31250 − 88x3

5859375 + 77x4

488281250 − 1001x5

762939453125 +O
(
x6))

+ c2

(
x

1
5

(
1− 6x

125 + 33x2

31250 − 88x3

5859375 + 77x4

488281250 − 1001x5

762939453125

+O
(
x6)) ln (x)

+ x
1
5

(
7x
125 − 113x2

62500 + 1091x3

35156250 − 1721x4

4687500000 + 609221x5

183105468750000 +O
(
x6)))

Verification of solutions

y = c1x
1
5

(
1− 6x

125 + 33x2

31250 − 88x3

5859375 + 77x4

488281250 − 1001x5

762939453125 +O
(
x6))

+c2

(
x

1
5

(
1− 6x

125 +
33x2

31250−
88x3

5859375 +
77x4

488281250−
1001x5

762939453125 +O
(
x6)) ln (x)

+ x
1
5

(
7x
125 − 113x2

62500 + 1091x3

35156250 − 1721x4

4687500000 + 609221x5

183105468750000 +O
(
x6)))

Verified OK.
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15.20.1 Maple step by step solution

Let’s solve
25x2y′′ + (x2 + 15x) y′ + (x+ 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (x+1)y
25x2 − (15+x)y′

25x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (15+x)y′
25x + (x+1)y

25x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 15+x
25x , P3(x) = x+1

25x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
25

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
25x2y′′ + x(15 + x) y′ + (x+ 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 5r)2 xr +
(

∞∑
k=1

(
ak(5k + 5r − 1)2 + ak−1(k + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 5r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

5

• Each term in the series must be 0, giving the recursion relation
ak(5k + 5r − 1)2 + ak−1(k + r) = 0

• Shift index using k− >k + 1
ak+1(5k + 4 + 5r)2 + ak(k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r+1)

(5k+4+5r)2

• Recursion relation for r = 1
5

ak+1 = −ak
(
k+ 6

5
)

(5k+5)2

• Solution for r = 1
5[

y =
∞∑
k=0

akx
k+ 1

5 , ak+1 = −ak
(
k+ 6

5
)

(5k+5)2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 69� �
Order:=6;
dsolve(25*x^2*diff(y(x),x$2)+x*(15+x)*diff(y(x),x)+(1+x)*y(x)=0,y(x),type='series',x=0);� �

y(x) = x
1
5

(
(c2 ln (x) + c1)

(
1− 6

125x+ 33
31250x

2 − 88
5859375x

3 + 77
488281250x

4

− 1001
762939453125x

5 +O
(
x6))+

(
7
125x− 113

62500x
2 + 1091

35156250x
3

− 1721
4687500000x

4 + 609221
183105468750000x

5 +O
(
x6)) c2

)
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 134� �
AsymptoticDSolveValue[25*x^2*y''[x]+x*(15+x)*y'[x]+(1+x)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

5
√
x

(
− 1001x5

762939453125 + 77x4

488281250 − 88x3

5859375 + 33x2

31250 − 6x
125 + 1

)
+ c2

(
5
√
x

(
609221x5

183105468750000 − 1721x4

4687500000 + 1091x3

35156250 − 113x2

62500 + 7x
125

)
+ 5

√
x

(
− 1001x5

762939453125 + 77x4

488281250 − 88x3

5859375 + 33x2

31250 − 6x
125 + 1

)
log(x)

)
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15.21 problem 17
15.21.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5744

Internal problem ID [1369]
Internal file name [OUTPUT/1370_Sunday_June_05_2022_02_13_34_AM_11378560/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2x2(2 + x) y′′ + y′x2 + (1− x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

2x3 + 4x2) y′′ + y′x2 + (1− x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
2x+ 4

q(x) = − x− 1
2x2 (2 + x)
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Table 684: Table p(x), q(x) singularites.

p(x) = 1
2x+4

singularity type
x = −2 “regular”

q(x) = − x−1
2x2(2+x)

singularity type
x = −2 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−2, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x2(2 + x) y′′ + y′x2 + (1− x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2x2(2 + x)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
x2 + (1− x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

x1+n+ran(n+ r)
)

+
(

∞∑
n=0

anx
n+r

)
+

∞∑
n =0

(
−x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

x1+n+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r

∞∑
n =0

(
−x1+n+ran

)
=

∞∑
n=1

(
−an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

2an−1(n+ r− 1) (n+ r− 2)xn+r

)
+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

anx
n+r

)
+

∞∑
n =1

(
−an−1x

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + anx
n+r = 0

When n = 0 the above becomes

4xra0r(−1 + r) + a0x
r = 0

Or
(4xrr(−1 + r) + xr) a0 = 0
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Since a0 6= 0 then the above simplifies to

(2r − 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(2r − 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 =
1
2

Since a0 6= 0 then the indicial equation becomes

(2r − 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1

2 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+ 1

2

)
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We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)2an−1(n+r−1) (n+r−2)+4an(n+r) (n+r−1)+an−1(n+r−1)+an−an−1 = 0

Solving for an from recursive equation (4) gives

an = −(n+ r − 2) an−1

−1 + 2n+ 2r (4)

Which for the root r = 1
2 becomes

an = −(2n− 3) an−1

4n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
1− r

1 + 2r

Which for the root r = 1
2 becomes

a1 =
1
4

And the table now becomes

n an,r an

a0 1 1
a1

1−r
1+2r

1
4

For n = 2, using the above recursive equation gives

a2 =
(−1 + r) r
4r2 + 8r + 3
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Which for the root r = 1
2 becomes

a2 = − 1
32

And the table now becomes

n an,r an

a0 1 1
a1

1−r
1+2r

1
4

a2
(−1+r)r
4r2+8r+3 − 1

32

For n = 3, using the above recursive equation gives

a3 =
−r3 + r

8r3 + 36r2 + 46r + 15

Which for the root r = 1
2 becomes

a3 =
1
128

And the table now becomes

n an,r an

a0 1 1
a1

1−r
1+2r

1
4

a2
(−1+r)r
4r2+8r+3 − 1

32

a3
−r3+r

8r3+36r2+46r+15
1

128

For n = 4, using the above recursive equation gives

a4 =
r(r2 − 1) (2 + r)

(7 + 2r) (8r3 + 36r2 + 46r + 15)

Which for the root r = 1
2 becomes

a4 = − 5
2048

And the table now becomes
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n an,r an

a0 1 1
a1

1−r
1+2r

1
4

a2
(−1+r)r
4r2+8r+3 − 1

32

a3
−r3+r

8r3+36r2+46r+15
1

128

a4
r
(
r2−1

)
(2+r)

(7+2r)(8r3+36r2+46r+15) − 5
2048

For n = 5, using the above recursive equation gives

a5 =
−r5 − 5r4 − 5r3 + 5r2 + 6r

32r5 + 400r4 + 1840r3 + 3800r2 + 3378r + 945
Which for the root r = 1

2 becomes

a5 =
7

8192
And the table now becomes

n an,r an

a0 1 1
a1

1−r
1+2r

1
4

a2
(−1+r)r
4r2+8r+3 − 1

32

a3
−r3+r

8r3+36r2+46r+15
1

128

a4
r
(
r2−1

)
(2+r)

(7+2r)(8r3+36r2+46r+15) − 5
2048

a5
−r5−5r4−5r3+5r2+6r

32r5+400r4+1840r3+3800r2+3378r+945
7

8192

Using the above table, then the first solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1 + x

4 − x2

32 + x3

128 − 5x4

2048 + 7x5

8192 +O
(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
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Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1
2 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = 1

2

)
b0 1 1 N/A since bn starts from 1 N/A
b1

1−r
1+2r

1
4 − 3

(1+2r)2 −3
4

b2
(−1+r)r
4r2+8r+3 − 1

32
12r2+6r−3
(4r2+8r+3)2

3
64

b3
−r3+r

8r3+36r2+46r+15
1

128
−36r4−108r3−81r2+15
(8r3+36r2+46r+15)2 − 7

768

b4
r
(
r2−1

)
(2+r)

(7+2r)(8r3+36r2+46r+15) − 5
2048

96r6+720r5+1968r4+2340r3+966r2−210r−210
(8r3+36r2+46r+15)2(7+2r)2

61
24576

b5
−r5−5r4−5r3+5r2+6r

32r5+400r4+1840r3+3800r2+3378r+945
7

8192 −15
(
16r8+224r7+1272r6+3752r5+6053r4+4984r3+1339r2−630r−378

)
(32r5+400r4+1840r3+3800r2+3378r+945)2 − 391

491520

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
√
x

(
1 + x

4 − x2

32 + x3

128 − 5x4

2048 + 7x5

8192 +O
(
x6)) ln (x)

+
√
x

(
−3x

4 + 3x2

64 − 7x3

768 + 61x4

24576 − 391x5

491520 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1 + x

4 − x2

32 + x3

128 − 5x4

2048 + 7x5

8192 +O
(
x6))

+ c2

(√
x

(
1 + x

4 − x2

32 + x3

128 − 5x4

2048 + 7x5

8192 +O
(
x6)) ln (x)

+
√
x

(
−3x

4 + 3x2

64 − 7x3

768 + 61x4

24576 − 391x5

491520 +O
(
x6)))
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Hence the final solution is

y = yh

= c1
√
x

(
1 + x

4 − x2

32 + x3

128 − 5x4

2048 + 7x5

8192 +O
(
x6))

+ c2

(√
x

(
1 + x

4 − x2

32 + x3

128 − 5x4

2048 + 7x5

8192 +O
(
x6)) ln (x)

+
√
x

(
−3x

4 + 3x2

64 − 7x3

768 + 61x4

24576 − 391x5

491520 +O
(
x6)))

Summary
The solution(s) found are the following

(1)

y = c1
√
x

(
1 + x

4 − x2

32 + x3

128 − 5x4

2048 + 7x5

8192 +O
(
x6))

+ c2

(√
x

(
1 + x

4 − x2

32 + x3

128 − 5x4

2048 + 7x5

8192 +O
(
x6)) ln (x)

+
√
x

(
−3x

4 + 3x2

64 − 7x3

768 + 61x4

24576 − 391x5

491520 +O
(
x6)))

Verification of solutions

y = c1
√
x

(
1 + x

4 − x2

32 + x3

128 − 5x4

2048 + 7x5

8192 +O
(
x6))

+ c2

(√
x

(
1 + x

4 − x2

32 + x3

128 − 5x4

2048 + 7x5

8192 +O
(
x6)) ln (x)

+
√
x

(
−3x

4 + 3x2

64 − 7x3

768 + 61x4

24576 − 391x5

491520 +O
(
x6)))

Verified OK.

15.21.1 Maple step by step solution

Let’s solve
2x2(2 + x) y′′ + y′x2 + (1− x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = (x−1)y

2x2(2+x) −
y′

2(2+x)
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

2(2+x) −
(x−1)y

2x2(2+x) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 1
2(2+x) , P3(x) = − x−1

2x2(2+x)

]
◦ (2 + x) · P2(x) is analytic at x = −2

((2 + x) · P2(x))
∣∣∣∣
x=−2

= 1
2

◦ (2 + x)2 · P3(x) is analytic at x = −2(
(2 + x)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators
2x2(2 + x) y′′ + y′x2 + (1− x) y = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(2u3 − 8u2 + 8u)
(

d2

du2y(u)
)
+ (u2 − 4u+ 4)

(
d
du
y(u)

)
+ (3− u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m
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◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(−1 + 2r)u−1+r + (4a1(1 + r) (1 + 2r)− a0(8r2 − 4r − 3))ur +
(

∞∑
k=1

(4ak+1(k + 1 + r) (2k + 2r + 1)− ak(8k2 + 16kr + 8r2 − 4k − 4r − 3) + ak−1(2k + 2r − 1) (k − 2 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term must be 0
4a1(1 + r) (1 + 2r)− a0(8r2 − 4r − 3) = 0

• Each term in the series must be 0, giving the recursion relation
2(−4ak + ak−1 + 4ak+1) k2 + (4(−4ak + ak−1 + 4ak+1) r + 4ak − 5ak−1 + 12ak+1) k + 2(−4ak + ak−1 + 4ak+1) r2 + (4ak − 5ak−1 + 12ak+1) r + 3ak + 2ak−1 + 4ak+1 = 0

• Shift index using k− >k + 1
2(−4ak+1 + ak + 4ak+2) (k + 1)2 + (4(−4ak+1 + ak + 4ak+2) r + 4ak+1 − 5ak + 12ak+2) (k + 1) + 2(−4ak+1 + ak + 4ak+2) r2 + (4ak+1 − 5ak + 12ak+2) r + 3ak+1 + 2ak + 4ak+2 = 0

• Recursion relation that defines series solution to ODE

ak+2 = −2k2ak−8k2ak+1+4krak−16krak+1+2r2ak−8r2ak+1−kak−12kak+1−rak−12rak+1−ak−ak+1
4(2k2+4kr+2r2+7k+7r+6)

• Recursion relation for r = 0

ak+2 = −2k2ak−8k2ak+1−kak−12kak+1−ak−ak+1
4(2k2+7k+6)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −2k2ak−8k2ak+1−kak−12kak+1−ak−ak+1

4(2k2+7k+6) , 4a1 + 3a0 = 0
]

• Revert the change of variables u = 2 + x
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[
y =

∞∑
k=0

ak(2 + x)k , ak+2 = −2k2ak−8k2ak+1−kak−12kak+1−ak−ak+1
4(2k2+7k+6) , 4a1 + 3a0 = 0

]
• Recursion relation for r = 1

2

ak+2 = −2k2ak−8k2ak+1+kak−20kak+1−ak−9ak+1
4(2k2+9k+10)

• Solution for r = 1
2[

y(u) =
∞∑
k=0

aku
k+ 1

2 , ak+2 = −2k2ak−8k2ak+1+kak−20kak+1−ak−9ak+1
4(2k2+9k+10) , 12a1 + 3a0 = 0

]
• Revert the change of variables u = 2 + x[

y =
∞∑
k=0

ak(2 + x)k+
1
2 , ak+2 = −2k2ak−8k2ak+1+kak−20kak+1−ak−9ak+1

4(2k2+9k+10) , 12a1 + 3a0 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak(2 + x)k
)
+
(

∞∑
k=0

bk(2 + x)k+
1
2

)
, ak+2 = −2k2ak−8k2a1+k−kak−12ka1+k−ak−a1+k

4(2k2+7k+6) , 4a1 + 3a0 = 0, bk+2 = −2k2bk−8k2b1+k+kbk−20kb1+k−bk−9b1+k

4(2k2+9k+10) , 12b1 + 3b0 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 69� �
Order:=6;
dsolve(2*x^2*(2+x)*diff(y(x),x$2)+x^2*diff(y(x),x)+(1-x)*y(x)=0,y(x),type='series',x=0);� �
y(x) =

√
x

(
(c2 ln (x) + c1)

(
1 + 1

4x− 1
32x

2 + 1
128x

3 − 5
2048x

4 + 7
8192x

5 +O
(
x6))

+
(
−3
4x+ 3

64x
2 − 7

768x
3 + 61

24576x
4 − 391

491520x
5 +O

(
x6)) c2

)
3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 134� �
AsymptoticDSolveValue[2*x^2*(2+x)*y''[x]+x^2*y'[x]+(1-x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x

(
7x5

8192 − 5x4

2048 + x3

128 − x2

32 + x

4 + 1
)

+ c2

(√
x

(
− 391x5

491520 + 61x4

24576 − 7x3

768 + 3x2

64 − 3x
4

)
+
√
x

(
7x5

8192 − 5x4

2048 + x3

128 − x2

32 + x

4 + 1
)
log(x)

)
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15.22 problem 18
15.22.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5758

Internal problem ID [1370]
Internal file name [OUTPUT/1371_Sunday_June_05_2022_02_13_37_AM_28562163/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(4x+ 9) y′′ + 3y′x+ (x+ 1) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

4x3 + 9x2) y′′ + 3y′x+ (x+ 1) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3
x (4x+ 9)

q(x) = x+ 1
x2 (4x+ 9)
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Table 686: Table p(x), q(x) singularites.

p(x) = 3
x(4x+9)

singularity type
x = 0 “regular”
x = −9

4 “regular”

q(x) = x+1
x2(4x+9)

singularity type
x = 0 “regular”
x = −9

4 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−9

4 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(4x+ 9) y′′ + 3y′x+ (x+ 1) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(4x+ 9)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 3
(

∞∑
n=0

(n+ r) anxn+r−1

)
x+ (x+ 1)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=0

x1+n+ran

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

4an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

x1+n+ran =
∞∑
n=1

an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

4an−1(n+ r− 1) (n+ r− 2)xn+r

)
+
(

∞∑
n=0

9xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=1

an−1x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

9xn+ran(n+ r) (n+ r − 1) + 3xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

9xra0r(−1 + r) + 3xra0r + a0x
r = 0

Or
(9xrr(−1 + r) + 3xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(3r − 1)2 xr = 0
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Since the above is true for all x then the indicial equation becomes

(3r − 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 =
1
3

Since a0 6= 0 then the indicial equation becomes

(3r − 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1

3 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+ 1

3

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)4an−1(n+ r− 1) (n+ r− 2) + 9an(n+ r) (n+ r− 1) + 3an(n+ r) + an−1 + an = 0

Solving for an from recursive equation (4) gives

an = −an−1(4n2 + 8nr + 4r2 − 12n− 12r + 9)
9n2 + 18nr + 9r2 − 6n− 6r + 1 (4)

Which for the root r = 1
3 becomes

an = −(6n− 7)2 an−1

81n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = −(2r − 1)2

(3r + 2)2

Which for the root r = 1
3 becomes

a1 = − 1
81

And the table now becomes

n an,r an

a0 1 1

a1 − (2r−1)2

(3r+2)2 − 1
81

For n = 2, using the above recursive equation gives

a2 =
16
(
r + 1

2

)2 (
r − 1

2

)2
81
(
r + 2

3

)2 (
r + 5

3

)2
5753



Which for the root r = 1
3 becomes

a2 =
25

26244
And the table now becomes

n an,r an

a0 1 1

a1 − (2r−1)2

(3r+2)2 − 1
81

a2
16
(
r+ 1

2
)2(

r− 1
2
)2

81
(
r+ 2

3
)2(

r+ 5
3
)2 25

26244

For n = 3, using the above recursive equation gives

a3 = −
64
(
r + 3

2

)2 (
r + 1

2

)2 (
r − 1

2

)2
(3r + 2)2 (3r + 5)2 (9r2 + 48r + 64)

Which for the root r = 1
3 becomes

a3 = − 3025
19131876

And the table now becomes

n an,r an

a0 1 1

a1 − (2r−1)2

(3r+2)2 − 1
81

a2
16
(
r+ 1

2
)2(

r− 1
2
)2

81
(
r+ 2

3
)2(

r+ 5
3
)2 25

26244

a3 − 64
(
r+ 3

2
)2(

r+ 1
2
)2(

r− 1
2
)2

(3r+2)2(3r+5)2(9r2+48r+64) − 3025
19131876

For n = 4, using the above recursive equation gives

a4 =
(2r + 3)2 (2r + 1)2 (2r − 1)2 (4r2 + 20r + 25)
6561

(
r + 8

3

)2 (
r + 11

3

)2 (
r + 2

3

)2 (
r + 5

3

)2
Which for the root r = 1

3 becomes

a4 =
874225

24794911296
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And the table now becomes

n an,r an

a0 1 1

a1 − (2r−1)2

(3r+2)2 − 1
81

a2
16
(
r+ 1

2
)2(

r− 1
2
)2

81
(
r+ 2

3
)2(

r+ 5
3
)2 25

26244

a3 − 64
(
r+ 3

2
)2(

r+ 1
2
)2(

r− 1
2
)2

(3r+2)2(3r+5)2(9r2+48r+64) − 3025
19131876

a4
(2r+3)2(2r+1)2(2r−1)2

(
4r2+20r+25

)
6561

(
r+ 8

3
)2(

r+ 11
3
)2(

r+ 2
3
)2(

r+ 5
3
)2 874225

24794911296

For n = 5, using the above recursive equation gives

a5 = − (2r + 3)2 (2r + 5)2 (7 + 2r)2 (2r + 1)2 (2r − 1)2

(3r + 8)2 (3r + 11)2 (3r + 2)2 (3r + 5)2 (9r2 + 84r + 196)
Which for the root r = 1

3 becomes

a5 = − 18498601
2008387814976

And the table now becomes

n an,r an

a0 1 1

a1 − (2r−1)2

(3r+2)2 − 1
81

a2
16
(
r+ 1

2
)2(

r− 1
2
)2

81
(
r+ 2

3
)2(

r+ 5
3
)2 25

26244

a3 − 64
(
r+ 3

2
)2(

r+ 1
2
)2(

r− 1
2
)2

(3r+2)2(3r+5)2(9r2+48r+64) − 3025
19131876

a4
(2r+3)2(2r+1)2(2r−1)2

(
4r2+20r+25

)
6561

(
r+ 8

3
)2(

r+ 11
3
)2(

r+ 2
3
)2(

r+ 5
3
)2 874225

24794911296

a5 − (2r+3)2(2r+5)2(7+2r)2(2r+1)2(2r−1)2

(3r+8)2(3r+11)2(3r+2)2(3r+5)2(9r2+84r+196) − 18498601
2008387814976

Using the above table, then the first solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
1− x

81 + 25x2

26244 − 3025x3

19131876 + 874225x4

24794911296 − 18498601x5

2008387814976 +O
(
x6))
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Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1
3 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = 1

3

)
b0 1 1 N/A since bn starts from 1 N/A

b1 − (2r−1)2

(3r+2)2 − 1
81

−28r+14
(3r+2)3

14
81

b2
16
(
r+ 1

2
)2(

r− 1
2
)2

81
(
r+ 2

3
)2(

r+ 5
3
)2 25

26244
672r4+784r3−196r−42

(3r+5)3(3r+2)3 − 35
2916

b3 − 64
(
r+ 3

2
)2(

r+ 1
2
)2(

r− 1
2
)2

(3r+2)2(3r+5)2(9r2+48r+64) − 3025
19131876 −14

(
108r4+468r3+687r2+390r+62

)
(2r+3)

(
4r2−1

)
(3r+8)3(3r+2)3(3r+5)3

110495
57395628

b4
(2r+3)2(2r+1)2(2r−1)2

(
4r2+20r+25

)
6561

(
r+ 8

3
)2(

r+ 11
3
)2(

r+ 2
3
)2(

r+ 5
3
)2 874225

24794911296
28(2r+3)

(
864r7+10368r6+51048r5+132484r4+193156r3+154855r2+60645r+7925

)(
4r2−1

)
(3r+5)3(3r+2)3(3r+11)3(3r+8)3 − 62786185

148769467776

b5 − (2r+3)2(2r+5)2(7+2r)2(2r+1)2(2r−1)2

(3r+8)2(3r+11)2(3r+2)2(3r+5)2(9r2+84r+196) − 18498601
2008387814976 −70

(
1296r8+21600r7+150552r6+569400r5+1266613r4+1674900r3+1258809r2+471600r+59492

)
(2r+3)(2r+5)(7+2r)

(
4r2−1

)
14348907

(
r+ 14

3
)3(

r+ 11
3
)3(

r+ 8
3
)3(

r+ 2
3
)3(

r+ 5
3
)3 1315043653

12050326889856

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x
1
3

(
1− x

81 +
25x2

26244−
3025x3

19131876 +
874225x4

24794911296−
18498601x5

2008387814976 +O
(
x6)) ln (x)

+ x
1
3

(
14x
81 − 35x2

2916 + 110495x3

57395628 − 62786185x4

148769467776 + 1315043653x5

12050326889856 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)
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= c1x
1
3

(
1− x

81 + 25x2

26244 − 3025x3

19131876 + 874225x4

24794911296 − 18498601x5

2008387814976 +O
(
x6))

+ c2

(
x

1
3

(
1− x

81 + 25x2

26244 − 3025x3

19131876 + 874225x4

24794911296 − 18498601x5

2008387814976

+O
(
x6)) ln (x)

+x
1
3

(
14x
81 − 35x2

2916 +
110495x3

57395628 −
62786185x4

148769467776 +
1315043653x5

12050326889856 +O
(
x6)))

Hence the final solution is

y = yh

= c1x
1
3

(
1− x

81 + 25x2

26244 − 3025x3

19131876 + 874225x4

24794911296 − 18498601x5

2008387814976 +O
(
x6))

+ c2

(
x

1
3

(
1− x

81 + 25x2

26244 − 3025x3

19131876 + 874225x4

24794911296 − 18498601x5

2008387814976

+O
(
x6)) ln (x)

+ x
1
3

(
14x
81 − 35x2

2916 + 110495x3

57395628 − 62786185x4

148769467776 + 1315043653x5

12050326889856 +O
(
x6)))

Summary
The solution(s) found are the following

(1)

y = c1x
1
3

(
1− x

81 + 25x2

26244 − 3025x3

19131876 + 874225x4

24794911296 − 18498601x5

2008387814976 +O
(
x6))

+ c2

(
x

1
3

(
1− x

81 + 25x2

26244 − 3025x3

19131876 + 874225x4

24794911296 − 18498601x5

2008387814976

+O
(
x6)) ln (x)

+ x
1
3

(
14x
81 − 35x2

2916 + 110495x3

57395628 − 62786185x4

148769467776 + 1315043653x5

12050326889856 +O
(
x6)))
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Verification of solutions

y = c1x
1
3

(
1− x

81 + 25x2

26244 − 3025x3

19131876 + 874225x4

24794911296 − 18498601x5

2008387814976 +O
(
x6))

+ c2

(
x

1
3

(
1− x

81 + 25x2

26244 − 3025x3

19131876 + 874225x4

24794911296 − 18498601x5

2008387814976

+O
(
x6)) ln (x)

+ x
1
3

(
14x
81 − 35x2

2916 + 110495x3

57395628 − 62786185x4

148769467776 + 1315043653x5

12050326889856 +O
(
x6)))

Verified OK.

15.22.1 Maple step by step solution

Let’s solve
x2(4x+ 9) y′′ + 3y′x+ (x+ 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − (x+1)y

x2(4x+9) −
3y′

x(4x+9)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 3y′

x(4x+9) +
(x+1)y

x2(4x+9) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3
x(4x+9) , P3(x) = x+1

x2(4x+9)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
9

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
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x0 = 0
• Multiply by denominators

x2(4x+ 9) y′′ + 3y′x+ (x+ 1) y = 0
• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + 3r)2 xr +
(

∞∑
k=1

(
ak(3k + 3r − 1)2 + ak−1(2k − 3 + 2r)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 3r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

3

• Each term in the series must be 0, giving the recursion relation
ak(3k + 3r − 1)2 + ak−1(2k − 3 + 2r)2 = 0

• Shift index using k− >k + 1
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ak+1(3k + 2 + 3r)2 + ak(2k + 2r − 1)2 = 0
• Recursion relation that defines series solution to ODE

ak+1 = −ak(2k+2r−1)2

(3k+2+3r)2

• Recursion relation for r = 1
3

ak+1 = −ak
(
2k− 1

3
)2

(3k+3)2

• Solution for r = 1
3[

y =
∞∑
k=0

akx
k+ 1

3 , ak+1 = −ak
(
2k− 1

3
)2

(3k+3)2

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful
-> solution has integrals; searching for one without integrals...

-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric solution without integrals succesful
<- hypergeometric successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 69� �
Order:=6;
dsolve(x^2*(9+4*x)*diff(y(x),x$2)+3*x*diff(y(x),x)+(1+x)*y(x)=0,y(x),type='series',x=0);� �

y(x) = x
1
3

(
(c2 ln (x) + c1)

(
1− 1

81x+ 25
26244x

2 − 3025
19131876x

3 + 874225
24794911296x

4

− 18498601
2008387814976x

5 +O
(
x6))+

(
14
81x− 35

2916x
2 + 110495

57395628x
3

− 62786185
148769467776x

4 + 1315043653
12050326889856x

5 +O
(
x6)) c2

)
3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 134� �
AsymptoticDSolveValue[x^2*(9+4*x)*y''[x]+3*x*y'[x]+(1+x)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

3
√
x

(
− 18498601x5

2008387814976 + 874225x4

24794911296 − 3025x3

19131876 + 25x2

26244 − x

81 + 1
)

+ c2

(
3
√
x

(
1315043653x5

12050326889856 − 62786185x4

148769467776 + 110495x3

57395628 − 35x2

2916 + 14x
81

)
+ 3
√
x

(
− 18498601x5

2008387814976 +
874225x4

24794911296−
3025x3

19131876 +
25x2

26244−
x

81 +1
)
log(x)

)
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15.23 problem 19
15.23.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5770

Internal problem ID [1371]
Internal file name [OUTPUT/1372_Sunday_June_05_2022_02_13_40_AM_86649237/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − x(−2x+ 3) y′ + (3x+ 4) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
2x2 − 3x

)
y′ + (3x+ 4) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −3 + 2x
x

q(x) = 3x+ 4
x2
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Table 688: Table p(x), q(x) singularites.

p(x) = −3+2x
x

singularity type
x = 0 “regular”

q(x) = 3x+4
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
2x2 − 3x

)
y′ + (3x+ 4) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
2x2 − 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (3x+ 4)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−3xn+ran(n+ r)

)
+
(

∞∑
n=0

3x1+n+ran

)
+
(

∞∑
n=0

4anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2x1+n+ran(n+ r) =
∞∑
n=1

2an−1(n+ r − 1)xn+r

∞∑
n =0

3x1+n+ran =
∞∑
n=1

3an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

2an−1(n+ r − 1)xn+r

)

+
∞∑

n =0

(
−3xn+ran(n+ r)

)
+
(

∞∑
n=1

3an−1x
n+r

)
+
(

∞∑
n=0

4anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 3xn+ran(n+ r) + 4anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− 3xra0r + 4a0xr = 0

Or
(xrr(−1 + r)− 3xrr + 4xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r − 2)2 xr = 0
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Since the above is true for all x then the indicial equation becomes

(r − 2)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = 2

Since a0 6= 0 then the indicial equation becomes

(r − 2)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 2, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+2

)
We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)an(n+ r) (n+ r − 1) + 2an−1(n+ r − 1)− 3an(n+ r) + 3an−1 + 4an = 0
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Solving for an from recursive equation (4) gives

an = − an−1(2n+ 2r + 1)
n2 + 2nr + r2 − 4n− 4r + 4 (4)

Which for the root r = 2 becomes

an = an−1(−2n− 5)
n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−3− 2r
(−1 + r)2

Which for the root r = 2 becomes
a1 = −7

And the table now becomes

n an,r an

a0 1 1
a1

−3−2r
(−1+r)2 −7

For n = 2, using the above recursive equation gives

a2 =
4r2 + 16r + 15
(−1 + r)2 r2

Which for the root r = 2 becomes
a2 =

63
4

And the table now becomes

n an,r an

a0 1 1
a1

−3−2r
(−1+r)2 −7

a2
4r2+16r+15
(−1+r)2r2

63
4
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For n = 3, using the above recursive equation gives

a3 =
−8r3 − 60r2 − 142r − 105

(−1 + r)2 r2 (r + 1)2

Which for the root r = 2 becomes

a3 = −77
4

And the table now becomes

n an,r an

a0 1 1
a1

−3−2r
(−1+r)2 −7

a2
4r2+16r+15
(−1+r)2r2

63
4

a3
−8r3−60r2−142r−105

(−1+r)2r2(r+1)2 −77
4

For n = 4, using the above recursive equation gives

a4 =
16r4 + 192r3 + 824r2 + 1488r + 945

(−1 + r)2 r2 (r + 1)2 (r + 2)2

Which for the root r = 2 becomes

a4 =
1001
64

And the table now becomes

n an,r an

a0 1 1
a1

−3−2r
(−1+r)2 −7

a2
4r2+16r+15
(−1+r)2r2

63
4

a3
−8r3−60r2−142r−105

(−1+r)2r2(r+1)2 −77
4

a4
16r4+192r3+824r2+1488r+945

(−1+r)2r2(r+1)2(r+2)2
1001
64

For n = 5, using the above recursive equation gives

a5 =
−32r5 − 560r4 − 3760r3 − 12040r2 − 18258r − 10395

(−1 + r)2 r2 (r + 1)2 (r + 2)2 (r + 3)2
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Which for the root r = 2 becomes

a5 = −3003
320

And the table now becomes

n an,r an

a0 1 1
a1

−3−2r
(−1+r)2 −7

a2
4r2+16r+15
(−1+r)2r2

63
4

a3
−8r3−60r2−142r−105

(−1+r)2r2(r+1)2 −77
4

a4
16r4+192r3+824r2+1488r+945

(−1+r)2r2(r+1)2(r+2)2
1001
64

a5
−32r5−560r4−3760r3−12040r2−18258r−10395

(−1+r)2r2(r+1)2(r+2)2(r+3)2 −3003
320

Using the above table, then the first solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2

(
1− 7x+ 63x2

4 − 77x3

4 + 1001x4

64 − 3003x5

320 +O
(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 2. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table
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n bn,r an bn,r = d
dr
an,r bn(r = 2)

b0 1 1 N/A since bn starts from 1 N/A
b1

−3−2r
(−1+r)2 −7 8+2r

(−1+r)3 12

b2
4r2+16r+15
(−1+r)2r2

63
4

−8r3−48r2−44r+30
(−1+r)3r3 −157

4

b3
−8r3−60r2−142r−105

(−1+r)2r2(r+1)2 −77
4

24r5+240r4+718r3+630r2−142r−210
(−1+r)3r3(r+1)3

2063
36

b4
16r4+192r3+824r2+1488r+945

(−1+r)2r2(r+1)2(r+2)2
1001
64

−64r7−1024r6−6096r5−16880r4−21176r3−6876r2+6756r+3780
(−1+r)3r3(r+1)3(r+2)3 −59875

1152

b5
−32r5−560r4−3760r3−12040r2−18258r−10395

(−1+r)2r2(r+1)2(r+2)2(r+3)2 −3003
320

160r9+3840r8+37680r7+196080r6+582498r5+971700r4+774410r3+37980r2−317448r−124740
(−1+r)3r3(r+1)3(r+2)3(r+3)3

323399
9600

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x2
(
1− 7x+ 63x2

4 − 77x3

4 + 1001x4

64 − 3003x5

320 +O
(
x6)) ln (x)

+ x2
(
12x− 157x2

4 + 2063x3

36 − 59875x4

1152 + 323399x5

9600 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
(
1− 7x+ 63x2

4 − 77x3

4 + 1001x4

64 − 3003x5

320 +O
(
x6))

+ c2

(
x2
(
1− 7x+ 63x2

4 − 77x3

4 + 1001x4

64 − 3003x5

320 +O
(
x6)) ln (x)

+ x2
(
12x− 157x2

4 + 2063x3

36 − 59875x4

1152 + 323399x5

9600 +O
(
x6)))

Hence the final solution is

y = yh

= c1x
2
(
1− 7x+ 63x2

4 − 77x3

4 + 1001x4

64 − 3003x5

320 +O
(
x6))

+ c2

(
x2
(
1− 7x+ 63x2

4 − 77x3

4 + 1001x4

64 − 3003x5

320 +O
(
x6)) ln (x)

+ x2
(
12x− 157x2

4 + 2063x3

36 − 59875x4

1152 + 323399x5

9600 +O
(
x6)))
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Summary
The solution(s) found are the following

(1)

y = c1x
2
(
1− 7x+ 63x2

4 − 77x3

4 + 1001x4

64 − 3003x5

320 +O
(
x6))

+ c2

(
x2
(
1− 7x+ 63x2

4 − 77x3

4 + 1001x4

64 − 3003x5

320 +O
(
x6)) ln (x)

+ x2
(
12x− 157x2

4 + 2063x3

36 − 59875x4

1152 + 323399x5

9600 +O
(
x6)))

Verification of solutions

y = c1x
2
(
1− 7x+ 63x2

4 − 77x3

4 + 1001x4

64 − 3003x5

320 +O
(
x6))

+ c2

(
x2
(
1− 7x+ 63x2

4 − 77x3

4 + 1001x4

64 − 3003x5

320 +O
(
x6)) ln (x)

+ x2
(
12x− 157x2

4 + 2063x3

36 − 59875x4

1152 + 323399x5

9600 +O
(
x6)))

Verified OK.

15.23.1 Maple step by step solution

Let’s solve
x2y′′ + (2x2 − 3x) y′ + (3x+ 4) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (3x+4)y
x2 − (−3+2x)y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (−3+2x)y′
x

+ (3x+4)y
x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −3+2x
x

, P3(x) = 3x+4
x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + x(−3 + 2x) y′ + (3x+ 4) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−2 + r)2 xr +
(

∞∑
k=1

(
ak(k + r − 2)2 + ak−1(2k + 1 + 2r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r)2 = 0

• Values of r that satisfy the indicial equation
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r = 2
• Each term in the series must be 0, giving the recursion relation

ak(k + r − 2)2 + ak−1(2k + 1 + 2r) = 0
• Shift index using k− >k + 1

ak+1(k + r − 1)2 + ak(2k + 2r + 3) = 0
• Recursion relation that defines series solution to ODE

ak+1 = −ak(2k+2r+3)
(k+r−1)2

• Recursion relation for r = 2
ak+1 = −ak(2k+7)

(k+1)2

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+1 = −ak(2k+7)

(k+1)2

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful`� �

5772



3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 69� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)-x*(3-2*x)*diff(y(x),x)+(4+3*x)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
(c2 ln (x) + c1)

(
1− 7x+ 63

4 x2 − 77
4 x3 + 1001

64 x4 − 3003
320 x5 +O

(
x6))

+
(
12x− 157

4 x2 + 2063
36 x3 − 59875

1152 x4 + 323399
9600 x5 +O

(
x6)) c2

)
x2

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 122� �
AsymptoticDSolveValue[x^2*y''[x]-x*(3-2*x)*y'[x]+(4+3*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
−3003x5

320 + 1001x4

64 − 77x3

4 + 63x2

4 − 7x+ 1
)
x2

+ c2

((
323399x5

9600 − 59875x4

1152 + 2063x3

36 − 157x2

4 + 12x
)
x2

+
(
−3003x5

320 + 1001x4

64 − 77x3

4 + 63x2

4 − 7x+ 1
)
x2 log(x)

)
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15.24 problem 20
15.24.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5783

Internal problem ID [1372]
Internal file name [OUTPUT/1373_Sunday_June_05_2022_02_13_43_AM_55688922/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 20.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

x2(−4x+ 1) y′′ + 3x(1− 6x) y′ + (1− 12x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

−4x3 + x2) y′′ + (−18x2 + 3x
)
y′ + (1− 12x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −3 + 18x
x (4x− 1)

q(x) = 12x− 1
x2 (4x− 1)
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Table 690: Table p(x), q(x) singularites.

p(x) = −3+18x
x(4x−1)

singularity type
x = 0 “regular”
x = 1

4 “regular”

q(x) = 12x−1
x2(4x−1)

singularity type
x = 0 “regular”
x = 1

4 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0, 14 ,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x2(4x− 1) +
(
−18x2 + 3x

)
y′ + (1− 12x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2(4x− 1)

+
(
−18x2 + 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (1− 12x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−4x1+n+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−18x1+n+ran(n+ r)

)
+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=0

anx
n+r

)
+

∞∑
n =0

(
−12x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−4x1+n+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−4an−1(n+ r − 1) (n+ r − 2)xn+r

)
∞∑

n =0

(
−18x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−18an−1(n+ r − 1)xn+r

)
∞∑

n =0

(
−12x1+n+ran

)
=

∞∑
n=1

(
−12an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =1

(
−4an−1(n+r−1) (n+r−2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+r) (n+r−1)
)

+
∞∑

n =1

(
−18an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=0

anx
n+r

)
+

∞∑
n =1

(
−12an−1x

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 3xn+ran(n+ r) + anx
n+r = 0
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When n = 0 the above becomes

xra0r(−1 + r) + 3xra0r + a0x
r = 0

Or
(xrr(−1 + r) + 3xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r + 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(r + 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = −1
r2 = −1

Since a0 6= 0 then the indicial equation becomes

(r + 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of

5777



integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = −1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n−1

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n−1

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)−4an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
− 18an−1(n+ r − 1) + 3an(n+ r) + an − 12an−1 = 0

Solving for an from recursive equation (4) gives

an = 2(2n+ 2r + 1) an−1

1 + n+ r
(4)

Which for the root r = −1 becomes

an = (4n− 2) an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
4r + 6
2 + r

Which for the root r = −1 becomes

a1 = 2

And the table now becomes

5778



n an,r an

a0 1 1
a1

4r+6
2+r

2

For n = 2, using the above recursive equation gives

a2 =
16r2 + 64r + 60
(2 + r) (3 + r)

Which for the root r = −1 becomes

a2 = 6

And the table now becomes

n an,r an

a0 1 1
a1

4r+6
2+r

2

a2
16r2+64r+60
(2+r)(3+r) 6

For n = 3, using the above recursive equation gives

a3 =
64r3 + 480r2 + 1136r + 840

(2 + r) (3 + r) (4 + r)

Which for the root r = −1 becomes

a3 = 20

And the table now becomes

n an,r an

a0 1 1
a1

4r+6
2+r

2

a2
16r2+64r+60
(2+r)(3+r) 6

a3
64r3+480r2+1136r+840

(2+r)(3+r)(4+r) 20
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For n = 4, using the above recursive equation gives

a4 =
256r4 + 3072r3 + 13184r2 + 23808r + 15120

(2 + r) (3 + r) (4 + r) (5 + r)

Which for the root r = −1 becomes

a4 = 70

And the table now becomes

n an,r an

a0 1 1
a1

4r+6
2+r

2

a2
16r2+64r+60
(2+r)(3+r) 6

a3
64r3+480r2+1136r+840

(2+r)(3+r)(4+r) 20

a4
256r4+3072r3+13184r2+23808r+15120

(2+r)(3+r)(4+r)(5+r) 70

For n = 5, using the above recursive equation gives

a5 =
1024r5 + 17920r4 + 120320r3 + 385280r2 + 584256r + 332640

(2 + r) (3 + r) (4 + r) (5 + r) (6 + r)

Which for the root r = −1 becomes

a5 = 252

And the table now becomes

n an,r an

a0 1 1
a1

4r+6
2+r

2

a2
16r2+64r+60
(2+r)(3+r) 6

a3
64r3+480r2+1136r+840

(2+r)(3+r)(4+r) 20

a4
256r4+3072r3+13184r2+23808r+15120

(2+r)(3+r)(4+r)(5+r) 70

a5
1024r5+17920r4+120320r3+385280r2+584256r+332640

(2+r)(3+r)(4+r)(5+r)(6+r) 252
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Using the above table, then the first solution y1(x) is

y1(x) =
1
x

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= 252x5 + 70x4 + 20x3 + 6x2 + 2x+ 1 +O(x6)
x

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = −1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = −1)

b0 1 1 N/A since bn starts from 1 N/A
b1

4r+6
2+r

2 2
(2+r)2 2

b2
16r2+64r+60
(2+r)(3+r) 6 16r2+72r+84

(2+r)2(3+r)2 7

b3
64r3+480r2+1136r+840

(2+r)(3+r)(4+r) 20 96r4+1056r3+4344r2+7920r+5424
(2+r)2(3+r)2(4+r)2

74
3

b4
256r4+3072r3+13184r2+23808r+15120

(2+r)(3+r)(4+r)(5+r) 70 512r6+9984r5+80384r4+341952r3+810848r2+1017120r+528480
(5+r)2(2+r)2(3+r)2(4+r)2

533
6

b5
1024r5+17920r4+120320r3+385280r2+584256r+332640

(2+r)(3+r)(4+r)(5+r)(6+r) 252 2560r8+76800r7+997120r6+7315200r5+33160480r4+95107200r3+168577440r2+168940800r+73388160
(2+r)2(3+r)2(4+r)2(5+r)2(6+r)2

1627
5

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= (252x5 + 70x4 + 20x3 + 6x2 + 2x+ 1 +O(x6)) ln (x)
x

+
7x2 + 2x+ 74x3

3 + 533x4

6 + 1627x5

5 +O(x6)
x
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1(252x5 + 70x4 + 20x3 + 6x2 + 2x+ 1 +O(x6))
x

+ c2

(
(252x5 + 70x4 + 20x3 + 6x2 + 2x+ 1 +O(x6)) ln (x)

x

+
7x2 + 2x+ 74x3

3 + 533x4

6 + 1627x5

5 +O(x6)
x

)

Hence the final solution is

y = yh

= c1(252x5 + 70x4 + 20x3 + 6x2 + 2x+ 1 +O(x6))
x

+ c2

(
(252x5 + 70x4 + 20x3 + 6x2 + 2x+ 1 +O(x6)) ln (x)

x

+
7x2 + 2x+ 74x3

3 + 533x4

6 + 1627x5

5 +O(x6)
x

)

Summary
The solution(s) found are the following

(1)

y = c1(252x5 + 70x4 + 20x3 + 6x2 + 2x+ 1 +O(x6))
x

+ c2

(
(252x5 + 70x4 + 20x3 + 6x2 + 2x+ 1 +O(x6)) ln (x)

x

+
7x2 + 2x+ 74x3

3 + 533x4

6 + 1627x5

5 +O(x6)
x

)
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Verification of solutions

y = c1(252x5 + 70x4 + 20x3 + 6x2 + 2x+ 1 +O(x6))
x

+ c2

(
(252x5 + 70x4 + 20x3 + 6x2 + 2x+ 1 +O(x6)) ln (x)

x

+
7x2 + 2x+ 74x3

3 + 533x4

6 + 1627x5

5 +O(x6)
x

)

Verified OK.

15.24.1 Maple step by step solution

Let’s solve
−y′′x2(4x− 1) + (−18x2 + 3x) y′ + (1− 12x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (12x−1)y
x2(4x−1) −

3(−1+6x)y′
x(4x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 3(−1+6x)y′
x(4x−1) + (12x−1)y

x2(4x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3(−1+6x)
x(4x−1) , P3(x) = 12x−1

x2(4x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0
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• Multiply by denominators
y′′x2(4x− 1) + 3x(−1 + 6x) y′ + (12x− 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(1 + r)2 xr +
(

∞∑
k=1

(
−ak(k + r + 1)2 + 2ak−1(k + r + 1) (2k + 1 + 2r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −1

• Each term in the series must be 0, giving the recursion relation
−((−4k − 4r − 2) ak−1 + ak(k + r + 1)) (k + r + 1) = 0
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• Shift index using k− >k + 1
−((−4k − 6− 4r) ak + ak+1(k + r + 2)) (k + r + 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2(2k+2r+3)ak

k+r+2

• Recursion relation for r = −1
ak+1 = 2(2k+1)ak

k+1

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+1 = 2(2k+1)ak

k+1

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 69� �
Order:=6;
dsolve(x^2*(1-4*x)*diff(y(x),x$2)+3*x*(1-6*x)*diff(y(x),x)+(1-12*x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
(c2 ln (x) + c1) (1 + 2x+ 6x2 + 20x3 + 70x4 + 252x5 +O(x6)) +

(
2x+ 7x2 + 74

3 x
3 + 533

6 x4 + 1627
5 x5 +O(x6)

)
c2

x
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3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 104� �
AsymptoticDSolveValue[x^2*(1-4*x)*y''[x]+3*x*(1-6*x)*y'[x]+(1-12*x)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1(252x5 + 70x4 + 20x3 + 6x2 + 2x+ 1)

x
+ c2

(
1627x5

5 + 533x4

6 + 74x3

3 + 7x2 + 2x
x

+ (252x5 + 70x4 + 20x3 + 6x2 + 2x+ 1) log(x)
x

)
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15.25 problem 21
15.25.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5796

Internal problem ID [1373]
Internal file name [OUTPUT/1374_Sunday_June_05_2022_02_13_46_AM_31841646/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 21.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

x2(1 + 2x) y′′ + x(3 + 5x) y′ + (1− 2x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

2x3 + x2) y′′ + (5x2 + 3x
)
y′ + (1− 2x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3 + 5x
x (1 + 2x)

q(x) = − 2x− 1
x2 (1 + 2x)
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Table 692: Table p(x), q(x) singularites.

p(x) = 3+5x
x(1+2x)

singularity type
x = 0 “regular”
x = −1

2 “regular”

q(x) = − 2x−1
x2(1+2x)

singularity type
x = 0 “regular”
x = −1

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−1

2 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(1 + 2x) y′′ +
(
5x2 + 3x

)
y′ + (1− 2x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(1 + 2x)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
5x2 + 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (1− 2x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

5x1+n+ran(n+ r)
)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=0

anx
n+r

)
+

∞∑
n =0

(
−2x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

5x1+n+ran(n+ r) =
∞∑
n=1

5an−1(n+ r − 1)xn+r

∞∑
n =0

(
−2x1+n+ran

)
=

∞∑
n=1

(
−2an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

5an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=0

anx
n+r

)
+

∞∑
n =1

(
−2an−1x

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 3xn+ran(n+ r) + anx
n+r = 0
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When n = 0 the above becomes

xra0r(−1 + r) + 3xra0r + a0x
r = 0

Or
(xrr(−1 + r) + 3xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r + 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(r + 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = −1
r2 = −1

Since a0 6= 0 then the indicial equation becomes

(r + 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of

5790



integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = −1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n−1

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n−1

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)2an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
+ 5an−1(n+ r − 1) + 3an(n+ r) + an − 2an−1 = 0

Solving for an from recursive equation (4) gives

an = −(2n+ 2r − 3) an−1

1 + n+ r
(4)

Which for the root r = −1 becomes

an = an−1(5− 2n)
n

(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−2r + 1
2 + r

Which for the root r = −1 becomes

a1 = 3

And the table now becomes
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n an,r an

a0 1 1
a1

−2r+1
2+r

3

For n = 2, using the above recursive equation gives

a2 =
4r2 − 1

(3 + r) (2 + r)

Which for the root r = −1 becomes

a2 =
3
2

And the table now becomes

n an,r an

a0 1 1
a1

−2r+1
2+r

3

a2
4r2−1

(3+r)(2+r)
3
2

For n = 3, using the above recursive equation gives

a3 =
−8r3 − 12r2 + 2r + 3
(2 + r) (3 + r) (4 + r)

Which for the root r = −1 becomes

a3 = −1
2

And the table now becomes

n an,r an

a0 1 1
a1

−2r+1
2+r

3

a2
4r2−1

(3+r)(2+r)
3
2

a3
−8r3−12r2+2r+3
(2+r)(3+r)(4+r) −1

2
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For n = 4, using the above recursive equation gives

a4 =
16r4 + 64r3 + 56r2 − 16r − 15
(5 + r) (2 + r) (3 + r) (4 + r)

Which for the root r = −1 becomes

a4 =
3
8

And the table now becomes

n an,r an

a0 1 1
a1

−2r+1
2+r

3

a2
4r2−1

(3+r)(2+r)
3
2

a3
−8r3−12r2+2r+3
(2+r)(3+r)(4+r) −1

2

a4
16r4+64r3+56r2−16r−15
(5+r)(2+r)(3+r)(4+r)

3
8

For n = 5, using the above recursive equation gives

a5 =
−32r5 − 240r4 − 560r3 − 360r2 + 142r + 105

(2 + r) (3 + r) (4 + r) (5 + r) (6 + r)

Which for the root r = −1 becomes

a5 = −3
8

And the table now becomes

n an,r an

a0 1 1
a1

−2r+1
2+r

3

a2
4r2−1

(3+r)(2+r)
3
2

a3
−8r3−12r2+2r+3
(2+r)(3+r)(4+r) −1

2

a4
16r4+64r3+56r2−16r−15
(5+r)(2+r)(3+r)(4+r)

3
8

a5
−32r5−240r4−560r3−360r2+142r+105

(2+r)(3+r)(4+r)(5+r)(6+r) −3
8
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Using the above table, then the first solution y1(x) is

y1(x) =
1
x

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
3x+ 1 + 3x2

2 − x3

2 + 3x4

8 − 3x5

8 +O(x6)
x

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = −1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = −1)

b0 1 1 N/A since bn starts from 1 N/A
b1

−2r+1
2+r

3 − 5
(2+r)2 −5

b2
4r2−1

(3+r)(2+r)
3
2

20r2+50r+5
(2+r)2(3+r)2 −25

4

b3
−8r3−12r2+2r+3
(2+r)(3+r)(4+r) −1

2
−60r4−420r3−915r2−630r−30

(2+r)2(3+r)2(4+r)2
5
4

b4
16r4+64r3+56r2−16r−15
(5+r)(2+r)(3+r)(4+r)

3
8

160r6+2160r5+11200r4+27900r3+33430r2+15570r+390
(5+r)2(2+r)2(3+r)2(4+r)2 −25

32

b5
−32r5−240r4−560r3−360r2+142r+105

(2+r)(3+r)(4+r)(5+r)(6+r) −3
8 −5

(
80r8+1760r7+16120r6+79640r5+228985r4+382580r3+343325r2+128040r+1476

)
(2+r)2(3+r)2(4+r)2(5+r)2(6+r)2

113
160

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=

(
3x+ 1 + 3x2

2 − x3

2 + 3x4

8 − 3x5

8 +O(x6)
)
ln (x)

x

+
−5x− 25x2

4 + 5x3

4 − 25x4

32 + 113x5

160 +O(x6)
x
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
3x+ 1 + 3x2

2 − x3

2 + 3x4

8 − 3x5

8 +O(x6)
)

x

+ c2


(
3x+ 1 + 3x2

2 − x3

2 + 3x4

8 − 3x5

8 +O(x6)
)
ln (x)

x

+
−5x− 25x2

4 + 5x3

4 − 25x4

32 + 113x5

160 +O(x6)
x


Hence the final solution is

y = yh

=
c1
(
3x+ 1 + 3x2

2 − x3

2 + 3x4

8 − 3x5

8 +O(x6)
)

x

+ c2


(
3x+ 1 + 3x2

2 − x3

2 + 3x4

8 − 3x5

8 +O(x6)
)
ln (x)

x

+
−5x− 25x2

4 + 5x3

4 − 25x4

32 + 113x5

160 +O(x6)
x


Summary
The solution(s) found are the following

(1)

y =
c1
(
3x+ 1 + 3x2

2 − x3

2 + 3x4

8 − 3x5

8 +O(x6)
)

x

+ c2


(
3x+ 1 + 3x2

2 − x3

2 + 3x4

8 − 3x5

8 +O(x6)
)
ln (x)

x

+
−5x− 25x2

4 + 5x3

4 − 25x4

32 + 113x5

160 +O(x6)
x
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Verification of solutions

y =
c1
(
3x+ 1 + 3x2

2 − x3

2 + 3x4

8 − 3x5

8 +O(x6)
)

x

+ c2


(
3x+ 1 + 3x2

2 − x3

2 + 3x4

8 − 3x5

8 +O(x6)
)
ln (x)

x

+
−5x− 25x2

4 + 5x3

4 − 25x4

32 + 113x5

160 +O(x6)
x


Verified OK.

15.25.1 Maple step by step solution

Let’s solve
x2(1 + 2x) y′′ + (5x2 + 3x) y′ + (1− 2x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = (2x−1)y
x2(1+2x) −

(3+5x)y′
x(1+2x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (3+5x)y′
x(1+2x) −

(2x−1)y
x2(1+2x) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3+5x
x(1+2x) , P3(x) = − 2x−1

x2(1+2x)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
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x0 = 0
• Multiply by denominators

x2(1 + 2x) y′′ + x(3 + 5x) y′ + (1− 2x) y = 0
• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + r)2 xr +
(

∞∑
k=1

(
ak(k + r + 1)2 + ak−1(k + r + 1) (2k − 3 + 2r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −1

• Each term in the series must be 0, giving the recursion relation
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(k + r + 1) (ak(k + r + 1) + ak−1(2k − 3 + 2r)) = 0
• Shift index using k− >k + 1

(k + r + 2) (ak+1(k + r + 2) + ak(2k + 2r − 1)) = 0
• Recursion relation that defines series solution to ODE

ak+1 = −ak(2k+2r−1)
k+r+2

• Recursion relation for r = −1
ak+1 = −ak(2k−3)

k+1

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+1 = −ak(2k−3)

k+1

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 69� �
Order:=6;
dsolve(x^2*(1+2*x)*diff(y(x),x$2)+x*(3+5*x)*diff(y(x),x)+(1-2*x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
(c2 ln (x) + c1)

(
1 + 3x+ 3

2x
2 − 1

2x
3 + 3

8x
4 − 3

8x
5 +O(x6)

)
+
(
(−5)x− 25

4 x
2 + 5

4x
3 − 25

32x
4 + 113

160x
5 +O(x6)

)
c2

x
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3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 122� �
AsymptoticDSolveValue[x^2*(1+2*x)*y''[x]+x*(3+5*x)*y'[x]+(1-2*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) →
c1
(
−3x5

8 + 3x4

8 − x3

2 + 3x2

2 + 3x+ 1
)

x
+ c2

 113x5

160 − 25x4

32 + 5x3

4 − 25x2

4 − 5x
x

+

(
−3x5

8 + 3x4

8 − x3

2 + 3x2

2 + 3x+ 1
)
log(x)

x
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15.26 problem 22
15.26.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5808

Internal problem ID [1374]
Internal file name [OUTPUT/1375_Sunday_June_05_2022_02_13_49_AM_51768753/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 22.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2x2(x+ 1) y′′ − x(6− x) y′ + (8− x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

2x3 + 2x2) y′′ + (x2 − 6x
)
y′ + (8− x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x− 6
2x (x+ 1)

q(x) = − x− 8
2x2 (x+ 1)
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Table 694: Table p(x), q(x) singularites.

p(x) = x−6
2x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

q(x) = − x−8
2x2(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x2(x+ 1) y′′ +
(
x2 − 6x

)
y′ + (8− x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2x2(x+ 1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x2 − 6x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (8− x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−6xn+ran(n+ r)

)
+
(

∞∑
n=0

8anxn+r

)
+

∞∑
n =0

(
−x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

x1+n+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r

∞∑
n =0

(
−x1+n+ran

)
=

∞∑
n=1

(
−an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r

)

+
∞∑

n =0

(
−6xn+ran(n+ r)

)
+
(

∞∑
n=0

8anxn+r

)
+

∞∑
n =1

(
−an−1x

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+ran(n+ r) (n+ r − 1)− 6xn+ran(n+ r) + 8anxn+r = 0
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When n = 0 the above becomes

2xra0r(−1 + r)− 6xra0r + 8a0xr = 0

Or
(2xrr(−1 + r)− 6xrr + 8xr) a0 = 0

Since a0 6= 0 then the above simplifies to

2xr(r − 2)2 = 0

Since the above is true for all x then the indicial equation becomes

2(r − 2)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = 2

Since a0 6= 0 then the indicial equation becomes

2xr(r − 2)2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 2, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+2

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)2an−1(n+ r − 1) (n+ r − 2) + 2an(n+ r) (n+ r − 1)
+ an−1(n+ r − 1)− 6an(n+ r) + 8an − an−1 = 0

Solving for an from recursive equation (4) gives

an = −(2n+ 2r − 1) an−1

2 (n+ r − 2) (4)

Which for the root r = 2 becomes

an = −(2n+ 3) an−1

2n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−1− 2r
−2 + 2r

Which for the root r = 2 becomes
a1 = −5

2
And the table now becomes
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n an,r an

a0 1 1
a1

−1−2r
−2+2r −5

2

For n = 2, using the above recursive equation gives

a2 =
4r2 + 8r + 3
4r (−1 + r)

Which for the root r = 2 becomes
a2 =

35
8

And the table now becomes

n an,r an

a0 1 1
a1

−1−2r
−2+2r −5

2

a2
4r2+8r+3
4r(−1+r)

35
8

For n = 3, using the above recursive equation gives

a3 =
−8r3 − 36r2 − 46r − 15

8r3 − 8r
Which for the root r = 2 becomes

a3 = −105
16

And the table now becomes

n an,r an

a0 1 1
a1

−1−2r
−2+2r −5

2

a2
4r2+8r+3
4r(−1+r)

35
8

a3
−8r3−36r2−46r−15

8r3−8r −105
16

For n = 4, using the above recursive equation gives

a4 =
16r4 + 128r3 + 344r2 + 352r + 105

16r4 + 32r3 − 16r2 − 32r
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Which for the root r = 2 becomes

a4 =
1155
128

And the table now becomes

n an,r an

a0 1 1
a1

−1−2r
−2+2r −5

2

a2
4r2+8r+3
4r(−1+r)

35
8

a3
−8r3−36r2−46r−15

8r3−8r −105
16

a4
16r4+128r3+344r2+352r+105

16r4+32r3−16r2−32r
1155
128

For n = 5, using the above recursive equation gives

a5 =
−32r5 − 400r4 − 1840r3 − 3800r2 − 3378r − 945

32r5 + 160r4 + 160r3 − 160r2 − 192r
Which for the root r = 2 becomes

a5 = −3003
256

And the table now becomes

n an,r an

a0 1 1
a1

−1−2r
−2+2r −5

2

a2
4r2+8r+3
4r(−1+r)

35
8

a3
−8r3−36r2−46r−15

8r3−8r −105
16

a4
16r4+128r3+344r2+352r+105

16r4+32r3−16r2−32r
1155
128

a5
−32r5−400r4−1840r3−3800r2−3378r−945

32r5+160r4+160r3−160r2−192r −3003
256

Using the above table, then the first solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2

(
1− 5x

2 + 35x2

8 − 105x3

16 + 1155x4

128 − 3003x5

256 +O
(
x6))
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Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
Where bn is found using

bn = d

dr
an,r

And the above is then evaluated at r = 2. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 2)

b0 1 1 N/A since bn starts from 1 N/A
b1

−1−2r
−2+2r −5

2
3

2(−1+r)2
3
2

b2
4r2+8r+3
4r(−1+r)

35
8

−3r2− 3
2 r+

3
4

r2(−1+r)2 −57
16

b3
−8r3−36r2−46r−15

8r3−8r −105
16

9
2 r

4+ 27
2 r3+ 81

8 r2− 15
8

r2(r2−1)2
583
96

b4
16r4+128r3+344r2+352r+105

16r4+32r3−16r2−32r
1155
128

−6r6−45r5−123r4− 585
4 r3− 483

8 r2+ 105
8 r+ 105

8
r2(r3+2r2−r−2)2 −13771

1536

b5
−32r5−400r4−1840r3−3800r2−3378r−945

32r5+160r4+160r3−160r2−192r −3003
256

15
2 r8+105r7+ 2385

4 r6+ 7035
4 r5+ 90795

32 r4+ 9345
4 r3+ 20085

32 r2− 4725
16 r− 2835

16
r2(r4+5r3+5r2−5r−6)2

187339
15360

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x2
(
1− 5x

2 + 35x2

8 − 105x3

16 + 1155x4

128 − 3003x5

256 +O
(
x6)) ln (x)

+ x2
(
3x
2 − 57x2

16 + 583x3

96 − 13771x4

1536 + 187339x5

15360 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
(
1− 5x

2 + 35x2

8 − 105x3

16 + 1155x4

128 − 3003x5

256 +O
(
x6))

+ c2

(
x2
(
1− 5x

2 + 35x2

8 − 105x3

16 + 1155x4

128 − 3003x5

256 +O
(
x6)) ln (x)

+ x2
(
3x
2 − 57x2

16 + 583x3

96 − 13771x4

1536 + 187339x5

15360 +O
(
x6)))
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Hence the final solution is

y = yh

= c1x
2
(
1− 5x

2 + 35x2

8 − 105x3

16 + 1155x4

128 − 3003x5

256 +O
(
x6))

+ c2

(
x2
(
1− 5x

2 + 35x2

8 − 105x3

16 + 1155x4

128 − 3003x5

256 +O
(
x6)) ln (x)

+ x2
(
3x
2 − 57x2

16 + 583x3

96 − 13771x4

1536 + 187339x5

15360 +O
(
x6)))

Summary
The solution(s) found are the following

(1)

y = c1x
2
(
1− 5x

2 + 35x2

8 − 105x3

16 + 1155x4

128 − 3003x5

256 +O
(
x6))

+ c2

(
x2
(
1− 5x

2 + 35x2

8 − 105x3

16 + 1155x4

128 − 3003x5

256 +O
(
x6)) ln (x)

+ x2
(
3x
2 − 57x2

16 + 583x3

96 − 13771x4

1536 + 187339x5

15360 +O
(
x6)))

Verification of solutions

y = c1x
2
(
1− 5x

2 + 35x2

8 − 105x3

16 + 1155x4

128 − 3003x5

256 +O
(
x6))

+ c2

(
x2
(
1− 5x

2 + 35x2

8 − 105x3

16 + 1155x4

128 − 3003x5

256 +O
(
x6)) ln (x)

+ x2
(
3x
2 − 57x2

16 + 583x3

96 − 13771x4

1536 + 187339x5

15360 +O
(
x6)))

Verified OK.

15.26.1 Maple step by step solution

Let’s solve
2x2(x+ 1) y′′ + (x2 − 6x) y′ + (8− x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = (x−8)y
2x2(x+1) −

(x−6)y′
2x(x+1)
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (x−6)y′
2x(x+1) −

(x−8)y
2x2(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = x−6
2x(x+1) , P3(x) = − x−8

2x2(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 7
2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
2x2(x+ 1) y′′ + x(x− 6) y′ + (8− x) y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(2u3 − 4u2 + 2u)
(

d2

du2y(u)
)
+ (u2 − 8u+ 7)

(
d
du
y(u)

)
+ (9− u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m
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◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(5 + 2r)u−1+r + (a1(1 + r) (7 + 2r)− a0(4r2 + 4r − 9))ur +
(

∞∑
k=1

(ak+1(k + 1 + r) (2k + 7 + 2r)− ak(4k2 + 8kr + 4r2 + 4k + 4r − 9) + ak−1(2k − 1 + 2r) (k − 2 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(5 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0,−5

2

}
• Each term must be 0

a1(1 + r) (7 + 2r)− a0(4r2 + 4r − 9) = 0
• Each term in the series must be 0, giving the recursion relation

(−4ak + 2ak−1 + 2ak+1) k2 + ((−8ak + 4ak−1 + 4ak+1) r − 4ak − 5ak−1 + 9ak+1) k + (−4ak + 2ak−1 + 2ak+1) r2 + (−4ak − 5ak−1 + 9ak+1) r + 9ak + 2ak−1 + 7ak+1 = 0
• Shift index using k− >k + 1

(−4ak+1 + 2ak + 2ak+2) (k + 1)2 + ((−8ak+1 + 4ak + 4ak+2) r − 4ak+1 − 5ak + 9ak+2) (k + 1) + (−4ak+1 + 2ak + 2ak+2) r2 + (−4ak+1 − 5ak + 9ak+2) r + 9ak+1 + 2ak + 7ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −2k2ak−4k2ak+1+4krak−8krak+1+2r2ak−4r2ak+1−kak−12kak+1−rak−12rak+1−ak+ak+1
2k2+4kr+2r2+13k+13r+18

• Recursion relation for r = 0

ak+2 = −2k2ak−4k2ak+1−kak−12kak+1−ak+ak+1
2k2+13k+18

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −2k2ak−4k2ak+1−kak−12kak+1−ak+ak+1

2k2+13k+18 , 7a1 + 9a0 = 0
]

• Revert the change of variables u = x+ 1
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[
y =

∞∑
k=0

ak(x+ 1)k , ak+2 = −2k2ak−4k2ak+1−kak−12kak+1−ak+ak+1
2k2+13k+18 , 7a1 + 9a0 = 0

]
• Recursion relation for r = −5

2

ak+2 = −2k2ak−4k2ak+1−11kak+8kak+1+14ak+6ak+1
2k2+3k−2

• Solution for r = −5
2[

y(u) =
∞∑
k=0

aku
k− 5

2 , ak+2 = −2k2ak−4k2ak+1−11kak+8kak+1+14ak+6ak+1
2k2+3k−2 ,−3a1 − 6a0 = 0

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k−
5
2 , ak+2 = −2k2ak−4k2ak+1−11kak+8kak+1+14ak+6ak+1

2k2+3k−2 ,−3a1 − 6a0 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak(x+ 1)k
)
+
(

∞∑
k=0

bk(x+ 1)k−
5
2

)
, ak+2 = −2k2ak−4k2a1+k−kak−12ka1+k−ak+a1+k

2k2+13k+18 , 7a1 + 9a0 = 0, bk+2 = −2k2bk−4k2b1+k−11kbk+8kb1+k+14bk+6b1+k

2k2+3k−2 ,−3b1 − 6b0 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 69� �
Order:=6;
dsolve(2*x^2*(1+x)*diff(y(x),x$2)-x*(6-x)*diff(y(x),x)+(8-x)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
(c2 ln (x) + c1)

(
1− 5

2x+ 35
8 x2 − 105

16 x3 + 1155
128 x4 − 3003

256 x5 +O
(
x6))

+
(
3
2x− 57

16x
2 + 583

96 x3 − 13771
1536 x4 + 187339

15360 x5 +O
(
x6)) c2

)
x2

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 128� �
AsymptoticDSolveValue[2*x^2*(1+x)*y''[x]-x*(6-x)*y'[x]+(8-x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
−3003x5

256 + 1155x4

128 − 105x3

16 + 35x2

8 − 5x
2 + 1

)
x2

+ c2

((
187339x5

15360 − 13771x4

1536 + 583x3

96 − 57x2

16 + 3x
2

)
x2

+
(
−3003x5

256 + 1155x4

128 − 105x3

16 + 35x2

8 − 5x
2 + 1

)
x2 log(x)

)
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15.27 problem 23
15.27.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5824

Internal problem ID [1375]
Internal file name [OUTPUT/1376_Sunday_June_05_2022_02_13_51_AM_71262174/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(1 + 2x) y′′ + x(5 + 9x) y′ + (3x+ 4) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

2x3 + x2) y′′ + (9x2 + 5x
)
y′ + (3x+ 4) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 5 + 9x
x (1 + 2x)

q(x) = 3x+ 4
x2 (1 + 2x)
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Table 696: Table p(x), q(x) singularites.

p(x) = 5+9x
x(1+2x)

singularity type
x = 0 “regular”
x = −1

2 “regular”

q(x) = 3x+4
x2(1+2x)

singularity type
x = 0 “regular”
x = −1

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−1

2 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(1 + 2x) y′′ +
(
9x2 + 5x

)
y′ + (3x+ 4) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(1 + 2x)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
9x2 + 5x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (3x+ 4)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

9x1+n+ran(n+ r)
)

+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=0

3x1+n+ran

)
+
(

∞∑
n=0

4anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

9x1+n+ran(n+ r) =
∞∑
n=1

9an−1(n+ r − 1)xn+r

∞∑
n =0

3x1+n+ran =
∞∑
n=1

3an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

9an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=1

3an−1x
n+r

)
+
(

∞∑
n=0

4anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 5xn+ran(n+ r) + 4anxn+r = 0
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When n = 0 the above becomes

xra0r(−1 + r) + 5xra0r + 4a0xr = 0

Or
(xrr(−1 + r) + 5xrr + 4xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r + 2)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(r + 2)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = −2
r2 = −2

Since a0 6= 0 then the indicial equation becomes

(r + 2)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = −2, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n−2

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n−2

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)2an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
+ 9an−1(n+ r − 1) + 5an(n+ r) + 3an−1 + 4an = 0

Solving for an from recursive equation (4) gives

an = −(2n+ 2r − 1) an−1

2 + n+ r
(4)

Which for the root r = −2 becomes

an = an−1(5− 2n)
n

(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−1− 2r
3 + r

Which for the root r = −2 becomes

a1 = 3

And the table now becomes
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n an,r an

a0 1 1
a1

−1−2r
3+r

3

For n = 2, using the above recursive equation gives

a2 =
4r2 + 8r + 3
(4 + r) (3 + r)

Which for the root r = −2 becomes

a2 =
3
2

And the table now becomes

n an,r an

a0 1 1
a1

−1−2r
3+r

3

a2
4r2+8r+3
(4+r)(3+r)

3
2

For n = 3, using the above recursive equation gives

a3 =
−8r3 − 36r2 − 46r − 15
(3 + r) (4 + r) (5 + r)

Which for the root r = −2 becomes

a3 = −1
2

And the table now becomes

n an,r an

a0 1 1
a1

−1−2r
3+r

3

a2
4r2+8r+3
(4+r)(3+r)

3
2

a3
−8r3−36r2−46r−15
(3+r)(4+r)(5+r) −1

2
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For n = 4, using the above recursive equation gives

a4 =
16r4 + 128r3 + 344r2 + 352r + 105

(6 + r) (3 + r) (4 + r) (5 + r)

Which for the root r = −2 becomes

a4 =
3
8

And the table now becomes

n an,r an

a0 1 1
a1

−1−2r
3+r

3

a2
4r2+8r+3
(4+r)(3+r)

3
2

a3
−8r3−36r2−46r−15
(3+r)(4+r)(5+r) −1

2

a4
16r4+128r3+344r2+352r+105

(6+r)(3+r)(4+r)(5+r)
3
8

For n = 5, using the above recursive equation gives

a5 =
−32r5 − 400r4 − 1840r3 − 3800r2 − 3378r − 945

(3 + r) (4 + r) (5 + r) (6 + r) (7 + r)

Which for the root r = −2 becomes

a5 = −3
8

And the table now becomes

n an,r an

a0 1 1
a1

−1−2r
3+r

3

a2
4r2+8r+3
(4+r)(3+r)

3
2

a3
−8r3−36r2−46r−15
(3+r)(4+r)(5+r) −1

2

a4
16r4+128r3+344r2+352r+105

(6+r)(3+r)(4+r)(5+r)
3
8

a5
−32r5−400r4−1840r3−3800r2−3378r−945

(3+r)(4+r)(5+r)(6+r)(7+r) −3
8
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For n = 6, using the above recursive equation gives

a6 =
64r6 + 1152r5 + 8080r4 + 27840r3 + 48556r2 + 39048r + 10395

(8 + r) (3 + r) (4 + r) (5 + r) (6 + r) (7 + r)

Which for the root r = −2 becomes

a6 =
7
16

And the table now becomes

n an,r an

a0 1 1
a1

−1−2r
3+r

3

a2
4r2+8r+3
(4+r)(3+r)

3
2

a3
−8r3−36r2−46r−15
(3+r)(4+r)(5+r) −1

2

a4
16r4+128r3+344r2+352r+105

(6+r)(3+r)(4+r)(5+r)
3
8

a5
−32r5−400r4−1840r3−3800r2−3378r−945

(3+r)(4+r)(5+r)(6+r)(7+r) −3
8

a6
64r6+1152r5+8080r4+27840r3+48556r2+39048r+10395

(8+r)(3+r)(4+r)(5+r)(6+r)(7+r)
7
16

For n = 7, using the above recursive equation gives

a7 =
−128r7 − 3136r6 − 31136r5 − 160720r4 − 459032r3 − 709324r2 − 528414r − 135135

(3 + r) (4 + r) (5 + r) (6 + r) (7 + r) (8 + r) (9 + r)

Which for the root r = −2 becomes

a7 = − 9
16

And the table now becomes
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n an,r an

a0 1 1
a1

−1−2r
3+r

3

a2
4r2+8r+3
(4+r)(3+r)

3
2

a3
−8r3−36r2−46r−15
(3+r)(4+r)(5+r) −1

2

a4
16r4+128r3+344r2+352r+105

(6+r)(3+r)(4+r)(5+r)
3
8

a5
−32r5−400r4−1840r3−3800r2−3378r−945

(3+r)(4+r)(5+r)(6+r)(7+r) −3
8

a6
64r6+1152r5+8080r4+27840r3+48556r2+39048r+10395

(8+r)(3+r)(4+r)(5+r)(6+r)(7+r)
7
16

a7
−128r7−3136r6−31136r5−160720r4−459032r3−709324r2−528414r−135135

(3+r)(4+r)(5+r)(6+r)(7+r)(8+r)(9+r) − 9
16

Using the above table, then the first solution y1(x) is

y1(x) =
1
x2

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7 + a8x

8. . .
)

=
3x+ 1 + 3x2

2 − x3

2 + 3x4

8 − 3x5

8 + 7x6

16 − 9x7

16 +O(x8)
x2

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = −2. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table
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n bn,r an bn,r = d
dr
an,r bn(r = −2)

b0 1 1 N/A since bn starts from 1 N/A
b1

−1−2r
3+r

3 − 5
(3+r)2 −5

b2
4r2+8r+3
(4+r)(3+r)

3
2

20r2+90r+75
(3+r)2(4+r)2 −25

4

b3
−8r3−36r2−46r−15
(3+r)(4+r)(5+r) −1

2
−60r4−660r3−2535r2−3960r−2055

(3+r)2(4+r)2(5+r)2
5
4

b4
16r4+128r3+344r2+352r+105

(6+r)(3+r)(4+r)(5+r)
3
8

160r6+3120r5+24400r4+97500r3+208330r2+222690r+90810
(3+r)2(4+r)2(5+r)2(6+r)2 −25

32

b5
−32r5−400r4−1840r3−3800r2−3378r−945

(3+r)(4+r)(5+r)(6+r)(7+r) −3
8 −5

(
80r8+2400r7+30680r6+217800r5+936185r4+2483400r3+3942375r2+3386250r+1182006

)
(3+r)2(4+r)2(5+r)2(6+r)2(7+r)2

113
160

b6
64r6+1152r5+8080r4+27840r3+48556r2+39048r+10395

(8+r)(3+r)(4+r)(5+r)(6+r)(7+r)
7
16

960r10+40800r9+764400r8+8302800r7+57800580r6+268854150r5+843562125r4+1755292500r3+2303555745r2+1705096260r+531989640
(3+r)2(4+r)2(5+r)2(6+r)2(7+r)2(8+r)2 −247

320

b7
−128r7−3136r6−31136r5−160720r4−459032r3−709324r2−528414r−135135

(3+r)(4+r)(5+r)(6+r)(7+r)(8+r)(9+r) − 9
16 −35

(
64r12+3648r11+93680r10+1431840r9+14490972r8+102160644r7+513545345r6+1850471940r5+4729600126r4+8328358236r3+9535933341r2+6320001996r+1808302968

)
(3+r)2(4+r)2(5+r)2(6+r)2(7+r)2(8+r)2(9+r)2

2123
2240

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 + b8x
8. . .

=

(
3x+ 1 + 3x2

2 − x3

2 + 3x4

8 − 3x5

8 + 7x6

16 − 9x7

16 +O(x8)
)
ln (x)

x2

+
−5x− 25x2

4 + 5x3

4 − 25x4

32 + 113x5

160 − 247x6

320 + 2123x7

2240 +O(x8)
x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
3x+ 1 + 3x2

2 − x3

2 + 3x4

8 − 3x5

8 + 7x6

16 − 9x7

16 +O(x8)
)

x2

+ c2


(
3x+ 1 + 3x2

2 − x3

2 + 3x4

8 − 3x5

8 + 7x6

16 − 9x7

16 +O(x8)
)
ln (x)

x2

+
−5x− 25x2

4 + 5x3

4 − 25x4

32 + 113x5

160 − 247x6

320 + 2123x7

2240 +O(x8)
x2
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Hence the final solution is

y = yh

=
c1
(
3x+ 1 + 3x2

2 − x3

2 + 3x4

8 − 3x5

8 + 7x6

16 − 9x7

16 +O(x8)
)

x2

+ c2


(
3x+ 1 + 3x2

2 − x3

2 + 3x4

8 − 3x5

8 + 7x6

16 − 9x7

16 +O(x8)
)
ln (x)

x2

+
−5x− 25x2

4 + 5x3

4 − 25x4

32 + 113x5

160 − 247x6

320 + 2123x7

2240 +O(x8)
x2


Summary
The solution(s) found are the following

(1)

y =
c1
(
3x+ 1 + 3x2

2 − x3

2 + 3x4

8 − 3x5

8 + 7x6

16 − 9x7

16 +O(x8)
)

x2

+ c2


(
3x+ 1 + 3x2

2 − x3

2 + 3x4

8 − 3x5

8 + 7x6

16 − 9x7

16 +O(x8)
)
ln (x)

x2

+
−5x− 25x2

4 + 5x3

4 − 25x4

32 + 113x5

160 − 247x6

320 + 2123x7

2240 +O(x8)
x2


Verification of solutions

y =
c1
(
3x+ 1 + 3x2

2 − x3

2 + 3x4

8 − 3x5

8 + 7x6

16 − 9x7

16 +O(x8)
)

x2

+ c2


(
3x+ 1 + 3x2

2 − x3

2 + 3x4

8 − 3x5

8 + 7x6

16 − 9x7

16 +O(x8)
)
ln (x)

x2

+
−5x− 25x2

4 + 5x3

4 − 25x4

32 + 113x5

160 − 247x6

320 + 2123x7

2240 +O(x8)
x2


Verified OK.

5823



15.27.1 Maple step by step solution

Let’s solve
x2(1 + 2x) y′′ + (9x2 + 5x) y′ + (3x+ 4) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (3x+4)y
x2(1+2x) −

(5+9x)y′
x(1+2x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (5+9x)y′
x(1+2x) +

(3x+4)y
x2(1+2x) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 5+9x
x(1+2x) , P3(x) = 3x+4

x2(1+2x)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(1 + 2x) y′′ + x(5 + 9x) y′ + (3x+ 4) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(2 + r)2 xr +
(

∞∑
k=1

(
ak(k + r + 2)2 + ak−1(k + r + 2) (2k − 1 + 2r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −2

• Each term in the series must be 0, giving the recursion relation
(k + r + 2) (ak(k + r + 2) + ak−1(2k − 1 + 2r)) = 0

• Shift index using k− >k + 1
(k + r + 3) (ak+1(k + r + 3) + ak(2k + 2r + 1)) = 0

• Recursion relation that defines series solution to ODE
ak+1 = −ak(2k+2r+1)

k+r+3

• Recursion relation for r = −2
ak+1 = −ak(2k−3)

k+1

• Solution for r = −2
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[
y =

∞∑
k=0

akx
k−2, ak+1 = −ak(2k−3)

k+1

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 81� �
Order:=8;
dsolve(x^2*(1+2*x)*diff(y(x),x$2)+x*(5+9*x)*diff(y(x),x)+(4+3*x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
(c2 ln (x) + c1)

(
1 + 3x+ 3

2x
2 − 1

2x
3 + 3

8x
4 − 3

8x
5 + 7

16x
6 − 9

16x
7 +O(x8)

)
+
(
(−5)x− 25

4 x
2 + 5

4x
3 − 25

32x
4 + 113

160x
5 − 247

320x
6 + 2123

2240x
7 +O(x8)

)
c2

x2
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3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 164� �
AsymptoticDSolveValue[x^2*(1+2*x)*y''[x]+x*(5+9*x)*y'[x]+(4+3*x)*y[x]==0,y[x],{x,0,7}]� �

y(x) →
c1
(
−9x7

16 + 7x6

16 − 3x5

8 + 3x4

8 − x3

2 + 3x2

2 + 3x+ 1
)

x2

+ c2

 2123x7

2240 − 247x6

320 + 113x5

160 − 25x4

32 + 5x3

4 − 25x2

4 − 5x
x2

+

(
−9x7

16 + 7x6

16 − 3x5

8 + 3x4

8 − x3

2 + 3x2

2 + 3x+ 1
)
log(x)

x2
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15.28 problem 24
15.28.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5839

Internal problem ID [1376]
Internal file name [OUTPUT/1377_Sunday_June_05_2022_02_13_55_AM_89476925/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 24.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(1− 2x) y′′ − x(4x+ 5) y′ + (4x+ 9) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−2x3 + x2) y′′ + (−4x2 − 5x
)
y′ + (4x+ 9) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 4x+ 5
x (2x− 1)

q(x) = − 4x+ 9
x2 (2x− 1)
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Table 698: Table p(x), q(x) singularites.

p(x) = 4x+5
x(2x−1)

singularity type
x = 0 “regular”
x = 1

2 “regular”

q(x) = − 4x+9
x2(2x−1)

singularity type
x = 0 “regular”
x = 1

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0, 12 ,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x2(2x− 1) +
(
−4x2 − 5x

)
y′ + (4x+ 9) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2(2x− 1)

+
(
−4x2 − 5x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (4x+ 9)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−2x1+n+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−4x1+n+ran(n+ r)

)
+

∞∑
n =0

(
−5xn+ran(n+ r)

)
+
(

∞∑
n=0

4x1+n+ran

)
+
(

∞∑
n=0

9anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2x1+n+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1) (n+ r − 2)xn+r

)
∞∑

n =0

(
−4x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−4an−1(n+ r − 1)xn+r

)
∞∑

n =0

4x1+n+ran =
∞∑
n=1

4an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =1

(
−2an−1(n+r−1) (n+r−2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+r) (n+r−1)
)

+
∞∑

n =1

(
−4an−1(n+ r − 1)xn+r

)
+

∞∑
n =0

(
−5xn+ran(n+ r)

)
+
(

∞∑
n=1

4an−1x
n+r

)
+
(

∞∑
n=0

9anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 5xn+ran(n+ r) + 9anxn+r = 0
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When n = 0 the above becomes

xra0r(−1 + r)− 5xra0r + 9a0xr = 0

Or
(xrr(−1 + r)− 5xrr + 9xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r − 3)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(r − 3)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 3
r2 = 3

Since a0 6= 0 then the indicial equation becomes

(r − 3)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 3, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+3

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+3

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)−2an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
− 4an−1(n+ r − 1)− 5an(n+ r) + 4an−1 + 9an = 0

Solving for an from recursive equation (4) gives

an = 2an−1(n2 + 2nr + r2 − n− r − 2)
n2 + 2nr + r2 − 6n− 6r + 9 (4)

Which for the root r = 3 becomes

an = 2an−1(n2 + 5n+ 4)
n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
2r2 + 2r − 4
(r − 2)2

Which for the root r = 3 becomes
a1 = 20

And the table now becomes
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n an,r an

a0 1 1
a1

2r2+2r−4
(r−2)2 20

For n = 2, using the above recursive equation gives

a2 =
4(r + 3) r(r + 2)
(−1 + r) (r − 2)2

Which for the root r = 3 becomes
a2 = 180

And the table now becomes

n an,r an

a0 1 1
a1

2r2+2r−4
(r−2)2 20

a2
4(r+3)r(r+2)
(−1+r)(r−2)2 180

For n = 3, using the above recursive equation gives

a3 =
8(r + 4) (r + 1) (r + 3) (r + 2)

r (−1 + r) (r − 2)2

Which for the root r = 3 becomes

a3 = 1120

And the table now becomes

n an,r an

a0 1 1
a1

2r2+2r−4
(r−2)2 20

a2
4(r+3)r(r+2)
(−1+r)(r−2)2 180

a3
8(r+4)(r+1)(r+3)(r+2)

r(−1+r)(r−2)2 1120
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For n = 4, using the above recursive equation gives

a4 =
16(r + 5) (r + 2)2 (r + 3) (r + 4)

r (r − 2)2 (r2 − 1)

Which for the root r = 3 becomes

a4 = 5600

And the table now becomes

n an,r an

a0 1 1
a1

2r2+2r−4
(r−2)2 20

a2
4(r+3)r(r+2)
(−1+r)(r−2)2 180

a3
8(r+4)(r+1)(r+3)(r+2)

r(−1+r)(r−2)2 1120

a4
16(r+5)(r+2)2(r+3)(r+4)

r(r−2)2(r2−1) 5600

For n = 5, using the above recursive equation gives

a5 =
32(6 + r) (r + 3)2 (r + 4) (r + 5)

r (r − 2)2 (r2 − 1)

Which for the root r = 3 becomes

a5 = 24192

And the table now becomes

n an,r an

a0 1 1
a1

2r2+2r−4
(r−2)2 20

a2
4(r+3)r(r+2)
(−1+r)(r−2)2 180

a3
8(r+4)(r+1)(r+3)(r+2)

r(−1+r)(r−2)2 1120

a4
16(r+5)(r+2)2(r+3)(r+4)

r(r−2)2(r2−1) 5600

a5
32(6+r)(r+3)2(r+4)(r+5)

r(r−2)2(r2−1) 24192
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For n = 6, using the above recursive equation gives

a6 =
64(7 + r) (r + 4)2 (r + 5) (6 + r)

r (r − 2)2 (r2 − 1)

Which for the root r = 3 becomes

a6 = 94080

And the table now becomes

n an,r an

a0 1 1
a1

2r2+2r−4
(r−2)2 20

a2
4(r+3)r(r+2)
(−1+r)(r−2)2 180

a3
8(r+4)(r+1)(r+3)(r+2)

r(−1+r)(r−2)2 1120

a4
16(r+5)(r+2)2(r+3)(r+4)

r(r−2)2(r2−1) 5600

a5
32(6+r)(r+3)2(r+4)(r+5)

r(r−2)2(r2−1) 24192

a6
64(7+r)(r+4)2(r+5)(6+r)

r(r−2)2(r2−1) 94080

For n = 7, using the above recursive equation gives

a7 =
128(8 + r) (r + 5)2 (6 + r) (7 + r)

r (r − 2)2 (r2 − 1)

Which for the root r = 3 becomes

a7 = 337920

And the table now becomes
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n an,r an

a0 1 1
a1

2r2+2r−4
(r−2)2 20

a2
4(r+3)r(r+2)
(−1+r)(r−2)2 180

a3
8(r+4)(r+1)(r+3)(r+2)

r(−1+r)(r−2)2 1120

a4
16(r+5)(r+2)2(r+3)(r+4)

r(r−2)2(r2−1) 5600

a5
32(6+r)(r+3)2(r+4)(r+5)

r(r−2)2(r2−1) 24192

a6
64(7+r)(r+4)2(r+5)(6+r)

r(r−2)2(r2−1) 94080

a7
128(8+r)(r+5)2(6+r)(7+r)

r(r−2)2(r2−1) 337920

Using the above table, then the first solution y1(x) is

y1(x) = x3(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7 + a8x
8. . .

)
= x3(337920x7+94080x6+24192x5+5600x4+1120x3+180x2+20x+1+O

(
x8))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 3. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table
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n bn,r an bn,r = d
dr
an,r bn(r = 3)

b0 1 1 N/A since bn starts from 1 N/A
b1

2r2+2r−4
(r−2)2 20 −10r+4

(r−2)3 −26

b2
4(r+3)r(r+2)
(−1+r)(r−2)2 180 −40r3−64r2+104r+48

(−1+r)2(r−2)3 −324

b3
8(r+4)(r+1)(r+3)(r+2)

r(−1+r)(r−2)2 1120 −24
(
5r5+28r4+25r3−58r2−56r+16

)
r2(−1+r)2(r−2)3 −6968

3

b4
16(r+5)(r+2)2(r+3)(r+4)

r(r−2)2(r2−1) 5600 −64(r+2)
(
5r6+48r5+128r4−301r2−120r+60

)
r2(r−2)3(r2−1)2 −37780

3

b5
32(6+r)(r+3)2(r+4)(r+5)

r(r−2)2(r2−1) 24192 −160(r+3)
(
5r6+63r5+233r4+105r3−622r2−264r+144

)
r2(r−2)3(r2−1)2 −57360

b6
64(7+r)(r+4)2(r+5)(6+r)

r(r−2)2(r2−1) 94080 −384(r+4)
(
5r6+78r5+368r4+312r3−1113r2−490r+280

)
r2(r−2)3(r2−1)2 −694736

3

b7
128(8+r)(r+5)2(6+r)(7+r)

r(r−2)2(r2−1) 337920 −896(r+5)
(
5r6+93r5+533r4+651r3−1810r2−816r+480

)
r2(r−2)3(r2−1)2 −2566144

3

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 + b8x
8. . .

=x3(337920x7+94080x6+24192x5+5600x4+1120x3+180x2+20x+1+O
(
x8)) ln (x)

+ x3
(
−324x2 − 26x− 6968x3

3 − 37780x4

3 − 57360x5 − 694736x6

3 − 2566144x7

3

+O
(
x8))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3(337920x7+94080x6+24192x5+5600x4+1120x3+180x2+20x+1+O

(
x8))

+ c2

(
x3(337920x7 + 94080x6 + 24192x5 + 5600x4 + 1120x3 + 180x2 + 20x+ 1

+O
(
x8)) ln (x) + x3

(
−324x2 − 26x− 6968x3

3 − 37780x4

3 − 57360x5

− 694736x6

3 − 2566144x7

3 +O
(
x8)))
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Hence the final solution is

y = yh

= c1x
3(337920x7 + 94080x6 + 24192x5 + 5600x4 + 1120x3 + 180x2 + 20x+ 1+O

(
x8))

+ c2

(
x3(337920x7 + 94080x6 + 24192x5 + 5600x4 + 1120x3 + 180x2 + 20x+ 1

+O
(
x8)) ln (x) + x3

(
−324x2 − 26x− 6968x3

3 − 37780x4

3 − 57360x5 − 694736x6

3

− 2566144x7

3 +O
(
x8)))

Summary
The solution(s) found are the following

(1)

y = c1x
3(337920x7+94080x6+24192x5+5600x4+1120x3+180x2+20x+1+O

(
x8))

+ c2

(
x3(337920x7 + 94080x6 + 24192x5 + 5600x4 + 1120x3 + 180x2 + 20x+ 1

+O
(
x8)) ln (x) + x3

(
−324x2 − 26x− 6968x3

3 − 37780x4

3 − 57360x5

− 694736x6

3 − 2566144x7

3 +O
(
x8)))

Verification of solutions

y = c1x
3(337920x7 +94080x6 +24192x5 +5600x4 +1120x3 +180x2 +20x+1+O

(
x8))

+ c2

(
x3(337920x7 + 94080x6 + 24192x5 + 5600x4 + 1120x3 + 180x2 + 20x+ 1

+O
(
x8)) ln (x) + x3

(
−324x2 − 26x− 6968x3

3 − 37780x4

3 − 57360x5 − 694736x6

3

− 2566144x7

3 +O
(
x8)))

Verified OK.
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15.28.1 Maple step by step solution

Let’s solve
−y′′x2(2x− 1) + (−4x2 − 5x) y′ + (4x+ 9) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = (4x+9)y
x2(2x−1) −

(4x+5)y′
x(2x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (4x+5)y′
x(2x−1) −

(4x+9)y
x2(2x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 4x+5
x(2x−1) , P3(x) = − 4x+9

x2(2x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 9

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x2(2x− 1) + x(4x+ 5) y′ + (−4x− 9) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(−3 + r)2 xr +
(

∞∑
k=1

(
−ak(k + r − 3)2 + 2ak−1(k + 1 + r) (k − 2 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−3 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 3

• Each term in the series must be 0, giving the recursion relation
−ak(k + r − 3)2 + 2ak−1(k + 1 + r) (k − 2 + r) = 0

• Shift index using k− >k + 1
−ak+1(k − 2 + r)2 + 2ak(k + r + 2) (k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r+2)(k+r−1)

(k−2+r)2

• Recursion relation for r = 3
ak+1 = 2ak(k+5)(k+2)

(k+1)2

• Solution for r = 3
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[
y =

∞∑
k=0

akx
k+3, ak+1 = 2ak(k+5)(k+2)

(k+1)2

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 81� �
Order:=8;
dsolve(x^2*(1-2*x)*diff(y(x),x$2)-x*(5+4*x)*diff(y(x),x)+(9+4*x)*y(x)=0,y(x),type='series',x=0);� �
y(x) =

(
(c2 ln (x) + c1)

(
1 + 20x+ 180x2 + 1120x3 + 5600x4 + 24192x5 + 94080x6

+ 337920x7 +O
(
x8))+ ((−26)x− 324x2 − 6968

3 x3 − 37780
3 x4 − 57360x5

− 694736
3 x6 − 2566144

3 x7 +O
(
x8)) c2

)
x3
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3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 136� �
AsymptoticDSolveValue[x^2*(1-2*x)*y''[x]-x*(5+4*x)*y'[x]+(9+4*x)*y[x]==0,y[x],{x,0,7}]� �
y(x) → c1

(
337920x7 + 94080x6 + 24192x5 + 5600x4 + 1120x3 + 180x2 + 20x+ 1

)
x3

+ c2

((
−2566144x7

3 − 694736x6

3 − 57360x5 − 37780x4

3 − 6968x3

3 − 324x2

− 26x
)
x3

+
(
337920x7+94080x6+24192x5+5600x4+1120x3+180x2+20x+1

)
x3 log(x)

)
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15.29 problem 25
15.29.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5854

Internal problem ID [1377]
Internal file name [OUTPUT/1378_Sunday_June_05_2022_02_13_58_AM_79581135/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 25.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(4x+ 1) y′′ − x(−4x+ 1) y′ + (x+ 1) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

4x3 + x2) y′′ + (4x2 − x
)
y′ + (x+ 1) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 4x− 1
x (4x+ 1)

q(x) = x+ 1
x2 (4x+ 1)
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Table 700: Table p(x), q(x) singularites.

p(x) = 4x−1
x(4x+1)

singularity type
x = 0 “regular”
x = −1

4 “regular”

q(x) = x+1
x2(4x+1)

singularity type
x = 0 “regular”
x = −1

4 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−1

4 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(4x+ 1) y′′ +
(
4x2 − x

)
y′ + (x+ 1) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(4x+ 1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
4x2 − x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (x+ 1)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

x1+n+ran

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

4an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

4x1+n+ran(n+ r) =
∞∑
n=1

4an−1(n+ r − 1)xn+r

∞∑
n =0

x1+n+ran =
∞∑
n=1

an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

4an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

4an−1(n+ r − 1)xn+r

)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=1

an−1x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− xn+ran(n+ r) + anx
n+r = 0
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When n = 0 the above becomes

xra0r(−1 + r)− xra0r + a0x
r = 0

Or
(xrr(−1 + r)− xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(−1 + r)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(−1 + r)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 1

Since a0 6= 0 then the indicial equation becomes

(−1 + r)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
1+n

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
1+n

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)4an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
+ 4an−1(n+ r − 1)− an(n+ r) + an−1 + an = 0

Solving for an from recursive equation (4) gives

an = −an−1(4n2 + 8nr + 4r2 − 8n− 8r + 5)
n2 + 2nr + r2 − 2n− 2r + 1 (4)

Which for the root r = 1 becomes

an = an−1(−4n2 − 1)
n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−4r2 − 1

r2

Which for the root r = 1 becomes
a1 = −5

And the table now becomes
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n an,r an

a0 1 1
a1

−4r2−1
r2

−5

For n = 2, using the above recursive equation gives

a2 =
16r4 + 32r3 + 24r2 + 8r + 5

r2 (r + 1)2

Which for the root r = 1 becomes
a2 =

85
4

And the table now becomes

n an,r an

a0 1 1
a1

−4r2−1
r2

−5

a2
16r4+32r3+24r2+8r+5

r2(r+1)2
85
4

For n = 3, using the above recursive equation gives

a3 =
−64r6 − 384r5 − 880r4 − 960r3 − 556r2 − 216r − 85

r2 (r + 1)2 (r + 2)2

Which for the root r = 1 becomes

a3 = −3145
36

And the table now becomes

n an,r an

a0 1 1
a1

−4r2−1
r2

−5

a2
16r4+32r3+24r2+8r+5

r2(r+1)2
85
4

a3
−64r6−384r5−880r4−960r3−556r2−216r−85

r2(r+1)2(r+2)2 −3145
36
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For n = 4, using the above recursive equation gives

a4 =
(4r2 + 24r + 37) (4r2 + 1) (4r2 + 8r + 5) (4r2 + 16r + 17)

r2 (r + 1)2 (r + 2)2 (r + 3)2

Which for the root r = 1 becomes

a4 =
204425
576

And the table now becomes

n an,r an

a0 1 1
a1

−4r2−1
r2

−5

a2
16r4+32r3+24r2+8r+5

r2(r+1)2
85
4

a3
−64r6−384r5−880r4−960r3−556r2−216r−85

r2(r+1)2(r+2)2 −3145
36

a4
(
4r2+24r+37

)(
4r2+1

)(
4r2+8r+5

)(
4r2+16r+17

)
r2(r+1)2(r+2)2(r+3)2

204425
576

For n = 5, using the above recursive equation gives

a5 = −(4r2 + 24r + 37) (4r2 + 1) (4r2 + 8r + 5) (4r2 + 16r + 17) (4r2 + 32r + 65)
r2 (r + 1)2 (r + 2)2 (r + 3)2 (r + 4)2

Which for the root r = 1 becomes

a5 = −825877
576

And the table now becomes

n an,r an

a0 1 1
a1

−4r2−1
r2

−5

a2
16r4+32r3+24r2+8r+5

r2(r+1)2
85
4

a3
−64r6−384r5−880r4−960r3−556r2−216r−85

r2(r+1)2(r+2)2 −3145
36

a4
(
4r2+24r+37

)(
4r2+1

)(
4r2+8r+5

)(
4r2+16r+17

)
r2(r+1)2(r+2)2(r+3)2

204425
576

a5 −
(
4r2+24r+37

)(
4r2+1

)(
4r2+8r+5

)(
4r2+16r+17

)(
4r2+32r+65

)
r2(r+1)2(r+2)2(r+3)2(r+4)2 −825877

576
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For n = 6, using the above recursive equation gives

a6 =
(4r2 + 24r + 37) (4r2 + 1) (4r2 + 8r + 5) (4r2 + 16r + 17) (4r2 + 32r + 65) (4r2 + 40r + 101)

r2 (r + 1)2 (r + 2)2 (r + 3)2 (r + 4)2 (r + 5)2

Which for the root r = 1 becomes

a6 =
119752165
20736

And the table now becomes

n an,r an

a0 1 1
a1

−4r2−1
r2

−5

a2
16r4+32r3+24r2+8r+5

r2(r+1)2
85
4

a3
−64r6−384r5−880r4−960r3−556r2−216r−85

r2(r+1)2(r+2)2 −3145
36

a4
(
4r2+24r+37

)(
4r2+1

)(
4r2+8r+5

)(
4r2+16r+17

)
r2(r+1)2(r+2)2(r+3)2

204425
576

a5 −
(
4r2+24r+37

)(
4r2+1

)(
4r2+8r+5

)(
4r2+16r+17

)(
4r2+32r+65

)
r2(r+1)2(r+2)2(r+3)2(r+4)2 −825877

576

a6
(
4r2+24r+37

)(
4r2+1

)(
4r2+8r+5

)(
4r2+16r+17

)(
4r2+32r+65

)(
4r2+40r+101

)
r2(r+1)2(r+2)2(r+3)2(r+4)2(r+5)2

119752165
20736

For n = 7, using the above recursive equation gives

a7 = −(4r2 + 24r + 37) (4r2 + 1) (4r2 + 8r + 5) (4r2 + 16r + 17) (4r2 + 32r + 65) (4r2 + 40r + 101) (4r2 + 48r + 145)
r2 (r + 1)2 (r + 2)2 (r + 3)2 (r + 4)2 (r + 5)2 (6 + r)2

Which for the root r = 1 becomes

a7 = −23591176505
1016064

And the table now becomes
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n an,r an

a0 1 1
a1

−4r2−1
r2

−5

a2
16r4+32r3+24r2+8r+5

r2(r+1)2
85
4

a3
−64r6−384r5−880r4−960r3−556r2−216r−85

r2(r+1)2(r+2)2 −3145
36

a4
(
4r2+24r+37

)(
4r2+1

)(
4r2+8r+5

)(
4r2+16r+17

)
r2(r+1)2(r+2)2(r+3)2

204425
576

a5 −
(
4r2+24r+37

)(
4r2+1

)(
4r2+8r+5

)(
4r2+16r+17

)(
4r2+32r+65

)
r2(r+1)2(r+2)2(r+3)2(r+4)2 −825877

576

a6
(
4r2+24r+37

)(
4r2+1

)(
4r2+8r+5

)(
4r2+16r+17

)(
4r2+32r+65

)(
4r2+40r+101

)
r2(r+1)2(r+2)2(r+3)2(r+4)2(r+5)2

119752165
20736

a7 −
(
4r2+24r+37

)(
4r2+1

)(
4r2+8r+5

)(
4r2+16r+17

)(
4r2+32r+65

)(
4r2+40r+101

)(
4r2+48r+145

)
r2(r+1)2(r+2)2(r+3)2(r+4)2(r+5)2(6+r)2 −23591176505

1016064

Using the above table, then the first solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7 + a8x

8. . .
)

= x

(
1− 5x+ 85x2

4 − 3145x3

36 + 204425x4

576 − 825877x5

576 + 119752165x6

20736

− 23591176505x7

1016064 +O
(
x8))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table
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n bn,r an bn,r = d
dr
an,r bn(r = 1)

b0 1 1 N/A since bn starts from 1 N/A
b1

−4r2−1
r2

−5 2
r3

2

b2
16r4+32r3+24r2+8r+5

r2(r+1)2
85
4

−16r3−24r2−28r−10
r3(r+1)3 −39

4

b3
−64r6−384r5−880r4−960r3−556r2−216r−85

r2(r+1)2(r+2)2 −3145
36

96r6+576r5+1584r4+2496r3+2454r2+1452r+340
r3(r+1)3(r+2)3

4499
108

b4
(
4r2+24r+37

)(
4r2+1

)(
4r2+8r+5

)(
4r2+16r+17

)
r2(r+1)2(r+2)2(r+3)2

204425
576

−512r9−6912r8−41856r7−149184r6−346656r5−549648r4−601864r3−444276r2−198572r−37740
r3(r+1)3(r+2)3(r+3)3 −594305

3456

b5 −
(
4r2+24r+37

)(
4r2+1

)(
4r2+8r+5

)(
4r2+16r+17

)(
4r2+32r+65

)
r2(r+1)2(r+2)2(r+3)2(r+4)2 −825877

576
2560r12+61440r11+670720r10+4403200r9+19377600r8+60349440r7+136874080r6+229000320r5+282485290r4+252483920r3+155837250r2+58950280r+9812400

r3(r+1)3(r+2)3(r+3)3(r+4)3
2420617
3456

b6
(
4r2+24r+37

)(
4r2+1

)(
4r2+8r+5

)(
4r2+16r+17

)(
4r2+32r+65

)(
4r2+40r+101

)
r2(r+1)2(r+2)2(r+3)2(r+4)2(r+5)2

119752165
20736

−12288r15−460800r14−7971840r13−84364800r12−610715136r11−3203946240r10−12592584320r9−37805227200r8−87591441264r7−157105182120r6−217275725940r5−228695691750r4−178174672512r3−97087162590r2−32733236200r−4955262000
r3(r+1)3(r+2)3(r+3)3(r+4)3(r+5)3 −117547073

41472

b7 −
(
4r2+24r+37

)(
4r2+1

)(
4r2+8r+5

)(
4r2+16r+17

)(
4r2+32r+65

)(
4r2+40r+101

)(
4r2+48r+145

)
r2(r+1)2(r+2)2(r+3)2(r+4)2(r+5)2(6+r)2 −23591176505

1016064
57344r18+3096576r17+78016512r16+1217986560r15+13199036928r14+105405576192r13+642772465664r12+3060602818560r11+11539411892512r10+34731616317888r9+83748781519536r8+161699336668800r7+248772001519566r6+301840226981244r5+283526565348838r4+199539379978680r3+99027624519600r2+30628499202000r+4311077940000

r3(r+1)3(r+2)3(r+3)3(r+4)3(r+5)3(6+r)3
162576422327

14224896

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 + b8x
8. . .

= x

(
1− 5x+ 85x2

4 − 3145x3

36 + 204425x4

576 − 825877x5

576 + 119752165x6

20736

− 23591176505x7

1016064 +O
(
x8)) ln (x) + x

(
2x− 39x2

4 + 4499x3

108 − 594305x4

3456

+ 2420617x5

3456 − 117547073x6

41472 + 162576422327x7

14224896 +O
(
x8))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− 5x+ 85x2

4 − 3145x3

36 + 204425x4

576 − 825877x5

576 + 119752165x6

20736

− 23591176505x7

1016064 +O
(
x8))

+ c2

(
x

(
1− 5x+ 85x2

4 − 3145x3

36 + 204425x4

576 − 825877x5

576 + 119752165x6

20736

− 23591176505x7

1016064 +O
(
x8)) ln (x) + x

(
2x− 39x2

4 + 4499x3

108 − 594305x4

3456

+ 2420617x5

3456 − 117547073x6

41472 + 162576422327x7

14224896 +O
(
x8)))
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Hence the final solution is

y = yh

= c1x

(
1−5x+85x2

4 − 3145x3

36 + 204425x4

576 − 825877x5

576 + 119752165x6

20736 − 23591176505x7

1016064

+O
(
x8))+ c2

(
x

(
1− 5x+ 85x2

4 − 3145x3

36 + 204425x4

576 − 825877x5

576

+ 119752165x6

20736 − 23591176505x7

1016064 +O
(
x8)) ln (x) + x

(
2x− 39x2

4 + 4499x3

108

− 594305x4

3456 + 2420617x5

3456 − 117547073x6

41472 + 162576422327x7

14224896 +O
(
x8)))

Summary
The solution(s) found are the following

(1)

y = c1x

(
1− 5x+ 85x2

4 − 3145x3

36 + 204425x4

576 − 825877x5

576 + 119752165x6

20736

− 23591176505x7

1016064 +O
(
x8))

+ c2

(
x

(
1− 5x+ 85x2

4 − 3145x3

36 + 204425x4

576 − 825877x5

576 + 119752165x6

20736

− 23591176505x7

1016064 +O
(
x8)) ln (x) + x

(
2x− 39x2

4 + 4499x3

108 − 594305x4

3456

+ 2420617x5

3456 − 117547073x6

41472 + 162576422327x7

14224896 +O
(
x8)))

Verification of solutions

y = c1x

(
1− 5x+ 85x2

4 − 3145x3

36 + 204425x4

576 − 825877x5

576 + 119752165x6

20736

− 23591176505x7

1016064 +O
(
x8))+ c2

(
x

(
1− 5x+ 85x2

4 − 3145x3

36 + 204425x4

576

− 825877x5

576 + 119752165x6

20736 − 23591176505x7

1016064 +O
(
x8)) ln (x) + x

(
2x− 39x2

4

+ 4499x3

108 − 594305x4

3456 + 2420617x5

3456 − 117547073x6

41472 + 162576422327x7

14224896 +O
(
x8)))

Verified OK.
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15.29.1 Maple step by step solution

Let’s solve
x2(4x+ 1) y′′ + (4x2 − x) y′ + (x+ 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (x+1)y
x2(4x+1) −

(4x−1)y′
x(4x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (4x−1)y′
x(4x+1) +

(x+1)y
x2(4x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 4x−1
x(4x+1) , P3(x) = x+1

x2(4x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(4x+ 1) y′′ + x(4x− 1) y′ + (x+ 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + r)2 xr +
(

∞∑
k=1

(
ak(k + r − 1)2 + ak−1

(
4(k − 1)2 + 8(k − 1) r + 4r2 + 1

))
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1)2 + ak−1(4k2 + 8kr + 4r2 − 8k − 8r + 5) = 0

• Shift index using k− >k + 1
ak+1(k + r)2 + ak

(
4(k + 1)2 + 8(k + 1) r + 4r2 − 8k − 3− 8r

)
= 0

• Recursion relation that defines series solution to ODE

ak+1 = −ak
(
4k2+8kr+4r2+1

)
(k+r)2

• Recursion relation for r = 1

ak+1 = −ak
(
4k2+8k+5

)
(k+1)2

• Solution for r = 1
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[
y =

∞∑
k=0

akx
k+1, ak+1 = −ak

(
4k2+8k+5

)
(k+1)2

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 75� �
Order:=8;
dsolve(x^2*(1+4*x)*diff(y(x),x$2)-x*(1-4*x)*diff(y(x),x)+(1+x)*y(x)=0,y(x),type='series',x=0);� �
y(x) =

(
(c2 ln (x)+c1)

(
1−5x+ 85

4 x2− 3145
36 x3+ 204425

576 x4− 825877
576 x5+ 119752165

20736 x6

− 23591176505
1016064 x7 +O

(
x8))+

(
2x− 39

4 x2 + 4499
108 x3 − 594305

3456 x4

+ 2420617
3456 x5 − 117547073

41472 x6 + 162576422327
14224896 x7 +O

(
x8)) c2

)
x
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3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 158� �
AsymptoticDSolveValue[x^2*(1+4*x)*y''[x]-x*(1-4*x)*y'[x]+(1+x)*y[x]==0,y[x],{x,0,7}]� �
y(x) → c1x

(
−23591176505x7

1016064 + 119752165x6

20736 − 825877x5

576 + 204425x4

576 − 3145x3

36

+ 85x2

4 − 5x+ 1
)
+ c2

(
x

(
162576422327x7

14224896 − 117547073x6

41472 + 2420617x5

3456

− 594305x4

3456 + 4499x3

108 − 39x2

4 + 2x
)
+ x

(
−23591176505x7

1016064 + 119752165x6

20736

− 825877x5

576 + 204425x4

576 − 3145x3

36 + 85x2

4 − 5x+ 1
)
log(x)

)
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15.30 problem 26
15.30.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5868

Internal problem ID [1378]
Internal file name [OUTPUT/1379_Sunday_June_05_2022_02_14_01_AM_5965303/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 26.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x+ 1) y′′ + x(1 + 2x) y′ + yx = 0

With the expansion point for the power series method at x = 0.

The ODE is
x2(x+ 1) y′′ +

(
2x2 + x

)
y′ + yx = 0

Or
x
(
x2y′′ + 2y′x+ y′′x+ y + y′

)
= 0

For x 6= 0 the above simplifies to(
x2 + x

)
y′′ + (1 + 2x) y′ + y = 0

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x3 + x2) y′′ + (2x2 + x
)
y′ + yx = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0
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Where

p(x) = 1 + 2x
x (x+ 1)

q(x) = 1
x (x+ 1)

Table 702: Table p(x), q(x) singularites.

p(x) = 1+2x
x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

q(x) = 1
x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x+ 1) y′′ +
(
2x2 + x

)
y′ + yx = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2
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Substituting the above back into the ode gives

(1)
x2(x+ 1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
2x2 + x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
x = 0

Which simplifies to

(2A)

(
∞∑
n=0

x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2x1+n+ran(n+ r)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

2x1+n+ran(n+ r) =
∞∑
n=1

2an−1(n+ r − 1)xn+r

∞∑
n =0

x1+n+ran =
∞∑
n=1

an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

2an−1(n+r−1)xn+r

)
+
(

∞∑
n=0

xn+ran(n+r)
)
+
(

∞∑
n=1

an−1x
n+r

)
= 0
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The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r) = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r = 0

Or
(xrr(−1 + r) + xrr) a0 = 0

Since a0 6= 0 then the above simplifies to

xrr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

xrr2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
+ 2an−1(n+ r − 1) + an(n+ r) + an−1 = 0

Solving for an from recursive equation (4) gives

an = −an−1(n2 + 2nr + r2 − n− r + 1)
n2 + 2nr + r2

(4)

Which for the root r = 0 becomes

an = −an−1(n2 − n+ 1)
n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−r2 − r − 1
(r + 1)2

Which for the root r = 0 becomes
a1 = −1

And the table now becomes

n an,r an

a0 1 1
a1

−r2−r−1
(r+1)2 −1

For n = 2, using the above recursive equation gives

a2 =
r4 + 4r3 + 7r2 + 6r + 3

(r + 1)2 (r + 2)2
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Which for the root r = 0 becomes
a2 =

3
4

And the table now becomes

n an,r an

a0 1 1
a1

−r2−r−1
(r+1)2 −1

a2
r4+4r3+7r2+6r+3

(r+1)2(r+2)2
3
4

For n = 3, using the above recursive equation gives

a3 =
−r6 − 9r5 − 34r4 − 69r3 − 82r2 − 57r − 21

(r + 1)2 (r + 2)2 (r + 3)2

Which for the root r = 0 becomes

a3 = − 7
12

And the table now becomes

n an,r an

a0 1 1
a1

−r2−r−1
(r+1)2 −1

a2
r4+4r3+7r2+6r+3

(r+1)2(r+2)2
3
4

a3
−r6−9r5−34r4−69r3−82r2−57r−21

(r+1)2(r+2)2(r+3)2 − 7
12

For n = 4, using the above recursive equation gives

a4 =
(r2 + r + 1) (r2 + 3r + 3) (r2 + 5r + 7) (r2 + 7r + 13)

(r + 1)2 (r + 2)2 (r + 3)2 (r + 4)2

Which for the root r = 0 becomes

a4 =
91
192

And the table now becomes
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n an,r an

a0 1 1
a1

−r2−r−1
(r+1)2 −1

a2
r4+4r3+7r2+6r+3

(r+1)2(r+2)2
3
4

a3
−r6−9r5−34r4−69r3−82r2−57r−21

(r+1)2(r+2)2(r+3)2 − 7
12

a4
(
r2+r+1

)(
r2+3r+3

)(
r2+5r+7

)(
r2+7r+13

)
(r+1)2(r+2)2(r+3)2(r+4)2

91
192

For n = 5, using the above recursive equation gives

a5 = −(r2 + r + 1) (r2 + 3r + 3) (r2 + 5r + 7) (r2 + 7r + 13) (r2 + 9r + 21)
(r + 1)2 (r + 2)2 (r + 3)2 (r + 4)2 (r + 5)2

Which for the root r = 0 becomes

a5 = − 637
1600

And the table now becomes

n an,r an

a0 1 1
a1

−r2−r−1
(r+1)2 −1

a2
r4+4r3+7r2+6r+3

(r+1)2(r+2)2
3
4

a3
−r6−9r5−34r4−69r3−82r2−57r−21

(r+1)2(r+2)2(r+3)2 − 7
12

a4
(
r2+r+1

)(
r2+3r+3

)(
r2+5r+7

)(
r2+7r+13

)
(r+1)2(r+2)2(r+3)2(r+4)2

91
192

a5 −
(
r2+r+1

)(
r2+3r+3

)(
r2+5r+7

)(
r2+7r+13

)(
r2+9r+21

)
(r+1)2(r+2)2(r+3)2(r+4)2(r+5)2 − 637

1600

For n = 6, using the above recursive equation gives

a6 =
(r2 + r + 1) (r2 + 3r + 3) (r2 + 5r + 7) (r2 + 7r + 13) (r2 + 9r + 21) (r2 + 11r + 31)

(r + 1)2 (r + 2)2 (r + 3)2 (r + 4)2 (r + 5)2 (6 + r)2

Which for the root r = 0 becomes

a6 =
19747
57600

5864



And the table now becomes

n an,r an

a0 1 1
a1

−r2−r−1
(r+1)2 −1

a2
r4+4r3+7r2+6r+3

(r+1)2(r+2)2
3
4

a3
−r6−9r5−34r4−69r3−82r2−57r−21

(r+1)2(r+2)2(r+3)2 − 7
12

a4
(
r2+r+1

)(
r2+3r+3

)(
r2+5r+7

)(
r2+7r+13

)
(r+1)2(r+2)2(r+3)2(r+4)2

91
192

a5 −
(
r2+r+1

)(
r2+3r+3

)(
r2+5r+7

)(
r2+7r+13

)(
r2+9r+21

)
(r+1)2(r+2)2(r+3)2(r+4)2(r+5)2 − 637

1600

a6
(
r2+r+1

)(
r2+3r+3

)(
r2+5r+7

)(
r2+7r+13

)(
r2+9r+21

)(
r2+11r+31

)
(r+1)2(r+2)2(r+3)2(r+4)2(r+5)2(6+r)2

19747
57600

For n = 7, using the above recursive equation gives

a7 = −(r2 + r + 1) (r2 + 3r + 3) (r2 + 5r + 7) (r2 + 7r + 13) (r2 + 9r + 21) (r2 + 11r + 31) (r2 + 13r + 43)
(r + 1)2 (r + 2)2 (r + 3)2 (r + 4)2 (r + 5)2 (6 + r)2 (7 + r)2

Which for the root r = 0 becomes

a7 = −17329
57600

And the table now becomes

n an,r an

a0 1 1
a1

−r2−r−1
(r+1)2 −1

a2
r4+4r3+7r2+6r+3

(r+1)2(r+2)2
3
4

a3
−r6−9r5−34r4−69r3−82r2−57r−21

(r+1)2(r+2)2(r+3)2 − 7
12

a4
(
r2+r+1

)(
r2+3r+3

)(
r2+5r+7

)(
r2+7r+13

)
(r+1)2(r+2)2(r+3)2(r+4)2

91
192

a5 −
(
r2+r+1

)(
r2+3r+3

)(
r2+5r+7

)(
r2+7r+13

)(
r2+9r+21

)
(r+1)2(r+2)2(r+3)2(r+4)2(r+5)2 − 637

1600

a6
(
r2+r+1

)(
r2+3r+3

)(
r2+5r+7

)(
r2+7r+13

)(
r2+9r+21

)(
r2+11r+31

)
(r+1)2(r+2)2(r+3)2(r+4)2(r+5)2(6+r)2

19747
57600

a7 −
(
r2+r+1

)(
r2+3r+3

)(
r2+5r+7

)(
r2+7r+13

)(
r2+9r+21

)(
r2+11r+31

)(
r2+13r+43

)
(r+1)2(r+2)2(r+3)2(r+4)2(r+5)2(6+r)2(7+r)2 −17329

57600
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Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7 + a8x
8. . .

= 1− x+ 3x2

4 − 7x3

12 + 91x4

192 − 637x5

1600 + 19747x6

57600 − 17329x7

57600 +O
(
x8)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1

−r2−r−1
(r+1)2 −1 1−r

(r+1)3 1

b2
r4+4r3+7r2+6r+3

(r+1)2(r+2)2
3
4

2r4+6r3+6r2−2r−6
(r+1)3(r+2)3 −3

4

b3
−r6−9r5−34r4−69r3−82r2−57r−21

(r+1)2(r+2)2(r+3)2 − 7
12

−3r7−30r6−126r5−276r4−306r3−90r2+147r+120
(r+1)3(r+2)3(r+3)3

5
9

b4
(
r2+r+1

)(
r2+3r+3

)(
r2+5r+7

)(
r2+7r+13

)
(r+1)2(r+2)2(r+3)2(r+4)2

91
192

4r10+80r9+708r8+3624r7+11748r6+24684r5+32444r4+22468r3+396r2−11292r−5988
(r+1)3(r+2)3(r+3)3(r+4)3 − 499

1152

b5 −
(
r2+r+1

)(
r2+3r+3

)(
r2+5r+7

)(
r2+7r+13

)(
r2+9r+21

)
(r+1)2(r+2)2(r+3)2(r+4)2(r+5)2 − 637

1600
−5r13−165r12−2475r11−22285r10−133935r9−564765r8−1706725r7−3696675r6−5599065r5−5513735r4−2745165r3+483705r2+1469430r+609084

(r+1)3(r+2)3(r+3)3(r+4)3(r+5)3
16919
48000

b6
(
r2+r+1

)(
r2+3r+3

)(
r2+5r+7

)(
r2+7r+13

)(
r2+9r+21

)(
r2+11r+31

)
(r+1)2(r+2)2(r+3)2(r+4)2(r+5)2(6+r)2

19747
57600

6r16+294r15+6660r14+92460r13+879102r12+6058368r11+31227990r10+122400600r9+366885918r8+837176352r7+1429333038r6+1755929412r5+1415064264r4+536353062r3−191517966r2−315293400r−110537784
(r+1)3(r+2)3(r+3)3(r+4)3(r+5)3(6+r)3 − 56861

192000

b7 −
(
r2+r+1

)(
r2+3r+3

)(
r2+5r+7

)(
r2+7r+13

)(
r2+9r+21

)(
r2+11r+31

)(
r2+13r+43

)
(r+1)2(r+2)2(r+3)2(r+4)2(r+5)2(6+r)2(7+r)2 −17329

57600 −7
(
r19+68r18+2163r17+42744r16+587769r15+5969226r14+46372666r13+281576048r12+1353532362r11+5183203584r10+15821249262r9+38291024796r8+72550613929r7+105035603012r6+110874889251r5+76611665640r4+22592639769r3−12606541542r2−15062507748r−4661724312

)
(r+1)3(r+2)3(r+3)3(r+4)3(r+5)3(6+r)3(7+r)3

1027717
4032000

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 + b8x
8. . .

=
(
1− x+ 3x2

4 − 7x3

12 + 91x4

192 − 637x5

1600 + 19747x6

57600 − 17329x7

57600 +O
(
x8)) ln (x)

+ x− 3x2

4 + 5x3

9 − 499x4

1152 + 16919x5

48000 − 56861x6

192000 + 1027717x7

4032000 +O
(
x8)

5866



Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1− x+ 3x2

4 − 7x3

12 + 91x4

192 − 637x5

1600 + 19747x6

57600 − 17329x7

57600 +O
(
x8))

+c2

((
1−x+ 3x2

4 − 7x3

12 + 91x4

192 − 637x5

1600 + 19747x6

57600 − 17329x7

57600 +O
(
x8)) ln (x)

+ x− 3x2

4 + 5x3

9 − 499x4

1152 + 16919x5

48000 − 56861x6

192000 + 1027717x7

4032000 +O
(
x8))

Hence the final solution is

y = yh

= c1

(
1− x+ 3x2

4 − 7x3

12 + 91x4

192 − 637x5

1600 + 19747x6

57600 − 17329x7

57600 +O
(
x8))

+ c2

((
1− x+ 3x2

4 − 7x3

12 + 91x4

192 − 637x5

1600 + 19747x6

57600 − 17329x7

57600 +O
(
x8)) ln (x)

+ x− 3x2

4 + 5x3

9 − 499x4

1152 + 16919x5

48000 − 56861x6

192000 + 1027717x7

4032000 +O
(
x8))

Summary
The solution(s) found are the following

y = c1

(
1− x+ 3x2

4 − 7x3

12 + 91x4

192 − 637x5

1600 + 19747x6

57600 − 17329x7

57600 +O
(
x8))

+ c2

((
1− x+ 3x2

4 − 7x3

12 + 91x4

192 − 637x5

1600 + 19747x6

57600 − 17329x7

57600 +O
(
x8)) ln (x)

+ x− 3x2

4 + 5x3

9 − 499x4

1152 + 16919x5

48000 − 56861x6

192000 + 1027717x7

4032000 +O
(
x8))
(1)

Verification of solutions

y = c1

(
1− x+ 3x2

4 − 7x3

12 + 91x4

192 − 637x5

1600 + 19747x6

57600 − 17329x7

57600 +O
(
x8))

+ c2

((
1− x+ 3x2

4 − 7x3

12 + 91x4

192 − 637x5

1600 + 19747x6

57600 − 17329x7

57600 +O
(
x8)) ln (x)

+ x− 3x2

4 + 5x3

9 − 499x4

1152 + 16919x5

48000 − 56861x6

192000 + 1027717x7

4032000 +O
(
x8))

Verified OK.
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15.30.1 Maple step by step solution

Let’s solve
x2(x+ 1) y′′ + (2x2 + x) y′ + yx = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − y
x(x+1) −

(1+2x)y′
x(x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (1+2x)y′
x(x+1) + y

x(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 1+2x
x(x+1) , P3(x) = 1

x(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
x(x+ 1) y′′ + (1 + 2x) y′ + y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − u)
(

d2

du2y(u)
)
+ (−1 + 2u)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r
2u−1+r +

(
∞∑
k=0

(
−ak+1(k + 1 + r)2 + ak(k2 + 2kr + r2 + k + r + 1)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
−ak+1(k + 1)2 + ak(k2 + k + 1) = 0

• Recursion relation that defines series solution to ODE

ak+1 = ak
(
k2+k+1

)
(k+1)2

• Recursion relation for r = 0

ak+1 = ak
(
k2+k+1

)
(k+1)2

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

(
k2+k+1

)
(k+1)2

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k , ak+1 = ak
(
k2+k+1

)
(k+1)2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful
-> solution has integrals; searching for one without integrals...

-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric solution without integrals succesful
<- hypergeometric successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 71� �
Order:=8;
dsolve(x^2*(1+x)*diff(y(x),x$2)+x*(1+2*x)*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);� �
y(x) = (c2 ln (x) + c1)

(
1− x+ 3

4x
2 − 7

12x
3 + 91

192x
4 − 637

1600x
5 + 19747

57600x
6 − 17329

57600x
7

+O
(
x8))

+
(
x− 3

4x
2 + 5

9x
3 − 499

1152x
4 + 16919

48000x
5 − 56861

192000x
6 + 1027717

4032000x
7 +O

(
x8)) c2
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3 Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 151� �
AsymptoticDSolveValue[x^2*(1+x)*y''[x]+x*(1+2*x)*y'[x]+x*y[x]==0,y[x],{x,0,7}]� �
y(x) → c1

(
−17329x7

57600 + 19747x6

57600 − 637x5

1600 + 91x4

192 − 7x3

12 + 3x2

4 − x+ 1
)

+ c2

(
1027717x7

4032000 − 56861x6

192000 + 16919x5

48000 − 499x4

1152 + 5x3

9 − 3x2

4

+
(
−17329x7

57600 + 19747x6

57600 − 637x5

1600 + 91x4

192 − 7x3

12 + 3x2

4 − x+ 1
)
log(x) + x

)
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15.31 problem 27
15.31.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5882

Internal problem ID [1379]
Internal file name [OUTPUT/1380_Sunday_June_05_2022_02_14_05_AM_84000659/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 27.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(1− x) y′′ + x(7 + x) y′ + (9− x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−x3 + x2) y′′ + (x2 + 7x
)
y′ + (9− x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 7 + x

x (x− 1)

q(x) = −9 + x

x2 (x− 1)
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Table 704: Table p(x), q(x) singularites.

p(x) = − 7+x
x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

q(x) = −9+x
x2(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x2(x− 1) +
(
x2 + 7x

)
y′ + (9− x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2(x− 1)

+
(
x2 + 7x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (9− x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−x1+n+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

x1+n+ran(n+ r)
)

+
(

∞∑
n=0

7xn+ran(n+ r)
)

+
(

∞∑
n=0

9anxn+r

)
+

∞∑
n =0

(
−x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−x1+n+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−an−1(n+ r − 1) (n+ r − 2)xn+r

)
∞∑

n =0

x1+n+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r

∞∑
n =0

(
−x1+n+ran

)
=

∞∑
n=1

(
−an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =1

(
−an−1(n+ r−1) (n+ r−2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r−1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

7xn+ran(n+ r)
)

+
(

∞∑
n=0

9anxn+r

)
+

∞∑
n =1

(
−an−1x

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 7xn+ran(n+ r) + 9anxn+r = 0
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When n = 0 the above becomes

xra0r(−1 + r) + 7xra0r + 9a0xr = 0

Or
(xrr(−1 + r) + 7xrr + 9xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r + 3)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(r + 3)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = −3
r2 = −3

Since a0 6= 0 then the indicial equation becomes

(r + 3)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = −3, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n−3

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n−3

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)−an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
+ an−1(n+ r − 1) + 7an(n+ r) + 9an − an−1 = 0

Solving for an from recursive equation (4) gives

an = an−1(n2 + 2nr + r2 − 4n− 4r + 4)
n2 + 2nr + r2 + 6n+ 6r + 9 (4)

Which for the root r = −3 becomes

an = an−1(n− 5)2

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
(−1 + r)2

(r + 4)2

Which for the root r = −3 becomes

a1 = 16

And the table now becomes
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n an,r an

a0 1 1

a1
(−1+r)2

(r+4)2 16

For n = 2, using the above recursive equation gives

a2 =
(−1 + r)2 r2

(r + 4)2 (r + 5)2

Which for the root r = −3 becomes

a2 = 36

And the table now becomes

n an,r an

a0 1 1

a1
(−1+r)2

(r+4)2 16

a2
(−1+r)2r2

(r+4)2(r+5)2 36

For n = 3, using the above recursive equation gives

a3 =
(−1 + r)2 r2(r + 1)2

(r + 4)2 (r + 5)2 (6 + r)2

Which for the root r = −3 becomes

a3 = 16

And the table now becomes

n an,r an

a0 1 1

a1
(−1+r)2

(r+4)2 16

a2
(−1+r)2r2

(r+4)2(r+5)2 36

a3
(−1+r)2r2(r+1)2

(r+4)2(r+5)2(6+r)2 16
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For n = 4, using the above recursive equation gives

a4 =
(−1 + r)2 r2(r + 1)2 (r + 2)2

(r + 4)2 (r + 5)2 (6 + r)2 (7 + r)2

Which for the root r = −3 becomes

a4 = 1

And the table now becomes

n an,r an

a0 1 1

a1
(−1+r)2

(r+4)2 16

a2
(−1+r)2r2

(r+4)2(r+5)2 36

a3
(−1+r)2r2(r+1)2

(r+4)2(r+5)2(6+r)2 16

a4
(−1+r)2r2(r+1)2(r+2)2

(r+4)2(r+5)2(6+r)2(7+r)2 1

For n = 5, using the above recursive equation gives

a5 =
(−1 + r)2 r2(r + 1)2 (r + 2)2 (r + 3)2

(r + 4)2 (r + 5)2 (6 + r)2 (7 + r)2 (8 + r)2

Which for the root r = −3 becomes

a5 = 0

And the table now becomes

n an,r an

a0 1 1

a1
(−1+r)2

(r+4)2 16

a2
(−1+r)2r2

(r+4)2(r+5)2 36

a3
(−1+r)2r2(r+1)2

(r+4)2(r+5)2(6+r)2 16

a4
(−1+r)2r2(r+1)2(r+2)2

(r+4)2(r+5)2(6+r)2(7+r)2 1

a5
(−1+r)2r2(r+1)2(r+2)2(r+3)2

(r+4)2(r+5)2(6+r)2(7+r)2(8+r)2 0
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For n = 6, using the above recursive equation gives

a6 =
(−1 + r)2 r2(r + 1)2 (r + 2)2 (r + 3)2

(9 + r)2 (8 + r)2 (7 + r)2 (6 + r)2 (r + 5)2

Which for the root r = −3 becomes

a6 = 0

And the table now becomes

n an,r an

a0 1 1

a1
(−1+r)2

(r+4)2 16

a2
(−1+r)2r2

(r+4)2(r+5)2 36

a3
(−1+r)2r2(r+1)2

(r+4)2(r+5)2(6+r)2 16

a4
(−1+r)2r2(r+1)2(r+2)2

(r+4)2(r+5)2(6+r)2(7+r)2 1

a5
(−1+r)2r2(r+1)2(r+2)2(r+3)2

(r+4)2(r+5)2(6+r)2(7+r)2(8+r)2 0

a6
(−1+r)2r2(r+1)2(r+2)2(r+3)2

(9+r)2(8+r)2(7+r)2(6+r)2(r+5)2 0

For n = 7, using the above recursive equation gives

a7 =
(−1 + r)2 r2(r + 1)2 (r + 2)2 (r + 3)2

(r + 10)2 (6 + r)2 (7 + r)2 (8 + r)2 (9 + r)2

Which for the root r = −3 becomes

a7 = 0

And the table now becomes
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n an,r an

a0 1 1

a1
(−1+r)2

(r+4)2 16

a2
(−1+r)2r2

(r+4)2(r+5)2 36

a3
(−1+r)2r2(r+1)2

(r+4)2(r+5)2(6+r)2 16

a4
(−1+r)2r2(r+1)2(r+2)2

(r+4)2(r+5)2(6+r)2(7+r)2 1

a5
(−1+r)2r2(r+1)2(r+2)2(r+3)2

(r+4)2(r+5)2(6+r)2(7+r)2(8+r)2 0

a6
(−1+r)2r2(r+1)2(r+2)2(r+3)2

(9+r)2(8+r)2(7+r)2(6+r)2(r+5)2 0

a7
(−1+r)2r2(r+1)2(r+2)2(r+3)2

(r+10)2(6+r)2(7+r)2(8+r)2(9+r)2 0

Using the above table, then the first solution y1(x) is

y1(x) =
1
x3

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7 + a8x

8. . .
)

= x4 + 16x3 + 36x2 + 16x+ 1 +O(x8)
x3

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = −3. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table
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n bn,r an bn,r = d
dr
an,r bn(r = −3)

b0 1 1 N/A since bn starts from 1 N/A

b1
(−1+r)2

(r+4)2 16 −10+10r
(r+4)3 −40

b2
(−1+r)2r2

(r+4)2(r+5)2 36 20r(−1+r)
(
r2+4r−2

)
(r+4)3(r+5)3 −150

b3
(−1+r)2r2(r+1)2

(r+4)2(r+5)2(6+r)2 16 30r
(
r4+10r3+25r2−8

)(
r2−1

)
(r+4)3(r+5)3(6+r)3 −280

3

b4
(−1+r)2r2(r+1)2(r+2)2

(r+4)2(r+5)2(6+r)2(7+r)2 1 40r(r+2)
(
r6+18r5+115r4+300r3+238r2−84r−84

)(
r2−1

)
(r+4)3(r+5)3(6+r)3(7+r)3 −25

3

b5
(−1+r)2r2(r+1)2(r+2)2(r+3)2

(r+4)2(r+5)2(6+r)2(7+r)2(8+r)2 0 50(r+2)
(
r8+28r7+314r6+1792r5+5417r4+7924r3+3340r2−2688r− 8064

5
)
(r+3)(r+1)r(−1+r)

(r+4)3(r+5)3(6+r)3(7+r)3(8+r)3 0

b6
(−1+r)2r2(r+1)2(r+2)2(r+3)2

(9+r)2(8+r)2(7+r)2(6+r)2(r+5)2 0 60r(r+2)(r+3)
(
r8+32r7+408r6+2624r5+8813r4+14032r3+6346r2−5040r−3024

)(
r2−1

)
(9+r)3(8+r)3(7+r)3(6+r)3(r+5)3 0

b7
(−1+r)2r2(r+1)2(r+2)2(r+3)2

(r+10)2(6+r)2(7+r)2(8+r)2(9+r)2 0 70r(r+2)(r+3)
(
r2+9r+12

)(
r6+27r5+259r4+1017r3+1252r2−396r−432

)
(−1+r)(r+1)

(r+10)3(6+r)3(7+r)3(8+r)3(9+r)3 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 + b8x
8. . .

= (x4 + 16x3 + 36x2 + 16x+ 1 +O(x8)) ln (x)
x3 +

−150x2 − 40x− 280x3

3 − 25x4

3 +O(x8)
x3

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1(x4 + 16x3 + 36x2 + 16x+ 1 +O(x8))
x3

+ c2

(
(x4 + 16x3 + 36x2 + 16x+ 1 +O(x8)) ln (x)

x3

+
−150x2 − 40x− 280x3

3 − 25x4

3 +O(x8)
x3

)

Hence the final solution is

y = yh
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= c1(x4 + 16x3 + 36x2 + 16x+ 1 +O(x8))
x3

+ c2

(
(x4 + 16x3 + 36x2 + 16x+ 1 +O(x8)) ln (x)

x3

+
−150x2 − 40x− 280x3

3 − 25x4

3 +O(x8)
x3

)

Summary
The solution(s) found are the following

(1)

y = c1(x4 + 16x3 + 36x2 + 16x+ 1 +O(x8))
x3

+ c2

(
(x4 + 16x3 + 36x2 + 16x+ 1 +O(x8)) ln (x)

x3

+
−150x2 − 40x− 280x3

3 − 25x4

3 +O(x8)
x3

)
Verification of solutions

y = c1(x4 + 16x3 + 36x2 + 16x+ 1 +O(x8))
x3

+ c2

(
(x4 + 16x3 + 36x2 + 16x+ 1 +O(x8)) ln (x)

x3

+
−150x2 − 40x− 280x3

3 − 25x4

3 +O(x8)
x3

)

Verified OK.

15.31.1 Maple step by step solution

Let’s solve
−y′′x2(x− 1) + (x2 + 7x) y′ + (9− x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (−9+x)y
x2(x−1) +

(7+x)y′
x(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

5882



y′′ − (7+x)y′
x(x−1) +

(−9+x)y
x2(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 7+x
x(x−1) , P3(x) = −9+x

x2(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 7

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 9

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x2(x− 1)− x(7 + x) y′ + y(−9 + x) = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3
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xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(3 + r)2 xr +
(

∞∑
k=1

(
−ak(k + r + 3)2 + ak−1(k − 2 + r)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(3 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −3

• Each term in the series must be 0, giving the recursion relation
−ak(k + r + 3)2 + ak−1(k − 2 + r)2 = 0

• Shift index using k− >k + 1
−ak+1(k + 4 + r)2 + ak(k + r − 1)2 = 0

• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r−1)2

(k+4+r)2

• Recursion relation for r = −3 ; series terminates at k = 4

ak+1 = ak(k−4)2

(k+1)2

• Apply recursion relation for k = 0
a1 = 16a0

• Apply recursion relation for k = 1
a2 = 9a1

4

• Express in terms of a0
a2 = 36a0

• Apply recursion relation for k = 2
a3 = 4a2

9

• Express in terms of a0
a3 = 16a0
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• Apply recursion relation for k = 3
a4 = a3

16

• Express in terms of a0
a4 = a0

• Terminating series solution of the ODE for r = −3 . Use reduction of order to find the second linearly independent solution
y = a0 · (x4 + 16x3 + 36x2 + 16x+ 1)

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 63� �
Order:=8;
dsolve(x^2*(1-x)*diff(y(x),x$2)+x*(7+x)*diff(y(x),x)+(9-x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
(c2 ln (x) + c1) (1 + 16x+ 36x2 + 16x3 + x4 +O(x8)) +

(
(−40)x− 150x2 − 280

3 x3 − 25
3 x

4 +O(x8)
)
c2

x3
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3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 83� �
AsymptoticDSolveValue[x^2*(1-x)*y''[x]+x*(7+x)*y'[x]+(9-x)*y[x]==0,y[x],{x,0,7}]� �
y(x) → c1(x4 + 16x3 + 36x2 + 16x+ 1)

x3

+ c2

(
−25x4

3 − 280x3

3 − 150x2 − 40x
x3 + (x4 + 16x3 + 36x2 + 16x+ 1) log(x)

x3

)
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15.32 problem 28
15.32.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5894

Internal problem ID [1380]
Internal file name [OUTPUT/1381_Sunday_June_05_2022_02_14_08_AM_55793503/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 28.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − x
(
−x2 + 1

)
y′ + y

(
x2 + 1

)
= 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
x3 − x

)
y′ + y

(
x2 + 1

)
= 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x2 − 1
x

q(x) = x2 + 1
x2
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Table 706: Table p(x), q(x) singularites.

p(x) = x2−1
x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = x2+1
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
x3 − x

)
y′ + y

(
x2 + 1

)
= 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x3 − x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)(
x2 + 1

)
= 0

5888



Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+r+2an(n+ r)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) =
∞∑
n=2

an−2(n+ r − 2)xn+r

∞∑
n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

an−2(n+ r − 2)xn+r

)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=2

an−2x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− xra0r + a0x
r = 0

Or
(xrr(−1 + r)− xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(−1 + r)2 xr = 0
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Since the above is true for all x then the indicial equation becomes

(−1 + r)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 1

Since a0 6= 0 then the indicial equation becomes

(−1 + r)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+1

)
We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an−2(n+ r − 2)− an(n+ r) + an−2 + an = 0

Solving for an from recursive equation (4) gives

an = − an−2

n+ r − 1 (4)

Which for the root r = 1 becomes

an = −an−2

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
1 + r

Which for the root r = 1 becomes
a2 = −1

2
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

1+r
−1

2

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − 1

1+r
−1

2

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

(1 + r) (3 + r)

Which for the root r = 1 becomes
a4 =

1
8

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

1+r
−1

2

a3 0 0
a4

1
(1+r)(3+r)

1
8

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

1+r
−1

2

a3 0 0
a4

1
(1+r)(3+r)

1
8

a5 0 0
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Using the above table, then the first solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− x2

2 + x4

8 +O
(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
Where bn is found using

bn = d

dr
an,r

And the above is then evaluated at r = 1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 1)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2 − 1

1+r
−1

2
1

(1+r)2
1
4

b3 0 0 0 0
b4

1
(1+r)(3+r)

1
8

−4−2r
(1+r)2(3+r)2 − 3

32

b5 0 0 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x

(
1− x2

2 + x4

8 +O
(
x6)) ln (x) + x

(
x2

4 − 3x4

32 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− x2

2 + x4

8 +O
(
x6))

+ c2

(
x

(
1− x2

2 + x4

8 +O
(
x6)) ln (x) + x

(
x2

4 − 3x4

32 +O
(
x6)))
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Hence the final solution is

y = yh

= c1x

(
1− x2

2 + x4

8 +O
(
x6))

+ c2

(
x

(
1− x2

2 + x4

8 +O
(
x6)) ln (x) + x

(
x2

4 − 3x4

32 +O
(
x6)))

Summary
The solution(s) found are the following

(1)
y = c1x

(
1− x2

2 + x4

8 +O
(
x6))

+ c2

(
x

(
1− x2

2 + x4

8 +O
(
x6)) ln (x) + x

(
x2

4 − 3x4

32 +O
(
x6)))

Verification of solutions

y = c1x

(
1− x2

2 + x4

8 +O
(
x6))

+ c2

(
x

(
1− x2

2 + x4

8 +O
(
x6)) ln (x) + x

(
x2

4 − 3x4

32 +O
(
x6)))

Verified OK.

15.32.1 Maple step by step solution

Let’s solve
x2y′′ + (x3 − x) y′ + y(x2 + 1) = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2+1

)
y

x2 −
(
x2−1

)
y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
x2−1

)
y′

x
+
(
x2+1

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions
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[
P2(x) = x2−1

x
, P3(x) = x2+1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + x(x2 − 1) y′ + y(x2 + 1) = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions
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a0(−1 + r)2 xr + a1r
2x1+r +

(
∞∑
k=2

(
ak(k + r − 1)2 + ak−2(k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
a1r

2 = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak(k + r − 1) + ak−2) = 0
• Shift index using k− >k + 2

(k + r + 1) (ak+2(k + r + 1) + ak) = 0
• Recursion relation that defines series solution to ODE

ak+2 = − ak
k+r+1

• Recursion relation for r = 1
ak+2 = − ak

k+2

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = − ak

k+2 , a1 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 45� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)-x*(1-x^2)*diff(y(x),x)+(1+x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x) = x

(
(c2 ln (x) + c1)

(
1− 1

2x
2 + 1

8x
4 +O

(
x6))+

(
1
4x

2 − 3
32x

4 +O
(
x6)) c2

)
3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 65� �
AsymptoticDSolveValue[x^2*y''[x]-x*(1-x^2)*y'[x]+(1+x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x

(
x4

8 − x2

2 + 1
)
+ c2

(
x

(
x2

4 − 3x4

32

)
+ x

(
x4

8 − x2

2 + 1
)
log(x)

)
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15.33 problem 29
15.33.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5905

Internal problem ID [1381]
Internal file name [OUTPUT/1382_Sunday_June_05_2022_02_14_10_AM_64284537/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 29.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x2 + 1
)
y′′ − 3x

(
−x2 + 1

)
y′ + 4y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x4 + x2) y′′ + (3x3 − 3x
)
y′ + 4y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3x2 − 3
x (x2 + 1)

q(x) = 4
x2 (x2 + 1)
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Table 708: Table p(x), q(x) singularites.

p(x) = 3x2−3
x(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

q(x) = 4
x2(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 + 1
)
y′′ +

(
3x3 − 3x

)
y′ + 4y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
3x3 − 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ 4
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3xn+r+2an(n+ r)
)

+
∞∑

n =0

(
−3xn+ran(n+ r)

)
+
(

∞∑
n=0

4anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

3xn+r+2an(n+ r) =
∞∑
n=2

3an−2(n+ r − 2)xn+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

3an−2(n+r−2)xn+r

)
+

∞∑
n =0

(
−3xn+ran(n+r)

)
+
(

∞∑
n=0

4anxn+r

)
=0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 3xn+ran(n+ r) + 4anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− 3xra0r + 4a0xr = 0

Or
(xrr(−1 + r)− 3xrr + 4xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r − 2)2 xr = 0
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Since the above is true for all x then the indicial equation becomes

(r − 2)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = 2

Since a0 6= 0 then the indicial equation becomes

(r − 2)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 2, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+2

)
We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r) + an(n+ r) (n+ r − 1)
+ 3an−2(n+ r − 2)− 3an(n+ r) + 4an = 0

Solving for an from recursive equation (4) gives

an = −(n+ r) an−2

n+ r − 2 (4)

Which for the root r = 2 becomes

an = −(n+ 2) an−2

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−2− r

r

Which for the root r = 2 becomes
a2 = −2

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−2−r
r

−2

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

5902



n an,r an

a0 1 1
a1 0 0
a2

−2−r
r

−2
a3 0 0

For n = 4, using the above recursive equation gives

a4 =
4 + r

r

Which for the root r = 2 becomes
a4 = 3

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−2−r
r

−2
a3 0 0
a4

4+r
r

3

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−2−r
r

−2
a3 0 0
a4

4+r
r

3
a5 0 0

5903



Using the above table, then the first solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2(1− 2x2 + 3x4 +O

(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 2. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 2)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2

−2−r
r

−2 2
r2

1
2

b3 0 0 0 0
b4

4+r
r

3 − 4
r2

−1
b5 0 0 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x2(1− 2x2 + 3x4 +O
(
x6)) ln (x) + x2

(
x2

2 − x4 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2(1− 2x2 + 3x4 +O

(
x6))

+ c2

(
x2(1− 2x2 + 3x4 +O

(
x6)) ln (x) + x2

(
x2

2 − x4 +O
(
x6)))
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Hence the final solution is

y = yh

= c1x
2(1− 2x2 + 3x4 +O

(
x6))

+ c2

(
x2(1− 2x2 + 3x4 +O

(
x6)) ln (x) + x2

(
x2

2 − x4 +O
(
x6)))

Summary
The solution(s) found are the following

(1)
y = c1x

2(1− 2x2 + 3x4 +O
(
x6))

+ c2

(
x2(1− 2x2 + 3x4 +O

(
x6)) ln (x) + x2

(
x2

2 − x4 +O
(
x6)))

Verification of solutions

y = c1x
2(1− 2x2 + 3x4 +O

(
x6))

+ c2

(
x2(1− 2x2 + 3x4 +O

(
x6)) ln (x) + x2

(
x2

2 − x4 +O
(
x6)))

Verified OK.

15.33.1 Maple step by step solution

Let’s solve
x2(x2 + 1) y′′ + (3x3 − 3x) y′ + 4y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 4y
x2(x2+1) −

3
(
x2−1

)
y′

x(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 3
(
x2−1

)
y′

x(x2+1) + 4y
x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3
(
x2−1

)
x(x2+1) , P3(x) = 4

x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= −3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(x2 + 1) y′′ + 3x(x2 − 1) y′ + 4y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−2 + r)2 xr + a1(−1 + r)2 x1+r +
(

∞∑
k=2

(
ak(k + r − 2)2 + ak−2(k + r − 2) (k + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r)2 = 0

• Values of r that satisfy the indicial equation
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r = 2
• Each term must be 0

a1(−1 + r)2 = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

(k + r − 2) (ak(k + r − 2) + ak−2(k + r)) = 0
• Shift index using k− >k + 2

(k + r) (ak+2(k + r) + ak(k + r + 2)) = 0
• Recursion relation that defines series solution to ODE

ak+2 = −ak(k+r+2)
k+r

• Recursion relation for r = 2
ak+2 = −ak(k+4)

k+2

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+2 = −ak(k+4)

k+2 , a1 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 51� �
Order:=6;
dsolve(x^2*(1+x^2)*diff(y(x),x$2)-3*x*(1-x^2)*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
(c2 ln (x) + c1)

(
1− 2x2 + 3x4 +O

(
x6))+ (1

2x
2 − x4 +O

(
x6)) c2

)
x2

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 61� �
AsymptoticDSolveValue[x^2*(1+x^2)*y''[x]-3*x*(1-x^2)*y'[x]+4*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
(
3x4 − 2x2 + 1

)
x2 + c2

((
x2

2 − x4
)
x2 +

(
3x4 − 2x2 + 1

)
x2 log(x)

)
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15.34 problem 30
15.34.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5916

Internal problem ID [1382]
Internal file name [OUTPUT/1383_Sunday_June_05_2022_02_14_12_AM_83402995/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 30.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2y′′ + 2x3y′ +
(
3x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

4x2y′′ + 2x3y′ +
(
3x2 + 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x

2

q(x) = 3x2 + 1
4x2
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Table 710: Table p(x), q(x) singularites.

p(x) = x
2

singularity type
x = ∞ “regular”
x = −∞ “regular”

q(x) = 3x2+1
4x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [∞,−∞, 0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2y′′ + 2x3y′ +
(
3x2 + 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 2x3

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(
3x2 + 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2x2+n+ran(n+ r)
)

+
(

∞∑
n=0

3x2+n+ran

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2x2+n+ran(n+ r) =
∞∑
n=2

2an−2(n+ r − 2)xn+r

∞∑
n =0

3x2+n+ran =
∞∑
n=2

3an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

2an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=2

3an−2x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + anx
n+r = 0

When n = 0 the above becomes

4xra0r(−1 + r) + a0x
r = 0

Or
(4xrr(−1 + r) + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(2r − 1)2 xr = 0
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Since the above is true for all x then the indicial equation becomes

(2r − 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 =
1
2

Since a0 6= 0 then the indicial equation becomes

(2r − 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1

2 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+ 1

2

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)4an(n+ r) (n+ r − 1) + 2an−2(n+ r − 2) + 3an−2 + an = 0

Solving for an from recursive equation (4) gives

an = − an−2

2n+ 2r − 1 (4)

Which for the root r = 1
2 becomes

an = −an−2

2n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
3 + 2r

Which for the root r = 1
2 becomes

a2 = −1
4

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

3+2r −1
4

For n = 3, using the above recursive equation gives

a3 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

3+2r −1
4

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

4r2 + 20r + 21
Which for the root r = 1

2 becomes
a4 =

1
32

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

3+2r −1
4

a3 0 0
a4

1
4r2+20r+21

1
32

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

3+2r −1
4

a3 0 0
a4

1
4r2+20r+21

1
32

a5 0 0
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Using the above table, then the first solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− x2

4 + x4

32 +O
(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
Where bn is found using

bn = d

dr
an,r

And the above is then evaluated at r = 1
2 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = 1

2

)
b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2 − 1

3+2r −1
4

2
(3+2r)2

1
8

b3 0 0 0 0
b4

1
4r2+20r+21

1
32

−20−8r
(4r2+20r+21)2 − 3

128

b5 0 0 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
√
x

(
1− x2

4 + x4

32 +O
(
x6)) ln (x) +

√
x

(
x2

8 − 3x4

128 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− x2

4 + x4

32 +O
(
x6))

+ c2

(√
x

(
1− x2

4 + x4

32 +O
(
x6)) ln (x) +

√
x

(
x2

8 − 3x4

128 +O
(
x6)))
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Hence the final solution is

y = yh

= c1
√
x

(
1− x2

4 + x4

32 +O
(
x6))

+ c2

(√
x

(
1− x2

4 + x4

32 +O
(
x6)) ln (x) +

√
x

(
x2

8 − 3x4

128 +O
(
x6)))

Summary
The solution(s) found are the following

(1)
y = c1

√
x

(
1− x2

4 + x4

32 +O
(
x6))

+ c2

(√
x

(
1− x2

4 + x4

32 +O
(
x6)) ln (x) +

√
x

(
x2

8 − 3x4

128 +O
(
x6)))

Verification of solutions

y = c1
√
x

(
1− x2

4 + x4

32 +O
(
x6))

+ c2

(√
x

(
1− x2

4 + x4

32 +O
(
x6)) ln (x) +

√
x

(
x2

8 − 3x4

128 +O
(
x6)))

Verified OK.

15.34.1 Maple step by step solution

Let’s solve
4x2y′′ + 2x3y′ + (3x2 + 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −y′x
2 −

(
3x2+1

)
y

4x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′x
2 +

(
3x2+1

)
y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions
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[
P2(x) = x

2 , P3(x) = 3x2+1
4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2y′′ + 2x3y′ + (3x2 + 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x3 · y′ to series expansion

x3 · y′ =
∞∑
k=0

ak(k + r)xk+r+2

◦ Shift index using k− >k − 2

x3 · y′ =
∞∑
k=2

ak−2(k − 2 + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions
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a0(−1 + 2r)2 xr + a1(1 + 2r)2 x1+r +
(

∞∑
k=2

(
ak(2k + 2r − 1)2 + ak−2(2k + 2r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

2

• Each term must be 0
a1(1 + 2r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(2k + 2r − 1)2 + ak−2(2k + 2r − 1) = 0

• Shift index using k− >k + 2
ak+2(2k + 2r + 3)2 + ak(2k + 2r + 3) = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

2k+2r+3

• Recursion relation for r = 1
2

ak+2 = − ak
2k+4

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 = − ak
2k+4 , a1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 51� �
Order:=6;
dsolve(4*x^2*diff(y(x),x$2)+2*x^3*diff(y(x),x)+(1+3*x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x) =

√
x

(
(c2 ln (x)+ c1)

(
1− 1

4x
2+ 1

32x
4+O

(
x6))+

(
1
8x

2− 3
128x

4+O
(
x6)) c2

)
3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 77� �
AsymptoticDSolveValue[4*x^2*y''[x]+2*x^3*y'[x]+(1+3*x^2)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

√
x

(
x4

32 − x2

4 + 1
)
+ c2

(√
x

(
x2

8 − 3x4

128

)
+
√
x

(
x4

32 − x2

4 + 1
)
log(x)

)
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15.35 problem 31
15.35.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5927

Internal problem ID [1383]
Internal file name [OUTPUT/1384_Sunday_June_05_2022_02_14_15_AM_14988136/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 31.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x2 + 1
)
y′′ − x

(
−2x2 + 1

)
y′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x4 + x2) y′′ + (2x3 − x
)
y′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2x2 − 1
x (x2 + 1)

q(x) = 1
x2 (x2 + 1)
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Table 712: Table p(x), q(x) singularites.

p(x) = 2x2−1
x(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

q(x) = 1
x2(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 + 1
)
y′′ +

(
2x3 − x

)
y′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
2x3 − x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+r+2an(n+ r)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

2xn+r+2an(n+ r) =
∞∑
n=2

2an−2(n+ r − 2)xn+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

2an−2(n+ r− 2)xn+r

)
+

∞∑
n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− xra0r + a0x
r = 0

Or
(xrr(−1 + r)− xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(−1 + r)2 xr = 0
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Since the above is true for all x then the indicial equation becomes

(−1 + r)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 1

Since a0 6= 0 then the indicial equation becomes

(−1 + r)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+1

)
We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r) + an(n+ r) (n+ r − 1)
+ 2an−2(n+ r − 2)− an(n+ r) + an = 0

Solving for an from recursive equation (4) gives

an = −an−2(n+ r − 2)
n+ r − 1 (4)

Which for the root r = 1 becomes

an = −an−2(n− 1)
n

(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − r

1 + r

Which for the root r = 1 becomes
a2 = −1

2
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − r

1+r
−1

2

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − r

1+r
−1

2

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
r(2 + r)

(3 + r) (1 + r)

Which for the root r = 1 becomes
a4 =

3
8

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − r

1+r
−1

2

a3 0 0
a4

r(2+r)
(3+r)(1+r)

3
8

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − r

1+r
−1

2

a3 0 0
a4

r(2+r)
(3+r)(1+r)

3
8

a5 0 0
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Using the above table, then the first solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− x2

2 + 3x4

8 +O
(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
Where bn is found using

bn = d

dr
an,r

And the above is then evaluated at r = 1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 1)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2 − r

1+r
−1

2 − 1
(1+r)2 −1

4

b3 0 0 0 0
b4

r(2+r)
(3+r)(1+r)

3
8

2r2+6r+6
(1+r)2(3+r)2

7
32

b5 0 0 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x

(
1− x2

2 + 3x4

8 +O
(
x6)) ln (x) + x

(
−x2

4 + 7x4

32 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− x2

2 + 3x4

8 +O
(
x6))

+ c2

(
x

(
1− x2

2 + 3x4

8 +O
(
x6)) ln (x) + x

(
−x2

4 + 7x4

32 +O
(
x6)))
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Hence the final solution is

y = yh

= c1x

(
1− x2

2 + 3x4

8 +O
(
x6))

+ c2

(
x

(
1− x2

2 + 3x4

8 +O
(
x6)) ln (x) + x

(
−x2

4 + 7x4

32 +O
(
x6)))

Summary
The solution(s) found are the following

(1)
y = c1x

(
1− x2

2 + 3x4

8 +O
(
x6))

+ c2

(
x

(
1− x2

2 + 3x4

8 +O
(
x6)) ln (x) + x

(
−x2

4 + 7x4

32 +O
(
x6)))

Verification of solutions

y = c1x

(
1− x2

2 + 3x4

8 +O
(
x6))

+ c2

(
x

(
1− x2

2 + 3x4

8 +O
(
x6)) ln (x) + x

(
−x2

4 + 7x4

32 +O
(
x6)))

Verified OK.

15.35.1 Maple step by step solution

Let’s solve
x2(x2 + 1) y′′ + (2x3 − x) y′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − y
x2(x2+1) −

(
2x2−1

)
y′

x(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
2x2−1

)
y′

x(x2+1) + y
x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions
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[
P2(x) = 2x2−1

x(x2+1) , P3(x) = 1
x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(x2 + 1) y′′ + x(2x2 − 1) y′ + y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + r)2 xr + a1r
2x1+r +

(
∞∑
k=2

(
ak(k + r − 1)2 + ak−2(k − 2 + r) (k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(−1 + r)2 = 0
• Values of r that satisfy the indicial equation

r = 1
• Each term must be 0

a1r
2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak(k + r − 1) + ak−2(k − 2 + r)) = 0

• Shift index using k− >k + 2
(k + r + 1) (ak+2(k + r + 1) + ak(k + r)) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r)

k+r+1

• Recursion relation for r = 1
ak+2 = −ak(k+1)

k+2

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = −ak(k+1)

k+2 , a1 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 45� �
Order:=6;
dsolve(x^2*(1+x^2)*diff(y(x),x$2)-x*(1-2*x^2)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �
y(x) = x

(
(c2 ln (x) + c1)

(
1− 1

2x
2 + 3

8x
4 +O

(
x6))+

(
−1
4x

2 + 7
32x

4 +O
(
x6)) c2

)
3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 65� �
AsymptoticDSolveValue[x^2*(1+x^2)*y''[x]-x*(1-2*x^2)*y'[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x

(
3x4

8 − x2

2 + 1
)
+ c2

(
x

(
7x4

32 − x2

4

)
+ x

(
3x4

8 − x2

2 + 1
)
log(x)

)
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15.36 problem 32
15.36.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5939

Internal problem ID [1384]
Internal file name [OUTPUT/1385_Sunday_June_05_2022_02_14_17_AM_88013605/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 32.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2x2(x2 + 2
)
y′′ + 7x3y′ +

(
3x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

2x4 + 4x2) y′′ + 7x3y′ +
(
3x2 + 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 7x
2 (x2 + 2)

q(x) = 3x2 + 1
2x2 (x2 + 2)
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Table 714: Table p(x), q(x) singularites.

p(x) = 7x
2(x2+2)

singularity type
x = −i

√
2 “regular”

x = i
√
2 “regular”

q(x) = 3x2+1
2x2(x2+2)

singularity type
x = 0 “regular”

x = −i
√
2 “regular”

x = i
√
2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
−i

√
2, i

√
2, 0,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x2(x2 + 2
)
y′′ + 7x3y′ +

(
3x2 + 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2x2(x2 + 2

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 7x3

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(
3x2 + 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

7xn+r+2an(n+ r)
)

+
(

∞∑
n=0

3xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

2an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

7xn+r+2an(n+ r) =
∞∑
n=2

7an−2(n+ r − 2)xn+r

∞∑
n =0

3xn+r+2an =
∞∑
n=2

3an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

2an−2(n+ r− 2) (n− 3+ r)xn+r

)
+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=2

7an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=2

3an−2x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + anx
n+r = 0

When n = 0 the above becomes

4xra0r(−1 + r) + a0x
r = 0

Or
(4xrr(−1 + r) + xr) a0 = 0

5933



Since a0 6= 0 then the above simplifies to

(2r − 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(2r − 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 =
1
2

Since a0 6= 0 then the indicial equation becomes

(2r − 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1

2 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+ 1

2

)
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We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0

For 2 ≤ n the recursive equation is

2an−2(n+ r− 2) (n− 3+ r)+ 4an(n+ r) (n+ r− 1)+ 7an−2(n+ r− 2)+ 3an−2+ an = 0
(3)

Solving for an from recursive equation (4) gives

an = −(n+ r − 1) an−2

−1 + 2n+ 2r (4)

Which for the root r = 1
2 becomes

an = −(2n− 1) an−2

4n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−1− r

3 + 2r

Which for the root r = 1
2 becomes

a2 = −3
8

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−1−r
3+2r −3

8
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For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−1−r
3+2r −3

8

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
r2 + 4r + 3

4r2 + 20r + 21

Which for the root r = 1
2 becomes

a4 =
21
128

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−1−r
3+2r −3

8

a3 0 0
a4

r2+4r+3
4r2+20r+21

21
128

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

−1−r
3+2r −3

8

a3 0 0
a4

r2+4r+3
4r2+20r+21

21
128

a5 0 0

Using the above table, then the first solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− 3x2

8 + 21x4

128 +O
(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1
2 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = 1

2

)
b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2

−1−r
3+2r −3

8 − 1
(3+2r)2 − 1

16

b3 0 0 0 0
b4

r2+4r+3
4r2+20r+21

21
128

4r2+18r+24
(4r2+20r+21)2

17
512

b5 0 0 0 0
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
√
x

(
1− 3x2

8 + 21x4

128 +O
(
x6)) ln (x) +

√
x

(
−x2

16 + 17x4

512 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− 3x2

8 + 21x4

128 +O
(
x6))

+ c2

(√
x

(
1− 3x2

8 + 21x4

128 +O
(
x6)) ln (x) +

√
x

(
−x2

16 + 17x4

512 +O
(
x6)))

Hence the final solution is

y = yh

= c1
√
x

(
1− 3x2

8 + 21x4

128 +O
(
x6))

+ c2

(√
x

(
1− 3x2

8 + 21x4

128 +O
(
x6)) ln (x) +

√
x

(
−x2

16 + 17x4

512 +O
(
x6)))

Summary
The solution(s) found are the following

(1)
y = c1

√
x

(
1− 3x2

8 + 21x4

128 +O
(
x6))

+ c2

(√
x

(
1− 3x2

8 + 21x4

128 +O
(
x6)) ln (x) +

√
x

(
−x2

16 + 17x4

512 +O
(
x6)))

Verification of solutions

y = c1
√
x

(
1− 3x2

8 + 21x4

128 +O
(
x6))

+ c2

(√
x

(
1− 3x2

8 + 21x4

128 +O
(
x6)) ln (x) +

√
x

(
−x2

16 + 17x4

512 +O
(
x6)))

Verified OK.
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15.36.1 Maple step by step solution

Let’s solve
2x2(x2 + 2) y′′ + 7x3y′ + (3x2 + 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
3x2+1

)
y

2x2(x2+2) −
7xy′

2(x2+2)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 7xy′
2(x2+2) +

(
3x2+1

)
y

2x2(x2+2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 7x
2(x2+2) , P3(x) = 3x2+1

2x2(x2+2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
2x2(x2 + 2) y′′ + 7x3y′ + (3x2 + 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x3 · y′ to series expansion

x3 · y′ =
∞∑
k=0

ak(k + r)xk+r+2

◦ Shift index using k− >k − 2

x3 · y′ =
∞∑
k=2

ak−2(k − 2 + r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r)2 xr + a1(1 + 2r)2 x1+r +
(

∞∑
k=2

(
ak(2k + 2r − 1)2 + ak−2(2k + 2r − 1) (k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

2

• Each term must be 0
a1(1 + 2r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation

4
(
k + r − 1

2

) (ak−2(k+r−1)
2 + ak

(
k + r − 1

2

))
= 0

• Shift index using k− >k + 2

4
(
k + 3

2 + r
) (ak(k+r+1)

2 + ak+2
(
k + 3

2 + r
))

= 0

• Recursion relation that defines series solution to ODE
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ak+2 = −ak(k+r+1)
2k+2r+3

• Recursion relation for r = 1
2

ak+2 = −ak
(
k+ 3

2
)

2k+4

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −ak
(
k+ 3

2
)

2k+4 , a1 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful
-> solution has integrals; searching for one without integrals...

-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric solution without integrals succesful
<- hypergeometric successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 51� �
Order:=6;
dsolve(2*x^2*(2+x^2)*diff(y(x),x$2)+7*x^3*diff(y(x),x)+(1+3*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
√
x

(
(c2 ln (x) + c1)

(
1− 3

8x
2 + 21

128x
4 +O

(
x6))

+
(
− 1
16x

2 + 17
512x

4 +O
(
x6)) c2

)
3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 77� �
AsymptoticDSolveValue[2*x^2*(2+x^2)*y''[x]+7*x^3*y'[x]+(1+3*x^2)*y[x]==0,y[x],{x,0,5}]� �
y(x)→ c1

√
x

(
21x4

128 − 3x2

8 +1
)
+ c2

(√
x

(
17x4

512 − x2

16

)
+
√
x

(
21x4

128 − 3x2

8 +1
)
log(x)

)
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15.37 problem 33
15.37.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5952

Internal problem ID [1385]
Internal file name [OUTPUT/1386_Sunday_June_05_2022_02_14_20_AM_27250862/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 33.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x2 + 1
)
y′′ − x

(
−4x2 + 1

)
y′ + y

(
2x2 + 1

)
= 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x4 + x2) y′′ + (4x3 − x
)
y′ + y

(
2x2 + 1

)
= 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 4x2 − 1
x (x2 + 1)

q(x) = 2x2 + 1
x2 (x2 + 1)
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Table 716: Table p(x), q(x) singularites.

p(x) = 4x2−1
x(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

q(x) = 2x2+1
x2(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 + 1
)
y′′ +

(
4x3 − x

)
y′ + y

(
2x2 + 1

)
= 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
4x3 − x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)(
2x2 + 1

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+r+2an(n+ r)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

2xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

4xn+r+2an(n+ r) =
∞∑
n=2

4an−2(n+ r − 2)xn+r

∞∑
n =0

2xn+r+2an =
∞∑
n=2

2an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+ r− 2) (n− 3+ r)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=2

4an−2(n+ r − 2)xn+r

)
+

∞∑
n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=2

2an−2x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− xn+ran(n+ r) + anx
n+r = 0
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When n = 0 the above becomes

xra0r(−1 + r)− xra0r + a0x
r = 0

Or
(xrr(−1 + r)− xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(−1 + r)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(−1 + r)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 1

Since a0 6= 0 then the indicial equation becomes

(−1 + r)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+1

)
We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r) + an(n+ r) (n+ r − 1)
+ 4an−2(n+ r − 2)− an(n+ r) + 2an−2 + an = 0

Solving for an from recursive equation (4) gives

an = −(n+ r) an−2

n+ r − 1 (4)

Which for the root r = 1 becomes

an = −(n+ 1) an−2

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−2− r

1 + r

Which for the root r = 1 becomes
a2 = −3

2
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−2−r
1+r

−3
2

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−2−r
1+r

−3
2

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
r2 + 6r + 8

(3 + r) (1 + r)

Which for the root r = 1 becomes
a4 =

15
8

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−2−r
1+r

−3
2

a3 0 0
a4

r2+6r+8
(3+r)(1+r)

15
8
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For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−2−r
1+r

−3
2

a3 0 0
a4

r2+6r+8
(3+r)(1+r)

15
8

a5 0 0

Using the above table, then the first solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− 3x2

2 + 15x4

8 +O
(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
Where bn is found using

bn = d

dr
an,r

And the above is then evaluated at r = 1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 1)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2

−2−r
1+r

−3
2

1
(1+r)2

1
4

b3 0 0 0 0
b4

r2+6r+8
(3+r)(1+r)

15
8

−2r2−10r−14
(1+r)2(3+r)2 −13

32

b5 0 0 0 0
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x

(
1− 3x2

2 + 15x4

8 +O
(
x6)) ln (x) + x

(
x2

4 − 13x4

32 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− 3x2

2 + 15x4

8 +O
(
x6))

+ c2

(
x

(
1− 3x2

2 + 15x4

8 +O
(
x6)) ln (x) + x

(
x2

4 − 13x4

32 +O
(
x6)))

Hence the final solution is

y = yh

= c1x

(
1− 3x2

2 + 15x4

8 +O
(
x6))

+ c2

(
x

(
1− 3x2

2 + 15x4

8 +O
(
x6)) ln (x) + x

(
x2

4 − 13x4

32 +O
(
x6)))

Summary
The solution(s) found are the following

(1)
y = c1x

(
1− 3x2

2 + 15x4

8 +O
(
x6))

+ c2

(
x

(
1− 3x2

2 + 15x4

8 +O
(
x6)) ln (x) + x

(
x2

4 − 13x4

32 +O
(
x6)))

Verification of solutions

y = c1x

(
1− 3x2

2 + 15x4

8 +O
(
x6))

+ c2

(
x

(
1− 3x2

2 + 15x4

8 +O
(
x6)) ln (x) + x

(
x2

4 − 13x4

32 +O
(
x6)))

Verified OK.
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15.37.1 Maple step by step solution

Let’s solve
x2(x2 + 1) y′′ + (4x3 − x) y′ + y(2x2 + 1) = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −y
(
2x2+1

)
x2(x2+1) −

(
4x2−1

)
y′

x(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
4x2−1

)
y′

x(x2+1) + y
(
2x2+1

)
x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 4x2−1
x(x2+1) , P3(x) = 2x2+1

x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(x2 + 1) y′′ + x(4x2 − 1) y′ + y(2x2 + 1) = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + r)2 xr + a1r
2x1+r +

(
∞∑
k=2

(
ak(k + r − 1)2 + ak−2(k + r) (k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
a1r

2 = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak(k + r − 1) + ak−2(k + r)) = 0
• Shift index using k− >k + 2

(k + r + 1) (ak+2(k + r + 1) + ak(k + r + 2)) = 0
• Recursion relation that defines series solution to ODE

ak+2 = −ak(k+r+2)
k+r+1
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• Recursion relation for r = 1
ak+2 = −ak(k+3)

k+2

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = −ak(k+3)

k+2 , a1 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 45� �
Order:=6;
dsolve(x^2*(1+x^2)*diff(y(x),x$2)-x*(1-4*x^2)*diff(y(x),x)+(1+2*x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x) = x

(
(c2 ln (x) + c1)

(
1− 3

2x
2 + 15

8 x4 +O
(
x6))+

(
1
4x

2 − 13
32x

4 +O
(
x6)) c2

)
3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 65� �
AsymptoticDSolveValue[x^2*(1+x^2)*y''[x]-x*(1-4*x^2)*y'[x]+(1+2*x^2)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1x

(
15x4

8 − 3x2

2 + 1
)
+ c2

(
x

(
x2

4 − 13x4

32

)
+ x

(
15x4

8 − 3x2

2 + 1
)
log(x)

)
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15.38 problem 34
15.38.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5963

Internal problem ID [1386]
Internal file name [OUTPUT/1387_Sunday_June_05_2022_02_14_22_AM_47979777/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 34.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2(x2 + 4
)
y′′ + 3x

(
3x2 + 8

)
y′ +

(
−9x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

4x4 + 16x2) y′′ + (9x3 + 24x
)
y′ +

(
−9x2 + 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) =
9x2

4 + 6
x (x2 + 4)

q(x) = − 9x2 − 1
4x2 (x2 + 4)
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Table 718: Table p(x), q(x) singularites.

p(x) =
9x2
4 +6

x(x2+4)

singularity type
x = 0 “regular”

x = −2i “regular”
x = 2i “regular”

q(x) = − 9x2−1
4x2(x2+4)

singularity type
x = 0 “regular”

x = −2i “regular”
x = 2i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−2i, 2i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2(x2 + 4
)
y′′ +

(
9x3 + 24x

)
y′ +

(
−9x2 + 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2(x2 + 4

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
9x3 + 24x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
−9x2 + 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4xn+r+2an(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

16xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

9xn+r+2an(n+ r)
)

+
(

∞∑
n=0

24xn+ran(n+ r)
)

+
∞∑

n =0

(
−9xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

4an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

9xn+r+2an(n+ r) =
∞∑
n=2

9an−2(n+ r − 2)xn+r

∞∑
n =0

(
−9xn+r+2an

)
=

∞∑
n=2

(
−9an−2x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

4an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=0

16xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

9an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=0

24xn+ran(n+ r)
)

+
∞∑

n =2

(
−9an−2x

n+r
)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

16xn+ran(n+ r) (n+ r − 1) + 24xn+ran(n+ r) + anx
n+r = 0
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When n = 0 the above becomes

16xra0r(−1 + r) + 24xra0r + a0x
r = 0

Or
(16xrr(−1 + r) + 24xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(4r + 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(4r + 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = −1
4

r2 = −1
4

Since a0 6= 0 then the indicial equation becomes

(4r + 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = −1

4 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n− 1

4

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n− 1

4

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)4an−2(n+ r − 2) (n− 3 + r) + 16an(n+ r) (n+ r − 1)
+ 9an−2(n+ r − 2) + 24an(n+ r)− 9an−2 + an = 0

Solving for an from recursive equation (4) gives

an = −(n− 3 + r) an−2

1 + 4n+ 4r (4)

Which for the root r = −1
4 becomes

an = −(4n− 13) an−2

16n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1

4 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
1− r

9 + 4r
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Which for the root r = −1
4 becomes

a2 =
5
32

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1−r
9+4r

5
32

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1−r
9+4r

5
32

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
r2 − 1

(17 + 4r) (9 + 4r)
Which for the root r = −1

4 becomes

a4 = − 15
2048

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1−r
9+4r

5
32

a3 0 0
a4

r2−1
(17+4r)(9+4r) − 15

2048
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For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1−r
9+4r

5
32

a3 0 0
a4

r2−1
(17+4r)(9+4r) − 15

2048

a5 0 0

Using the above table, then the first solution y1(x) is

y1(x) =
1
x

1
4

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
1 + 5x2

32 − 15x4

2048 +O(x6)
x

1
4

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = −1
4 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table
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n bn,r an bn,r = d
dr
an,r bn

(
r = −1

4

)
b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2

1−r
9+4r

5
32 − 13

(9+4r)2 −13
64

b3 0 0 0 0
b4

r2−1
(17+4r)(9+4r) − 15

2048
104r2+338r+104
(17+4r)2(9+4r)2

13
8192

b5 0 0 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=

(
1 + 5x2

32 − 15x4

2048 +O(x6)
)
ln (x)

x
1
4

+
−13x2

64 + 13x4

8192 +O(x6)
x

1
4

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
1 + 5x2

32 − 15x4

2048 +O(x6)
)

x
1
4

+ c2


(
1 + 5x2

32 − 15x4

2048 +O(x6)
)
ln (x)

x
1
4

+
−13x2

64 + 13x4

8192 +O(x6)
x

1
4


Hence the final solution is

y = yh

=
c1
(
1 + 5x2

32 − 15x4

2048 +O(x6)
)

x
1
4

+ c2


(
1 + 5x2

32 − 15x4

2048 +O(x6)
)
ln (x)

x
1
4

+
−13x2

64 + 13x4

8192 +O(x6)
x

1
4
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Summary
The solution(s) found are the following

(1)
y =

c1
(
1 + 5x2

32 − 15x4

2048 +O(x6)
)

x
1
4

+ c2


(
1 + 5x2

32 − 15x4

2048 +O(x6)
)
ln (x)

x
1
4

+
−13x2

64 + 13x4

8192 +O(x6)
x

1
4


Verification of solutions

y =
c1
(
1 + 5x2

32 − 15x4

2048 +O(x6)
)

x
1
4

+ c2


(
1 + 5x2

32 − 15x4

2048 +O(x6)
)
ln (x)

x
1
4

+
−13x2

64 + 13x4

8192 +O(x6)
x

1
4


Verified OK.

15.38.1 Maple step by step solution

Let’s solve
4x2(x2 + 4) y′′ + (9x3 + 24x) y′ + (−9x2 + 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ =
(
9x2−1

)
y

4x2(x2+4) −
3
(
3x2+8

)
y′

4x(x2+4)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 3
(
3x2+8

)
y′

4x(x2+4) −
(
9x2−1

)
y

4x2(x2+4) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3
(
3x2+8

)
4x(x2+4) , P3(x) = − 9x2−1

4x2(x2+4)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3
2
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
16

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2(x2 + 4) y′′ + 3x(3x2 + 8) y′ + (−9x2 + 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + 4r)2 xr + a1(5 + 4r)2 x1+r +
(

∞∑
k=2

(
ak(4k + 4r + 1)2 + ak−2(4k + 4r + 1) (k − 3 + r)

)
xk+r

)
= 0
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• a0cannot be 0 by assumption, giving the indicial equation
(1 + 4r)2 = 0

• Values of r that satisfy the indicial equation
r = −1

4

• Each term must be 0
a1(5 + 4r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation

16
(

ak−2(k−3+r)
4 + ak

(
k + r + 1

4

)) (
k + r + 1

4

)
= 0

• Shift index using k− >k + 2

16
(

ak(k+r−1)
4 + ak+2

(
k + 9

4 + r
)) (

k + 9
4 + r

)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r−1)

4k+4r+9

• Recursion relation for r = −1
4

ak+2 = −ak
(
k− 5

4
)

4k+8

• Solution for r = −1
4[

y =
∞∑
k=0

akx
k− 1

4 , ak+2 = −ak
(
k− 5

4
)

4k+8 , a1 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 51� �
Order:=6;
dsolve(4*x^2*(4+x^2)*diff(y(x),x$2)+3*x*(8+3*x^2)*diff(y(x),x)+(1-9*x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x) =

(c2 ln (x) + c1)
(
1 + 5

32x
2 − 15

2048x
4 +O(x6)

)
+
(
−13

64x
2 + 13

8192x
4 +O(x6)

)
c2

x
1
4
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3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 77� �
AsymptoticDSolveValue[4*x^2*(4+x^2)*y''[x]+3*x*(8+3*x^2)*y'[x]+(1-9*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) →
c1
(
−15x4

2048 +
5x2

32 + 1
)

4
√
x

+ c2

 13x4

8192 −
13x2

64
4
√
x

+

(
−15x4

2048 +
5x2

32 + 1
)
log(x)

4
√
x
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15.39 problem 35
15.39.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5976

Internal problem ID [1387]
Internal file name [OUTPUT/1388_Sunday_June_05_2022_02_14_25_AM_93920342/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 35.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

3x2(x2 + 3
)
y′′ + x

(
11x2 + 3

)
y′ +

(
5x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

3x4 + 9x2) y′′ + (11x3 + 3x
)
y′ +

(
5x2 + 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 11x2 + 3
3x (x2 + 3)

q(x) = 5x2 + 1
3x2 (x2 + 3)

5968



Table 720: Table p(x), q(x) singularites.

p(x) = 11x2+3
3x(x2+3)

singularity type
x = 0 “regular”

x = −i
√
3 “regular”

x = i
√
3 “regular”

q(x) = 5x2+1
3x2(x2+3)

singularity type
x = 0 “regular”

x = −i
√
3 “regular”

x = i
√
3 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−i

√
3, i

√
3,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

3x2(x2 + 3
)
y′′ +

(
11x3 + 3x

)
y′ +

(
5x2 + 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
3x2(x2 + 3

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
11x3 + 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
5x2 + 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

3xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

11xn+r+2an(n+ r)
)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=0

5xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

3xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

3an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

11xn+r+2an(n+ r) =
∞∑
n=2

11an−2(n+ r − 2)xn+r

∞∑
n =0

5xn+r+2an =
∞∑
n=2

5an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

3an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

11an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=2

5an−2x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

9xn+ran(n+ r) (n+ r − 1) + 3xn+ran(n+ r) + anx
n+r = 0
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When n = 0 the above becomes

9xra0r(−1 + r) + 3xra0r + a0x
r = 0

Or
(9xrr(−1 + r) + 3xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(3r − 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(3r − 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 =
1
3

Since a0 6= 0 then the indicial equation becomes

(3r − 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1

3 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+ 1

3

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)3an−2(n+ r − 2) (n− 3 + r) + 9an(n+ r) (n+ r − 1)
+ 11an−2(n+ r − 2) + 3an(n+ r) + 5an−2 + an = 0

Solving for an from recursive equation (4) gives

an = −(n+ r − 1) an−2

−1 + 3n+ 3r (4)

Which for the root r = 1
3 becomes

an = −(3n− 2) an−2

9n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−1− r

5 + 3r
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Which for the root r = 1
3 becomes

a2 = −2
9

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−1−r
5+3r −2

9

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−1−r
5+3r −2

9

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
r2 + 4r + 3

9r2 + 48r + 55
Which for the root r = 1

3 becomes
a4 =

5
81

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−1−r
5+3r −2

9

a3 0 0
a4

r2+4r+3
9r2+48r+55

5
81
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For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−1−r
5+3r −2

9

a3 0 0
a4

r2+4r+3
9r2+48r+55

5
81

a5 0 0

Using the above table, then the first solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
1− 2x2

9 + 5x4

81 +O
(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
Where bn is found using

bn = d

dr
an,r

And the above is then evaluated at r = 1
3 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = 1

3

)
b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2

−1−r
5+3r −2

9 − 2
(5+3r)2 − 1

18

b3 0 0 0 0
b4

r2+4r+3
9r2+48r+55

5
81

12r2+56r+76
(9r2+48r+55)2

1
54

b5 0 0 0 0
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x
1
3

(
1− 2x2

9 + 5x4

81 +O
(
x6)) ln (x) + x

1
3

(
−x2

18 + x4

54 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3

(
1− 2x2

9 + 5x4

81 +O
(
x6))

+ c2

(
x

1
3

(
1− 2x2

9 + 5x4

81 +O
(
x6)) ln (x) + x

1
3

(
−x2

18 + x4

54 +O
(
x6)))

Hence the final solution is

y = yh

= c1x
1
3

(
1− 2x2

9 + 5x4

81 +O
(
x6))

+ c2

(
x

1
3

(
1− 2x2

9 + 5x4

81 +O
(
x6)) ln (x) + x

1
3

(
−x2

18 + x4

54 +O
(
x6)))

Summary
The solution(s) found are the following

(1)
y = c1x

1
3

(
1− 2x2

9 + 5x4

81 +O
(
x6))

+ c2

(
x

1
3

(
1− 2x2

9 + 5x4

81 +O
(
x6)) ln (x) + x

1
3

(
−x2

18 + x4

54 +O
(
x6)))

Verification of solutions

y = c1x
1
3

(
1− 2x2

9 + 5x4

81 +O
(
x6))

+ c2

(
x

1
3

(
1− 2x2

9 + 5x4

81 +O
(
x6)) ln (x) + x

1
3

(
−x2

18 + x4

54 +O
(
x6)))

Verified OK.
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15.39.1 Maple step by step solution

Let’s solve
3x2(x2 + 3) y′′ + (11x3 + 3x) y′ + (5x2 + 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
5x2+1

)
y

3x2(x2+3) −
(
11x2+3

)
y′

3x(x2+3)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
11x2+3

)
y′

3x(x2+3) +
(
5x2+1

)
y

3x2(x2+3) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 11x2+3
3x(x2+3) , P3(x) = 5x2+1

3x2(x2+3)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
9

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
3x2(x2 + 3) y′′ + x(11x2 + 3) y′ + (5x2 + 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + 3r)2 xr + a1(2 + 3r)2 x1+r +
(

∞∑
k=2

(
ak(3k + 3r − 1)2 + ak−2(3k + 3r − 1) (k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 3r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

3

• Each term must be 0
a1(2 + 3r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation

9
(
k + r − 1

3

) (ak−2(k+r−1)
3 + ak

(
k + r − 1

3

))
= 0

• Shift index using k− >k + 2

9
(
k + 5

3 + r
) (ak(k+r+1)

3 + ak+2
(
k + 5

3 + r
))

= 0

• Recursion relation that defines series solution to ODE

5977



ak+2 = −ak(k+r+1)
3k+3r+5

• Recursion relation for r = 1
3

ak+2 = −ak
(
k+ 4

3
)

3k+6

• Solution for r = 1
3[

y =
∞∑
k=0

akx
k+ 1

3 , ak+2 = −ak
(
k+ 4

3
)

3k+6 , a1 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful
-> solution has integrals; searching for one without integrals...

-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric solution without integrals succesful
<- hypergeometric successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 51� �
Order:=6;
dsolve(3*x^2*(3+x^2)*diff(y(x),x$2)+x*(3+11*x^2)*diff(y(x),x)+(1+5*x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x) = x

1
3

(
(c2 ln (x)+ c1)

(
1− 2

9x
2+ 5

81x
4+O

(
x6))+

(
− 1
18x

2+ 1
54x

4+O
(
x6)) c2

)
3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 42� �
AsymptoticDSolveValue[3*x^2*(3+x^2)*y'[x]+x*(3+11*x^2)*y'[x]+(1+5*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) →
c1
(
−1139x5

405 + 53x4

81 + 7x3

9 − 11x2

9 + x+ 1
)

3
√
x
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15.40 problem 36
15.40.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5989

Internal problem ID [1388]
Internal file name [OUTPUT/1389_Sunday_June_05_2022_02_14_30_AM_97257421/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 36.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2(4x2 + 1
)
y′′ + 32x3y′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

16x4 + 4x2) y′′ + 32x3y′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 8x
4x2 + 1

q(x) = 1
4x2 (4x2 + 1)
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Table 722: Table p(x), q(x) singularites.

p(x) = 8x
4x2+1

singularity type
x = − i

2 “regular”
x = i

2 “regular”

q(x) = 1
4x2(4x2+1)

singularity type
x = 0 “regular”
x = − i

2 “regular”
x = i

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
− i

2 ,
i
2 , 0,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2(4x2 + 1
)
y′′ + 32x3y′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2(4x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 32x3

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

16xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

32xn+r+2an(n+ r)
)

+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

16xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

16an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

32xn+r+2an(n+ r) =
∞∑
n=2

32an−2(n+ r − 2)xn+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

16an−2(n+r−2) (n−3+r)xn+r

)
+
(

∞∑
n=0

4xn+ran(n+r) (n+r−1)
)

+
(

∞∑
n=2

32an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + anx
n+r = 0

When n = 0 the above becomes

4xra0r(−1 + r) + a0x
r = 0

Or
(4xrr(−1 + r) + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(2r − 1)2 xr = 0
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Since the above is true for all x then the indicial equation becomes

(2r − 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 =
1
2

Since a0 6= 0 then the indicial equation becomes

(2r − 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1

2 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+ 1

2

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)16an−2(n+ r− 2) (n− 3+ r) + 4an(n+ r) (n+ r− 1)+ 32an−2(n+ r− 2)+ an = 0

Solving for an from recursive equation (4) gives

an = −16an−2(n2 + 2nr + r2 − 3n− 3r + 2)
4n2 + 8nr + 4r2 − 4n− 4r + 1 (4)

Which for the root r = 1
2 becomes

an = −an−2(4n2 − 8n+ 3)
n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = −16(1 + r) r
(2r + 3)2

Which for the root r = 1
2 becomes

a2 = −3
4

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 −16(1+r)r

(2r+3)2 −3
4
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For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 −16(1+r)r

(2r+3)2 −3
4

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
256(1 + r) r(r + 3) (r + 2)

(2r + 3)2 (7 + 2r)2

Which for the root r = 1
2 becomes

a4 =
105
64

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 −16(1+r)r

(2r+3)2 −3
4

a3 0 0
a4

256(1+r)r(r+3)(r+2)
(2r+3)2(7+2r)2

105
64

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 −16(1+r)r

(2r+3)2 −3
4

a3 0 0
a4

256(1+r)r(r+3)(r+2)
(2r+3)2(7+2r)2

105
64

a5 0 0

Using the above table, then the first solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− 3x2

4 + 105x4

64 +O
(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1
2 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = 1

2

)
b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2 −16(1+r)r

(2r+3)2 −3
4

−64r−48
(2r+3)3 −5

4

b3 0 0 0 0
b4

256(1+r)r(r+3)(r+2)
(2r+3)2(7+2r)2

105
64

4096r4+29696r3+78336r2+87552r+32256
(2r+3)3(7+2r)3

389
128

b5 0 0 0 0
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
√
x

(
1− 3x2

4 + 105x4

64 +O
(
x6)) ln (x) +

√
x

(
−5x2

4 + 389x4

128 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− 3x2

4 + 105x4

64 +O
(
x6))

+ c2

(√
x

(
1− 3x2

4 + 105x4

64 +O
(
x6)) ln (x)+

√
x

(
−5x2

4 + 389x4

128 +O
(
x6)))

Hence the final solution is

y = yh

= c1
√
x

(
1− 3x2

4 + 105x4

64 +O
(
x6))

+ c2

(√
x

(
1− 3x2

4 + 105x4

64 +O
(
x6)) ln (x) +

√
x

(
−5x2

4 + 389x4

128 +O
(
x6)))

Summary
The solution(s) found are the following

(1)
y = c1

√
x

(
1− 3x2

4 + 105x4

64 +O
(
x6))

+ c2

(√
x

(
1− 3x2

4 + 105x4

64 +O
(
x6)) ln (x) +

√
x

(
−5x2

4 + 389x4

128 +O
(
x6)))

Verification of solutions

y = c1
√
x

(
1− 3x2

4 + 105x4

64 +O
(
x6))

+ c2

(√
x

(
1− 3x2

4 + 105x4

64 +O
(
x6)) ln (x) +

√
x

(
−5x2

4 + 389x4

128 +O
(
x6)))

Verified OK.
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15.40.1 Maple step by step solution

Let’s solve
4x2(4x2 + 1) y′′ + 32x3y′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

4x2(4x2+1) −
8xy′
4x2+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 8xy′

4x2+1 +
y

4x2(4x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 8x
4x2+1 , P3(x) = 1

4x2(4x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2(4x2 + 1) y′′ + 32x3y′ + y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x3 · y′ to series expansion

x3 · y′ =
∞∑
k=0

ak(k + r)xk+r+2
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◦ Shift index using k− >k − 2

x3 · y′ =
∞∑
k=2

ak−2(k − 2 + r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r)2 xr + a1(1 + 2r)2 x1+r +
(

∞∑
k=2

(
ak(2k + 2r − 1)2 + 16ak−2(k − 2 + r) (k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

2

• Each term must be 0
a1(1 + 2r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(2k + 2r − 1)2 + 16ak−2(k − 2 + r) (k + r − 1) = 0

• Shift index using k− >k + 2
ak+2(2k + 3 + 2r)2 + 16ak(k + r) (k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −16ak(k+r)(k+r+1)

(2k+3+2r)2

• Recursion relation for r = 1
2

ak+2 = −16ak
(
k+ 1

2
)(
k+ 3

2
)

(2k+4)2

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −16ak
(
k+ 1

2
)(
k+ 3

2
)

(2k+4)2 , a1 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 51� �
Order:=6;
dsolve(4*x^2*(1+4*x^2)*diff(y(x),x$2)+32*x^3*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �
y(x) =

√
x

(
(c2 ln (x)+c1)

(
1− 3

4x
2+105

64 x4+O
(
x6))+(−5

4x
2+389

128x
4+O

(
x6)) c2

)
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 77� �
AsymptoticDSolveValue[4*x^2*(1+4*x^2)*y''[x]+32*x^3*y'[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x

(
105x4

64 − 3x2

4 + 1
)

+ c2

(√
x

(
389x4

128 − 5x2

4

)
+
√
x

(
105x4

64 − 3x2

4 + 1
)
log(x)

)
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15.41 problem 37
15.41.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6000

Internal problem ID [1389]
Internal file name [OUTPUT/1390_Sunday_June_05_2022_02_14_33_AM_15941403/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 37.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

9x2y′′ − 3x
(
−2x2 + 7

)
y′ +

(
2x2 + 25

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

9x2y′′ +
(
6x3 − 21x

)
y′ +

(
2x2 + 25

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2x2 − 7
3x

q(x) = 2x2 + 25
9x2
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Table 724: Table p(x), q(x) singularites.

p(x) = 2x2−7
3x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = 2x2+25
9x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

9x2y′′ +
(
6x3 − 21x

)
y′ +

(
2x2 + 25

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
9x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
6x3 − 21x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
2x2 + 25

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

6xn+r+2an(n+ r)
)

+
∞∑

n =0

(
−21xn+ran(n+ r)

)
+
(

∞∑
n=0

2xn+r+2an

)
+
(

∞∑
n=0

25anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

6xn+r+2an(n+ r) =
∞∑
n=2

6an−2(n+ r − 2)xn+r

∞∑
n =0

2xn+r+2an =
∞∑
n=2

2an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

6an−2(n+ r − 2)xn+r

)

+
∞∑

n =0

(
−21xn+ran(n+ r)

)
+
(

∞∑
n=2

2an−2x
n+r

)
+
(

∞∑
n=0

25anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

9xn+ran(n+ r) (n+ r − 1)− 21xn+ran(n+ r) + 25anxn+r = 0

When n = 0 the above becomes

9xra0r(−1 + r)− 21xra0r + 25a0xr = 0

Or
(9xrr(−1 + r)− 21xrr + 25xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(3r − 5)2 xr = 0
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Since the above is true for all x then the indicial equation becomes

(3r − 5)2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
5
3

r2 =
5
3

Since a0 6= 0 then the indicial equation becomes

(3r − 5)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 5

3 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+ 5

3

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+ 5

3

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)9an(n+ r) (n+ r − 1) + 6an−2(n+ r − 2)− 21an(n+ r) + 2an−2 + 25an = 0

Solving for an from recursive equation (4) gives

an = − 2an−2

3n+ 3r − 5 (4)

Which for the root r = 5
3 becomes

an = −2an−2

3n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 5

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 2
1 + 3r

Which for the root r = 5
3 becomes

a2 = −1
3

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 2

1+3r −1
3

For n = 3, using the above recursive equation gives

a3 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 2

1+3r −1
3

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
4

9r2 + 24r + 7
Which for the root r = 5

3 becomes
a4 =

1
18

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 2

1+3r −1
3

a3 0 0
a4

4
9r2+24r+7

1
18

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 2

1+3r −1
3

a3 0 0
a4

4
9r2+24r+7

1
18

a5 0 0
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Using the above table, then the first solution y1(x) is

y1(x) = x
5
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
5
3

(
1− x2

3 + x4

18 +O
(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
Where bn is found using

bn = d

dr
an,r

And the above is then evaluated at r = 5
3 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = 5

3

)
b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2 − 2

1+3r −1
3

6
(1+3r)2

1
6

b3 0 0 0 0
b4

4
9r2+24r+7

1
18

−96−72r
(9r2+24r+7)2 − 1

24

b5 0 0 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x
5
3

(
1− x2

3 + x4

18 +O
(
x6)) ln (x) + x

5
3

(
x2

6 − x4

24 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
5
3

(
1− x2

3 + x4

18 +O
(
x6))

+ c2

(
x

5
3

(
1− x2

3 + x4

18 +O
(
x6)) ln (x) + x

5
3

(
x2

6 − x4

24 +O
(
x6)))
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Hence the final solution is

y = yh

= c1x
5
3

(
1− x2

3 + x4

18 +O
(
x6))

+ c2

(
x

5
3

(
1− x2

3 + x4

18 +O
(
x6)) ln (x) + x

5
3

(
x2

6 − x4

24 +O
(
x6)))

Summary
The solution(s) found are the following

(1)
y = c1x

5
3

(
1− x2

3 + x4

18 +O
(
x6))

+ c2

(
x

5
3

(
1− x2

3 + x4

18 +O
(
x6)) ln (x) + x

5
3

(
x2

6 − x4

24 +O
(
x6)))

Verification of solutions

y = c1x
5
3

(
1− x2

3 + x4

18 +O
(
x6))

+ c2

(
x

5
3

(
1− x2

3 + x4

18 +O
(
x6)) ln (x) + x

5
3

(
x2

6 − x4

24 +O
(
x6)))

Verified OK.

15.41.1 Maple step by step solution

Let’s solve
9x2y′′ + (6x3 − 21x) y′ + (2x2 + 25) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
2x2+25

)
y

9x2 −
(
2x2−7

)
y′

3x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
2x2−7

)
y′

3x +
(
2x2+25

)
y

9x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions
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[
P2(x) = 2x2−7

3x , P3(x) = 2x2+25
9x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −7
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 25
9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
9x2y′′ + 3x(2x2 − 7) y′ + (2x2 + 25) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions
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a0(−5 + 3r)2 xr + a1(−2 + 3r)2 x1+r +
(

∞∑
k=2

(
ak(3k + 3r − 5)2 + 2ak−2(3k + 3r − 5)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−5 + 3r)2 = 0

• Values of r that satisfy the indicial equation
r = 5

3

• Each term must be 0
a1(−2 + 3r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(3k + 3r − 5)2 + 2ak−2(3k + 3r − 5) = 0

• Shift index using k− >k + 2
ak+2(3k + 3r + 1)2 + 2ak(3k + 3r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 2ak

3k+3r+1

• Recursion relation for r = 5
3

ak+2 = − 2ak
3k+6

• Solution for r = 5
3[

y =
∞∑
k=0

akx
k+ 5

3 , ak+2 = − 2ak
3k+6 , a1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 51� �
Order:=6;
dsolve(9*x^2*diff(y(x),x$2)-3*x*(7-2*x^2)*diff(y(x),x)+(25+2*x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x) = x

5
3

(
(c2 ln (x) + c1)

(
1− 1

3x
2 + 1

18x
4 +O

(
x6))+

(
1
6x

2 − 1
24x

4 +O
(
x6)) c2

)
3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 77� �
AsymptoticDSolveValue[9*x^2*y''[x]-3*x*(7-2*x^2)*y'[x]+(25+2*x^2)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
x4

18 − x2

3 + 1
)
x5/3 + c2

((
x2

6 − x4

24

)
x5/3 +

(
x4

18 − x2

3 + 1
)
x5/3 log(x)

)
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15.42 problem 38
15.42.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6012

Internal problem ID [1390]
Internal file name [OUTPUT/1391_Sunday_June_05_2022_02_14_37_AM_82072267/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 38.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

x2(2x2 + 1
)
y′′ + x

(
7x2 + 3

)
y′ +

(
−3x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

2x4 + x2) y′′ + (7x3 + 3x
)
y′ +

(
−3x2 + 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 7x2 + 3
x (2x2 + 1)

q(x) = − 3x2 − 1
x2 (2x2 + 1)
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Table 726: Table p(x), q(x) singularites.

p(x) = 7x2+3
x(2x2+1)

singularity type
x = 0 “regular”

x = − i
√
2

2 “regular”

x = i
√
2

2 “regular”

q(x) = − 3x2−1
x2(2x2+1)

singularity type
x = 0 “regular”

x = − i
√
2

2 “regular”

x = i
√
2

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,− i

√
2

2 , i
√
2

2 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(2x2 + 1
)
y′′ +

(
7x3 + 3x

)
y′ +

(
−3x2 + 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(2x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
7x3 + 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
−3x2 + 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

7xn+r+2an(n+ r)
)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
∞∑

n =0

(
−3xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

2an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

7xn+r+2an(n+ r) =
∞∑
n=2

7an−2(n+ r − 2)xn+r

∞∑
n =0

(
−3xn+r+2an

)
=

∞∑
n=2

(
−3an−2x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

2an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

7an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
∞∑

n =2

(
−3an−2x

n+r
)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 3xn+ran(n+ r) + anx
n+r = 0
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When n = 0 the above becomes

xra0r(−1 + r) + 3xra0r + a0x
r = 0

Or
(xrr(−1 + r) + 3xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r + 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(r + 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = −1
r2 = −1

Since a0 6= 0 then the indicial equation becomes

(r + 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = −1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n−1

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n−1

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)2an−2(n+ r − 2) (n− 3 + r) + an(n+ r) (n+ r − 1)
+ 7an−2(n+ r − 2) + 3an(n+ r)− 3an−2 + an = 0

Solving for an from recursive equation (4) gives

an = −(2n+ 2r − 5) an−2

1 + n+ r
(4)

Which for the root r = −1 becomes

an = an−2(7− 2n)
n

(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
1− 2r
3 + r
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Which for the root r = −1 becomes

a2 =
3
2

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1−2r
3+r

3
2

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1−2r
3+r

3
2

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
4r2 + 4r − 3
(5 + r) (3 + r)

Which for the root r = −1 becomes

a4 = −3
8

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1−2r
3+r

3
2

a3 0 0
a4

4r2+4r−3
(5+r)(3+r) −3

8
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For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1−2r
3+r

3
2

a3 0 0
a4

4r2+4r−3
(5+r)(3+r) −3

8

a5 0 0

Using the above table, then the first solution y1(x) is

y1(x) =
1
x

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
1 + 3x2

2 − 3x4

8 +O(x6)
x

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
Where bn is found using

bn = d

dr
an,r

And the above is then evaluated at r = −1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = −1)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2

1−2r
3+r

3
2 − 7

(3+r)2 −7
4

b3 0 0 0 0
b4

4r2+4r−3
(5+r)(3+r) −3

8
28r2+126r+84
(5+r)2(3+r)2 − 7

32

b5 0 0 0 0
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=

(
1 + 3x2

2 − 3x4

8 +O(x6)
)
ln (x)

x
+

−7x2

4 − 7x4

32 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
1 + 3x2

2 − 3x4

8 +O(x6)
)

x

+ c2


(
1 + 3x2

2 − 3x4

8 +O(x6)
)
ln (x)

x
+

−7x2

4 − 7x4

32 +O(x6)
x


Hence the final solution is

y = yh

=
c1
(
1 + 3x2

2 − 3x4

8 +O(x6)
)

x

+ c2


(
1 + 3x2

2 − 3x4

8 +O(x6)
)
ln (x)

x
+

−7x2

4 − 7x4

32 +O(x6)
x


Summary
The solution(s) found are the following

(1)
y =

c1
(
1 + 3x2

2 − 3x4

8 +O(x6)
)

x

+ c2


(
1 + 3x2

2 − 3x4

8 +O(x6)
)
ln (x)

x
+

−7x2

4 − 7x4

32 +O(x6)
x



6011



Verification of solutions

y =
c1
(
1 + 3x2

2 − 3x4

8 +O(x6)
)

x

+ c2


(
1 + 3x2

2 − 3x4

8 +O(x6)
)
ln (x)

x
+

−7x2

4 − 7x4

32 +O(x6)
x


Verified OK.

15.42.1 Maple step by step solution

Let’s solve
x2(2x2 + 1) y′′ + (7x3 + 3x) y′ + (−3x2 + 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ =
(
3x2−1

)
y

x2(2x2+1) −
(
7x2+3

)
y′

x(2x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
7x2+3

)
y′

x(2x2+1) −
(
3x2−1

)
y

x2(2x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 7x2+3
x(2x2+1) , P3(x) = − 3x2−1

x2(2x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
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x2(2x2 + 1) y′′ + x(7x2 + 3) y′ + (−3x2 + 1) y = 0
• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + r)2 xr + a1(2 + r)2 x1+r +
(

∞∑
k=2

(
ak(k + r + 1)2 + ak−2(k + r + 1) (2k − 5 + 2r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −1

• Each term must be 0
a1(2 + r)2 = 0

• Solve for the dependent coefficient(s)
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a1 = 0
• Each term in the series must be 0, giving the recursion relation

(k + r + 1) (ak(k + r + 1) + ak−2(2k − 5 + 2r)) = 0
• Shift index using k− >k + 2

(k + r + 3) (ak+2(k + r + 3) + ak(2k + 2r − 1)) = 0
• Recursion relation that defines series solution to ODE

ak+2 = −ak(2k+2r−1)
k+r+3

• Recursion relation for r = −1
ak+2 = −ak(2k−3)

k+2

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = −ak(2k−3)

k+2 , a1 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 51� �
Order:=6;
dsolve(x^2*(1+2*x^2)*diff(y(x),x$2)+x*(3+7*x^2)*diff(y(x),x)+(1-3*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(c2 ln (x) + c1)

(
1 + 3

2x
2 − 3

8x
4 +O(x6)

)
+
(
−7

4x
2 − 7

32x
4 +O(x6)

)
c2

x
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 71� �
AsymptoticDSolveValue[x^2*(1+2*x^2)*y''[x]+x*(3+7*x^2)*y'[x]+(1-3*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) →
c1
(
−3x4

8 + 3x2

2 + 1
)

x
+ c2

−7x4

32 − 7x2

4
x

+

(
−3x4

8 + 3x2

2 + 1
)
log(x)

x
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15.43 problem 39
15.43.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6024

Internal problem ID [1391]
Internal file name [OUTPUT/1392_Sunday_June_05_2022_02_14_40_AM_93462567/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 39.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

x2(x2 + 1
)
y′′ + x

(
8x2 + 3

)
y′ +

(
12x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x4 + x2) y′′ + (8x3 + 3x
)
y′ +

(
12x2 + 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 8x2 + 3
x (x2 + 1)

q(x) = 12x2 + 1
x2 (x2 + 1)
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Table 728: Table p(x), q(x) singularites.

p(x) = 8x2+3
x(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

q(x) = 12x2+1
x2(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 + 1
)
y′′ +

(
8x3 + 3x

)
y′ +

(
12x2 + 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
8x3 + 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
12x2 + 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

8xn+r+2an(n+ r)
)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=0

12xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

8xn+r+2an(n+ r) =
∞∑
n=2

8an−2(n+ r − 2)xn+r

∞∑
n =0

12xn+r+2an =
∞∑
n=2

12an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+r−2) (n−3+r)xn+r

)
+
(

∞∑
n=0

xn+ran(n+r) (n+r−1)
)

+
(

∞∑
n=2

8an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=2

12an−2x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 3xn+ran(n+ r) + anx
n+r = 0
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When n = 0 the above becomes

xra0r(−1 + r) + 3xra0r + a0x
r = 0

Or
(xrr(−1 + r) + 3xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r + 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(r + 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = −1
r2 = −1

Since a0 6= 0 then the indicial equation becomes

(r + 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = −1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n−1

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n−1

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r) + an(n+ r) (n+ r − 1)
+ 8an−2(n+ r − 2) + 3an(n+ r) + 12an−2 + an = 0

Solving for an from recursive equation (4) gives

an = −(n+ r + 2) an−2

1 + n+ r
(4)

Which for the root r = −1 becomes

an = −(n+ 1) an−2

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−4− r

3 + r
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Which for the root r = −1 becomes

a2 = −3
2

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4−r
3+r

−3
2

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4−r
3+r

−3
2

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
r2 + 10r + 24
(5 + r) (3 + r)

Which for the root r = −1 becomes

a4 =
15
8

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4−r
3+r

−3
2

a3 0 0
a4

r2+10r+24
(5+r)(3+r)

15
8
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For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4−r
3+r

−3
2

a3 0 0
a4

r2+10r+24
(5+r)(3+r)

15
8

a5 0 0

Using the above table, then the first solution y1(x) is

y1(x) =
1
x

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
1− 3x2

2 + 15x4

8 +O(x6)
x

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
Where bn is found using

bn = d

dr
an,r

And the above is then evaluated at r = −1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = −1)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2

−4−r
3+r

−3
2

1
(3+r)2

1
4

b3 0 0 0 0
b4

r2+10r+24
(5+r)(3+r)

15
8

−2r2−18r−42
(5+r)2(3+r)2 −13

32

b5 0 0 0 0
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=

(
1− 3x2

2 + 15x4

8 +O(x6)
)
ln (x)

x
+

x2

4 − 13x4

32 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
1− 3x2

2 + 15x4

8 +O(x6)
)

x

+ c2


(
1− 3x2

2 + 15x4

8 +O(x6)
)
ln (x)

x
+

x2

4 − 13x4

32 +O(x6)
x


Hence the final solution is

y = yh

=
c1
(
1− 3x2

2 + 15x4

8 +O(x6)
)

x

+ c2


(
1− 3x2

2 + 15x4

8 +O(x6)
)
ln (x)

x
+

x2

4 − 13x4

32 +O(x6)
x


Summary
The solution(s) found are the following

(1)
y =

c1
(
1− 3x2

2 + 15x4

8 +O(x6)
)

x

+ c2


(
1− 3x2

2 + 15x4

8 +O(x6)
)
ln (x)

x
+

x2

4 − 13x4

32 +O(x6)
x
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Verification of solutions

y =
c1
(
1− 3x2

2 + 15x4

8 +O(x6)
)

x

+ c2


(
1− 3x2

2 + 15x4

8 +O(x6)
)
ln (x)

x
+

x2

4 − 13x4

32 +O(x6)
x


Verified OK.

15.43.1 Maple step by step solution

Let’s solve
x2(x2 + 1) y′′ + (8x3 + 3x) y′ + (12x2 + 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
12x2+1

)
y

x2(x2+1) −
(
8x2+3

)
y′

x(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
8x2+3

)
y′

x(x2+1) +
(
12x2+1

)
y

x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 8x2+3
x(x2+1) , P3(x) = 12x2+1

x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
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x2(x2 + 1) y′′ + x(8x2 + 3) y′ + (12x2 + 1) y = 0
• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + r)2 xr + a1(2 + r)2 x1+r +
(

∞∑
k=2

(
ak(k + r + 1)2 + ak−2(k + 2 + r) (k + r + 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −1

• Each term must be 0
a1(2 + r)2 = 0

• Solve for the dependent coefficient(s)

6025



a1 = 0
• Each term in the series must be 0, giving the recursion relation

(k + r + 1) (ak(k + r + 1) + ak−2(k + 2 + r)) = 0
• Shift index using k− >k + 2

(k + r + 3) (ak+2(k + r + 3) + ak(k + r + 4)) = 0
• Recursion relation that defines series solution to ODE

ak+2 = −ak(k+r+4)
k+r+3

• Recursion relation for r = −1
ak+2 = −ak(k+3)

k+2

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = −ak(k+3)

k+2 , a1 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 51� �
Order:=6;
dsolve(x^2*(1+x^2)*diff(y(x),x$2)+x*(3+8*x^2)*diff(y(x),x)+(1+12*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(c2 ln (x) + c1)

(
1− 3

2x
2 + 15

8 x
4 +O(x6)

)
+
(1
4x

2 − 13
32x

4 +O(x6)
)
c2

x
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 71� �
AsymptoticDSolveValue[x^2*(1+x^2)*y''[x]+x*(3+8*x^2)*y'[x]+(1+12*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) →
c1
(

15x4

8 − 3x2

2 + 1
)

x
+ c2

 x2

4 − 13x4

32
x

+

(
15x4

8 − 3x2

2 + 1
)
log(x)

x
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15.44 problem 40
15.44.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6035

Internal problem ID [1392]
Internal file name [OUTPUT/1393_Sunday_June_05_2022_02_14_43_AM_10284365/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 40.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − x
(
−x2 + 1

)
y′ + y

(
x2 + 1

)
= 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
x3 − x

)
y′ + y

(
x2 + 1

)
= 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x2 − 1
x

q(x) = x2 + 1
x2
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Table 730: Table p(x), q(x) singularites.

p(x) = x2−1
x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = x2+1
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
x3 − x

)
y′ + y

(
x2 + 1

)
= 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x3 − x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)(
x2 + 1

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+r+2an(n+ r)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) =
∞∑
n=2

an−2(n+ r − 2)xn+r

∞∑
n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

an−2(n+ r − 2)xn+r

)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=2

an−2x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− xra0r + a0x
r = 0

Or
(xrr(−1 + r)− xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(−1 + r)2 xr = 0
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Since the above is true for all x then the indicial equation becomes

(−1 + r)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 1

Since a0 6= 0 then the indicial equation becomes

(−1 + r)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+1

)
We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an−2(n+ r − 2)− an(n+ r) + an−2 + an = 0

Solving for an from recursive equation (4) gives

an = − an−2

n+ r − 1 (4)

Which for the root r = 1 becomes

an = −an−2

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
1 + r

Which for the root r = 1 becomes
a2 = −1

2
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

1+r
−1

2

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

6032



n an,r an

a0 1 1
a1 0 0
a2 − 1

1+r
−1

2

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

(3 + r) (1 + r)

Which for the root r = 1 becomes
a4 =

1
8

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

1+r
−1

2

a3 0 0
a4

1
(3+r)(1+r)

1
8

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

1+r
−1

2

a3 0 0
a4

1
(3+r)(1+r)

1
8

a5 0 0
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Using the above table, then the first solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− x2

2 + x4

8 +O
(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
Where bn is found using

bn = d

dr
an,r

And the above is then evaluated at r = 1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 1)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2 − 1

1+r
−1

2
1

(1+r)2
1
4

b3 0 0 0 0
b4

1
(3+r)(1+r)

1
8

−4−2r
(3+r)2(1+r)2 − 3

32

b5 0 0 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x

(
1− x2

2 + x4

8 +O
(
x6)) ln (x) + x

(
x2

4 − 3x4

32 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− x2

2 + x4

8 +O
(
x6))

+ c2

(
x

(
1− x2

2 + x4

8 +O
(
x6)) ln (x) + x

(
x2

4 − 3x4

32 +O
(
x6)))
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Hence the final solution is

y = yh

= c1x

(
1− x2

2 + x4

8 +O
(
x6))

+ c2

(
x

(
1− x2

2 + x4

8 +O
(
x6)) ln (x) + x

(
x2

4 − 3x4

32 +O
(
x6)))

Summary
The solution(s) found are the following

(1)
y = c1x

(
1− x2

2 + x4

8 +O
(
x6))

+ c2

(
x

(
1− x2

2 + x4

8 +O
(
x6)) ln (x) + x

(
x2

4 − 3x4

32 +O
(
x6)))

Verification of solutions

y = c1x

(
1− x2

2 + x4

8 +O
(
x6))

+ c2

(
x

(
1− x2

2 + x4

8 +O
(
x6)) ln (x) + x

(
x2

4 − 3x4

32 +O
(
x6)))

Verified OK.

15.44.1 Maple step by step solution

Let’s solve
x2y′′ + (x3 − x) y′ + y(x2 + 1) = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2+1

)
y

x2 −
(
x2−1

)
y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
x2−1

)
y′

x
+
(
x2+1

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions
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[
P2(x) = x2−1

x
, P3(x) = x2+1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + x(x2 − 1) y′ + y(x2 + 1) = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions
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a0(−1 + r)2 xr + a1r
2x1+r +

(
∞∑
k=2

(
ak(k + r − 1)2 + ak−2(k + r − 1)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
a1r

2 = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

(k + r − 1) (ak(k + r − 1) + ak−2) = 0
• Shift index using k− >k + 2

(k + r + 1) (ak+2(k + r + 1) + ak) = 0
• Recursion relation that defines series solution to ODE

ak+2 = − ak
k+r+1

• Recursion relation for r = 1
ak+2 = − ak

k+2

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = − ak

k+2 , a1 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 45� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)-x*(1-x^2)*diff(y(x),x)+(1+x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x) = x

(
(c2 ln (x) + c1)

(
1− 1

2x
2 + 1

8x
4 +O

(
x6))+

(
1
4x

2 − 3
32x

4 +O
(
x6)) c2

)
3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 65� �
AsymptoticDSolveValue[x^2*y''[x]-x*(1-x^2)*y'[x]+(1+x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x

(
x4

8 − x2

2 + 1
)
+ c2

(
x

(
x2

4 − 3x4

32

)
+ x

(
x4

8 − x2

2 + 1
)
log(x)

)
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15.45 problem 41
15.45.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6047

Internal problem ID [1393]
Internal file name [OUTPUT/1394_Sunday_June_05_2022_02_14_46_AM_10385741/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 41.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(−2x2 + 1
)
y′′ + x

(
−9x2 + 5

)
y′ +

(
−3x2 + 4

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

−2x4 + x2) y′′ + (−9x3 + 5x
)
y′ +

(
−3x2 + 4

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 9x2 − 5
x (2x2 − 1)

q(x) = 3x2 − 4
x2 (2x2 − 1)
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Table 732: Table p(x), q(x) singularites.

p(x) = 9x2−5
x(2x2−1)

singularity type
x = 0 “regular”

x = −
√
2
2 “regular”

x =
√
2
2 “regular”

q(x) = 3x2−4
x2(2x2−1)

singularity type
x = 0 “regular”

x = −
√
2
2 “regular”

x =
√
2
2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−

√
2
2 ,

√
2
2 ,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x2(2x2 − 1
)
+
(
−9x3 + 5x

)
y′ +

(
−3x2 + 4

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2(2x2 − 1

)
+
(
−9x3 + 5x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
−3x2 + 4

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−2xn+r+2an(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−9xn+r+2an(n+ r)

)
+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
∞∑

n =0

(
−3xn+r+2an

)
+
(

∞∑
n=0

4anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2xn+r+2an(n+ r) (n+ r − 1)

)
=

∞∑
n=2

(
−2an−2(n+ r − 2) (n− 3 + r)xn+r

)
∞∑

n =0

(
−9xn+r+2an(n+ r)

)
=

∞∑
n=2

(
−9an−2(n+ r − 2)xn+r

)
∞∑

n =0

(
−3xn+r+2an

)
=

∞∑
n=2

(
−3an−2x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =2

(
−2an−2(n+r−2) (n−3+r)xn+r

)
+
(

∞∑
n=0

xn+ran(n+r) (n+r−1)
)

+
∞∑

n =2

(
−9an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
∞∑

n =2

(
−3an−2x

n+r
)
+
(

∞∑
n=0

4anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 5xn+ran(n+ r) + 4anxn+r = 0
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When n = 0 the above becomes

xra0r(−1 + r) + 5xra0r + 4a0xr = 0

Or
(xrr(−1 + r) + 5xrr + 4xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r + 2)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(r + 2)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = −2
r2 = −2

Since a0 6= 0 then the indicial equation becomes

(r + 2)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = −2, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n−2

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n−2

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)−2an−2(n+ r − 2) (n− 3 + r) + an(n+ r) (n+ r − 1)
− 9an−2(n+ r − 2) + 5an(n+ r)− 3an−2 + 4an = 0

Solving for an from recursive equation (4) gives

an = an−2(2n2 + 4nr + 2r2 − n− r − 3)
n2 + 2nr + r2 + 4n+ 4r + 4 (4)

Which for the root r = −2 becomes

an = an−2(2n2 − 9n+ 7)
n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
2r2 + 7r + 3
(r + 4)2
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Which for the root r = −2 becomes

a2 = −3
4

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

2r2+7r+3
(r+4)2 −3

4

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

2r2+7r+3
(r+4)2 −3

4

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
4r4 + 44r3 + 161r2 + 220r + 75

(r + 4)2 (r + 6)2

Which for the root r = −2 becomes

a4 = − 9
64

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

2r2+7r+3
(r+4)2 −3

4

a3 0 0
a4

4r4+44r3+161r2+220r+75
(r+4)2(r+6)2 − 9

64
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For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

2r2+7r+3
(r+4)2 −3

4

a3 0 0
a4

4r4+44r3+161r2+220r+75
(r+4)2(r+6)2 − 9

64

a5 0 0

Using the above table, then the first solution y1(x) is

y1(x) =
1
x2

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
1− 3x2

4 − 9x4

64 +O(x6)
x2

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = −2. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table
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n bn,r an bn,r = d
dr
an,r bn(r = −2)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2

2r2+7r+3
(r+4)2 −3

4
9r+22
(r+4)3

1
2

b3 0 0 0 0
b4

4r4+44r3+161r2+220r+75
(r+4)2(r+6)2 − 9

64
36r4+502r3+2508r2+5228r+3780

(r+4)3(r+6)3 − 21
128

b5 0 0 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=

(
1− 3x2

4 − 9x4

64 +O(x6)
)
ln (x)

x2 +
x2

2 − 21x4

128 +O(x6)
x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
1− 3x2

4 − 9x4

64 +O(x6)
)

x2 +c2


(
1− 3x2

4 − 9x4

64 +O(x6)
)
ln (x)

x2 +
x2

2 − 21x4

128 +O(x6)
x2


Hence the final solution is

y = yh

=
c1
(
1− 3x2

4 − 9x4

64 +O(x6)
)

x2 +c2


(
1− 3x2

4 − 9x4

64 +O(x6)
)
ln (x)

x2 +
x2

2 − 21x4

128 +O(x6)
x2


Summary
The solution(s) found are the following

(1)
y =

c1
(
1− 3x2

4 − 9x4

64 +O(x6)
)

x2

+ c2


(
1− 3x2

4 − 9x4

64 +O(x6)
)
ln (x)

x2 +
x2

2 − 21x4

128 +O(x6)
x2
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Verification of solutions

y =
c1
(
1− 3x2

4 − 9x4

64 +O(x6)
)

x2

+ c2


(
1− 3x2

4 − 9x4

64 +O(x6)
)
ln (x)

x2 +
x2

2 − 21x4

128 +O(x6)
x2


Verified OK.

15.45.1 Maple step by step solution

Let’s solve
−y′′x2(2x2 − 1) + (−9x3 + 5x) y′ + (−3x2 + 4) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
3x2−4

)
y

x2(2x2−1) −
(
9x2−5

)
y′

x(2x2−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
9x2−5

)
y′

x(2x2−1) +
(
3x2−4

)
y

x2(2x2−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 9x2−5
x(2x2−1) , P3(x) = 3x2−4

x2(2x2−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
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y′′x2(2x2 − 1) + x(9x2 − 5) y′ + (3x2 − 4) y = 0
• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(2 + r)2 xr − a1(3 + r)2 x1+r +
(

∞∑
k=2

(
−ak(k + r + 2)2 + ak−2(k + 1 + r) (2k − 3 + 2r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(2 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −2

• Each term must be 0
−a1(3 + r)2 = 0

• Solve for the dependent coefficient(s)
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a1 = 0
• Each term in the series must be 0, giving the recursion relation

−ak(k + r + 2)2 + ak−2(k + 1 + r) (2k − 3 + 2r) = 0
• Shift index using k− >k + 2

−ak+2(k + 4 + r)2 + ak(k + r + 3) (2k + 2r + 1) = 0
• Recursion relation that defines series solution to ODE

ak+2 = ak(k+r+3)(2k+2r+1)
(k+4+r)2

• Recursion relation for r = −2
ak+2 = ak(k+1)(2k−3)

(k+2)2

• Solution for r = −2[
y =

∞∑
k=0

akx
k−2, ak+2 = ak(k+1)(2k−3)

(k+2)2 , a1 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful
-> solution has integrals; searching for one without integrals...

-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric solution without integrals succesful
<- hypergeometric successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 51� �
Order:=6;
dsolve(x^2*(1-2*x^2)*diff(y(x),x$2)+x*(5-9*x^2)*diff(y(x),x)+(4-3*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(c2 ln (x) + c1)

(
1− 3

4x
2 − 9

64x
4 +O(x6)

)
+
(1
2x

2 − 21
128x

4 +O(x6)
)
c2

x2
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 71� �
AsymptoticDSolveValue[x^2*(1-2*x^2)*y''[x]+x*(5-9*x^2)*y'[x]+(4-3*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) →
c1
(
−9x4

64 − 3x2

4 + 1
)

x2 + c2

 x2

2 − 21x4

128
x2 +

(
−9x4

64 − 3x2

4 + 1
)
log(x)

x2
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15.46 problem 42
15.46.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6060

Internal problem ID [1394]
Internal file name [OUTPUT/1395_Sunday_June_05_2022_02_14_51_AM_85027384/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 42.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x2 + 2
)
y′′ + x

(
−x2 + 14

)
y′ + 2

(
x2 + 9

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x4 + 2x2) y′′ + (−x3 + 14x
)
y′ +

(
2x2 + 18

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − x2 − 14
(x2 + 2)x

q(x) = 2x2 + 18
x2 (x2 + 2)
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Table 734: Table p(x), q(x) singularites.

p(x) = − x2−14
(x2+2)x

singularity type
x = 0 “regular”

x = −i
√
2 “regular”

x = i
√
2 “regular”

q(x) = 2x2+18
x2(x2+2)

singularity type
x = 0 “regular”

x = −i
√
2 “regular”

x = i
√
2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−i

√
2, i

√
2,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 + 2
)
y′′ +

(
−x3 + 14x

)
y′ +

(
2x2 + 18

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x2 + 2

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−x3 + 14x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
2x2 + 18

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+r+2an(n+ r)

)
+
(

∞∑
n=0

14xn+ran(n+ r)
)

+
(

∞∑
n=0

2xn+r+2an

)
+
(

∞∑
n=0

18anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

(
−xn+r+2an(n+ r)

)
=

∞∑
n=2

(
−an−2(n+ r − 2)xn+r

)
∞∑

n =0

2xn+r+2an =
∞∑
n=2

2an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+ r− 2) (n− 3+ r)xn+r

)
+
(

∞∑
n=0

2xn+ran(n+ r) (n+ r− 1)
)

+
∞∑

n =2

(
−an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=0

14xn+ran(n+ r)
)

+
(

∞∑
n=2

2an−2x
n+r

)
+
(

∞∑
n=0

18anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+ran(n+ r) (n+ r − 1) + 14xn+ran(n+ r) + 18anxn+r = 0
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When n = 0 the above becomes

2xra0r(−1 + r) + 14xra0r + 18a0xr = 0

Or
(2xrr(−1 + r) + 14xrr + 18xr) a0 = 0

Since a0 6= 0 then the above simplifies to

2xr(r + 3)2 = 0

Since the above is true for all x then the indicial equation becomes

2(r + 3)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = −3
r2 = −3

Since a0 6= 0 then the indicial equation becomes

2xr(r + 3)2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = −3, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n−3

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n−3

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r) + 2an(n+ r) (n+ r − 1)
− an−2(n+ r − 2) + 14an(n+ r) + 2an−2 + 18an = 0

Solving for an from recursive equation (4) gives

an = −an−2(n2 + 2nr + r2 − 6n− 6r + 10)
2 (n2 + 2nr + r2 + 6n+ 6r + 9) (4)

Which for the root r = −3 becomes

an = −an−2(n2 − 12n+ 37)
2n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−r2 + 2r − 2
2 (5 + r)2
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Which for the root r = −3 becomes

a2 = −17
8

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−r2+2r−2
2(5+r)2 −17

8

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−r2+2r−2
2(5+r)2 −17

8

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
r4 + 4

4 (5 + r)2 (r + 7)2

Which for the root r = −3 becomes

a4 =
85
256

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−r2+2r−2
2(5+r)2 −17

8

a3 0 0
a4

r4+4
4(5+r)2(r+7)2

85
256
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For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−r2+2r−2
2(5+r)2 −17

8

a3 0 0
a4

r4+4
4(5+r)2(r+7)2

85
256

a5 0 0

Using the above table, then the first solution y1(x) is

y1(x) =
1
x3

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
1− 17x2

8 + 85x4

256 +O(x6)
x3

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = −3. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table
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n bn,r an bn,r = d
dr
an,r bn(r = −3)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2

−r2+2r−2
2(5+r)2 −17

8
−6r+7
(5+r)3

25
8

b3 0 0 0 0
b4

r4+4
4(5+r)2(r+7)2

85
256

6r4+35r3−4r−24
(5+r)3(r+7)3 −471

512

b5 0 0 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=

(
1− 17x2

8 + 85x4

256 +O(x6)
)
ln (x)

x3 +
25x2

8 − 471x4

512 +O(x6)
x3

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
1− 17x2

8 + 85x4

256 +O(x6)
)

x3

+ c2


(
1− 17x2

8 + 85x4

256 +O(x6)
)
ln (x)

x3 +
25x2

8 − 471x4

512 +O(x6)
x3


Hence the final solution is

y = yh

=
c1
(
1− 17x2

8 + 85x4

256 +O(x6)
)

x3

+ c2


(
1− 17x2

8 + 85x4

256 +O(x6)
)
ln (x)

x3 +
25x2

8 − 471x4

512 +O(x6)
x3
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Summary
The solution(s) found are the following

(1)
y =

c1
(
1− 17x2

8 + 85x4

256 +O(x6)
)

x3

+ c2


(
1− 17x2

8 + 85x4

256 +O(x6)
)
ln (x)

x3 +
25x2

8 − 471x4

512 +O(x6)
x3


Verification of solutions

y =
c1
(
1− 17x2

8 + 85x4

256 +O(x6)
)

x3

+ c2


(
1− 17x2

8 + 85x4

256 +O(x6)
)
ln (x)

x3 +
25x2

8 − 471x4

512 +O(x6)
x3


Verified OK.

15.46.1 Maple step by step solution

Let’s solve
x2(x2 + 2) y′′ + (−x3 + 14x) y′ + (2x2 + 18) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −2
(
x2+9

)
y

x2(x2+2) +
(
x2−14

)
y′

x(x2+2)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ −
(
x2−14

)
y′

x(x2+2) + 2
(
x2+9

)
y

x2(x2+2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x2−14
(x2+2)x , P3(x) = 2

(
x2+9

)
x2(x2+2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 7

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= 9

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(x2 + 2) y′′ − x(x2 − 14) y′ + (2x2 + 18) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

2a0(3 + r)2 xr + 2a1(4 + r)2 x1+r +
(

∞∑
k=2

(
2ak(k + r + 3)2 + ak−2

(
(k − 2)2 + 2(k − 2) r + r2 − 2k + 6− 2r

))
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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2(3 + r)2 = 0
• Values of r that satisfy the indicial equation

r = −3
• Each term must be 0

2a1(4 + r)2 = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

2ak(k + r + 3)2 + (k2 + (2r − 6) k + r2 − 6r + 10) ak−2 = 0
• Shift index using k− >k + 2

2ak+2(k + 5 + r)2 +
(
(k + 2)2 + (2r − 6) (k + 2) + r2 − 6r + 10

)
ak = 0

• Recursion relation that defines series solution to ODE

ak+2 = −
(
k2+2kr+r2−2k−2r+2

)
ak

2(k+5+r)2

• Recursion relation for r = −3

ak+2 = −
(
k2−8k+17

)
ak

2(k+2)2

• Solution for r = −3[
y =

∞∑
k=0

akx
k−3, ak+2 = −

(
k2−8k+17

)
ak

2(k+2)2 , a1 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful
-> solution has integrals; searching for one without integrals...

-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric solution without integrals succesful
<- hypergeometric successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 51� �
Order:=6;
dsolve(x^2*(2+x^2)*diff(y(x),x$2)+x*(14-x^2)*diff(y(x),x)+2*(9+x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(c2 ln (x) + c1)

(
1− 17

8 x
2 + 85

256x
4 +O(x6)

)
+
(25

8 x
2 − 471

512x
4 +O(x6)

)
c2

x3
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 71� �
AsymptoticDSolveValue[x^2*(2+x^2)*y''[x]+x*(14-x^2)*y'[x]+2*(9+x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) →
c1
(

85x4

256 − 17x2

8 + 1
)

x3 + c2

 25x2

8 − 471x4

512
x3 +

(
85x4

256 − 17x2

8 + 1
)
log(x)

x3
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15.47 problem 43
15.47.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6073

Internal problem ID [1395]
Internal file name [OUTPUT/1396_Sunday_June_05_2022_02_14_54_AM_48327790/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 43.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x2 + 1
)
y′′ + x

(
7x2 + 3

)
y′ +

(
8x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x4 + x2) y′′ + (7x3 + 3x
)
y′ +

(
8x2 + 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 7x2 + 3
x (x2 + 1)

q(x) = 8x2 + 1
x2 (x2 + 1)
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Table 736: Table p(x), q(x) singularites.

p(x) = 7x2+3
x(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

q(x) = 8x2+1
x2(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 + 1
)
y′′ +

(
7x3 + 3x

)
y′ +

(
8x2 + 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
7x3 + 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
8x2 + 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

7xn+r+2an(n+ r)
)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=0

8xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

7xn+r+2an(n+ r) =
∞∑
n=2

7an−2(n+ r − 2)xn+r

∞∑
n =0

8xn+r+2an =
∞∑
n=2

8an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

7an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=2

8an−2x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 3xn+ran(n+ r) + anx
n+r = 0
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When n = 0 the above becomes

xra0r(−1 + r) + 3xra0r + a0x
r = 0

Or
(xrr(−1 + r) + 3xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r + 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(r + 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = −1
r2 = −1

Since a0 6= 0 then the indicial equation becomes

(r + 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = −1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n−1

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n−1

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r) + an(n+ r) (n+ r − 1)
+ 7an−2(n+ r − 2) + 3an(n+ r) + 8an−2 + an = 0

Solving for an from recursive equation (4) gives

an = −an−2(n2 + 2nr + r2 + 2n+ 2r)
n2 + 2nr + r2 + 2n+ 2r + 1 (4)

Which for the root r = −1 becomes

an = an−2(−n2 + 1)
n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−r2 − 6r − 8

(r + 3)2
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Which for the root r = −1 becomes

a2 = −3
4

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−r2−6r−8
(r+3)2 −3

4

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−r2−6r−8
(r+3)2 −3

4

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
(r + 6) (r + 2) (r + 4)2

(r + 3)2 (5 + r)2

Which for the root r = −1 becomes

a4 =
45
64

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−r2−6r−8
(r+3)2 −3

4

a3 0 0

a4
(r+6)(r+2)(r+4)2

(r+3)2(5+r)2
45
64
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For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−r2−6r−8
(r+3)2 −3

4

a3 0 0

a4
(r+6)(r+2)(r+4)2

(r+3)2(5+r)2
45
64

a5 0 0

Using the above table, then the first solution y1(x) is

y1(x) =
1
x

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
1− 3x2

4 + 45x4

64 +O(x6)
x

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = −1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table
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n bn,r an bn,r = d
dr
an,r bn(r = −1)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2

−r2−6r−8
(r+3)2 −3

4 − 2
(r+3)3 −1

4

b3 0 0 0 0

b4
(r+6)(r+2)(r+4)2

(r+3)2(5+r)2
45
64

4(r+4)
(
r2+8r+18

)
(r+3)3(5+r)3

33
128

b5 0 0 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=

(
1− 3x2

4 + 45x4

64 +O(x6)
)
ln (x)

x
+

−x2

4 + 33x4

128 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
1− 3x2

4 + 45x4

64 +O(x6)
)

x

+ c2


(
1− 3x2

4 + 45x4

64 +O(x6)
)
ln (x)

x
+

−x2

4 + 33x4

128 +O(x6)
x


Hence the final solution is

y = yh

=
c1
(
1− 3x2

4 + 45x4

64 +O(x6)
)

x

+ c2


(
1− 3x2

4 + 45x4

64 +O(x6)
)
ln (x)

x
+

−x2

4 + 33x4

128 +O(x6)
x
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Summary
The solution(s) found are the following

(1)
y =

c1
(
1− 3x2

4 + 45x4

64 +O(x6)
)

x

+ c2


(
1− 3x2

4 + 45x4

64 +O(x6)
)
ln (x)

x
+

−x2

4 + 33x4

128 +O(x6)
x


Verification of solutions

y =
c1
(
1− 3x2

4 + 45x4

64 +O(x6)
)

x

+ c2


(
1− 3x2

4 + 45x4

64 +O(x6)
)
ln (x)

x
+

−x2

4 + 33x4

128 +O(x6)
x


Verified OK.

15.47.1 Maple step by step solution

Let’s solve
x2(x2 + 1) y′′ + (7x3 + 3x) y′ + (8x2 + 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
8x2+1

)
y

x2(x2+1) −
(
7x2+3

)
y′

x(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
7x2+3

)
y′

x(x2+1) +
(
8x2+1

)
y

x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 7x2+3
x(x2+1) , P3(x) = 8x2+1

x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(x2 + 1) y′′ + x(7x2 + 3) y′ + (8x2 + 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + r)2 xr + a1(2 + r)2 x1+r +
(

∞∑
k=2

(
ak(k + r + 1)2 + ak−2(k + r + 2) (k + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(1 + r)2 = 0
• Values of r that satisfy the indicial equation

r = −1
• Each term must be 0

a1(2 + r)2 = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(k + r + 1)2 + ak−2(k + r + 2) (k + r) = 0
• Shift index using k− >k + 2

ak+2(k + 3 + r)2 + ak(k + r + 4) (k + r + 2) = 0
• Recursion relation that defines series solution to ODE

ak+2 = −ak(k+r+4)(k+r+2)
(k+3+r)2

• Recursion relation for r = −1
ak+2 = −ak(k+3)(k+1)

(k+2)2

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = −ak(k+3)(k+1)

(k+2)2 , a1 = 0
]

6075



Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
<- elliptic successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 51� �
Order:=6;
dsolve(x^2*(1+x^2)*diff(y(x),x$2)+x*(3+7*x^2)*diff(y(x),x)+(1+8*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(c2 ln (x) + c1)

(
1− 3

4x
2 + 45

64x
4 +O(x6)

)
+
(
−1

4x
2 + 33

128x
4 +O(x6)

)
c2

x

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 71� �
AsymptoticDSolveValue[x^2*(1+x^2)*y''[x]+x*(3+7*x^2)*y'[x]+(1+8*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) →
c1
(

45x4

64 − 3x2

4 + 1
)

x
+ c2

 33x4

128 − x2

4
x

+

(
45x4

64 − 3x2

4 + 1
)
log(x)

x
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15.48 problem 44
15.48.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6085

Internal problem ID [1396]
Internal file name [OUTPUT/1397_Sunday_June_05_2022_02_14_58_AM_76846185/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 44.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(1− 2x) y′′ + 3y′x+ (4x+ 1) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−2x3 + x2) y′′ + 3y′x+ (4x+ 1) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 3
x (2x− 1)

q(x) = − 4x+ 1
x2 (2x− 1)
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Table 738: Table p(x), q(x) singularites.

p(x) = − 3
x(2x−1)

singularity type
x = 0 “regular”
x = 1

2 “regular”

q(x) = − 4x+1
x2(2x−1)

singularity type
x = 0 “regular”
x = 1

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0, 12 ,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x2(2x− 1) + 3y′x+ (4x+ 1) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2(2x− 1)

+ 3
(

∞∑
n=0

(n+ r) anxn+r−1

)
x+ (4x+ 1)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−2x1+n+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=0

4x1+n+ran

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2x1+n+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1) (n+ r − 2)xn+r

)
∞∑

n =0

4x1+n+ran =
∞∑
n=1

4an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =1

(
−2an−1(n+ r− 1) (n+ r− 2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=1

4an−1x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 3xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + 3xra0r + a0x
r = 0

Or
(xrr(−1 + r) + 3xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r + 1)2 xr = 0
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Since the above is true for all x then the indicial equation becomes

(r + 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = −1
r2 = −1

Since a0 6= 0 then the indicial equation becomes

(r + 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = −1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n−1

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n−1

)
We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)−2an−1(n+ r− 1) (n+ r− 2)+ an(n+ r) (n+ r− 1)+ 3an(n+ r)+ 4an−1 + an = 0
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Solving for an from recursive equation (4) gives

an = 2an−1(n2 + 2nr + r2 − 3n− 3r)
n2 + 2nr + r2 + 2n+ 2r + 1 (4)

Which for the root r = −1 becomes

an = 2an−1(n2 − 5n+ 4)
n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
2r2 − 2r − 4
(r + 2)2

Which for the root r = −1 becomes

a1 = 0

And the table now becomes

n an,r an

a0 1 1
a1

2r2−2r−4
(r+2)2 0

For n = 2, using the above recursive equation gives

a2 =
4r3 − 8r2 − 4r + 8
(r + 3)2 (r + 2)

Which for the root r = −1 becomes

a2 = 0

And the table now becomes
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n an,r an

a0 1 1
a1

2r2−2r−4
(r+2)2 0

a2
4r3−8r2−4r+8
(r+3)2(r+2) 0

For n = 3, using the above recursive equation gives

a3 =
8r4 − 16r3 − 8r2 + 16r
(r + 4)2 (r + 2) (r + 3)

Which for the root r = −1 becomes

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1

2r2−2r−4
(r+2)2 0

a2
4r3−8r2−4r+8
(r+3)2(r+2) 0

a3
8r4−16r3−8r2+16r
(r+4)2(r+2)(r+3) 0

For n = 4, using the above recursive equation gives

a4 =
16(r + 1)2 (−1 + r) (r − 2) r
(5 + r)2 (r + 3) (r + 2) (r + 4)

Which for the root r = −1 becomes

a4 = 0

And the table now becomes
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n an,r an

a0 1 1
a1

2r2−2r−4
(r+2)2 0

a2
4r3−8r2−4r+8
(r+3)2(r+2) 0

a3
8r4−16r3−8r2+16r
(r+4)2(r+2)(r+3) 0

a4
16(r+1)2(−1+r)(r−2)r
(5+r)2(r+3)(r+2)(r+4) 0

For n = 5, using the above recursive equation gives

a5 =
32(r + 1)2 (−1 + r) (r − 2) r
(r + 6)2 (r + 4) (r + 3) (5 + r)

Which for the root r = −1 becomes

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1

2r2−2r−4
(r+2)2 0

a2
4r3−8r2−4r+8
(r+3)2(r+2) 0

a3
8r4−16r3−8r2+16r
(r+4)2(r+2)(r+3) 0

a4
16(r+1)2(−1+r)(r−2)r
(5+r)2(r+3)(r+2)(r+4) 0

a5
32(r+1)2(−1+r)(r−2)r
(r+6)2(r+4)(r+3)(5+r) 0

Using the above table, then the first solution y1(x) is

y1(x) =
1
x

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= 1 +O(x6)
x
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Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
Where bn is found using

bn = d

dr
an,r

And the above is then evaluated at r = −1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = −1)

b0 1 1 N/A since bn starts from 1 N/A
b1

2r2−2r−4
(r+2)2 0 10r+4

(r+2)3 −6

b2
4r3−8r2−4r+8
(r+3)2(r+2) 0 40r3+56r2−112r−80

(r+3)3(r+2)2 6

b3
8r4−16r3−8r2+16r
(r+4)2(r+2)(r+3) 0 120r5+528r4+24r3−1536r2−480r+384

(r+4)3(r+2)2(r+3)2 −8
3

b4
16(r+1)2(−1+r)(r−2)r
(5+r)2(r+3)(r+2)(r+4) 0 64(r+1)

(
5r6+42r5+83r4−84r3−274r2−12r+60

)
(5+r)3(r+3)2(r+2)2(r+4)2 0

b5
32(r+1)2(−1+r)(r−2)r
(r+6)2(r+4)(r+3)(5+r) 0 160(r+1)

(
5r6+57r5+173r4−57r3−634r2−24r+144

)
(r+6)3(r+4)2(r+3)2(5+r)2 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= (1 +O(x6)) ln (x)
x

+
6x2 − 6x− 8x3

3 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1(1 +O(x6))
x

+ c2

(
(1 +O(x6)) ln (x)

x
+

6x2 − 6x− 8x3

3 +O(x6)
x

)

Hence the final solution is
y = yh

= c1(1 +O(x6))
x

+ c2

(
(1 +O(x6)) ln (x)

x
+

6x2 − 6x− 8x3

3 +O(x6)
x

)
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Summary
The solution(s) found are the following

(1)y = c1(1 +O(x6))
x

+ c2

(
(1 +O(x6)) ln (x)

x
+

6x2 − 6x− 8x3

3 +O(x6)
x

)
Verification of solutions

y = c1(1 +O(x6))
x

+ c2

(
(1 +O(x6)) ln (x)

x
+

6x2 − 6x− 8x3

3 +O(x6)
x

)

Verified OK.

15.48.1 Maple step by step solution

Let’s solve
−y′′x2(2x− 1) + 3y′x+ (4x+ 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = (4x+1)y

x2(2x−1) +
3y′

x(2x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 3y′

x(2x−1) −
(4x+1)y
x2(2x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 3
x(2x−1) , P3(x) = − 4x+1

x2(2x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0
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• Multiply by denominators
y′′x2(2x− 1)− 3y′x+ (−4x− 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(1 + r)2 xr +
(

∞∑
k=1

(
−ak(k + r + 1)2 + 2ak−1(k + r) (k − 3 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −1

• Each term in the series must be 0, giving the recursion relation
−ak(k + r + 1)2 + 2ak−1(k + r) (k − 3 + r) = 0

• Shift index using k− >k + 1
−ak+1(k + 2 + r)2 + 2ak(k + r + 1) (k + r − 2) = 0
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• Recursion relation that defines series solution to ODE
ak+1 = 2ak(k+r+1)(k+r−2)

(k+2+r)2

• Recursion relation for r = −1 ; series terminates at k = 3
ak+1 = 2akk(k−3)

(k+1)2

• Apply recursion relation for k = 0
a1 = 0

• Apply recursion relation for k = 1
a2 = −a1

• Express in terms of a0
a2 = 0

• Apply recursion relation for k = 2
a3 = −4a2

9

• Express in terms of a0
a3 = 0

• Terminating series solution of the ODE for r = −1 . Use reduction of order to find the second linearly independent solution
y = a0 · 0

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 45� �
Order:=6;
dsolve(x^2*(1-2*x)*diff(y(x),x$2)+3*x*diff(y(x),x)+(1+4*x)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(c2 ln (x) + c1) (1 + O (x6)) +

(
(−6)x+ 6x2 − 8

3x
3 +O(x6)

)
c2

x

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 40� �
AsymptoticDSolveValue[x^2*(1-2*x)*y''[x]+3*x*y'[x]+(1+4*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
−8x3

3 + 6x2 − 6x
x

+ log(x)
x

)
+ c1

x
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15.49 problem 45
15.49.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6097

Internal problem ID [1397]
Internal file name [OUTPUT/1398_Sunday_June_05_2022_02_15_01_AM_81066771/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 45.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x(x+ 1) y′′ + (1− x) y′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x2 + x
)
y′′ + (1− x) y′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − x− 1
x (x+ 1)

q(x) = 1
x (x+ 1)
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Table 740: Table p(x), q(x) singularites.

p(x) = − x−1
x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

q(x) = 1
x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x(x+ 1) y′′ + (1− x) y′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x(x+ 1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ (1− x)
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r−1

∞∑
n =0

(
−xn+ran(n+ r)

)
=

∞∑
n=1

(
−an−1(n+ r − 1)xn+r−1)

∞∑
n =0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r−1

)

+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−an−1(n+ r − 1)xn+r−1)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=1

an−1x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r = 0
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Or (
x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

x−1+rr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
− an−1(n+ r − 1) + an(n+ r) + an−1 = 0
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Solving for an from recursive equation (4) gives

an = −an−1(n2 + 2nr + r2 − 4n− 4r + 4)
n2 + 2nr + r2

(4)

Which for the root r = 0 becomes

an = −an−1(n− 2)2

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = −(−1 + r)2

(r + 1)2

Which for the root r = 0 becomes
a1 = −1

And the table now becomes

n an,r an

a0 1 1

a1 − (−1+r)2

(r+1)2 −1

For n = 2, using the above recursive equation gives

a2 =
(−1 + r)2 r2

(r + 1)2 (r + 2)2

Which for the root r = 0 becomes
a2 = 0

And the table now becomes
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n an,r an

a0 1 1

a1 − (−1+r)2

(r+1)2 −1

a2
(−1+r)2r2

(r+1)2(r+2)2 0

For n = 3, using the above recursive equation gives

a3 = − (−1 + r)2 r2

(r + 3)2 (r + 2)2

Which for the root r = 0 becomes
a3 = 0

And the table now becomes

n an,r an

a0 1 1

a1 − (−1+r)2

(r+1)2 −1

a2
(−1+r)2r2

(r+1)2(r+2)2 0

a3 − (−1+r)2r2
(r+3)2(r+2)2 0

For n = 4, using the above recursive equation gives

a4 =
(−1 + r)2 r2

(r + 4)2 (r + 3)2

Which for the root r = 0 becomes
a4 = 0

And the table now becomes
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n an,r an

a0 1 1

a1 − (−1+r)2

(r+1)2 −1

a2
(−1+r)2r2

(r+1)2(r+2)2 0

a3 − (−1+r)2r2
(r+3)2(r+2)2 0

a4
(−1+r)2r2

(r+4)2(r+3)2 0

For n = 5, using the above recursive equation gives

a5 = − (−1 + r)2 r2

(5 + r)2 (r + 4)2

Which for the root r = 0 becomes
a5 = 0

And the table now becomes

n an,r an

a0 1 1

a1 − (−1+r)2

(r+1)2 −1

a2
(−1+r)2r2

(r+1)2(r+2)2 0

a3 − (−1+r)2r2
(r+3)2(r+2)2 0

a4
(−1+r)2r2

(r+4)2(r+3)2 0

a5 − (−1+r)2r2
(5+r)2(r+4)2 0

Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− x+O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
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Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A

b1 − (−1+r)2

(r+1)2 −1 4−4r
(r+1)3 4

b2
(−1+r)2r2

(r+1)2(r+2)2 0 8
(
r2+r− 1

2
)
r(−1+r)

(r+1)3(r+2)3 0

b3 − (−1+r)2r2
(r+3)2(r+2)2 0 −12r(−1+r)

(
r2+2r−1

)
(r+3)3(r+2)3 0

b4
(−1+r)2r2

(r+4)2(r+3)2 0 16r4+32r3−72r2+24r
(r+4)3(r+3)3 0

b5 − (−1+r)2r2
(5+r)2(r+4)2 0 −20r(−1+r)

(
r2+4r−2

)
(5+r)3(r+4)3 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
1− x+O

(
x6)) ln (x) + 4x+O

(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
(
1− x+O

(
x6))+ c2

((
1− x+O

(
x6)) ln (x) + 4x+O

(
x6))

Hence the final solution is
y = yh

= c1
(
1− x+O

(
x6))+ c2

((
1− x+O

(
x6)) ln (x) + 4x+O

(
x6))

Summary
The solution(s) found are the following

(1)y = c1
(
1− x+O

(
x6))+ c2

((
1− x+O

(
x6)) ln (x) + 4x+O

(
x6))

Verification of solutions

y = c1
(
1− x+O

(
x6))+ c2

((
1− x+O

(
x6)) ln (x) + 4x+O

(
x6))

Verified OK.
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15.49.1 Maple step by step solution

Let’s solve
x(x+ 1) y′′ + (1− x) y′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − y
x(x+1) +

(x−1)y′
x(x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (x−1)y′
x(x+1) +

y
x(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x−1
x(x+1) , P3(x) = 1

x(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
x(x+ 1) y′′ + (1− x) y′ + y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − u)
(

d2

du2y(u)
)
+ (2− u)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions

6097



◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−3 + r)u−1+r +
(

∞∑
k=0

(
−ak+1(k + 1 + r) (k − 2 + r) + ak(k + r − 1)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 3}

• Each term in the series must be 0, giving the recursion relation
−ak+1(k + 1 + r) (k − 2 + r) + ak(k + r − 1)2 = 0

• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r−1)2
(k+1+r)(k−2+r)

• Recursion relation for r = 0 ; series terminates at k = 1

ak+1 = ak(k−1)2
(k+1)(k−2)

• Apply recursion relation for k = 0
a1 = −a0

2

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− u

2

)
• Revert the change of variables u = x+ 1[

y = a0
(1
2 −

x
2

)]
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• Recursion relation for r = 3

ak+1 = ak(k+2)2
(k+4)(k+1)

• Solution for r = 3[
y(u) =

∞∑
k=0

aku
k+3, ak+1 = ak(k+2)2

(k+4)(k+1)

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k+3 , ak+1 = ak(k+2)2
(k+4)(k+1)

]
• Combine solutions and rename parameters[

y = a0
(1
2 −

x
2

)
+
(

∞∑
k=0

bk(x+ 1)k+3
)
, b1+k = bk(k+2)2

(4+k)(1+k)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 35� �
Order:=6;
dsolve(x*(1+x)*diff(y(x),x$2)+(1-x)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

y(x) = (c2 ln (x) + c1)
(
1− x+O

(
x6))+ (4x+O

(
x6)) c2
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 27� �
AsymptoticDSolveValue[x*(1+x)*y''[x]+(1-x)*y'[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c1(1− x) + c2(4x+ (1− x) log(x))
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15.50 problem 46
15.50.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6110

Internal problem ID [1398]
Internal file name [OUTPUT/1399_Sunday_June_05_2022_02_15_06_AM_33641452/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 46.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

x2(1− x) y′′ + x(−2x+ 3) y′ + (1 + 2x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−x3 + x2) y′′ + (−2x2 + 3x
)
y′ + (1 + 2x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −3 + 2x
x (x− 1)

q(x) = − 1 + 2x
x2 (x− 1)
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Table 742: Table p(x), q(x) singularites.

p(x) = −3+2x
x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

q(x) = − 1+2x
x2(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x2(x− 1) +
(
−2x2 + 3x

)
y′ + (1 + 2x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2(x− 1)

+
(
−2x2 + 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (1 + 2x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−x1+n+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−2x1+n+ran(n+ r)

)
+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=0

anx
n+r

)
+
(

∞∑
n=0

2x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−x1+n+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−an−1(n+ r − 1) (n+ r − 2)xn+r

)
∞∑

n =0

(
−2x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1)xn+r

)
∞∑

n =0

2x1+n+ran =
∞∑
n=1

2an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =1

(
−an−1(n+ r−1) (n+ r−2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r−1)
)

+
∞∑

n =1

(
−2an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=0

anx
n+r

)
+
(

∞∑
n=1

2an−1x
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 3xn+ran(n+ r) + anx
n+r = 0
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When n = 0 the above becomes

xra0r(−1 + r) + 3xra0r + a0x
r = 0

Or
(xrr(−1 + r) + 3xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r + 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(r + 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = −1
r2 = −1

Since a0 6= 0 then the indicial equation becomes

(r + 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = −1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n−1

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n−1

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)−an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
− 2an−1(n+ r − 1) + 3an(n+ r) + an + 2an−1 = 0

Solving for an from recursive equation (4) gives

an = (n+ r − 2) an−1

1 + n+ r
(4)

Which for the root r = −1 becomes

an = (n− 3) an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−1 + r

2 + r

Which for the root r = −1 becomes

a1 = −2

And the table now becomes
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n an,r an

a0 1 1
a1

−1+r
2+r

−2

For n = 2, using the above recursive equation gives

a2 =
(−1 + r) r

(2 + r) (3 + r)

Which for the root r = −1 becomes

a2 = 1

And the table now becomes

n an,r an

a0 1 1
a1

−1+r
2+r

−2

a2
(−1+r)r

(2+r)(3+r) 1

For n = 3, using the above recursive equation gives

a3 =
r3 − r

(2 + r) (3 + r) (4 + r)

Which for the root r = −1 becomes

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−1+r
2+r

−2

a2
(−1+r)r

(2+r)(3+r) 1

a3
r3−r

(2+r)(3+r)(4+r) 0
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For n = 4, using the above recursive equation gives

a4 =
r3 − r

(3 + r) (4 + r) (5 + r)

Which for the root r = −1 becomes

a4 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−1+r
2+r

−2

a2
(−1+r)r

(2+r)(3+r) 1

a3
r3−r

(2+r)(3+r)(4+r) 0

a4
r3−r

(3+r)(4+r)(5+r) 0

For n = 5, using the above recursive equation gives

a5 =
r3 − r

(4 + r) (5 + r) (6 + r)

Which for the root r = −1 becomes

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−1+r
2+r

−2

a2
(−1+r)r

(2+r)(3+r) 1

a3
r3−r

(2+r)(3+r)(4+r) 0

a4
r3−r

(3+r)(4+r)(5+r) 0

a5
r3−r

(4+r)(5+r)(6+r) 0
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Using the above table, then the first solution y1(x) is

y1(x) =
1
x

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x2 − 2x+ 1 +O(x6)
x

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = −1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = −1)

b0 1 1 N/A since bn starts from 1 N/A
b1

−1+r
2+r

−2 3
(2+r)2 3

b2
(−1+r)r

(2+r)(3+r) 1 6r2+12r−6
(2+r)2(3+r)2 −3

b3
r3−r

(2+r)(3+r)(4+r) 0 9r4+54r3+81r2−24
(2+r)2(3+r)2(4+r)2

1
3

b4
r3−r

(3+r)(4+r)(5+r) 0 12r4+96r3+192r2−60
(3+r)2(4+r)2(5+r)2

1
12

b5
r3−r

(4+r)(5+r)(6+r) 0 15r4+150r3+375r2−120
(4+r)2(5+r)2(6+r)2

1
30

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= (x2 − 2x+ 1 +O(x6)) ln (x)
x

+
−3x2 + 3x+ x3

3 + x4

12 +
x5

30 +O(x6)
x
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1(x2 − 2x+ 1 +O(x6))
x

+ c2

(
(x2 − 2x+ 1 +O(x6)) ln (x)

x
+

−3x2 + 3x+ x3

3 + x4

12 +
x5

30 +O(x6)
x

)

Hence the final solution is

y = yh

= c1(x2 − 2x+ 1 +O(x6))
x

+ c2

(
(x2 − 2x+ 1 +O(x6)) ln (x)

x
+

−3x2 + 3x+ x3

3 + x4

12 +
x5

30 +O(x6)
x

)

Summary
The solution(s) found are the following

(1)
y = c1(x2 − 2x+ 1 +O(x6))

x

+ c2

(
(x2 − 2x+ 1 +O(x6)) ln (x)

x
+

−3x2 + 3x+ x3

3 + x4

12 +
x5

30 +O(x6)
x

)
Verification of solutions

y = c1(x2 − 2x+ 1 +O(x6))
x

+ c2

(
(x2 − 2x+ 1 +O(x6)) ln (x)

x
+

−3x2 + 3x+ x3

3 + x4

12 +
x5

30 +O(x6)
x

)

Verified OK.
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15.50.1 Maple step by step solution

Let’s solve
−y′′x2(x− 1) + (−2x2 + 3x) y′ + (1 + 2x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = (1+2x)y
x2(x−1) −

(−3+2x)y′
x(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (−3+2x)y′
x(x−1) − (1+2x)y

x2(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −3+2x
x(x−1) , P3(x) = − 1+2x

x2(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x2(x− 1) + x(−3 + 2x) y′ + (−1− 2x) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(1 + r)2 xr +
(

∞∑
k=1

(
−ak(k + r + 1)2 + ak−1(k + r + 1) (k − 2 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = −1

• Each term in the series must be 0, giving the recursion relation
−ak(k + r + 1)2 + ak−1(k + r + 1) (k − 2 + r) = 0

• Shift index using k− >k + 1
−ak+1(k + r + 2)2 + ak(k + r + 2) (k + r − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−1)

k+r+2

• Recursion relation for r = −1 ; series terminates at k = 2
ak+1 = ak(k−2)

k+1

• Apply recursion relation for k = 0
a1 = −2a0
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• Apply recursion relation for k = 1
a2 = −a1

2

• Express in terms of a0
a2 = a0

• Terminating series solution of the ODE for r = −1 . Use reduction of order to find the second linearly independent solution
y = a0 · (x2 − 2x+ 1)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 57� �
Order:=6;
dsolve(x^2*(1-x)*diff(y(x),x$2)+x*(3-2*x)*diff(y(x),x)+(1+2*x)*y(x)=0,y(x),type='series',x=0);� �
y(x)=

(c2 ln (x) + c1) (1− 2x+ x2 +O(x6)) +
(
3x− 3x2 + 1

3x
3 + 1

12x
4 + 1

30x
5 +O(x6)

)
c2

x

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 70� �
AsymptoticDSolveValue[x^2*(1-x)*y''[x]+x*(3-2*x)*y'[x]+(1+2*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1(x2 − 2x+ 1)
x

+ c2

(
(x2 − 2x+ 1) log(x)

x
+

x5

30 +
x4

12 +
x3

3 − 3x2 + 3x
x

)
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15.51 problem 47
15.51.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6121

Internal problem ID [1399]
Internal file name [OUTPUT/1400_Sunday_June_05_2022_02_15_10_AM_71217187/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 47.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2(x+ 1) y′′ + 4y′x2 + (1− 5x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

4x3 + 4x2) y′′ + 4y′x2 + (1− 5x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x+ 1

q(x) = − 5x− 1
4x2 (x+ 1)

6113



Table 744: Table p(x), q(x) singularites.

p(x) = 1
x+1

singularity type
x = −1 “regular”

q(x) = − 5x−1
4x2(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2(x+ 1) y′′ + 4y′x2 + (1− 5x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2(x+ 1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 4
(

∞∑
n=0

(n+ r) anxn+r−1

)
x2 + (1− 5x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4x1+n+ran(n+ r)
)

+
(

∞∑
n=0

anx
n+r

)
+

∞∑
n =0

(
−5x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

4an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

4x1+n+ran(n+ r) =
∞∑
n=1

4an−1(n+ r − 1)xn+r

∞∑
n =0

(
−5x1+n+ran

)
=

∞∑
n=1

(
−5an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

4an−1(n+ r− 1) (n+ r− 2)xn+r

)
+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=1

4an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

anx
n+r

)
+

∞∑
n =1

(
−5an−1x

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + anx
n+r = 0

When n = 0 the above becomes

4xra0r(−1 + r) + a0x
r = 0

Or
(4xrr(−1 + r) + xr) a0 = 0
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Since a0 6= 0 then the above simplifies to

(2r − 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(2r − 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 =
1
2

Since a0 6= 0 then the indicial equation becomes

(2r − 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1

2 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+ 1

2

)
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We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

4an−1(n+ r− 1) (n+ r− 2)+4an(n+ r) (n+ r− 1)+4an−1(n+ r− 1)+ an− 5an−1 = 0
(3)

Solving for an from recursive equation (4) gives

an = −an−1(4n2 + 8nr + 4r2 − 8n− 8r − 1)
4n2 + 8nr + 4r2 − 4n− 4r + 1 (4)

Which for the root r = 1
2 becomes

an = −an−1(n2 − n− 1)
n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−4r2 + 5
(2r + 1)2

Which for the root r = 1
2 becomes

a1 = 1

And the table now becomes

n an,r an

a0 1 1
a1

−4r2+5
(2r+1)2 1

For n = 2, using the above recursive equation gives

a2 =
16r4 + 32r3 − 24r2 − 40r + 5

16
(
r + 1

2

)2 (
r + 3

2

)2
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Which for the root r = 1
2 becomes

a2 = −1
4

And the table now becomes

n an,r an

a0 1 1
a1

−4r2+5
(2r+1)2 1

a2
16r4+32r3−24r2−40r+5

16
(
r+ 1

2
)2(

r+ 3
2
)2 −1

4

For n = 3, using the above recursive equation gives

a3 =
−64r6 − 384r5 − 592r4 + 192r3 + 884r2 + 360r − 55

64
(
r + 5

2

)2 (
r + 1

2

)2 (
r + 3

2

)2
Which for the root r = 1

2 becomes
a3 =

5
36

And the table now becomes

n an,r an

a0 1 1
a1

−4r2+5
(2r+1)2 1

a2
16r4+32r3−24r2−40r+5

16
(
r+ 1

2
)2(

r+ 3
2
)2 −1

4

a3
−64r6−384r5−592r4+192r3+884r2+360r−55

64
(
r+ 5

2
)2(

r+ 1
2
)2(

r+ 3
2
)2 5

36

For n = 4, using the above recursive equation gives

a4 =
(4r2 + 24r + 31) (4r2 − 5) (4r2 + 8r − 1) (4r2 + 16r + 11)

(2r + 5)2 (2r + 1)2 (2r + 3)2 (4r2 + 28r + 49)

Which for the root r = 1
2 becomes

a4 = − 55
576

And the table now becomes
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n an,r an

a0 1 1
a1

−4r2+5
(2r+1)2 1

a2
16r4+32r3−24r2−40r+5

16
(
r+ 1

2
)2(

r+ 3
2
)2 −1

4

a3
−64r6−384r5−592r4+192r3+884r2+360r−55

64
(
r+ 5

2
)2(

r+ 1
2
)2(

r+ 3
2
)2 5

36

a4
(
4r2+24r+31

)(
4r2−5

)(
4r2+8r−1

)(
4r2+16r+11

)
(2r+5)2(2r+1)2(2r+3)2(4r2+28r+49) − 55

576

For n = 5, using the above recursive equation gives

a5 = −(4r2 + 24r + 31) (4r2 − 5) (4r2 + 8r − 1) (4r2 + 16r + 11) (4r2 + 32r + 59)
1024

(
r + 7

2

)2 (
r + 9

2

)2 (
r + 5

2

)2 (
r + 1

2

)2 (
r + 3

2

)2
Which for the root r = 1

2 becomes

a5 =
209
2880

And the table now becomes

n an,r an

a0 1 1
a1

−4r2+5
(2r+1)2 1

a2
16r4+32r3−24r2−40r+5

16
(
r+ 1

2
)2(

r+ 3
2
)2 −1

4

a3
−64r6−384r5−592r4+192r3+884r2+360r−55

64
(
r+ 5

2
)2(

r+ 1
2
)2(

r+ 3
2
)2 5

36

a4
(
4r2+24r+31

)(
4r2−5

)(
4r2+8r−1

)(
4r2+16r+11

)
(2r+5)2(2r+1)2(2r+3)2(4r2+28r+49) − 55

576

a5 −
(
4r2+24r+31

)(
4r2−5

)(
4r2+8r−1

)(
4r2+16r+11

)(
4r2+32r+59

)
1024

(
r+ 7

2
)2(

r+ 9
2
)2(

r+ 5
2
)2(

r+ 1
2
)2(

r+ 3
2
)2 209

2880

Using the above table, then the first solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
x+ 1− x2

4 + 5x3

36 − 55x4

576 + 209x5

2880 +O
(
x6))

6119



Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
Where bn is found using

bn = d

dr
an,r

And the above is then evaluated at r = 1
2 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = 1

2

)
b0 1 1 N/A since bn starts from 1 N/A
b1

−4r2+5
(2r+1)2 1 −8r−20

(2r+1)3 −3

b2
16r4+32r3−24r2−40r+5

16
(
r+ 1

2
)2(

r+ 3
2
)2 −1

4
128r4+640r3+768r2+96r−200

(2r+3)3(2r+1)3
1
4

b3
−64r6−384r5−592r4+192r3+884r2+360r−55

64
(
r+ 5

2
)2(

r+ 1
2
)2(

r+ 3
2
)2 5

36 −4
(
384r7+4032r6+15840r5+29616r4+26184r3+6900r2−4470r−2615

)
(2r+3)3(2r+1)3(2r+5)3 − 5

54

b4
(
4r2+24r+31

)(
4r2−5

)(
4r2+8r−1

)(
4r2+16r+11

)
(2r+5)2(2r+1)2(2r+3)2(4r2+28r+49) − 55

576
16384r10+311296r9+2494464r8+11059200r7+29755392r6+49735680r5+49777152r4+24943616r3−166080r2−6405440r−2233520

(2r+7)3(2r+5)3(2r+1)3(2r+3)3
175
3456

b5 −
(
4r2+24r+31

)(
4r2−5

)(
4r2+8r−1

)(
4r2+16r+11

)(
4r2+32r+59

)
1024

(
r+ 7

2
)2(

r+ 9
2
)2(

r+ 5
2
)2(

r+ 1
2
)2(

r+ 3
2
)2 209

2880 −20
(
8192r13+249856r12+3379200r11+26781696r10+138325504r9+489143040r8+1208225280r7+2080189184r6+2424931296r5+1758393904r4+574475920r3−163041240r2−216459182r−58834491

)
(2r+7)3(2r+9)3(2r+5)3(2r+1)3(2r+3)3 − 2863

86400

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
√
x

(
x+ 1− x2

4 + 5x3

36 − 55x4

576 + 209x5

2880 +O
(
x6)) ln (x)

+
√
x

(
−3x+ x2

4 − 5x3

54 + 175x4

3456 − 2863x5

86400 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
x+ 1− x2

4 + 5x3

36 − 55x4

576 + 209x5

2880 +O
(
x6))

+ c2

(√
x

(
x+ 1− x2

4 + 5x3

36 − 55x4

576 + 209x5

2880 +O
(
x6)) ln (x)

+
√
x

(
−3x+ x2

4 − 5x3

54 + 175x4

3456 − 2863x5

86400 +O
(
x6)))

6120



Hence the final solution is

y = yh

= c1
√
x

(
x+ 1− x2

4 + 5x3

36 − 55x4

576 + 209x5

2880 +O
(
x6))

+ c2

(√
x

(
x+ 1− x2

4 + 5x3

36 − 55x4

576 + 209x5

2880 +O
(
x6)) ln (x)

+
√
x

(
−3x+ x2

4 − 5x3

54 + 175x4

3456 − 2863x5

86400 +O
(
x6)))

Summary
The solution(s) found are the following

(1)

y = c1
√
x

(
x+ 1− x2

4 + 5x3

36 − 55x4

576 + 209x5

2880 +O
(
x6))

+ c2

(√
x

(
x+ 1− x2

4 + 5x3

36 − 55x4

576 + 209x5

2880 +O
(
x6)) ln (x)

+
√
x

(
−3x+ x2

4 − 5x3

54 + 175x4

3456 − 2863x5

86400 +O
(
x6)))

Verification of solutions

y = c1
√
x

(
x+ 1− x2

4 + 5x3

36 − 55x4

576 + 209x5

2880 +O
(
x6))

+ c2

(√
x

(
x+ 1− x2

4 + 5x3

36 − 55x4

576 + 209x5

2880 +O
(
x6)) ln (x)

+
√
x

(
−3x+ x2

4 − 5x3

54 + 175x4

3456 − 2863x5

86400 +O
(
x6)))

Verified OK.

15.51.1 Maple step by step solution

Let’s solve
4x2(x+ 1) y′′ + 4y′x2 + (1− 5x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = (5x−1)y

4x2(x+1) −
y′

x+1
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x+1 −
(5x−1)y
4x2(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 1
x+1 , P3(x) = − 5x−1

4x2(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
4x2(x+ 1) y′′ + 4y′x2 + (1− 5x) y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(4u3 − 8u2 + 4u)
(

d2

du2y(u)
)
+ (4u2 − 8u+ 4)

(
d
du
y(u)

)
+ (6− 5u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m
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◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r2u−1+r +
(
4a1(1 + r)2 − 2a0(4r2 − 3)

)
ur +

(
∞∑
k=1

(
4ak+1(k + 1 + r)2 − 2ak(4k2 + 8kr + 4r2 − 3) + ak−1

(
4(k − 1)2 + 8(k − 1) r + 4r2 − 5

))
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
4a1(1 + r)2 − 2a0(4r2 − 3) = 0

• Each term in the series must be 0, giving the recursion relation
(−8ak + 4ak−1 + 4ak+1) k2 + (−8ak−1 + 8ak+1) k + 6ak − ak−1 + 4ak+1 = 0

• Shift index using k− >k + 1
(−8ak+1 + 4ak + 4ak+2) (k + 1)2 + (−8ak + 8ak+2) (k + 1) + 6ak+1 − ak + 4ak+2 = 0

• Recursion relation that defines series solution to ODE

ak+2 = −4k2ak−8k2ak+1−16kak+1−5ak−2ak+1
4(k2+4k+4)

• Recursion relation for r = 0

ak+2 = −4k2ak−8k2ak+1−16kak+1−5ak−2ak+1
4(k2+4k+4)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −4k2ak−8k2ak+1−16kak+1−5ak−2ak+1

4(k2+4k+4) , 4a1 + 6a0 = 0
]

• Revert the change of variables u = x+ 1
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[
y =

∞∑
k=0

ak(x+ 1)k , ak+2 = −4k2ak−8k2ak+1−16kak+1−5ak−2ak+1
4(k2+4k+4) , 4a1 + 6a0 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful

<- hypergeometric successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 69� �
Order:=6;
dsolve(4*x^2*(1+x)*diff(y(x),x$2)+4*x^2*diff(y(x),x)+(1-5*x)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
√
x

(
(c2 ln (x) + c1)

(
1 + x− 1

4x
2 + 5

36x
3 − 55

576x
4 + 209

2880x
5 +O

(
x6))

+
(
(−3)x+ 1

4x
2 − 5

54x
3 + 175

3456x
4 − 2863

86400x
5 +O

(
x6)) c2

)
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3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 124� �
AsymptoticDSolveValue[4*x^2*(1+x)*y''[x]+4*x^2*y'[x]+(1-5*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x

(
209x5

2880 − 55x4

576 + 5x3

36 − x2

4 + x+ 1
)

+ c2

(√
x

(
−2863x5

86400 + 175x4

3456 − 5x3

54 + x2

4 − 3x
)

+
√
x

(
209x5

2880 − 55x4

576 + 5x3

36 − x2

4 + x+ 1
)
log(x)

)
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15.52 problem 48
15.52.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6134

Internal problem ID [1400]
Internal file name [OUTPUT/1401_Sunday_June_05_2022_02_15_14_AM_70027925/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 48.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(1− x) y′′ − x(3− 5x) y′ + (4− 5x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−x3 + x2) y′′ + (5x2 − 3x
)
y′ + (4− 5x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 5x− 3
x (x− 1)

q(x) = 5x− 4
x2 (x− 1)
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Table 746: Table p(x), q(x) singularites.

p(x) = − 5x−3
x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

q(x) = 5x−4
x2(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x2(x− 1) +
(
5x2 − 3x

)
y′ + (4− 5x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2(x− 1)

+
(
5x2 − 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (4− 5x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−x1+n+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

5x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−3xn+ran(n+ r)

)
+
(

∞∑
n=0

4anxn+r

)
+

∞∑
n =0

(
−5x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−x1+n+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−an−1(n+ r − 1) (n+ r − 2)xn+r

)
∞∑

n =0

5x1+n+ran(n+ r) =
∞∑
n=1

5an−1(n+ r − 1)xn+r

∞∑
n =0

(
−5x1+n+ran

)
=

∞∑
n=1

(
−5an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =1

(
−an−1(n+ r− 1) (n+ r− 2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=1

5an−1(n+ r − 1)xn+r

)
+

∞∑
n =0

(
−3xn+ran(n+ r)

)
+
(

∞∑
n=0

4anxn+r

)
+

∞∑
n =1

(
−5an−1x

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 3xn+ran(n+ r) + 4anxn+r = 0

6128



When n = 0 the above becomes

xra0r(−1 + r)− 3xra0r + 4a0xr = 0

Or
(xrr(−1 + r)− 3xrr + 4xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r − 2)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(r − 2)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = 2

Since a0 6= 0 then the indicial equation becomes

(r − 2)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 2, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+2

)
We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)−an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
+ 5an−1(n+ r − 1)− 3an(n+ r) + 4an − 5an−1 = 0

Solving for an from recursive equation (4) gives

an = (n+ r − 6) an−1

n+ r − 2 (4)

Which for the root r = 2 becomes

an = (n− 4) an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−5 + r

−1 + r

Which for the root r = 2 becomes
a1 = −3

And the table now becomes

n an,r an

a0 1 1
a1

−5+r
−1+r

−3

6130



For n = 2, using the above recursive equation gives

a2 =
r2 − 9r + 20
r (−1 + r)

Which for the root r = 2 becomes
a2 = 3

And the table now becomes

n an,r an

a0 1 1
a1

−5+r
−1+r

−3

a2
r2−9r+20
r(−1+r) 3

For n = 3, using the above recursive equation gives

a3 =
r3 − 12r2 + 47r − 60

r3 − r

Which for the root r = 2 becomes
a3 = −1

And the table now becomes

n an,r an

a0 1 1
a1

−5+r
−1+r

−3

a2
r2−9r+20
r(−1+r) 3

a3
r3−12r2+47r−60

r3−r
−1

For n = 4, using the above recursive equation gives

a4 =
r4 − 14r3 + 71r2 − 154r + 120

r (r2 − 1) (2 + r)

Which for the root r = 2 becomes
a4 = 0

And the table now becomes
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n an,r an

a0 1 1
a1

−5+r
−1+r

−3

a2
r2−9r+20
r(−1+r) 3

a3
r3−12r2+47r−60

r3−r
−1

a4
r4−14r3+71r2−154r+120

r(r2−1)(2+r) 0

For n = 5, using the above recursive equation gives

a5 =
r4 − 14r3 + 71r2 − 154r + 120

(3 + r) (2 + r) (1 + r) r

Which for the root r = 2 becomes
a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−5+r
−1+r

−3

a2
r2−9r+20
r(−1+r) 3

a3
r3−12r2+47r−60

r3−r
−1

a4
r4−14r3+71r2−154r+120

r(r2−1)(2+r) 0

a5
r4−14r3+71r2−154r+120

(3+r)(2+r)(1+r)r 0

Using the above table, then the first solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2(−x3 + 3x2 − 3x+ 1 +O

(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
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Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 2. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 2)

b0 1 1 N/A since bn starts from 1 N/A
b1

−5+r
−1+r

−3 4
(−1+r)2 4

b2
r2−9r+20
r(−1+r) 3 8r2−40r+20

r2(−1+r)2 −7

b3
r3−12r2+47r−60

r3−r
−1 12r4−96r3+192r2−60

r2(r2−1)2
11
3

b4
r4−14r3+71r2−154r+120

r(r2−1)(2+r) 0 16r6−144r5+328r4+192r3−1016r2+240r+240
r2(r2−1)2(2+r)2 −1

4

b5
r4−14r3+71r2−154r+120

(3+r)(2+r)(1+r)r 0 20r6−120r5−100r4+1200r3−40r2−2640r−720
(3+r)2(2+r)2(1+r)2r2 − 1

20

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x2(−x3+3x2−3x+1+O
(
x6)) ln (x)+x2

(
−7x2+4x+ 11x3

3 − x4

4 − x5

20 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2(−x3 + 3x2 − 3x+ 1+O

(
x6))+ c2

(
x2(−x3 + 3x2 − 3x+ 1+O

(
x6)) ln (x)

+ x2
(
−7x2 + 4x+ 11x3

3 − x4

4 − x5

20 +O
(
x6)))

Hence the final solution is

y = yh

= c1x
2(−x3 + 3x2 − 3x+ 1 +O

(
x6))+ c2

(
x2(−x3 + 3x2 − 3x+ 1 +O

(
x6)) ln (x)

+ x2
(
−7x2 + 4x+ 11x3

3 − x4

4 − x5

20 +O
(
x6)))
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Summary
The solution(s) found are the following

(1)
y = c1x

2(−x3 + 3x2 − 3x+ 1 +O
(
x6))+ c2

(
x2(−x3 + 3x2 − 3x+ 1 +O

(
x6)) ln (x)

+ x2
(
−7x2 + 4x+ 11x3

3 − x4

4 − x5

20 +O
(
x6)))

Verification of solutions

y = c1x
2(−x3 + 3x2 − 3x+ 1 +O

(
x6))+ c2

(
x2(−x3 + 3x2 − 3x+ 1 +O

(
x6)) ln (x)

+ x2
(
−7x2 + 4x+ 11x3

3 − x4

4 − x5

20 +O
(
x6)))

Verified OK.

15.52.1 Maple step by step solution

Let’s solve
−y′′x2(x− 1) + (5x2 − 3x) y′ + (4− 5x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (5x−4)y
x2(x−1) +

(5x−3)y′
x(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (5x−3)y′
x(x−1) + (5x−4)y

x2(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 5x−3
x(x−1) , P3(x) = 5x−4

x2(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 4
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◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x2(x− 1)− x(5x− 3) y′ + y(5x− 4) = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(−2 + r)2 xr +
(

∞∑
k=1

(
−ak(k + r − 2)2 + ak−1(k + r − 2) (k − 6 + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−2 + r)2 = 0

• Values of r that satisfy the indicial equation
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r = 2
• Each term in the series must be 0, giving the recursion relation

−ak(k + r − 2)2 + ak−1(k + r − 2) (k − 6 + r) = 0
• Shift index using k− >k + 1

−ak+1(k + r − 1)2 + ak(k + r − 1) (k + r − 5) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak(k+r−5)
k+r−1

• Recursion relation for r = 2 ; series terminates at k = 3
ak+1 = ak(k−3)

k+1

• Apply recursion relation for k = 0
a1 = −3a0

• Apply recursion relation for k = 1
a2 = −a1

• Express in terms of a0
a2 = 3a0

• Apply recursion relation for k = 2
a3 = −a2

3

• Express in terms of a0
a3 = −a0

• Terminating series solution of the ODE for r = 2 . Use reduction of order to find the second linearly independent solution
y = a0 · (−x3 + 3x2 − 3x+ 1)

6136



Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 61� �
Order:=6;
dsolve(x^2*(1-x)*diff(y(x),x$2)-x*(3-5*x)*diff(y(x),x)+(4-5*x)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
(c2 ln (x) + c1)

(
1− 3x+ 3x2 − x3 +O

(
x6))

+
(
4x− 7x2 + 11

3 x3 − 1
4x

4 − 1
20x

5 +O
(
x6)) c2

)
x2

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 84� �
AsymptoticDSolveValue[x^2*(1-x)*y''[x]-x*(3-5*x)*y'[x]+(4-5*x)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
−x3 + 3x2 − 3x+ 1

)
x2

+ c2

((
−x3 + 3x2 − 3x+ 1

)
x2 log(x) +

(
−x5

20 − x4

4 + 11x3

3 − 7x2 + 4x
)
x2
)
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15.53 problem 49
15.53.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6145

Internal problem ID [1401]
Internal file name [OUTPUT/1402_Sunday_June_05_2022_02_15_18_AM_53006219/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 49.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x2 + 1
)
y′′ − x

(
9x2 + 1

)
y′ +

(
25x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x4 + x2) y′′ + (−9x3 − x
)
y′ +

(
25x2 + 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 9x2 + 1
x (x2 + 1)

q(x) = 25x2 + 1
x2 (x2 + 1)
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Table 748: Table p(x), q(x) singularites.

p(x) = − 9x2+1
x(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

q(x) = 25x2+1
x2(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 + 1
)
y′′ +

(
−9x3 − x

)
y′ +

(
25x2 + 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−9x3 − x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
25x2 + 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−9xn+r+2an(n+ r)

)
+

∞∑
n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

25xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

(
−9xn+r+2an(n+ r)

)
=

∞∑
n=2

(
−9an−2(n+ r − 2)xn+r

)
∞∑

n =0

25xn+r+2an =
∞∑
n=2

25an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+ r− 2) (n− 3+ r)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r− 1)
)

+
∞∑

n =2

(
−9an−2(n+ r − 2)xn+r

)
+

∞∑
n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=2

25an−2x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− xn+ran(n+ r) + anx
n+r = 0
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When n = 0 the above becomes

xra0r(−1 + r)− xra0r + a0x
r = 0

Or
(xrr(−1 + r)− xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(−1 + r)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(−1 + r)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 1

Since a0 6= 0 then the indicial equation becomes

(−1 + r)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+1

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r) + an(n+ r) (n+ r − 1)
− 9an−2(n+ r − 2)− an(n+ r) + 25an−2 + an = 0

Solving for an from recursive equation (4) gives

an = −an−2(n2 + 2nr + r2 − 14n− 14r + 49)
n2 + 2nr + r2 − 2n− 2r + 1 (4)

Which for the root r = 1 becomes

an = −an−2(n− 6)2

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = −(r − 5)2

(1 + r)2
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Which for the root r = 1 becomes
a2 = −4

And the table now becomes

n an,r an

a0 1 1
a1 0 0

a2 − (r−5)2

(1+r)2 −4

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0

a2 − (r−5)2

(1+r)2 −4

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
(r − 5)2 (r − 3)2

(1 + r)2 (r + 3)2

Which for the root r = 1 becomes
a4 = 1

And the table now becomes

n an,r an

a0 1 1
a1 0 0

a2 − (r−5)2

(1+r)2 −4

a3 0 0

a4
(r−5)2(r−3)2

(1+r)2(r+3)2 1
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For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0

a2 − (r−5)2

(1+r)2 −4

a3 0 0

a4
(r−5)2(r−3)2

(1+r)2(r+3)2 1

a5 0 0

Using the above table, then the first solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
(
x4 − 4x2 + 1 +O

(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
Where bn is found using

bn = d

dr
an,r

And the above is then evaluated at r = 1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 1)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0

b2 − (r−5)2

(1+r)2 −4 −12r+60
(1+r)3 6

b3 0 0 0 0

b4
(r−5)2(r−3)2

(1+r)2(r+3)2 1 24(r−5)(r−3)
(
r2−2r−7

)
(1+r)3(r+3)3 −3

b5 0 0 0 0
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x
(
x4 − 4x2 + 1 +O

(
x6)) ln (x) + x

(
−3x4 + 6x2 +O

(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
(
x4 − 4x2 + 1+O

(
x6))+ c2

(
x
(
x4 − 4x2 + 1+O

(
x6)) ln (x) + x

(
−3x4 + 6x2

+O
(
x6)))

Hence the final solution is

y = yh

= c1x
(
x4−4x2+1+O

(
x6))+c2

(
x
(
x4−4x2+1+O

(
x6)) ln (x)+x

(
−3x4+6x2+O

(
x6)))

Summary
The solution(s) found are the following

(1)y = c1x
(
x4 − 4x2 + 1 +O

(
x6))

+ c2
(
x
(
x4 − 4x2 + 1 +O

(
x6)) ln (x) + x

(
−3x4 + 6x2 +O

(
x6)))

Verification of solutions

y = c1x
(
x4 − 4x2 + 1 +O

(
x6))

+ c2
(
x
(
x4 − 4x2 + 1 +O

(
x6)) ln (x) + x

(
−3x4 + 6x2 +O

(
x6)))

Verified OK.

15.53.1 Maple step by step solution

Let’s solve
x2(x2 + 1) y′′ + (−9x3 − x) y′ + (25x2 + 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
25x2+1

)
y

x2(x2+1) +
(
9x2+1

)
y′

x(x2+1)
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ −
(
9x2+1

)
y′

x(x2+1) +
(
25x2+1

)
y

x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 9x2+1
x(x2+1) , P3(x) = 25x2+1

x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(x2 + 1) y′′ − x(9x2 + 1) y′ + (25x2 + 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r
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◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + r)2 xr + a1r
2x1+r +

(
∞∑
k=2

(
ak(k + r − 1)2 + ak−2(k − 7 + r)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
a1r

2 = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(k + r − 1)2 + ak−2(k − 7 + r)2 = 0
• Shift index using k− >k + 2

ak+2(k + 1 + r)2 + ak(k + r − 5)2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −ak(k+r−5)2

(k+1+r)2

• Recursion relation for r = 1 ; series terminates at k = 4

ak+2 = −ak(k−4)2

(k+2)2

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = −ak(k−4)2

(k+2)2 , a1 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 45� �
Order:=6;
dsolve(x^2*(1+x^2)*diff(y(x),x$2)-x*(1+9*x^2)*diff(y(x),x)+(1+25*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) = x
(
(c2 ln (x) + c1)

(
1− 4x2 + x4 +O

(
x6))+ (6x2 − 3x4 +O

(
x6)) c2)

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 49� �
AsymptoticDSolveValue[x^2*(1+x^2)*y''[x]-x*(1+9*x^2)*y'[x]+(1+25*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x
(
x4 − 4x2 + 1

)
+ c2

(
x
(
6x2 − 3x4)+ x

(
x4 − 4x2 + 1

)
log(x)

)
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15.54 problem 50
15.54.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6157

Internal problem ID [1402]
Internal file name [OUTPUT/1403_Sunday_June_05_2022_02_15_21_AM_22366952/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 50.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

9x2y′′ + 3x
(
−x2 + 1

)
y′ +

(
7x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

9x2y′′ +
(
−3x3 + 3x

)
y′ +

(
7x2 + 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −x2 − 1
3x

q(x) = 7x2 + 1
9x2
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Table 750: Table p(x), q(x) singularites.

p(x) = −x2−1
3x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = 7x2+1
9x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

9x2y′′ +
(
−3x3 + 3x

)
y′ +

(
7x2 + 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
9x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−3x3 + 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
7x2 + 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−3xn+r+2an(n+ r)

)
+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=0

7xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−3xn+r+2an(n+ r)

)
=

∞∑
n=2

(
−3an−2(n+ r − 2)xn+r

)
∞∑

n =0

7xn+r+2an =
∞∑
n=2

7an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =2

(
−3an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=2

7an−2x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

9xn+ran(n+ r) (n+ r − 1) + 3xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

9xra0r(−1 + r) + 3xra0r + a0x
r = 0

Or
(9xrr(−1 + r) + 3xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(3r − 1)2 xr = 0
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Since the above is true for all x then the indicial equation becomes

(3r − 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 =
1
3

Since a0 6= 0 then the indicial equation becomes

(3r − 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1

3 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+ 1

3

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
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indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)9an(n+ r) (n+ r − 1)− 3an−2(n+ r − 2) + 3an(n+ r) + 7an−2 + an = 0

Solving for an from recursive equation (4) gives

an = an−2(3n+ 3r − 13)
9n2 + 18nr + 9r2 − 6n− 6r + 1 (4)

Which for the root r = 1
3 becomes

an = an−2(n− 4)
3n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−7 + 3r
(3r + 5)2

Which for the root r = 1
3 becomes

a2 = −1
6

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−7+3r
(3r+5)2 −1

6
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For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−7+3r
(3r+5)2 −1

6

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
9r2 − 24r + 7

(3r + 5)2 (3r + 11)2

Which for the root r = 1
3 becomes

a4 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−7+3r
(3r+5)2 −1

6

a3 0 0
a4

9r2−24r+7
(3r+5)2(3r+11)2 0

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

−7+3r
(3r+5)2 −1

6

a3 0 0
a4

9r2−24r+7
(3r+5)2(3r+11)2 0

a5 0 0

Using the above table, then the first solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
1− x2

6 +O
(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1
3 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = 1

3

)
b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2

−7+3r
(3r+5)2 −1

6
−9r+57
(3r+5)3

1
4

b3 0 0 0 0
b4

9r2−24r+7
(3r+5)2(3r+11)2 0 −162r3+648r2+1890r−1992

(3r+5)3(3r+11)3 − 1
288

b5 0 0 0 0
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x
1
3

(
1− x2

6 +O
(
x6)) ln (x) + x

1
3

(
x2

4 − x4

288 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3

(
1−x2

6 +O
(
x6))+c2

(
x

1
3

(
1−x2

6 +O
(
x6)) ln (x)+x

1
3

(
x2

4 − x4

288+O
(
x6)))

Hence the final solution is

y = yh

= c1x
1
3

(
1− x2

6 +O
(
x6))+ c2

(
x

1
3

(
1− x2

6 +O
(
x6)) ln (x)+x

1
3

(
x2

4 − x4

288 +O
(
x6)))

Summary
The solution(s) found are the following

(1)
y = c1x

1
3

(
1− x2

6 +O
(
x6))

+ c2

(
x

1
3

(
1− x2

6 +O
(
x6)) ln (x) + x

1
3

(
x2

4 − x4

288 +O
(
x6)))

Verification of solutions

y = c1x
1
3

(
1− x2

6 +O
(
x6))+c2

(
x

1
3

(
1− x2

6 +O
(
x6)) ln (x)+x

1
3

(
x2

4 − x4

288 +O
(
x6)))

Verified OK.
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15.54.1 Maple step by step solution

Let’s solve
9x2y′′ + (−3x3 + 3x) y′ + (7x2 + 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
7x2+1

)
y

9x2 +
(
x2−1

)
y′

3x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ −
(
x2−1

)
y′

3x +
(
7x2+1

)
y

9x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −x2−1
3x , P3(x) = 7x2+1

9x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
9x2y′′ − 3x(x2 − 1) y′ + (7x2 + 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

6157



◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 3r)2 xr + a1(2 + 3r)2 x1+r +
(

∞∑
k=2

(
ak(3k + 3r − 1)2 − ak−2(3k − 13 + 3r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 3r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

3

• Each term must be 0
a1(2 + 3r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(3k + 3r − 1)2 + (−3k + 13− 3r) ak−2 = 0

• Shift index using k− >k + 2
ak+2(3k + 5 + 3r)2 + ak(−3k − 3r + 7) = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak(3k+3r−7)

(3k+5+3r)2

• Recursion relation for r = 1
3 ; series terminates at k = 2

ak+2 = ak(3k−6)
(3k+6)2
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• Solution for r = 1
3[

y =
∞∑
k=0

akx
k+ 1

3 , ak+2 = ak(3k−6)
(3k+6)2 , a1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 47� �
Order:=6;
dsolve(9*x^2*diff(y(x),x$2)+3*x*(1-x^2)*diff(y(x),x)+(1+7*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) = x
1
3

(
(c2 ln (x) + c1)

(
1− 1

6x
2 +O

(
x6))+

(
1
4x

2 − 1
288x

4 +O
(
x6)) c2

)
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3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 63� �
AsymptoticDSolveValue[9*x^2*y''[x]+3*x*(1-x^2)*y'[x]+(1+7*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
3
√
x

(
1− x2

6

)
+ c2

(
3
√
x

(
1− x2

6

)
log(x) + 3

√
x

(
x2

4 − x4

288

))
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15.55 problem 51
15.55.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6168

Internal problem ID [1403]
Internal file name [OUTPUT/1404_Sunday_June_05_2022_02_15_24_AM_97671373/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 51.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

x
(
x2 + 1

)
y′′ +

(
−x2 + 1

)
y′ − 8yx = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x3 + x
)
y′′ +

(
−x2 + 1

)
y′ − 8yx = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − x2 − 1
x (x2 + 1)

q(x) = − 8
x2 + 1
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Table 752: Table p(x), q(x) singularites.

p(x) = − x2−1
x(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

q(x) = − 8
x2+1

singularity type
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x
(
x2 + 1

)
y′′ +

(
−x2 + 1

)
y′ − 8yx = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x
(
x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−x2 + 1

)( ∞∑
n=0

(n+ r) anxn+r−1

)
− 8
(

∞∑
n=0

anx
n+r

)
x = 0
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Which simplifies to

(2A)

(
∞∑
n=0

x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−x1+n+ran(n+r)

)
+
(

∞∑
n=0

(n+r) anxn+r−1

)
+

∞∑
n =0

(
−8x1+n+ran

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r−1

∞∑
n =0

(
−x1+n+ran(n+ r)

)
=

∞∑
n=2

(
−an−2(n+ r − 2)xn+r−1)

∞∑
n =0

(
−8x1+n+ran

)
=

∞∑
n=2

(
−8an−2x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r−1

)

+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =2

(
−an−2(n+ r − 2)xn+r−1)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =2

(
−8an−2x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r = 0
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Or (
x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

x−1+rr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r) + an(n+ r) (n+ r − 1)
− an−2(n+ r − 2) + an(n+ r)− 8an−2 = 0

Solving for an from recursive equation (4) gives

an = −(n+ r − 6) an−2

n+ r
(4)

Which for the root r = 0 becomes

an = −(n− 6) an−2

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
4− r

2 + r

Which for the root r = 0 becomes
a2 = 2

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

4−r
2+r

2

For n = 3, using the above recursive equation gives

a3 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

4−r
2+r

2

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
r2 − 6r + 8

(4 + r) (2 + r)
Which for the root r = 0 becomes

a4 = 1
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

4−r
2+r

2

a3 0 0
a4

r2−6r+8
(4+r)(2+r) 1

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

4−r
2+r

2

a3 0 0
a4

r2−6r+8
(4+r)(2+r) 1

a5 0 0
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Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= x4 + 2x2 + 1 +O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2

4−r
2+r

2 − 6
(2+r)2 −3

2

b3 0 0 0 0
b4

r2−6r+8
(4+r)(2+r) 1 12r2−96

(2+r)2(4+r)2 −3
2

b5 0 0 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
x4 + 2x2 + 1 +O

(
x6)) ln (x)− 3x2

2 − 3x4

2 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
(
x4+2x2+1+O

(
x6))+c2

((
x4+2x2+1+O

(
x6)) ln (x)− 3x2

2 − 3x4

2 +O
(
x6))
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Hence the final solution is

y = yh

= c1
(
x4 +2x2 +1+O

(
x6))+ c2

((
x4 +2x2 +1+O

(
x6)) ln (x)− 3x2

2 − 3x4

2 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1

(
x4 + 2x2 + 1 +O

(
x6))

+ c2

((
x4 + 2x2 + 1 +O

(
x6)) ln (x)− 3x2

2 − 3x4

2 +O
(
x6))

Verification of solutions

y = c1
(
x4+2x2+1+O

(
x6))+ c2

((
x4+2x2+1+O

(
x6)) ln (x)− 3x2

2 − 3x4

2 +O
(
x6))

Verified OK.

15.55.1 Maple step by step solution

Let’s solve
x(x2 + 1) y′′ + (−x2 + 1) y′ − 8yx = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = 8y
x2+1 +

(
x2−1

)
y′

x(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ −
(
x2−1

)
y′

x(x2+1) − 8y
x2+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x2−1
x(x2+1) , P3(x) = − 8

x2+1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x(x2 + 1) y′′ + (−x2 + 1) y′ − 8yx = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k+r

◦ Convert xm · y′ to series expansion form = 0..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r + a1(1 + r)2 xr +

(
∞∑
k=1

(
ak+1(k + r + 1)2 + ak−1(k + r + 1) (k − 5 + r)

)
xk+r

)
= 0
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• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
a1(1 + r)2 = 0

• Each term in the series must be 0, giving the recursion relation
((ak−1 + ak+1) k − 5ak−1 + ak+1) (k + 1) = 0

• Shift index using k− >k + 1
((ak + ak+2) (k + 1)− 5ak + ak+2) (k + 2) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k−4)

k+2

• Recursion relation for r = 0 ; series terminates at k = 4
ak+2 = −ak(k−4)

k+2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = −ak(k−4)

k+2 , a1 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 41� �
Order:=6;
dsolve(x*(1+x^2)*diff(y(x),x$2)+(1-x^2)*diff(y(x),x)-8*x*y(x)=0,y(x),type='series',x=0);� �

y(x) = (c2 ln (x) + c1)
(
1 + 2x2 + x4 +O

(
x6))+ (−3

2x
2 − 3

2x
4 +O

(
x6)) c2

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 48� �
AsymptoticDSolveValue[x*(1+x^2)*y''[x]+(1-x^2)*y'[x]-8*x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
(
x4 + 2x2 + 1

)
+ c2

(
−3x4

2 − 3x2

2 +
(
x4 + 2x2 + 1

)
log(x)

)
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15.56 problem 52
15.56.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6180

Internal problem ID [1404]
Internal file name [OUTPUT/1405_Sunday_June_05_2022_02_15_26_AM_35527558/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 52.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2y′′ + 2x
(
−x2 + 4

)
y′ +

(
7x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

4x2y′′ +
(
−2x3 + 8x

)
y′ +

(
7x2 + 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −x2 − 4
2x

q(x) = 7x2 + 1
4x2
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Table 754: Table p(x), q(x) singularites.

p(x) = −x2−4
2x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = 7x2+1
4x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2y′′ +
(
−2x3 + 8x

)
y′ +

(
7x2 + 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−2x3 + 8x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
7x2 + 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−2xn+r+2an(n+ r)

)
+
(

∞∑
n=0

8xn+ran(n+ r)
)

+
(

∞∑
n=0

7xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2xn+r+2an(n+ r)

)
=

∞∑
n=2

(
−2an−2(n+ r − 2)xn+r

)
∞∑

n =0

7xn+r+2an =
∞∑
n=2

7an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =2

(
−2an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=0

8xn+ran(n+ r)
)

+
(

∞∑
n=2

7an−2x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + 8xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

4xra0r(−1 + r) + 8xra0r + a0x
r = 0

Or
(4xrr(−1 + r) + 8xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(2r + 1)2 xr = 0
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Since the above is true for all x then the indicial equation becomes

(2r + 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = −1
2

r2 = −1
2

Since a0 6= 0 then the indicial equation becomes

(2r + 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = −1

2 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n− 1

2

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n− 1

2

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the

6175



indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)4an(n+ r) (n+ r − 1)− 2an−2(n+ r − 2) + 8an(n+ r) + 7an−2 + an = 0

Solving for an from recursive equation (4) gives

an = an−2(2n+ 2r − 11)
4n2 + 8nr + 4r2 + 4n+ 4r + 1 (4)

Which for the root r = −1
2 becomes

an = an−2(n− 6)
2n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−7 + 2r
(2r + 5)2

Which for the root r = −1
2 becomes

a2 = −1
2

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−7+2r
(2r+5)2 −1

2
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For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−7+2r
(2r+5)2 −1

2

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
4r2 − 20r + 21

(2r + 5)2 (2r + 9)2

Which for the root r = −1
2 becomes

a4 =
1
32

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−7+2r
(2r+5)2 −1

2

a3 0 0
a4

4r2−20r+21
(2r+5)2(2r+9)2

1
32

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

−7+2r
(2r+5)2 −1

2

a3 0 0
a4

4r2−20r+21
(2r+5)2(2r+9)2

1
32

a5 0 0

Using the above table, then the first solution y1(x) is

y1(x) =
1√
x

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
−x2

2 + 1 + x4

32 +O(x6)
√
x

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = −1
2 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = −1

2

)
b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2

−7+2r
(2r+5)2 −1

2
−4r+38
(2r+5)3

5
8

b3 0 0 0 0
b4

4r2−20r+21
(2r+5)2(2r+9)2

1
32

−32r3+240r2+584r−2076
(2r+5)3(2r+9)3 − 9

128

b5 0 0 0 0
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=

(
−x2

2 + 1 + x4

32 +O(x6)
)
ln (x)

√
x

+
5x2

8 − 9x4

128 +O(x6)
√
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
−x2

2 + 1 + x4

32 +O(x6)
)

√
x

+c2


(
−x2

2 + 1 + x4

32 +O(x6)
)
ln (x)

√
x

+
5x2

8 − 9x4

128 +O(x6)
√
x


Hence the final solution is

y = yh

=
c1
(
−x2

2 + 1 + x4

32 +O(x6)
)

√
x

+c2


(
−x2

2 + 1 + x4

32 +O(x6)
)
ln (x)

√
x

+
5x2

8 − 9x4

128 +O(x6)
√
x


Summary
The solution(s) found are the following

(1)
y =

c1
(
−x2

2 + 1 + x4

32 +O(x6)
)

√
x

+ c2


(
−x2

2 + 1 + x4

32 +O(x6)
)
ln (x)

√
x

+
5x2

8 − 9x4

128 +O(x6)
√
x


Verification of solutions

y =
c1
(
−x2

2 + 1 + x4

32 +O(x6)
)

√
x

+ c2


(
−x2

2 + 1 + x4

32 +O(x6)
)
ln (x)

√
x

+
5x2

8 − 9x4

128 +O(x6)
√
x


Verified OK.
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15.56.1 Maple step by step solution

Let’s solve
4x2y′′ + (−2x3 + 8x) y′ + (7x2 + 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
7x2+1

)
y

4x2 +
(
x2−4

)
y′

2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ −
(
x2−4

)
y′

2x +
(
7x2+1

)
y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −x2−4
2x , P3(x) = 7x2+1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2y′′ − 2x(x2 − 4) y′ + (7x2 + 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r)2 xr + a1(3 + 2r)2 x1+r +
(

∞∑
k=2

(
ak(2k + 2r + 1)2 − ak−2(2k − 11 + 2r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r)2 = 0

• Values of r that satisfy the indicial equation
r = −1

2

• Each term must be 0
a1(3 + 2r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(2k + 2r + 1)2 + (−2k + 11− 2r) ak−2 = 0

• Shift index using k− >k + 2
ak+2(2k + 5 + 2r)2 + ak(−2k − 2r + 7) = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak(2k+2r−7)

(2k+5+2r)2

• Recursion relation for r = −1
2 ; series terminates at k = 4

ak+2 = ak(2k−8)
(2k+4)2
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• Solution for r = −1
2[

y =
∞∑
k=0

akx
k− 1

2 , ak+2 = ak(2k−8)
(2k+4)2 , a1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 51� �
Order:=6;
dsolve(4*x^2*diff(y(x),x$2)+2*x*(4-x^2)*diff(y(x),x)+(1+7*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(c2 ln (x) + c1)

(
1− 1

2x
2 + 1

32x
4 +O(x6)

)
+
(5
8x

2 − 9
128x

4 +O(x6)
)
c2√

x
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3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 77� �
AsymptoticDSolveValue[4*x^2*y''[x]+2*x*(4-x^2)*y'[x]+(1+7*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) →
c1
(

x4

32 −
x2

2 + 1
)

√
x

+ c2

 5x2

8 − 9x4

128√
x

+

(
x4

32 −
x2

2 + 1
)
log(x)

√
x
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15.57 problem 58
15.57.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6191

Internal problem ID [1405]
Internal file name [OUTPUT/1406_Sunday_June_05_2022_02_15_29_AM_73252834/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 58.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2(x+ 1) y′′ + 8y′x2 + (x+ 1) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

4x3 + 4x2) y′′ + 8y′x2 + (x+ 1) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2
x+ 1

q(x) = 1
4x2
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Table 756: Table p(x), q(x) singularites.

p(x) = 2
x+1

singularity type
x = −1 “regular”

q(x) = 1
4x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2(x+ 1) y′′ + 8y′x2 + (x+ 1) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2(x+ 1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 8
(

∞∑
n=0

(n+ r) anxn+r−1

)
x2 + (x+ 1)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

8x1+n+ran(n+ r)
)

+
(

∞∑
n=0

x1+n+ran

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

4an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

8x1+n+ran(n+ r) =
∞∑
n=1

8an−1(n+ r − 1)xn+r

∞∑
n =0

x1+n+ran =
∞∑
n=1

an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

4an−1(n+ r− 1) (n+ r− 2)xn+r

)
+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=1

8an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=1

an−1x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + anx
n+r = 0

When n = 0 the above becomes

4xra0r(−1 + r) + a0x
r = 0

Or
(4xrr(−1 + r) + xr) a0 = 0
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Since a0 6= 0 then the above simplifies to

(2r − 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(2r − 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 =
1
2

Since a0 6= 0 then the indicial equation becomes

(2r − 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1

2 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+ 1

2

)
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We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)4an−1(n+r−1) (n+r−2)+4an(n+r) (n+r−1)+8an−1(n+r−1)+an−1+an = 0

Solving for an from recursive equation (4) gives

an = −an−1 (4)

Which for the root r = 1
2 becomes

an = −an−1 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = −1

Which for the root r = 1
2 becomes

a1 = −1

And the table now becomes

n an,r an

a0 1 1
a1 −1 −1

For n = 2, using the above recursive equation gives

a2 = 1

Which for the root r = 1
2 becomes

a2 = 1
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And the table now becomes

n an,r an

a0 1 1
a1 −1 −1
a2 1 1

For n = 3, using the above recursive equation gives

a3 = −1

Which for the root r = 1
2 becomes

a3 = −1

And the table now becomes

n an,r an

a0 1 1
a1 −1 −1
a2 1 1
a3 −1 −1

For n = 4, using the above recursive equation gives

a4 = 1

Which for the root r = 1
2 becomes

a4 = 1

And the table now becomes

n an,r an

a0 1 1
a1 −1 −1
a2 1 1
a3 −1 −1
a4 1 1
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For n = 5, using the above recursive equation gives

a5 = −1

Which for the root r = 1
2 becomes

a5 = −1
And the table now becomes

n an,r an

a0 1 1
a1 −1 −1
a2 1 1
a3 −1 −1
a4 1 1
a5 −1 −1

Using the above table, then the first solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x
(
1− x+ x2 − x3 + x4 − x5 +O

(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
Where bn is found using

bn = d

dr
an,r

And the above is then evaluated at r = 1
2 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = 1

2

)
b0 1 1 N/A since bn starts from 1 N/A
b1 −1 −1 0 0
b2 1 1 0 0
b3 −1 −1 0 0
b4 1 1 0 0
b5 −1 −1 0 0
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
√
x
(
1− x+ x2 − x3 + x4 − x5 +O

(
x6)) ln (x) +√

xO
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x
(
1− x+ x2 − x3 + x4 − x5 +O

(
x6))

+ c2
(√

x
(
1− x+ x2 − x3 + x4 − x5 +O

(
x6)) ln (x) +√

xO
(
x6))

Hence the final solution is

y = yh

= c1
√
x
(
1− x+ x2 − x3 + x4 − x5 +O

(
x6))

+ c2
(√

x
(
1− x+ x2 − x3 + x4 − x5 +O

(
x6)) ln (x) +√

xO
(
x6))

Summary
The solution(s) found are the following

(1)y = c1
√
x
(
1− x+ x2 − x3 + x4 − x5 +O

(
x6))

+ c2
(√

x
(
1− x+ x2 − x3 + x4 − x5 +O

(
x6)) ln (x) +√

xO
(
x6))

Verification of solutions

y = c1
√
x
(
1− x+ x2 − x3 + x4 − x5 +O

(
x6))

+ c2
(√

x
(
1− x+ x2 − x3 + x4 − x5 +O

(
x6)) ln (x) +√

xO
(
x6))

Verified OK.

15.57.1 Maple step by step solution

Let’s solve
4x2(x+ 1) y′′ + 8y′x2 + (x+ 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
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y′′ = − 2y′
x+1 −

y
4x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2y′

x+1 +
y

4x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2
x+1 , P3(x) = 1

4x2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
4x2(x+ 1) y′′ + 8y′x2 + (x+ 1) y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(4u3 − 8u2 + 4u)
(

d2

du2y(u)
)
+ (8u2 − 16u+ 8)

(
d
du
y(u)

)
+ uy(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert u · y(u) to series expansion

u · y(u) =
∞∑
k=0

aku
k+r+1

◦ Shift index using k− >k − 1

u · y(u) =
∞∑
k=1

ak−1u
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2
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um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(1 + r)u−1+r + (4a1(1 + r) (2 + r)− 8a0r(1 + r))ur +
(

∞∑
k=1

(
4ak+1(k + r + 1) (k + 2 + r)− 8ak(k + r) (k + r + 1) + ak−1(2k − 1 + 2r)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
4a1(1 + r) (2 + r)− 8a0r(1 + r) = 0

• Each term in the series must be 0, giving the recursion relation
ak−1(2k − 1 + 2r)2 − 8

((
−k

2 −
r
2 − 1

)
ak+1 + ak(k + r)

)
(k + r + 1) = 0

• Shift index using k− >k + 1
ak(2k + 2r + 1)2 − 8

((
−k

2 −
3
2 −

r
2

)
ak+2 + ak+1(k + r + 1)

)
(k + 2 + r) = 0

• Recursion relation that defines series solution to ODE

ak+2 = −4k2ak−8k2ak+1+8krak−16krak+1+4r2ak−8r2ak+1+4kak−24kak+1+4rak−24rak+1+ak−16ak+1
4(k+3+r)(k+2+r)

• Recursion relation for r = −1

ak+2 = −4k2ak−8k2ak+1−4kak−8kak+1+ak
4(k+2)(k+1)

• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+2 = −4k2ak−8k2ak+1−4kak−8kak+1+ak

4(k+2)(k+1) , 0 = 0
]
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• Revert the change of variables u = x+ 1[
y =

∞∑
k=0

ak(x+ 1)k−1 , ak+2 = −4k2ak−8k2ak+1−4kak−8kak+1+ak
4(k+2)(k+1) , 0 = 0

]
• Recursion relation for r = 0

ak+2 = −4k2ak−8k2ak+1+4kak−24kak+1+ak−16ak+1
4(k+3)(k+2)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −4k2ak−8k2ak+1+4kak−24kak+1+ak−16ak+1

4(k+3)(k+2) , 8a1 = 0
]

• Revert the change of variables u = x+ 1[
y =

∞∑
k=0

ak(x+ 1)k , ak+2 = −4k2ak−8k2ak+1+4kak−24kak+1+ak−16ak+1
4(k+3)(k+2) , 8a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x+ 1)k−1
)
+
(

∞∑
k=0

bk(x+ 1)k
)
, ak+2 = −4k2ak−8k2a1+k−4kak−8ka1+k+ak

4(k+2)(1+k) , 0 = 0, bk+2 = −4k2bk−8k2b1+k+4kbk−24kb1+k+bk−16b1+k

4(k+3)(k+2) , 8b1 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 49� �
Order:=6;
dsolve(4*x^2*(1+x)*diff(y(x),x$2)+8*x^2*diff(y(x),x)+(1+x)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
√
x
(
−x5 + x4 − x3 + x2 − x+ 1

)
(c2 ln (x) + c1) +O

(
x6)

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 64� �
AsymptoticDSolveValue[4*x^2*(1+x)*y''[x]+8*x^2*y'[x]+(1+x)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

√
x
(
−x5 + x4 − x3 + x2 − x+ 1

)
+ c2

√
x
(
−x5 + x4 − x3 + x2 − x+ 1

)
log(x)
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15.58 problem 59
15.58.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6204

Internal problem ID [1406]
Internal file name [OUTPUT/1407_Sunday_June_05_2022_02_15_31_AM_36669901/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 59.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

9x2(x+ 3) y′′ + 3x(3 + 7x) y′ + (4x+ 3) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

9x3 + 27x2) y′′ + (21x2 + 9x
)
y′ + (4x+ 3) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3 + 7x
3x (x+ 3)

q(x) = 4x+ 3
9x2 (x+ 3)
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Table 758: Table p(x), q(x) singularites.

p(x) = 3+7x
3x(x+3)

singularity type
x = −3 “regular”
x = 0 “regular”

q(x) = 4x+3
9x2(x+3)

singularity type
x = −3 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−3, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

9x2(x+ 3) y′′ +
(
21x2 + 9x

)
y′ + (4x+ 3) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
9x2(x+ 3)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
21x2 + 9x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (4x+ 3)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

9x1+n+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

27xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

21x1+n+ran(n+ r)
)

+
(

∞∑
n=0

9xn+ran(n+ r)
)

+
(

∞∑
n=0

4x1+n+ran

)
+
(

∞∑
n=0

3anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

9x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

9an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

21x1+n+ran(n+ r) =
∞∑
n=1

21an−1(n+ r − 1)xn+r

∞∑
n =0

4x1+n+ran =
∞∑
n=1

4an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

9an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

27xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

21an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

9xn+ran(n+ r)
)

+
(

∞∑
n=1

4an−1x
n+r

)
+
(

∞∑
n=0

3anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

27xn+ran(n+ r) (n+ r − 1) + 9xn+ran(n+ r) + 3anxn+r = 0
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When n = 0 the above becomes

27xra0r(−1 + r) + 9xra0r + 3a0xr = 0

Or
(27xrr(−1 + r) + 9xrr + 3xr) a0 = 0

Since a0 6= 0 then the above simplifies to

3(3r − 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

3(3r − 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 =
1
3

Since a0 6= 0 then the indicial equation becomes

3(3r − 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1

3 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+ 1

3

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)9an−1(n+ r − 1) (n+ r − 2) + 27an(n+ r) (n+ r − 1)
+ 21an−1(n+ r − 1) + 9an(n+ r) + 4an−1 + 3an = 0

Solving for an from recursive equation (4) gives

an = −an−1

3 (4)

Which for the root r = 1
3 becomes

an = −an−1

3 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = −1
3

Which for the root r = 1
3 becomes

a1 = −1
3

And the table now becomes
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n an,r an

a0 1 1
a1 −1

3 −1
3

For n = 2, using the above recursive equation gives

a2 =
1
9

Which for the root r = 1
3 becomes

a2 =
1
9

And the table now becomes

n an,r an

a0 1 1
a1 −1

3 −1
3

a2
1
9

1
9

For n = 3, using the above recursive equation gives

a3 = − 1
27

Which for the root r = 1
3 becomes

a3 = − 1
27

And the table now becomes

n an,r an

a0 1 1
a1 −1

3 −1
3

a2
1
9

1
9

a3 − 1
27 − 1

27

For n = 4, using the above recursive equation gives

a4 =
1
81
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Which for the root r = 1
3 becomes

a4 =
1
81

And the table now becomes

n an,r an

a0 1 1
a1 −1

3 −1
3

a2
1
9

1
9

a3 − 1
27 − 1

27

a4
1
81

1
81

For n = 5, using the above recursive equation gives

a5 = − 1
243

Which for the root r = 1
3 becomes

a5 = − 1
243

And the table now becomes

n an,r an

a0 1 1
a1 −1

3 −1
3

a2
1
9

1
9

a3 − 1
27 − 1

27

a4
1
81

1
81

a5 − 1
243 − 1

243

Using the above table, then the first solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3

(
−x

3 + 1 + x2

9 − x3

27 + x4

81 − x5

243 +O
(
x6))
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Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1
3 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = 1

3

)
b0 1 1 N/A since bn starts from 1 N/A
b1 −1

3 −1
3 0 0

b2
1
9

1
9 0 0

b3 − 1
27 − 1

27 0 0
b4

1
81

1
81 0 0

b5 − 1
243 − 1

243 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x
1
3

(
−x

3 + 1 + x2

9 − x3

27 + x4

81 − x5

243 +O
(
x6)) ln (x) + x

1
3O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3

(
−x

3 + 1 + x2

9 − x3

27 + x4

81 − x5

243 +O
(
x6))

+ c2

(
x

1
3

(
−x

3 + 1 + x2

9 − x3

27 + x4

81 − x5

243 +O
(
x6)) ln (x) + x

1
3O
(
x6))
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Hence the final solution is

y = yh

= c1x
1
3

(
−x

3 + 1 + x2

9 − x3

27 + x4

81 − x5

243 +O
(
x6))

+ c2

(
x

1
3

(
−x

3 + 1 + x2

9 − x3

27 + x4

81 − x5

243 +O
(
x6)) ln (x) + x

1
3O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

1
3

(
−x

3 + 1 + x2

9 − x3

27 + x4

81 − x5

243 +O
(
x6))

+ c2

(
x

1
3

(
−x

3 + 1 + x2

9 − x3

27 + x4

81 − x5

243 +O
(
x6)) ln (x) + x

1
3O
(
x6))

Verification of solutions

y = c1x
1
3

(
−x

3 + 1 + x2

9 − x3

27 + x4

81 − x5

243 +O
(
x6))

+ c2

(
x

1
3

(
−x

3 + 1 + x2

9 − x3

27 + x4

81 − x5

243 +O
(
x6)) ln (x) + x

1
3O
(
x6))

Verified OK.

15.58.1 Maple step by step solution

Let’s solve
9x2(x+ 3) y′′ + (21x2 + 9x) y′ + (4x+ 3) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (4x+3)y
9x2(x+3) −

(3+7x)y′
3x(x+3)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (3+7x)y′
3x(x+3) +

(4x+3)y
9x2(x+3) = 0

� Check to see if x0 is a regular singular point
◦ Define functions
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[
P2(x) = 3+7x

3x(x+3) , P3(x) = 4x+3
9x2(x+3)

]
◦ (x+ 3) · P2(x) is analytic at x = −3

((x+ 3) · P2(x))
∣∣∣∣
x=−3

= 2

◦ (x+ 3)2 · P3(x) is analytic at x = −3(
(x+ 3)2 · P3(x)

) ∣∣∣∣
x=−3

= 0

◦ x = −3is a regular singular point
Check to see if x0 is a regular singular point
x0 = −3

• Multiply by denominators
9x2(x+ 3) y′′ + 3x(3 + 7x) y′ + (4x+ 3) y = 0

• Change variables using x = u− 3 so that the regular singular point is at u = 0

(9u3 − 54u2 + 81u)
(

d2

du2y(u)
)
+ (21u2 − 117u+ 162)

(
d
du
y(u)

)
+ (4u− 9) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

81a0r(1 + r)u−1+r + (81a1(1 + r) (2 + r)− 9a0(1 + r) (1 + 6r))ur +
(

∞∑
k=1

(
81ak+1(k + r + 1) (k + 2 + r)− 9ak(k + r + 1) (6k + 6r + 1) + ak−1(3k − 1 + 3r)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
81r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term must be 0
81a1(1 + r) (2 + r)− 9a0(1 + r) (1 + 6r) = 0

• Each term in the series must be 0, giving the recursion relation
81ak+1(k + r + 1) (k + 2 + r)− 54

(
k + r + 1

6

)
(k + r + 1) ak + ak−1(3k − 1 + 3r)2 = 0

• Shift index using k− >k + 1
81ak+2(k + 2 + r) (k + 3 + r)− 54

(
k + 7

6 + r
)
(k + 2 + r) ak+1 + ak(3k + 3r + 2)2 = 0

• Recursion relation that defines series solution to ODE

ak+2 = −9k2ak−54k2ak+1+18krak−108krak+1+9r2ak−54r2ak+1+12kak−171kak+1+12rak−171rak+1+4ak−126ak+1
81(k+2+r)(k+3+r)

• Recursion relation for r = −1

ak+2 = −9k2ak−54k2ak+1−6kak−63kak+1+ak−9ak+1
81(k+1)(k+2)

• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+2 = −9k2ak−54k2ak+1−6kak−63kak+1+ak−9ak+1

81(k+1)(k+2) , 0 = 0
]

• Revert the change of variables u = x+ 3[
y =

∞∑
k=0

ak(x+ 3)k−1 , ak+2 = −9k2ak−54k2ak+1−6kak−63kak+1+ak−9ak+1
81(k+1)(k+2) , 0 = 0

]
• Recursion relation for r = 0

ak+2 = −9k2ak−54k2ak+1+12kak−171kak+1+4ak−126ak+1
81(k+2)(k+3)

• Solution for r = 0
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[
y(u) =

∞∑
k=0

aku
k, ak+2 = −9k2ak−54k2ak+1+12kak−171kak+1+4ak−126ak+1

81(k+2)(k+3) , 162a1 − 9a0 = 0
]

• Revert the change of variables u = x+ 3[
y =

∞∑
k=0

ak(x+ 3)k , ak+2 = −9k2ak−54k2ak+1+12kak−171kak+1+4ak−126ak+1
81(k+2)(k+3) , 162a1 − 9a0 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x+ 3)k−1
)
+
(

∞∑
k=0

bk(x+ 3)k
)
, ak+2 = −9k2ak−54k2a1+k−6kak−63ka1+k+ak−9a1+k

81(1+k)(k+2) , 0 = 0, bk+2 = −9k2bk−54k2b1+k+12kbk−171kb1+k+4bk−126b1+k

81(k+2)(k+3) , 162b1 − 9b0 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 49� �
Order:=6;
dsolve(9*x^2*(3+x)*diff(y(x),x$2)+3*x*(3+7*x)*diff(y(x),x)+(3+4*x)*y(x)=0,y(x),type='series',x=0);� �

y(x) = x
1
3

(
1− 1

3x+ 1
9x

2 − 1
27x

3 + 1
81x

4 − 1
243x

5
)
(c2 ln (x) + c1) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 92� �
AsymptoticDSolveValue[9*x^2*(3+x)*y''[x]+3*x*(3+7*x)*y'[x]+(3+4*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
3
√
x

(
− x5

243 + x4

81 − x3

27 + x2

9 − x

3 + 1
)

+ c2
3
√
x

(
− x5

243 + x4

81 − x3

27 + x2

9 − x

3 + 1
)
log(x)
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15.59 problem 60
15.59.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6216

Internal problem ID [1407]
Internal file name [OUTPUT/1408_Sunday_June_05_2022_02_15_34_AM_76674236/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 60.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(−x2 + 2
)
y′′ − x

(
3x2 + 2

)
y′ +

(
−x2 + 2

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

−x4 + 2x2) y′′ + (−3x3 − 2x
)
y′ +

(
−x2 + 2

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3x2 + 2
x (x2 − 2)

q(x) = 1
x2
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Table 760: Table p(x), q(x) singularites.

p(x) = 3x2+2
x(x2−2)

singularity type
x = 0 “regular”
x =

√
2 “regular”

x = −
√
2 “regular”

q(x) = 1
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,
√
2,−

√
2,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x2(x2 − 2
)
+
(
−3x3 − 2x

)
y′ +

(
−x2 + 2

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2(x2 − 2

)
+
(
−3x3 − 2x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
−x2 + 2

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−xn+r+2an(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

2xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−3xn+r+2an(n+ r)

)
+

∞∑
n =0

(
−2xn+ran(n+ r)

)
+

∞∑
n =0

(
−xn+r+2an

)
+
(

∞∑
n=0

2anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−xn+r+2an(n+ r) (n+ r − 1)

)
=

∞∑
n=2

(
−an−2(n+ r − 2) (n− 3 + r)xn+r

)
∞∑

n =0

(
−3xn+r+2an(n+ r)

)
=

∞∑
n=2

(
−3an−2(n+ r − 2)xn+r

)
∞∑

n =0

(
−xn+r+2an

)
=

∞∑
n=2

(
−an−2x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =2

(
−an−2(n+r−2) (n−3+r)xn+r

)
+
(

∞∑
n=0

2xn+ran(n+r) (n+r−1)
)

+
∞∑

n =2

(
−3an−2(n+ r − 2)xn+r

)
+

∞∑
n =0

(
−2xn+ran(n+ r)

)
+

∞∑
n =2

(
−an−2x

n+r
)
+
(

∞∑
n=0

2anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+ran(n+ r) (n+ r − 1)− 2xn+ran(n+ r) + 2anxn+r = 0
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When n = 0 the above becomes

2xra0r(−1 + r)− 2xra0r + 2a0xr = 0

Or
(2xrr(−1 + r)− 2xrr + 2xr) a0 = 0

Since a0 6= 0 then the above simplifies to

2xr(−1 + r)2 = 0

Since the above is true for all x then the indicial equation becomes

2(−1 + r)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 1

Since a0 6= 0 then the indicial equation becomes

2xr(−1 + r)2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+1

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)−an−2(n+ r − 2) (n− 3 + r) + 2an(n+ r) (n+ r − 1)
− 3an−2(n+ r − 2)− 2an(n+ r)− an−2 + 2an = 0

Solving for an from recursive equation (4) gives

an = an−2

2 (4)

Which for the root r = 1 becomes

an = an−2

2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
1
2

Which for the root r = 1 becomes
a2 =

1
2
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1
2

1
2

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1
2

1
2

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1
4

Which for the root r = 1 becomes
a4 =

1
4

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1
2

1
2

a3 0 0
a4

1
4

1
4

For n = 5, using the above recursive equation gives

a5 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1
2

1
2

a3 0 0
a4

1
4

1
4

a5 0 0

Using the above table, then the first solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1 + x2

2 + x4

4 +O
(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 1)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2

1
2

1
2 0 0

b3 0 0 0 0
b4

1
4

1
4 0 0

b5 0 0 0 0
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x

(
1 + x2

2 + x4

4 +O
(
x6)) ln (x) + xO

(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1 + x2

2 + x4

4 +O
(
x6))+ c2

(
x

(
1 + x2

2 + x4

4 +O
(
x6)) ln (x) + xO

(
x6))

Hence the final solution is

y = yh

= c1x

(
1 + x2

2 + x4

4 +O
(
x6))+ c2

(
x

(
1 + x2

2 + x4

4 +O
(
x6)) ln (x) + xO

(
x6))

Summary
The solution(s) found are the following

(1)y = c1x

(
1 + x2

2 + x4

4 +O
(
x6))+ c2

(
x

(
1 + x2

2 + x4

4 +O
(
x6)) ln (x) + xO

(
x6))

Verification of solutions

y = c1x

(
1 + x2

2 + x4

4 +O
(
x6))+ c2

(
x

(
1 + x2

2 + x4

4 +O
(
x6)) ln (x) + xO

(
x6))

Verified OK.

15.59.1 Maple step by step solution

Let’s solve
−y′′x2(x2 − 2) + (−3x3 − 2x) y′ + (−x2 + 2) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
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y′′ = − y
x2 −

(
3x2+2

)
y′

x(x2−2)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
3x2+2

)
y′

x(x2−2) + y
x2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3x2+2
x(x2−2) , P3(x) = 1

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x2(x2 − 2) + x(3x2 + 2) y′ + y(x2 − 2) = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m
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xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−2a0(−1 + r)2 xr − 2a1r2x1+r +
(

∞∑
k=2

(
−2ak(k + r − 1)2 + ak−2(k + r − 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term must be 0
−2a1r2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
−2
(
ak − ak−2

2

)
(k + r − 1)2 = 0

• Shift index using k− >k + 2
−2
(
ak+2 − ak

2

)
(k + r + 1)2 = 0

• Recursion relation that defines series solution to ODE
ak+2 = ak

2

• Recursion relation for r = 1
ak+2 = ak

2

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = ak

2 , a1 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 33� �
Order:=6;
dsolve(x^2*(2-x^2)*diff(y(x),x$2)-x*(2+3*x^2)*diff(y(x),x)+(2-x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + 1

2x
2 + 1

4x
4
)
x(c2 ln (x) + c1) +O

(
x6)

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 46� �
AsymptoticDSolveValue[x^2*(2-x^2)*y''[x]-x*(2+3*x^2)*y'[x]+(2-x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x

(
x4

4 + x2

2 + 1
)
+ c2x

(
x4

4 + x2

2 + 1
)
log(x)
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15.60 problem 61
15.60.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6227

Internal problem ID [1408]
Internal file name [OUTPUT/1409_Sunday_June_05_2022_02_15_36_AM_41322562/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 61.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

16x2(x2 + 1
)
y′′ + 8x

(
9x2 + 1

)
y′ +

(
49x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

16x4 + 16x2) y′′ + (72x3 + 8x
)
y′ +

(
49x2 + 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 9x2 + 1
2x (x2 + 1)

q(x) = 49x2 + 1
16x2 (x2 + 1)
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Table 762: Table p(x), q(x) singularites.

p(x) = 9x2+1
2x(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

q(x) = 49x2+1
16x2(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

16x2(x2 + 1
)
y′′ +

(
72x3 + 8x

)
y′ +

(
49x2 + 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
16x2(x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
72x3 + 8x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
49x2 + 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

16xn+r+2an(n+r) (n+r−1)
)
+
(

∞∑
n=0

16xn+ran(n+r) (n+r−1)
)

+
(

∞∑
n=0

72xn+r+2an(n+ r)
)

+
(

∞∑
n=0

8xn+ran(n+ r)
)

+
(

∞∑
n=0

49xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

16xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

16an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

72xn+r+2an(n+ r) =
∞∑
n=2

72an−2(n+ r − 2)xn+r

∞∑
n =0

49xn+r+2an =
∞∑
n=2

49an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

16an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=0

16xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

72an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=0

8xn+ran(n+ r)
)

+
(

∞∑
n=2

49an−2x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

16xn+ran(n+ r) (n+ r − 1) + 8xn+ran(n+ r) + anx
n+r = 0
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When n = 0 the above becomes

16xra0r(−1 + r) + 8xra0r + a0x
r = 0

Or
(16xrr(−1 + r) + 8xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(4r − 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(4r − 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
4

r2 =
1
4

Since a0 6= 0 then the indicial equation becomes

(4r − 1)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
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integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1

4 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+ 1

4

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+ 1

4

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)16an−2(n+ r − 2) (n− 3 + r) + 16an(n+ r) (n+ r − 1)
+ 72an−2(n+ r − 2) + 8an(n+ r) + 49an−2 + an = 0

Solving for an from recursive equation (4) gives

an = −an−2 (4)

Which for the root r = 1
4 becomes

an = −an−2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

4 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = −1

Which for the root r = 1
4 becomes

a2 = −1
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 −1 −1

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 −1 −1
a3 0 0

For n = 4, using the above recursive equation gives

a4 = 1

Which for the root r = 1
4 becomes

a4 = 1

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 −1 −1
a3 0 0
a4 1 1

For n = 5, using the above recursive equation gives

a5 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 −1 −1
a3 0 0
a4 1 1
a5 0 0

Using the above table, then the first solution y1(x) is

y1(x) = x
1
4
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
4
(
x4 − x2 + 1 +O

(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1
4 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = 1

4

)
b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2 −1 −1 0 0
b3 0 0 0 0
b4 1 1 0 0
b5 0 0 0 0
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x
1
4
(
x4 − x2 + 1 +O

(
x6)) ln (x) + x

1
4O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
4
(
x4 − x2 + 1 +O

(
x6))+ c2

(
x

1
4
(
x4 − x2 + 1 +O

(
x6)) ln (x) + x

1
4O
(
x6))

Hence the final solution is

y = yh

= c1x
1
4
(
x4 − x2 + 1 +O

(
x6))+ c2

(
x

1
4
(
x4 − x2 + 1 +O

(
x6)) ln (x) + x

1
4O
(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
1
4
(
x4 − x2 + 1 +O

(
x6))+ c2

(
x

1
4
(
x4 − x2 + 1 +O

(
x6)) ln (x) + x

1
4O
(
x6))

Verification of solutions

y = c1x
1
4
(
x4 − x2 + 1 +O

(
x6))+ c2

(
x

1
4
(
x4 − x2 + 1 +O

(
x6)) ln (x) + x

1
4O
(
x6))

Verified OK.

15.60.1 Maple step by step solution

Let’s solve
16x2(x2 + 1) y′′ + (72x3 + 8x) y′ + (49x2 + 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
49x2+1

)
y

16x2(x2+1) −
(
9x2+1

)
y′

2x(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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y′′ +
(
9x2+1

)
y′

2x(x2+1) +
(
49x2+1

)
y

16x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 9x2+1
2x(x2+1) , P3(x) = 49x2+1

16x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
16

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
16x2(x2 + 1) y′′ + 8x(9x2 + 1) y′ + (49x2 + 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4
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xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + 4r)2 xr + a1(3 + 4r)2 x1+r +
(

∞∑
k=2

(
ak(4k + 4r − 1)2 + ak−2(4k + 4r − 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 4r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

4

• Each term must be 0
a1(3 + 4r)2 = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(4k + 4r − 1)2 (ak + ak−2) = 0

• Shift index using k− >k + 2
(4k + 4r + 7)2 (ak+2 + ak) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak

• Recursion relation for r = 1
4

ak+2 = −ak

• Solution for r = 1
4[

y =
∞∑
k=0

akx
k+ 1

4 , ak+2 = −ak, a1 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 37� �
Order:=6;
dsolve(16*x^2*(1+x^2)*diff(y(x),x$2)+8*x*(1+9*x^2)*diff(y(x),x)+(1+49*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) = x
1
4
(
x4 − x2 + 1

)
(c2 ln (x) + c1) +O

(
x6)

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 42� �
AsymptoticDSolveValue[16*x^2*(1+x^2)*y''[x]+8*x*(1+9*x^2)*y'[x]+(1+49*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
4
√
x
(
x4 − x2 + 1

)
+ c2

4
√
x
(
x4 − x2 + 1

)
log(x)
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15.61 problem 62
15.61.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6239

Internal problem ID [1409]
Internal file name [OUTPUT/1410_Sunday_June_05_2022_02_15_38_AM_38663203/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 62.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(3x+ 4) y′′ − x(4− 3x) y′ + 4y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

3x3 + 4x2) y′′ + (3x2 − 4x
)
y′ + 4y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3x− 4
x (3x+ 4)

q(x) = 4
x2 (3x+ 4)
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Table 764: Table p(x), q(x) singularites.

p(x) = 3x−4
x(3x+4)

singularity type
x = 0 “regular”
x = −4

3 “regular”

q(x) = 4
x2(3x+4)

singularity type
x = 0 “regular”
x = −4

3 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−4

3 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(3x+ 4) y′′ +
(
3x2 − 4x

)
y′ + 4y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(3x+ 4)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
3x2 − 4x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ 4
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

3x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−4xn+ran(n+ r)

)
+
(

∞∑
n=0

4anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

3x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

3an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

3x1+n+ran(n+ r) =
∞∑
n=1

3an−1(n+ r − 1)xn+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

3an−1(n+ r− 1) (n+ r− 2)xn+r

)
+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=1

3an−1(n+r−1)xn+r

)
+

∞∑
n =0

(
−4xn+ran(n+r)

)
+
(

∞∑
n=0

4anxn+r

)
=0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1)− 4xn+ran(n+ r) + 4anxn+r = 0

When n = 0 the above becomes

4xra0r(−1 + r)− 4xra0r + 4a0xr = 0

Or
(4xrr(−1 + r)− 4xrr + 4xr) a0 = 0

Since a0 6= 0 then the above simplifies to

4xr(−1 + r)2 = 0
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Since the above is true for all x then the indicial equation becomes

4(−1 + r)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 1

Since a0 6= 0 then the indicial equation becomes

4xr(−1 + r)2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
1+n

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
1+n

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the

6234



indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation
is

(3)3an−1(n+ r − 1) (n+ r − 2) + 4an(n+ r) (n+ r − 1)
+ 3an−1(n+ r − 1)− 4an(n+ r) + 4an = 0

Solving for an from recursive equation (4) gives

an = −3an−1

4 (4)

Which for the root r = 1 becomes

an = −3an−1

4 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = −3
4

Which for the root r = 1 becomes
a1 = −3

4
And the table now becomes

n an,r an

a0 1 1
a1 −3

4 −3
4

For n = 2, using the above recursive equation gives

a2 =
9
16

Which for the root r = 1 becomes
a2 =

9
16
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And the table now becomes

n an,r an

a0 1 1
a1 −3

4 −3
4

a2
9
16

9
16

For n = 3, using the above recursive equation gives

a3 = −27
64

Which for the root r = 1 becomes

a3 = −27
64

And the table now becomes

n an,r an

a0 1 1
a1 −3

4 −3
4

a2
9
16

9
16

a3 −27
64 −27

64

For n = 4, using the above recursive equation gives

a4 =
81
256

Which for the root r = 1 becomes

a4 =
81
256

And the table now becomes

n an,r an

a0 1 1
a1 −3

4 −3
4

a2
9
16

9
16

a3 −27
64 −27

64

a4
81
256

81
256
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For n = 5, using the above recursive equation gives

a5 = − 243
1024

Which for the root r = 1 becomes

a5 = − 243
1024

And the table now becomes

n an,r an

a0 1 1
a1 −3

4 −3
4

a2
9
16

9
16

a3 −27
64 −27

64

a4
81
256

81
256

a5 − 243
1024 − 243

1024

Using the above table, then the first solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− 3x

4 + 9x2

16 − 27x3

64 + 81x4

256 − 243x5

1024 +O
(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table
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n bn,r an bn,r = d
dr
an,r bn(r = 1)

b0 1 1 N/A since bn starts from 1 N/A
b1 −3

4 −3
4 0 0

b2
9
16

9
16 0 0

b3 −27
64 −27

64 0 0
b4

81
256

81
256 0 0

b5 − 243
1024 − 243

1024 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x

(
1− 3x

4 + 9x2

16 − 27x3

64 + 81x4

256 − 243x5

1024 +O
(
x6)) ln (x) + xO

(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− 3x

4 + 9x2

16 − 27x3

64 + 81x4

256 − 243x5

1024 +O
(
x6))

+ c2

(
x

(
1− 3x

4 + 9x2

16 − 27x3

64 + 81x4

256 − 243x5

1024 +O
(
x6)) ln (x) + xO

(
x6))

Hence the final solution is

y = yh

= c1x

(
1− 3x

4 + 9x2

16 − 27x3

64 + 81x4

256 − 243x5

1024 +O
(
x6))

+ c2

(
x

(
1− 3x

4 + 9x2

16 − 27x3

64 + 81x4

256 − 243x5

1024 +O
(
x6)) ln (x) + xO

(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

(
1− 3x

4 + 9x2

16 − 27x3

64 + 81x4

256 − 243x5

1024 +O
(
x6))

+ c2

(
x

(
1− 3x

4 + 9x2

16 − 27x3

64 + 81x4

256 − 243x5

1024 +O
(
x6)) ln (x) + xO

(
x6))

6238



Verification of solutions

y = c1x

(
1− 3x

4 + 9x2

16 − 27x3

64 + 81x4

256 − 243x5

1024 +O
(
x6))

+ c2

(
x

(
1− 3x

4 + 9x2

16 − 27x3

64 + 81x4

256 − 243x5

1024 +O
(
x6)) ln (x) + xO

(
x6))

Verified OK.

15.61.1 Maple step by step solution

Let’s solve
x2(3x+ 4) y′′ + (3x2 − 4x) y′ + 4y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 4y
x2(3x+4) −

(3x−4)y′
x(3x+4)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (3x−4)y′
x(3x+4) +

4y
x2(3x+4) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3x−4
x(3x+4) , P3(x) = 4

x2(3x+4)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(3x+ 4) y′′ + x(3x− 4) y′ + 4y = 0
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• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

4a0(−1 + r)2 xr +
(

∞∑
k=1

(
4ak(k + r − 1)2 + 3ak−1(k + r − 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• Each term in the series must be 0, giving the recursion relation
(k + r − 1)2 (4ak + 3ak−1) = 0

• Shift index using k− >k + 1
(k + r)2 (4ak+1 + 3ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = −3ak

4

• Recursion relation for r = 1
ak+1 = −3ak

4

• Solution for r = 1
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[
y =

∞∑
k=0

akx
k+1, ak+1 = −3ak

4

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 45� �
Order:=6;
dsolve(x^2*(4+3*x)*diff(y(x),x$2)-x*(4-3*x)*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 3

4x+ 9
16x

2 − 27
64x

3 + 81
256x

4 − 243
1024x

5
)
x(c2 ln (x) + c1) +O

(
x6)

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 84� �
AsymptoticDSolveValue[x^2*(4+3*x)*y''[x]-x*(4-3*x)*y'[x]+4*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x

(
−243x5

1024 + 81x4

256 − 27x3

64 + 9x2

16 − 3x
4 + 1

)
+ c2x

(
−243x5

1024 + 81x4

256 − 27x3

64 + 9x2

16 − 3x
4 + 1

)
log(x)
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15.62 problem 63
15.62.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6250

Internal problem ID [1410]
Internal file name [OUTPUT/1411_Sunday_June_05_2022_02_15_40_AM_61161214/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 63.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2(x2 + 3x+ 1
)
y′′ + 8x2(2x+ 3) y′ +

(
9x2 + 3x+ 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

4x4 + 12x3 + 4x2) y′′ + (16x3 + 24x2) y′ + (9x2 + 3x+ 1
)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 6 + 4x
x2 + 3x+ 1

q(x) = 9x2 + 3x+ 1
4x2 (x2 + 3x+ 1)
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Table 766: Table p(x), q(x) singularites.

p(x) = 6+4x
x2+3x+1

singularity type

x = −3
2 −

√
5
2 “regular”

x =
√
5
2 − 3

2 “regular”

q(x) = 9x2+3x+1
4x2(x2+3x+1)

singularity type
x = 0 “regular”

x = −3
2 −

√
5
2 “regular”

x =
√
5
2 − 3

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
−3

2 −
√
5
2 ,

√
5
2 − 3

2 , 0,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2(x2 + 3x+ 1
)
y′′ +

(
16x3 + 24x2) y′ + (9x2 + 3x+ 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2(x2 + 3x+ 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
16x3 + 24x2)( ∞∑

n=0

(n+ r) anxn+r−1

)
+
(
9x2 + 3x+ 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4xn+r+2an(n+ r) (n+ r−1)
)
+
(

∞∑
n=0

12x1+n+ran(n+ r) (n+ r−1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

16xn+r+2an(n+ r)
)

+
(

∞∑
n=0

24x1+n+ran(n+ r)
)

+
(

∞∑
n=0

9xn+r+2an

)

+
(

∞∑
n=0

3x1+n+ran

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

4an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

12x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

12an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

16xn+r+2an(n+ r) =
∞∑
n=2

16an−2(n+ r − 2)xn+r

∞∑
n =0

24x1+n+ran(n+ r) =
∞∑
n=1

24an−1(n+ r − 1)xn+r

∞∑
n =0

9xn+r+2an =
∞∑
n=2

9an−2x
n+r

∞∑
n =0

3x1+n+ran =
∞∑
n=1

3an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

4an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=1

12an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

16an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=1

24an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=2

9an−2x
n+r

)

+
(

∞∑
n=1

3an−1x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + anx
n+r = 0

When n = 0 the above becomes

4xra0r(−1 + r) + a0x
r = 0

Or
(4xrr(−1 + r) + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(2r − 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(2r − 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 =
1
2

Since a0 6= 0 then the indicial equation becomes

(2r − 1)2 xr = 0
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Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1

2 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+ 1

2

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = −3

For 2 ≤ n the recursive equation is

(3)4an−2(n+r−2) (n−3+r)+12an−1(n+r−1) (n+r−2)+4an(n+r) (n+r−1)
+ 16an−2(n+ r − 2) + 24an−1(n+ r − 1) + 9an−2 + 3an−1 + an = 0

Solving for an from recursive equation (4) gives

an = −an−2 − 3an−1 (4)

6246



Which for the root r = 1
2 becomes

an = −an−2 − 3an−1 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 −3 −3

For n = 2, using the above recursive equation gives

a2 = 8

Which for the root r = 1
2 becomes

a2 = 8

And the table now becomes

n an,r an

a0 1 1
a1 −3 −3
a2 8 8

For n = 3, using the above recursive equation gives

a3 = −21

Which for the root r = 1
2 becomes

a3 = −21

And the table now becomes

n an,r an

a0 1 1
a1 −3 −3
a2 8 8
a3 −21 −21

6247



For n = 4, using the above recursive equation gives

a4 = 55

Which for the root r = 1
2 becomes

a4 = 55

And the table now becomes

n an,r an

a0 1 1
a1 −3 −3
a2 8 8
a3 −21 −21
a4 55 55

For n = 5, using the above recursive equation gives

a5 = −144

Which for the root r = 1
2 becomes

a5 = −144

And the table now becomes

n an,r an

a0 1 1
a1 −3 −3
a2 8 8
a3 −21 −21
a4 55 55
a5 −144 −144

Using the above table, then the first solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x
(
1− 3x+ 8x2 − 21x3 + 55x4 − 144x5 +O

(
x6))
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Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1
2 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = 1

2

)
b0 1 1 N/A since bn starts from 1 N/A
b1 −3 −3 0 0
b2 8 8 0 0
b3 −21 −21 0 0
b4 55 55 0 0
b5 −144 −144 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
√
x
(
1− 3x+ 8x2 − 21x3 + 55x4 − 144x5 +O

(
x6)) ln (x) +√

xO
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x
(
1− 3x+ 8x2 − 21x3 + 55x4 − 144x5 +O

(
x6))

+ c2
(√

x
(
1− 3x+ 8x2 − 21x3 + 55x4 − 144x5 +O

(
x6)) ln (x) +√

xO
(
x6))

Hence the final solution is

y = yh

= c1
√
x
(
1− 3x+ 8x2 − 21x3 + 55x4 − 144x5 +O

(
x6))

+ c2
(√

x
(
1− 3x+ 8x2 − 21x3 + 55x4 − 144x5 +O

(
x6)) ln (x) +√

xO
(
x6))
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Summary
The solution(s) found are the following

(1)y = c1
√
x
(
1− 3x+ 8x2 − 21x3 + 55x4 − 144x5 +O

(
x6))

+ c2
(√

x
(
1− 3x+ 8x2 − 21x3 + 55x4 − 144x5 +O

(
x6)) ln (x) +√

xO
(
x6))

Verification of solutions

y = c1
√
x
(
1− 3x+ 8x2 − 21x3 + 55x4 − 144x5 +O

(
x6))

+ c2
(√

x
(
1− 3x+ 8x2 − 21x3 + 55x4 − 144x5 +O

(
x6)) ln (x) +√

xO
(
x6))

Verified OK.

15.62.1 Maple step by step solution

Let’s solve
4x2(x2 + 3x+ 1) y′′ + (16x3 + 24x2) y′ + (9x2 + 3x+ 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
9x2+3x+1

)
y

4x2(x2+3x+1) −
2(2x+3)y′
x2+3x+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2(2x+3)y′
x2+3x+1 +

(
9x2+3x+1

)
y

4x2(x2+3x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2(2x+3)
x2+3x+1 , P3(x) = 9x2+3x+1

4x2(x2+3x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0
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• Multiply by denominators
4x2(x2 + 3x+ 1) y′′ + 8x2(2x+ 3) y′ + (9x2 + 3x+ 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 2..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + 2r)2 xr +
(
a1(1 + 2r)2 + 3a0(1 + 2r)2

)
x1+r +

(
∞∑
k=2

(
ak(2k + 2r − 1)2 + 3ak−1(2k + 2r − 1)2 + ak−2(2k + 2r − 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 2r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

2

• Each term must be 0
a1(1 + 2r)2 + 3a0(1 + 2r)2 = 0
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• Solve for the dependent coefficient(s)
a1 = −3a0

• Each term in the series must be 0, giving the recursion relation
(2k + 2r − 1)2 (ak + 3ak−1 + ak−2) = 0

• Shift index using k− >k + 2
(2k + 2r + 3)2 (ak+2 + 3ak+1 + ak) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −3ak+1 − ak

• Recursion relation for r = 1
2

ak+2 = −3ak+1 − ak

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+2 = −3ak+1 − ak, a1 = −3a0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 49� �
Order:=6;
dsolve(4*x^2*(1+3*x+x^2)*diff(y(x),x$2)+8*x^2*(3+2*x)*diff(y(x),x)+(1+3*x+9*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
√
x
(
−144x5 + 55x4 − 21x3 + 8x2 − 3x+ 1

)
(c2 ln (x) + c1) +O

(
x6)

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 72� �
AsymptoticDSolveValue[4*x^2*(1+3*x+x^2)*y''[x]+8*x^2*(3+2*x)*y'[x]+(1+3*x+9*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x
(
−144x5 + 55x4 − 21x3 + 8x2 − 3x+ 1

)
+ c2

√
x
(
−144x5 + 55x4 − 21x3 + 8x2 − 3x+ 1

)
log(x)
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15.63 problem 64
15.63.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6262

Internal problem ID [1411]
Internal file name [OUTPUT/1412_Sunday_June_05_2022_02_15_42_AM_81537289/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 64.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(1− x)2 y′′ − x
(
−3x2 + 2x+ 1

)
y′ + y

(
x2 + 1

)
= 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

x4 − 2x3 + x2) y′′ + (3x3 − 2x2 − x
)
y′ + y

(
x2 + 1

)
= 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3x+ 1
x (x− 1)

q(x) = x2 + 1
x2 (x− 1)2
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Table 768: Table p(x), q(x) singularites.

p(x) = 3x+1
x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

q(x) = x2+1
x2(x−1)2

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 1,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 − 2x+ 1
)
y′′ +

(
3x3 − 2x2 − x

)
y′ + y

(
x2 + 1

)
= 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x2 − 2x+ 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
3x3 − 2x2 − x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)(
x2 + 1

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r− 1)
)
+

∞∑
n =0

(
−2x1+n+ran(n+ r) (n+ r− 1)

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3xn+r+2an(n+ r)
)

+
∞∑

n =0

(
−2x1+n+ran(n+ r)

)
+

∞∑
n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

(
−2x1+n+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1) (n+ r − 2)xn+r

)
∞∑

n =0

3xn+r+2an(n+ r) =
∞∑
n=2

3an−2(n+ r − 2)xn+r

∞∑
n =0

(
−2x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1)xn+r

)
∞∑

n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
∞∑

n =1

(
−2an−1(n+r−1) (n+r−2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+r) (n+r−1)
)

+
(

∞∑
n=2

3an−2(n+ r − 2)xn+r

)
+

∞∑
n =1

(
−2an−1(n+ r − 1)xn+r

)
+

∞∑
n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=2

an−2x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− xra0r + a0x
r = 0

Or
(xrr(−1 + r)− xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

xr(−1 + r)2 = 0

Since the above is true for all x then the indicial equation becomes

(−1 + r)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 1

Since a0 6= 0 then the indicial equation becomes

xr(−1 + r)2 = 0
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Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
1+n

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
1+n

)
We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = 2

For 2 ≤ n the recursive equation is

(3)an−2(n+ r−2) (n−3+ r)−2an−1(n+ r−1) (n+ r−2)+an(n+ r) (n+ r−1)
+ 3an−2(n+ r − 2)− 2an−1(n+ r − 1)− an(n+ r) + an−2 + an = 0

Solving for an from recursive equation (4) gives

an = −an−2 + 2an−1 (4)

Which for the root r = 1 becomes

an = −an−2 + 2an−1 (5)
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At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 2 2

For n = 2, using the above recursive equation gives

a2 = 3

Which for the root r = 1 becomes
a2 = 3

And the table now becomes

n an,r an

a0 1 1
a1 2 2
a2 3 3

For n = 3, using the above recursive equation gives

a3 = 4

Which for the root r = 1 becomes
a3 = 4

And the table now becomes

n an,r an

a0 1 1
a1 2 2
a2 3 3
a3 4 4

For n = 4, using the above recursive equation gives

a4 = 5
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Which for the root r = 1 becomes
a4 = 5

And the table now becomes

n an,r an

a0 1 1
a1 2 2
a2 3 3
a3 4 4
a4 5 5

For n = 5, using the above recursive equation gives

a5 = 6

Which for the root r = 1 becomes
a5 = 6

And the table now becomes

n an,r an

a0 1 1
a1 2 2
a2 3 3
a3 4 4
a4 5 5
a5 6 6

Using the above table, then the first solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
(
6x5 + 5x4 + 4x3 + 3x2 + 2x+ 1 +O

(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
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Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 1)

b0 1 1 N/A since bn starts from 1 N/A
b1 2 2 0 0
b2 3 3 0 0
b3 4 4 0 0
b4 5 5 0 0
b5 6 6 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x
(
6x5 + 5x4 + 4x3 + 3x2 + 2x+ 1 +O

(
x6)) ln (x) + xO

(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
(
6x5 + 5x4 + 4x3 + 3x2 + 2x+ 1 +O

(
x6))

+ c2
(
x
(
6x5 + 5x4 + 4x3 + 3x2 + 2x+ 1 +O

(
x6)) ln (x) + xO

(
x6))

Hence the final solution is

y = yh

= c1x
(
6x5 + 5x4 + 4x3 + 3x2 + 2x+ 1 +O

(
x6))

+ c2
(
x
(
6x5 + 5x4 + 4x3 + 3x2 + 2x+ 1 +O

(
x6)) ln (x) + xO

(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
(
6x5 + 5x4 + 4x3 + 3x2 + 2x+ 1 +O

(
x6))

+ c2
(
x
(
6x5 + 5x4 + 4x3 + 3x2 + 2x+ 1 +O

(
x6)) ln (x) + xO

(
x6))
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Verification of solutions

y = c1x
(
6x5 + 5x4 + 4x3 + 3x2 + 2x+ 1 +O

(
x6))

+ c2
(
x
(
6x5 + 5x4 + 4x3 + 3x2 + 2x+ 1 +O

(
x6)) ln (x) + xO

(
x6))

Verified OK.

15.63.1 Maple step by step solution

Let’s solve
x2(x2 − 2x+ 1) y′′ + (3x3 − 2x2 − x) y′ + y(x2 + 1) = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2+1

)
y

x2(x2−2x+1) −
y′(3x+1)
x(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′(3x+1)
x(x−1) +

(
x2+1

)
y

x2(x2−2x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3x+1
x(x−1) , P3(x) = x2+1

x2(x2−2x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
(x− 1) y′′x2(x2 − 2x+ 1) + (3x+ 1)x(x2 − 2x+ 1) y′ + (x2 + 1) (x− 1) y = 0

• Assume series solution for y
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y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..3

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..4

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..5

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(−1 + r)2 xr + (−r2a1 + a0(3r2 − 2r + 1))x1+r +
(
−a2(1 + r)2 + a1(3r2 + 4r + 2)− a0(3r2 + 2r + 1)

)
x2+r +

(
∞∑
k=3

(
−ak(k + r − 1)2 + ak−1

(
3(k − 1)2 + 6(k − 1) r + 3r2 − 2k + 3− 2r

)
− ak−2

(
3(k − 2)2 + 6(k − 2) r + 3r2 + 2k − 3 + 2r

)
+ ak−3(k − 2 + r)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−1 + r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

• The coefficients of each power of x must be 0[
−r2a1 + a0(3r2 − 2r + 1) = 0,−a2(1 + r)2 + a1(3r2 + 4r + 2)− a0(3r2 + 2r + 1) = 0

]
• Solve for the dependent coefficient(s){

a1 = a0
(
3r2−2r+1

)
r2

, a2 = 2a0
(
3r4+2r3+1

)
r2(r2+2r+1)

}
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• Each term in the series must be 0, giving the recursion relation
−ak(k + r − 1)2 + ak−3(k − 2 + r)2 + (−3k2 + (−6r + 10) k − 3r2 + 10r − 9) ak−2 + 3

(
k2 +

(
2r − 8

3

)
k + r2 − 8r

3 + 2
)
ak−1 = 0

• Shift index using k− >k + 3
−ak+3(k + 2 + r)2 + ak(k + r + 1)2 +

(
−3(k + 3)2 + (−6r + 10) (k + 3)− 3r2 + 10r − 9

)
ak+1 + 3

(
(k + 3)2 +

(
2r − 8

3

)
(k + 3) + r2 − 8r

3 + 2
)
ak+2 = 0

• Recursion relation that defines series solution to ODE

ak+3 = k2ak−3k2ak+1+3k2ak+2+2krak−6krak+1+6krak+2+r2ak−3r2ak+1+3r2ak+2+2kak−8kak+1+10kak+2+2rak−8rak+1+10rak+2+ak−6ak+1+9ak+2
(k+2+r)2

• Recursion relation for r = 1

ak+3 = k2ak−3k2ak+1+3k2ak+2+4kak−14kak+1+16kak+2+4ak−17ak+1+22ak+2
(k+3)2

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+3 = k2ak−3k2ak+1+3k2ak+2+4kak−14kak+1+16kak+2+4ak−17ak+1+22ak+2

(k+3)2 , a1 = 2a0, a2 = 3a0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 45� �
Order:=6;
dsolve(x^2*(1-x)^2*diff(y(x),x$2)-x*(1+2*x-3*x^2)*diff(y(x),x)+(1+x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
6x5 + 5x4 + 4x3 + 3x2 + 2x+ 1

)
x(c2 ln (x) + c1) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 64� �
AsymptoticDSolveValue[x^2*(1-x)^2*y''[x]-x*(1+2*x-3*x^2)*y'[x]+(1+x^2)*y[x]==0,y[x],{x,0,5}]� �
y(x)→ c1x

(
6x5+5x4+4x3+3x2+2x+1

)
+ c2x

(
6x5+5x4+4x3+3x2+2x+1

)
log(x)
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15.64 problem 65
15.64.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6274

Internal problem ID [1412]
Internal file name [OUTPUT/1413_Sunday_June_05_2022_02_15_45_AM_32072313/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS II. Exercises 7.6. Page 374
Problem number: 65.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

9x2(x2 + x+ 1
)
y′′ + 3x

(
13x2 + 7x+ 1

)
y′ +

(
25x2 + 4x+ 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

9x4 + 9x3 + 9x2) y′′ + (39x3 + 21x2 + 3x
)
y′ +

(
25x2 + 4x+ 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 13x2 + 7x+ 1
3 (x2 + x+ 1)x

q(x) = 25x2 + 4x+ 1
9x2 (x2 + x+ 1)
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Table 770: Table p(x), q(x) singularites.

p(x) = 13x2+7x+1
3(x2+x+1)x

singularity type
x = 0 “regular”

x = −1
2 −

i
√
3

2 “regular”

x = −1
2 +

i
√
3

2 “regular”

q(x) = 25x2+4x+1
9x2(x2+x+1)

singularity type
x = 0 “regular”

x = −1
2 −

i
√
3

2 “regular”

x = −1
2 +

i
√
3

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−1

2 −
i
√
3

2 ,−1
2 +

i
√
3

2 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

9x2(x2 + x+ 1
)
y′′ +

(
39x3 + 21x2 + 3x

)
y′ +

(
25x2 + 4x+ 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

9x2(x2 + x+ 1
)( ∞∑

n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
39x3 + 21x2 + 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
25x2 + 4x+ 1

)( ∞∑
n=0

anx
n+r

)
= 0

(1)
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Which simplifies to

(2A)

(
∞∑
n=0

9xn+r+2an(n+r) (n+r−1)
)
+
(

∞∑
n=0

9x1+n+ran(n+r) (n+r−1)
)

+
(

∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

39xn+r+2an(n+ r)
)

+
(

∞∑
n=0

21x1+n+ran(n+ r)
)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=0

25xn+r+2an

)
+
(

∞∑
n=0

4x1+n+ran

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

9xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

9an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

9x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

9an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

39xn+r+2an(n+ r) =
∞∑
n=2

39an−2(n+ r − 2)xn+r

∞∑
n =0

21x1+n+ran(n+ r) =
∞∑
n=1

21an−1(n+ r − 1)xn+r

∞∑
n =0

25xn+r+2an =
∞∑
n=2

25an−2x
n+r

∞∑
n =0

4x1+n+ran =
∞∑
n=1

4an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

9an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=1

9an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

39an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=1

21an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=2

25an−2x
n+r

)
+
(

∞∑
n=1

4an−1x
n+r

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

9xn+ran(n+ r) (n+ r − 1) + 3xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

9xra0r(−1 + r) + 3xra0r + a0x
r = 0

Or
(9xrr(−1 + r) + 3xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(3r − 1)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(3r − 1)2 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
3

r2 =
1
3

Since a0 6= 0 then the indicial equation becomes

(3r − 1)2 xr = 0
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Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1

3 , Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+ 1

3

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+ 1

3

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B)
gives

a1 = −1

For 2 ≤ n the recursive equation is

(3)9an−2(n+r−2) (n−3+r)+9an−1(n+r−1) (n+r−2)+9an(n+r) (n+r−1)
+39an−2(n+r−2)+21an−1(n+r−1)+3an(n+r)+25an−2+4an−1+an = 0

Solving for an from recursive equation (4) gives

an = −an−2 − an−1 (4)
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Which for the root r = 1
3 becomes

an = −an−2 − an−1 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 −1 −1

For n = 2, using the above recursive equation gives

a2 = 0

And the table now becomes

n an,r an

a0 1 1
a1 −1 −1
a2 0 0

For n = 3, using the above recursive equation gives

a3 = 1

Which for the root r = 1
3 becomes

a3 = 1

And the table now becomes

n an,r an

a0 1 1
a1 −1 −1
a2 0 0
a3 1 1

For n = 4, using the above recursive equation gives

a4 = −1
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Which for the root r = 1
3 becomes

a4 = −1

And the table now becomes

n an,r an

a0 1 1
a1 −1 −1
a2 0 0
a3 1 1
a4 −1 −1

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 −1 −1
a2 0 0
a3 1 1
a4 −1 −1
a5 0 0

Using the above table, then the first solution y1(x) is

y1(x) = x
1
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
3
(
−x4 + x3 − x+ 1 +O

(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
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Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1
3 . The above table for an,r is used for this

purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn

(
r = 1

3

)
b0 1 1 N/A since bn starts from 1 N/A
b1 −1 −1 0 0
b2 0 0 0 0
b3 1 1 0 0
b4 −1 −1 0 0
b5 0 0 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x
1
3
(
−x4 + x3 − x+ 1 +O

(
x6)) ln (x) + x

1
3O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
3
(
−x4+x3−x+1+O

(
x6))+c2

(
x

1
3
(
−x4+x3−x+1+O

(
x6)) ln (x)+x

1
3O
(
x6))

Hence the final solution is

y = yh

= c1x
1
3
(
−x4+x3−x+1+O

(
x6))+c2

(
x

1
3
(
−x4+x3−x+1+O

(
x6)) ln (x)+x

1
3O
(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
1
3
(
−x4 + x3 − x+ 1 +O

(
x6))

+ c2
(
x

1
3
(
−x4 + x3 − x+ 1 +O

(
x6)) ln (x) + x

1
3O
(
x6))
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Verification of solutions

y= c1x
1
3
(
−x4+x3−x+1+O

(
x6))+c2

(
x

1
3
(
−x4+x3−x+1+O

(
x6)) ln (x)+x

1
3O
(
x6))

Verified OK.

15.64.1 Maple step by step solution

Let’s solve
9x2(x2 + x+ 1) y′′ + (39x3 + 21x2 + 3x) y′ + (25x2 + 4x+ 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
25x2+4x+1

)
y

9x2(x2+x+1) −
(
13x2+7x+1

)
y′

3x(x2+x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
13x2+7x+1

)
y′

3x(x2+x+1) +
(
25x2+4x+1

)
y

9x2(x2+x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 13x2+7x+1
3(x2+x+1)x , P3(x) = 25x2+4x+1

9x2(x2+x+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
9

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
9x2(x2 + x+ 1) y′′ + 3x(13x2 + 7x+ 1) y′ + (25x2 + 4x+ 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r
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� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + 3r)2 xr +
(
a1(2 + 3r)2 + a0(2 + 3r)2

)
x1+r +

(
∞∑
k=2

(
ak(3k + 3r − 1)2 + ak−1(3k + 3r − 1)2 + ak−2(3k + 3r − 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 3r)2 = 0

• Values of r that satisfy the indicial equation
r = 1

3

• Each term must be 0
a1(2 + 3r)2 + a0(2 + 3r)2 = 0

• Solve for the dependent coefficient(s)
a1 = −a0

• Each term in the series must be 0, giving the recursion relation
(3k + 3r − 1)2 (ak + ak−1 + ak−2) = 0

6275



• Shift index using k− >k + 2
(3k + 3r + 5)2 (ak+2 + ak+1 + ak) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak+1 − ak

• Recursion relation for r = 1
3

ak+2 = −ak+1 − ak

• Solution for r = 1
3[

y =
∞∑
k=0

akx
k+ 1

3 , ak+2 = −ak+1 − ak, a1 = −a0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 41� �
Order:=6;
dsolve(9*x^2*(1+x+x^2)*diff(y(x),x$2)+3*x*(1+7*x+13*x^2)*diff(y(x),x)+(1+4*x+25*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) = x
1
3
(
−x4 + x3 − x+ 1

)
(c2 ln (x) + c1) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 48� �
AsymptoticDSolveValue[9*x^2*(1+x+x^2)*y''[x]+3*x*(1+7*x+13*x^2)*y'[x]+(1+4*x+25*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
3
√
x
(
−x4 + x3 − x+ 1

)
+ c2

3
√
x
(
−x4 + x3 − x+ 1

)
log(x)
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16.1 problem Example 7.7.1 page 381
16.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6295

Internal problem ID [1413]
Internal file name [OUTPUT/1414_Sunday_June_05_2022_02_15_47_AM_30723664/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: Example 7.7.1 page 381.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2x2(2 + x) y′′ − x(4− 7x) y′ − (5− 3x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

2x3 + 4x2) y′′ + (7x2 − 4x
)
y′ + (3x− 5) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 7x− 4
2x (2 + x)

q(x) = 3x− 5
2x2 (2 + x)
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Table 772: Table p(x), q(x) singularites.

p(x) = 7x−4
2x(2+x)

singularity type
x = −2 “regular”
x = 0 “regular”

q(x) = 3x−5
2x2(2+x)

singularity type
x = −2 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−2, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x2(2 + x) y′′ +
(
7x2 − 4x

)
y′ + (3x− 5) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2x2(2 + x)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
7x2 − 4x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (3x− 5)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

7x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−4xn+ran(n+ r)

)
+
(

∞∑
n=0

3x1+n+ran

)
+

∞∑
n =0

(
−5anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

7x1+n+ran(n+ r) =
∞∑
n=1

7an−1(n+ r − 1)xn+r

∞∑
n =0

3x1+n+ran =
∞∑
n=1

3an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

7an−1(n+ r − 1)xn+r

)

+
∞∑

n =0

(
−4xn+ran(n+ r)

)
+
(

∞∑
n=1

3an−1x
n+r

)
+

∞∑
n =0

(
−5anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1)− 4xn+ran(n+ r)− 5anxn+r = 0
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When n = 0 the above becomes

4xra0r(−1 + r)− 4xra0r − 5a0xr = 0

Or
(4xrr(−1 + r)− 4xrr − 5xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 − 8r − 5

)
xr = 0

Since the above is true for all x then the indicial equation becomes

4r2 − 8r − 5 = 0

Solving for r gives the roots of the indicial equation as

r1 =
5
2

r2 = −1
2

Since a0 6= 0 then the indicial equation becomes(
4r2 − 8r − 5

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x
5
2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

√
x

Or

y1(x) =
∞∑
n=0

anx
n+ 5

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n− 1

2

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)2an−1(n+ r − 1) (n+ r − 2) + 4an(n+ r) (n+ r − 1)
+ 7an−1(n+ r − 1)− 4an(n+ r) + 3an−1 − 5an = 0

Solving for an from recursive equation (4) gives

an = −(n+ r) an−1

2n+ 2r − 5 (4)

Which for the root r = 5
2 becomes

an = −(2n+ 5) an−1

4n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 5

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−1− r

−3 + 2r

Which for the root r = 5
2 becomes

a1 = −7
4

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
−3+2r −7

4

For n = 2, using the above recursive equation gives

a2 =
r2 + 3r + 2
4r2 − 8r + 3
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Which for the root r = 5
2 becomes

a2 =
63
32

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
−3+2r −7

4

a2
r2+3r+2
4r2−8r+3

63
32

For n = 3, using the above recursive equation gives

a3 =
−r3 − 6r2 − 11r − 6
8r3 − 12r2 − 2r + 3

Which for the root r = 5
2 becomes

a3 = −231
128

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
−3+2r −7

4

a2
r2+3r+2
4r2−8r+3

63
32

a3
−r3−6r2−11r−6
8r3−12r2−2r+3 −231

128

For n = 4, using the above recursive equation gives

a4 =
r4 + 10r3 + 35r2 + 50r + 24

16r4 − 40r2 + 9

Which for the root r = 5
2 becomes

a4 =
3003
2048

And the table now becomes
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n an,r an

a0 1 1
a1

−1−r
−3+2r −7

4

a2
r2+3r+2
4r2−8r+3

63
32

a3
−r3−6r2−11r−6
8r3−12r2−2r+3 −231

128

a4
r4+10r3+35r2+50r+24

16r4−40r2+9
3003
2048

For n = 5, using the above recursive equation gives

a5 =
−r5 − 15r4 − 85r3 − 225r2 − 274r − 120

(16r4 − 40r2 + 9) (5 + 2r)

Which for the root r = 5
2 becomes

a5 = −9009
8192

And the table now becomes

n an,r an

a0 1 1
a1

−1−r
−3+2r −7

4

a2
r2+3r+2
4r2−8r+3

63
32

a3
−r3−6r2−11r−6
8r3−12r2−2r+3 −231

128

a4
r4+10r3+35r2+50r+24

16r4−40r2+9
3003
2048

a5
−r5−15r4−85r3−225r2−274r−120

(16r4−40r2+9)(5+2r) −9009
8192

Using the above table, then the solution y1(x) is

y1(x) = x
5
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
5
2

(
1− 7x

4 + 63x2

32 − 231x3

128 + 3003x4

2048 − 9009x5

8192 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N
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Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 3. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a3(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a3

= −r3 − 6r2 − 11r − 6
8r3 − 12r2 − 2r + 3

Therefore

lim
r→r2

−r3 − 6r2 − 11r − 6
8r3 − 12r2 − 2r + 3 = lim

r→− 1
2

−r3 − 6r2 − 11r − 6
8r3 − 12r2 − 2r + 3

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode 2x2(2 + x) y′′+(7x2 − 4x) y′+(3x− 5) y = 0
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gives

2x2(2 + x)
(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
7x2 − 4x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+ (3x− 5)
(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
2x2(2 + x) y′′1(x) +

(
7x2 − 4x

)
y′1(x) + (3x− 5) y1(x)

)
ln (x)

+ 2x2(2 + x)
(
2y′1(x)

x
− y1(x)

x2

)
+ (7x2 − 4x) y1(x)

x

)
C

+ 2x2(2 + x)
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
7x2 − 4x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ (3x− 5)

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

2x2(2 + x) y′′1(x) +
(
7x2 − 4x

)
y′1(x) + (3x− 5) y1(x) = 0

Eq (7) simplifes to

(8)

(
2x2(2 + x)

(
2y′1(x)

x
− y1(x)

x2

)
+ (7x2 − 4x) y1(x)

x

)
C

+ 2x2(2 + x)
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
7x2 − 4x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ (3x− 5)

(
∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
4x(2 + x)

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)

+ (5x− 8)
(

∞∑
n=0

anx
n+r1

))
C

+ 2
(
x3 + 2x2)( ∞∑

n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)

+
(
7x2 − 4x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

+ (3x− 5)
(

∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 5
2 and r2 = −1

2 then the above becomes

(10)

(
4x(2 + x)

(
∞∑
n=0

x
3
2+nan

(
n+ 5

2

))
+ (5x− 8)

(
∞∑
n=0

anx
n+ 5

2

))
C

+ 2
(
x3 + 2x2)( ∞∑

n=0

x− 5
2+nbn

(
n− 1

2

)(
−3
2 + n

))

+
(
7x2 − 4x

)( ∞∑
n=0

x− 3
2+nbn

(
n− 1

2

))
+ (3x− 5)

(
∞∑
n=0

bnx
n− 1

2

)
= 0

Expanding 4C x
5
2 as Taylor series around x = 0 and keeping only the first 6 terms gives

4C x
5
2 = 4C x

5
2 + . . .

= 4C x
5
2

Expanding 5C x
7
2 as Taylor series around x = 0 and keeping only the first 6 terms gives

5C x
7
2 = 5C x

7
2 + . . .

= 5C x
7
2

Expanding −8C x
5
2 as Taylor series around x = 0 and keeping only the first 6 terms

gives

−8C x
5
2 = −8C x

5
2 + . . .

= −8C x
5
2
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Expanding
√
x
2 as Taylor series around x = 0 and keeping only the first 6 terms gives

√
x

2 =
√
x

2 + . . .

=
√
x

2

Expanding 1√
x
as Taylor series around x = 0 and keeping only the first 6 terms gives

1√
x
= 1√

x
+ . . .

= 1√
x

Expanding 7
√
x

2 as Taylor series around x = 0 and keeping only the first 6 terms gives

7
√
x

2 = 7
√
x

2 + . . .

= 7
√
x

2

Expanding − 2√
x
as Taylor series around x = 0 and keeping only the first 6 terms gives

− 2√
x
= − 2√

x
+ . . .

= − 2√
x

Expanding 3
√
x as Taylor series around x = 0 and keeping only the first 6 terms gives

3
√
x = 3

√
x+ . . .

= 3
√
x

Expanding − 5√
x
as Taylor series around x = 0 and keeping only the first 6 terms gives

− 5√
x
= − 5√

x
+ . . .

= − 5√
x
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Which simplifies to

(2A)

(
∞∑
n=0

(8n+ 20)Canx
n+ 5

2

)
+
(

∞∑
n=0

(4n+ 10)Canx
7
2+n

)

+
(

∞∑
n=0

5C x
7
2+nan

)
+

∞∑
n =0

(
−8C xn+ 5

2an
)

+
(

∞∑
n=0

xn+ 1
2 bn(4n2 − 8n+ 3)

2

)
+
(

∞∑
n=0

xn− 1
2 bn
(
4n2 − 8n+ 3

))

+
(

∞∑
n=0

7xn+ 1
2 bn(2n− 1)

2

)
+
(

∞∑
n=0

(−4n+ 2) bnxn− 1
2

)

+
(

∞∑
n=0

3xn+ 1
2 bn

)
+

∞∑
n =0

(
−5bnxn− 1

2

)
= 0

The next step is to make all powers of x be n − 1
2 in each summation term. Going

over each summation term above with power of x in it which is not already xn− 1
2 and

adjusting the power and the corresponding index gives

∞∑
n =0

(8n+ 20)Canx
n+ 5

2 =
∞∑
n=3

Can−3(8n− 4)xn− 1
2

∞∑
n =0

(4n+ 10)Canx
7
2+n =

∞∑
n=4

Can−4(4n− 6)xn− 1
2

∞∑
n =0

5C x
7
2+nan =

∞∑
n=4

5Can−4x
n− 1

2

∞∑
n =0

(
−8C xn+ 5

2an
)
=

∞∑
n=3

(
−8Can−3x

n− 1
2

)
∞∑

n =0

xn+ 1
2 bn(4n2 − 8n+ 3)

2 =
∞∑
n=1

bn−1
(
4(n− 1)2 − 8n+ 11

)
xn− 1

2

2

∞∑
n =0

7xn+ 1
2 bn(2n− 1)

2 =
∞∑
n=1

7bn−1(−3 + 2n)xn− 1
2

2

∞∑
n =0

3xn+ 1
2 bn =

∞∑
n=1

3bn−1x
n− 1

2
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Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1

2 .

(2B)

(
∞∑
n=3

Can−3(8n− 4)xn− 1
2

)
+
(

∞∑
n=4

Can−4(4n− 6)xn− 1
2

)

+
(

∞∑
n=4

5Can−4x
n− 1

2

)
+

∞∑
n =3

(
−8Can−3x

n− 1
2

)
+
(

∞∑
n=1

bn−1
(
4(n− 1)2 − 8n+ 11

)
xn− 1

2

2

)

+
(

∞∑
n=0

xn− 1
2 bn
(
4n2 − 8n+ 3

))
+
(

∞∑
n=1

7bn−1(−3 + 2n)xn− 1
2

2

)

+
(

∞∑
n=0

(−4n+2) bnxn− 1
2

)
+
(

∞∑
n=1

3bn−1x
n− 1

2

)
+

∞∑
n =0

(
−5bnxn− 1

2

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

b0 − 8b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1− 8b1 = 0

Solving the above for b1 gives
b1 =

1
8

For n = 2, Eq (2B) gives
6b1 − 8b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

3
4 − 8b2 = 0

Solving the above for b2 gives
b2 =

3
32

For n = N , where N = 3 which is the difference between the two roots, we are free to
choose b3 = 0. Hence for n = 3, Eq (2B) gives

12C + 45
32 = 0
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Which is solved for C. Solving for C gives

C = − 15
128

For n = 4, Eq (2B) gives

(15a0 + 20a1)C + 28b3 + 16b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

75
32 + 16b4 = 0

Solving the above for b4 gives
b4 = − 75

512
For n = 5, Eq (2B) gives

(19a1 + 28a2)C + 45b4 + 40b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−9375
1024 + 40b5 = 0

Solving the above for b5 gives
b5 =

1875
8192

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = − 15
128 and all bn, then the second solution becomes

y2(x) = − 15
128

(
x

5
2

(
1− 7x

4 + 63x2

32 − 231x3

128 + 3003x4

2048 − 9009x5

8192 +O
(
x6))) ln (x)

+
1 + x

8 +
3x2

32 − 75x4

512 + 1875x5

8192 +O(x6)
√
x
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
5
2

(
1− 7x

4 + 63x2

32 − 231x3

128 + 3003x4

2048 − 9009x5

8192 +O
(
x6))

+ c2

(
− 15
128

(
x

5
2

(
1− 7x

4 + 63x2

32 − 231x3

128 + 3003x4

2048 − 9009x5

8192 +O
(
x6))) ln (x)

+
1 + x

8 +
3x2

32 − 75x4

512 + 1875x5

8192 +O(x6)
√
x

)

Hence the final solution is

y = yh

= c1x
5
2

(
1− 7x

4 + 63x2

32 − 231x3

128 + 3003x4

2048 − 9009x5

8192 +O
(
x6))

+ c2

−
15x 5

2

(
1− 7x

4 + 63x2

32 − 231x3

128 + 3003x4

2048 − 9009x5

8192 +O(x6)
)
ln (x)

128

+
1 + x

8 +
3x2

32 − 75x4

512 + 1875x5

8192 +O(x6)
√
x


Summary
The solution(s) found are the following

(1)

y = c1x
5
2

(
1− 7x

4 + 63x2

32 − 231x3

128 + 3003x4

2048 − 9009x5

8192 +O
(
x6))

+ c2

−
15x 5

2

(
1− 7x

4 + 63x2

32 − 231x3

128 + 3003x4

2048 − 9009x5

8192 +O(x6)
)
ln (x)

128

+
1 + x

8 +
3x2

32 − 75x4

512 + 1875x5

8192 +O(x6)
√
x
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Verification of solutions

y = c1x
5
2

(
1− 7x

4 + 63x2

32 − 231x3

128 + 3003x4

2048 − 9009x5

8192 +O
(
x6))

+ c2

−
15x 5

2

(
1− 7x

4 + 63x2

32 − 231x3

128 + 3003x4

2048 − 9009x5

8192 +O(x6)
)
ln (x)

128

+
1 + x

8 +
3x2

32 − 75x4

512 + 1875x5

8192 +O(x6)
√
x


Verified OK.

16.1.1 Maple step by step solution

Let’s solve
2x2(2 + x) y′′ + (7x2 − 4x) y′ + (3x− 5) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (3x−5)y
2x2(2+x) −

(7x−4)y′
2x(2+x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (7x−4)y′
2x(2+x) +

(3x−5)y
2x2(2+x) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 7x−4
2x(2+x) , P3(x) = 3x−5

2x2(2+x)

]
◦ (2 + x) · P2(x) is analytic at x = −2

((2 + x) · P2(x))
∣∣∣∣
x=−2

= 9
2

◦ (2 + x)2 · P3(x) is analytic at x = −2(
(2 + x)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
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x0 = −2
• Multiply by denominators

2x2(2 + x) y′′ + x(7x− 4) y′ + (3x− 5) y = 0
• Change variables using x = u− 2 so that the regular singular point is at u = 0

(2u3 − 8u2 + 8u)
(

d2

du2y(u)
)
+ (7u2 − 32u+ 36)

(
d
du
y(u)

)
+ (3u− 11) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(7 + 2r)u−1+r + (4a1(1 + r) (9 + 2r)− a0(8r2 + 24r + 11))ur +
(

∞∑
k=1

(4ak+1(k + r + 1) (2k + 9 + 2r)− ak(8k2 + 16kr + 8r2 + 24k + 24r + 11) + ak−1(2k + 1 + 2r) (k + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(7 + 2r) = 0
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• Values of r that satisfy the indicial equation
r ∈

{
0,−7

2

}
• Each term must be 0

4a1(1 + r) (9 + 2r)− a0(8r2 + 24r + 11) = 0
• Each term in the series must be 0, giving the recursion relation

2(−4ak + ak−1 + 4ak+1) k2 + (4(−4ak + ak−1 + 4ak+1) r − 24ak + ak−1 + 44ak+1) k + 2(−4ak + ak−1 + 4ak+1) r2 + (−24ak + ak−1 + 44ak+1) r − 11ak + 36ak+1 = 0
• Shift index using k− >k + 1

2(−4ak+1 + ak + 4ak+2) (k + 1)2 + (4(−4ak+1 + ak + 4ak+2) r − 24ak+1 + ak + 44ak+2) (k + 1) + 2(−4ak+1 + ak + 4ak+2) r2 + (−24ak+1 + ak + 44ak+2) r − 11ak+1 + 36ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −2k2ak−8k2ak+1+4krak−16krak+1+2r2ak−8r2ak+1+5kak−40kak+1+5rak−40rak+1+3ak−43ak+1
4(2k2+4kr+2r2+15k+15r+22)

• Recursion relation for r = 0

ak+2 = −2k2ak−8k2ak+1+5kak−40kak+1+3ak−43ak+1
4(2k2+15k+22)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −2k2ak−8k2ak+1+5kak−40kak+1+3ak−43ak+1

4(2k2+15k+22) , 36a1 − 11a0 = 0
]

• Revert the change of variables u = 2 + x[
y =

∞∑
k=0

ak(2 + x)k , ak+2 = −2k2ak−8k2ak+1+5kak−40kak+1+3ak−43ak+1
4(2k2+15k+22) , 36a1 − 11a0 = 0

]
• Recursion relation for r = −7

2

ak+2 = −2k2ak−8k2ak+1−9kak+16kak+1+10ak−ak+1
4(2k2+k−6)

• Solution for r = −7
2[

y(u) =
∞∑
k=0

aku
k− 7

2 , ak+2 = −2k2ak−8k2ak+1−9kak+16kak+1+10ak−ak+1
4(2k2+k−6) ,−20a1 − 25a0 = 0

]
• Revert the change of variables u = 2 + x[

y =
∞∑
k=0

ak(2 + x)k−
7
2 , ak+2 = −2k2ak−8k2ak+1−9kak+16kak+1+10ak−ak+1

4(2k2+k−6) ,−20a1 − 25a0 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

ak(2 + x)k
)
+
(

∞∑
k=0

bk(2 + x)k−
7
2

)
, ak+2 = −2k2ak−8k2a1+k+5kak−40ka1+k+3ak−43a1+k

4(2k2+15k+22) , 36a1 − 11a0 = 0, bk+2 = −2k2bk−8k2b1+k−9kbk+16kb1+k+10bk−b1+k

4(2k2+k−6) ,−20b1 − 25b0 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 65� �
Order:=6;
dsolve(2*x^2*(2+x)*diff(y(x),x$2)-x*(4-7*x)*diff(y(x),x)-(5-3*x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1x

3(1− 7
4x+ 63

32x
2 − 231

128x
3 + 3003

2048x
4 − 9009

8192x
5 +O(x6)

)
+ c2

(
ln (x)

(
−45

32x
3 + 315

128x
4 − 2835

1024x
5 +O(x6)

)
+
(
12 + 3

2x+ 9
8x

2 − 981
64 x

3 + 6417
256 x

4 − 28089
1024 x

5 +O(x6)
))

√
x

3 Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 98� �
AsymptoticDSolveValue[2*x^2*(2+x)*y''[x]-x*(4-7*x)*y'[x]-(5-3*x)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c2

(
3003x13/2

2048 − 231x11/2

128 + 63x9/2

32 − 7x7/2

4

+ x5/2
)
+ c1

(
15
512(7x− 4)x5/2 log(x) + 809x4 − 548x3 + 96x2 + 128x+ 1024

1024
√
x

)
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16.2 problem Example 7.7.2 page 383
16.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6310

Internal problem ID [1414]
Internal file name [OUTPUT/1415_Sunday_June_05_2022_02_15_52_AM_30298835/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: Example 7.7.2 page 383.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(1− 2x) y′′ + x(8− 9x) y′ + (6− 3x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−2x3 + x2) y′′ + (−9x2 + 8x
)
y′ + (6− 3x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 9x− 8
x (2x− 1)

q(x) = 3x− 6
x2 (2x− 1)
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Table 774: Table p(x), q(x) singularites.

p(x) = 9x−8
x(2x−1)

singularity type
x = 0 “regular”
x = 1

2 “regular”

q(x) = 3x−6
x2(2x−1)

singularity type
x = 0 “regular”
x = 1

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0, 12 ,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x2(2x− 1) +
(
−9x2 + 8x

)
y′ + (6− 3x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2(2x− 1)

+
(
−9x2 + 8x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (6− 3x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−2x1+n+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−9x1+n+ran(n+ r)

)
+
(

∞∑
n=0

8xn+ran(n+ r)
)

+
(

∞∑
n=0

6anxn+r

)
+

∞∑
n =0

(
−3x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2x1+n+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1) (n+ r − 2)xn+r

)
∞∑

n =0

(
−9x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−9an−1(n+ r − 1)xn+r

)
∞∑

n =0

(
−3x1+n+ran

)
=

∞∑
n=1

(
−3an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =1

(
−2an−1(n+r−1) (n+r−2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+r) (n+r−1)
)

+
∞∑

n =1

(
−9an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

8xn+ran(n+ r)
)

+
(

∞∑
n=0

6anxn+r

)
+

∞∑
n =1

(
−3an−1x

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 8xn+ran(n+ r) + 6anxn+r = 0
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When n = 0 the above becomes

xra0r(−1 + r) + 8xra0r + 6a0xr = 0

Or
(xrr(−1 + r) + 8xrr + 6xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 + 7r + 6

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 + 7r + 6 = 0

Solving for r gives the roots of the indicial equation as

r1 = −1
r2 = −6

Since a0 6= 0 then the indicial equation becomes(
r2 + 7r + 6

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 5 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =

∞∑
n=0

anx
n

x

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x6

Or

y1(x) =
∞∑
n=0

anx
n−1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−6

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)−2an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
− 9an−1(n+ r − 1) + 8an(n+ r) + 6an − 3an−1 = 0

Solving for an from recursive equation (4) gives

an = an−1(2n2 + 4nr + 2r2 + 3n+ 3r − 2)
n2 + 2nr + r2 + 7n+ 7r + 6 (4)

Which for the root r = −1 becomes

an = an−1(2n2 − n− 3)
n (n+ 5) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
2r2 + 7r + 3
r2 + 9r + 14

Which for the root r = −1 becomes

a1 = −1
3

And the table now becomes

n an,r an

a0 1 1
a1

2r2+7r+3
r2+9r+14 −1

3

For n = 2, using the above recursive equation gives

a2 =
4r3 + 24r2 + 35r + 12
(r + 8) (r + 7) (r + 2)
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Which for the root r = −1 becomes

a2 = − 1
14

And the table now becomes

n an,r an

a0 1 1
a1

2r2+7r+3
r2+9r+14 −1

3

a2
4r3+24r2+35r+12
(r+8)(r+7)(r+2) − 1

14

For n = 3, using the above recursive equation gives

a3 =
8r4 + 76r3 + 226r2 + 245r + 75
(r + 9) (r + 2) (r + 7) (r + 8)

Which for the root r = −1 becomes

a3 = − 1
28

And the table now becomes

n an,r an

a0 1 1
a1

2r2+7r+3
r2+9r+14 −1

3

a2
4r3+24r2+35r+12
(r+8)(r+7)(r+2) − 1

14

a3
8r4+76r3+226r2+245r+75
(r+9)(r+2)(r+7)(r+8) − 1

28

For n = 4, using the above recursive equation gives

a4 =
16r5 + 224r4 + 1112r3 + 2416r2 + 2217r + 630

(r + 10) (r + 9) (r + 2) (r + 7) (r + 8)

Which for the root r = −1 becomes

a4 = − 25
1008

And the table now becomes

6304



n an,r an

a0 1 1
a1

2r2+7r+3
r2+9r+14 −1

3

a2
4r3+24r2+35r+12
(r+8)(r+7)(r+2) − 1

14

a3
8r4+76r3+226r2+245r+75
(r+9)(r+2)(r+7)(r+8) − 1

28

a4
16r5+224r4+1112r3+2416r2+2217r+630

(r+10)(r+9)(r+2)(r+7)(r+8) − 25
1008

For n = 5, using the above recursive equation gives

a5 =
32r5 + 400r4 + 1840r3 + 3800r2 + 3378r + 945

(r + 11) (r + 8) (r + 2) (r + 9) (r + 10)

Which for the root r = −1 becomes

a5 = − 1
48

And the table now becomes

n an,r an

a0 1 1
a1

2r2+7r+3
r2+9r+14 −1

3

a2
4r3+24r2+35r+12
(r+8)(r+7)(r+2) − 1

14

a3
8r4+76r3+226r2+245r+75
(r+9)(r+2)(r+7)(r+8) − 1

28

a4
16r5+224r4+1112r3+2416r2+2217r+630

(r+10)(r+9)(r+2)(r+7)(r+8) − 25
1008

a5
32r5+400r4+1840r3+3800r2+3378r+945

(r+11)(r+8)(r+2)(r+9)(r+10) − 1
48

Using the above table, then the solution y1(x) is

y1(x) =
1
x

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
1− x

3 −
x2

14 −
x3

28 −
25x4

1008 −
x5

48 +O(x6)
x

Now the second solution y2(x) is found. Let

r1 − r2 = N
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Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 5. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a5(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a5

= 32r5 + 400r4 + 1840r3 + 3800r2 + 3378r + 945
(r + 11) (r + 8) (r + 2) (r + 9) (r + 10)

Therefore

lim
r→r2

32r5 + 400r4 + 1840r3 + 3800r2 + 3378r + 945
(r + 11) (r + 8) (r + 2) (r + 9) (r + 10) = lim

r→−6

32r5 + 400r4 + 1840r3 + 3800r2 + 3378r + 945
(r + 11) (r + 8) (r + 2) (r + 9) (r + 10)

= 693
32

The limit is 693
32 . Since the limit exists then the log term is not needed and we can set

C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−6

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)−2bn−1(n+ r − 1) (n+ r − 2) + bn(n+ r) (n+ r − 1)
− 9bn−1(n+ r − 1) + 8bn(n+ r) + 6bn − 3bn−1 = 0

Which for for the root r = −6 becomes

−2bn−1(n− 7) (n− 8) + bn(n− 6) (n− 7)− 9bn−1(n− 7) + 8bn(n− 6) + 6bn − 3bn−1 = 0
(4A)

Solving for bn from the recursive equation (4) gives

bn = bn−1(2n2 + 4nr + 2r2 + 3n+ 3r − 2)
n2 + 2nr + r2 + 7n+ 7r + 6 (5)

Which for the root r = −6 becomes

bn = bn−1(2n2 − 21n+ 52)
n2 − 5n (6)
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At this point, it is a good idea to keep track of bn in a table both before substituting
r = −6 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
2r2 + 7r + 3
r2 + 9r + 14

Which for the root r = −6 becomes

b1 = −33
4

And the table now becomes

n bn,r bn

b0 1 1
b1

2r2+7r+3
r2+9r+14 −33

4

For n = 2, using the above recursive equation gives

b2 =
4r3 + 24r2 + 35r + 12
(r + 8) (r2 + 9r + 14)

Which for the root r = −6 becomes

b2 =
99
4

And the table now becomes

n bn,r bn

b0 1 1
b1

2r2+7r+3
r2+9r+14 −33

4

b2
4r3+24r2+35r+12
(r+8)(r+7)(r+2)

99
4

For n = 3, using the above recursive equation gives

b3 =
8r4 + 76r3 + 226r2 + 245r + 75
(r + 9) (r + 8) (r2 + 9r + 14)
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Which for the root r = −6 becomes

b3 = −231
8

And the table now becomes

n bn,r bn

b0 1 1
b1

2r2+7r+3
r2+9r+14 −33

4

b2
4r3+24r2+35r+12
(r+8)(r+7)(r+2)

99
4

b3
8r4+76r3+226r2+245r+75
(r+9)(r+2)(r+7)(r+8) −231

8

For n = 4, using the above recursive equation gives

b4 =
16r5 + 224r4 + 1112r3 + 2416r2 + 2217r + 630

(r + 10) (r + 9) (r + 8) (r2 + 9r + 14)

Which for the root r = −6 becomes

b4 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

2r2+7r+3
r2+9r+14 −33

4

b2
4r3+24r2+35r+12
(r+8)(r+7)(r+2)

99
4

b3
8r4+76r3+226r2+245r+75
(r+9)(r+2)(r+7)(r+8) −231

8

b4
16r5+224r4+1112r3+2416r2+2217r+630

(r+10)(r+9)(r+2)(r+7)(r+8) 0

For n = 5, using the above recursive equation gives

b5 =
32r5 + 400r4 + 1840r3 + 3800r2 + 3378r + 945

(r + 11) (r + 8) (r + 2) (r + 9) (r + 10)

Which for the root r = −6 becomes

b5 =
693
32
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And the table now becomes

n bn,r bn

b0 1 1
b1

2r2+7r+3
r2+9r+14 −33

4

b2
4r3+24r2+35r+12
(r+8)(r+7)(r+2)

99
4

b3
8r4+76r3+226r2+245r+75
(r+9)(r+2)(r+7)(r+8) −231

8

b4
16r5+224r4+1112r3+2416r2+2217r+630

(r+10)(r+9)(r+2)(r+7)(r+8) 0

b5
32r5+400r4+1840r3+3800r2+3378r+945

(r+11)(r+8)(r+2)(r+9)(r+10)
693
32

Using the above table, then the solution y2(x) is

y2(x) =
1
x

(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− 33x

4 + 99x2

4 − 231x3

8 + 693x5

32 +O(x6)
x6

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
1− x

3 −
x2

14 −
x3

28 −
25x4

1008 −
x5

48 +O(x6)
)

x
+
c2
(
1− 33x

4 + 99x2

4 − 231x3

8 + 693x5

32 +O(x6)
)

x6

Hence the final solution is

y = yh

=
c1
(
1− x

3 −
x2

14 −
x3

28 −
25x4

1008 −
x5

48 +O(x6)
)

x
+
c2
(
1− 33x

4 + 99x2

4 − 231x3

8 + 693x5

32 +O(x6)
)

x6

Summary
The solution(s) found are the following

(1)
y =

c1
(
1− x

3 −
x2

14 −
x3

28 −
25x4

1008 −
x5

48 +O(x6)
)

x

+
c2
(
1− 33x

4 + 99x2

4 − 231x3

8 + 693x5

32 +O(x6)
)

x6
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Verification of solutions

y =
c1
(
1− x

3 −
x2

14 −
x3

28 −
25x4

1008 −
x5

48 +O(x6)
)

x

+
c2
(
1− 33x

4 + 99x2

4 − 231x3

8 + 693x5

32 +O(x6)
)

x6

Verified OK.

16.2.1 Maple step by step solution

Let’s solve
−y′′x2(2x− 1) + (−9x2 + 8x) y′ + (6− 3x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −3(−2+x)y
x2(2x−1) −

(9x−8)y′
x(2x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (9x−8)y′
x(2x−1) +

3(−2+x)y
x2(2x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 9x−8
x(2x−1) , P3(x) = 3(−2+x)

x2(2x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 8

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 6

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x2(2x− 1) + x(9x− 8) y′ + (3x− 6) y = 0
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• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0(6 + r) (1 + r)xr +
(

∞∑
k=1

(−ak(k + r + 6) (k + r + 1) + ak−1(k + 2 + r) (2k − 1 + 2r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(6 + r) (1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−6,−1}

• Each term in the series must be 0, giving the recursion relation
2(k + 2 + r)

(
k + r − 1

2

)
ak−1 − ak(k + r + 6) (k + r + 1) = 0

• Shift index using k− >k + 1
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2(k + r + 3)
(
k + 1

2 + r
)
ak − ak+1(k + 7 + r) (k + 2 + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = (k+r+3)(2k+2r+1)ak

(k+7+r)(k+2+r)

• Recursion relation for r = −6 ; series terminates at k = 3
ak+1 = (k−3)(2k−11)ak

(k+1)(k−4)

• Apply recursion relation for k = 0
a1 = −33a0

4

• Apply recursion relation for k = 1
a2 = −3a1

• Express in terms of a0
a2 = 99a0

4

• Apply recursion relation for k = 2
a3 = −7a2

6

• Express in terms of a0
a3 = −231a0

8

• Terminating series solution of the ODE for r = −6 . Use reduction of order to find the second linearly independent solution
y = a0 ·

(
1− 33

4 x+ 99
4 x

2 − 231
8 x3)

• Recursion relation for r = −1
ak+1 = (k+2)(2k−1)ak

(k+6)(k+1)

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+1 = (k+2)(2k−1)ak

(k+6)(k+1)

]
• Combine solutions and rename parameters[

y = a0 ·
(
1− 33

4 x+ 99
4 x

2 − 231
8 x3)+ ( ∞∑

k=0
bkx

k−1
)
, b1+k = (k+2)(2k−1)bk

(k+6)(1+k)

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 45� �
Order:=6;
dsolve(x^2*(1-2*x)*diff(y(x),x$2)+x*(8-9*x)*diff(y(x),x)+(6-3*x)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1
(
1− 1

3x− 1
14x

2 − 1
28x

3 − 25
1008x

4 − 1
48x

5 +O(x6)
)

x

+ c2(2880− 23760x+ 71280x2 − 83160x3 + 62370x5 +O(x6))
x6

3 Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 61� �
AsymptoticDSolveValue[x^2*(1-2*x)*y''[x]+x*(8-9*x)*y'[x]+(6-3*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
−25x3

1008 − x2

28 − x

14 + 1
x
− 1

3

)
+ c1

(
1
x6 − 33

4x5 + 99
4x4 − 231

8x3

)
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16.3 problem Example 7.7.3 page 385
16.3.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6329

Internal problem ID [1415]
Internal file name [OUTPUT/1416_Sunday_June_05_2022_02_15_55_AM_70064381/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: Example 7.7.3 page 385.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x2 + 1
)
y′′ + x

(
10x2 + 3

)
y′ −

(
−14x2 + 15

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x4 + x2) y′′ + (10x3 + 3x
)
y′ +

(
14x2 − 15

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 10x2 + 3
x (x2 + 1)

q(x) = 14x2 − 15
x2 (x2 + 1)
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Table 776: Table p(x), q(x) singularites.

p(x) = 10x2+3
x(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

q(x) = 14x2−15
x2(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 + 1
)
y′′ +

(
10x3 + 3x

)
y′ +

(
14x2 − 15

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
10x3 + 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
14x2 − 15

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

10xn+r+2an(n+ r)
)

+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=0

14xn+r+2an

)
+

∞∑
n =0

(
−15anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

10xn+r+2an(n+ r) =
∞∑
n=2

10an−2(n+ r − 2)xn+r

∞∑
n =0

14xn+r+2an =
∞∑
n=2

14an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+ r− 2) (n− 3+ r)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=2

10an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=0

3xn+ran(n+ r)
)

+
(

∞∑
n=2

14an−2x
n+r

)
+

∞∑
n =0

(
−15anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 3xn+ran(n+ r)− 15anxn+r = 0
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When n = 0 the above becomes

xra0r(−1 + r) + 3xra0r − 15a0xr = 0

Or
(xrr(−1 + r) + 3xrr − 15xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(5 + r) (r − 3)xr = 0

Since the above is true for all x then the indicial equation becomes

(5 + r) (r − 3) = 0

Solving for r gives the roots of the indicial equation as

r1 = 3
r2 = −5

Since a0 6= 0 then the indicial equation becomes

(5 + r) (r − 3)xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 8 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x3

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x5

Or

y1(x) =
∞∑
n=0

anx
n+3

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−5

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r) + an(n+ r) (n+ r − 1)
+ 10an−2(n+ r − 2) + 3an(n+ r) + 14an−2 − 15an = 0

Solving for an from recursive equation (4) gives

an = −(n+ r) an−2

n− 3 + r
(4)

Which for the root r = 3 becomes

an = −(n+ 3) an−2

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−2− r

−1 + r

Which for the root r = 3 becomes
a2 = −5

2
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−2−r
−1+r

−5
2
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For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−2−r
−1+r

−5
2

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
r2 + 6r + 8

r2 − 1

Which for the root r = 3 becomes
a4 =

35
8

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−2−r
−1+r

−5
2

a3 0 0
a4

r2+6r+8
r2−1

35
8

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

−2−r
−1+r

−5
2

a3 0 0
a4

r2+6r+8
r2−1

35
8

a5 0 0

For n = 6, using the above recursive equation gives

a6 =
−r3 − 12r2 − 44r − 48

(r2 − 1) (3 + r)

Which for the root r = 3 becomes

a6 = −105
16

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−2−r
−1+r

−5
2

a3 0 0
a4

r2+6r+8
r2−1

35
8

a5 0 0
a6

−r3−12r2−44r−48
(r2−1)(3+r) −105

16

For n = 7, using the above recursive equation gives

a7 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

−2−r
−1+r

−5
2

a3 0 0
a4

r2+6r+8
r2−1

35
8

a5 0 0
a6

−r3−12r2−44r−48
(r2−1)(3+r) −105

16

a7 0 0

For n = 8, using the above recursive equation gives

a8 =
r4 + 20r3 + 140r2 + 400r + 384

(r2 − 1) (3 + r) (5 + r)

Which for the root r = 3 becomes

a8 =
1155
128

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−2−r
−1+r

−5
2

a3 0 0
a4

r2+6r+8
r2−1

35
8

a5 0 0
a6

−r3−12r2−44r−48
(r2−1)(3+r) −105

16

a7 0 0
a8

r4+20r3+140r2+400r+384
(r2−1)(3+r)(5+r)

1155
128

6321



Using the above table, then the solution y1(x) is

y1(x) = x3(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7 + a8x
8 + a9x

9. . .
)

= x3
(
1− 5x2

2 + 35x4

8 − 105x6

16 + 1155x8

128 +O
(
x9))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 8. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a8(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a8

= r4 + 20r3 + 140r2 + 400r + 384
(r2 − 1) (3 + r) (5 + r)

Therefore

lim
r→r2

r4 + 20r3 + 140r2 + 400r + 384
(r2 − 1) (3 + r) (5 + r) = lim

r→−5

r4 + 20r3 + 140r2 + 400r + 384
(r2 − 1) (3 + r) (5 + r)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode x2(x2 + 1) y′′+(10x3 + 3x) y′+(14x2 − 15) y =
0 gives

x2(x2 + 1
)(

Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
10x3 + 3x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+
(
14x2 − 15

)(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
x2(x2 + 1

)
y′′1(x) +

(
10x3 + 3x

)
y′1(x) +

(
14x2 − 15

)
y1(x)

)
ln (x)

+ x2(x2 + 1
)(2y′1(x)

x
− y1(x)

x2

)
+ (10x3 + 3x) y1(x)

x

)
C

+ x2(x2 + 1
)( ∞∑

n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
10x3 + 3x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
14x2 − 15

)( ∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

x2(x2 + 1
)
y′′1(x) +

(
10x3 + 3x

)
y′1(x) +

(
14x2 − 15

)
y1(x) = 0

Eq (7) simplifes to

(8)

(
x2(x2 + 1

)(2y′1(x)
x

− y1(x)
x2

)
+ (10x3 + 3x) y1(x)

x

)
C

+ x2(x2 + 1
)( ∞∑

n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
10x3 + 3x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
14x2 − 15

)( ∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2x
(
x2 + 1

)( ∞∑
n=0

x−1+n+r1an(n+ r1)
)

+
(
9x2 + 2

)( ∞∑
n=0

anx
n+r1

))
C

+
(
x4 + x2)( ∞∑

n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)

+
(
10x3 + 3x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

+
(
14x2 − 15

)( ∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 3 and r2 = −5 then the above becomes

(10)

(
2x
(
x2 + 1

)( ∞∑
n=0

x2+nan(n+ 3)
)

+
(
9x2 + 2

)( ∞∑
n=0

anx
n+3

))
C

+
(
x4 + x2)( ∞∑

n=0

x−7+nbn(n− 5) (−6 + n)
)

+
(
10x3 + 3x

)( ∞∑
n=0

x−6+nbn(n− 5)
)

+
(
14x2 − 15

)( ∞∑
n=0

bnx
n−5

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C xn+5an(n+3)
)
+
(

∞∑
n=0

2C xn+3an(n+3)
)
+
(

∞∑
n=0

9C xn+5an

)

+
(

∞∑
n=0

2C xn+3an

)
+
(

∞∑
n=0

xn−3bn(−6 + n) (n− 5)
)

+
(

∞∑
n=0

xn−5bn(−6 + n) (n− 5)
)

+
(

∞∑
n=0

10xn−3bn(n− 5)
)

+
(

∞∑
n=0

3xn−5bn(n− 5)
)

+
(

∞∑
n=0

14xn−3bn

)
+

∞∑
n =0

(
−15bnxn−5) = 0

The next step is to make all powers of x be n − 5 in each summation term. Going
over each summation term above with power of x in it which is not already xn−5 and
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adjusting the power and the corresponding index gives

∞∑
n =0

2C xn+5an(n+ 3) =
∞∑

n=10

2Can−10(−7 + n)xn−5

∞∑
n =0

2C xn+3an(n+ 3) =
∞∑
n=8

2Can−8(n− 5)xn−5

∞∑
n =0

9C xn+5an =
∞∑

n=10

9Can−10x
n−5

∞∑
n =0

2C xn+3an =
∞∑
n=8

2Can−8x
n−5

∞∑
n =0

xn−3bn(−6 + n) (n− 5) =
∞∑
n=2

bn−2(n− 8) (−7 + n)xn−5

∞∑
n =0

10xn−3bn(n− 5) =
∞∑
n=2

10bn−2(−7 + n)xn−5

∞∑
n =0

14xn−3bn =
∞∑
n=2

14bn−2x
n−5

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 5.

(2B)

(
∞∑

n=10

2Can−10(−7 + n)xn−5

)
+
(

∞∑
n=8

2Can−8(n− 5)xn−5

)

+
(

∞∑
n=10

9Can−10x
n−5

)
+
(

∞∑
n=8

2Can−8x
n−5

)

+
(

∞∑
n=2

bn−2(n− 8) (−7 + n)xn−5

)
+
(

∞∑
n=0

xn−5bn(−6 + n) (n− 5)
)

+
(

∞∑
n=2

10bn−2(−7 + n)xn−5

)
+
(

∞∑
n=0

3xn−5bn(n− 5)
)

+
(

∞∑
n=2

14bn−2x
n−5

)
+

∞∑
n =0

(
−15bnxn−5) = 0
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For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−7b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−7b1 = 0

Solving the above for b1 gives
b1 = 0

For n = 2, Eq (2B) gives
−6b0 − 12b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−6− 12b2 = 0

Solving the above for b2 gives
b2 = −1

2
For n = 3, Eq (2B) gives

−6b1 − 15b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−15b3 = 0

Solving the above for b3 gives
b3 = 0

For n = 4, Eq (2B) gives
−4b2 − 16b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

2− 16b4 = 0

Solving the above for b4 gives
b4 =

1
8

For n = 5, Eq (2B) gives
−15b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−15b5 = 0
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Solving the above for b5 gives
b5 = 0

For n = 6, Eq (2B) gives
6b4 − 12b6 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

3
4 − 12b6 = 0

Solving the above for b6 gives
b6 =

1
16

For n = 7, Eq (2B) gives
−7b7 + 14b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−7b7 = 0

Solving the above for b7 gives
b7 = 0

For n = N , where N = 8 which is the difference between the two roots, we are free to
choose b8 = 0. Hence for n = 8, Eq (2B) gives

8C + 3
2 = 0

Which is solved for C. Solving for C gives

C = − 3
16

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = − 3
16 and all bn, then the second solution becomes

y2(x) = − 3
16

(
x3
(
1− 5x2

2 + 35x4

8 − 105x6

16 + 1155x8

128 +O
(
x9))) ln (x)

+
1− x2

2 + x4

8 + x6

16 +O(x9)
x5
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3
(
1− 5x2

2 + 35x4

8 − 105x6

16 + 1155x8

128 +O
(
x9))

+ c2

(
− 3
16

(
x3
(
1− 5x2

2 + 35x4

8 − 105x6

16 + 1155x8

128 +O
(
x9))) ln (x)

+
1− x2

2 + x4

8 + x6

16 +O(x9)
x5

)

Hence the final solution is

y = yh

= c1x
3
(
1− 5x2

2 + 35x4

8 − 105x6

16 + 1155x8

128 +O
(
x9))

+ c2

−
3x3
(
1− 5x2

2 + 35x4

8 − 105x6

16 + 1155x8

128 +O(x9)
)
ln (x)

16

+
1− x2

2 + x4

8 + x6

16 +O(x9)
x5


Summary
The solution(s) found are the following

(1)

y = c1x
3
(
1− 5x2

2 + 35x4

8 − 105x6

16 + 1155x8

128 +O
(
x9))

+ c2

−
3x3
(
1− 5x2

2 + 35x4

8 − 105x6

16 + 1155x8

128 +O(x9)
)
ln (x)

16

+
1− x2

2 + x4

8 + x6

16 +O(x9)
x5
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Verification of solutions

y = c1x
3
(
1− 5x2

2 + 35x4

8 − 105x6

16 + 1155x8

128 +O
(
x9))

+ c2

−
3x3
(
1− 5x2

2 + 35x4

8 − 105x6

16 + 1155x8

128 +O(x9)
)
ln (x)

16

+
1− x2

2 + x4

8 + x6

16 +O(x9)
x5


Verified OK.

16.3.1 Maple step by step solution

Let’s solve
x2(x2 + 1) y′′ + (10x3 + 3x) y′ + (14x2 − 15) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
14x2−15

)
y

x2(x2+1) −
(
10x2+3

)
y′

x(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
10x2+3

)
y′

x(x2+1) +
(
14x2−15

)
y

x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 10x2+3
x(x2+1) , P3(x) = 14x2−15

x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −15

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
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x0 = 0
• Multiply by denominators

x2(x2 + 1) y′′ + x(10x2 + 3) y′ + (14x2 − 15) y = 0
• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(5 + r) (−3 + r)xr + a1(6 + r) (−2 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 5) (k + r − 3) + ak−2(k + r + 5) (k + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(5 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−5, 3}

• Each term must be 0
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a1(6 + r) (−2 + r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

(k + r + 5) (ak(k + r − 3) + ak−2(k + r)) = 0
• Shift index using k− >k + 2

(k + r + 7) (ak+2(k + r − 1) + ak(k + r + 2)) = 0
• Recursion relation that defines series solution to ODE

ak+2 = −ak(k+r+2)
k+r−1

• Recursion relation for r = −5
ak+2 = −ak(k−3)

k−6

• Series not valid for r = −5 , division by 0 in the recursion relation at k = 6
ak+2 = −ak(k−3)

k−6

• Recursion relation for r = 3
ak+2 = −ak(k+5)

k+2

• Solution for r = 3[
y =

∞∑
k=0

akx
k+3, ak+2 = −ak(k+5)

k+2 , a1 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 35� �
Order:=6;
dsolve(x^2*(1+x^2)*diff(y(x),x$2)+x*(3+10*x^2)*diff(y(x),x)-(15-14*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
3
(
1− 5

2x
2 + 35

8 x4 +O
(
x6))

+ c2(−203212800 + 101606400x2 − 25401600x4 +O(x6))
x5

3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 46� �
AsymptoticDSolveValue[x^2*(1+x^2)*y''[x]+x*(3+10*x^2)*y'[x]-(15-14*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1
x5 − 1

2x3 + 1
8x

)
+ c2

(
35x7

8 − 5x5

2 + x3
)
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16.4 problem Example 7.7.4 page 387
16.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6344

Internal problem ID [1416]
Internal file name [OUTPUT/1417_Sunday_June_05_2022_02_16_00_AM_37075915/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: Example 7.7.4 page 387.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(−2x2 + 1
)
y′′ + x

(
−13x2 + 7

)
y′ − 14x2y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−2x4 + x2) y′′ + (−13x3 + 7x
)
y′ − 14x2y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 13x2 − 7
x (2x2 − 1)

q(x) = 14
2x2 − 1

6333



Table 778: Table p(x), q(x) singularites.

p(x) = 13x2−7
x(2x2−1)

singularity type
x = 0 “regular”

x = −
√
2
2 “regular”

x =
√
2
2 “regular”

q(x) = 14
2x2−1

singularity type

x = −
√
2
2 “regular”

x =
√
2
2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−

√
2
2 ,

√
2
2 ,∞

]
Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x2(2x2 − 1
)
+
(
−13x3 + 7x

)
y′ − 14x2y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x2(2x2 − 1

)
+
(
−13x3 + 7x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
− 14x2

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−2xn+r+2an(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−13xn+r+2an(n+ r)

)
+
(

∞∑
n=0

7xn+ran(n+ r)
)

+
∞∑

n =0

(
−14xn+r+2an

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2xn+r+2an(n+ r) (n+ r − 1)

)
=

∞∑
n=2

(
−2an−2(n+ r − 2) (n− 3 + r)xn+r

)
∞∑

n =0

(
−13xn+r+2an(n+ r)

)
=

∞∑
n=2

(
−13an−2(n+ r − 2)xn+r

)
∞∑

n =0

(
−14xn+r+2an

)
=

∞∑
n=2

(
−14an−2x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

∞∑
n =2

(
−2an−2(n+ r − 2) (n− 3 + r)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =2

(
−13an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=0

7xn+ran(n+ r)
)

+
∞∑

n =2

(
−14an−2x

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 7xn+ran(n+ r) = 0

6335



When n = 0 the above becomes

xra0r(−1 + r) + 7xra0r = 0

Or
(xrr(−1 + r) + 7xrr) a0 = 0

Since a0 6= 0 then the above simplifies to

xrr(6 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(6 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = −6

Since a0 6= 0 then the indicial equation becomes

xrr(6 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 6 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x6

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−6

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)−2an−2(n+ r − 2) (n− 3 + r) + an(n+ r) (n+ r − 1)
− 13an−2(n+ r − 2) + 7an(n+ r)− 14an−2 = 0

Solving for an from recursive equation (4) gives

an = (2n+ 2r + 3) an−2

n+ 6 + r
(4)

Which for the root r = 0 becomes

an = (2n+ 3) an−2

n+ 6 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
7 + 2r
8 + r

Which for the root r = 0 becomes
a2 =

7
8

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

7+2r
8+r

7
8
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For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

7+2r
8+r

7
8

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
4r2 + 36r + 77
(8 + r) (10 + r)

Which for the root r = 0 becomes
a4 =

77
80

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

7+2r
8+r

7
8

a3 0 0
a4

4r2+36r+77
(8+r)(10+r)

77
80

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

7+2r
8+r

7
8

a3 0 0
a4

4r2+36r+77
(8+r)(10+r)

77
80

a5 0 0

For n = 6, using the above recursive equation gives

a6 =
8r3 + 132r2 + 694r + 1155
(8 + r) (10 + r) (12 + r)

Which for the root r = 0 becomes
a6 =

77
64

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

7+2r
8+r

7
8

a3 0 0
a4

4r2+36r+77
(8+r)(10+r)

77
80

a5 0 0
a6

8r3+132r2+694r+1155
(8+r)(10+r)(12+r)

77
64

Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7. . .

= 1 + 7x2

8 + 77x4

80 + 77x6

64 +O
(
x7)

Now the second solution y2(x) is found. Let

r1 − r2 = N
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Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 6. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a6(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a6

= 8r3 + 132r2 + 694r + 1155
(8 + r) (10 + r) (12 + r)

Therefore

lim
r→r2

8r3 + 132r2 + 694r + 1155
(8 + r) (10 + r) (12 + r) = lim

r→−6

8r3 + 132r2 + 694r + 1155
(8 + r) (10 + r) (12 + r)

= 5
16

The limit is 5
16 . Since the limit exists then the log term is not needed and we can set

C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−6

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)−2bn−2(n+ r − 2) (n− 3 + r) + bn(n+ r) (n+ r − 1)
− 13bn−2(n+ r − 2) + 7bn(n+ r)− 14bn−2 = 0

Which for for the root r = −6 becomes

(4A)−2bn−2(n−8) (n−9)+bn(n−6) (n−7)−13bn−2(n−8)+7bn(n−6)−14bn−2 = 0

Solving for bn from the recursive equation (4) gives

bn = (2n+ 2r + 3) bn−2

n+ 6 + r
(5)
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Which for the root r = −6 becomes

bn = (2n− 9) bn−2

n
(6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −6 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 =
7 + 2r
8 + r

Which for the root r = −6 becomes

b2 = −5
2

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

7+2r
8+r

−5
2

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

7+2r
8+r

−5
2

b3 0 0
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For n = 4, using the above recursive equation gives

b4 =
4r2 + 36r + 77
(8 + r) (10 + r)

Which for the root r = −6 becomes

b4 =
5
8

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

7+2r
8+r

−5
2

b3 0 0
b4

4r2+36r+77
(8+r)(10+r)

5
8

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

7+2r
8+r

−5
2

b3 0 0
b4

4r2+36r+77
(8+r)(10+r)

5
8

b5 0 0

For n = 6, using the above recursive equation gives

b6 =
8r3 + 132r2 + 694r + 1155
(8 + r) (10 + r) (12 + r)
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Which for the root r = −6 becomes

b6 =
5
16

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

7+2r
8+r

−5
2

b3 0 0
b4

4r2+36r+77
(8+r)(10+r)

5
8

b5 0 0
b6

8r3+132r2+694r+1155
(8+r)(10+r)(12+r)

5
16

Using the above table, then the solution y2(x) is

y2(x) = 1
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6 + b7x
7. . .

)
=

1− 5x2

2 + 5x4

8 + 5x6

16 +O(x7)
x6

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1 + 7x2

8 + 77x4

80 + 77x6

64 +O
(
x7))+

c2
(
1− 5x2

2 + 5x4

8 + 5x6

16 +O(x7)
)

x6

Hence the final solution is
y = yh

= c1

(
1 + 7x2

8 + 77x4

80 + 77x6

64 +O
(
x7))+

c2
(
1− 5x2

2 + 5x4

8 + 5x6

16 +O(x7)
)

x6

Summary
The solution(s) found are the following

(1)y = c1

(
1 + 7x2

8 + 77x4

80 + 77x6

64 +O
(
x7))+

c2
(
1− 5x2

2 + 5x4

8 + 5x6

16 +O(x7)
)

x6
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Verification of solutions

y = c1

(
1 + 7x2

8 + 77x4

80 + 77x6

64 +O
(
x7))+

c2
(
1− 5x2

2 + 5x4

8 + 5x6

16 +O(x7)
)

x6

Verified OK.

16.4.1 Maple step by step solution

Let’s solve
−y′′x2(2x2 − 1) + (−13x3 + 7x) y′ − 14x2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 14y
2x2−1 −

(
13x2−7

)
y′

x(2x2−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
13x2−7

)
y′

x(2x2−1) + 14y
2x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 13x2−7
x(2x2−1) , P3(x) = 14

2x2−1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 7

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
14yx+ (13x2 − 7) y′ + xy′′(2x2 − 1) = 0

• Assume series solution for y
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y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+r+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k+r

◦ Convert xm · y′ to series expansion form = 0..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(6 + r)x−1+r − a1(1 + r) (7 + r)xr +
(

∞∑
k=1

(−ak+1(k + r + 1) (k + 7 + r) + ak−1(2k + 5 + 2r) (k + r + 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(6 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−6, 0}

• Each term must be 0
−a1(1 + r) (7 + r) = 0

• Each term in the series must be 0, giving the recursion relation

2(k + r + 1)
((

k + r + 5
2

)
ak−1 − ak+1(k+7+r)

2

)
= 0
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• Shift index using k− >k + 1

2(k + r + 2)
((

k + 7
2 + r

)
ak − ak+2(k+8+r)

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = (2k+2r+7)ak

k+8+r

• Recursion relation for r = −6
ak+2 = (2k−5)ak

k+2

• Solution for r = −6[
y =

∞∑
k=0

akx
k−6, ak+2 = (2k−5)ak

k+2 , 5a1 = 0
]

• Recursion relation for r = 0
ak+2 = (2k+7)ak

k+8

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = (2k+7)ak

k+8 ,−7a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−6
)
+
(

∞∑
k=0

bkx
k

)
, ak+2 = (2k−5)ak

k+2 , 5a1 = 0, bk+2 = (2k+7)bk
k+8 ,−7b1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 32� �
Order:=6;
dsolve(x^2*(1-2*x^2)*diff(y(x),x$2)+x*(7-13*x^2)*diff(y(x),x)-14*x^2*y(x)=0,y(x),type='series',x=0);� �
y(x) = c1

(
1 + 7

8x
2 + 77

80x
4 +O

(
x6))+ c2(−86400 + 216000x2 − 54000x4 +O(x6))

x6

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 44� �
AsymptoticDSolveValue[x^2*(1-2*x^2)*y''[x]+x*(7-13*x^2)*y'[x]-14*x^2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
77x4

80 + 7x2

8 + 1
)
+ c1

(
1
x6 − 5

2x4 + 5
8x2

)

6347



16.5 problem 1
16.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6360

Internal problem ID [1417]
Internal file name [OUTPUT/1418_Sunday_June_05_2022_02_16_03_AM_57993504/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − 3y′x+ (4x+ 3) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ − 3y′x+ (4x+ 3) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −3
x

q(x) = 4x+ 3
x2
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Table 780: Table p(x), q(x) singularites.

p(x) = − 3
x

singularity type
x = 0 “regular”

q(x) = 4x+3
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ − 3y′x+ (4x+ 3) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

− 3
(

∞∑
n=0

(n+ r) anxn+r−1

)
x+ (4x+ 3)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−3xn+ran(n+ r)

)
+
(

∞∑
n=0

4x1+n+ran

)
+
(

∞∑
n=0

3anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4x1+n+ran =
∞∑
n=1

4an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−3xn+ran(n+ r)

)
+
(

∞∑
n=1

4an−1x
n+r

)
+
(

∞∑
n=0

3anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 3xn+ran(n+ r) + 3anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− 3xra0r + 3a0xr = 0

Or
(xrr(−1 + r)− 3xrr + 3xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 4r + 3

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − 4r + 3 = 0
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Solving for r gives the roots of the indicial equation as

r1 = 3
r2 = 1

Since a0 6= 0 then the indicial equation becomes(
r2 − 4r + 3

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x3

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + x

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+3

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
1+n

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1)− 3an(n+ r) + 4an−1 + 3an = 0

Solving for an from recursive equation (4) gives

an = − 4an−1

n2 + 2nr + r2 − 4n− 4r + 3 (4)
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Which for the root r = 3 becomes

an = − 4an−1

n (n+ 2) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 4
r (r − 2)

Which for the root r = 3 becomes
a1 = −4

3
And the table now becomes

n an,r an

a0 1 1
a1 − 4

r(r−2) −4
3

For n = 2, using the above recursive equation gives

a2 =
16

r (r − 2) (r2 − 1)

Which for the root r = 3 becomes
a2 =

2
3

And the table now becomes

n an,r an

a0 1 1
a1 − 4

r(r−2) −4
3

a2
16

r(r−2)(r2−1)
2
3
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For n = 3, using the above recursive equation gives

a3 = − 64
r6 − 5r4 + 4r2

Which for the root r = 3 becomes

a3 = − 8
45

And the table now becomes

n an,r an

a0 1 1
a1 − 4

r(r−2) −4
3

a2
16

r(r−2)(r2−1)
2
3

a3 − 64
r6−5r4+4r2 − 8

45

For n = 4, using the above recursive equation gives

a4 =
256

r2 (r4 − 5r2 + 4) (r2 + 4r + 3)

Which for the root r = 3 becomes

a4 =
4
135

And the table now becomes

n an,r an

a0 1 1
a1 − 4

r(r−2) −4
3

a2
16

r(r−2)(r2−1)
2
3

a3 − 64
r6−5r4+4r2 − 8

45

a4
256

r2(r4−5r2+4)(r2+4r+3)
4

135

For n = 5, using the above recursive equation gives

a5 = − 1024
r2 (r − 2) (r + 2)2 (−1 + r) (r + 1)2 (r + 3) (r + 4)
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Which for the root r = 3 becomes

a5 = − 16
4725

And the table now becomes

n an,r an

a0 1 1
a1 − 4

r(r−2) −4
3

a2
16

r(r−2)(r2−1)
2
3

a3 − 64
r6−5r4+4r2 − 8

45

a4
256

r2(r4−5r2+4)(r2+4r+3)
4

135

a5 − 1024
r2(r−2)(r+2)2(−1+r)(r+1)2(r+3)(r+4) − 16

4725

Using the above table, then the solution y1(x) is

y1(x) = x3(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x3

(
1− 4x

3 + 2x2

3 − 8x3

45 + 4x4

135 − 16x5

4725 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a2(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a2

= 16
r (r − 2) (r2 − 1)

Therefore

lim
r→r2

16
r (r − 2) (r2 − 1) = lim

r→1

16
r (r − 2) (r2 − 1)

= undefined
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Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode x2y′′ − 3y′x+ (4x+ 3) y = 0 gives

x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

− 3
(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))
x

+ (4x+ 3)
(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0
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Which can be written as

(7)

((
x2y′′1(x)− 3y′1(x)x+ (4x+ 3) y1(x)

)
ln (x) + x2

(
2y′1(x)

x
− y1(x)

x2

)
− 3y1(x)

)
C + x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

− 3
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
x+ (4x+ 3)

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

x2y′′1(x)− 3y′1(x)x+ (4x+ 3) y1(x) = 0

Eq (7) simplifes to

(8)

(
x2
(
2y′1(x)

x
− y1(x)

x2

)
− 3y1(x)

)
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

− 3
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
x+ (4x+ 3)

(
∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x− 4

(
∞∑
n=0

anx
n+r1

))
C

+
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2

− 3
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x+ (4x+ 3)

(
∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 3 and r2 = 1 then the above becomes

(10)

(
2
(

∞∑
n=0

xn+2an(n+3)
)
x−4

(
∞∑
n=0

anx
n+3

))
C+

(
∞∑
n=0

xn−1bn(1+n)n
)
x2

− 3
(

∞∑
n=0

xnbn(1 + n)
)
x+ (4x+ 3)

(
∞∑
n=0

bnx
1+n

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2C xn+3an(n+ 3)
)

+
∞∑

n =0

(
−4Canx

n+3)+( ∞∑
n=0

nx1+nbn(1 + n)
)

+
∞∑

n =0

(
−3x1+nbn(1 + n)

)
+
(

∞∑
n=0

4xn+2bn

)
+
(

∞∑
n=0

3bnx1+n

)
= 0

The next step is to make all powers of x be 1 + n in each summation term. Going
over each summation term above with power of x in it which is not already x1+n and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xn+3an(n+ 3) =
∞∑
n=2

2Ca−2+n(1 + n)x1+n

∞∑
n =0

(
−4Canx

n+3) = ∞∑
n=2

(
−4Ca−2+nx

1+n
)

∞∑
n =0

4xn+2bn =
∞∑
n=1

4bn−1x
1+n

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to 1 + n.

(2B)

(
∞∑
n=2

2Ca−2+n(1+n)x1+n

)
+

∞∑
n =2

(
−4Ca−2+nx

1+n
)
+
(

∞∑
n=0

nx1+nbn(1+n)
)

+
∞∑

n =0

(
−3x1+nbn(1 + n)

)
+
(

∞∑
n=1

4bn−1x
1+n

)
+
(

∞∑
n=0

3bnx1+n

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−b1 + 4b0 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−b1 + 4 = 0

Solving the above for b1 gives
b1 = 4
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For n = N , where N = 2 which is the difference between the two roots, we are free to
choose b2 = 0. Hence for n = 2, Eq (2B) gives

2C + 16 = 0

Which is solved for C. Solving for C gives

C = −8

For n = 3, Eq (2B) gives
4Ca1 + 4b2 + 3b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

3b3 +
128
3 = 0

Solving the above for b3 gives
b3 = −128

9
For n = 4, Eq (2B) gives

6Ca2 + 4b3 + 8b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

8b4 −
800
9 = 0

Solving the above for b4 gives
b4 =

100
9

For n = 5, Eq (2B) gives
8Ca3 + 4b4 + 15b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

15b5 +
2512
45 = 0

Solving the above for b5 gives
b5 = −2512

675
Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Using the above value found for C = −8 and all bn, then the second solution becomes

y2(x) = (−8)
(
x3
(
1− 4x

3 + 2x2

3 − 8x3

45 + 4x4

135 − 16x5

4725 +O
(
x6))) ln (x)

+ x

(
1 + 4x− 128x3

9 + 100x4

9 − 2512x5

675 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3
(
1− 4x

3 + 2x2

3 − 8x3

45 + 4x4

135 − 16x5

4725 +O
(
x6))

+ c2

(
(−8)

(
x3
(
1− 4x

3 + 2x2

3 − 8x3

45 + 4x4

135 − 16x5

4725 +O
(
x6))) ln (x)

+ x

(
1 + 4x− 128x3

9 + 100x4

9 − 2512x5

675 +O
(
x6)))

Hence the final solution is

y = yh

= c1x
3
(
1− 4x

3 + 2x2

3 − 8x3

45 + 4x4

135 − 16x5

4725 +O
(
x6))

+ c2

(
−8x3

(
1− 4x

3 + 2x2

3 − 8x3

45 + 4x4

135 − 16x5

4725 +O
(
x6)) ln (x)

+ x

(
1 + 4x− 128x3

9 + 100x4

9 − 2512x5

675 +O
(
x6)))

Summary
The solution(s) found are the following

(1)

y = c1x
3
(
1− 4x

3 + 2x2

3 − 8x3

45 + 4x4

135 − 16x5

4725 +O
(
x6))

+ c2

(
−8x3

(
1− 4x

3 + 2x2

3 − 8x3

45 + 4x4

135 − 16x5

4725 +O
(
x6)) ln (x)

+ x

(
1 + 4x− 128x3

9 + 100x4

9 − 2512x5

675 +O
(
x6)))

6359



Verification of solutions

y = c1x
3
(
1− 4x

3 + 2x2

3 − 8x3

45 + 4x4

135 − 16x5

4725 +O
(
x6))

+ c2

(
−8x3

(
1− 4x

3 + 2x2

3 − 8x3

45 + 4x4

135 − 16x5

4725 +O
(
x6)) ln (x)

+ x

(
1 + 4x− 128x3

9 + 100x4

9 − 2512x5

675 +O
(
x6)))

Verified OK.

16.5.1 Maple step by step solution

Let’s solve
x2y′′ − 3y′x+ (4x+ 3) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 3y′

x
− (4x+3)y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 3y′

x
+ (4x+3)y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = − 3
x
, P3(x) = 4x+3

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 3

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
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x2y′′ − 3y′x+ (4x+ 3) y = 0
• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−3 + r)xr +
(

∞∑
k=1

(ak(k + r − 1) (k + r − 3) + 4ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 3}

• Each term in the series must be 0, giving the recursion relation
ak(k + r − 1) (k + r − 3) + 4ak−1 = 0

• Shift index using k− >k + 1
ak+1(k + r) (k − 2 + r) + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 4ak

(k+r)(k−2+r)

• Recursion relation for r = 1
ak+1 = − 4ak

(k+1)(k−1)

6361



• Series not valid for r = 1 , division by 0 in the recursion relation at k = 1
ak+1 = − 4ak

(k+1)(k−1)

• Recursion relation for r = 3
ak+1 = − 4ak

(k+3)(k+1)

• Solution for r = 3[
y =

∞∑
k=0

akx
k+3, ak+1 = − 4ak

(k+3)(k+1)

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 61� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+(3+4*x)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
c1x

2
(
1− 4

3x+ 2
3x

2 − 8
45x

3 + 4
135x

4 − 16
4725x

5 +O
(
x6))

+ c2

(
ln (x)

(
16x2 − 64

3 x3 + 32
3 x4 − 128

45 x5 +O
(
x6))

+
(
−2− 8x+ 256

9 x3 − 200
9 x4 + 5024

675 x5 +O
(
x6))))x
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3 Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 87� �
AsymptoticDSolveValue[x^2*y''[x]-3*x*y'[x]+(3+4*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1
9x
(
124x4 − 176x3 + 36x2 + 36x+ 9

)
− 8

3x
3(2x2 − 4x+ 3

)
log(x)

)
+ c2

(
4x7

135 − 8x6

45 + 2x5

3 − 4x4

3 + x3
)
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16.6 problem 2
16.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6375

Internal problem ID [1418]
Internal file name [OUTPUT/1419_Sunday_June_05_2022_02_16_07_AM_56052247/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

xy′′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = 1
x
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Table 782: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = 1
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x+

(
∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

anx
n+r

)
= 0
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) = 0

Or
x−1+ra0r(−1 + r) = 0

Since a0 6= 0 then the above simplifies to

x−1+rr(−1 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr(−1 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1) + an−1 = 0

Solving for an from recursive equation (4) gives

an = − an−1

(n+ r) (n+ r − 1) (4)

Which for the root r = 1 becomes

an = − an−1

(n+ 1)n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
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For n = 1, using the above recursive equation gives

a1 = − 1
(1 + r) r

Which for the root r = 1 becomes
a1 = −1

2
And the table now becomes

n an,r an

a0 1 1
a1 − 1

(1+r)r −1
2

For n = 2, using the above recursive equation gives

a2 =
1

(1 + r)2 r (2 + r)

Which for the root r = 1 becomes
a2 =

1
12

And the table now becomes

n an,r an

a0 1 1
a1 − 1

(1+r)r −1
2

a2
1

(1+r)2r(2+r)
1
12

For n = 3, using the above recursive equation gives

a3 = − 1
(1 + r)2 r (2 + r)2 (3 + r)

Which for the root r = 1 becomes

a3 = − 1
144

And the table now becomes
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n an,r an

a0 1 1
a1 − 1

(1+r)r −1
2

a2
1

(1+r)2r(2+r)
1
12

a3 − 1
(1+r)2r(2+r)2(3+r) − 1

144

For n = 4, using the above recursive equation gives

a4 =
1

(1 + r)2 r (2 + r)2 (3 + r)2 (4 + r)

Which for the root r = 1 becomes

a4 =
1

2880

And the table now becomes

n an,r an

a0 1 1
a1 − 1

(1+r)r −1
2

a2
1

(1+r)2r(2+r)
1
12

a3 − 1
(1+r)2r(2+r)2(3+r) − 1

144

a4
1

(1+r)2r(2+r)2(3+r)2(4+r)
1

2880

For n = 5, using the above recursive equation gives

a5 = − 1
(1 + r)2 r (2 + r)2 (3 + r)2 (4 + r)2 (5 + r)

Which for the root r = 1 becomes

a5 = − 1
86400

And the table now becomes
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n an,r an

a0 1 1
a1 − 1

(1+r)r −1
2

a2
1

(1+r)2r(2+r)
1
12

a3 − 1
(1+r)2r(2+r)2(3+r) − 1

144

a4
1

(1+r)2r(2+r)2(3+r)2(4+r)
1

2880

a5 − 1
(1+r)2r(2+r)2(3+r)2(4+r)2(5+r) − 1

86400

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= − 1
(1 + r) r

Therefore

lim
r→r2

− 1
(1 + r) r = lim

r→0
− 1
(1 + r) r

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

6370



Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode xy′′ + y = 0 gives(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2 +

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
= 0

Which can be written as

(7)

(
(y′′1(x)x+ y1(x)) ln (x) +

(
2y′1(x)

x
− y1(x)

x2

)
x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x+

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

y′′1(x)x+ y1(x) = 0

Eq (7) simplifes to

(8)

(
2y′1(x)

x
− y1(x)

x2

)
xC +

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+
(

∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x−

(
∞∑
n=0

anx
n+r1

))
C

x

+
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x+

(
∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 1 and r2 = 0 then the above becomes

(10)

(
2
(

∞∑
n=0

xnan(n+ 1)
)
x−

(
∞∑
n=0

anx
n+1
))

C

x

+
(

∞∑
n=0

x−2+nbnn(n− 1)
)
x+

(
∞∑
n=0

bnx
n

)
= 0

Which simplifies to(
∞∑
n=0

2C xnan(n+ 1)
)

+
∞∑

n =0

(−C xnan) +
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
(

∞∑
n=0

bnx
n

)
= 0

(2A)

The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xnan(n+ 1) =
∞∑
n=1

2Can−1nxn−1

∞∑
n =0

(−C xnan) =
∞∑
n=1

(
−Can−1x

n−1)
∞∑

n =0

bnx
n =

∞∑
n=1

bn−1x
n−1
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Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1.

(2B)

(
∞∑
n=1

2Can−1nxn−1

)
+

∞∑
n =1

(
−Can−1x

n−1)
+
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
(

∞∑
n=1

bn−1x
n−1

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

C + 1 = 0

Which is solved for C. Solving for C gives

C = −1

For n = 2, Eq (2B) gives
3Ca1 + b1 + 2b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

2b2 +
3
2 = 0

Solving the above for b2 gives
b2 = −3

4
For n = 3, Eq (2B) gives

5Ca2 + b2 + 6b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

6b3 −
7
6 = 0

Solving the above for b3 gives
b3 =

7
36

For n = 4, Eq (2B) gives
7Ca3 + b3 + 12b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

12b4 +
35
144 = 0
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Solving the above for b4 gives
b4 = − 35

1728
For n = 5, Eq (2B) gives

9Ca4 + b4 + 20b5 = 0
Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

20b5 −
101
4320 = 0

Solving the above for b5 gives
b5 =

101
86400

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = −1 and all bn, then the second solution becomes

y2(x) = (−1)
(
x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))) ln (x)

+ 1− 3x2

4 + 7x3

36 − 35x4

1728 + 101x5

86400 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))

+ c2

(
(−1)

(
x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))) ln (x) + 1

− 3x2

4 + 7x3

36 − 35x4

1728 + 101x5

86400 +O
(
x6))

Hence the final solution is
y = yh

= c1x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4 + 7x3

36

− 35x4

1728 + 101x5

86400 +O
(
x6))
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Summary
The solution(s) found are the following

(1)

y = c1x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4

+ 7x3

36 − 35x4

1728 + 101x5

86400 +O
(
x6))

Verification of solutions

y = c1x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4 + 7x3

36

− 35x4

1728 + 101x5

86400 +O
(
x6))

Verified OK.

16.6.1 Maple step by step solution

Let’s solve
y′′x+ y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = 1
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−1 + r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r) + ak)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

(k+1+r)(k+r)

• Recursion relation for r = 0
ak+1 = − ak

(k+1)k
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• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − ak

(k+1)k

]
• Recursion relation for r = 1

ak+1 = − ak
(k+2)(k+1)

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+1 = − ak

(k+2)(k+1)

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
1+k

)
, a1+k = − ak

(1+k)k , b1+k = − bk
(k+2)(1+k)

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 58� �
Order:=6;
dsolve(x*diff(y(x),x$2)+y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x

(
1− 1

2x+ 1
12x

2 − 1
144x

3 + 1
2880x

4 − 1
86400x

5 +O
(
x6))

+ c2

(
ln (x)

(
−x+ 1

2x
2 − 1

12x
3 + 1

144x
4 − 1

2880x
5 +O

(
x6))

+
(
1− 3

4x
2 + 7

36x
3 − 35

1728x
4 + 101

86400x
5 +O

(
x6)))

3 Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 85� �
AsymptoticDSolveValue[x*y''[x]+y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
1
144x

(
x3 − 12x2 + 72x− 144

)
log(x)

+ −47x4 + 480x3 − 2160x2 + 1728x+ 1728
1728

)
+ c2

(
x5

2880 −
x4

144 +
x3

12 −
x2

2 +x

)
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16.7 problem 3
16.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6392

Internal problem ID [1419]
Internal file name [OUTPUT/1420_Sunday_June_05_2022_02_16_11_AM_75225682/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2(x+ 1) y′′ + 4x(1 + 2x) y′ − (3x+ 1) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

4x3 + 4x2) y′′ + (8x2 + 4x
)
y′ + (−3x− 1) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1 + 2x
x (x+ 1)

q(x) = − 3x+ 1
4x2 (x+ 1)
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Table 784: Table p(x), q(x) singularites.

p(x) = 1+2x
x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

q(x) = − 3x+1
4x2(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2(x+ 1) y′′ +
(
8x2 + 4x

)
y′ + (−3x− 1) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2(x+ 1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
8x2 + 4x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (−3x− 1)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

8x1+n+ran(n+ r)
)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
∞∑

n =0

(
−3x1+n+ran

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

4an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

8x1+n+ran(n+ r) =
∞∑
n=1

8an−1(n+ r − 1)xn+r

∞∑
n =0

(
−3x1+n+ran

)
=

∞∑
n=1

(
−3an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

4an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

8an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
∞∑

n =1

(
−3an−1x

n+r
)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + 4xn+ran(n+ r)− anx
n+r = 0
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When n = 0 the above becomes

4xra0r(−1 + r) + 4xra0r − a0x
r = 0

Or
(4xrr(−1 + r) + 4xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

4r2 − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = −1
2

Since a0 6= 0 then the indicial equation becomes(
4r2 − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
√
x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

√
x

Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n− 1

2

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)4an−1(n+ r − 1) (n+ r − 2) + 4an(n+ r) (n+ r − 1)
+ 8an−1(n+ r − 1) + 4an(n+ r)− 3an−1 − an = 0

Solving for an from recursive equation (4) gives

an = −(2n+ 2r − 3) an−1

2n+ 2r − 1 (4)

Which for the root r = 1
2 becomes

an = −(n− 1) an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−2r + 1
1 + 2r

Which for the root r = 1
2 becomes

a1 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−2r+1
1+2r 0

For n = 2, using the above recursive equation gives

a2 =
2r − 1
3 + 2r
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Which for the root r = 1
2 becomes

a2 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−2r+1
1+2r 0

a2
2r−1
3+2r 0

For n = 3, using the above recursive equation gives

a3 =
−2r + 1
5 + 2r

Which for the root r = 1
2 becomes

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−2r+1
1+2r 0

a2
2r−1
3+2r 0

a3
−2r+1
5+2r 0

For n = 4, using the above recursive equation gives

a4 =
2r − 1
7 + 2r

Which for the root r = 1
2 becomes

a4 = 0

And the table now becomes
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n an,r an

a0 1 1
a1

−2r+1
1+2r 0

a2
2r−1
3+2r 0

a3
−2r+1
5+2r 0

a4
2r−1
7+2r 0

For n = 5, using the above recursive equation gives

a5 =
−2r + 1
9 + 2r

Which for the root r = 1
2 becomes

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−2r+1
1+2r 0

a2
2r−1
3+2r 0

a3
−2r+1
5+2r 0

a4
2r−1
7+2r 0

a5
−2r+1
9+2r 0

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x
(
1 +O

(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
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C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= −2r + 1
1 + 2r

Therefore

lim
r→r2

−2r + 1
1 + 2r = lim

r→− 1
2

−2r + 1
1 + 2r

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode 4x2(x+ 1) y′′+(8x2 + 4x) y′+(−3x− 1) y = 0
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gives

4x2(x+ 1)
(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
8x2 + 4x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+ (−3x− 1)
(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
4x2(x+ 1) y′′1(x) +

(
8x2 + 4x

)
y′1(x) + (−3x− 1) y1(x)

)
ln (x)

+ 4x2(x+ 1)
(
2y′1(x)

x
− y1(x)

x2

)
+ (8x2 + 4x) y1(x)

x

)
C

+ 4x2(x+ 1)
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
8x2 + 4x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ (−3x− 1)

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

4x2(x+ 1) y′′1(x) +
(
8x2 + 4x

)
y′1(x) + (−3x− 1) y1(x) = 0

Eq (7) simplifes to

(8)

(
4x2(x+ 1)

(
2y′1(x)

x
− y1(x)

x2

)
+ (8x2 + 4x) y1(x)

x

)
C

+ 4x2(x+ 1)
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
8x2 + 4x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ (−3x− 1)

(
∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
8x(x+ 1)

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)

+ 4
(

∞∑
n=0

anx
n+r1

)
x

)
C

+
(
4x3 + 4x2)( ∞∑

n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)

+
(
8x2 + 4x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

+ (−3x− 1)
(

∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 1
2 and r2 = −1

2 then the above becomes

(10)

(
8x(x+ 1)

(
∞∑
n=0

xn− 1
2an

(
n+ 1

2

))
+ 4
(

∞∑
n=0

anx
n+ 1

2

)
x

)
C

+
(
4x3 + 4x2)( ∞∑

n=0

x− 5
2+nbn

(
n− 1

2

)(
−3
2 + n

))

+
(
8x2 + 4x

)( ∞∑
n=0

x− 3
2+nbn

(
n− 1

2

))
+ (−3x− 1)

(
∞∑
n=0

bnx
n− 1

2

)
= 0

Expanding 4C
√
x as Taylor series around x = 0 and keeping only the first 6 terms gives

4C
√
x = 4C

√
x+ . . .

= 4C
√
x

Expanding
√
x as Taylor series around x = 0 and keeping only the first 6 terms gives

√
x =

√
x+ . . .

=
√
x

Expanding 1√
x
as Taylor series around x = 0 and keeping only the first 6 terms gives

1√
x
= 1√

x
+ . . .

= 1√
x

Expanding 4
√
x as Taylor series around x = 0 and keeping only the first 6 terms gives

4
√
x = 4

√
x+ . . .

= 4
√
x
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Expanding 2√
x
as Taylor series around x = 0 and keeping only the first 6 terms gives

2√
x
= 2√

x
+ . . .

= 2√
x

Expanding −3
√
x as Taylor series around x = 0 and keeping only the first 6 terms gives

−3
√
x = −3

√
x+ . . .

= −3
√
x

Expanding − 1√
x
as Taylor series around x = 0 and keeping only the first 6 terms gives

− 1√
x
= − 1√

x
+ . . .

= − 1√
x

Which simplifies to

(2A)

(
∞∑
n=0

(8n+ 4)Canx
3
2+n

)
+
(

∞∑
n=0

(8n+ 4)Canx
n+ 1

2

)

+
(

∞∑
n=0

4C x
3
2+nan

)
+
(

∞∑
n=0

xn+ 1
2 bn
(
4n2 − 8n+ 3

))

+
(

∞∑
n=0

xn− 1
2 bn
(
4n2 − 8n+ 3

))
+
(

∞∑
n=0

(8n− 4) bnxn+ 1
2

)

+
(

∞∑
n=0

(4n− 2) bnxn− 1
2

)
+

∞∑
n =0

(
−3xn+ 1

2 bn
)
+

∞∑
n =0

(
−bnx

n− 1
2

)
= 0

The next step is to make all powers of x be n − 1
2 in each summation term. Going

over each summation term above with power of x in it which is not already xn− 1
2 and

adjusting the power and the corresponding index gives

∞∑
n =0

(8n+ 4)Canx
3
2+n =

∞∑
n=2

Can−2(8n− 12)xn− 1
2

∞∑
n =0

(8n+ 4)Canx
n+ 1

2 =
∞∑
n=1

Can−1(8n− 4)xn− 1
2
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∞∑
n =0

4C x
3
2+nan =

∞∑
n=2

4Can−2x
n− 1

2

∞∑
n =0

xn+ 1
2 bn
(
4n2 − 8n+ 3

)
=

∞∑
n=1

bn−1
(
4(n− 1)2 − 8n+ 11

)
xn− 1

2

∞∑
n =0

(8n− 4) bnxn+ 1
2 =

∞∑
n=1

bn−1(8n− 12)xn− 1
2

∞∑
n =0

(
−3xn+ 1

2 bn
)
=

∞∑
n=1

(
−3bn−1x

n− 1
2

)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1

2 .

(2B)

(
∞∑
n=2

Can−2(8n− 12)xn− 1
2

)
+
(

∞∑
n=1

Can−1(8n− 4)xn− 1
2

)

+
(

∞∑
n=2

4Can−2x
n− 1

2

)
+
(

∞∑
n=1

bn−1
(
4(n− 1)2 − 8n+ 11

)
xn− 1

2

)

+
(

∞∑
n=0

xn− 1
2 bn
(
4n2 − 8n+ 3

))
+
(

∞∑
n=1

bn−1(8n− 12)xn− 1
2

)

+
(

∞∑
n=0

(4n− 2) bnxn− 1
2

)
+

∞∑
n =1

(
−3bn−1x

n− 1
2

)
+

∞∑
n =0

(
−bnx

n− 1
2

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

4C − 4 = 0

Which is solved for C. Solving for C gives

C = 1

For n = 2, Eq (2B) gives
(8a0 + 12a1)C + 8b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

8 + 8b2 = 0
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Solving the above for b2 gives
b2 = −1

For n = 3, Eq (2B) gives

(16a1 + 20a2)C + 12b2 + 24b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−12 + 24b3 = 0

Solving the above for b3 gives
b3 =

1
2

For n = 4, Eq (2B) gives

(24a2 + 28a3)C + 32b3 + 48b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

16 + 48b4 = 0

Solving the above for b4 gives
b4 = −1

3
For n = 5, Eq (2B) gives

(32a3 + 36a4)C + 60b4 + 80b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−20 + 80b5 = 0

Solving the above for b5 gives
b5 =

1
4

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = 1 and all bn, then the second solution becomes

y2(x) = 1
(√

x
(
1 +O

(
x6))) ln (x) + 1− x2 + x3

2 − x4

3 + x5

4 +O(x6)
√
x
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x
(
1+O

(
x6))+c2

(
1
(√

x
(
1+O

(
x6))) ln (x)+1− x2 + x3

2 − x4

3 + x5

4 +O(x6)
√
x

)

Hence the final solution is

y = yh

= c1
√
x
(
1 +O

(
x6))+ c2

(
√
x
(
1 +O

(
x6)) ln (x) + 1− x2 + x3

2 − x4

3 + x5

4 +O(x6)
√
x

)

Summary
The solution(s) found are the following

(1)
y = c1

√
x
(
1 +O

(
x6))

+ c2

(
√
x
(
1 +O

(
x6)) ln (x) + 1− x2 + x3

2 − x4

3 + x5

4 +O(x6)
√
x

)
Verification of solutions

y = c1
√
x
(
1 +O

(
x6))+ c2

(
√
x
(
1 +O

(
x6)) ln (x) + 1− x2 + x3

2 − x4

3 + x5

4 +O(x6)
√
x

)

Verified OK.

16.7.1 Maple step by step solution

Let’s solve
4x2(x+ 1) y′′ + (8x2 + 4x) y′ + (−3x− 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = (3x+1)y
4x2(x+1) −

(1+2x)y′
x(x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (1+2x)y′
x(x+1) − (3x+1)y

4x2(x+1) = 0
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� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 1+2x
x(x+1) , P3(x) = − 3x+1

4x2(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
4x2(x+ 1) y′′ + 4x(1 + 2x) y′ + (−3x− 1) y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(4u3 − 8u2 + 4u)
(

d2

du2y(u)
)
+ (8u2 − 12u+ 4)

(
d
du
y(u)

)
+ (−3u+ 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r
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◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r2u−1+r +
(
4a1(1 + r)2 − 2a0(4r2 + 2r − 1)

)
ur +

(
∞∑
k=1

(
4ak+1(k + 1 + r)2 − 2ak(4k2 + 8kr + 4r2 + 2k + 2r − 1) + ak−1(2k + 1 + 2r) (2k − 3 + 2r)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term must be 0
4a1(1 + r)2 − 2a0(4r2 + 2r − 1) = 0

• Each term in the series must be 0, giving the recursion relation
(4k2 − 4k − 3) ak−1 + (−8k2 − 4k + 2) ak + 4ak+1(k + 1)2 = 0

• Shift index using k− >k + 1(
4(k + 1)2 − 4k − 7

)
ak +

(
−8(k + 1)2 − 4k − 2

)
ak+1 + 4ak+2(k + 2)2 = 0

• Recursion relation that defines series solution to ODE

ak+2 = −4k2ak−8k2ak+1+4kak−20kak+1−3ak−10ak+1
4(k+2)2

• Recursion relation for r = 0

ak+2 = −4k2ak−8k2ak+1+4kak−20kak+1−3ak−10ak+1
4(k+2)2

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −4k2ak−8k2ak+1+4kak−20kak+1−3ak−10ak+1

4(k+2)2 , 4a1 + 2a0 = 0
]

• Revert the change of variables u = x+ 1[
y =

∞∑
k=0

ak(x+ 1)k , ak+2 = −4k2ak−8k2ak+1+4kak−20kak+1−3ak−10ak+1
4(k+2)2 , 4a1 + 2a0 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 51� �
Order:=6;
dsolve(4*x^2*(1+x)*diff(y(x),x$2)+4*x*(1+2*x)*diff(y(x),x)-(1+3*x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1(1 + O (x6))x+ ln (x) (x+O(x6)) c2 +

(
1− x− x2 + 1

2x
3 − 1

3x
4 + 1

4x
5 +O(x6)

)
c2√

x

3 Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 53� �
AsymptoticDSolveValue[4*x^2*(1+x)*y''[x]+4*x*(1+2*x)*y'[x]-(1+3*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(√
x log(x)− 2x4 − 3x3 + 6x2 + 6x− 6

6
√
x

)
+ c2

√
x
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16.8 problem 4
16.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6409

Internal problem ID [1420]
Internal file name [OUTPUT/1421_Sunday_June_05_2022_02_16_16_AM_38138722/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x(x+ 1) y′′ + y′x+ y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x2 + x
)
y′′ + y′x+ y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x+ 1

q(x) = 1
x (x+ 1)
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Table 786: Table p(x), q(x) singularites.

p(x) = 1
x+1

singularity type
x = −1 “regular”

q(x) = 1
x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x(x+ 1) y′′ + y′x+ y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x(x+ 1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
x+

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

anx
n+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r−1

∞∑
n =0

xn+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r−1

∞∑
n =0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=1

an−1(n+r−1) (n+r−2)xn+r−1

)
+
(

∞∑
n=0

xn+r−1an(n+r) (n+r−1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r−1

)
+
(

∞∑
n=1

an−1x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) = 0

Or
x−1+ra0r(−1 + r) = 0
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Since a0 6= 0 then the above simplifies to

x−1+rr(−1 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr(−1 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
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of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1) + an−1(n+ r − 1) + an−1 = 0

Solving for an from recursive equation (4) gives

an = −an−1(n2 + 2nr + r2 − 2n− 2r + 2)
(n+ r) (n+ r − 1) (4)

Which for the root r = 1 becomes

an = −an−1(n2 + 1)
(n+ 1)n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−r2 − 1
(1 + r) r

Which for the root r = 1 becomes
a1 = −1

And the table now becomes

n an,r an

a0 1 1
a1

−r2−1
(1+r)r −1

For n = 2, using the above recursive equation gives

a2 =
(r2 + 1) (r2 + 2r + 2)
(1 + r)2 r (2 + r)

Which for the root r = 1 becomes
a2 =

5
6
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And the table now becomes

n an,r an

a0 1 1
a1

−r2−1
(1+r)r −1

a2
(
r2+1

)(
r2+2r+2

)
(1+r)2r(2+r)

5
6

For n = 3, using the above recursive equation gives

a3 = −(r2 + 1) (r2 + 2r + 2) (r2 + 4r + 5)
(1 + r)2 r (2 + r)2 (3 + r)

Which for the root r = 1 becomes

a3 = −25
36

And the table now becomes

n an,r an

a0 1 1
a1

−r2−1
(1+r)r −1

a2
(
r2+1

)(
r2+2r+2

)
(1+r)2r(2+r)

5
6

a3 −
(
r2+1

)(
r2+2r+2

)(
r2+4r+5

)
(1+r)2r(2+r)2(3+r) −25

36

For n = 4, using the above recursive equation gives

a4 =
(r2 + 1) (r2 + 2r + 2) (r2 + 4r + 5) (r2 + 6r + 10)

(1 + r)2 r (2 + r)2 (3 + r)2 (4 + r)

Which for the root r = 1 becomes

a4 =
85
144

And the table now becomes
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n an,r an

a0 1 1
a1

−r2−1
(1+r)r −1

a2
(
r2+1

)(
r2+2r+2

)
(1+r)2r(2+r)

5
6

a3 −
(
r2+1

)(
r2+2r+2

)(
r2+4r+5

)
(1+r)2r(2+r)2(3+r) −25

36

a4
(
r2+1

)(
r2+2r+2

)(
r2+4r+5

)(
r2+6r+10

)
(1+r)2r(2+r)2(3+r)2(4+r)

85
144

For n = 5, using the above recursive equation gives

a5 = −(r2 + 1) (r2 + 2r + 2) (r2 + 4r + 5) (r2 + 6r + 10) (r2 + 8r + 17)
(1 + r)2 r (2 + r)2 (3 + r)2 (4 + r)2 (5 + r)

Which for the root r = 1 becomes

a5 = −221
432

And the table now becomes

n an,r an

a0 1 1
a1

−r2−1
(1+r)r −1

a2
(
r2+1

)(
r2+2r+2

)
(1+r)2r(2+r)

5
6

a3 −
(
r2+1

)(
r2+2r+2

)(
r2+4r+5

)
(1+r)2r(2+r)2(3+r) −25

36

a4
(
r2+1

)(
r2+2r+2

)(
r2+4r+5

)(
r2+6r+10

)
(1+r)2r(2+r)2(3+r)2(4+r)

85
144

a5 −
(
r2+1

)(
r2+2r+2

)(
r2+4r+5

)(
r2+6r+10

)(
r2+8r+17

)
(1+r)2r(2+r)2(3+r)2(4+r)2(5+r) −221

432

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− x+ 5x2

6 − 25x3

36 + 85x4

144 − 221x5

432 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N
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Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= −r2 − 1
(1 + r) r

Therefore

lim
r→r2

−r2 − 1
(1 + r) r = lim

r→0

−r2 − 1
(1 + r) r

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode x(x+ 1) y′′ + y′x+ y = 0 gives

x(x+ 1)
(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))
x

+ Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
= 0

Which can be written as

(7)

(
(x(x+ 1) y′′1(x) + y′1(x)x+ y1(x)) ln (x) + x(x+ 1)

(
2y′1(x)

x
− y1(x)

x2

)
+ y1(x)

)
C + x(x+ 1)

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
x+

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

x(x+ 1) y′′1(x) + y′1(x)x+ y1(x) = 0

Eq (7) simplifes to

(8)

(
x(x+ 1)

(
2y′1(x)

x
− y1(x)

x2

)
+ y1(x)

)
C

+ x(x+ 1)
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
x+

(
∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2x(x+ 1)

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)
−
(

∞∑
n=0

anx
n+r1

))
C

x

+
x2(x+ 1)

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x2 +

(
∞∑
n=0

bnx
n+r2

)
x

x
= 0

Since r1 = 1 and r2 = 0 then the above becomes

(10)

(
2x(x+ 1)

(
∞∑
n=0

xnan(n+ 1)
)
−
(

∞∑
n=0

anx
n+1
))

C

x

+
x2(x+ 1)

(
∞∑
n=0

x−2+nbnn(n− 1)
)
+
(

∞∑
n=0

xn−1bnn

)
x2 +

(
∞∑
n=0

bnx
n

)
x

x
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C xn+1an(n+ 1)
)

+
(

∞∑
n=0

2C xnan(n+ 1)
)

+
∞∑

n =0

(−C xnan) +
(

∞∑
n=0

xnbnn(n− 1)
)

+
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
(

∞∑
n=0

xnbnn

)
+
(

∞∑
n=0

bnx
n

)
= 0

The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xn+1an(n+ 1) =
∞∑
n=2

2Ca−2+n(n− 1)xn−1

∞∑
n =0

2C xnan(n+ 1) =
∞∑
n=1

2Can−1nxn−1
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∞∑
n =0

(−C xnan) =
∞∑
n=1

(
−Can−1x

n−1)
∞∑

n =0

xnbnn(n− 1) =
∞∑
n=1

(n− 1) bn−1(−2 + n)xn−1

∞∑
n =0

xnbnn =
∞∑
n=1

(n− 1) bn−1x
n−1

∞∑
n =0

bnx
n =

∞∑
n=1

bn−1x
n−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1.

(2B)

(
∞∑
n=2

2Ca−2+n(n− 1)xn−1

)
+
(

∞∑
n=1

2Can−1nxn−1

)
+

∞∑
n =1

(
−Can−1x

n−1)
+
(

∞∑
n=1

(n− 1) bn−1(−2 + n)xn−1

)
+
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
(

∞∑
n=1

(n− 1) bn−1x
n−1

)
+
(

∞∑
n=1

bn−1x
n−1

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

C + 1 = 0

Which is solved for C. Solving for C gives

C = −1

For n = 2, Eq (2B) gives

(2a0 + 3a1)C + 2b1 + 2b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1 + 2b2 = 0
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Solving the above for b2 gives
b2 = −1

2
For n = 3, Eq (2B) gives

(4a1 + 5a2)C + 5b2 + 6b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−8
3 + 6b3 = 0

Solving the above for b3 gives
b3 =

4
9

For n = 4, Eq (2B) gives

(6a2 + 7a3)C + 10b3 + 12b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

155
36 + 12b4 = 0

Solving the above for b4 gives
b4 = −155

432
For n = 5, Eq (2B) gives

(8a3 + 9a4)C + 17b4 + 20b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−1265
216 + 20b5 = 0

Solving the above for b5 gives
b5 =

253
864

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = −1 and all bn, then the second solution becomes

y2(x) = (−1)
(
x

(
1− x+ 5x2

6 − 25x3

36 + 85x4

144 − 221x5

432 +O
(
x6))) ln (x)

+ 1− x2

2 + 4x3

9 − 155x4

432 + 253x5

864 +O
(
x6)
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− x+ 5x2

6 − 25x3

36 + 85x4

144 − 221x5

432 +O
(
x6))

+ c2

(
(−1)

(
x

(
1− x+ 5x2

6 − 25x3

36 + 85x4

144 − 221x5

432 +O
(
x6))) ln (x) + 1

− x2

2 + 4x3

9 − 155x4

432 + 253x5

864 +O
(
x6))

Hence the final solution is

y = yh

= c1x

(
1− x+ 5x2

6 − 25x3

36 + 85x4

144 − 221x5

432 +O
(
x6))

+ c2

(
−x

(
1− x+ 5x2

6 − 25x3

36 + 85x4

144 − 221x5

432 +O
(
x6)) ln (x) + 1− x2

2 + 4x3

9

− 155x4

432 + 253x5

864 +O
(
x6))

Summary
The solution(s) found are the following

(1)

y = c1x

(
1− x+ 5x2

6 − 25x3

36 + 85x4

144 − 221x5

432 +O
(
x6))

+ c2

(
−x

(
1− x+ 5x2

6 − 25x3

36 + 85x4

144 − 221x5

432 +O
(
x6)) ln (x) + 1− x2

2

+ 4x3

9 − 155x4

432 + 253x5

864 +O
(
x6))

Verification of solutions

y = c1x

(
1− x+ 5x2

6 − 25x3

36 + 85x4

144 − 221x5

432 +O
(
x6))

+ c2

(
−x

(
1− x+ 5x2

6 − 25x3

36 + 85x4

144 − 221x5

432 +O
(
x6)) ln (x) + 1− x2

2 + 4x3

9

− 155x4

432 + 253x5

864 +O
(
x6))

Verified OK.
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16.8.1 Maple step by step solution

Let’s solve
x(x+ 1) y′′ + y′x+ y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

x(x+1) −
y′

x+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x+1 +
y

x(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 1
x+1 , P3(x) = 1

x(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
x(x+ 1) y′′ + y′x+ y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − u)
(

d2

du2y(u)
)
+ (u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r
2u−1+r +

(
∞∑
k=0

(
−ak+1(k + 1 + r)2 + ak(k2 + 2kr + r2 + 1)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
−ak+1(k + 1)2 + ak(k2 + 1) = 0

• Recursion relation that defines series solution to ODE

ak+1 = ak
(
k2+1

)
(k+1)2

• Recursion relation for r = 0

ak+1 = ak
(
k2+1

)
(k+1)2

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

(
k2+1

)
(k+1)2

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k , ak+1 = ak
(
k2+1

)
(k+1)2

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
<- heuristic approach successful
-> solution has integrals; searching for one without integrals...

-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric solution without integrals succesful
<- hypergeometric successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 60� �
Order:=6;
dsolve(x*(1+x)*diff(y(x),x$2)+x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x

(
1− x+ 5

6x
2 − 25

36x
3 + 85

144x
4 − 221

432x
5 +O

(
x6))

+
(
−x+ x2 − 5

6x
3 + 25

36x
4 − 85

144x
5 +O

(
x6)) ln (x) c2

+
(
1− x+ 1

2x
2 − 7

18x
3 + 145

432x
4 − 257

864x
5 +O

(
x6)) c2
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3 Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 85� �
AsymptoticDSolveValue[x*(1+x)*y''[x]+x*y'[x]+y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
1
36x

(
25x3 − 30x2 + 36x− 36

)
log(x)

+ 1
432
(
−455x4+552x3−648x2+432x+432

))
+c2

(
85x5

144 − 25x4

36 +5x3

6 −x2+x

)
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16.9 problem 5
16.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6427

Internal problem ID [1421]
Internal file name [OUTPUT/1422_Sunday_June_05_2022_02_16_21_AM_75049073/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2x2(3x+ 2) y′′ + x(4 + 21x) y′ − (1− 9x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

6x3 + 4x2) y′′ + (21x2 + 4x
)
y′ + (9x− 1) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 4 + 21x
2x (3x+ 2)

q(x) = 9x− 1
2x2 (3x+ 2)
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Table 788: Table p(x), q(x) singularites.

p(x) = 4+21x
2x(3x+2)

singularity type
x = 0 “regular”
x = −2

3 “regular”

q(x) = 9x−1
2x2(3x+2)

singularity type
x = 0 “regular”
x = −2

3 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−2

3 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2x2(3x+ 2) y′′ +
(
21x2 + 4x

)
y′ + (9x− 1) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
2x2(3x+ 2)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
21x2 + 4x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (9x− 1)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

6x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

21x1+n+ran(n+ r)
)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
(

∞∑
n=0

9x1+n+ran

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

6x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

6an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

21x1+n+ran(n+ r) =
∞∑
n=1

21an−1(n+ r − 1)xn+r

∞∑
n =0

9x1+n+ran =
∞∑
n=1

9an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

6an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

21an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
(

∞∑
n=1

9an−1x
n+r

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + 4xn+ran(n+ r)− anx
n+r = 0
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When n = 0 the above becomes

4xra0r(−1 + r) + 4xra0r − a0x
r = 0

Or
(4xrr(−1 + r) + 4xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

4r2 − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = −1
2

Since a0 6= 0 then the indicial equation becomes(
4r2 − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
√
x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

√
x

Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n− 1

2

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)6an−1(n+ r − 1) (n+ r − 2) + 4an(n+ r) (n+ r − 1)
+ 21an−1(n+ r − 1) + 4an(n+ r) + 9an−1 − an = 0

Solving for an from recursive equation (4) gives

an = −3(n+ r) an−1

2n+ 2r − 1 (4)

Which for the root r = 1
2 becomes

an = −3(2n+ 1) an−1

4n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−3− 3r
1 + 2r

Which for the root r = 1
2 becomes

a1 = −9
4

And the table now becomes

n an,r an

a0 1 1
a1

−3−3r
1+2r −9

4

For n = 2, using the above recursive equation gives

a2 =
9r2 + 27r + 18
4r2 + 8r + 3
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Which for the root r = 1
2 becomes

a2 =
135
32

And the table now becomes

n an,r an

a0 1 1
a1

−3−3r
1+2r −9

4

a2
9r2+27r+18
4r2+8r+3

135
32

For n = 3, using the above recursive equation gives

a3 =
−27r3 − 162r2 − 297r − 162

8r3 + 36r2 + 46r + 15

Which for the root r = 1
2 becomes

a3 = −945
128

And the table now becomes

n an,r an

a0 1 1
a1

−3−3r
1+2r −9

4

a2
9r2+27r+18
4r2+8r+3

135
32

a3
−27r3−162r2−297r−162

8r3+36r2+46r+15 −945
128

For n = 4, using the above recursive equation gives

a4 =
81r4 + 810r3 + 2835r2 + 4050r + 1944
16r4 + 128r3 + 344r2 + 352r + 105

Which for the root r = 1
2 becomes

a4 =
25515
2048

And the table now becomes
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n an,r an

a0 1 1
a1

−3−3r
1+2r −9

4

a2
9r2+27r+18
4r2+8r+3

135
32

a3
−27r3−162r2−297r−162

8r3+36r2+46r+15 −945
128

a4
81r4+810r3+2835r2+4050r+1944
16r4+128r3+344r2+352r+105

25515
2048

For n = 5, using the above recursive equation gives

a5 = − 243(5 + r) (4 + r) (3 + r) (2 + r) (1 + r)
32r5 + 400r4 + 1840r3 + 3800r2 + 3378r + 945

Which for the root r = 1
2 becomes

a5 = −168399
8192

And the table now becomes

n an,r an

a0 1 1
a1

−3−3r
1+2r −9

4

a2
9r2+27r+18
4r2+8r+3

135
32

a3
−27r3−162r2−297r−162

8r3+36r2+46r+15 −945
128

a4
81r4+810r3+2835r2+4050r+1944
16r4+128r3+344r2+352r+105

25515
2048

a5 − 243(5+r)(4+r)(3+r)(2+r)(1+r)
32r5+400r4+1840r3+3800r2+3378r+945 −168399

8192

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1− 9x

4 + 135x2

32 − 945x3

128 + 25515x4

2048 − 168399x5

8192 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

6419



Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= −3− 3r
1 + 2r

Therefore

lim
r→r2

−3− 3r
1 + 2r = lim

r→− 1
2

−3− 3r
1 + 2r

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode 2x2(3x+ 2) y′′+(21x2 + 4x) y′+(9x− 1) y =
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0 gives

2x2(3x+ 2)
(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
21x2 + 4x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+ (9x− 1)
(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
2x2(3x+ 2) y′′1(x) +

(
21x2 + 4x

)
y′1(x) + (9x− 1) y1(x)

)
ln (x)

+ 2x2(3x+ 2)
(
2y′1(x)

x
− y1(x)

x2

)
+ (21x2 + 4x) y1(x)

x

)
C

+ 2x2(3x+ 2)
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
21x2 + 4x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ (9x− 1)

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

2x2(3x+ 2) y′′1(x) +
(
21x2 + 4x

)
y′1(x) + (9x− 1) y1(x) = 0

Eq (7) simplifes to

(8)

(
2x2(3x+ 2)

(
2y′1(x)

x
− y1(x)

x2

)
+ (21x2 + 4x) y1(x)

x

)
C

+ 2x2(3x+ 2)
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
21x2 + 4x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ (9x− 1)

(
∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
12
(
x+ 2

3

)
x

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)

+ 15
(

∞∑
n=0

anx
n+r1

)
x

)
C

+
(
6x3 + 4x2)( ∞∑

n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)

+
(
21x2 + 4x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

+ (9x− 1)
(

∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 1
2 and r2 = −1

2 then the above becomes

(10)

(
12
(
x+ 2

3

)
x

(
∞∑
n=0

xn− 1
2an

(
n+ 1

2

))
+ 15

(
∞∑
n=0

anx
n+ 1

2

)
x

)
C

+
(
6x3 + 4x2)( ∞∑

n=0

x− 5
2+nbn

(
n− 1

2

)(
−3
2 + n

))

+
(
21x2 + 4x

)( ∞∑
n=0

x− 3
2+nbn

(
n− 1

2

))
+ (9x− 1)

(
∞∑
n=0

bnx
n− 1

2

)
= 0

Expanding 4C
√
x as Taylor series around x = 0 and keeping only the first 6 terms gives

4C
√
x = 4C

√
x+ . . .

= 4C
√
x

Expanding 3
√
x

2 as Taylor series around x = 0 and keeping only the first 6 terms gives

3
√
x

2 = 3
√
x

2 + . . .

= 3
√
x

2

Expanding 1√
x
as Taylor series around x = 0 and keeping only the first 6 terms gives

1√
x
= 1√

x
+ . . .

= 1√
x
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Expanding 21
√
x

2 as Taylor series around x = 0 and keeping only the first 6 terms gives

21
√
x

2 = 21
√
x

2 + . . .

= 21
√
x

2

Expanding 2√
x
as Taylor series around x = 0 and keeping only the first 6 terms gives

2√
x
= 2√

x
+ . . .

= 2√
x

Expanding 9
√
x as Taylor series around x = 0 and keeping only the first 6 terms gives

9
√
x = 9

√
x+ . . .

= 9
√
x

Expanding − 1√
x
as Taylor series around x = 0 and keeping only the first 6 terms gives

− 1√
x
= − 1√

x
+ . . .

= − 1√
x

Which simplifies to

(2A)

(
∞∑
n=0

(12n+ 6)Canx
3
2+n

)
+
(

∞∑
n=0

(8n+ 4)Canx
n+ 1

2

)

+
(

∞∑
n=0

15C x
3
2+nan

)
+
(

∞∑
n=0

3xn+ 1
2 bn(4n2 − 8n+ 3)

2

)

+
(

∞∑
n=0

xn− 1
2 bn
(
4n2 − 8n+ 3

))
+
(

∞∑
n=0

21xn+ 1
2 bn(2n− 1)
2

)

+
(

∞∑
n=0

(4n− 2) bnxn− 1
2

)
+
(

∞∑
n=0

9xn+ 1
2 bn

)
+

∞∑
n =0

(
−bnx

n− 1
2

)
= 0

The next step is to make all powers of x be n − 1
2 in each summation term. Going

over each summation term above with power of x in it which is not already xn− 1
2 and
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adjusting the power and the corresponding index gives

∞∑
n =0

(12n+ 6)Canx
3
2+n =

∞∑
n=2

Can−2(12n− 18)xn− 1
2

∞∑
n =0

(8n+ 4)Canx
n+ 1

2 =
∞∑
n=1

Can−1(8n− 4)xn− 1
2

∞∑
n =0

15C x
3
2+nan =

∞∑
n=2

15Can−2x
n− 1

2

∞∑
n =0

3xn+ 1
2 bn(4n2 − 8n+ 3)

2 =
∞∑
n=1

3bn−1
(
4(n− 1)2 − 8n+ 11

)
xn− 1

2

2

∞∑
n =0

21xn+ 1
2 bn(2n− 1)
2 =

∞∑
n=1

21bn−1(−3 + 2n)xn− 1
2

2

∞∑
n =0

9xn+ 1
2 bn =

∞∑
n=1

9bn−1x
n− 1

2

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1

2 .

(2B)

(
∞∑
n=2

Can−2(12n− 18)xn− 1
2

)
+
(

∞∑
n=1

Can−1(8n− 4)xn− 1
2

)

+
(

∞∑
n=2

15Can−2x
n− 1

2

)
+
(

∞∑
n=1

3bn−1
(
4(n− 1)2 − 8n+ 11

)
xn− 1

2

2

)

+
(

∞∑
n=0

xn− 1
2 bn
(
4n2 − 8n+ 3

))
+
(

∞∑
n=1

21bn−1(−3 + 2n)xn− 1
2

2

)

+
(

∞∑
n=0

(4n− 2) bnxn− 1
2

)
+
(

∞∑
n=1

9bn−1x
n− 1

2

)
+

∞∑
n =0

(
−bnx

n− 1
2

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

4C + 3 = 0
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Which is solved for C. Solving for C gives

C = −3
4

For n = 2, Eq (2B) gives

(21a0 + 12a1)C + 18b1 + 8b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

9
2 + 8b2 = 0

Solving the above for b2 gives
b2 = − 9

16
For n = 3, Eq (2B) gives

(33a1 + 20a2)C + 45b2 + 24b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−1053
32 + 24b3 = 0

Solving the above for b3 gives
b3 =

351
256

For n = 4, Eq (2B) gives

(45a2 + 28a3)C + 84b3 + 48b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

8181
64 + 48b4 = 0

Solving the above for b4 gives
b4 = −2727

1024
For n = 5, Eq (2B) gives

(57a3 + 36a4)C + 135b4 + 80b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−778815
2048 + 80b5 = 0
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Solving the above for b5 gives
b5 =

155763
32768

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = −3
4 and all bn, then the second solution becomes

y2(x) = −3
4

(√
x

(
1− 9x

4 + 135x2

32 − 945x3

128 + 25515x4

2048 − 168399x5

8192 +O
(
x6))) ln (x)

+
1− 9x2

16 + 351x3

256 − 2727x4

1024 + 155763x5

32768 +O(x6)
√
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1− 9x

4 + 135x2

32 − 945x3

128 + 25515x4

2048 − 168399x5

8192 +O
(
x6))

+c2

(
−3
4

(√
x

(
1− 9x

4 +135x2

32 − 945x3

128 +25515x4

2048 − 168399x5

8192 +O
(
x6))) ln (x)

+
1− 9x2

16 + 351x3

256 − 2727x4

1024 + 155763x5

32768 +O(x6)
√
x

)

Hence the final solution is

y = yh

= c1
√
x

(
1− 9x

4 + 135x2

32 − 945x3

128 + 25515x4

2048 − 168399x5

8192 +O
(
x6))

+ c2

−
3
√
x
(
1− 9x

4 + 135x2

32 − 945x3

128 + 25515x4

2048 − 168399x5

8192 +O(x6)
)
ln (x)

4

+
1− 9x2

16 + 351x3

256 − 2727x4

1024 + 155763x5

32768 +O(x6)
√
x
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Summary
The solution(s) found are the following

(1)

y = c1
√
x

(
1− 9x

4 + 135x2

32 − 945x3

128 + 25515x4

2048 − 168399x5

8192 +O
(
x6))

+ c2

−
3
√
x
(
1− 9x

4 + 135x2

32 − 945x3

128 + 25515x4

2048 − 168399x5

8192 +O(x6)
)
ln (x)

4

+
1− 9x2

16 + 351x3

256 − 2727x4

1024 + 155763x5

32768 +O(x6)
√
x


Verification of solutions

y = c1
√
x

(
1− 9x

4 + 135x2

32 − 945x3

128 + 25515x4

2048 − 168399x5

8192 +O
(
x6))

+ c2

−
3
√
x
(
1− 9x

4 + 135x2

32 − 945x3

128 + 25515x4

2048 − 168399x5

8192 +O(x6)
)
ln (x)

4

+
1− 9x2

16 + 351x3

256 − 2727x4

1024 + 155763x5

32768 +O(x6)
√
x


Verified OK.

16.9.1 Maple step by step solution

Let’s solve
2x2(3x+ 2) y′′ + (21x2 + 4x) y′ + (9x− 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (9x−1)y
2x2(3x+2) −

(4+21x)y′
2x(3x+2)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (4+21x)y′
2x(3x+2) +

(9x−1)y
2x2(3x+2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions
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[
P2(x) = 4+21x

2x(3x+2) , P3(x) = 9x−1
2x2(3x+2)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
2x2(3x+ 2) y′′ + x(4 + 21x) y′ + (9x− 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m
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xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−1 + 2r)xr +
(

∞∑
k=1

(ak(2k + 2r + 1) (2k + 2r − 1) + 3ak−1(2k + 2r + 1) (k + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
1
2

}
• Each term in the series must be 0, giving the recursion relation

4
(
k + r + 1

2

) ((
k + r − 1

2

)
ak + 3ak−1(k+r)

2

)
= 0

• Shift index using k− >k + 1

4
(
k + 3

2 + r
) ((

k + r + 1
2

)
ak+1 + 3ak(k+r+1)

2

)
= 0

• Recursion relation that defines series solution to ODE
ak+1 = −3ak(k+r+1)

2k+2r+1

• Recursion relation for r = −1
2

ak+1 = −3ak
(
k+ 1

2
)

2k

• Solution for r = −1
2[

y =
∞∑
k=0

akx
k− 1

2 , ak+1 = −3ak
(
k+ 1

2
)

2k

]
• Recursion relation for r = 1

2

ak+1 = −3ak
(
k+ 3

2
)

2k+2

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+1 = −3ak
(
k+ 3

2
)

2k+2

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k− 1

2

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, a1+k = −3ak

(
k+ 1

2
)

2k , b1+k = −3bk
(
k+ 3

2
)

2k+2

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 69� �
Order:=6;
dsolve(2*x^2*(2+3*x)*diff(y(x),x$2)+x*(4+21*x)*diff(y(x),x)-(1-9*x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1x
(
1− 9

4x+ 135
32 x

2 − 945
128x

3 + 25515
2048 x

4 − 168399
8192 x5 +O(x6)

)
+ c2

(
ln (x)

(
−3

4x+ 27
16x

2 − 405
128x

3 + 2835
512 x

4 − 76545
8192 x

5 +O(x6)
)
+
(
1− 15

4 x+ 63
8 x

2 − 3699
256 x

3 + 25623
1024 x

4 − 1375137
32768 x5 +O(x6)

))
√
x

3 Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 108� �
AsymptoticDSolveValue[2*x^2*(2+3*x)*y''[x]+x*(4+21*x)*y'[x]-(1-9*x)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c2

(
25515x9/2

2048 − 945x7/2

128 + 135x5/2

32 − 9x3/2

4

+
√
x

)
+c1

(
3
512

√
x
(
945x3−540x2+288x−128

)
log(x)+8613x4 − 5076x3 + 2880x2 − 1536x+ 1024

1024
√
x

)
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16.10 problem 6
16.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6443

Internal problem ID [1422]
Internal file name [OUTPUT/1423_Sunday_June_05_2022_02_16_25_AM_99354858/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + x(2 + x) y′ − (−3x+ 2) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
x2 + 2x

)
y′ + (3x− 2) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2 + x

x

q(x) = 3x− 2
x2
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Table 790: Table p(x), q(x) singularites.

p(x) = 2+x
x

singularity type
x = 0 “regular”

q(x) = 3x−2
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
x2 + 2x

)
y′ + (3x− 2) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x2 + 2x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (3x− 2)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

x1+n+ran(n+ r)
)

+
(

∞∑
n=0

2xn+ran(n+ r)
)

+
(

∞∑
n=0

3x1+n+ran

)
+

∞∑
n =0

(
−2anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r

∞∑
n =0

3x1+n+ran =
∞∑
n=1

3an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

2xn+ran(n+ r)
)

+
(

∞∑
n=1

3an−1x
n+r

)
+

∞∑
n =0

(
−2anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 2xn+ran(n+ r)− 2anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + 2xra0r − 2a0xr = 0

Or
(xrr(−1 + r) + 2xrr − 2xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 + r − 2

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

r2 + r − 2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = −2

Since a0 6= 0 then the indicial equation becomes(
r2 + r − 2

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x2

Or

y1(x) =
∞∑
n=0

anx
1+n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1) + an−1(n+ r − 1) + 2an(n+ r) + 3an−1 − 2an = 0
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Solving for an from recursive equation (4) gives

an = − an−1

n+ r − 1 (4)

Which for the root r = 1 becomes

an = −an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = −1
r

Which for the root r = 1 becomes
a1 = −1

And the table now becomes

n an,r an

a0 1 1
a1 −1

r
−1

For n = 2, using the above recursive equation gives

a2 =
1

r (1 + r)

Which for the root r = 1 becomes
a2 =

1
2

And the table now becomes

n an,r an

a0 1 1
a1 −1

r
−1

a2
1

r(1+r)
1
2
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For n = 3, using the above recursive equation gives

a3 = − 1
r (1 + r) (r + 2)

Which for the root r = 1 becomes
a3 = −1

6
And the table now becomes

n an,r an

a0 1 1
a1 −1

r
−1

a2
1

r(1+r)
1
2

a3 − 1
r(1+r)(r+2) −1

6

For n = 4, using the above recursive equation gives

a4 =
1

r (1 + r) (r + 2) (3 + r)

Which for the root r = 1 becomes
a4 =

1
24

And the table now becomes

n an,r an

a0 1 1
a1 −1

r
−1

a2
1

r(1+r)
1
2

a3 − 1
r(1+r)(r+2) −1

6

a4
1

r(1+r)(r+2)(3+r)
1
24

For n = 5, using the above recursive equation gives

a5 = − 1
r (1 + r) (r + 2) (3 + r) (4 + r)

Which for the root r = 1 becomes

a5 = − 1
120
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And the table now becomes

n an,r an

a0 1 1
a1 −1

r
−1

a2
1

r(1+r)
1
2

a3 − 1
r(1+r)(r+2) −1

6

a4
1

r(1+r)(r+2)(3+r)
1
24

a5 − 1
r(1+r)(r+2)(3+r)(4+r) − 1

120

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− x+ x2

2 − x3

6 + x4

24 − x5

120 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 3. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a3(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a3

= − 1
r (1 + r) (r + 2)

Therefore

lim
r→r2

− 1
r (1 + r) (r + 2) = lim

r→−2
− 1
r (1 + r) (r + 2)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

6437



Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode x2y′′ + (x2 + 2x) y′ + (3x− 2) y = 0 gives

x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
x2 + 2x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+ (3x− 2)
(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
x2y′′1(x) +

(
x2 + 2x

)
y′1(x) + (3x− 2) y1(x)

)
ln (x) + x2

(
2y′1(x)

x
− y1(x)

x2

)
+ (x2 + 2x) y1(x)

x

)
C + x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
x2 + 2x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ (3x− 2)

(
∞∑
n=0

bnx
n+r2

)
= 0
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But since y1(x) is a solution to the ode, then

x2y′′1(x) +
(
x2 + 2x

)
y′1(x) + (3x− 2) y1(x) = 0

Eq (7) simplifes to

(8)

(
x2
(
2y′1(x)

x
− y1(x)

x2

)
+ (x2 + 2x) y1(x)

x

)
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
x2 + 2x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ (3x− 2)

(
∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x+ (x+ 1)

(
∞∑
n=0

anx
n+r1

))
C

+
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2

+
(
x2 + 2x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

+ (3x− 2)
(

∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 1 and r2 = −2 then the above becomes

(10)

(
2
(

∞∑
n=0

xnan(1 + n)
)
x+ (x+ 1)

(
∞∑
n=0

anx
1+n

))
C

+
(

∞∑
n=0

x−4+nbn(n− 2) (−3 + n)
)
x2

+
(
x2 + 2x

)( ∞∑
n=0

x−3+nbn(n− 2)
)

+ (3x− 2)
(

∞∑
n=0

bnx
n−2

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2C x1+nan(1 + n)
)

+
(

∞∑
n=0

C xn+2an

)
+
(

∞∑
n=0

C x1+nan

)

+
(

∞∑
n=0

xn−2bn
(
n2 − 5n+ 6

))
+
(

∞∑
n=0

xn−1bn(n− 2)
)

+
(

∞∑
n=0

2xn−2bn(n− 2)
)

+
(

∞∑
n=0

3xn−1bn

)
+

∞∑
n =0

(
−2bnxn−2) = 0

The next step is to make all powers of x be n − 2 in each summation term. Going
over each summation term above with power of x in it which is not already xn−2 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C x1+nan(1 + n) =
∞∑
n=3

2Ca−3+n(n− 2)xn−2

∞∑
n =0

C xn+2an =
∞∑
n=4

Ca−4+nx
n−2

∞∑
n =0

C x1+nan =
∞∑
n=3

Ca−3+nx
n−2

∞∑
n =0

xn−1bn(n− 2) =
∞∑
n=1

bn−1(−3 + n)xn−2

∞∑
n =0

3xn−1bn =
∞∑
n=1

3bn−1x
n−2

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 2.

(2B)

(
∞∑
n=3

2Ca−3+n(n− 2)xn−2

)
+
(

∞∑
n=4

Ca−4+nx
n−2

)
+
(

∞∑
n=3

Ca−3+nx
n−2

)

+
(

∞∑
n=0

xn−2bn
(
n2 − 5n+ 6

))
+
(

∞∑
n=1

bn−1(−3 + n)xn−2

)

+
(

∞∑
n=0

2xn−2bn(n− 2)
)

+
(

∞∑
n=1

3bn−1x
n−2

)
+

∞∑
n =0

(
−2bnxn−2) = 0
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For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

b0 − 2b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1− 2b1 = 0

Solving the above for b1 gives
b1 =

1
2

For n = 2, Eq (2B) gives
2b1 − 2b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1− 2b2 = 0

Solving the above for b2 gives
b2 =

1
2

For n = N , where N = 3 which is the difference between the two roots, we are free to
choose b3 = 0. Hence for n = 3, Eq (2B) gives

3C + 3
2 = 0

Which is solved for C. Solving for C gives

C = −1
2

For n = 4, Eq (2B) gives

(a0 + 5a1)C + 4b3 + 4b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

2 + 4b4 = 0

Solving the above for b4 gives
b4 = −1

2
For n = 5, Eq (2B) gives

(a1 + 7a2)C + 5b4 + 10b5 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−15
4 + 10b5 = 0

Solving the above for b5 gives
b5 =

3
8

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = −1
2 and all bn, then the second solution becomes

y2(x) = −1
2

(
x

(
1− x+ x2

2 − x3

6 + x4

24 − x5

120 +O
(
x6))) ln (x)

+
1 + x

2 +
x2

2 − x4

2 + 3x5

8 +O(x6)
x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− x+ x2

2 − x3

6 + x4

24 − x5

120 +O
(
x6))

+ c2

(
−1
2

(
x

(
1− x+ x2

2 − x3

6 + x4

24 − x5

120 +O
(
x6))) ln (x)

+
1 + x

2 +
x2

2 − x4

2 + 3x5

8 +O(x6)
x2

)

Hence the final solution is

y = yh

= c1x

(
1− x+ x2

2 − x3

6 + x4

24 − x5

120 +O
(
x6))

+ c2

−
x
(
1− x+ x2

2 − x3

6 + x4

24 −
x5

120 +O(x6)
)
ln (x)

2

+
1 + x

2 +
x2

2 − x4

2 + 3x5

8 +O(x6)
x2
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Summary
The solution(s) found are the following

(1)

y = c1x

(
1− x+ x2

2 − x3

6 + x4

24 − x5

120 +O
(
x6))

+ c2

−
x
(
1− x+ x2

2 − x3

6 + x4

24 −
x5

120 +O(x6)
)
ln (x)

2

+
1 + x

2 +
x2

2 − x4

2 + 3x5

8 +O(x6)
x2


Verification of solutions

y = c1x

(
1− x+ x2

2 − x3

6 + x4

24 − x5

120 +O
(
x6))

+ c2

−
x
(
1− x+ x2

2 − x3

6 + x4

24 −
x5

120 +O(x6)
)
ln (x)

2

+
1 + x

2 +
x2

2 − x4

2 + 3x5

8 +O(x6)
x2


Verified OK.

16.10.1 Maple step by step solution

Let’s solve
x2y′′ + (x2 + 2x) y′ + (3x− 2) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (3x−2)y
x2 − (2+x)y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (2+x)y′
x

+ (3x−2)y
x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2+x
x
, P3(x) = 3x−2

x2

]
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◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −2

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + x(2 + x) y′ + (3x− 2) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−1 + r)xr +
(

∞∑
k=1

(ak(k + r + 2) (k + r − 1) + ak−1(k + r + 2))xk+r

)
= 0
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• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 1}

• Each term in the series must be 0, giving the recursion relation
(k + r + 2) (ak(k + r − 1) + ak−1) = 0

• Shift index using k− >k + 1
(k + r + 3) (ak+1(k + r) + ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

k+r

• Recursion relation for r = −2
ak+1 = − ak

k−2

• Series not valid for r = −2 , division by 0 in the recursion relation at k = 2
ak+1 = − ak

k−2

• Recursion relation for r = 1
ak+1 = − ak

k+1

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+1 = − ak

k+1

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 63� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*(2+x)*diff(y(x),x)-(2-3*x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1x

3(1− x+ 1
2x

2 − 1
6x

3 + 1
24x

4 − 1
120x

5 +O(x6)
)
+ c2(ln (x) ((−6)x3 + 6x4 − 3x5 +O(x6)) + (12 + 6x+ 6x2 − 11x3 + 5x4 − x5 +O(x6)))

x2

3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 74� �
AsymptoticDSolveValue[x^2*y''[x]+x*(2+x)*y'[x]-(2-3*x)*y[x]==0,y[x],{x,0,5}]� �
y(x)→ c1

(
x4 − 3x3 + 2x2 + 2x+ 4

4x2 + 1
2(x− 1)x log(x)

)
+ c2

(
x5

24 − x4

6 + x3

2 −x2 +x

)
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16.11 problem 7
16.11.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6459

Internal problem ID [1423]
Internal file name [OUTPUT/1424_Sunday_June_05_2022_02_16_29_AM_38437327/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2y′′ + 4y′x− (9− x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

4x2y′′ + 4y′x+ (−9 + x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = −9 + x

4x2
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Table 792: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = −9+x
4x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2y′′ + 4y′x+ (−9 + x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 4
(

∞∑
n=0

(n+ r) anxn+r−1

)
x+ (−9 + x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
∞∑

n =0

(
−9anxn+r

)
+
(

∞∑
n=0

x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran =
∞∑
n=1

an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
∞∑

n =0

(
−9anxn+r

)
+
(

∞∑
n=1

an−1x
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + 4xn+ran(n+ r)− 9anxn+r = 0

When n = 0 the above becomes

4xra0r(−1 + r) + 4xra0r − 9a0xr = 0

Or
(4xrr(−1 + r) + 4xrr − 9xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 − 9

)
xr = 0

Since the above is true for all x then the indicial equation becomes

4r2 − 9 = 0
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Solving for r gives the roots of the indicial equation as

r1 =
3
2

r2 = −3
2

Since a0 6= 0 then the indicial equation becomes(
4r2 − 9

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x
3
2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x
3
2

Or

y1(x) =
∞∑
n=0

anx
n+ 3

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n− 3

2

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)4an(n+ r) (n+ r − 1) + 4an(n+ r)− 9an + an−1 = 0

Solving for an from recursive equation (4) gives

an = − an−1

4n2 + 8nr + 4r2 − 9 (4)
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Which for the root r = 3
2 becomes

an = − an−1

4n (n+ 3) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 1
4r2 + 8r − 5

Which for the root r = 3
2 becomes

a1 = − 1
16

And the table now becomes

n an,r an

a0 1 1
a1 − 1

4r2+8r−5 − 1
16

For n = 2, using the above recursive equation gives

a2 =
1

16r4 + 96r3 + 136r2 − 24r − 35

Which for the root r = 3
2 becomes

a2 =
1
640

And the table now becomes

n an,r an

a0 1 1
a1 − 1

4r2+8r−5 − 1
16

a2
1

16r4+96r3+136r2−24r−35
1

640
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For n = 3, using the above recursive equation gives

a3 = − 1
64r6 + 768r5 + 3280r4 + 5760r3 + 2956r2 − 1488r − 945

Which for the root r = 3
2 becomes

a3 = − 1
46080

And the table now becomes

n an,r an

a0 1 1
a1 − 1

4r2+8r−5 − 1
16

a2
1

16r4+96r3+136r2−24r−35
1

640

a3 − 1
64r6+768r5+3280r4+5760r3+2956r2−1488r−945 − 1

46080

For n = 4, using the above recursive equation gives

a4 =
1

(64r6 + 768r5 + 3280r4 + 5760r3 + 2956r2 − 1488r − 945) (4r2 + 32r + 55)

Which for the root r = 3
2 becomes

a4 =
1

5160960
And the table now becomes

n an,r an

a0 1 1
a1 − 1

4r2+8r−5 − 1
16

a2
1

16r4+96r3+136r2−24r−35
1

640

a3 − 1
64r6+768r5+3280r4+5760r3+2956r2−1488r−945 − 1

46080

a4
1

(64r6+768r5+3280r4+5760r3+2956r2−1488r−945)(4r2+32r+55)
1

5160960

For n = 5, using the above recursive equation gives

a5 = − 1
(64r6 + 768r5 + 3280r4 + 5760r3 + 2956r2 − 1488r − 945) (4r2 + 32r + 55) (4r2 + 40r + 91)
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Which for the root r = 3
2 becomes

a5 = − 1
825753600

And the table now becomes

n an,r an

a0 1 1
a1 − 1

4r2+8r−5 − 1
16

a2
1

16r4+96r3+136r2−24r−35
1

640

a3 − 1
64r6+768r5+3280r4+5760r3+2956r2−1488r−945 − 1

46080

a4
1

(64r6+768r5+3280r4+5760r3+2956r2−1488r−945)(4r2+32r+55)
1

5160960

a5 − 1
(64r6+768r5+3280r4+5760r3+2956r2−1488r−945)(4r2+32r+55)(4r2+40r+91) − 1

825753600

Using the above table, then the solution y1(x) is

y1(x) = x
3
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
3
2

(
1− x

16 + x2

640 − x3

46080 + x4

5160960 − x5

825753600 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 3. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a3(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a3

= − 1
64r6 + 768r5 + 3280r4 + 5760r3 + 2956r2 − 1488r − 945

Therefore

lim
r→r2

− 1
64r6 + 768r5 + 3280r4 + 5760r3 + 2956r2 − 1488r − 945 = lim

r→− 3
2

− 1
64r6 + 768r5 + 3280r4 + 5760r3 + 2956r2 − 1488r − 945

= undefined
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Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode 4x2y′′ + 4y′x+ (−9 + x) y = 0 gives

4x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ 4
(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))
x

+ (−9 + x)
(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0
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Which can be written as

(7)

((
4x2y′′1(x) + 4y′1(x)x+ (−9 + x) y1(x)

)
ln (x) + 4x2

(
2y′1(x)

x
− y1(x)

x2

)
+ 4y1(x)

)
C + 4x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ 4
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
x+ (−9 + x)

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

4x2y′′1(x) + 4y′1(x)x+ (−9 + x) y1(x) = 0

Eq (7) simplifes to

(8)

(
4x2
(
2y′1(x)

x
− y1(x)

x2

)
+ 4y1(x)

)
C

+ 4x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ 4
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
x+ (−9 + x)

(
∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)
4
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
x2 +8x

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)
C

+ 4
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x+ (−9 + x)

(
∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 3
2 and r2 = −3

2 then the above becomes

(10)
4
(

∞∑
n=0

x− 7
2+nbn

(
n− 3

2

)(
−5
2 + n

))
x2 + 8x

(
∞∑
n=0

x
1
2+nan

(
n+ 3

2

))
C

+ 4
(

∞∑
n=0

x− 5
2+nbn

(
n− 3

2

))
x+ (−9 + x)

(
∞∑
n=0

bnx
n− 3

2

)
= 0

6455



Expanding − 9
x
3
2
as Taylor series around x = 0 and keeping only the first 6 terms gives

− 9
x

3
2
= − 9

x
3
2
+ . . .

= − 9
x

3
2

Expanding 1√
x
as Taylor series around x = 0 and keeping only the first 6 terms gives

1√
x
= 1√

x
+ . . .

= 1√
x

Which simplifies to

(2A)

(
∞∑
n=0

xn− 3
2 bn
(
4n2 − 16n+ 15

))
+
(

∞∑
n=0

(8n+ 12)Canx
n+ 3

2

)

+
(

∞∑
n=0

(−6 + 4n) bnxn− 3
2

)
+

∞∑
n =0

(
−9bnxn− 3

2

)
+
(

∞∑
n=0

xn− 1
2 bn

)
= 0

The next step is to make all powers of x be n − 3
2 in each summation term. Going

over each summation term above with power of x in it which is not already xn− 3
2 and

adjusting the power and the corresponding index gives

∞∑
n =0

(8n+ 12)Canx
n+ 3

2 =
∞∑
n=3

Can−3(8n− 12)xn− 3
2

∞∑
n =0

xn− 1
2 bn =

∞∑
n=1

bn−1x
n− 3

2

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 3

2 .

(2B)

(
∞∑
n=0

xn− 3
2 bn
(
4n2 − 16n+ 15

))
+
(

∞∑
n=3

Can−3(8n− 12)xn− 3
2

)

+
(

∞∑
n=0

(−6 + 4n) bnxn− 3
2

)
+

∞∑
n =0

(
−9bnxn− 3

2

)
+
(

∞∑
n=1

bn−1x
n− 3

2

)
= 0
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For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−8b1 + b0 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−8b1 + 1 = 0

Solving the above for b1 gives
b1 =

1
8

For n = 2, Eq (2B) gives
−8b2 + b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−8b2 +
1
8 = 0

Solving the above for b2 gives
b2 =

1
64

For n = N , where N = 3 which is the difference between the two roots, we are free to
choose b3 = 0. Hence for n = 3, Eq (2B) gives

12C + 1
64 = 0

Which is solved for C. Solving for C gives

C = − 1
768

For n = 4, Eq (2B) gives
20Ca1 + b3 + 16b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

16b4 +
5

3072 = 0

Solving the above for b4 gives
b4 = − 5

49152
For n = 5, Eq (2B) gives

28Ca2 + b4 + 40b5 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

40b5 −
13

81920 = 0

Solving the above for b5 gives
b5 =

13
3276800

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = − 1

768 and all bn, then the second solution becomes

y2(x) = − 1
768

(
x

3
2

(
1− x

16 + x2

640 − x3

46080 + x4

5160960 − x5

825753600 +O
(
x6))) ln (x)

+
1 + x

8 +
x2

64 −
5x4

49152 +
13x5

3276800 +O(x6)
x

3
2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3
2

(
1− x

16 + x2

640 − x3

46080 + x4

5160960 − x5

825753600 +O
(
x6))

+c2

(
− 1
768

(
x

3
2

(
1− x

16+
x2

640−
x3

46080+
x4

5160960−
x5

825753600+O
(
x6))) ln (x)

+
1 + x

8 +
x2

64 −
5x4

49152 +
13x5

3276800 +O(x6)
x

3
2

)

Hence the final solution is

y = yh

= c1x
3
2

(
1− x

16 + x2

640 − x3

46080 + x4

5160960 − x5

825753600 +O
(
x6))

+ c2

−
x

3
2

(
1− x

16 +
x2

640 −
x3

46080 +
x4

5160960 −
x5

825753600 +O(x6)
)
ln (x)

768

+
1 + x

8 +
x2

64 −
5x4

49152 +
13x5

3276800 +O(x6)
x

3
2
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Summary
The solution(s) found are the following

(1)

y = c1x
3
2

(
1− x

16 + x2

640 − x3

46080 + x4

5160960 − x5

825753600 +O
(
x6))

+ c2

−
x

3
2

(
1− x

16 +
x2

640 −
x3

46080 +
x4

5160960 −
x5

825753600 +O(x6)
)
ln (x)

768

+
1 + x

8 +
x2

64 −
5x4

49152 +
13x5

3276800 +O(x6)
x

3
2


Verification of solutions

y = c1x
3
2

(
1− x

16 + x2

640 − x3

46080 + x4

5160960 − x5

825753600 +O
(
x6))

+ c2

−
x

3
2

(
1− x

16 +
x2

640 −
x3

46080 +
x4

5160960 −
x5

825753600 +O(x6)
)
ln (x)

768

+
1 + x

8 +
x2

64 −
5x4

49152 +
13x5

3276800 +O(x6)
x

3
2


Verified OK.

16.11.1 Maple step by step solution

Let’s solve
4x2y′′ + 4y′x+ (−9 + x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −y′

x
− (−9+x)y

4x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x
+ (−9+x)y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = −9+x

4x2

]
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◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −9
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2y′′ + 4y′x+ (−9 + x) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(3 + 2r) (−3 + 2r)xr +
(

∞∑
k=1

(ak(2k + 2r + 3) (2k + 2r − 3) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(3 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
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r ∈
{
−3

2 ,
3
2

}
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 − 9) + ak−1 = 0
• Shift index using k− >k + 1

ak+1
(
4(k + 1)2 + 8(k + 1) r + 4r2 − 9

)
+ ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

4k2+8kr+4r2+8k+8r−5

• Recursion relation for r = −3
2

ak+1 = − ak
4k2−4k−8

• Series not valid for r = −3
2 , division by 0 in the recursion relation at k = 2

ak+1 = − ak
4k2−4k−8

• Recursion relation for r = 3
2

ak+1 = − ak
4k2+20k+16

• Solution for r = 3
2[

y =
∞∑
k=0

akx
k+ 3

2 , ak+1 = − ak
4k2+20k+16

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.046 (sec). Leaf size: 63� �
Order:=6;
dsolve(4*x^2*diff(y(x),x$2)+4*x*diff(y(x),x)-(9-x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1x

3(1− 1
16x+ 1

640x
2 − 1

46080x
3 + 1

5160960x
4 − 1

825753600x
5 +O(x6)

)
+ c2

(
ln (x)

(
− 1

64x
3 + 1

1024x
4 − 1

40960x
5 +O(x6)

)
+
(
12 + 3

2x+ 3
16x

2 − 5
4096x

4 + 39
819200x

5 +O(x6)
))

x
3
2

3 Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 96� �
AsymptoticDSolveValue[4*x^2*y''[x]+4*x*y'[x]-(9-x)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c2

(
x11/2

5160960 − x9/2

46080 + x7/2

640 − x5/2

16

+x3/2
)
+c1

(
(x− 16)x3/2 log(x)

12288 − 19x4 − 64x3 − 2304x2 − 18432x− 147456
147456x3/2

)
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16.12 problem 8
16.12.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6476

Internal problem ID [1424]
Internal file name [OUTPUT/1425_Sunday_June_05_2022_02_16_34_AM_38405556/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + 10y′x+ (x+ 14) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + 10y′x+ (x+ 14) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 10
x

q(x) = x+ 14
x2
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Table 794: Table p(x), q(x) singularites.

p(x) = 10
x

singularity type
x = 0 “regular”

q(x) = x+14
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + 10y′x+ (x+ 14) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 10
(

∞∑
n=0

(n+ r) anxn+r−1

)
x+ (x+ 14)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

10xn+ran(n+ r)
)

+
(

∞∑
n=0

x1+n+ran

)
+
(

∞∑
n=0

14anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran =
∞∑
n=1

an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

10xn+ran(n+ r)
)

+
(

∞∑
n=1

an−1x
n+r

)
+
(

∞∑
n=0

14anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 10xn+ran(n+ r) + 14anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + 10xra0r + 14a0xr = 0

Or
(xrr(−1 + r) + 10xrr + 14xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r + 7) (r + 2)xr = 0

Since the above is true for all x then the indicial equation becomes

(r + 7) (r + 2) = 0
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Solving for r gives the roots of the indicial equation as

r1 = −2
r2 = −7

Since a0 6= 0 then the indicial equation becomes

(r + 7) (r + 2)xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 5 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =

∞∑
n=0

anx
n

x2

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x7

Or

y1(x) =
∞∑
n=0

anx
n−2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−7

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1) + 10an(n+ r) + an−1 + 14an = 0

Solving for an from recursive equation (4) gives

an = − an−1

n2 + 2nr + r2 + 9n+ 9r + 14 (4)
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Which for the root r = −2 becomes

an = − an−1

n (n+ 5) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 1
r2 + 11r + 24

Which for the root r = −2 becomes

a1 = −1
6

And the table now becomes

n an,r an

a0 1 1
a1 − 1

r2+11r+24 −1
6

For n = 2, using the above recursive equation gives

a2 =
1

(r + 8) (r + 3) (r + 9) (r + 4)

Which for the root r = −2 becomes

a2 =
1
84

And the table now becomes

n an,r an

a0 1 1
a1 − 1

r2+11r+24 −1
6

a2
1

(r+8)(r+3)(r+9)(r+4)
1
84
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For n = 3, using the above recursive equation gives

a3 = − 1
(r + 8) (r + 3) (r + 9) (r + 4) (r + 10) (5 + r)

Which for the root r = −2 becomes

a3 = − 1
2016

And the table now becomes

n an,r an

a0 1 1
a1 − 1

r2+11r+24 −1
6

a2
1

(r+8)(r+3)(r+9)(r+4)
1
84

a3 − 1
(r+8)(r+3)(r+9)(r+4)(r+10)(5+r) − 1

2016

For n = 4, using the above recursive equation gives

a4 =
1

(r + 8) (r + 3) (r + 9) (r + 4) (r + 10) (5 + r) (r + 11) (r + 6)

Which for the root r = −2 becomes

a4 =
1

72576
And the table now becomes

n an,r an

a0 1 1
a1 − 1

r2+11r+24 −1
6

a2
1

(r+8)(r+3)(r+9)(r+4)
1
84

a3 − 1
(r+8)(r+3)(r+9)(r+4)(r+10)(5+r) − 1

2016

a4
1

(r+8)(r+3)(r+9)(r+4)(r+10)(5+r)(r+11)(r+6)
1

72576

For n = 5, using the above recursive equation gives

a5 = − 1
(r + 8) (r + 3) (r + 9) (r + 4) (r + 10) (5 + r) (r + 11) (r + 6) (r + 12) (r + 7)
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Which for the root r = −2 becomes

a5 = − 1
3628800

And the table now becomes

n an,r an

a0 1 1
a1 − 1

r2+11r+24 −1
6

a2
1

(r+8)(r+3)(r+9)(r+4)
1
84

a3 − 1
(r+8)(r+3)(r+9)(r+4)(r+10)(5+r) − 1

2016

a4
1

(r+8)(r+3)(r+9)(r+4)(r+10)(5+r)(r+11)(r+6)
1

72576

a5 − 1
(r+8)(r+3)(r+9)(r+4)(r+10)(5+r)(r+11)(r+6)(r+12)(r+7) − 1

3628800

Using the above table, then the solution y1(x) is

y1(x) =
1
x2

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
1− x

6 +
x2

84 −
x3

2016 +
x4

72576 −
x5

3628800 +O(x6)
x2

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 5. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a5(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a5

= − 1
(r + 8) (r + 3) (r + 9) (r + 4) (r + 10) (5 + r) (r + 11) (r + 6) (r + 12) (r + 7)

Therefore

lim
r→r2

− 1
(r + 8) (r + 3) (r + 9) (r + 4) (r + 10) (5 + r) (r + 11) (r + 6) (r + 12) (r + 7) = lim

r→−7
− 1
(r + 8) (r + 3) (r + 9) (r + 4) (r + 10) (5 + r) (r + 11) (r + 6) (r + 12) (r + 7)

= undefined
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Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode x2y′′ + 10y′x+ (x+ 14) y = 0 gives

x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ 10
(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))
x

+ (x+ 14)
(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0
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Which can be written as

(7)

((
x2y′′1(x) + 10y′1(x)x+ (x+ 14) y1(x)

)
ln (x) + x2

(
2y′1(x)

x
− y1(x)

x2

)
+ 10y1(x)

)
C + x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ 10
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
x+ (x+ 14)

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

x2y′′1(x) + 10y′1(x)x+ (x+ 14) y1(x) = 0

Eq (7) simplifes to

(8)

(
x2
(
2y′1(x)

x
− y1(x)

x2

)
+ 10y1(x)

)
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ 10
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
x+ (x+ 14)

(
∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x+ 9

(
∞∑
n=0

anx
n+r1

))
C

+
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2

+ 10
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x+ (x+ 14)

(
∞∑
n=0

bnx
n+r2

)
= 0
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Since r1 = −2 and r2 = −7 then the above becomes

(10)

(
2
(

∞∑
n=0

x−3+nan(n− 2)
)
x+ 9

(
∞∑
n=0

anx
n−2

))
C

+
(

∞∑
n=0

x−9+nbn(n− 7) (−8 + n)
)
x2

+ 10
(

∞∑
n=0

x−8+nbn(n− 7)
)
x+ (x+ 14)

(
∞∑
n=0

bnx
n−7

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C xn−2an(n−2)
)
+
(

∞∑
n=0

9Canx
n−2

)
+
(

∞∑
n=0

xn−7bn(−8+n) (n−7)
)

+
(

∞∑
n=0

10xn−7bn(n− 7)
)

+
(

∞∑
n=0

xn−6bn

)
+
(

∞∑
n=0

14bnxn−7

)
= 0

The next step is to make all powers of x be n − 7 in each summation term. Going
over each summation term above with power of x in it which is not already xn−7 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xn−2an(n− 2) =
∞∑
n=5

2Can−5(n− 7)xn−7

∞∑
n =0

9Canx
n−2 =

∞∑
n=5

9Can−5x
n−7

∞∑
n =0

xn−6bn =
∞∑
n=1

bn−1x
n−7

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n− 7.

(2B)

(
∞∑
n=5

2Can−5(n− 7)xn−7

)
+
(

∞∑
n=5

9Can−5x
n−7

)

+
(

∞∑
n=0

xn−7bn(−8 + n) (n− 7)
)

+
(

∞∑
n=0

10xn−7bn(n− 7)
)

+
(

∞∑
n=1

bn−1x
n−7

)
+
(

∞∑
n=0

14bnxn−7

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−4b1 + b0 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−4b1 + 1 = 0

Solving the above for b1 gives
b1 =

1
4

For n = 2, Eq (2B) gives
−6b2 + b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−6b2 +
1
4 = 0

Solving the above for b2 gives
b2 =

1
24

For n = 3, Eq (2B) gives
−6b3 + b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−6b3 +
1
24 = 0

Solving the above for b3 gives
b3 =

1
144

For n = 4, Eq (2B) gives
−4b4 + b3 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−4b4 +
1
144 = 0

Solving the above for b4 gives
b4 =

1
576

For n = N , where N = 5 which is the difference between the two roots, we are free to
choose b5 = 0. Hence for n = 5, Eq (2B) gives

5C + 1
576 = 0

Which is solved for C. Solving for C gives

C = − 1
2880

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = − 1
2880 and all bn, then the second solution becomes

y2(x) = − 1
2880

(
1− x

6 +
x2

84 −
x3

2016 +
x4

72576 −
x5

3628800 +O(x6)
x2

)
ln (x)

+
1 + x

4 +
x2

24 +
x3

144 +
x4

576 +O(x6)
x7

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
1− x

6 +
x2

84 −
x3

2016 +
x4

72576 −
x5

3628800 +O(x6)
)

x2

+ c2

(
− 1
2880

(
1− x

6 +
x2

84 −
x3

2016 +
x4

72576 −
x5

3628800 +O(x6)
x2

)
ln (x)

+
1 + x

4 +
x2

24 +
x3

144 +
x4

576 +O(x6)
x7

)
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Hence the final solution is

y = yh

=
c1
(
1− x

6 +
x2

84 −
x3

2016 +
x4

72576 −
x5

3628800 +O(x6)
)

x2

+ c2

−

(
1− x

6 +
x2

84 −
x3

2016 +
x4

72576 −
x5

3628800 +O(x6)
)
ln (x)

2880x2

+
1 + x

4 +
x2

24 +
x3

144 +
x4

576 +O(x6)
x7


Summary
The solution(s) found are the following

(1)

y =
c1
(
1− x

6 +
x2

84 −
x3

2016 +
x4

72576 −
x5

3628800 +O(x6)
)

x2

+ c2

−

(
1− x

6 +
x2

84 −
x3

2016 +
x4

72576 −
x5

3628800 +O(x6)
)
ln (x)

2880x2

+
1 + x

4 +
x2

24 +
x3

144 +
x4

576 +O(x6)
x7


Verification of solutions

y =
c1
(
1− x

6 +
x2

84 −
x3

2016 +
x4

72576 −
x5

3628800 +O(x6)
)

x2

+ c2

−

(
1− x

6 +
x2

84 −
x3

2016 +
x4

72576 −
x5

3628800 +O(x6)
)
ln (x)

2880x2

+
1 + x

4 +
x2

24 +
x3

144 +
x4

576 +O(x6)
x7


Verified OK.
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16.12.1 Maple step by step solution

Let’s solve
x2y′′ + 10y′x+ (x+ 14) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −10y′

x
− (x+14)y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 10y′

x
+ (x+14)y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 10
x
, P3(x) = x+14

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 10

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 14

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + 10y′x+ (x+ 14) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(7 + r) (2 + r)xr +
(

∞∑
k=1

(ak(k + r + 7) (k + r + 2) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(7 + r) (2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−7,−2}

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 7) (k + r + 2) + ak−1 = 0

• Shift index using k− >k + 1
ak+1(k + 8 + r) (k + 3 + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

(k+8+r)(k+3+r)

• Recursion relation for r = −7
ak+1 = − ak

(k+1)(k−4)

• Series not valid for r = −7 , division by 0 in the recursion relation at k = 4
ak+1 = − ak

(k+1)(k−4)

• Recursion relation for r = −2
ak+1 = − ak

(k+6)(k+1)

• Solution for r = −2[
y =

∞∑
k=0

akx
k−2, ak+1 = − ak

(k+6)(k+1)

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 59� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+10*x*diff(y(x),x)+(14+x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1
(
1− 1

6x+ 1
84x

2 − 1
2016x

3 + 1
72576x

4 − 1
3628800x

5 +O(x6)
)
x5 + c2(ln (x) (−x5 +O(x6)) + (2880 + 720x+ 120x2 + 20x3 + 5x4 +O(x6)))

x7

3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 68� �
AsymptoticDSolveValue[x^2*y''[x]+10*x*y'[x]+(14+x)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c2

(
x2

72576 + 1
x2 −

x

2016 − 1
6x + 1

84

)
+ c1

(
1
x7 +

1
4x6 +

1
24x5 +

1
144x4 +

1
576x3

)
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16.13 problem 9
16.13.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6493

Internal problem ID [1425]
Internal file name [OUTPUT/1426_Sunday_June_05_2022_02_16_38_AM_26967055/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2(x+ 1) y′′ + 4x(3 + 8x) y′ − (5− 49x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

4x3 + 4x2) y′′ + (32x2 + 12x
)
y′ + (49x− 5) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3 + 8x
x (x+ 1)

q(x) = 49x− 5
4x2 (x+ 1)
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Table 796: Table p(x), q(x) singularites.

p(x) = 3+8x
x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

q(x) = 49x−5
4x2(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2(x+ 1) y′′ +
(
32x2 + 12x

)
y′ + (49x− 5) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2(x+ 1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
32x2 + 12x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (49x− 5)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

32x1+n+ran(n+ r)
)

+
(

∞∑
n=0

12xn+ran(n+ r)
)

+
(

∞∑
n=0

49x1+n+ran

)
+

∞∑
n =0

(
−5anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

4an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

32x1+n+ran(n+ r) =
∞∑
n=1

32an−1(n+ r − 1)xn+r

∞∑
n =0

49x1+n+ran =
∞∑
n=1

49an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

4an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

32an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

12xn+ran(n+ r)
)

+
(

∞∑
n=1

49an−1x
n+r

)
+

∞∑
n =0

(
−5anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + 12xn+ran(n+ r)− 5anxn+r = 0
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When n = 0 the above becomes

4xra0r(−1 + r) + 12xra0r − 5a0xr = 0

Or
(4xrr(−1 + r) + 12xrr − 5xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 + 8r − 5

)
xr = 0

Since the above is true for all x then the indicial equation becomes

4r2 + 8r − 5 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = −5
2

Since a0 6= 0 then the indicial equation becomes(
4r2 + 8r − 5

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
√
x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x
5
2

Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n− 5

2

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)4an−1(n+ r − 1) (n+ r − 2) + 4an(n+ r) (n+ r − 1)
+ 32an−1(n+ r − 1) + 12an(n+ r) + 49an−1 − 5an = 0

Solving for an from recursive equation (4) gives

an = −(5 + 2n+ 2r) an−1

2n+ 2r − 1 (4)

Which for the root r = 1
2 becomes

an = −(3 + n) an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−7− 2r
1 + 2r

Which for the root r = 1
2 becomes

a1 = −4

And the table now becomes

n an,r an

a0 1 1
a1

−7−2r
1+2r −4

For n = 2, using the above recursive equation gives

a2 =
4r2 + 32r + 63
4r2 + 8r + 3
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Which for the root r = 1
2 becomes

a2 = 10

And the table now becomes

n an,r an

a0 1 1
a1

−7−2r
1+2r −4

a2
4r2+32r+63
4r2+8r+3 10

For n = 3, using the above recursive equation gives

a3 =
−8r3 − 108r2 − 478r − 693

8r3 + 36r2 + 46r + 15

Which for the root r = 1
2 becomes

a3 = −20

And the table now becomes

n an,r an

a0 1 1
a1

−7−2r
1+2r −4

a2
4r2+32r+63
4r2+8r+3 10

a3
−8r3−108r2−478r−693

8r3+36r2+46r+15 −20

For n = 4, using the above recursive equation gives

a4 =
8r3 + 132r2 + 718r + 1287
8r3 + 36r2 + 46r + 15

Which for the root r = 1
2 becomes

a4 = 35

And the table now becomes
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n an,r an

a0 1 1
a1

−7−2r
1+2r −4

a2
4r2+32r+63
4r2+8r+3 10

a3
−8r3−108r2−478r−693

8r3+36r2+46r+15 −20

a4
8r3+132r2+718r+1287

8r3+36r2+46r+15 35

For n = 5, using the above recursive equation gives

a5 =
−8r3 − 156r2 − 1006r − 2145

8r3 + 36r2 + 46r + 15

Which for the root r = 1
2 becomes

a5 = −56

And the table now becomes

n an,r an

a0 1 1
a1

−7−2r
1+2r −4

a2
4r2+32r+63
4r2+8r+3 10

a3
−8r3−108r2−478r−693

8r3+36r2+46r+15 −20

a4
8r3+132r2+718r+1287

8r3+36r2+46r+15 35

a5
−8r3−156r2−1006r−2145

8r3+36r2+46r+15 −56

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x
(
1− 4x+ 10x2 − 20x3 + 35x4 − 56x5 +O

(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 3. Now we need to determine if
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C is zero or not. This is done by finding limr→r2 a3(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a3

= −8r3 − 108r2 − 478r − 693
8r3 + 36r2 + 46r + 15

Therefore

lim
r→r2

−8r3 − 108r2 − 478r − 693
8r3 + 36r2 + 46r + 15 = lim

r→− 5
2

−8r3 − 108r2 − 478r − 693
8r3 + 36r2 + 46r + 15

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode 4x2(x+ 1) y′′+(32x2 + 12x) y′+(49x− 5) y =
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0 gives

4x2(x+ 1)
(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
32x2 + 12x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+ (49x− 5)
(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
4x2(x+ 1) y′′1(x) +

(
32x2 + 12x

)
y′1(x) + (49x− 5) y1(x)

)
ln (x)

+ 4x2(x+ 1)
(
2y′1(x)

x
− y1(x)

x2

)
+ (32x2 + 12x) y1(x)

x

)
C

+ 4x2(x+ 1)
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
32x2 + 12x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ (49x− 5)

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

4x2(x+ 1) y′′1(x) +
(
32x2 + 12x

)
y′1(x) + (49x− 5) y1(x) = 0

Eq (7) simplifes to

(8)

(
4x2(x+ 1)

(
2y′1(x)

x
− y1(x)

x2

)
+ (32x2 + 12x) y1(x)

x

)
C

+ 4x2(x+ 1)
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
32x2 + 12x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ (49x− 5)

(
∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
8x(x+ 1)

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)

+ 4(7x+ 2)
(

∞∑
n=0

anx
n+r1

))
C

+ 4
(
x3 + x2)( ∞∑

n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)

+ 4
(
8x2 + 3x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

+ (49x− 5)
(

∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 1
2 and r2 = −5

2 then the above becomes

(10)

(
8x(x+ 1)

(
∞∑
n=0

x− 1
2+nan

(
n+ 1

2

))
+ 4(7x+ 2)

(
∞∑
n=0

anx
n+ 1

2

))
C

+ 4
(
x3 + x2)( ∞∑

n=0

x− 9
2+nbn

(
n− 5

2

)(
−7
2 + n

))

+ 4
(
8x2 + 3x

)( ∞∑
n=0

x− 7
2+nbn

(
n− 5

2

))
+ (49x− 5)

(
∞∑
n=0

bnx
n− 5

2

)
= 0

Expanding 4C
√
x as Taylor series around x = 0 and keeping only the first 6 terms gives

4C
√
x = 4C

√
x+ . . .

= 4C
√
x

Expanding 28C x
3
2 as Taylor series around x = 0 and keeping only the first 6 terms

gives

28C x
3
2 = 28C x

3
2 + . . .

= 28C x
3
2

Expanding 8C
√
x as Taylor series around x = 0 and keeping only the first 6 terms gives

8C
√
x = 8C

√
x+ . . .

= 8C
√
x
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Expanding 1
x
3
2
as Taylor series around x = 0 and keeping only the first 6 terms gives

1
x

3
2
= 1

x
3
2
+ . . .

= 1
x

3
2

Expanding 1
x
5
2
as Taylor series around x = 0 and keeping only the first 6 terms gives

1
x

5
2
= 1

x
5
2
+ . . .

= 1
x

5
2

Expanding 16
x
3
2
as Taylor series around x = 0 and keeping only the first 6 terms gives

16
x

3
2
= 16

x
3
2
+ . . .

= 16
x

3
2

Expanding 6
x
5
2
as Taylor series around x = 0 and keeping only the first 6 terms gives

6
x

5
2
= 6

x
5
2
+ . . .

= 6
x

5
2

Expanding 49
x
3
2
as Taylor series around x = 0 and keeping only the first 6 terms gives

49
x

3
2
= 49

x
3
2
+ . . .

= 49
x

3
2

Expanding − 5
x
5
2
as Taylor series around x = 0 and keeping only the first 6 terms gives

− 5
x

5
2
= − 5

x
5
2
+ . . .

= − 5
x

5
2
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Which simplifies to

(2A)

(
∞∑
n=0

(8n+ 4)Canx
3
2+n

)
+
(

∞∑
n=0

(8n+ 4)Canx
n+ 1

2

)

+
(

∞∑
n=0

28C x
3
2+nan

)
+
(

∞∑
n=0

8C xn+ 1
2an

)

+
(

∞∑
n=0

xn− 3
2 bn
(
4n2 − 24n+ 35

))
+
(

∞∑
n=0

xn− 5
2 bn
(
4n2 − 24n+ 35

))

+
(

∞∑
n=0

(32n− 80) bnxn− 3
2

)
+
(

∞∑
n=0

(12n− 30) bnxn− 5
2

)

+
(

∞∑
n=0

49xn− 3
2 bn

)
+

∞∑
n =0

(
−5bnxn− 5

2

)
= 0

The next step is to make all powers of x be n − 5
2 in each summation term. Going

over each summation term above with power of x in it which is not already xn− 5
2 and

adjusting the power and the corresponding index gives

∞∑
n =0

(8n+ 4)Canx
3
2+n =

∞∑
n=4

Can−4(8n− 28)xn− 5
2

∞∑
n =0

(8n+ 4)Canx
n+ 1

2 =
∞∑
n=3

Can−3(8n− 20)xn− 5
2

∞∑
n =0

28C x
3
2+nan =

∞∑
n=4

28Can−4x
n− 5

2

∞∑
n =0

8C xn+ 1
2an =

∞∑
n=3

8Can−3x
n− 5

2

∞∑
n =0

xn− 3
2 bn
(
4n2 − 24n+ 35

)
=

∞∑
n=1

bn−1
(
4(n− 1)2 − 24n+ 59

)
xn− 5

2

∞∑
n =0

(32n− 80) bnxn− 3
2 =

∞∑
n=1

bn−1(32n− 112)xn− 5
2

∞∑
n =0

49xn− 3
2 bn =

∞∑
n=1

49bn−1x
n− 5

2
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Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 5

2 .

(2B)

(
∞∑
n=4

Can−4(8n− 28)xn− 5
2

)
+
(

∞∑
n=3

Can−3(8n− 20)xn− 5
2

)

+
(

∞∑
n=4

28Can−4x
n− 5

2

)
+
(

∞∑
n=3

8Can−3x
n− 5

2

)

+
(

∞∑
n=1

bn−1
(
4(n− 1)2 − 24n+ 59

)
xn− 5

2

)

+
(

∞∑
n=0

xn− 5
2 bn
(
4n2 − 24n+ 35

))
+
(

∞∑
n=1

bn−1(32n− 112)xn− 5
2

)

+
(

∞∑
n=0

(12n− 30) bnxn− 5
2

)
+
(

∞∑
n=1

49bn−1x
n− 5

2

)
+

∞∑
n =0

(
−5bnxn− 5

2

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

4b0 − 8b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

4− 8b1 = 0

Solving the above for b1 gives
b1 =

1
2

For n = 2, Eq (2B) gives
16b1 − 8b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

8− 8b2 = 0

Solving the above for b2 gives
b2 = 1

For n = N , where N = 3 which is the difference between the two roots, we are free to
choose b3 = 0. Hence for n = 3, Eq (2B) gives

12C + 36 = 0
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Which is solved for C. Solving for C gives

C = −3

For n = 4, Eq (2B) gives

(32a0 + 20a1)C + 64b3 + 16b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

144 + 16b4 = 0
Solving the above for b4 gives

b4 = −9
For n = 5, Eq (2B) gives

(40a1 + 28a2)C + 100b4 + 40b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−1260 + 40b5 = 0
Solving the above for b5 gives

b5 =
63
2

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = −3 and all bn, then the second solution becomes

y2(x) = (−3)
(√

x
(
1− 4x+ 10x2 − 20x3 + 35x4 − 56x5 +O

(
x6))) ln (x)

+
1 + x

2 + x2 − 9x4 + 63x5

2 +O(x6)
x

5
2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x
(
1− 4x+ 10x2 − 20x3 + 35x4 − 56x5 +O

(
x6))

+ c2

(
(−3)

(√
x
(
1− 4x+ 10x2 − 20x3 + 35x4 − 56x5 +O

(
x6))) ln (x)

+
1 + x

2 + x2 − 9x4 + 63x5

2 +O(x6)
x

5
2

)
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Hence the final solution is

y = yh

= c1
√
x
(
1− 4x+ 10x2 − 20x3 + 35x4 − 56x5 +O

(
x6))

+ c2

(
−3

√
x
(
1− 4x+ 10x2 − 20x3 + 35x4 − 56x5 +O

(
x6)) ln (x)

+
1 + x

2 + x2 − 9x4 + 63x5

2 +O(x6)
x

5
2

)

Summary
The solution(s) found are the following

(1)

y = c1
√
x
(
1− 4x+ 10x2 − 20x3 + 35x4 − 56x5 +O

(
x6))

+ c2

(
−3

√
x
(
1− 4x+ 10x2 − 20x3 + 35x4 − 56x5 +O

(
x6)) ln (x)

+
1 + x

2 + x2 − 9x4 + 63x5

2 +O(x6)
x

5
2

)
Verification of solutions

y = c1
√
x
(
1− 4x+ 10x2 − 20x3 + 35x4 − 56x5 +O

(
x6))

+ c2

(
−3

√
x
(
1− 4x+ 10x2 − 20x3 + 35x4 − 56x5 +O

(
x6)) ln (x)

+
1 + x

2 + x2 − 9x4 + 63x5

2 +O(x6)
x

5
2

)

Verified OK.

16.13.1 Maple step by step solution

Let’s solve
4x2(x+ 1) y′′ + (32x2 + 12x) y′ + (49x− 5) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (49x−5)y
4x2(x+1) −

(3+8x)y′
x(x+1)
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (3+8x)y′
x(x+1) + (49x−5)y

4x2(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3+8x
x(x+1) , P3(x) = 49x−5

4x2(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 5

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
4x2(x+ 1) y′′ + 4x(3 + 8x) y′ + (49x− 5) y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(4u3 − 8u2 + 4u)
(

d2

du2y(u)
)
+ (32u2 − 52u+ 20)

(
d
du
y(u)

)
+ (49u− 54) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m
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◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(4 + r)u−1+r + (4a1(1 + r) (5 + r)− 2a0(4r2 + 22r + 27))ur +
(

∞∑
k=1

(
4ak+1(k + 1 + r) (k + 5 + r)− 2ak(4k2 + 8kr + 4r2 + 22k + 22r + 27) + ak−1(2k + 5 + 2r)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r(4 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−4, 0}

• Each term must be 0
4a1(1 + r) (5 + r)− 2a0(4r2 + 22r + 27) = 0

• Each term in the series must be 0, giving the recursion relation
4ak+1(k + 1 + r) (k + 5 + r)− 2ak(4k2 + 8kr + 4r2 + 22k + 22r + 27) + ak−1(2k + 5 + 2r)2 = 0

• Shift index using k− >k + 1
4ak+2(k + 2 + r) (k + 6 + r)− 2ak+1

(
4(k + 1)2 + 8(k + 1) r + 4r2 + 22k + 49 + 22r

)
+ ak(2k + 2r + 7)2 = 0

• Recursion relation that defines series solution to ODE

ak+2 = −4k2ak−8k2ak+1+8krak−16krak+1+4r2ak−8r2ak+1+28kak−60kak+1+28rak−60rak+1+49ak−106ak+1
4(k+2+r)(k+6+r)

• Recursion relation for r = −4

ak+2 = −4k2ak−8k2ak+1−4kak+4kak+1+ak+6ak+1
4(k−2)(k+2)

• Series not valid for r = −4 , division by 0 in the recursion relation at k = 2

ak+2 = −4k2ak−8k2ak+1−4kak+4kak+1+ak+6ak+1
4(k−2)(k+2)

• Recursion relation for r = 0

ak+2 = −4k2ak−8k2ak+1+28kak−60kak+1+49ak−106ak+1
4(k+2)(k+6)
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• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −4k2ak−8k2ak+1+28kak−60kak+1+49ak−106ak+1

4(k+2)(k+6) , 20a1 − 54a0 = 0
]

• Revert the change of variables u = x+ 1[
y =

∞∑
k=0

ak(x+ 1)k , ak+2 = −4k2ak−8k2ak+1+28kak−60kak+1+49ak−106ak+1
4(k+2)(k+6) , 20a1 − 54a0 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 65� �
Order:=6;
dsolve(4*x^2*(1+x)*diff(y(x),x$2)+4*x*(3+8*x)*diff(y(x),x)-(5-49*x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

= c1x
3(1− 4x+ 10x2 − 20x3 + 35x4 − 56x5 +O(x6)) + c2(ln (x) ((−36)x3 + 144x4 − 360x5 +O(x6)) + (12 + 6x+ 12x2 − 240x3 + 852x4 − 2022x5 +O(x6)))

x
5
2
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3 Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 86� �
AsymptoticDSolveValue[4*x^2*(1+x)*y''[x]+4*x*(3+8*x)*y'[x]-(5-49*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2
(
35x9/2 − 20x7/2 + 10x5/2 − 4x3/2

+
√
x
)
+ c1

(
62x4 − 20x3 + 2x2 + x+ 2

2x5/2 + 3
√
x(4x− 1) log(x)

)
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16.14 problem 10
16.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6511

Internal problem ID [1426]
Internal file name [OUTPUT/1427_Sunday_June_05_2022_02_16_43_AM_54492134/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x+ 1) y′′ − x(3 + 10x) y′ + 30yx = 0

With the expansion point for the power series method at x = 0.

The ODE is
x2(x+ 1) y′′ +

(
−10x2 − 3x

)
y′ + 30yx = 0

Or
x
(
x2y′′ − 10y′x+ y′′x+ 30y − 3y′

)
= 0

For x 6= 0 the above simplifies to(
x2 + x

)
y′′ + (−3− 10x) y′ + 30y = 0

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x3 + x2) y′′ + (−10x2 − 3x
)
y′ + 30yx = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0
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Where

p(x) = − 3 + 10x
x (x+ 1)

q(x) = 30
x (x+ 1)

Table 798: Table p(x), q(x) singularites.

p(x) = − 3+10x
x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

q(x) = 30
x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x+ 1) y′′ +
(
−10x2 − 3x

)
y′ + 30yx = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2
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Substituting the above back into the ode gives

(1)
x2(x+ 1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−10x2 − 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ 30

(
∞∑
n=0

anx
n+r

)
x = 0

Which simplifies to(
∞∑
n=0

x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−10x1+n+ran(n+ r)

)
+

∞∑
n =0

(
−3xn+ran(n+ r)

)
+
(

∞∑
n=0

30x1+n+ran

)
= 0

(2A)

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

(
−10x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−10an−1(n+ r − 1)xn+r

)
∞∑

n =0

30x1+n+ran =
∞∑
n=1

30an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−10an−1(n+ r − 1)xn+r

)
+

∞∑
n =0

(
−3xn+ran(n+ r)

)
+
(

∞∑
n=1

30an−1x
n+r

)
= 0
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The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 3xn+ran(n+ r) = 0

When n = 0 the above becomes

xra0r(−1 + r)− 3xra0r = 0

Or
(xrr(−1 + r)− 3xrr) a0 = 0

Since a0 6= 0 then the above simplifies to

xrr(−4 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−4 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 4
r2 = 0

Since a0 6= 0 then the indicial equation becomes

xrr(−4 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x4

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
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Or

y1(x) =
∞∑
n=0

anx
n+4

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
− 10an−1(n+ r − 1)− 3an(n+ r) + 30an−1 = 0

Solving for an from recursive equation (4) gives

an = −an−1(n2 + 2nr + r2 − 13n− 13r + 42)
n2 + 2nr + r2 − 4n− 4r (4)

Which for the root r = 4 becomes

an = −an−1(n2 − 5n+ 6)
n (n+ 4) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 4 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−r2 + 11r − 30
r2 − 2r − 3

Which for the root r = 4 becomes
a1 = −2

5
And the table now becomes

n an,r an

a0 1 1
a1

−r2+11r−30
r2−2r−3 −2

5
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For n = 2, using the above recursive equation gives

a2 =
(−4 + r) (r − 5)2 (r − 6)
r4 − 2r3 − 7r2 + 8r + 12

Which for the root r = 4 becomes
a2 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−r2+11r−30
r2−2r−3 −2

5

a2
(−4+r)(r−5)2(r−6)
r4−2r3−7r2+8r+12 0

For n = 3, using the above recursive equation gives

a3 = − (r − 6) (r − 5)2 (−4 + r)2

r5 + 3r4 − 5r3 − 15r2 + 4r + 12

Which for the root r = 4 becomes
a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−r2+11r−30
r2−2r−3 −2

5

a2
(−4+r)(r−5)2(r−6)
r4−2r3−7r2+8r+12 0

a3 − (r−6)(r−5)2(−4+r)2
r5+3r4−5r3−15r2+4r+12 0

For n = 4, using the above recursive equation gives

a4 =
(r − 6) (r − 5)2 (−4 + r)2 (r − 3)
(r + 4) r (r4 + 5r3 + 5r2 − 5r − 6)

Which for the root r = 4 becomes
a4 = 0

And the table now becomes
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n an,r an

a0 1 1
a1

−r2+11r−30
r2−2r−3 −2

5

a2
(−4+r)(r−5)2(r−6)
r4−2r3−7r2+8r+12 0

a3 − (r−6)(r−5)2(−4+r)2
r5+3r4−5r3−15r2+4r+12 0

a4
(r−6)(r−5)2(−4+r)2(r−3)
(r+4)r(r4+5r3+5r2−5r−6) 0

For n = 5, using the above recursive equation gives

a5 = −(r − 6) (r − 5)2 (−4 + r)2 (r − 3) (r − 2)
(5 + r) (r + 1)2 (r + 3) (r + 2) r (r + 4)

Which for the root r = 4 becomes
a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−r2+11r−30
r2−2r−3 −2

5

a2
(−4+r)(r−5)2(r−6)
r4−2r3−7r2+8r+12 0

a3 − (r−6)(r−5)2(−4+r)2
r5+3r4−5r3−15r2+4r+12 0

a4
(r−6)(r−5)2(−4+r)2(r−3)
(r+4)r(r4+5r3+5r2−5r−6) 0

a5 − (r−6)(r−5)2(−4+r)2(r−3)(r−2)
(5+r)(r+1)2(r+3)(r+2)r(r+4) 0

Using the above table, then the solution y1(x) is

y1(x) = x4(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x4

(
1− 2x

5 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N
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Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 4. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a4(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a4

= (r − 6) (r − 5)2 (−4 + r)2 (r − 3)
(r + 4) r (r4 + 5r3 + 5r2 − 5r − 6)

Therefore

lim
r→r2

(r − 6) (r − 5)2 (−4 + r)2 (r − 3)
(r + 4) r (r4 + 5r3 + 5r2 − 5r − 6) = lim

r→0

(r − 6) (r − 5)2 (−4 + r)2 (r − 3)
(r + 4) r (r4 + 5r3 + 5r2 − 5r − 6)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode x2(x+ 1) y′′ + (−10x2 − 3x) y′ + 30yx = 0
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gives

x2(x+ 1)
(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−10x2 − 3x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+ 30
(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
x = 0

Which can be written as

(7)

((
x2(x+ 1) y′′1(x) +

(
−10x2 − 3x

)
y′1(x) + 30y1(x)x

)
ln (x)

+ x2(x+ 1)
(
2y′1(x)

x
− y1(x)

x2

)
+ (−10x2 − 3x) y1(x)

x

)
C

+ x2(x+ 1)
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−10x2 − 3x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ 30

(
∞∑
n=0

bnx
n+r2

)
x = 0

But since y1(x) is a solution to the ode, then

x2(x+ 1) y′′1(x) +
(
−10x2 − 3x

)
y′1(x) + 30y1(x)x = 0

Eq (7) simplifes to

(8)

(
x2(x+ 1)

(
2y′1(x)

x
− y1(x)

x2

)
+ (−10x2 − 3x) y1(x)

x

)
C

+ x2(x+ 1)
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−10x2 − 3x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ 30

(
∞∑
n=0

bnx
n+r2

)
x = 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2x(x+ 1)

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)

+ (−11x− 4)
(

∞∑
n=0

anx
n+r1

))
C

+ x2(x+ 1)
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)

+
(
−10x2 − 3x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

+ 30
(

∞∑
n=0

bnx
n+r2

)
x = 0

Since r1 = 4 and r2 = 0 then the above becomes

(10)

(
2x(x+ 1)

(
∞∑
n=0

x3+nan(n+ 4)
)

+ (−11x− 4)
(

∞∑
n=0

anx
n+4

))
C

+ x2(x+ 1)
(

∞∑
n=0

x−2+nbnn(n− 1)
)

+
(
−10x2 − 3x

)( ∞∑
n=0

xn−1bnn

)
+ 30

(
∞∑
n=0

bnx
n

)
x = 0

Which simplifies to

(2A)

(
∞∑
n=0

2C xn+5an(n+4)
)
+
(

∞∑
n=0

2C xn+4an(n+4)
)
+

∞∑
n =0

(
−11C xn+5an

)
+

∞∑
n =0

(
−4C xn+4an

)
+
(

∞∑
n=0

nx1+nbn(n− 1)
)

+
(

∞∑
n=0

xnbnn(n− 1)
)

+
∞∑

n =0

(
−10nx1+nbn

)
+

∞∑
n =0

(−3xnbnn) +
(

∞∑
n=0

30x1+nbn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
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power and the corresponding index gives

∞∑
n =0

2C xn+5an(n+ 4) =
∞∑
n=5

2Can−5(n− 1)xn

∞∑
n =0

2C xn+4an(n+ 4) =
∞∑
n=4

2Ca−4+nnxn

∞∑
n =0

(
−11C xn+5an

)
=

∞∑
n=5

(−11Can−5x
n)

∞∑
n =0

(
−4C xn+4an

)
=

∞∑
n=4

(−4Ca−4+nx
n)

∞∑
n =0

nx1+nbn(n− 1) =
∞∑
n=1

(n− 1) bn−1(−2 + n)xn

∞∑
n =0

(
−10nx1+nbn

)
=

∞∑
n=1

(−10(n− 1) bn−1x
n)

∞∑
n =0

30x1+nbn =
∞∑
n=1

30bn−1x
n

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n.

(2B)

(
∞∑
n=5

2Can−5(n− 1)xn

)
+
(

∞∑
n=4

2Ca−4+nnxn

)
+

∞∑
n =5

(−11Can−5x
n)

+
∞∑

n =4

(−4Ca−4+nx
n) +

(
∞∑
n=1

(n− 1) bn−1(−2 + n)xn

)

+
(

∞∑
n=0

xnbnn(n− 1)
)

+
∞∑

n =1

(−10(n− 1) bn−1x
n)

+
∞∑

n =0

(−3xnbnn) +
(

∞∑
n=1

30bn−1x
n

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−3b1 + 30b0 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b1 + 30 = 0

Solving the above for b1 gives
b1 = 10

For n = 2, Eq (2B) gives
−4b2 + 20b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−4b2 + 200 = 0

Solving the above for b2 gives
b2 = 50

For n = 3, Eq (2B) gives
12b2 − 3b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

600− 3b3 = 0

Solving the above for b3 gives
b3 = 200

For n = N , where N = 4 which is the difference between the two roots, we are free to
choose b4 = 0. Hence for n = 4, Eq (2B) gives

4C + 1200 = 0

Which is solved for C. Solving for C gives

C = −300

For n = 5, Eq (2B) gives

(−3a0 + 6a1)C + 2b4 + 5b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1620 + 5b5 = 0

Solving the above for b5 gives
b5 = −324
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Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = −300 and all bn, then the second solution becomes

y2(x) = (−300)
(
x4
(
1− 2x

5 +O
(
x6))) ln (x)+1+10x+50x2+200x3−324x5+O

(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
4
(
1− 2x

5 +O
(
x6))+ c2

(
(−300)

(
x4
(
1− 2x

5 +O
(
x6))) ln (x) + 1 + 10x

+ 50x2 + 200x3 − 324x5 +O
(
x6))

Hence the final solution is

y = yh

= c1x
4
(
1− 2x

5 +O
(
x6))

+ c2

(
−300x4

(
1− 2x

5 +O
(
x6)) ln (x) + 1+ 10x+50x2 +200x3 − 324x5 +O

(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

4
(
1− 2x

5 +O
(
x6))

+c2

(
−300x4

(
1− 2x

5 +O
(
x6)) ln (x)+1+10x+50x2+200x3−324x5+O

(
x6))

Verification of solutions

y = c1x
4
(
1− 2x

5 +O
(
x6))

+ c2

(
−300x4

(
1− 2x

5 +O
(
x6)) ln (x)+ 1+ 10x+50x2 +200x3 − 324x5 +O

(
x6))

Verified OK.
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16.14.1 Maple step by step solution

Let’s solve
x2(x+ 1) y′′ + (−10x2 − 3x) y′ + 30yx = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 30y
x(x+1) +

(3+10x)y′
x(x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (3+10x)y′
x(x+1) + 30y

x(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 3+10x
x(x+1) , P3(x) = 30

x(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −7

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
x(x+ 1) y′′ + (−3− 10x) y′ + 30y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − u)
(

d2

du2y(u)
)
+ (7− 10u)

(
d
du
y(u)

)
+ 30y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−8 + r)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (k − 7 + r) + ak(k + r − 5) (k + r − 6))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−8 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 8}

• Each term in the series must be 0, giving the recursion relation
−ak+1(k + 1 + r) (k − 7 + r) + ak(k + r − 5) (k + r − 6) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−5)(k+r−6)

(k+1+r)(k−7+r)

• Recursion relation for r = 0 ; series terminates at k = 5
ak+1 = ak(k−5)(k−6)

(k+1)(k−7)

• Apply recursion relation for k = 0
a1 = −30a0

7

• Apply recursion relation for k = 1
a2 = −5a1

3

• Express in terms of a0
a2 = 50a0

7
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• Apply recursion relation for k = 2
a3 = −4a2

5

• Express in terms of a0
a3 = −40a0

7

• Apply recursion relation for k = 3
a4 = −3a3

8

• Express in terms of a0
a4 = 15a0

7

• Apply recursion relation for k = 4
a5 = −2a4

15

• Express in terms of a0
a5 = −2a0

7

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− 30

7 u+ 50
7 u

2 − 40
7 u

3 + 15
7 u

4 − 2
7u

5)
• Revert the change of variables u = x+ 1[

y = a0
(5
7x

4 − 2
7x

5)]
• Recursion relation for r = 8

ak+1 = ak(k+3)(k+2)
(k+9)(k+1)

• Solution for r = 8[
y(u) =

∞∑
k=0

aku
k+8, ak+1 = ak(k+3)(k+2)

(k+9)(k+1)

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k+8 , ak+1 = ak(k+3)(k+2)
(k+9)(k+1)

]
• Combine solutions and rename parameters[

y = a0
(5
7x

4 − 2
7x

5)+ ( ∞∑
k=0

bk(x+ 1)k+8
)
, b1+k = bk(k+3)(k+2)

(k+9)(1+k)

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.046 (sec). Leaf size: 48� �
Order:=6;
dsolve(x^2*(1+x)*diff(y(x),x$2)-x*(3+10*x)*diff(y(x),x)+30*x*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
4
(
1− 2

5x+O
(
x6))+ ln (x)

(
43200x4 − 17280x5 +O

(
x6)) c2

+
(
−144− 1440x− 7200x2 − 28800x3 − 90720x4 + 82944x5 +O

(
x6)) c2

3 Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 48� �
AsymptoticDSolveValue[x^2*(1+x)*y''[x]-x*(3+10*x)*y'[x]+30*x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x4 − 2x5

5

)
+ c1

(
745x4 − 300x4 log(x) + 200x3 + 50x2 + 10x+ 1

)
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16.15 problem 11
16.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6528

Internal problem ID [1427]
Internal file name [OUTPUT/1428_Sunday_June_05_2022_02_16_47_AM_97370590/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + x(x+ 1) y′ − 3y(x+ 3) = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
x2 + x

)
y′ + (−3x− 9) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x+ 1
x

q(x) = −3(x+ 3)
x2
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Table 800: Table p(x), q(x) singularites.

p(x) = x+1
x

singularity type
x = 0 “regular”

q(x) = −3(x+3)
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
x2 + x

)
y′ + (−3x− 9) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x2 + x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (−3x− 9)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

x1+n+ran(n+ r)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
∞∑

n =0

(
−3x1+n+ran

)
+

∞∑
n =0

(
−9anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r

∞∑
n =0

(
−3x1+n+ran

)
=

∞∑
n=1

(
−3an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
∞∑

n =1

(
−3an−1x

n+r
)
+

∞∑
n =0

(
−9anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− 9anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r − 9a0xr = 0

Or
(xrr(−1 + r) + xrr − 9xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 9

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

r2 − 9 = 0

Solving for r gives the roots of the indicial equation as

r1 = 3
r2 = −3

Since a0 6= 0 then the indicial equation becomes(
r2 − 9

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 6 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x3

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x3

Or

y1(x) =
∞∑
n=0

anx
n+3

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−3

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1) + an−1(n+ r − 1) + an(n+ r)− 3an−1 − 9an = 0
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Solving for an from recursive equation (4) gives

an = − an−1(n+ r − 4)
n2 + 2nr + r2 − 9 (4)

Which for the root r = 3 becomes

an = −an−1(n− 1)
n (n+ 6) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
3− r

r2 + 2r − 8
Which for the root r = 3 becomes

a1 = 0

And the table now becomes

n an,r an

a0 1 1
a1

3−r
r2+2r−8 0

For n = 2, using the above recursive equation gives

a2 =
−3 + r

r3 + 8r2 + 11r − 20
Which for the root r = 3 becomes

a2 = 0

And the table now becomes

n an,r an

a0 1 1
a1

3−r
r2+2r−8 0

a2
−3+r

r3+8r2+11r−20 0
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For n = 3, using the above recursive equation gives

a3 =
3− r

(r + 6) r (5 + r) (r + 4)

Which for the root r = 3 becomes
a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1

3−r
r2+2r−8 0

a2
−3+r

r3+8r2+11r−20 0

a3
3−r

(r+6)r(5+r)(r+4) 0

For n = 4, using the above recursive equation gives

a4 =
−3 + r

(r + 6) (5 + r) (r + 4) (r + 7) (r + 1)

Which for the root r = 3 becomes
a4 = 0

And the table now becomes

n an,r an

a0 1 1
a1

3−r
r2+2r−8 0

a2
−3+r

r3+8r2+11r−20 0

a3
3−r

(r+6)r(5+r)(r+4) 0

a4
−3+r

(r+6)(5+r)(r+4)(r+7)(r+1) 0

For n = 5, using the above recursive equation gives

a5 =
3− r

(r + 6) (5 + r) (r + 4) (r + 7) (r + 8) (r + 2)

Which for the root r = 3 becomes
a5 = 0
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And the table now becomes

n an,r an

a0 1 1
a1

3−r
r2+2r−8 0

a2
−3+r

r3+8r2+11r−20 0

a3
3−r

(r+6)r(5+r)(r+4) 0

a4
−3+r

(r+6)(5+r)(r+4)(r+7)(r+1) 0

a5
3−r

(r+6)(5+r)(r+4)(r+7)(r+8)(r+2) 0

For n = 6, using the above recursive equation gives

a6 =
−3 + r

(r + 6) (5 + r) (r + 4) (r + 7) (r + 8) (r + 9) (r + 3)

Which for the root r = 3 becomes
a6 = 0

And the table now becomes

n an,r an

a0 1 1
a1

3−r
r2+2r−8 0

a2
−3+r

r3+8r2+11r−20 0

a3
3−r

(r+6)r(5+r)(r+4) 0

a4
−3+r

(r+6)(5+r)(r+4)(r+7)(r+1) 0

a5
3−r

(r+6)(5+r)(r+4)(r+7)(r+8)(r+2) 0

a6
−3+r

(r+6)(5+r)(r+4)(r+7)(r+8)(r+9)(r+3) 0

Using the above table, then the solution y1(x) is

y1(x) = x3(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7. . .
)

= x3(1 +O
(
x7))

Now the second solution y2(x) is found. Let

r1 − r2 = N
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Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 6. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a6(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a6

= −3 + r

(r + 6) (5 + r) (r + 4) (r + 7) (r + 8) (r + 9) (r + 3)

Therefore

lim
r→r2

−3 + r

(r + 6) (5 + r) (r + 4) (r + 7) (r + 8) (r + 9) (r + 3) = lim
r→−3

−3 + r

(r + 6) (5 + r) (r + 4) (r + 7) (r + 8) (r + 9) (r + 3)
= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode x2y′′ + (x2 + x) y′ + (−3x− 9) y = 0 gives

x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
x2 + x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+ (−3x− 9)
(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
x2y′′1(x) +

(
x2 + x

)
y′1(x) + (−3x− 9) y1(x)

)
ln (x) + x2

(
2y′1(x)

x
− y1(x)

x2

)
+ (x2 + x) y1(x)

x

)
C + x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
x2 + x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ (−3x− 9)

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

x2y′′1(x) +
(
x2 + x

)
y′1(x) + (−3x− 9) y1(x) = 0

Eq (7) simplifes to

(8)

(
x2
(
2y′1(x)

x
− y1(x)

x2

)
+ (x2 + x) y1(x)

x

)
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
x2 + x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ (−3x− 9)

(
∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

((
∞∑
n=0

anx
n+r1

)
x+ 2

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)
x

)
C

+
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2

+
(
x2 + x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

+ (−3x− 9)
(

∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 3 and r2 = −3 then the above becomes

(10)

((
∞∑
n=0

anx
n+3

)
x+ 2

(
∞∑
n=0

x2+nan(n+ 3)
)
x

)
C

+
(

∞∑
n=0

x−5+nbn(n− 3) (−4 + n)
)
x2

+
(
x2 + x

)( ∞∑
n=0

x−4+nbn(n− 3)
)

+ (−3x− 9)
(

∞∑
n=0

bnx
n−3

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

C x4+nan

)
+
(

∞∑
n=0

2C xn+3an(n+ 3)
)

+
(

∞∑
n=0

xn−3bn(−4 + n) (n− 3)
)

+
(

∞∑
n=0

xn−2bn(n− 3)
)

+
(

∞∑
n=0

xn−3bn(n− 3)
)

+
∞∑

n =0

(
−3xn−2bn

)
+

∞∑
n =0

(
−9bnxn−3) = 0

The next step is to make all powers of x be n − 3 in each summation term. Going
over each summation term above with power of x in it which is not already xn−3 and
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adjusting the power and the corresponding index gives

∞∑
n =0

C x4+nan =
∞∑
n=7

Can−7x
n−3

∞∑
n =0

2C xn+3an(n+ 3) =
∞∑
n=6

2Can−6(n− 3)xn−3

∞∑
n =0

xn−2bn(n− 3) =
∞∑
n=1

bn−1(−4 + n)xn−3

∞∑
n =0

(
−3xn−2bn

)
=

∞∑
n=1

(
−3bn−1x

n−3)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 3.

(2B)

(
∞∑
n=7

Can−7x
n−3

)
+
(

∞∑
n=6

2Can−6(n− 3)xn−3

)

+
(

∞∑
n=0

xn−3bn(−4 + n) (n− 3)
)

+
(

∞∑
n=1

bn−1(−4 + n)xn−3

)

+
(

∞∑
n=0

xn−3bn(n− 3)
)

+
∞∑

n =1

(
−3bn−1x

n−3)+ ∞∑
n =0

(
−9bnxn−3) = 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−5b1 − 6b0 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−5b1 − 6 = 0

Solving the above for b1 gives
b1 = −6

5
For n = 2, Eq (2B) gives

−8b2 − 5b1 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−8b2 + 6 = 0

Solving the above for b2 gives
b2 =

3
4

For n = 3, Eq (2B) gives
−4b2 − 9b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3− 9b3 = 0

Solving the above for b3 gives
b3 = −1

3
For n = 4, Eq (2B) gives

−8b4 − 3b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−8b4 + 1 = 0

Solving the above for b4 gives
b4 =

1
8

For n = 5, Eq (2B) gives
−5b5 − 2b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−5b5 −
1
4 = 0

Solving the above for b5 gives
b5 = − 1

20
For n = N , where N = 6 which is the difference between the two roots, we are free to
choose b6 = 0. Hence for n = 6, Eq (2B) gives

6C + 1
20 = 0

Which is solved for C. Solving for C gives

C = − 1
120
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Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = − 1
120 and all bn, then the second solution becomes

y2(x) = − 1
120
(
x3(1 +O

(
x7))) ln (x) + 1− 6x

5 + 3x2

4 − x3

3 + x4

8 − x5

20 +O(x7)
x3

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3(1 +O

(
x7))

+ c2

(
− 1
120
(
x3(1 +O

(
x7))) ln (x) + 1− 6x

5 + 3x2

4 − x3

3 + x4

8 − x5

20 +O(x7)
x3

)

Hence the final solution is

y = yh

= c1x
3(1+O

(
x7))+c2

(
−x3(1 +O(x7)) ln (x)

120 +
1− 6x

5 + 3x2

4 − x3

3 + x4

8 − x5

20 +O(x7)
x3

)

Summary
The solution(s) found are the following

(1)
y = c1x

3(1 +O
(
x7))

+ c2

(
−x3(1 +O(x7)) ln (x)

120 +
1− 6x

5 + 3x2

4 − x3

3 + x4

8 − x5

20 +O(x7)
x3

)
Verification of solutions

y= c1x
3(1+O

(
x7))+c2

(
−x3(1 +O(x7)) ln (x)

120 +
1− 6x

5 + 3x2

4 − x3

3 + x4

8 − x5

20 +O(x7)
x3

)

Verified OK.
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16.15.1 Maple step by step solution

Let’s solve
x2y′′ + (x2 + x) y′ + (−3x− 9) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = 3(x+3)y
x2 − (x+1)y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (x+1)y′
x

− 3(x+3)y
x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x+1
x
, P3(x) = −3(x+3)

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + x(x+ 1) y′ + (−3x− 9) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(3 + r) (−3 + r)xr +
(

∞∑
k=1

(ak(k + r + 3) (k + r − 3) + ak−1(k − 4 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(3 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3, 3}

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 3) (k + r − 3) + ak−1(k − 4 + r) = 0

• Shift index using k− >k + 1
ak+1(k + 4 + r) (k − 2 + r) + ak(k + r − 3) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak(k+r−3)

(k+4+r)(k−2+r)

• Recursion relation for r = −3 ; series terminates at k = 6
ak+1 = − ak(k−6)

(k+1)(k−5)

• Series not valid for r = −3 , division by 0 in the recursion relation at k = 5
ak+1 = − ak(k−6)

(k+1)(k−5)

• Recursion relation for r = 3
ak+1 = − akk

(k+7)(k+1)
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• Solution for r = 3[
y =

∞∑
k=0

akx
k+3, ak+1 = − akk

(k+7)(k+1)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 37� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*(1+x)*diff(y(x),x)-3*(3+x)*y(x)=0,y(x),type='series',x=0);� �
y(x) = c1x

3(1 + O
(
x6))

+ c2(−86400 + 103680x− 64800x2 + 28800x3 − 10800x4 + 4320x5 +O(x6))
x3

3 Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 39� �
AsymptoticDSolveValue[x^2*y''[x]+x*(1+x)*y'[x]-3*(3+x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2x
3 + c1

(
1
x3 − 6

5x2 + x

8 + 3
4x − 1

3

)
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16.16 problem 12
16.16.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6544

Internal problem ID [1428]
Internal file name [OUTPUT/1429_Sunday_June_05_2022_02_16_52_AM_48502818/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + x(1− 2x) y′ − (x+ 4) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
−2x2 + x

)
y′ + (−x− 4) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −2x− 1
x

q(x) = −x+ 4
x2
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Table 802: Table p(x), q(x) singularites.

p(x) = −2x−1
x

singularity type
x = 0 “regular”

q(x) = −x+4
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
−2x2 + x

)
y′ + (−x− 4) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−2x2 + x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (−x− 4)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−2x1+n+ran(n+ r)

)
+
(

∞∑
n=0

xn+ran(n+ r)
)

+
∞∑

n =0

(
−x1+n+ran

)
+

∞∑
n =0

(
−4anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−2an−1(n+ r − 1)xn+r

)
∞∑

n =0

(
−x1+n+ran

)
=

∞∑
n=1

(
−an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−2an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r)
)

+
∞∑

n =1

(
−an−1x

n+r
)
+

∞∑
n =0

(
−4anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− 4anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r − 4a0xr = 0

Or
(xrr(−1 + r) + xrr − 4xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 4

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

r2 − 4 = 0

Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = −2

Since a0 6= 0 then the indicial equation becomes(
r2 − 4

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x2

Or

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1)− 2an−1(n+ r − 1) + an(n+ r)− an−1 − 4an = 0

6534



Solving for an from recursive equation (4) gives

an = an−1(2n+ 2r − 1)
n2 + 2nr + r2 − 4 (4)

Which for the root r = 2 becomes

an = an−1(2n+ 3)
n (n+ 4) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
1 + 2r

r2 + 2r − 3
Which for the root r = 2 becomes

a1 = 1
And the table now becomes

n an,r an

a0 1 1
a1

1+2r
r2+2r−3 1

For n = 2, using the above recursive equation gives

a2 =
4r2 + 8r + 3

(r + 3) (−1 + r) r (r + 4)
Which for the root r = 2 becomes

a2 =
7
12

And the table now becomes

n an,r an

a0 1 1
a1

1+2r
r2+2r−3 1

a2
4r2+8r+3

(r+3)(−1+r)r(r+4)
7
12
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For n = 3, using the above recursive equation gives

a3 =
8r3 + 36r2 + 46r + 15

(r + 3) (−1 + r) r (r + 4) (5 + r) (r + 1)

Which for the root r = 2 becomes
a3 =

1
4

And the table now becomes

n an,r an

a0 1 1
a1

1+2r
r2+2r−3 1

a2
4r2+8r+3

(r+3)(−1+r)r(r+4)
7
12

a3
8r3+36r2+46r+15

(r+3)(−1+r)r(r+4)(5+r)(r+1)
1
4

For n = 4, using the above recursive equation gives

a4 =
16r4 + 128r3 + 344r2 + 352r + 105

(r + 3) r (r + 4) (5 + r) (r2 + 8r + 12) (r2 − 1)

Which for the root r = 2 becomes

a4 =
11
128

And the table now becomes

n an,r an

a0 1 1
a1

1+2r
r2+2r−3 1

a2
4r2+8r+3

(r+3)(−1+r)r(r+4)
7
12

a3
8r3+36r2+46r+15

(r+3)(−1+r)r(r+4)(5+r)(r+1)
1
4

a4
16r4+128r3+344r2+352r+105

(r+3)r(r+4)(5+r)(r2+8r+12)(r2−1)
11
128

For n = 5, using the above recursive equation gives

a5 =
32r5 + 400r4 + 1840r3 + 3800r2 + 3378r + 945

r (−1 + r) (5 + r) (r + 4) (r + 3)2 (r + 1) (r + 6) (r + 2) (r + 7)
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Which for the root r = 2 becomes

a5 =
143
5760

And the table now becomes

n an,r an

a0 1 1
a1

1+2r
r2+2r−3 1

a2
4r2+8r+3

(r+3)(−1+r)r(r+4)
7
12

a3
8r3+36r2+46r+15

(r+3)(−1+r)r(r+4)(5+r)(r+1)
1
4

a4
16r4+128r3+344r2+352r+105

(r+3)r(r+4)(5+r)(r2+8r+12)(r2−1)
11
128

a5
32r5+400r4+1840r3+3800r2+3378r+945

r(−1+r)(5+r)(r+4)(r+3)2(r+1)(r+6)(r+2)(r+7)
143
5760

Using the above table, then the solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2

(
1 + x+ 7x2

12 + x3

4 + 11x4

128 + 143x5

5760 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 4. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a4(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a4

= 16r4 + 128r3 + 344r2 + 352r + 105
(r + 3) r (r + 4) (5 + r) (r2 + 8r + 12) (r2 − 1)

Therefore

lim
r→r2

16r4 + 128r3 + 344r2 + 352r + 105
(r + 3) r (r + 4) (5 + r) (r2 + 8r + 12) (r2 − 1) = lim

r→−2

16r4 + 128r3 + 344r2 + 352r + 105
(r + 3) r (r + 4) (5 + r) (r2 + 8r + 12) (r2 − 1)

= undefined

6537



Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode x2y′′ + (−2x2 + x) y′ + (−x− 4) y = 0 gives

x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−2x2 + x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+ (−x− 4)
(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0
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Which can be written as

(7)

((
x2y′′1(x)+

(
−2x2+x

)
y′1(x)+(−x−4) y1(x)

)
ln (x)+x2

(
2y′1(x)

x
− y1(x)

x2

)
+ (−2x2 + x) y1(x)

x

)
C + x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−2x2 + x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ (−x− 4)

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

x2y′′1(x) +
(
−2x2 + x

)
y′1(x) + (−x− 4) y1(x) = 0

Eq (7) simplifes to

(8)

(
x2
(
2y′1(x)

x
− y1(x)

x2

)
+ (−2x2 + x) y1(x)

x

)
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−2x2 + x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ (−x− 4)

(
∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x− 2

(
∞∑
n=0

anx
n+r1

)
x

)
C

+
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2

+
(
−2x2 + x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

+ (−x− 4)
(

∞∑
n=0

bnx
n+r2

)
= 0
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Since r1 = 2 and r2 = −2 then the above becomes

(10)

(
2
(

∞∑
n=0

x1+nan(n+ 2)
)
x− 2

(
∞∑
n=0

anx
n+2

)
x

)
C

+
(

∞∑
n=0

x−4+nbn(n− 2) (−3 + n)
)
x2

+
(
−2x2 + x

)( ∞∑
n=0

x−3+nbn(n− 2)
)

+ (−x− 4)
(

∞∑
n=0

bnx
n−2

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C xn+2an(n+ 2)
)

+
∞∑

n =0

(
−2C x3+nan

)
+
(

∞∑
n=0

xn−2bn
(
n2 − 5n+ 6

))
+

∞∑
n =0

(
−2xn−1bn(n− 2)

)
+
(

∞∑
n=0

xn−2bn(n− 2)
)

+
∞∑

n =0

(
−xn−1bn

)
+

∞∑
n =0

(
−4bnxn−2) = 0

The next step is to make all powers of x be n − 2 in each summation term. Going
over each summation term above with power of x in it which is not already xn−2 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xn+2an(n+ 2) =
∞∑
n=4

2Ca−4+n(n− 2)xn−2

∞∑
n =0

(
−2C x3+nan

)
=

∞∑
n=5

(
−2Can−5x

n−2)
∞∑

n =0

(
−2xn−1bn(n− 2)

)
=

∞∑
n=1

(
−2bn−1(−3 + n)xn−2)

∞∑
n =0

(
−xn−1bn

)
=

∞∑
n=1

(
−bn−1x

n−2)
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Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 2.

(2B)

(
∞∑
n=4

2Ca−4+n(n− 2)xn−2

)
+

∞∑
n =5

(
−2Can−5x

n−2)
+
(

∞∑
n=0

xn−2bn
(
n2 − 5n+ 6

))
+

∞∑
n =1

(
−2bn−1(−3 + n)xn−2)

+
(

∞∑
n=0

xn−2bn(n− 2)
)

+
∞∑

n =1

(
−bn−1x

n−2)+ ∞∑
n =0

(
−4bnxn−2) = 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−3b1 + 3b0 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b1 + 3 = 0

Solving the above for b1 gives
b1 = 1

For n = 2, Eq (2B) gives
b1 − 4b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1− 4b2 = 0

Solving the above for b2 gives
b2 =

1
4

For n = 3, Eq (2B) gives
−3b3 − b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b3 −
1
4 = 0

Solving the above for b3 gives
b3 = − 1

12
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For n = N , where N = 4 which is the difference between the two roots, we are free to
choose b4 = 0. Hence for n = 4, Eq (2B) gives

4C + 1
4 = 0

Which is solved for C. Solving for C gives

C = − 1
16

For n = 5, Eq (2B) gives

(−2a0 + 6a1)C − 5b4 + 5b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−1
4 + 5b5 = 0

Solving the above for b5 gives
b5 =

1
20

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = − 1
16 and all bn, then the second solution becomes

y2(x) = − 1
16

(
x2
(
1 + x+ 7x2

12 + x3

4 + 11x4

128 + 143x5

5760 +O
(
x6))) ln (x)

+
1 + x+ x2

4 − x3

12 +
x5

20 +O(x6)
x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
(
1 + x+ 7x2

12 + x3

4 + 11x4

128 + 143x5

5760 +O
(
x6))

+ c2

(
− 1
16

(
x2
(
1 + x+ 7x2

12 + x3

4 + 11x4

128 + 143x5

5760 +O
(
x6))) ln (x)

+
1 + x+ x2

4 − x3

12 +
x5

20 +O(x6)
x2

)
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Hence the final solution is

y = yh

= c1x
2
(
1 + x+ 7x2

12 + x3

4 + 11x4

128 + 143x5

5760 +O
(
x6))

+ c2

−
x2
(
1 + x+ 7x2

12 + x3

4 + 11x4

128 + 143x5

5760 +O(x6)
)
ln (x)

16

+
1 + x+ x2

4 − x3

12 +
x5

20 +O(x6)
x2


Summary
The solution(s) found are the following

(1)

y = c1x
2
(
1 + x+ 7x2

12 + x3

4 + 11x4

128 + 143x5

5760 +O
(
x6))

+ c2

−
x2
(
1 + x+ 7x2

12 + x3

4 + 11x4

128 + 143x5

5760 +O(x6)
)
ln (x)

16

+
1 + x+ x2

4 − x3

12 +
x5

20 +O(x6)
x2


Verification of solutions

y = c1x
2
(
1 + x+ 7x2

12 + x3

4 + 11x4

128 + 143x5

5760 +O
(
x6))

+ c2

−
x2
(
1 + x+ 7x2

12 + x3

4 + 11x4

128 + 143x5

5760 +O(x6)
)
ln (x)

16

+
1 + x+ x2

4 − x3

12 +
x5

20 +O(x6)
x2


Verified OK.
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16.16.1 Maple step by step solution

Let’s solve
x2y′′ + (−2x2 + x) y′ + (−x− 4) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = (x+4)y
x2 + (2x−1)y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (2x−1)y′
x

− (x+4)y
x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2x−1
x

, P3(x) = −x+4
x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ − x(2x− 1) y′ + (−x− 4) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m
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xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−2 + r)xr +
(

∞∑
k=1

(ak(k + r + 2) (k + r − 2)− ak−1(2k − 1 + 2r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 2}

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2) (k + r − 2)− 2

(
k − 1

2 + r
)
ak−1 = 0

• Shift index using k− >k + 1
ak+1(k + 3 + r) (k + r − 1)− 2

(
k + 1

2 + r
)
ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = (2k+2r+1)ak

(k+3+r)(k+r−1)

• Recursion relation for r = −2
ak+1 = (2k−3)ak

(k+1)(k−3)

• Series not valid for r = −2 , division by 0 in the recursion relation at k = 3
ak+1 = (2k−3)ak

(k+1)(k−3)

• Recursion relation for r = 2
ak+1 = (2k+5)ak

(k+5)(k+1)

• Solution for r = 2
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[
y =

∞∑
k=0

akx
k+2, ak+1 = (2k+5)ak

(k+5)(k+1)

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 61� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*(1-2*x)*diff(y(x),x)-(4+x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1x

4(1 + x+ 7
12x

2 + 1
4x

3 + 11
128x

4 + 143
5760x

5 +O(x6)
)
+ c2

(
ln (x) (9x4 + 9x5 +O(x6)) +

(
−144− 144x− 36x2 + 12x3 − 36

5 x
5 +O(x6)

))
x2

3 Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 75� �
AsymptoticDSolveValue[x^2*y''[x]+x*(1-2*x)*y'[x]-(4+x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
3x4 − 16x3 + 48x2 + 192x+ 192

192x2 − 1
16x

2 log(x)
)

+ c2

(
11x6

128 + x5

4 + 7x4

12 + x3 + x2
)
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16.17 problem 13
16.17.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6557

Internal problem ID [1429]
Internal file name [OUTPUT/1430_Sunday_June_05_2022_02_16_56_AM_12855953/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

x(x+ 1) y′′ − 4y′ − 2y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x2 + x
)
y′′ − 2y − 4y′ = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 4
x (x+ 1)

q(x) = − 2
x (x+ 1)
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Table 804: Table p(x), q(x) singularites.

p(x) = − 4
x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

q(x) = − 2
x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x(x+ 1) y′′ − 4y′ − 2y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x(x+ 1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

− 4
(

∞∑
n=0

(n+ r) anxn+r−1

)
− 2
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−4(n+ r) anxn+r−1)+ ∞∑

n =0

(
−2anxn+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r−1

∞∑
n =0

(
−2anxn+r

)
=

∞∑
n=1

(
−2an−1x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=1

an−1(n+r−1) (n+r−2)xn+r−1

)
+
(

∞∑
n=0

xn+r−1an(n+r) (n+r−1)
)

+
∞∑

n =0

(
−4(n+ r) anxn+r−1)+ ∞∑

n =1

(
−2an−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1)− 4(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r)− 4ra0x−1+r = 0

Or (
x−1+rr(−1 + r)− 4r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(−5 + r) = 0
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Since the above is true for all x then the indicial equation becomes

r(−5 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 5
r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(−5 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 5 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x5

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+5

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)− 4an(n+ r)− 2an−1 = 0
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Solving for an from recursive equation (4) gives

an = −(n+ r − 3) an−1

n− 5 + r
(4)

Which for the root r = 5 becomes

an = −(n+ 2) an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 5 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
2− r

−4 + r

Which for the root r = 5 becomes
a1 = −3

And the table now becomes

n an,r an

a0 1 1
a1

2−r
−4+r

−3

For n = 2, using the above recursive equation gives

a2 =
r2 − 3r + 2

(−4 + r) (r − 3)
Which for the root r = 5 becomes

a2 = 6
And the table now becomes

n an,r an

a0 1 1
a1

2−r
−4+r

−3

a2
r2−3r+2

(−4+r)(r−3) 6
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For n = 3, using the above recursive equation gives

a3 = − r(−1 + r)
(−4 + r) (r − 3)

Which for the root r = 5 becomes

a3 = −10

And the table now becomes

n an,r an

a0 1 1
a1

2−r
−4+r

−3

a2
r2−3r+2

(−4+r)(r−3) 6

a3 − r(−1+r)
(−4+r)(r−3) −10

For n = 4, using the above recursive equation gives

a4 =
r(1 + r)

(−4 + r) (r − 3)

Which for the root r = 5 becomes
a4 = 15

And the table now becomes

n an,r an

a0 1 1
a1

2−r
−4+r

−3

a2
r2−3r+2

(−4+r)(r−3) 6

a3 − r(−1+r)
(−4+r)(r−3) −10

a4
r(1+r)

(−4+r)(r−3) 15

For n = 5, using the above recursive equation gives

a5 = − (1 + r) (2 + r)
(−4 + r) (r − 3)
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Which for the root r = 5 becomes

a5 = −21

And the table now becomes

n an,r an

a0 1 1
a1

2−r
−4+r

−3

a2
r2−3r+2

(−4+r)(r−3) 6

a3 − r(−1+r)
(−4+r)(r−3) −10

a4
r(1+r)

(−4+r)(r−3) 15

a5 − (1+r)(2+r)
(−4+r)(r−3) −21

Using the above table, then the solution y1(x) is

y1(x) = x5(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x5(1− 3x+ 6x2 − 10x3 + 15x4 − 21x5 +O

(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 5. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a5(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a5

= − (1 + r) (2 + r)
(−4 + r) (r − 3)

Therefore

lim
r→r2

− (1 + r) (2 + r)
(−4 + r) (r − 3) = lim

r→0
− (1 + r) (2 + r)
(−4 + r) (r − 3)

= −1
6
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The limit is −1
6 . Since the limit exists then the log term is not needed and we can set

C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)bn−1(n+ r − 1) (n+ r − 2) + bn(n+ r) (n+ r − 1)− 4(n+ r) bn − 2bn−1 = 0

Which for for the root r = 0 becomes

(4A)bn−1(n− 1) (n− 2) + bnn(n− 1)− 4nbn − 2bn−1 = 0

Solving for bn from the recursive equation (4) gives

bn = −(n+ r − 3) bn−1

n− 5 + r
(5)

Which for the root r = 0 becomes

bn = −(n− 3) bn−1

n− 5 (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = −−2 + r

−4 + r

Which for the root r = 0 becomes
b1 = −1

2
And the table now becomes
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n bn,r bn

b0 1 1
b1

2−r
−4+r

−1
2

For n = 2, using the above recursive equation gives

b2 =
r2 − 3r + 2

(−4 + r) (r − 3)

Which for the root r = 0 becomes
b2 =

1
6

And the table now becomes

n bn,r bn

b0 1 1
b1

2−r
−4+r

−1
2

b2
r2−3r+2

(−4+r)(r−3)
1
6

For n = 3, using the above recursive equation gives

b3 = − r(−1 + r)
(−4 + r) (r − 3)

Which for the root r = 0 becomes
b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

2−r
−4+r

−1
2

b2
r2−3r+2

(−4+r)(r−3)
1
6

b3 − r(−1+r)
(−4+r)(r−3) 0

For n = 4, using the above recursive equation gives

b4 =
r(1 + r)

(−4 + r) (r − 3)

6555



Which for the root r = 0 becomes
b4 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

2−r
−4+r

−1
2

b2
r2−3r+2

(−4+r)(r−3)
1
6

b3 − r(−1+r)
(−4+r)(r−3) 0

b4
r(1+r)

(−4+r)(r−3) 0

For n = 5, using the above recursive equation gives

b5 = − (1 + r) (2 + r)
(−4 + r) (r − 3)

Which for the root r = 0 becomes
b5 = −1

6
And the table now becomes

n bn,r bn

b0 1 1
b1

2−r
−4+r

−1
2

b2
r2−3r+2

(−4+r)(r−3)
1
6

b3 − r(−1+r)
(−4+r)(r−3) 0

b4
r(1+r)

(−4+r)(r−3) 0

b5 − (1+r)(2+r)
(−4+r)(r−3) −1

6

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1− x

2 + x2

6 − x5

6 +O
(
x6)
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
5(1−3x+6x2−10x3+15x4−21x5+O

(
x6))+ c2

(
1− x

2 + x2

6 − x5

6 +O
(
x6))

Hence the final solution is

y = yh

= c1x
5(1− 3x+ 6x2 − 10x3 + 15x4 − 21x5 +O

(
x6))+ c2

(
1− x

2 + x2

6 − x5

6 +O
(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
5(1−3x+6x2−10x3+15x4−21x5+O

(
x6))+ c2

(
1− x

2 + x2

6 − x5

6 +O
(
x6))

Verification of solutions

y = c1x
5(1− 3x+6x2 − 10x3 +15x4 − 21x5 +O

(
x6))+ c2

(
1− x

2 + x2

6 − x5

6 +O
(
x6))

Verified OK.

16.17.1 Maple step by step solution

Let’s solve
x(x+ 1) y′′ − 4y′ − 2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 2y

x(x+1) +
4y′

x(x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 4y′

x(x+1) −
2y

x(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions
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[
P2(x) = − 4

x(x+1) , P3(x) = − 2
x(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 4

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
x(x+ 1) y′′ − 4y′ − 2y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − u)
(

d2

du2y(u)
)
− 4 d

du
y(u)− 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert d

du
y(u) to series expansion

d
du
y(u) =

∞∑
k=0

ak(k + r)uk+r−1

◦ Shift index using k− >k + 1
d
du
y(u) =

∞∑
k=−1

ak+1(k + 1 + r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions
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−a0r(3 + r)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (k + 4 + r) + ak(k + 1 + r) (k + r − 2))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−3, 0}

• Each term in the series must be 0, giving the recursion relation
((−k − r − 4) ak+1 + ak(k + r − 2)) (k + 1 + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−2)

k+4+r

• Recursion relation for r = −3 ; series terminates at k = 5
ak+1 = ak(k−5)

k+1

• Apply recursion relation for k = 0
a1 = −5a0

• Apply recursion relation for k = 1
a2 = −2a1

• Express in terms of a0
a2 = 10a0

• Apply recursion relation for k = 2
a3 = −a2

• Express in terms of a0
a3 = −10a0

• Apply recursion relation for k = 3
a4 = −a3

2

• Express in terms of a0
a4 = 5a0

• Apply recursion relation for k = 4
a5 = −a4

5

• Express in terms of a0
a5 = −a0
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• Terminating series solution of the ODE for r = −3 . Use reduction of order to find the second linearly independent solution
y(u) = a0 · (−u5 + 5u4 − 10u3 + 10u2 − 5u+ 1)

• Revert the change of variables u = x+ 1
[y = −a0x

5]
• Recursion relation for r = 0 ; series terminates at k = 2

ak+1 = ak(k−2)
k+4

• Apply recursion relation for k = 0
a1 = −a0

2

• Apply recursion relation for k = 1
a2 = −a1

5

• Express in terms of a0
a2 = a0

10

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− 1

2u+ 1
10u

2)
• Revert the change of variables u = x+ 1[

y = a0
(3
5 −

3
10x+ 1

10x
2)]

• Combine solutions and rename parameters[
y = −a0x

5 + b0
(3
5 −

3
10x+ 1

10x
2)]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 40� �
Order:=6;
dsolve(x*(1+x)*diff(y(x),x$2)-4*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
5(1− 3x+ 6x2 − 10x3 + 15x4 − 21x5 +O

(
x6))

+ c2
(
2880− 1440x+ 480x2 − 480x5 +O

(
x6))

3 Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 48� �
AsymptoticDSolveValue[x*(1+x)*y''[x]-4*y'[x]-2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x2

6 − x

2 + 1
)
+ c2

(
15x9 − 10x8 + 6x7 − 3x6 + x5)
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16.18 problem 14
16.18.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6574

Internal problem ID [1430]
Internal file name [OUTPUT/1431_Sunday_June_05_2022_02_16_59_AM_71911011/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(1 + 2x) y′′ + x(9 + 13x) y′ + (7 + 5x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

2x3 + x2) y′′ + (13x2 + 9x
)
y′ + (7 + 5x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 9 + 13x
x (1 + 2x)

q(x) = 7 + 5x
x2 (1 + 2x)
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Table 806: Table p(x), q(x) singularites.

p(x) = 9+13x
x(1+2x)

singularity type
x = 0 “regular”
x = −1

2 “regular”

q(x) = 7+5x
x2(1+2x)

singularity type
x = 0 “regular”
x = −1

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−1

2 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(1 + 2x) y′′ +
(
13x2 + 9x

)
y′ + (7 + 5x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(1 + 2x)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
13x2 + 9x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (7 + 5x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

13x1+n+ran(n+ r)
)

+
(

∞∑
n=0

9xn+ran(n+ r)
)

+
(

∞∑
n=0

7anxn+r

)
+
(

∞∑
n=0

5x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

13x1+n+ran(n+ r) =
∞∑
n=1

13an−1(n+ r − 1)xn+r

∞∑
n =0

5x1+n+ran =
∞∑
n=1

5an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

13an−1(n+ r − 1)xn+r

)

+
(

∞∑
n=0

9xn+ran(n+ r)
)

+
(

∞∑
n=0

7anxn+r

)
+
(

∞∑
n=1

5an−1x
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 9xn+ran(n+ r) + 7anxn+r = 0
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When n = 0 the above becomes

xra0r(−1 + r) + 9xra0r + 7a0xr = 0

Or
(xrr(−1 + r) + 9xrr + 7xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 + 8r + 7

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 + 8r + 7 = 0

Solving for r gives the roots of the indicial equation as

r1 = −1
r2 = −7

Since a0 6= 0 then the indicial equation becomes(
r2 + 8r + 7

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 6 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =

∞∑
n=0

anx
n

x

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x7

Or

y1(x) =
∞∑
n=0

anx
n−1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−7

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)2an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
+ 13an−1(n+ r − 1) + 9an(n+ r) + 7an + 5an−1 = 0

Solving for an from recursive equation (4) gives

an = −an−1(2n2 + 4nr + 2r2 + 7n+ 7r − 4)
n2 + 2nr + r2 + 8n+ 8r + 7 (4)

Which for the root r = −1 becomes

an = −an−1(2n2 + 3n− 9)
n (n+ 6) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−2r2 − 11r − 5
r2 + 10r + 16

Which for the root r = −1 becomes

a1 =
4
7

And the table now becomes

n an,r an

a0 1 1
a1

−2r2−11r−5
r2+10r+16

4
7

For n = 2, using the above recursive equation gives

a2 =
4r4 + 52r3 + 211r2 + 273r + 90
(r + 8) (r + 2) (r + 9) (r + 3)
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Which for the root r = −1 becomes

a2 = − 5
28

And the table now becomes

n an,r an

a0 1 1
a1

−2r2−11r−5
r2+10r+16

4
7

a2
4r4+52r3+211r2+273r+90
(r+8)(r+2)(r+9)(r+3) − 5

28

For n = 3, using the above recursive equation gives

a3 =
−8r6 − 180r5 − 1550r4 − 6375r3 − 12752r2 − 11265r − 3150

(r + 8) (r + 2) (r + 9) (r + 3) (r + 10) (r + 4)

Which for the root r = −1 becomes

a3 =
5
42

And the table now becomes

n an,r an

a0 1 1
a1

−2r2−11r−5
r2+10r+16

4
7

a2
4r4+52r3+211r2+273r+90
(r+8)(r+2)(r+9)(r+3) − 5

28

a3
−8r6−180r5−1550r4−6375r3−12752r2−11265r−3150

(r+8)(r+2)(r+9)(r+3)(r+10)(r+4)
5
42

For n = 4, using the above recursive equation gives

a4 =
16r6 + 336r5 + 2680r4 + 10200r3 + 19129r2 + 16149r + 4410

(r + 11) (r + 4) (r + 10) (r + 3) (r + 9) (r + 2)

Which for the root r = −1 becomes

a4 = − 5
48

And the table now becomes
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n an,r an

a0 1 1
a1

−2r2−11r−5
r2+10r+16

4
7

a2
4r4+52r3+211r2+273r+90
(r+8)(r+2)(r+9)(r+3) − 5

28

a3
−8r6−180r5−1550r4−6375r3−12752r2−11265r−3150

(r+8)(r+2)(r+9)(r+3)(r+10)(r+4)
5
42

a4
16r6+336r5+2680r4+10200r3+19129r2+16149r+4410

(r+11)(r+4)(r+10)(r+3)(r+9)(r+2) − 5
48

For n = 5, using the above recursive equation gives

a5 =
−32r6 − 624r5 − 4640r4 − 16680r3 − 29978r2 − 24591r − 6615

(r + 12) (r + 2) (r + 3) (r + 10) (r + 4) (r + 11)

Which for the root r = −1 becomes

a5 =
7
66

And the table now becomes

n an,r an

a0 1 1
a1

−2r2−11r−5
r2+10r+16

4
7

a2
4r4+52r3+211r2+273r+90
(r+8)(r+2)(r+9)(r+3) − 5

28

a3
−8r6−180r5−1550r4−6375r3−12752r2−11265r−3150

(r+8)(r+2)(r+9)(r+3)(r+10)(r+4)
5
42

a4
16r6+336r5+2680r4+10200r3+19129r2+16149r+4410

(r+11)(r+4)(r+10)(r+3)(r+9)(r+2) − 5
48

a5
−32r6−624r5−4640r4−16680r3−29978r2−24591r−6615

(r+12)(r+2)(r+3)(r+10)(r+4)(r+11)
7
66

For n = 6, using the above recursive equation gives

a6 =
64r6 + 1152r5 + 8080r4 + 27840r3 + 48556r2 + 39048r + 10395

(r + 13) (r + 11) (r + 4) (r + 3) (r + 2) (r + 12)

Which for the root r = −1 becomes

a6 = − 21
176

And the table now becomes
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n an,r an

a0 1 1
a1

−2r2−11r−5
r2+10r+16

4
7

a2
4r4+52r3+211r2+273r+90
(r+8)(r+2)(r+9)(r+3) − 5

28

a3
−8r6−180r5−1550r4−6375r3−12752r2−11265r−3150

(r+8)(r+2)(r+9)(r+3)(r+10)(r+4)
5
42

a4
16r6+336r5+2680r4+10200r3+19129r2+16149r+4410

(r+11)(r+4)(r+10)(r+3)(r+9)(r+2) − 5
48

a5
−32r6−624r5−4640r4−16680r3−29978r2−24591r−6615

(r+12)(r+2)(r+3)(r+10)(r+4)(r+11)
7
66

a6
64r6+1152r5+8080r4+27840r3+48556r2+39048r+10395

(r+13)(r+11)(r+4)(r+3)(r+2)(r+12) − 21
176

Using the above table, then the solution y1(x) is

y1(x) =
1
x

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7. . .

)
=

1 + 4x
7 − 5x2

28 + 5x3

42 − 5x4

48 + 7x5

66 − 21x6

176 +O(x7)
x

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 6. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a6(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a6

= 64r6 + 1152r5 + 8080r4 + 27840r3 + 48556r2 + 39048r + 10395
(r + 13) (r + 11) (r + 4) (r + 3) (r + 2) (r + 12)

Therefore

lim
r→r2

64r6 + 1152r5 + 8080r4 + 27840r3 + 48556r2 + 39048r + 10395
(r + 13) (r + 11) (r + 4) (r + 3) (r + 2) (r + 12) = lim

r→−7

64r6 + 1152r5 + 8080r4 + 27840r3 + 48556r2 + 39048r + 10395
(r + 13) (r + 11) (r + 4) (r + 3) (r + 2) (r + 12)

= −3003
160

The limit is −3003
160 . Since the limit exists then the log term is not needed and we can
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set C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−7

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)2bn−1(n+ r − 1) (n+ r − 2) + bn(n+ r) (n+ r − 1)
+ 13bn−1(n+ r − 1) + 9bn(n+ r) + 7bn + 5bn−1 = 0

Which for for the root r = −7 becomes

2bn−1(n− 8) (n− 9) + bn(n− 7) (n− 8) + 13bn−1(n− 8) + 9bn(n− 7) + 7bn + 5bn−1 = 0
(4A)

Solving for bn from the recursive equation (4) gives

bn = −bn−1(2n2 + 4nr + 2r2 + 7n+ 7r − 4)
n2 + 2nr + r2 + 8n+ 8r + 7 (5)

Which for the root r = −7 becomes

bn = −bn−1(2n2 − 21n+ 45)
n2 − 6n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −7 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = −2r2 + 11r + 5
r2 + 10r + 16

Which for the root r = −7 becomes

b1 =
26
5
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And the table now becomes

n bn,r bn

b0 1 1
b1

−2r2−11r−5
r2+10r+16

26
5

For n = 2, using the above recursive equation gives

b2 =
4r4 + 52r3 + 211r2 + 273r + 90
(r2 + 10r + 16) (r2 + 12r + 27)

Which for the root r = −7 becomes

b2 =
143
20

And the table now becomes

n bn,r bn

b0 1 1
b1

−2r2−11r−5
r2+10r+16

26
5

b2
4r4+52r3+211r2+273r+90
(r+8)(r+2)(r+9)(r+3)

143
20

For n = 3, using the above recursive equation gives

b3 = −8r6 + 180r5 + 1550r4 + 6375r3 + 12752r2 + 11265r + 3150
(r2 + 10r + 16) (r2 + 12r + 27) (r2 + 14r + 40)

Which for the root r = −7 becomes

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−2r2−11r−5
r2+10r+16

26
5

b2
4r4+52r3+211r2+273r+90
(r+8)(r+2)(r+9)(r+3)

143
20

b3
−8r6−180r5−1550r4−6375r3−12752r2−11265r−3150

(r+8)(r+2)(r+9)(r+3)(r+10)(r+4) 0
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For n = 4, using the above recursive equation gives

b4 =
16r6 + 336r5 + 2680r4 + 10200r3 + 19129r2 + 16149r + 4410

(r + 11) (r2 + 14r + 40) (r2 + 12r + 27) (r + 2)

Which for the root r = −7 becomes

b4 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−2r2−11r−5
r2+10r+16

26
5

b2
4r4+52r3+211r2+273r+90
(r+8)(r+2)(r+9)(r+3)

143
20

b3
−8r6−180r5−1550r4−6375r3−12752r2−11265r−3150

(r+8)(r+2)(r+9)(r+3)(r+10)(r+4) 0

b4
16r6+336r5+2680r4+10200r3+19129r2+16149r+4410

(r+11)(r+4)(r+10)(r+3)(r+9)(r+2) 0

For n = 5, using the above recursive equation gives

b5 = −32r6 + 624r5 + 4640r4 + 16680r3 + 29978r2 + 24591r + 6615
(r + 12) (r + 2) (r + 3) (r2 + 14r + 40) (r + 11)

Which for the root r = −7 becomes

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−2r2−11r−5
r2+10r+16

26
5

b2
4r4+52r3+211r2+273r+90
(r+8)(r+2)(r+9)(r+3)

143
20

b3
−8r6−180r5−1550r4−6375r3−12752r2−11265r−3150

(r+8)(r+2)(r+9)(r+3)(r+10)(r+4) 0

b4
16r6+336r5+2680r4+10200r3+19129r2+16149r+4410

(r+11)(r+4)(r+10)(r+3)(r+9)(r+2) 0

b5
−32r6−624r5−4640r4−16680r3−29978r2−24591r−6615

(r+12)(r+2)(r+3)(r+10)(r+4)(r+11) 0
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For n = 6, using the above recursive equation gives

b6 =
64r6 + 1152r5 + 8080r4 + 27840r3 + 48556r2 + 39048r + 10395

(r + 13) (r + 11) (r + 4) (r + 3) (r + 2) (r + 12)

Which for the root r = −7 becomes

b6 = −3003
160

And the table now becomes

n bn,r bn

b0 1 1
b1

−2r2−11r−5
r2+10r+16

26
5

b2
4r4+52r3+211r2+273r+90
(r+8)(r+2)(r+9)(r+3)

143
20

b3
−8r6−180r5−1550r4−6375r3−12752r2−11265r−3150

(r+8)(r+2)(r+9)(r+3)(r+10)(r+4) 0

b4
16r6+336r5+2680r4+10200r3+19129r2+16149r+4410

(r+11)(r+4)(r+10)(r+3)(r+9)(r+2) 0

b5
−32r6−624r5−4640r4−16680r3−29978r2−24591r−6615

(r+12)(r+2)(r+3)(r+10)(r+4)(r+11) 0

b6
64r6+1152r5+8080r4+27840r3+48556r2+39048r+10395

(r+13)(r+11)(r+4)(r+3)(r+2)(r+12) −3003
160

Using the above table, then the solution y2(x) is

y2(x) =
1
x

(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6 + b7x
7. . .

)
=

1 + 26x
5 + 143x2

20 − 3003x6

160 +O(x7)
x7

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
1 + 4x

7 − 5x2

28 + 5x3

42 − 5x4

48 + 7x5

66 − 21x6

176 +O(x7)
)

x

+
c2
(
1 + 26x

5 + 143x2

20 − 3003x6

160 +O(x7)
)

x7
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Hence the final solution is

y = yh

=
c1
(
1 + 4x

7 − 5x2

28 + 5x3

42 − 5x4

48 + 7x5

66 − 21x6

176 +O(x7)
)

x

+
c2
(
1 + 26x

5 + 143x2

20 − 3003x6

160 +O(x7)
)

x7

Summary
The solution(s) found are the following

(1)
y =

c1
(
1 + 4x

7 − 5x2

28 + 5x3

42 − 5x4

48 + 7x5

66 − 21x6

176 +O(x7)
)

x

+
c2
(
1 + 26x

5 + 143x2

20 − 3003x6

160 +O(x7)
)

x7

Verification of solutions

y =
c1
(
1 + 4x

7 − 5x2

28 + 5x3

42 − 5x4

48 + 7x5

66 − 21x6

176 +O(x7)
)

x

+
c2
(
1 + 26x

5 + 143x2

20 − 3003x6

160 +O(x7)
)

x7

Verified OK.

16.18.1 Maple step by step solution

Let’s solve
x2(1 + 2x) y′′ + (13x2 + 9x) y′ + (7 + 5x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (7+5x)y
x2(1+2x) −

(9+13x)y′
x(1+2x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (9+13x)y′
x(1+2x) + (7+5x)y

x2(1+2x) = 0

� Check to see if x0 is a regular singular point
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◦ Define functions[
P2(x) = 9+13x

x(1+2x) , P3(x) = 7+5x
x2(1+2x)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 9

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 7

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(1 + 2x) y′′ + x(9 + 13x) y′ + (7 + 5x) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m
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◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(7 + r) (1 + r)xr +
(

∞∑
k=1

(ak(k + r + 7) (k + r + 1) + ak−1(k + 4 + r) (2k − 1 + 2r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(7 + r) (1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−7,−1}

• Each term in the series must be 0, giving the recursion relation
2
(
k − 1

2 + r
)
(k + 4 + r) ak−1 + ak(k + r + 7) (k + r + 1) = 0

• Shift index using k− >k + 1
2
(
k + 1

2 + r
)
(k + r + 5) ak + ak+1(k + 8 + r) (k + 2 + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = − (2k+2r+1)(k+r+5)ak

(k+8+r)(k+2+r)

• Recursion relation for r = −7 ; series terminates at k = 2
ak+1 = − (2k−13)(k−2)ak

(k+1)(k−5)

• Apply recursion relation for k = 0
a1 = 26a0

5

• Apply recursion relation for k = 1
a2 = 11a1

8

• Express in terms of a0
a2 = 143a0

20

• Terminating series solution of the ODE for r = −7 . Use reduction of order to find the second linearly independent solution
y = a0 ·

(
1 + 26

5 x+ 143
20 x

2)
• Recursion relation for r = −1

ak+1 = − (2k−1)(k+4)ak
(k+7)(k+1)

• Solution for r = −1
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[
y =

∞∑
k=0

akx
k−1, ak+1 = − (2k−1)(k+4)ak

(k+7)(k+1)

]
• Combine solutions and rename parameters[

y = a0 ·
(
1 + 26

5 x+ 143
20 x

2)+ ( ∞∑
k=0

bkx
k−1
)
, b1+k = − (2k−1)(4+k)bk

(k+7)(1+k)

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 41� �
Order:=6;
dsolve(x^2*(1+2*x)*diff(y(x),x$2)+x*(9+13*x)*diff(y(x),x)+(7+5*x)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1
(
1 + 4

7x− 5
28x

2 + 5
42x

3 − 5
48x

4 + 7
66x

5 +O(x6)
)

x

+ c2(−86400− 449280x− 617760x2 +O(x6))
x7

3 Solution by Mathematica
Time used: 0.059 (sec). Leaf size: 54� �
AsymptoticDSolveValue[x^2*(1+2*x)*y''[x]+x*(9+13*x)*y'[x]+(7+5*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
−5x3

48 + 5x2

42 − 5x
28 + 1

x
+ 4

7

)
+ c1

(
1
x7 + 26

5x6 + 143
20x5

)
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16.19 problem 15
16.19.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6589

Internal problem ID [1431]
Internal file name [OUTPUT/1432_Sunday_June_05_2022_02_17_03_AM_1594100/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2(1 + 2x) y′′ − 2x(−x+ 4) y′ − (7 + 5x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

8x3 + 4x2) y′′ + (2x2 − 8x
)
y′ + (−5x− 7) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x− 4
2x (1 + 2x)

q(x) = − 7 + 5x
4x2 (1 + 2x)
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Table 808: Table p(x), q(x) singularites.

p(x) = x−4
2x(1+2x)

singularity type
x = 0 “regular”
x = −1

2 “regular”

q(x) = − 7+5x
4x2(1+2x)

singularity type
x = 0 “regular”
x = −1

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−1

2 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2(1 + 2x) y′′ +
(
2x2 − 8x

)
y′ + (−5x− 7) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2(1 + 2x)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
2x2 − 8x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (−5x− 7)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

8x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−8xn+ran(n+ r)

)
+

∞∑
n =0

(
−5x1+n+ran

)
+

∞∑
n =0

(
−7anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

8x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

8an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

2x1+n+ran(n+ r) =
∞∑
n=1

2an−1(n+ r − 1)xn+r

∞∑
n =0

(
−5x1+n+ran

)
=

∞∑
n=1

(
−5an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

8an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

2an−1(n+ r − 1)xn+r

)

+
∞∑

n =0

(
−8xn+ran(n+ r)

)
+

∞∑
n =1

(
−5an−1x

n+r
)
+

∞∑
n =0

(
−7anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1)− 8xn+ran(n+ r)− 7anxn+r = 0
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When n = 0 the above becomes

4xra0r(−1 + r)− 8xra0r − 7a0xr = 0

Or
(4xrr(−1 + r)− 8xrr − 7xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 − 12r − 7

)
xr = 0

Since the above is true for all x then the indicial equation becomes

4r2 − 12r − 7 = 0

Solving for r gives the roots of the indicial equation as

r1 =
7
2

r2 = −1
2

Since a0 6= 0 then the indicial equation becomes(
4r2 − 12r − 7

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x
7
2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

√
x

Or

y1(x) =
∞∑
n=0

anx
n+ 7

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n− 1

2

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)8an−1(n+ r − 1) (n+ r − 2) + 4an(n+ r) (n+ r − 1)
+ 2an−1(n+ r − 1)− 8an(n+ r)− 5an−1 − 7an = 0

Solving for an from recursive equation (4) gives

an = −an−1(8n2 + 16nr + 8r2 − 22n− 22r + 9)
4n2 + 8nr + 4r2 − 12n− 12r − 7 (4)

Which for the root r = 7
2 becomes

an = −an−1(4n2 + 17n+ 15)
2n (n+ 4) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 7

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−8r2 + 6r + 5
4r2 − 4r − 15

Which for the root r = 7
2 becomes

a1 = −18
5

And the table now becomes

n an,r an

a0 1 1
a1

−8r2+6r+5
4r2−4r−15 −18

5

For n = 2, using the above recursive equation gives

a2 =
32r3 − 32r2 − 14r + 5
8r3 − 12r2 − 50r + 75
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Which for the root r = 7
2 becomes

a2 =
39
4

And the table now becomes

n an,r an

a0 1 1
a1

−8r2+6r+5
4r2−4r−15 −18

5

a2
32r3−32r2−14r+5
8r3−12r2−50r+75

39
4

For n = 3, using the above recursive equation gives

a3 =
−128r4 + 32r3 + 152r2 + 22r − 15
(4r2 + 12r − 7) (4r2 − 16r + 15)

Which for the root r = 7
2 becomes

a3 = −663
28

And the table now becomes

n an,r an

a0 1 1
a1

−8r2+6r+5
4r2−4r−15 −18

5

a2
32r3−32r2−14r+5
8r3−12r2−50r+75

39
4

a3
−128r4+32r3+152r2+22r−15
(4r2+12r−7)(4r2−16r+15) −663

28

For n = 4, using the above recursive equation gives

a4 =
256r4 + 256r3 − 544r2 − 304r + 105

16r4 − 232r2 + 384r − 135

Which for the root r = 7
2 becomes

a4 =
13923
256

And the table now becomes
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n an,r an

a0 1 1
a1

−8r2+6r+5
4r2−4r−15 −18

5

a2
32r3−32r2−14r+5
8r3−12r2−50r+75

39
4

a3
−128r4+32r3+152r2+22r−15
(4r2+12r−7)(4r2−16r+15) −663

28

a4
256r4+256r3−544r2−304r+105

16r4−232r2+384r−135
13923
256

For n = 5, using the above recursive equation gives

a5 =
−1024r5 − 3840r4 − 640r3 + 7200r2 + 2924r − 1155

32r5 + 80r4 − 560r3 + 40r2 + 1098r − 495

Which for the root r = 7
2 becomes

a5 = −7735
64

And the table now becomes

n an,r an

a0 1 1
a1

−8r2+6r+5
4r2−4r−15 −18

5

a2
32r3−32r2−14r+5
8r3−12r2−50r+75

39
4

a3
−128r4+32r3+152r2+22r−15
(4r2+12r−7)(4r2−16r+15) −663

28

a4
256r4+256r3−544r2−304r+105

16r4−232r2+384r−135
13923
256

a5
−1024r5−3840r4−640r3+7200r2+2924r−1155

32r5+80r4−560r3+40r2+1098r−495 −7735
64

Using the above table, then the solution y1(x) is

y1(x) = x
7
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
7
2

(
1− 18x

5 + 39x2

4 − 663x3

28 + 13923x4

256 − 7735x5

64 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N
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Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 4. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a4(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a4

= 256r4 + 256r3 − 544r2 − 304r + 105
16r4 − 232r2 + 384r − 135

Therefore

lim
r→r2

256r4 + 256r3 − 544r2 − 304r + 105
16r4 − 232r2 + 384r − 135 = lim

r→− 1
2

256r4 + 256r3 − 544r2 − 304r + 105
16r4 − 232r2 + 384r − 135

= − 35
128

The limit is − 35
128 . Since the limit exists then the log term is not needed and we can set

C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n− 1

2

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)8bn−1(n+ r − 1) (n+ r − 2) + 4bn(n+ r) (n+ r − 1)
+ 2bn−1(n+ r − 1)− 8bn(n+ r)− 5bn−1 − 7bn = 0

Which for for the root r = −1
2 becomes

(4A)8bn−1

(
n− 3

2

)(
n− 5

2

)
+ 4bn

(
n− 1

2

)(
n− 3

2

)
+ 2bn−1

(
n− 3

2

)
− 8bn

(
n− 1

2

)
− 5bn−1 − 7bn = 0

Solving for bn from the recursive equation (4) gives

bn = −bn−1(8n2 + 16nr + 8r2 − 22n− 22r + 9)
4n2 + 8nr + 4r2 − 12n− 12r − 7 (5)
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Which for the root r = −1
2 becomes

bn = −bn−1(8n2 − 30n+ 22)
4n2 − 16n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = − 8r2 − 6r − 5
4r2 − 4r − 15

Which for the root r = −1
2 becomes

b1 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−8r2+6r+5
4r2−4r−15 0

For n = 2, using the above recursive equation gives

b2 =
32r3 − 32r2 − 14r + 5
(4r2 + 4r − 15) (2r − 5)

Which for the root r = −1
2 becomes

b2 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−8r2+6r+5
4r2−4r−15 0

b2
32r3−32r2−14r+5
8r3−12r2−50r+75 0
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For n = 3, using the above recursive equation gives

b3 = −128r4 − 32r3 − 152r2 − 22r + 15
(2r − 5) (2r − 3) (4r2 + 12r − 7)

Which for the root r = −1
2 becomes

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−8r2+6r+5
4r2−4r−15 0

b2
32r3−32r2−14r+5
8r3−12r2−50r+75 0

b3
−128r4+32r3+152r2+22r−15
16r4−16r3−160r2+292r−105 0

For n = 4, using the above recursive equation gives

b4 =
256r4 + 256r3 − 544r2 − 304r + 105
(2r + 9) (2r − 1) (2r − 5) (2r − 3)

Which for the root r = −1
2 becomes

b4 = − 35
128

And the table now becomes

n bn,r bn

b0 1 1
b1

−8r2+6r+5
4r2−4r−15 0

b2
32r3−32r2−14r+5
8r3−12r2−50r+75 0

b3
−128r4+32r3+152r2+22r−15
16r4−16r3−160r2+292r−105 0

b4
256r4+256r3−544r2−304r+105

16r4−232r2+384r−135 − 35
128

For n = 5, using the above recursive equation gives

b5 = −1024r5 + 3840r4 + 640r3 − 7200r2 − 2924r + 1155
(2r − 1) (2r − 5) (2r − 3) (4r2 + 28r + 33)
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Which for the root r = −1
2 becomes

b5 =
63
64

And the table now becomes

n bn,r bn

b0 1 1
b1

−8r2+6r+5
4r2−4r−15 0

b2
32r3−32r2−14r+5
8r3−12r2−50r+75 0

b3
−128r4+32r3+152r2+22r−15
16r4−16r3−160r2+292r−105 0

b4
256r4+256r3−544r2−304r+105

16r4−232r2+384r−135 − 35
128

b5
−1024r5−3840r4−640r3+7200r2+2924r−1155

32r5+80r4−560r3+40r2+1098r−495
63
64

Using the above table, then the solution y2(x) is

y2(x) = x
7
2
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1− 35x4

128 + 63x5

64 +O(x6)
√
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
7
2

(
1− 18x

5 + 39x2

4 − 663x3

28 + 13923x4

256 − 7735x5

64 +O
(
x6))

+
c2
(
1− 35x4

128 + 63x5

64 +O(x6)
)

√
x

Hence the final solution is

y = yh

= c1x
7
2

(
1− 18x

5 + 39x2

4 − 663x3

28 + 13923x4

256 − 7735x5

64 +O
(
x6))

+
c2
(
1− 35x4

128 + 63x5

64 +O(x6)
)

√
x

6588



Summary
The solution(s) found are the following

(1)
y = c1x

7
2

(
1− 18x

5 + 39x2

4 − 663x3

28 + 13923x4

256 − 7735x5

64 +O
(
x6))

+
c2
(
1− 35x4

128 + 63x5

64 +O(x6)
)

√
x

Verification of solutions

y = c1x
7
2

(
1− 18x

5 + 39x2

4 − 663x3

28 + 13923x4

256 − 7735x5

64 +O
(
x6))

+
c2
(
1− 35x4

128 + 63x5

64 +O(x6)
)

√
x

Verified OK.

16.19.1 Maple step by step solution

Let’s solve
4x2(1 + 2x) y′′ + (2x2 − 8x) y′ + (−5x− 7) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = (7+5x)y
4x2(1+2x) −

(x−4)y′
2x(1+2x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (x−4)y′
2x(1+2x) −

(7+5x)y
4x2(1+2x) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = x−4
2x(1+2x) , P3(x) = − 7+5x

4x2(1+2x)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −2

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= −7
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2(1 + 2x) y′′ + 2x(x− 4) y′ + (−5x− 7) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−7 + 2r)xr +
(

∞∑
k=1

(ak(2k + 2r + 1) (2k + 2r − 7) + ak−1(2k − 1 + 2r) (4k − 9 + 4r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(1 + 2r) (−7 + 2r) = 0
• Values of r that satisfy the indicial equation

r ∈
{
−1

2 ,
7
2

}
• Each term in the series must be 0, giving the recursion relation

8
(
k − 1

2 + r
) (

k − 9
4 + r

)
ak−1 + 4

(
k + r − 7

2

) (
k + r + 1

2

)
ak = 0

• Shift index using k− >k + 1
8
(
k + r + 1

2

) (
k − 5

4 + r
)
ak + 4

(
k − 5

2 + r
) (

k + 3
2 + r

)
ak+1 = 0

• Recursion relation that defines series solution to ODE
ak+1 = − (2k+2r+1)(4k+4r−5)ak

(2k−5+2r)(2k+3+2r)

• Recursion relation for r = −1
2

ak+1 = − 2k(4k−7)ak
(2k−6)(2k+2)

• Series not valid for r = −1
2 , division by 0 in the recursion relation at k = 3

ak+1 = − 2k(4k−7)ak
(2k−6)(2k+2)

• Recursion relation for r = 7
2

ak+1 = − (2k+8)(4k+9)ak
(2k+2)(2k+10)

• Solution for r = 7
2[

y =
∞∑
k=0

akx
k+ 7

2 , ak+1 = − (2k+8)(4k+9)ak
(2k+2)(2k+10)

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 41� �
Order:=6;
dsolve(4*x^2*(1+2*x)*diff(y(x),x$2)-2*x*(4-x)*diff(y(x),x)-(7+5*x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1x

4(1− 18
5 x+ 39

4 x
2 − 663

28 x
3 + 13923

256 x4 − 7735
64 x5 +O(x6)

)
+ c2

(
−144− 405

8 x4 + 729
4 x5 +O(x6)

)
√
x

3 Solution by Mathematica
Time used: 0.069 (sec). Leaf size: 67� �
AsymptoticDSolveValue[4*x^2*(1+2*x)*y''[x]-2*x*(4-x)*y'[x]-(7+5*x)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
1√
x
− 35x7/2

128

)
+ c2

(
13923x15/2

256 − 663x13/2

28 + 39x11/2

4 − 18x9/2

5 + x7/2
)
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16.20 problem 16
16.20.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6604

Internal problem ID [1432]
Internal file name [OUTPUT/1433_Sunday_June_05_2022_02_17_06_AM_65559690/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 16.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

3x2(x+ 3) y′′ − x(15 + x) y′ − 20y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

3x3 + 9x2) y′′ + (−x2 − 15x
)
y′ − 20y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 15 + x

3x (x+ 3)

q(x) = − 20
3x2 (x+ 3)
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Table 810: Table p(x), q(x) singularites.

p(x) = − 15+x
3x(x+3)

singularity type
x = −3 “regular”
x = 0 “regular”

q(x) = − 20
3x2(x+3)

singularity type
x = −3 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−3, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

3x2(x+ 3) y′′ +
(
−x2 − 15x

)
y′ − 20y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
3x2(x+ 3)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−x2 − 15x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
− 20

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

3x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−x1+n+ran(n+ r)

)
+

∞∑
n =0

(
−15xn+ran(n+ r)

)
+

∞∑
n =0

(
−20anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

3x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

3an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

(
−x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−an−1(n+ r − 1)xn+r

)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

3an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−an−1(n+ r − 1)xn+r

)
+

∞∑
n =0

(
−15xn+ran(n+ r)

)
+

∞∑
n =0

(
−20anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

9xn+ran(n+ r) (n+ r − 1)− 15xn+ran(n+ r)− 20anxn+r = 0

When n = 0 the above becomes

9xra0r(−1 + r)− 15xra0r − 20a0xr = 0

Or
(9xrr(−1 + r)− 15xrr − 20xr) a0 = 0
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Since a0 6= 0 then the above simplifies to(
9r2 − 24r − 20

)
xr = 0

Since the above is true for all x then the indicial equation becomes

9r2 − 24r − 20 = 0

Solving for r gives the roots of the indicial equation as

r1 =
10
3

r2 = −2
3

Since a0 6= 0 then the indicial equation becomes(
9r2 − 24r − 20

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x
10
3

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x
2
3

Or

y1(x) =
∞∑
n=0

anx
n+ 10

3

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n− 2

3

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
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of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)3an−1(n+ r − 1) (n+ r − 2) + 9an(n+ r) (n+ r − 1)
− an−1(n+ r − 1)− 15an(n+ r)− 20an = 0

Solving for an from recursive equation (4) gives

an = −an−1(3n2 + 6nr + 3r2 − 10n− 10r + 7)
9n2 + 18nr + 9r2 − 24n− 24r − 20 (4)

Which for the root r = 10
3 becomes

an = −an−1(3n2 + 10n+ 7)
9n (n+ 4) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 10

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−3r2 + 4r

9r2 − 6r − 35

Which for the root r = 10
3 becomes

a1 = −4
9

And the table now becomes

n an,r an

a0 1 1
a1

−3r2+4r
9r2−6r−35 −4

9

For n = 2, using the above recursive equation gives

a2 =
r(3r2 + 2r − 1)

(3r + 8) (9r2 − 6r − 35)
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Which for the root r = 10
3 becomes

a2 =
13
81

And the table now becomes

n an,r an

a0 1 1
a1

−3r2+4r
9r2−6r−35 −4

9

a2
r
(
3r2+2r−1

)
(3r+8)(9r2−6r−35)

13
81

For n = 3, using the above recursive equation gives

a3 =
−3r4 − 11r3 − 12r2 − 4r

81r4 + 459r3 + 135r2 − 2523r − 3080

Which for the root r = 10
3 becomes

a3 = − 832
15309

And the table now becomes

n an,r an

a0 1 1
a1

−3r2+4r
9r2−6r−35 −4

9

a2
r
(
3r2+2r−1

)
(3r+8)(9r2−6r−35)

13
81

a3
−3r4−11r3−12r2−4r

81r4+459r3+135r2−2523r−3080 − 832
15309

For n = 4, using the above recursive equation gives

a4 =
(r + 1) (r + 2) r(r + 3)

81r4 + 702r3 + 1107r2 − 3738r − 8624

Which for the root r = 10
3 becomes

a4 =
2470
137781

And the table now becomes

6598



n an,r an

a0 1 1
a1

−3r2+4r
9r2−6r−35 −4

9

a2
r
(
3r2+2r−1

)
(3r+8)(9r2−6r−35)

13
81

a3
−3r4−11r3−12r2−4r

81r4+459r3+135r2−2523r−3080 − 832
15309

a4
(r+1)(r+2)r(r+3)

81r4+702r3+1107r2−3738r−8624
2470

137781

For n = 5, using the above recursive equation gives

a5 = − (r + 4) (r + 1) (r + 2) r(r + 3)
243r5 + 3240r4 + 12420r3 − 90r2 − 76503r − 91630

Which for the root r = 10
3 becomes

a5 = − 21736
3720087

And the table now becomes

n an,r an

a0 1 1
a1

−3r2+4r
9r2−6r−35 −4

9

a2
r
(
3r2+2r−1

)
(3r+8)(9r2−6r−35)

13
81

a3
−3r4−11r3−12r2−4r

81r4+459r3+135r2−2523r−3080 − 832
15309

a4
(r+1)(r+2)r(r+3)

81r4+702r3+1107r2−3738r−8624
2470

137781

a5 − (r+4)(r+1)(r+2)r(r+3)
243r5+3240r4+12420r3−90r2−76503r−91630 − 21736

3720087

Using the above table, then the solution y1(x) is

y1(x) = x
10
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
10
3

(
1− 4x

9 + 13x2

81 − 832x3

15309 + 2470x4

137781 − 21736x5

3720087 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N
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Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 4. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a4(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a4

= (r + 1) (r + 2) r(r + 3)
81r4 + 702r3 + 1107r2 − 3738r − 8624

Therefore

lim
r→r2

(r + 1) (r + 2) r(r + 3)
81r4 + 702r3 + 1107r2 − 3738r − 8624 = lim

r→− 2
3

(r + 1) (r + 2) r(r + 3)
81r4 + 702r3 + 1107r2 − 3738r − 8624

= 7
59049

The limit is 7
59049 . Since the limit exists then the log term is not needed and we can set

C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n− 2

3

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)3bn−1(n+ r − 1) (n+ r − 2) + 9bn(n+ r) (n+ r − 1)
− bn−1(n+ r − 1)− 15bn(n+ r)− 20bn = 0

Which for for the root r = −2
3 becomes

(4A)3bn−1

(
n− 5

3

)(
n− 8

3

)
+ 9bn

(
n− 2

3

)(
n− 5

3

)
− bn−1

(
n− 5

3

)
− 15bn

(
n− 2

3

)
− 20bn = 0

Solving for bn from the recursive equation (4) gives

bn = −bn−1(3n2 + 6nr + 3r2 − 10n− 10r + 7)
9n2 + 18nr + 9r2 − 24n− 24r − 20 (5)
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Which for the root r = −2
3 becomes

bn = −bn−1(3n2 − 14n+ 15)
9n2 − 36n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −2

3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = − r(3r − 4)
9r2 − 6r − 35

Which for the root r = −2
3 becomes

b1 =
4
27

And the table now becomes

n bn,r bn

b0 1 1
b1

−3r2+4r
9r2−6r−35

4
27

For n = 2, using the above recursive equation gives

b2 =
r(3r2 + 2r − 1)

(3r + 8) (9r2 − 6r − 35)

Which for the root r = −2
3 becomes

b2 = − 1
243

And the table now becomes

n bn,r bn

b0 1 1
b1

−3r2+4r
9r2−6r−35

4
27

b2
r
(
3r2+2r−1

)
(3r+8)(9r2−6r−35) − 1

243
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For n = 3, using the above recursive equation gives

b3 = − (3r2 + 8r + 4) r(r + 1)
(3r + 11) (3r + 8) (9r2 − 6r − 35)

Which for the root r = −2
3 becomes

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−3r2+4r
9r2−6r−35

4
27

b2
r
(
3r2+2r−1

)
(3r+8)(9r2−6r−35) − 1

243

b3
−3r4−11r3−12r2−4r

81r4+459r3+135r2−2523r−3080 0

For n = 4, using the above recursive equation gives

b4 =
(r + 1) (r + 2) r(r + 3)

(3r + 14) (3r − 7) (3r + 8) (3r + 11)

Which for the root r = −2
3 becomes

b4 =
7

59049
And the table now becomes

n bn,r bn

b0 1 1
b1

−3r2+4r
9r2−6r−35

4
27

b2
r
(
3r2+2r−1

)
(3r+8)(9r2−6r−35) − 1

243

b3
−3r4−11r3−12r2−4r

81r4+459r3+135r2−2523r−3080 0

b4
(r+1)(r+2)r(r+3)

81r4+702r3+1107r2−3738r−8624
7

59049

For n = 5, using the above recursive equation gives

b5 = − (r + 4) (r + 1) (r + 2) r(r + 3)
(3r + 11) (3r − 7) (3r + 14) (9r2 + 66r + 85)
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Which for the root r = −2
3 becomes

b5 = − 28
531441

And the table now becomes

n bn,r bn

b0 1 1
b1

−3r2+4r
9r2−6r−35

4
27

b2
r
(
3r2+2r−1

)
(3r+8)(9r2−6r−35) − 1

243

b3
−3r4−11r3−12r2−4r

81r4+459r3+135r2−2523r−3080 0

b4
(r+1)(r+2)r(r+3)

81r4+702r3+1107r2−3738r−8624
7

59049

b5 − (r+4)(r+1)(r+2)r(r+3)
(3r+11)(3r−7)(3r+14)(9r2+66r+85) − 28

531441

Using the above table, then the solution y2(x) is

y2(x) = x
10
3
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1 + 4x

27 −
x2

243 +
7x4

59049 −
28x5

531441 +O(x6)
x

2
3

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
10
3

(
1− 4x

9 + 13x2

81 − 832x3

15309 + 2470x4

137781 − 21736x5

3720087 +O
(
x6))

+
c2
(
1 + 4x

27 −
x2

243 +
7x4

59049 −
28x5

531441 +O(x6)
)

x
2
3

Hence the final solution is

y = yh

= c1x
10
3

(
1− 4x

9 + 13x2

81 − 832x3

15309 + 2470x4

137781 − 21736x5

3720087 +O
(
x6))

+
c2
(
1 + 4x

27 −
x2

243 +
7x4

59049 −
28x5

531441 +O(x6)
)

x
2
3
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Summary
The solution(s) found are the following

(1)
y = c1x

10
3

(
1− 4x

9 + 13x2

81 − 832x3

15309 + 2470x4

137781 − 21736x5

3720087 +O
(
x6))

+
c2
(
1 + 4x

27 −
x2

243 +
7x4

59049 −
28x5

531441 +O(x6)
)

x
2
3

Verification of solutions

y = c1x
10
3

(
1− 4x

9 + 13x2

81 − 832x3

15309 + 2470x4

137781 − 21736x5

3720087 +O
(
x6))

+
c2
(
1 + 4x

27 −
x2

243 +
7x4

59049 −
28x5

531441 +O(x6)
)

x
2
3

Verified OK.

16.20.1 Maple step by step solution

Let’s solve
3x2(x+ 3) y′′ + (−x2 − 15x) y′ − 20y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = (15+x)y′
3x(x+3) +

20y
3x2(x+3)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (15+x)y′
3x(x+3) −

20y
3x2(x+3) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 15+x
3x(x+3) , P3(x) = − 20

3x2(x+3)

]
◦ (x+ 3) · P2(x) is analytic at x = −3

((x+ 3) · P2(x))
∣∣∣∣
x=−3

= 4
3

◦ (x+ 3)2 · P3(x) is analytic at x = −3
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(
(x+ 3)2 · P3(x)

) ∣∣∣∣
x=−3

= 0

◦ x = −3is a regular singular point
Check to see if x0 is a regular singular point
x0 = −3

• Multiply by denominators
3x2(x+ 3) y′′ − x(15 + x) y′ − 20y = 0

• Change variables using x = u− 3 so that the regular singular point is at u = 0

(3u3 − 18u2 + 27u)
(

d2

du2y(u)
)
+ (−u2 − 9u+ 36)

(
d
du
y(u)

)
− 20y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

9a0r(1 + 3r)u−1+r + (9a1(1 + r) (4 + 3r)− a0(18r2 − 9r + 20))ur +
(

∞∑
k=1

(9ak+1(k + 1 + r) (3k + 4 + 3r)− ak(18k2 + 36kr + 18r2 − 9k − 9r + 20) + ak−1(k + r − 1) (3k − 7 + 3r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
9r(1 + 3r) = 0

• Values of r that satisfy the indicial equation
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r ∈
{
0,−1

3

}
• Each term must be 0

9a1(1 + r) (4 + 3r)− a0(18r2 − 9r + 20) = 0
• Each term in the series must be 0, giving the recursion relation

3(−6ak + ak−1 + 9ak+1) k2 + (6(−6ak + ak−1 + 9ak+1) r + 9ak − 10ak−1 + 63ak+1) k + 3(−6ak + ak−1 + 9ak+1) r2 + (9ak − 10ak−1 + 63ak+1) r − 20ak + 7ak−1 + 36ak+1 = 0
• Shift index using k− >k + 1

3(−6ak+1 + ak + 9ak+2) (k + 1)2 + (6(−6ak+1 + ak + 9ak+2) r + 9ak+1 − 10ak + 63ak+2) (k + 1) + 3(−6ak+1 + ak + 9ak+2) r2 + (9ak+1 − 10ak + 63ak+2) r − 20ak+1 + 7ak + 36ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −3k2ak−18k2ak+1+6krak−36krak+1+3r2ak−18r2ak+1−4kak−27kak+1−4rak−27rak+1−29ak+1
9(3k2+6kr+3r2+13k+13r+14)

• Recursion relation for r = 0

ak+2 = −3k2ak−18k2ak+1−4kak−27kak+1−29ak+1
9(3k2+13k+14)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −3k2ak−18k2ak+1−4kak−27kak+1−29ak+1

9(3k2+13k+14) , 36a1 − 20a0 = 0
]

• Revert the change of variables u = x+ 3[
y =

∞∑
k=0

ak(x+ 3)k , ak+2 = −3k2ak−18k2ak+1−4kak−27kak+1−29ak+1
9(3k2+13k+14) , 36a1 − 20a0 = 0

]
• Recursion relation for r = −1

3

ak+2 = −3k2ak−18k2ak+1−6kak−15kak+1+ 5
3ak−22ak+1

9(3k2+11k+10)

• Solution for r = −1
3[

y(u) =
∞∑
k=0

aku
k− 1

3 , ak+2 = −3k2ak−18k2ak+1−6kak−15kak+1+ 5
3ak−22ak+1

9(3k2+11k+10) , 18a1 − 25a0 = 0
]

• Revert the change of variables u = x+ 3[
y =

∞∑
k=0

ak(x+ 3)k−
1
3 , ak+2 = −3k2ak−18k2ak+1−6kak−15kak+1+ 5

3ak−22ak+1
9(3k2+11k+10) , 18a1 − 25a0 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x+ 3)k
)
+
(

∞∑
k=0

bk(x+ 3)k−
1
3

)
, ak+2 = −3k2ak−18k2a1+k−4kak−27ka1+k−29a1+k

9(3k2+13k+14) , 36a1 − 20a0 = 0, bk+2 = −3k2bk−18k2b1+k−6kbk−15kb1+k+ 5
3 bk−22b1+k

9(3k2+11k+10) , 18b1 − 25b0 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 45� �
Order:=6;
dsolve(3*x^2*(3+x)*diff(y(x),x$2)-x*(15+x)*diff(y(x),x)-20*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1x

4(1− 4
9x+ 13

81x
2 − 832

15309x
3 + 2470

137781x
4 − 21736

3720087x
5 +O(x6)

)
+ c2

(
−144− 64

3 x+ 16
27x

2 − 112
6561x

4 + 448
59049x

5 +O(x6)
)

x
2
3

3 Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 85� �
AsymptoticDSolveValue[3*x^2*(3+x)*y''[x]-x*(15+x)*y'[x]-20*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
7x10/3

59049 − x4/3

243 + 1
x2/3

+ 4 3
√
x

27

)
+ c2

(
2470x22/3

137781 − 832x19/3

15309 + 13x16/3

81 − 4x13/3

9 + x10/3
)
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16.21 problem 17
16.21.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6620

Internal problem ID [1433]
Internal file name [OUTPUT/1434_Sunday_June_05_2022_02_17_10_AM_51484014/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x+ 1) y′′ + x(1− 10x) y′ − (9− 10x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x3 + x2) y′′ + (−10x2 + x
)
y′ + (10x− 9) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 10x− 1
x (x+ 1)

q(x) = 10x− 9
x2 (x+ 1)
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Table 812: Table p(x), q(x) singularites.

p(x) = − 10x−1
x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

q(x) = 10x−9
x2(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x+ 1) y′′ +
(
−10x2 + x

)
y′ + (10x− 9) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x+ 1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−10x2 + x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (10x− 9)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−10x1+n+ran(n+ r)

)
+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

10x1+n+ran

)
+

∞∑
n =0

(
−9anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

(
−10x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−10an−1(n+ r − 1)xn+r

)
∞∑

n =0

10x1+n+ran =
∞∑
n=1

10an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

an−1(n+ r− 1) (n+ r− 2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r− 1)
)

+
∞∑

n =1

(
−10an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=1

10an−1x
n+r

)
+

∞∑
n =0

(
−9anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− 9anxn+r = 0

6610



When n = 0 the above becomes

xra0r(−1 + r) + xra0r − 9a0xr = 0

Or
(xrr(−1 + r) + xrr − 9xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 9

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − 9 = 0

Solving for r gives the roots of the indicial equation as

r1 = 3
r2 = −3

Since a0 6= 0 then the indicial equation becomes(
r2 − 9

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 6 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x3

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x3

Or

y1(x) =
∞∑
n=0

anx
n+3

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−3

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
− 10an−1(n+ r − 1) + an(n+ r) + 10an−1 − 9an = 0

Solving for an from recursive equation (4) gives

an = −an−1(n2 + 2nr + r2 − 13n− 13r + 22)
n2 + 2nr + r2 − 9 (4)

Which for the root r = 3 becomes

an = −an−1(n2 − 7n− 8)
n (n+ 6) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−r2 + 11r − 10
r2 + 2r − 8

Which for the root r = 3 becomes
a1 = 2

And the table now becomes

n an,r an

a0 1 1
a1

−r2+11r−10
r2+2r−8 2

For n = 2, using the above recursive equation gives

a2 =
(r − 9) r(r − 10)
r3 + 7r2 + 2r − 40
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Which for the root r = 3 becomes
a2 =

9
4

And the table now becomes

n an,r an

a0 1 1
a1

−r2+11r−10
r2+2r−8 2

a2
(r−9)r(r−10)
r3+7r2+2r−40

9
4

For n = 3, using the above recursive equation gives

a3 = −(r − 9) (r − 10) (r + 1) (r − 8)
r4 + 13r3 + 44r2 − 28r − 240

Which for the root r = 3 becomes
a3 =

5
3

And the table now becomes

n an,r an

a0 1 1
a1

−r2+11r−10
r2+2r−8 2

a2
(r−9)r(r−10)
r3+7r2+2r−40

9
4

a3 − (r−9)(r−10)(r+1)(r−8)
r4+13r3+44r2−28r−240

5
3

For n = 4, using the above recursive equation gives

a4 =
(r + 2) (r − 7) (r − 8) (r − 10) (r − 9)

r5 + 20r4 + 135r3 + 280r2 − 436r − 1680

Which for the root r = 3 becomes
a4 =

5
6

And the table now becomes
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n an,r an

a0 1 1
a1

−r2+11r−10
r2+2r−8 2

a2
(r−9)r(r−10)
r3+7r2+2r−40

9
4

a3 − (r−9)(r−10)(r+1)(r−8)
r4+13r3+44r2−28r−240

5
3

a4
(r+2)(r−7)(r−8)(r−10)(r−9)

r5+20r4+135r3+280r2−436r−1680
5
6

For n = 5, using the above recursive equation gives

a5 = −(r + 3) (r − 6) (r − 9) (r − 10) (r − 8) (r − 7)
(r + 8) (r + 7) (r + 5) (r + 4) (r − 2) (r + 6)

Which for the root r = 3 becomes
a5 =

3
11

And the table now becomes

n an,r an

a0 1 1
a1

−r2+11r−10
r2+2r−8 2

a2
(r−9)r(r−10)
r3+7r2+2r−40

9
4

a3 − (r−9)(r−10)(r+1)(r−8)
r4+13r3+44r2−28r−240

5
3

a4
(r+2)(r−7)(r−8)(r−10)(r−9)

r5+20r4+135r3+280r2−436r−1680
5
6

a5 − (r+3)(r−6)(r−9)(r−10)(r−8)(r−7)
(r+8)(r+7)(r+5)(r+4)(r−2)(r+6)

3
11

For n = 6, using the above recursive equation gives

a6 =
(r − 7) (r − 8) (r − 10) (r − 9) (r − 6) (r − 5)
(r + 9) (r + 6) (r − 2) (r + 5) (r + 7) (r + 8)

Which for the root r = 3 becomes

a6 =
7
132

And the table now becomes
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n an,r an

a0 1 1
a1

−r2+11r−10
r2+2r−8 2

a2
(r−9)r(r−10)
r3+7r2+2r−40

9
4

a3 − (r−9)(r−10)(r+1)(r−8)
r4+13r3+44r2−28r−240

5
3

a4
(r+2)(r−7)(r−8)(r−10)(r−9)

r5+20r4+135r3+280r2−436r−1680
5
6

a5 − (r+3)(r−6)(r−9)(r−10)(r−8)(r−7)
(r+8)(r+7)(r+5)(r+4)(r−2)(r+6)

3
11

a6
(r−7)(r−8)(r−10)(r−9)(r−6)(r−5)
(r+9)(r+6)(r−2)(r+5)(r+7)(r+8)

7
132

Using the above table, then the solution y1(x) is

y1(x) = x3(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7. . .
)

= x3
(
1 + 2x+ 9x2

4 + 5x3

3 + 5x4

6 + 3x5

11 + 7x6

132 +O
(
x7))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 6. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a6(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a6

= (r − 7) (r − 8) (r − 10) (r − 9) (r − 6) (r − 5)
(r + 9) (r + 6) (r − 2) (r + 5) (r + 7) (r + 8)

Therefore

lim
r→r2

(r − 7) (r − 8) (r − 10) (r − 9) (r − 6) (r − 5)
(r + 9) (r + 6) (r − 2) (r + 5) (r + 7) (r + 8) = lim

r→−3

(r − 7) (r − 8) (r − 10) (r − 9) (r − 6) (r − 5)
(r + 9) (r + 6) (r − 2) (r + 5) (r + 7) (r + 8)

= −1716
5

The limit is −1716
5 . Since the limit exists then the log term is not needed and we can
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set C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−3

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)bn−1(n+ r − 1) (n+ r − 2) + bn(n+ r) (n+ r − 1)
− 10bn−1(n+ r − 1) + bn(n+ r) + 10bn−1 − 9bn = 0

Which for for the root r = −3 becomes

(4A)bn−1(n−4) (n−5)+bn(n−3) (n−4)−10bn−1(n−4)+bn(n−3)+10bn−1−9bn = 0

Solving for bn from the recursive equation (4) gives

bn = −bn−1(n2 + 2nr + r2 − 13n− 13r + 22)
n2 + 2nr + r2 − 9 (5)

Which for the root r = −3 becomes

bn = −bn−1(n2 − 19n+ 70)
n2 − 6n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −3 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = −r2 − 11r + 10
r2 + 2r − 8

Which for the root r = −3 becomes

b1 =
52
5
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And the table now becomes

n bn,r bn

b0 1 1
b1

−r2+11r−10
r2+2r−8

52
5

For n = 2, using the above recursive equation gives

b2 =
(r − 9) r(r − 10)

(r + 5) (r2 + 2r − 8)

Which for the root r = −3 becomes

b2 =
234
5

And the table now becomes

n bn,r bn

b0 1 1
b1

−r2+11r−10
r2+2r−8

52
5

b2
(r−9)r(r−10)
r3+7r2+2r−40

234
5

For n = 3, using the above recursive equation gives

b3 = −(r − 9) (r − 10) (r2 − 7r − 8)
(r + 5) (r2 + 2r − 8) (r + 6)

Which for the root r = −3 becomes

b3 =
572
5

And the table now becomes

n bn,r bn

b0 1 1
b1

−r2+11r−10
r2+2r−8

52
5

b2
(r−9)r(r−10)
r3+7r2+2r−40

234
5

b3 − (r−9)(r−10)(r+1)(r−8)
(r+5)(r+4)(r−2)(r+6)

572
5
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For n = 4, using the above recursive equation gives

b4 =
(r2 − 5r − 14) (r − 8) (r − 10) (r − 9)
(r + 7) (r + 5) (r2 + 2r − 8) (r + 6)

Which for the root r = −3 becomes

b4 = 143

And the table now becomes

n bn,r bn

b0 1 1
b1

−r2+11r−10
r2+2r−8

52
5

b2
(r−9)r(r−10)
r3+7r2+2r−40

234
5

b3 − (r−9)(r−10)(r+1)(r−8)
(r+5)(r+4)(r−2)(r+6)

572
5

b4
(r+2)(r−7)(r−8)(r−10)(r−9)
(r+7)(r+5)(r+4)(r−2)(r+6) 143

For n = 5, using the above recursive equation gives

b5 = −(r2 − 3r − 18) (r − 9) (r − 10) (r − 8) (r − 7)
(r + 8) (r + 7) (r + 5) (r2 + 2r − 8) (r + 6)

Which for the root r = −3 becomes

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−r2+11r−10
r2+2r−8

52
5

b2
(r−9)r(r−10)
r3+7r2+2r−40

234
5

b3 − (r−9)(r−10)(r+1)(r−8)
(r+5)(r+4)(r−2)(r+6)

572
5

b4
(r+2)(r−7)(r−8)(r−10)(r−9)
(r+7)(r+5)(r+4)(r−2)(r+6) 143

b5 − (r+3)(r−6)(r−9)(r−10)(r−8)(r−7)
(r+8)(r+7)(r+5)(r+4)(r−2)(r+6) 0
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For n = 6, using the above recursive equation gives

b6 =
(r − 7) (r − 8) (r − 10) (r − 9) (r − 6) (r − 5)
(r + 9) (r + 6) (r − 2) (r + 5) (r + 7) (r + 8)

Which for the root r = −3 becomes

b6 = −1716
5

And the table now becomes

n bn,r bn

b0 1 1
b1

−r2+11r−10
r2+2r−8

52
5

b2
(r−9)r(r−10)
r3+7r2+2r−40

234
5

b3 − (r−9)(r−10)(r+1)(r−8)
(r+5)(r+4)(r−2)(r+6)

572
5

b4
(r+2)(r−7)(r−8)(r−10)(r−9)
(r+7)(r+5)(r+4)(r−2)(r+6) 143

b5 − (r+3)(r−6)(r−9)(r−10)(r−8)(r−7)
(r+8)(r+7)(r+5)(r+4)(r−2)(r+6) 0

b6
(r−7)(r−8)(r−10)(r−9)(r−6)(r−5)
(r+9)(r+6)(r−2)(r+5)(r+7)(r+8) −1716

5

Using the above table, then the solution y2(x) is

y2(x) = x3(b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7. . .
)

=
1 + 52x

5 + 234x2

5 + 572x3

5 + 143x4 − 1716x6

5 +O(x7)
x3

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3
(
1 + 2x+ 9x2

4 + 5x3

3 + 5x4

6 + 3x5

11 + 7x6

132 +O
(
x7))

+
c2
(
1 + 52x

5 + 234x2

5 + 572x3

5 + 143x4 − 1716x6

5 +O(x7)
)

x3
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Hence the final solution is

y = yh

= c1x
3
(
1 + 2x+ 9x2

4 + 5x3

3 + 5x4

6 + 3x5

11 + 7x6

132 +O
(
x7))

+
c2
(
1 + 52x

5 + 234x2

5 + 572x3

5 + 143x4 − 1716x6

5 +O(x7)
)

x3

Summary
The solution(s) found are the following

(1)
y = c1x

3
(
1 + 2x+ 9x2

4 + 5x3

3 + 5x4

6 + 3x5

11 + 7x6

132 +O
(
x7))

+
c2
(
1 + 52x

5 + 234x2

5 + 572x3

5 + 143x4 − 1716x6

5 +O(x7)
)

x3

Verification of solutions

y = c1x
3
(
1 + 2x+ 9x2

4 + 5x3

3 + 5x4

6 + 3x5

11 + 7x6

132 +O
(
x7))

+
c2
(
1 + 52x

5 + 234x2

5 + 572x3

5 + 143x4 − 1716x6

5 +O(x7)
)

x3

Verified OK.

16.21.1 Maple step by step solution

Let’s solve
x2(x+ 1) y′′ + (−10x2 + x) y′ + (10x− 9) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (10x−9)y
x2(x+1) + (10x−1)y′

x(x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (10x−1)y′
x(x+1) + (10x−9)y

x2(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions
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[
P2(x) = − 10x−1

x(x+1) , P3(x) = 10x−9
x2(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −11

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
x2(x+ 1) y′′ − x(10x− 1) y′ + (10x− 9) y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 2u2 + u)
(

d2

du2y(u)
)
+ (−10u2 + 21u− 11)

(
d
du
y(u)

)
+ (10u− 19) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(−12 + r)u−1+r + (a1(1 + r) (−11 + r)− a0(2r2 − 23r + 19))ur +
(

∞∑
k=1

(ak+1(k + 1 + r) (k − 11 + r)− ak(2k2 + 4kr + 2r2 − 23k − 23r + 19) + ak−1(k − 2 + r) (k − 11 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−12 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 12}

• Each term must be 0
a1(1 + r) (−11 + r)− a0(2r2 − 23r + 19) = 0

• Each term in the series must be 0, giving the recursion relation
(−2ak + ak−1 + ak+1) k2 + ((−4ak + 2ak−1 + 2ak+1) r + 23ak − 13ak−1 − 10ak+1) k + (−2ak + ak−1 + ak+1) r2 + (23ak − 13ak−1 − 10ak+1) r − 19ak + 22ak−1 − 11ak+1 = 0

• Shift index using k− >k + 1
(−2ak+1 + ak + ak+2) (k + 1)2 + ((−4ak+1 + 2ak + 2ak+2) r + 23ak+1 − 13ak − 10ak+2) (k + 1) + (−2ak+1 + ak + ak+2) r2 + (23ak+1 − 13ak − 10ak+2) r − 19ak+1 + 22ak − 11ak+2 = 0

• Recursion relation that defines series solution to ODE

ak+2 = −k2ak−2k2ak+1+2krak−4krak+1+r2ak−2r2ak+1−11kak+19kak+1−11rak+19rak+1+10ak+2ak+1
k2+2kr+r2−8k−8r−20

• Recursion relation for r = 0

ak+2 = −k2ak−2k2ak+1−11kak+19kak+1+10ak+2ak+1
k2−8k−20

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 10

ak+2 = −k2ak−2k2ak+1−11kak+19kak+1+10ak+2ak+1
k2−8k−20

• Recursion relation for r = 12

ak+2 = −k2ak−2k2ak+1+13kak−29kak+1+22ak−58ak+1
k2+16k+28

• Solution for r = 12[
y(u) =

∞∑
k=0

aku
k+12, ak+2 = −k2ak−2k2ak+1+13kak−29kak+1+22ak−58ak+1

k2+16k+28 , 13a1 − 31a0 = 0
]

• Revert the change of variables u = x+ 1
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[
y =

∞∑
k=0

ak(x+ 1)k+12 , ak+2 = −k2ak−2k2ak+1+13kak−29kak+1+22ak−58ak+1
k2+16k+28 , 13a1 − 31a0 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 45� �
Order:=6;
dsolve(x^2*(1+x)*diff(y(x),x$2)+x*(1-10*x)*diff(y(x),x)-(9-10*x)*y(x)=0,y(x),type='series',x=0);� �
y(x) = c1x

3
(
1 + 2x+ 9

4x
2 + 5

3x
3 + 5

6x
4 + 3

11x
5 +O

(
x6))

+ c2(−86400− 898560x− 4043520x2 − 9884160x3 − 12355200x4 +O(x6))
x3

3 Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 64� �
AsymptoticDSolveValue[x^2*(1+x)*y''[x]+x*(1-10*x)*y'[x]-(9-10*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1
x3 + 52

5x2 + 143x+ 234
5x + 572

5

)
+ c2

(
5x7

6 + 5x6

3 + 9x5

4 + 2x4 + x3
)
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16.22 problem 18
16.22.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6635

Internal problem ID [1434]
Internal file name [OUTPUT/1435_Sunday_June_05_2022_02_17_13_AM_47093617/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x+ 1) y′′ + 3y′x2 − (6− x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x3 + x2) y′′ + 3y′x2 + (x− 6) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3
x+ 1

q(x) = x− 6
x2 (x+ 1)
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Table 814: Table p(x), q(x) singularites.

p(x) = 3
x+1

singularity type
x = −1 “regular”

q(x) = x−6
x2(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x+ 1) y′′ + 3y′x2 + (x− 6) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x+ 1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 3
(

∞∑
n=0

(n+ r) anxn+r−1

)
x2 + (x− 6)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

3x1+n+ran(n+ r)
)

+
(

∞∑
n=0

x1+n+ran

)
+

∞∑
n =0

(
−6anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

3x1+n+ran(n+ r) =
∞∑
n=1

3an−1(n+ r − 1)xn+r

∞∑
n =0

x1+n+ran =
∞∑
n=1

an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

3an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=1

an−1x
n+r

)
+

∞∑
n =0

(
−6anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 6anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− 6a0xr = 0

Or
(xrr(−1 + r)− 6xr) a0 = 0
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Since a0 6= 0 then the above simplifies to(
r2 − r − 6

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − r − 6 = 0

Solving for r gives the roots of the indicial equation as

r1 = 3
r2 = −2

Since a0 6= 0 then the indicial equation becomes(
r2 − r − 6

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 5 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x3

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x2

Or

y1(x) =
∞∑
n=0

anx
n+3

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
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of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an−1(n+r−1) (n+r−2)+an(n+r) (n+r−1)+3an−1(n+r−1)+an−1−6an = 0

Solving for an from recursive equation (4) gives

an = − an−1(n2 + 2nr + r2)
n2 + 2nr + r2 − n− r − 6 (4)

Which for the root r = 3 becomes

an = −an−1(n+ 3)2

n (n+ 5) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − (r + 1)2

r2 + r − 6
Which for the root r = 3 becomes

a1 = −8
3

And the table now becomes

n an,r an

a0 1 1

a1 − (r+1)2
r2+r−6 −8

3

For n = 2, using the above recursive equation gives

a2 =
(r + 1)2 (r + 2)2

r4 + 4r3 − 7r2 − 22r + 24
Which for the root r = 3 becomes

a2 =
100
21
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And the table now becomes

n an,r an

a0 1 1

a1 − (r+1)2
r2+r−6 −8

3

a2
(r+1)2(r+2)2

r4+4r3−7r2−22r+24
100
21

For n = 3, using the above recursive equation gives

a3 = − (r + 3) (r + 1)2 (r + 2)2

r5 + 6r4 − 5r3 − 42r2 + 40r

Which for the root r = 3 becomes

a3 = −50
7

And the table now becomes

n an,r an

a0 1 1

a1 − (r+1)2
r2+r−6 −8

3

a2
(r+1)2(r+2)2

r4+4r3−7r2−22r+24
100
21

a3 − (r+3)(r+1)2(r+2)2
r5+6r4−5r3−42r2+40r −50

7

For n = 4, using the above recursive equation gives

a4 =
(r + 2)2 (r + 1) (r + 3) (r + 4)
r5 + 8r4 − r3 − 68r2 + 60r

Which for the root r = 3 becomes

a4 =
175
18

And the table now becomes
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n an,r an

a0 1 1

a1 − (r+1)2
r2+r−6 −8

3

a2
(r+1)2(r+2)2

r4+4r3−7r2−22r+24
100
21

a3 − (r+3)(r+1)2(r+2)2
r5+6r4−5r3−42r2+40r −50

7

a4
(r+2)2(r+1)(r+3)(r+4)
r5+8r4−r3−68r2+60r

175
18

For n = 5, using the above recursive equation gives

a5 = −(r + 4) (r + 3) (r + 1) (r + 2) (r + 5)
r5 + 10r4 + 5r3 − 100r2 + 84r

Which for the root r = 3 becomes

a5 = −112
9

And the table now becomes

n an,r an

a0 1 1

a1 − (r+1)2
r2+r−6 −8

3

a2
(r+1)2(r+2)2

r4+4r3−7r2−22r+24
100
21

a3 − (r+3)(r+1)2(r+2)2
r5+6r4−5r3−42r2+40r −50

7

a4
(r+2)2(r+1)(r+3)(r+4)
r5+8r4−r3−68r2+60r

175
18

a5 − (r+4)(r+3)(r+1)(r+2)(r+5)
r5+10r4+5r3−100r2+84r −112

9

Using the above table, then the solution y1(x) is

y1(x) = x3(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x3

(
1− 8x

3 + 100x2

21 − 50x3

7 + 175x4

18 − 112x5

9 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N
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Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 5. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a5(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a5

= −(r + 4) (r + 3) (r + 1) (r + 2) (r + 5)
r5 + 10r4 + 5r3 − 100r2 + 84r

Therefore

lim
r→r2

−(r + 4) (r + 3) (r + 1) (r + 2) (r + 5)
r5 + 10r4 + 5r3 − 100r2 + 84r = lim

r→−2
−(r + 4) (r + 3) (r + 1) (r + 2) (r + 5)

r5 + 10r4 + 5r3 − 100r2 + 84r
= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−2

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)bn−1(n+ r−1) (n+ r−2)+ bn(n+ r) (n+ r−1)+3bn−1(n+ r−1)+ bn−1−6bn = 0

Which for for the root r = −2 becomes

(4A)bn−1(n− 3) (n− 4) + bn(n− 2) (n− 3) + 3bn−1(n− 3) + bn−1 − 6bn = 0

Solving for bn from the recursive equation (4) gives

bn = − bn−1(n2 + 2nr + r2)
n2 + 2nr + r2 − n− r − 6 (5)

Which for the root r = −2 becomes

bn = −bn−1(n2 − 4n+ 4)
n2 − 5n (6)
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At this point, it is a good idea to keep track of bn in a table both before substituting
r = −2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = −r2 + 2r + 1
r2 + r − 6

Which for the root r = −2 becomes

b1 =
1
4

And the table now becomes

n bn,r bn

b0 1 1

b1 − (r+1)2
r2+r−6

1
4

For n = 2, using the above recursive equation gives

b2 =
r4 + 6r3 + 13r2 + 12r + 4
(r2 + r − 6) (r2 + 3r − 4)

Which for the root r = −2 becomes

b2 = 0

And the table now becomes

n bn,r bn

b0 1 1

b1 − (r+1)2
r2+r−6

1
4

b2
(r+1)2(r+2)2

r4+4r3−7r2−22r+24 0

For n = 3, using the above recursive equation gives

b3 = −r5 + 9r4 + 31r3 + 51r2 + 40r + 12
(r2 + 3r − 4) (r − 2) r (r + 5)

6632



Which for the root r = −2 becomes

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1

b1 − (r+1)2
r2+r−6

1
4

b2
(r+1)2(r+2)2

r4+4r3−7r2−22r+24 0

b3 − (r+3)(r+1)2(r+2)2
(r+5)r(−1+r)(r−2)(r+4) 0

For n = 4, using the above recursive equation gives

b4 =
r5 + 12r4 + 55r3 + 120r2 + 124r + 48

(r + 6) (r + 5) r (r − 2) (−1 + r)

Which for the root r = −2 becomes

b4 = 0

And the table now becomes

n bn,r bn

b0 1 1

b1 − (r+1)2
r2+r−6

1
4

b2
(r+1)2(r+2)2

r4+4r3−7r2−22r+24 0

b3 − (r+3)(r+1)2(r+2)2
(r+5)r(−1+r)(r−2)(r+4) 0

b4
(r+2)2(r+1)(r+3)(r+4)
(r+6)(r+5)(−1+r)(r−2)r 0

For n = 5, using the above recursive equation gives

b5 = −r5 + 15r4 + 85r3 + 225r2 + 274r + 120
(r + 7) (−1 + r) (r − 2) r (r + 6)

Which for the root r = −2 becomes

b5 = 0
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And the table now becomes

n bn,r bn

b0 1 1

b1 − (r+1)2
r2+r−6

1
4

b2
(r+1)2(r+2)2

r4+4r3−7r2−22r+24 0

b3 − (r+3)(r+1)2(r+2)2
(r+5)r(−1+r)(r−2)(r+4) 0

b4
(r+2)2(r+1)(r+3)(r+4)
(r+6)(r+5)(−1+r)(r−2)r 0

b5
−r5−15r4−85r3−225r2−274r−120

(r+7)(−1+r)(r−2)r(r+6) 0

Using the above table, then the solution y2(x) is

y2(x) = x3(b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

)
=

1 + x
4 +O(x6)
x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3
(
1− 8x

3 + 100x2

21 − 50x3

7 + 175x4

18 − 112x5

9 +O
(
x6))+

c2
(
1 + x

4 +O(x6)
)

x2

Hence the final solution is
y = yh

= c1x
3
(
1− 8x

3 + 100x2

21 − 50x3

7 + 175x4

18 − 112x5

9 +O
(
x6))+

c2
(
1 + x

4 +O(x6)
)

x2

Summary
The solution(s) found are the following

(1)y = c1x
3
(
1− 8x

3 + 100x2

21 − 50x3

7 + 175x4

18 − 112x5

9 +O
(
x6))+

c2
(
1 + x

4 +O(x6)
)

x2

Verification of solutions

y = c1x
3
(
1− 8x

3 + 100x2

21 − 50x3

7 + 175x4

18 − 112x5

9 +O
(
x6))+

c2
(
1 + x

4 +O(x6)
)

x2

Verified OK.
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16.22.1 Maple step by step solution

Let’s solve
x2(x+ 1) y′′ + 3y′x2 + (x− 6) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − 3y′

x+1 −
(x−6)y
x2(x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 3y′

x+1 +
(x−6)y
x2(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3
x+1 , P3(x) = x−6

x2(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 3

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
x2(x+ 1) y′′ + 3y′x2 + (x− 6) y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 2u2 + u)
(

d2

du2y(u)
)
+ (3u2 − 6u+ 3)

(
d
du
y(u)

)
+ (u− 7) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(2 + r)u−1+r + (a1(1 + r) (3 + r)− a0(2r2 + 4r + 7))ur +
(

∞∑
k=1

(
ak+1(k + r + 1) (k + 3 + r)− ak(2k2 + 4kr + 2r2 + 4k + 4r + 7) + ak−1(k + r)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 0}

• Each term must be 0
a1(1 + r) (3 + r)− a0(2r2 + 4r + 7) = 0

• Each term in the series must be 0, giving the recursion relation
ak−1(k + r)2 + ak+1(k + r + 1) (k + 3 + r)− 2

(
k2 + (2r + 2) k + r2 + 2r + 7

2

)
ak = 0

• Shift index using k− >k + 1
ak(k + r + 1)2 + ak+2(k + r + 2) (k + 4 + r)− 2

(
(k + 1)2 + (2r + 2) (k + 1) + r2 + 2r + 7

2

)
ak+1 = 0

• Recursion relation that defines series solution to ODE
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ak+2 = −k2ak−2k2ak+1+2krak−4krak+1+r2ak−2r2ak+1+2kak−8kak+1+2rak−8rak+1+ak−13ak+1
(k+r+2)(k+4+r)

• Recursion relation for r = −2

ak+2 = −k2ak−2k2ak+1−2kak+ak−5ak+1
k(k+2)

• Series not valid for r = −2 , division by 0 in the recursion relation at k = 0

ak+2 = −k2ak−2k2ak+1−2kak+ak−5ak+1
k(k+2)

• Recursion relation for r = 0

ak+2 = −k2ak−2k2ak+1+2kak−8kak+1+ak−13ak+1
(k+2)(k+4)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −k2ak−2k2ak+1+2kak−8kak+1+ak−13ak+1

(k+2)(k+4) , 3a1 − 7a0 = 0
]

• Revert the change of variables u = x+ 1[
y =

∞∑
k=0

ak(x+ 1)k , ak+2 = −k2ak−2k2ak+1+2kak−8kak+1+ak−13ak+1
(k+2)(k+4) , 3a1 − 7a0 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 39� �
Order:=6;
dsolve(x^2*(1+x)*diff(y(x),x$2)+3*x^2*diff(y(x),x)-(6-x)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
3
(
1− 8

3x+ 100
21 x2 − 50

7 x3 + 175
18 x4 − 112

9 x5 +O
(
x6))

+ c2(2880 + 720x+O(x6))
x2

3 Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 53� �
AsymptoticDSolveValue[x^2*(1+x)*y''[x]+3*x^2*y'[x]-(6-x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1
x2 + 1

4x

)
+ c2

(
175x7

18 − 50x6

7 + 100x5

21 − 8x4

3 + x3
)
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16.23 problem 19
16.23.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6650

Internal problem ID [1435]
Internal file name [OUTPUT/1436_Sunday_June_05_2022_02_17_17_AM_47446477/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(1 + 2x) y′′ − 2x(3 + 14x) y′ + (6 + 100x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

2x3 + x2) y′′ + (−28x2 − 6x
)
y′ + (6 + 100x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −2(3 + 14x)
x (1 + 2x)

q(x) = 6 + 100x
x2 (1 + 2x)
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Table 816: Table p(x), q(x) singularites.

p(x) = −2(3+14x)
x(1+2x)

singularity type
x = 0 “regular”
x = −1

2 “regular”

q(x) = 6+100x
x2(1+2x)

singularity type
x = 0 “regular”
x = −1

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−1

2 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(1 + 2x) y′′ +
(
−28x2 − 6x

)
y′ + (6 + 100x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(1 + 2x)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−28x2 − 6x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (6 + 100x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−28x1+n+ran(n+ r)

)
+

∞∑
n =0

(
−6xn+ran(n+ r)

)
+
(

∞∑
n=0

6anxn+r

)
+
(

∞∑
n=0

100x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

(
−28x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−28an−1(n+ r − 1)xn+r

)
∞∑

n =0

100x1+n+ran =
∞∑
n=1

100an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

2an−1(n+ r− 1) (n+ r− 2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r− 1)
)

+
∞∑

n =1

(
−28an−1(n+ r − 1)xn+r

)
+

∞∑
n =0

(
−6xn+ran(n+ r)

)
+
(

∞∑
n=0

6anxn+r

)
+
(

∞∑
n=1

100an−1x
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 6xn+ran(n+ r) + 6anxn+r = 0
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When n = 0 the above becomes

xra0r(−1 + r)− 6xra0r + 6a0xr = 0

Or
(xrr(−1 + r)− 6xrr + 6xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 7r + 6

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − 7r + 6 = 0

Solving for r gives the roots of the indicial equation as

r1 = 6
r2 = 1

Since a0 6= 0 then the indicial equation becomes(
r2 − 7r + 6

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 5 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x6

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + x

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+6

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
1+n

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)2an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
− 28an−1(n+ r − 1)− 6an(n+ r) + 6an + 100an−1 = 0

Solving for an from recursive equation (4) gives

an = −2(n+ r − 11) an−1

n+ r − 1 (4)

Which for the root r = 6 becomes

an = −2(n− 5) an−1

n+ 5 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 6 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
20− 2r

r

Which for the root r = 6 becomes
a1 =

4
3

And the table now becomes

n an,r an

a0 1 1
a1

20−2r
r

4
3

For n = 2, using the above recursive equation gives

a2 =
4r2 − 76r + 360

r (1 + r)
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Which for the root r = 6 becomes
a2 =

8
7

And the table now becomes

n an,r an

a0 1 1
a1

20−2r
r

4
3

a2
4r2−76r+360

r(1+r)
8
7

For n = 3, using the above recursive equation gives

a3 =
−8r3 + 216r2 − 1936r + 5760

r (1 + r) (2 + r)

Which for the root r = 6 becomes
a3 =

4
7

And the table now becomes

n an,r an

a0 1 1
a1

20−2r
r

4
3

a2
4r2−76r+360

r(1+r)
8
7

a3
−8r3+216r2−1936r+5760

r(1+r)(2+r)
4
7

For n = 4, using the above recursive equation gives

a4 =
16r4 − 544r3 + 6896r2 − 38624r + 80640

r (1 + r) (2 + r) (3 + r)

Which for the root r = 6 becomes
a4 =

8
63

And the table now becomes
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n an,r an

a0 1 1
a1

20−2r
r

4
3

a2
4r2−76r+360

r(1+r)
8
7

a3
−8r3+216r2−1936r+5760

r(1+r)(2+r)
4
7

a4
16r4−544r3+6896r2−38624r+80640

r(1+r)(2+r)(3+r)
8
63

For n = 5, using the above recursive equation gives

a5 = −32(−10 + r) (−6 + r) (−7 + r) (−8 + r) (−9 + r)
(4 + r) (1 + r) (2 + r) r (3 + r)

Which for the root r = 6 becomes
a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1

20−2r
r

4
3

a2
4r2−76r+360

r(1+r)
8
7

a3
−8r3+216r2−1936r+5760

r(1+r)(2+r)
4
7

a4
16r4−544r3+6896r2−38624r+80640

r(1+r)(2+r)(3+r)
8
63

a5 −32(−10+r)(−6+r)(−7+r)(−8+r)(−9+r)
(4+r)(1+r)(2+r)r(3+r) 0

Using the above table, then the solution y1(x) is

y1(x) = x6(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x6

(
1 + 4x

3 + 8x2

7 + 4x3

7 + 8x4

63 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 5. Now we need to determine if
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C is zero or not. This is done by finding limr→r2 a5(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a5

= −32(−10 + r) (−6 + r) (−7 + r) (−8 + r) (−9 + r)
(4 + r) (1 + r) (2 + r) r (3 + r)

Therefore

lim
r→r2

−32(−10 + r) (−6 + r) (−7 + r) (−8 + r) (−9 + r)
(4 + r) (1 + r) (2 + r) r (3 + r) = lim

r→1
−32(−10 + r) (−6 + r) (−7 + r) (−8 + r) (−9 + r)

(4 + r) (1 + r) (2 + r) r (3 + r)
= 4032

The limit is 4032. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
1+n

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)2bn−1(n+ r − 1) (n+ r − 2) + bn(n+ r) (n+ r − 1)
− 28bn−1(n+ r − 1)− 6bn(n+ r) + 6bn + 100bn−1 = 0

Which for for the root r = 1 becomes

(4A)2bn−1n(n− 1) + bn(1 + n)n− 28bn−1n− 6bn(1 + n) + 6bn + 100bn−1 = 0

Solving for bn from the recursive equation (4) gives

bn = −2(n+ r − 11) bn−1

n+ r − 1 (5)

Which for the root r = 1 becomes

bn = −2(n− 10) bn−1

n
(6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.
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n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = −2(−10 + r)
r

Which for the root r = 1 becomes
b1 = 18

And the table now becomes

n bn,r bn

b0 1 1
b1

20−2r
r

18

For n = 2, using the above recursive equation gives

b2 =
4r2 − 76r + 360

r (1 + r)

Which for the root r = 1 becomes
b2 = 144

And the table now becomes

n bn,r bn

b0 1 1
b1

20−2r
r

18

b2
4r2−76r+360

r(1+r) 144

For n = 3, using the above recursive equation gives

b3 = −8(r3 − 27r2 + 242r − 720)
r (1 + r) (2 + r)

Which for the root r = 1 becomes
b3 = 672
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And the table now becomes

n bn,r bn

b0 1 1
b1

20−2r
r

18

b2
4r2−76r+360

r(1+r) 144

b3
−8r3+216r2−1936r+5760

r(1+r)(2+r) 672

For n = 4, using the above recursive equation gives

b4 =
16r4 − 544r3 + 6896r2 − 38624r + 80640

r (1 + r) (2 + r) (3 + r)

Which for the root r = 1 becomes

b4 = 2016

And the table now becomes

n bn,r bn

b0 1 1
b1

20−2r
r

18

b2
4r2−76r+360

r(1+r) 144

b3
−8r3+216r2−1936r+5760

r(1+r)(2+r) 672

b4
16r4−544r3+6896r2−38624r+80640

r(1+r)(2+r)(3+r) 2016

For n = 5, using the above recursive equation gives

b5 = −32(r5 − 40r4 + 635r3 − 5000r2 + 19524r − 30240)
r (1 + r) (2 + r) (3 + r) (4 + r)

Which for the root r = 1 becomes

b5 = 4032

And the table now becomes
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n bn,r bn

b0 1 1
b1

20−2r
r

18

b2
4r2−76r+360

r(1+r) 144

b3
−8r3+216r2−1936r+5760

r(1+r)(2+r) 672

b4
16r4−544r3+6896r2−38624r+80640

r(1+r)(2+r)(3+r) 2016

b5 −32(−10+r)(−6+r)(−7+r)(−8+r)(−9+r)
(4+r)(1+r)(2+r)r(3+r) 4032

Using the above table, then the solution y2(x) is

y2(x) = x6(b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

)
= x

(
1 + 18x+ 144x2 + 672x3 + 2016x4 + 4032x5 +O

(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
6
(
1 + 4x

3 + 8x2

7 + 4x3

7 + 8x4

63 +O
(
x6))

+ c2x
(
1 + 18x+ 144x2 + 672x3 + 2016x4 + 4032x5 +O

(
x6))

Hence the final solution is

y = yh

= c1x
6
(
1 + 4x

3 + 8x2

7 + 4x3

7 + 8x4

63 +O
(
x6))

+ c2x
(
1 + 18x+ 144x2 + 672x3 + 2016x4 + 4032x5 +O

(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
6
(
1 + 4x

3 + 8x2

7 + 4x3

7 + 8x4

63 +O
(
x6))

+ c2x
(
1 + 18x+ 144x2 + 672x3 + 2016x4 + 4032x5 +O

(
x6))
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Verification of solutions

y = c1x
6
(
1 + 4x

3 + 8x2

7 + 4x3

7 + 8x4

63 +O
(
x6))

+ c2x
(
1 + 18x+ 144x2 + 672x3 + 2016x4 + 4032x5 +O

(
x6))

Verified OK.

16.23.1 Maple step by step solution

Let’s solve
x2(1 + 2x) y′′ + (−28x2 − 6x) y′ + (6 + 100x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −2(3+50x)y
x2(1+2x) + 2(3+14x)y′

x(1+2x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − 2(3+14x)y′
x(1+2x) + 2(3+50x)y

x2(1+2x) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = −2(3+14x)
x(1+2x) , P3(x) = 2(3+50x)

x2(1+2x)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −6

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 6

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(1 + 2x) y′′ − 2x(3 + 14x) y′ + (6 + 100x) y = 0

• Assume series solution for y
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y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−1 + r) (−6 + r)xr +
(

∞∑
k=1

(ak(k + r − 1) (k + r − 6) + 2ak−1(k + r − 6) (k − 11 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + r) (−6 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 6}

• Each term in the series must be 0, giving the recursion relation
(k + r − 6) ((2k + 2r − 22) ak−1 + ak(k + r − 1)) = 0

• Shift index using k− >k + 1
(k + r − 5) ((2k + 2r − 20) ak + ak+1(k + r)) = 0

• Recursion relation that defines series solution to ODE
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ak+1 = −2(k+r−10)ak
k+r

• Recursion relation for r = 1 ; series terminates at k = 9
ak+1 = −2(k−9)ak

k+1

• Recursion relation that defines the terminating series solution of the ODE for r = 1[
y =

8∑
k=0

akx
k+1, ak+1 = −2(k−9)ak

k+1

]
• Recursion relation for r = 6 ; series terminates at k = 4

ak+1 = −2(k−4)ak
k+6

• Apply recursion relation for k = 0
a1 = 4a0

3

• Apply recursion relation for k = 1
a2 = 6a1

7

• Express in terms of a0
a2 = 8a0

7

• Apply recursion relation for k = 2
a3 = a2

2

• Express in terms of a0
a3 = 4a0

7

• Apply recursion relation for k = 3
a4 = 2a3

9

• Express in terms of a0
a4 = 8a0

63

• Terminating series solution of the ODE for r = 6 . Use reduction of order to find the second linearly independent solution
y = a0 ·

(
1 + 4

3x+ 8
7x

2 + 4
7x

3 + 8
63x

4)
• Combine solutions and rename parameters[

y =
(

8∑
k=0

akx
1+k

)
+ b0 ·

(
1 + 4

3x+ 8
7x

2 + 4
7x

3 + 8
63x

4) , a1+k = −2(k−9)ak
1+k

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 43� �
Order:=6;
dsolve(x^2*(1+2*x)*diff(y(x),x$2)-2*x*(3+14*x)*diff(y(x),x)+(6+100*x)*y(x)=0,y(x),type='series',x=0);� �
y(x) = c1x

6
(
1 + 4

3x+ 8
7x

2 + 4
7x

3 + 8
63x

4 +O
(
x6))+ c2x

(
2880 + 51840x+ 414720x2

+ 1935360x3 + 5806080x4 + 11612160x5 +O
(
x6))

3 Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 64� �
AsymptoticDSolveValue[x^2*(1+2*x)*y''[x]-2*x*(3+14*x)*y'[x]+(6+100*x)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
2016x5 + 672x4 + 144x3 + 18x2 + x

)
+ c2

(
8x10

63 + 4x9

7 + 8x8

7 + 4x7

3 + x6
)
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16.24 problem 20
16.24.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6665

Internal problem ID [1436]
Internal file name [OUTPUT/1437_Sunday_June_05_2022_02_17_20_AM_96646602/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 20.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x+ 1) y′′ − x(6 + 11x) y′ + (6 + 32x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x3 + x2) y′′ + (−11x2 − 6x
)
y′ + (6 + 32x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 6 + 11x
x (x+ 1)

q(x) = 6 + 32x
x2 (x+ 1)
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Table 818: Table p(x), q(x) singularites.

p(x) = − 6+11x
x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

q(x) = 6+32x
x2(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x+ 1) y′′ +
(
−11x2 − 6x

)
y′ + (6 + 32x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x+ 1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−11x2 − 6x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (6 + 32x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−11x1+n+ran(n+ r)

)
+

∞∑
n =0

(
−6xn+ran(n+ r)

)
+
(

∞∑
n=0

6anxn+r

)
+
(

∞∑
n=0

32x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

(
−11x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−11an−1(n+ r − 1)xn+r

)
∞∑

n =0

32x1+n+ran =
∞∑
n=1

32an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

an−1(n+ r− 1) (n+ r− 2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r− 1)
)

+
∞∑

n =1

(
−11an−1(n+ r − 1)xn+r

)
+

∞∑
n =0

(
−6xn+ran(n+ r)

)
+
(

∞∑
n=0

6anxn+r

)
+
(

∞∑
n=1

32an−1x
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 6xn+ran(n+ r) + 6anxn+r = 0
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When n = 0 the above becomes

xra0r(−1 + r)− 6xra0r + 6a0xr = 0

Or
(xrr(−1 + r)− 6xrr + 6xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 7r + 6

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − 7r + 6 = 0

Solving for r gives the roots of the indicial equation as

r1 = 6
r2 = 1

Since a0 6= 0 then the indicial equation becomes(
r2 − 7r + 6

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 5 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x6

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + x

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+6

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
1+n

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
− 11an−1(n+ r − 1)− 6an(n+ r) + 6an + 32an−1 = 0

Solving for an from recursive equation (4) gives

an = −an−1(n2 + 2nr + r2 − 14n− 14r + 45)
n2 + 2nr + r2 − 7n− 7r + 6 (4)

Which for the root r = 6 becomes

an = −an−1(n2 − 2n− 3)
n (n+ 5) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 6 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−r2 + 12r − 32

r (r − 5)

Which for the root r = 6 becomes
a1 =

2
3

And the table now becomes

n an,r an

a0 1 1
a1

−r2+12r−32
r(r−5)

2
3

For n = 2, using the above recursive equation gives

a2 =
r3 − 18r2 + 101r − 168

(r + 1) r (r − 5)
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Which for the root r = 6 becomes
a2 =

1
7

And the table now becomes

n an,r an

a0 1 1
a1

−r2+12r−32
r(r−5)

2
3

a2
r3−18r2+101r−168

(r+1)r(r−5)
1
7

For n = 3, using the above recursive equation gives

a3 =
−r4 + 23r3 − 188r2 + 628r − 672

(r + 2) (r + 1) r (r − 5)

Which for the root r = 6 becomes
a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−r2+12r−32
r(r−5)

2
3

a2
r3−18r2+101r−168

(r+1)r(r−5)
1
7

a3
−r4+23r3−188r2+628r−672

(r+2)(r+1)r(r−5) 0

For n = 4, using the above recursive equation gives

a4 =
r4 − 22r3 + 167r2 − 482r + 336

(r + 3) r (r + 1) (r + 2)

Which for the root r = 6 becomes
a4 = 0

And the table now becomes
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n an,r an

a0 1 1
a1

−r2+12r−32
r(r−5)

2
3

a2
r3−18r2+101r−168

(r+1)r(r−5)
1
7

a3
−r4+23r3−188r2+628r−672

(r+2)(r+1)r(r−5) 0

a4
r4−22r3+167r2−482r+336

(r+3)r(r+1)(r+2) 0

For n = 5, using the above recursive equation gives

a5 =
−r4 + 25r3 − 230r2 + 920r − 1344

(r + 4) (r + 3) (r + 1) (r + 2)

Which for the root r = 6 becomes
a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−r2+12r−32
r(r−5)

2
3

a2
r3−18r2+101r−168

(r+1)r(r−5)
1
7

a3
−r4+23r3−188r2+628r−672

(r+2)(r+1)r(r−5) 0

a4
r4−22r3+167r2−482r+336

(r+3)r(r+1)(r+2) 0

a5
−r4+25r3−230r2+920r−1344

(r+4)(r+3)(r+1)(r+2) 0

Using the above table, then the solution y1(x) is

y1(x) = x6(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x6

(
1 + 2x

3 + x2

7 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 5. Now we need to determine if
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C is zero or not. This is done by finding limr→r2 a5(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a5

= −r4 + 25r3 − 230r2 + 920r − 1344
(r + 4) (r + 3) (r + 1) (r + 2)

Therefore

lim
r→r2

−r4 + 25r3 − 230r2 + 920r − 1344
(r + 4) (r + 3) (r + 1) (r + 2) = lim

r→1

−r4 + 25r3 − 230r2 + 920r − 1344
(r + 4) (r + 3) (r + 1) (r + 2)

= −21
4

The limit is −21
4 . Since the limit exists then the log term is not needed and we can set

C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
1+n

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)bn−1(n+ r − 1) (n+ r − 2) + bn(n+ r) (n+ r − 1)
− 11bn−1(n+ r − 1)− 6bn(n+ r) + 6bn + 32bn−1 = 0

Which for for the root r = 1 becomes

(4A)bn−1n(n− 1) + bn(1 + n)n− 11bn−1n− 6bn(1 + n) + 6bn + 32bn−1 = 0

Solving for bn from the recursive equation (4) gives

bn = −bn−1(n2 + 2nr + r2 − 14n− 14r + 45)
n2 + 2nr + r2 − 7n− 7r + 6 (5)

Which for the root r = 1 becomes

bn = −bn−1(n2 − 12n+ 32)
n2 − 5n (6)
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At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = −r2 − 12r + 32
r (r − 5)

Which for the root r = 1 becomes
b1 =

21
4

And the table now becomes

n bn,r bn

b0 1 1
b1

−r2+12r−32
r(r−5)

21
4

For n = 2, using the above recursive equation gives

b2 =
r3 − 18r2 + 101r − 168

(r + 1) r (r − 5)

Which for the root r = 1 becomes
b2 =

21
2

And the table now becomes

n bn,r bn

b0 1 1
b1

−r2+12r−32
r(r−5)

21
4

b2
r3−18r2+101r−168

(r+1)r(r−5)
21
2

For n = 3, using the above recursive equation gives

b3 = −r4 − 23r3 + 188r2 − 628r + 672
(r + 2) (r + 1) r (r − 5)
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Which for the root r = 1 becomes
b3 =

35
4

And the table now becomes

n bn,r bn

b0 1 1
b1

−r2+12r−32
r(r−5)

21
4

b2
r3−18r2+101r−168

(r+1)r(r−5)
21
2

b3
−r4+23r3−188r2+628r−672

(r+2)(r+1)r(r−5)
35
4

For n = 4, using the above recursive equation gives

b4 =
r4 − 22r3 + 167r2 − 482r + 336

(r + 3) r (r + 1) (r + 2)

Which for the root r = 1 becomes
b4 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−r2+12r−32
r(r−5)

21
4

b2
r3−18r2+101r−168

(r+1)r(r−5)
21
2

b3
−r4+23r3−188r2+628r−672

(r+2)(r+1)r(r−5)
35
4

b4
r4−22r3+167r2−482r+336

(r+3)r(r+1)(r+2) 0

For n = 5, using the above recursive equation gives

b5 = −r4 − 25r3 + 230r2 − 920r + 1344
(r + 4) (r + 3) (r + 1) (r + 2)

Which for the root r = 1 becomes

b5 = −21
4

And the table now becomes
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n bn,r bn

b0 1 1
b1

−r2+12r−32
r(r−5)

21
4

b2
r3−18r2+101r−168

(r+1)r(r−5)
21
2

b3
−r4+23r3−188r2+628r−672

(r+2)(r+1)r(r−5)
35
4

b4
r4−22r3+167r2−482r+336

(r+3)r(r+1)(r+2) 0

b5
−r4+25r3−230r2+920r−1344

(r+4)(r+3)(r+1)(r+2) −21
4

Using the above table, then the solution y2(x) is

y2(x) = x6(b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

)
= x

(
1 + 21x

4 + 21x2

2 + 35x3

4 − 21x5

4 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
6
(
1 + 2x

3 + x2

7 +O
(
x6))+ c2x

(
1 + 21x

4 + 21x2

2 + 35x3

4 − 21x5

4 +O
(
x6))

Hence the final solution is

y = yh

= c1x
6
(
1 + 2x

3 + x2

7 +O
(
x6))+ c2x

(
1 + 21x

4 + 21x2

2 + 35x3

4 − 21x5

4 +O
(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
6
(
1 + 2x

3 + x2

7 +O
(
x6))+ c2x

(
1 + 21x

4 + 21x2

2 + 35x3

4 − 21x5

4 +O
(
x6))

Verification of solutions

y = c1x
6
(
1 + 2x

3 + x2

7 +O
(
x6))+ c2x

(
1 + 21x

4 + 21x2

2 + 35x3

4 − 21x5

4 +O
(
x6))

Verified OK.
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16.24.1 Maple step by step solution

Let’s solve
x2(x+ 1) y′′ + (−11x2 − 6x) y′ + (6 + 32x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −2(3+16x)y
x2(x+1) + (6+11x)y′

x(x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (6+11x)y′
x(x+1) + 2(3+16x)y

x2(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 6+11x
x(x+1) , P3(x) = 2(3+16x)

x2(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −5

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
x2(x+ 1) y′′ − x(6 + 11x) y′ + (6 + 32x) y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − 2u2 + u)
(

d2

du2y(u)
)
+ (−11u2 + 16u− 5)

(
d
du
y(u)

)
+ (−26 + 32u) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

a0r(−6 + r)u−1+r + (a1(1 + r) (−5 + r)− 2a0(r2 − 9r + 13))ur +
(

∞∑
k=1

(ak+1(k + 1 + r) (k − 5 + r)− 2ak(k2 + 2kr + r2 − 9k − 9r + 13) + ak−1(k − 5 + r) (k − 9 + r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−6 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 6}

• Each term must be 0
a1(1 + r) (−5 + r)− 2a0(r2 − 9r + 13) = 0

• Each term in the series must be 0, giving the recursion relation
(−2ak + ak−1 + ak+1) k2 + 2((−2ak + ak−1 + ak+1) r + 9ak − 7ak−1 − 2ak+1) k + (−2ak + ak−1 + ak+1) r2 + 2(9ak − 7ak−1 − 2ak+1) r − 26ak + 45ak−1 − 5ak+1 = 0

• Shift index using k− >k + 1
(−2ak+1 + ak + ak+2) (k + 1)2 + 2((−2ak+1 + ak + ak+2) r + 9ak+1 − 7ak − 2ak+2) (k + 1) + (−2ak+1 + ak + ak+2) r2 + 2(9ak+1 − 7ak − 2ak+2) r − 26ak+1 + 45ak − 5ak+2 = 0

• Recursion relation that defines series solution to ODE
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ak+2 = −k2ak−2k2ak+1+2krak−4krak+1+r2ak−2r2ak+1−12kak+14kak+1−12rak+14rak+1+32ak−10ak+1
k2+2kr+r2−2k−2r−8

• Recursion relation for r = 0

ak+2 = −k2ak−2k2ak+1−12kak+14kak+1+32ak−10ak+1
k2−2k−8

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 4

ak+2 = −k2ak−2k2ak+1−12kak+14kak+1+32ak−10ak+1
k2−2k−8

• Recursion relation for r = 6

ak+2 = −k2ak−2k2ak+1−10kak+1−4ak+2ak+1
k2+10k+16

• Solution for r = 6[
y(u) =

∞∑
k=0

aku
k+6, ak+2 = −k2ak−2k2ak+1−10kak+1−4ak+2ak+1

k2+10k+16 , 7a1 + 10a0 = 0
]

• Revert the change of variables u = x+ 1[
y =

∞∑
k=0

ak(x+ 1)k+6 , ak+2 = −k2ak−2k2ak+1−10kak+1−4ak+2ak+1
k2+10k+16 , 7a1 + 10a0 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 37� �
Order:=6;
dsolve(x^2*(1+x)*diff(y(x),x$2)-x*(6+11*x)*diff(y(x),x)+(6+32*x)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
6
(
1 + 2

3x+ 1
7x

2 +O
(
x6))

+ c2x
(
2880 + 15120x+ 30240x2 + 25200x3 − 15120x5 +O

(
x6))

3 Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 51� �
AsymptoticDSolveValue[x^2*(1+x)*y''[x]-x*(6+11*x)*y'[x]+(6+32*x)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x8

7 + 2x7

3 + x6
)
+ c1

(
35x4

4 + 21x3

2 + 21x2

4 + x

)
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16.25 problem 21
16.25.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6682

Internal problem ID [1437]
Internal file name [OUTPUT/1438_Sunday_June_05_2022_02_17_23_AM_43414470/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 21.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2(x+ 1) y′′ + 4x(4x+ 1) y′ − (49 + 27x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.(

4x3 + 4x2) y′′ + (16x2 + 4x
)
y′ + (−27x− 49) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 4x+ 1
x (x+ 1)

q(x) = − 49 + 27x
4x2 (x+ 1)
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Table 820: Table p(x), q(x) singularites.

p(x) = 4x+1
x(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

q(x) = − 49+27x
4x2(x+1)

singularity type
x = −1 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−1, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2(x+ 1) y′′ +
(
16x2 + 4x

)
y′ + (−27x− 49) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2(x+ 1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
16x2 + 4x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ (−27x− 49)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

16x1+n+ran(n+ r)
)

+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
∞∑

n =0

(
−27x1+n+ran

)
+

∞∑
n =0

(
−49anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

4an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

16x1+n+ran(n+ r) =
∞∑
n=1

16an−1(n+ r − 1)xn+r

∞∑
n =0

(
−27x1+n+ran

)
=

∞∑
n=1

(
−27an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

4an−1(n+r−1) (n+r−2)xn+r

)
+
(

∞∑
n=0

4xn+ran(n+r) (n+r−1)
)

+
(

∞∑
n=1

16an−1(n+ r − 1)xn+r

)
+
(

∞∑
n=0

4xn+ran(n+ r)
)

+
∞∑

n =1

(
−27an−1x

n+r
)
+

∞∑
n =0

(
−49anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + 4xn+ran(n+ r)− 49anxn+r = 0
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When n = 0 the above becomes

4xra0r(−1 + r) + 4xra0r − 49a0xr = 0

Or
(4xrr(−1 + r) + 4xrr − 49xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 − 49

)
xr = 0

Since the above is true for all x then the indicial equation becomes

4r2 − 49 = 0

Solving for r gives the roots of the indicial equation as

r1 =
7
2

r2 = −7
2

Since a0 6= 0 then the indicial equation becomes(
4r2 − 49

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 7 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x
7
2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x
7
2

Or

y1(x) =
∞∑
n=0

anx
n+ 7

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n− 7

2

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)4an−1(n+ r − 1) (n+ r − 2) + 4an(n+ r) (n+ r − 1)
+ 16an−1(n+ r − 1) + 4an(n+ r)− 27an−1 − 49an = 0

Solving for an from recursive equation (4) gives

an = −(2n+ 2r − 5) an−1

2n+ 2r − 7 (4)

Which for the root r = 7
2 becomes

an = −(1 + n) an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 7

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
3− 2r
2r − 5

Which for the root r = 7
2 becomes

a1 = −2

And the table now becomes

n an,r an

a0 1 1
a1

3−2r
2r−5 −2

For n = 2, using the above recursive equation gives

a2 =
2r − 1
2r − 5
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Which for the root r = 7
2 becomes

a2 = 3

And the table now becomes

n an,r an

a0 1 1
a1

3−2r
2r−5 −2

a2
2r−1
2r−5 3

For n = 3, using the above recursive equation gives

a3 =
−1− 2r
2r − 5

Which for the root r = 7
2 becomes

a3 = −4

And the table now becomes

n an,r an

a0 1 1
a1

3−2r
2r−5 −2

a2
2r−1
2r−5 3

a3
−1−2r
2r−5 −4

For n = 4, using the above recursive equation gives

a4 =
3 + 2r
2r − 5

Which for the root r = 7
2 becomes

a4 = 5

And the table now becomes
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n an,r an

a0 1 1
a1

3−2r
2r−5 −2

a2
2r−1
2r−5 3

a3
−1−2r
2r−5 −4

a4
3+2r
2r−5 5

For n = 5, using the above recursive equation gives

a5 =
−5− 2r
2r − 5

Which for the root r = 7
2 becomes

a5 = −6

And the table now becomes

n an,r an

a0 1 1
a1

3−2r
2r−5 −2

a2
2r−1
2r−5 3

a3
−1−2r
2r−5 −4

a4
3+2r
2r−5 5

a5
−5−2r
2r−5 −6

For n = 6, using the above recursive equation gives

a6 =
7 + 2r
2r − 5

Which for the root r = 7
2 becomes

a6 = 7

And the table now becomes
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n an,r an

a0 1 1
a1

3−2r
2r−5 −2

a2
2r−1
2r−5 3

a3
−1−2r
2r−5 −4

a4
3+2r
2r−5 5

a5
−5−2r
2r−5 −6

a6
7+2r
2r−5 7

For n = 7, using the above recursive equation gives

a7 =
−9− 2r
2r − 5

Which for the root r = 7
2 becomes

a7 = −8

And the table now becomes

n an,r an

a0 1 1
a1

3−2r
2r−5 −2

a2
2r−1
2r−5 3

a3
−1−2r
2r−5 −4

a4
3+2r
2r−5 5

a5
−5−2r
2r−5 −6

a6
7+2r
2r−5 7

a7
−9−2r
2r−5 −8

Using the above table, then the solution y1(x) is

y1(x) = x
7
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7 + a8x

8. . .
)

= x
7
2
(
1− 2x+ 3x2 − 4x3 + 5x4 − 6x5 + 7x6 − 8x7 +O

(
x8))
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Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 7. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a7(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a7

= −9− 2r
2r − 5

Therefore

lim
r→r2

−9− 2r
2r − 5 = lim

r→− 7
2

−9− 2r
2r − 5

= 1
6

The limit is 1
6 . Since the limit exists then the log term is not needed and we can set

C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n− 7

2

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)4bn−1(n+ r − 1) (n+ r − 2) + 4bn(n+ r) (n+ r − 1)
+ 16bn−1(n+ r − 1) + 4bn(n+ r)− 27bn−1 − 49bn = 0

Which for for the root r = −7
2 becomes

(4A)4bn−1

(
n− 9

2

)(
n− 11

2

)
+ 4bn

(
n− 7

2

)(
n− 9

2

)
+ 16bn−1

(
n− 9

2

)
+ 4bn

(
n− 7

2

)
− 27bn−1 − 49bn = 0
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Solving for bn from the recursive equation (4) gives

bn = −(2n+ 2r − 5) bn−1

2n+ 2r − 7 (5)

Which for the root r = −7
2 becomes

bn = −(2n− 12) bn−1

2n− 14 (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −7

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = −−3 + 2r
2r − 5

Which for the root r = −7
2 becomes

b1 = −5
6

And the table now becomes

n bn,r bn

b0 1 1
b1

3−2r
2r−5 −5

6

For n = 2, using the above recursive equation gives

b2 =
2r − 1
2r − 5

Which for the root r = −7
2 becomes

b2 =
2
3

And the table now becomes

6678



n bn,r bn

b0 1 1
b1

3−2r
2r−5 −5

6

b2
2r−1
2r−5

2
3

For n = 3, using the above recursive equation gives

b3 = −1 + 2r
2r − 5

Which for the root r = −7
2 becomes

b3 = −1
2

And the table now becomes

n bn,r bn

b0 1 1
b1

3−2r
2r−5 −5

6

b2
2r−1
2r−5

2
3

b3
−1−2r
2r−5 −1

2

For n = 4, using the above recursive equation gives

b4 =
3 + 2r
2r − 5

Which for the root r = −7
2 becomes

b4 =
1
3

And the table now becomes

n bn,r bn

b0 1 1
b1

3−2r
2r−5 −5

6

b2
2r−1
2r−5

2
3

b3
−1−2r
2r−5 −1

2

b4
3+2r
2r−5

1
3
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For n = 5, using the above recursive equation gives

b5 = −5 + 2r
2r − 5

Which for the root r = −7
2 becomes

b5 = −1
6

And the table now becomes

n bn,r bn

b0 1 1
b1

3−2r
2r−5 −5

6

b2
2r−1
2r−5

2
3

b3
−1−2r
2r−5 −1

2

b4
3+2r
2r−5

1
3

b5
−5−2r
2r−5 −1

6

For n = 6, using the above recursive equation gives

b6 =
7 + 2r
2r − 5

Which for the root r = −7
2 becomes

b6 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

3−2r
2r−5 −5

6

b2
2r−1
2r−5

2
3

b3
−1−2r
2r−5 −1

2

b4
3+2r
2r−5

1
3

b5
−5−2r
2r−5 −1

6

b6
7+2r
2r−5 0
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For n = 7, using the above recursive equation gives

b7 = −9 + 2r
2r − 5

Which for the root r = −7
2 becomes

b7 =
1
6

And the table now becomes

n bn,r bn

b0 1 1
b1

3−2r
2r−5 −5

6

b2
2r−1
2r−5

2
3

b3
−1−2r
2r−5 −1

2

b4
3+2r
2r−5

1
3

b5
−5−2r
2r−5 −1

6

b6
7+2r
2r−5 0

b7
−9−2r
2r−5

1
6

Using the above table, then the solution y2(x) is

y2(x) = x
7
2
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6 + b7x
7 + b8x

8. . .
)

=
1− 5x

6 + 2x2

3 − x3

2 + x4

3 − x5

6 + x7

6 +O(x8)
x

7
2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
7
2
(
1− 2x+ 3x2 − 4x3 + 5x4 − 6x5 + 7x6 − 8x7 +O

(
x8))

+
c2
(
1− 5x

6 + 2x2

3 − x3

2 + x4

3 − x5

6 + x7

6 +O(x8)
)

x
7
2

Hence the final solution is
y = yh

= c1x
7
2
(
1− 2x+ 3x2 − 4x3 + 5x4 − 6x5 + 7x6 − 8x7 +O

(
x8))

+
c2
(
1− 5x

6 + 2x2

3 − x3

2 + x4

3 − x5

6 + x7

6 +O(x8)
)

x
7
2
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Summary
The solution(s) found are the following

(1)
y = c1x

7
2
(
1− 2x+ 3x2 − 4x3 + 5x4 − 6x5 + 7x6 − 8x7 +O

(
x8))

+
c2
(
1− 5x

6 + 2x2

3 − x3

2 + x4

3 − x5

6 + x7

6 +O(x8)
)

x
7
2

Verification of solutions

y = c1x
7
2
(
1− 2x+ 3x2 − 4x3 + 5x4 − 6x5 + 7x6 − 8x7 +O

(
x8))

+
c2
(
1− 5x

6 + 2x2

3 − x3

2 + x4

3 − x5

6 + x7

6 +O(x8)
)

x
7
2

Verified OK.

16.25.1 Maple step by step solution

Let’s solve
4x2(x+ 1) y′′ + (16x2 + 4x) y′ + (−27x− 49) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = (49+27x)y
4x2(x+1) − (4x+1)y′

x(x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (4x+1)y′
x(x+1) − (49+27x)y

4x2(x+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 4x+1
x(x+1) , P3(x) = − 49+27x

4x2(x+1)

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= 3

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
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Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
4x2(x+ 1) y′′ + 4x(4x+ 1) y′ + (−27x− 49) y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(4u3 − 8u2 + 4u)
(

d2

du2y(u)
)
+ (16u2 − 28u+ 12)

(
d
du
y(u)

)
+ (−27u− 22) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..3

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

4a0r(2 + r)u−1+r + (4a1(1 + r) (3 + r)− 2a0(4r2 + 10r + 11))ur +
(

∞∑
k=1

(4ak+1(k + 1 + r) (k + 3 + r)− 2ak(4k2 + 8kr + 4r2 + 10k + 10r + 11) + ak−1(2k + 7 + 2r) (2k − 5 + 2r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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4r(2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−2, 0}
• Each term must be 0

4a1(1 + r) (3 + r)− 2a0(4r2 + 10r + 11) = 0
• Each term in the series must be 0, giving the recursion relation

4(−2ak + ak−1 + ak+1) k2 + 4(2(−2ak + ak−1 + ak+1) r − 5ak + ak−1 + 4ak+1) k + 4(−2ak + ak−1 + ak+1) r2 + 4(−5ak + ak−1 + 4ak+1) r − 22ak − 35ak−1 + 12ak+1 = 0
• Shift index using k− >k + 1

4(−2ak+1 + ak + ak+2) (k + 1)2 + 4(2(−2ak+1 + ak + ak+2) r − 5ak+1 + ak + 4ak+2) (k + 1) + 4(−2ak+1 + ak + ak+2) r2 + 4(−5ak+1 + ak + 4ak+2) r − 22ak+1 − 35ak + 12ak+2 = 0
• Recursion relation that defines series solution to ODE

ak+2 = −4k2ak−8k2ak+1+8krak−16krak+1+4r2ak−8r2ak+1+12kak−36kak+1+12rak−36rak+1−27ak−50ak+1
4(k2+2kr+r2+6k+6r+8)

• Recursion relation for r = −2

ak+2 = −4k2ak−8k2ak+1−4kak−4kak+1−35ak−10ak+1
4(k2+2k)

• Series not valid for r = −2 , division by 0 in the recursion relation at k = 0

ak+2 = −4k2ak−8k2ak+1−4kak−4kak+1−35ak−10ak+1
4(k2+2k)

• Recursion relation for r = 0

ak+2 = −4k2ak−8k2ak+1+12kak−36kak+1−27ak−50ak+1
4(k2+6k+8)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+2 = −4k2ak−8k2ak+1+12kak−36kak+1−27ak−50ak+1

4(k2+6k+8) , 12a1 − 22a0 = 0
]

• Revert the change of variables u = x+ 1[
y =

∞∑
k=0

ak(x+ 1)k , ak+2 = −4k2ak−8k2ak+1+12kak−36kak+1−27ak−50ak+1
4(k2+6k+8) , 12a1 − 22a0 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 47� �
Order:=6;
dsolve(4*x^2*(1+x)*diff(y(x),x$2)+4*x*(1+4*x)*diff(y(x),x)-(49+27*x)*y(x)=0,y(x),type='series',x=0);� �
y(x)

= c1x
7(1− 2x+ 3x2 − 4x3 + 5x4 − 6x5 +O(x6)) + c2(3628800− 3024000x+ 2419200x2 − 1814400x3 + 1209600x4 − 604800x5 +O(x6))

x
7
2

3 Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 86� �
AsymptoticDSolveValue[4*x^2*(1+x)*y''[x]+4*x*(1+4*x)*y'[x]-(49+27*x)*y[x]==0,y[x],{x,0,5}]� �
y(x)→ c1

(
2

3x3/2−
5

6x5/2+
1

x7/2+
√
x

3 − 1
2
√
x

)
+c2

(
5x15/2−4x13/2+3x11/2−2x9/2+x7/2)
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16.26 problem 22
16.26.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6704

Internal problem ID [1438]
Internal file name [OUTPUT/1439_Sunday_June_05_2022_02_17_28_AM_15986656/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 22.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries], [_2nd_order , _linear , `

_with_symmetry_ [0,F(x)]`]]

x2(1 + 2x) y′′ − x(9 + 8x) y′ − 12yx = 0

With the expansion point for the power series method at x = 0.

The ODE is (
2x3 + x2) y′′ + (−8x2 − 9x

)
y′ − 12yx = 0

Or
x
(
2x2y′′ + y′′x− 8y′x− 9y′ − 12y

)
= 0

For x 6= 0 the above simplifies to(
2x2 + x

)
y′′ + (−8x− 9) y′ − 12y = 0

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

2x3 + x2) y′′ + (−8x2 − 9x
)
y′ − 12yx = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0
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Where

p(x) = − 9 + 8x
(1 + 2x)x

q(x) = − 12
x (1 + 2x)

Table 822: Table p(x), q(x) singularites.

p(x) = − 9+8x
(1+2x)x

singularity type
x = 0 “regular”
x = −1

2 “regular”

q(x) = − 12
x(1+2x)

singularity type
x = 0 “regular”
x = −1

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,−1

2 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(1 + 2x) y′′ +
(
−8x2 − 9x

)
y′ − 12yx = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2
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Substituting the above back into the ode gives

(1)
x2(1 + 2x)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−8x2 − 9x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
− 12

(
∞∑
n=0

anx
n+r

)
x = 0

Which simplifies to

(2A)

(
∞∑
n=0

2x1+n+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n

+ r − 1)
)

+
∞∑

n =0

(
−8x1+n+ran(n+ r)

)
+

∞∑
n =0

(
−9xn+ran(n

+ r)
)
+

∞∑
n =0

(
−12x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2x1+n+ran(n+ r) (n+ r − 1) =
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

∞∑
n =0

(
−8x1+n+ran(n+ r)

)
=

∞∑
n=1

(
−8an−1(n+ r − 1)xn+r

)
∞∑

n =0

(
−12x1+n+ran

)
=

∞∑
n=1

(
−12an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ r.

(2B)

(
∞∑
n=1

2an−1(n+ r − 1) (n+ r − 2)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−8an−1(n+ r − 1)xn+r

)
+

∞∑
n =0

(
−9xn+ran(n+ r)

)
+

∞∑
n =1

(
−12an−1x

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 9xn+ran(n+ r) = 0

When n = 0 the above becomes

xra0r(−1 + r)− 9xra0r = 0

Or
(xrr(−1 + r)− 9xrr) a0 = 0

Since a0 6= 0 then the above simplifies to

xrr(−10 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−10 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 10
r2 = 0

Since a0 6= 0 then the indicial equation becomes

xrr(−10 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 10 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
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Or

y1(x) = x10

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+10

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)2an−1(n+ r − 1) (n+ r − 2) + an(n+ r) (n+ r − 1)
− 8an−1(n+ r − 1)− 9an(n+ r)− 12an−1 = 0

Solving for an from recursive equation (4) gives

an = −2(n+ r − 7) an−1

n− 10 + r
(4)

Which for the root r = 10 becomes

an = −2(n+ 3) an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 10 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
12− 2r
−9 + r
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Which for the root r = 10 becomes

a1 = −8

And the table now becomes

n an,r an

a0 1 1
a1

12−2r
−9+r

−8

For n = 2, using the above recursive equation gives

a2 =
4r2 − 44r + 120
(−9 + r) (−8 + r)

Which for the root r = 10 becomes

a2 = 40

And the table now becomes

n an,r an

a0 1 1
a1

12−2r
−9+r

−8

a2
4r2−44r+120
(−9+r)(−8+r) 40

For n = 3, using the above recursive equation gives

a3 =
−8r3 + 120r2 − 592r + 960
(−9 + r) (−8 + r) (r − 7)

Which for the root r = 10 becomes

a3 = −160

And the table now becomes

n an,r an

a0 1 1
a1

12−2r
−9+r

−8

a2
4r2−44r+120
(−9+r)(−8+r) 40

a3
−8r3+120r2−592r+960
(−9+r)(−8+r)(r−7) −160
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For n = 4, using the above recursive equation gives

a4 =
16r3 − 192r2 + 752r − 960
(−9 + r) (−8 + r) (r − 7)

Which for the root r = 10 becomes

a4 = 560

And the table now becomes

n an,r an

a0 1 1
a1

12−2r
−9+r

−8

a2
4r2−44r+120
(−9+r)(−8+r) 40

a3
−8r3+120r2−592r+960
(−9+r)(−8+r)(r−7) −160

a4
16r3−192r2+752r−960
(−9+r)(−8+r)(r−7) 560

For n = 5, using the above recursive equation gives

a5 = −32(−3 + r) (−4 + r) (−2 + r)
(−9 + r) (−8 + r) (r − 7)

Which for the root r = 10 becomes

a5 = −1792

And the table now becomes

n an,r an

a0 1 1
a1

12−2r
−9+r

−8

a2
4r2−44r+120
(−9+r)(−8+r) 40

a3
−8r3+120r2−592r+960
(−9+r)(−8+r)(r−7) −160

a4
16r3−192r2+752r−960
(−9+r)(−8+r)(r−7) 560

a5 −32(−3+r)(−4+r)(−2+r)
(−9+r)(−8+r)(r−7) −1792
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For n = 6, using the above recursive equation gives

a6 =
64(−3 + r) (−2 + r) (−1 + r)
(−9 + r) (−8 + r) (r − 7)

Which for the root r = 10 becomes

a6 = 5376

And the table now becomes

n an,r an

a0 1 1
a1

12−2r
−9+r

−8

a2
4r2−44r+120
(−9+r)(−8+r) 40

a3
−8r3+120r2−592r+960
(−9+r)(−8+r)(r−7) −160

a4
16r3−192r2+752r−960
(−9+r)(−8+r)(r−7) 560

a5 −32(−3+r)(−4+r)(−2+r)
(−9+r)(−8+r)(r−7) −1792

a6
64(−3+r)(−2+r)(−1+r)
(−9+r)(−8+r)(r−7) 5376

For n = 7, using the above recursive equation gives

a7 = − 128(−2 + r) (−1 + r) r
(−9 + r) (−8 + r) (r − 7)

Which for the root r = 10 becomes

a7 = −15360

And the table now becomes
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n an,r an

a0 1 1
a1

12−2r
−9+r

−8

a2
4r2−44r+120
(−9+r)(−8+r) 40

a3
−8r3+120r2−592r+960
(−9+r)(−8+r)(r−7) −160

a4
16r3−192r2+752r−960
(−9+r)(−8+r)(r−7) 560

a5 −32(−3+r)(−4+r)(−2+r)
(−9+r)(−8+r)(r−7) −1792

a6
64(−3+r)(−2+r)(−1+r)
(−9+r)(−8+r)(r−7) 5376

a7 − 128(−2+r)(−1+r)r
(−9+r)(−8+r)(r−7) −15360

For n = 8, using the above recursive equation gives

a8 =
256r3 − 256r

(−9 + r) (−8 + r) (r − 7)

Which for the root r = 10 becomes

a8 = 42240

And the table now becomes

n an,r an

a0 1 1
a1

12−2r
−9+r

−8

a2
4r2−44r+120
(−9+r)(−8+r) 40

a3
−8r3+120r2−592r+960
(−9+r)(−8+r)(r−7) −160

a4
16r3−192r2+752r−960
(−9+r)(−8+r)(r−7) 560

a5 −32(−3+r)(−4+r)(−2+r)
(−9+r)(−8+r)(r−7) −1792

a6
64(−3+r)(−2+r)(−1+r)
(−9+r)(−8+r)(r−7) 5376

a7 − 128(−2+r)(−1+r)r
(−9+r)(−8+r)(r−7) −15360

a8
256r3−256r

(−9+r)(−8+r)(r−7) 42240
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For n = 9, using the above recursive equation gives

a9 = − 512(2 + r) r(1 + r)
(−9 + r) (−8 + r) (r − 7)

Which for the root r = 10 becomes

a9 = −112640

And the table now becomes

n an,r an

a0 1 1
a1

12−2r
−9+r

−8

a2
4r2−44r+120
(−9+r)(−8+r) 40

a3
−8r3+120r2−592r+960
(−9+r)(−8+r)(r−7) −160

a4
16r3−192r2+752r−960
(−9+r)(−8+r)(r−7) 560

a5 −32(−3+r)(−4+r)(−2+r)
(−9+r)(−8+r)(r−7) −1792

a6
64(−3+r)(−2+r)(−1+r)
(−9+r)(−8+r)(r−7) 5376

a7 − 128(−2+r)(−1+r)r
(−9+r)(−8+r)(r−7) −15360

a8
256r3−256r

(−9+r)(−8+r)(r−7) 42240

a9 − 512(2+r)r(1+r)
(−9+r)(−8+r)(r−7) −112640

For n = 10, using the above recursive equation gives

a10 =
1024(2 + r) (1 + r) (3 + r)
(−9 + r) (−8 + r) (r − 7)

Which for the root r = 10 becomes

a10 = 292864

And the table now becomes
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n an,r an

a0 1 1
a1

12−2r
−9+r

−8

a2
4r2−44r+120
(−9+r)(−8+r) 40

a3
−8r3+120r2−592r+960
(−9+r)(−8+r)(r−7) −160

a4
16r3−192r2+752r−960
(−9+r)(−8+r)(r−7) 560

a5 −32(−3+r)(−4+r)(−2+r)
(−9+r)(−8+r)(r−7) −1792

a6
64(−3+r)(−2+r)(−1+r)
(−9+r)(−8+r)(r−7) 5376

a7 − 128(−2+r)(−1+r)r
(−9+r)(−8+r)(r−7) −15360

a8
256r3−256r

(−9+r)(−8+r)(r−7) 42240

a9 − 512(2+r)r(1+r)
(−9+r)(−8+r)(r−7) −112640

a10
1024(2+r)(1+r)(3+r)
(−9+r)(−8+r)(r−7) 292864

Using the above table, then the solution y1(x) is

y1(x) = x10(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7 + a8x
8 + a9x

9 + a10x
10 + a11x

11. . .
)

= x10(1− 8x+ 40x2 − 160x3 + 560x4 − 1792x5 + 5376x6 − 15360x7 + 42240x8 − 112640x9 + 292864x10 +O
(
x11))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken as
the larger root. Hence for this problem we have N = 10. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a10(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a10

= 1024(2 + r) (1 + r) (3 + r)
(−9 + r) (−8 + r) (r − 7)

Therefore

lim
r→r2

1024(2 + r) (1 + r) (3 + r)
(−9 + r) (−8 + r) (r − 7) = lim

r→0

1024(2 + r) (1 + r) (3 + r)
(−9 + r) (−8 + r) (r − 7)

= −256
21
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The limit is −256
21 . Since the limit exists then the log term is not needed and we can set

C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
For 1 ≤ n the recursive equation is

(4)2bn−1(n+ r − 1) (n+ r − 2) + bn(n+ r) (n+ r − 1)
− 8bn−1(n+ r − 1)− 9bn(n+ r)− 12bn−1 = 0

Which for for the root r = 0 becomes

(4A)2bn−1(n− 1) (n− 2) + bnn(n− 1)− 8bn−1(n− 1)− 9bnn− 12bn−1 = 0

Solving for bn from the recursive equation (4) gives

bn = −2(n+ r − 7) bn−1

n− 10 + r
(5)

Which for the root r = 0 becomes

bn = −2(n− 7) bn−1

n− 10 (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = −2(−6 + r)
−9 + r

Which for the root r = 0 becomes
b1 = −4

3
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And the table now becomes

n bn,r bn

b0 1 1
b1

12−2r
−9+r

−4
3

For n = 2, using the above recursive equation gives

b2 =
4r2 − 44r + 120
(−9 + r) (−8 + r)

Which for the root r = 0 becomes
b2 =

5
3

And the table now becomes

n bn,r bn

b0 1 1
b1

12−2r
−9+r

−4
3

b2
4r2−44r+120
(−9+r)(−8+r)

5
3

For n = 3, using the above recursive equation gives

b3 = − 8(r3 − 15r2 + 74r − 120)
(−9 + r) (−8 + r) (r − 7)

Which for the root r = 0 becomes

b3 = −40
21

And the table now becomes

n bn,r bn

b0 1 1
b1

12−2r
−9+r

−4
3

b2
4r2−44r+120
(−9+r)(−8+r)

5
3

b3
−8r3+120r2−592r+960
(−9+r)(−8+r)(r−7) −40

21
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For n = 4, using the above recursive equation gives

b4 =
16r3 − 192r2 + 752r − 960
(−9 + r) (−8 + r) (r − 7)

Which for the root r = 0 becomes
b4 =

40
21

And the table now becomes

n bn,r bn

b0 1 1
b1

12−2r
−9+r

−4
3

b2
4r2−44r+120
(−9+r)(−8+r)

5
3

b3
−8r3+120r2−592r+960
(−9+r)(−8+r)(r−7) −40

21

b4
16r3−192r2+752r−960
(−9+r)(−8+r)(r−7)

40
21

For n = 5, using the above recursive equation gives

b5 = −32(r2 − 7r + 12) (−2 + r)
(−9 + r) (−8 + r) (r − 7)

Which for the root r = 0 becomes

b5 = −32
21

And the table now becomes

n bn,r bn

b0 1 1
b1

12−2r
−9+r

−4
3

b2
4r2−44r+120
(−9+r)(−8+r)

5
3

b3
−8r3+120r2−592r+960
(−9+r)(−8+r)(r−7) −40

21

b4
16r3−192r2+752r−960
(−9+r)(−8+r)(r−7)

40
21

b5 −32(−3+r)(−4+r)(−2+r)
(−9+r)(−8+r)(r−7) −32

21
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For n = 6, using the above recursive equation gives

b6 =
64(−3 + r) (−2 + r) (−1 + r)
(−9 + r) (−8 + r) (r − 7)

Which for the root r = 0 becomes
b6 =

16
21

And the table now becomes

n bn,r bn

b0 1 1
b1

12−2r
−9+r

−4
3

b2
4r2−44r+120
(−9+r)(−8+r)

5
3

b3
−8r3+120r2−592r+960
(−9+r)(−8+r)(r−7) −40

21

b4
16r3−192r2+752r−960
(−9+r)(−8+r)(r−7)

40
21

b5 −32(−3+r)(−4+r)(−2+r)
(−9+r)(−8+r)(r−7) −32

21

b6
64(−3+r)(−2+r)(−1+r)
(−9+r)(−8+r)(r−7)

16
21

For n = 7, using the above recursive equation gives

b7 = − 128(−2 + r) (−1 + r) r
(−9 + r) (−8 + r) (r − 7)

Which for the root r = 0 becomes
b7 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1

12−2r
−9+r

−4
3

b2
4r2−44r+120
(−9+r)(−8+r)

5
3

b3
−8r3+120r2−592r+960
(−9+r)(−8+r)(r−7) −40

21

b4
16r3−192r2+752r−960
(−9+r)(−8+r)(r−7)

40
21

b5 −32(−3+r)(−4+r)(−2+r)
(−9+r)(−8+r)(r−7) −32

21

b6
64(−3+r)(−2+r)(−1+r)
(−9+r)(−8+r)(r−7)

16
21

b7 − 128(−2+r)(−1+r)r
(−9+r)(−8+r)(r−7) 0

For n = 8, using the above recursive equation gives

b8 =
256r(−1 + r) (1 + r)

(−9 + r) (−8 + r) (r − 7)

Which for the root r = 0 becomes
b8 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

12−2r
−9+r

−4
3

b2
4r2−44r+120
(−9+r)(−8+r)

5
3

b3
−8r3+120r2−592r+960
(−9+r)(−8+r)(r−7) −40

21

b4
16r3−192r2+752r−960
(−9+r)(−8+r)(r−7)

40
21

b5 −32(−3+r)(−4+r)(−2+r)
(−9+r)(−8+r)(r−7) −32

21

b6
64(−3+r)(−2+r)(−1+r)
(−9+r)(−8+r)(r−7)

16
21

b7 − 128(−2+r)(−1+r)r
(−9+r)(−8+r)(r−7) 0

b8
256r3−256r

(−9+r)(−8+r)(r−7) 0
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For n = 9, using the above recursive equation gives

b9 = − 512(2 + r) r(1 + r)
(−9 + r) (−8 + r) (r − 7)

Which for the root r = 0 becomes
b9 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

12−2r
−9+r

−4
3

b2
4r2−44r+120
(−9+r)(−8+r)

5
3

b3
−8r3+120r2−592r+960
(−9+r)(−8+r)(r−7) −40

21

b4
16r3−192r2+752r−960
(−9+r)(−8+r)(r−7)

40
21

b5 −32(−3+r)(−4+r)(−2+r)
(−9+r)(−8+r)(r−7) −32

21

b6
64(−3+r)(−2+r)(−1+r)
(−9+r)(−8+r)(r−7)

16
21

b7 − 128(−2+r)(−1+r)r
(−9+r)(−8+r)(r−7) 0

b8
256r3−256r

(−9+r)(−8+r)(r−7) 0

b9 − 512(2+r)r(1+r)
(−9+r)(−8+r)(r−7) 0

For n = 10, using the above recursive equation gives

b10 =
1024(2 + r) (1 + r) (3 + r)
(−9 + r) (−8 + r) (r − 7)

Which for the root r = 0 becomes

b10 = −256
21

And the table now becomes

6702



n bn,r bn

b0 1 1
b1

12−2r
−9+r

−4
3

b2
4r2−44r+120
(−9+r)(−8+r)

5
3

b3
−8r3+120r2−592r+960
(−9+r)(−8+r)(r−7) −40

21

b4
16r3−192r2+752r−960
(−9+r)(−8+r)(r−7)

40
21

b5 −32(−3+r)(−4+r)(−2+r)
(−9+r)(−8+r)(r−7) −32

21

b6
64(−3+r)(−2+r)(−1+r)
(−9+r)(−8+r)(r−7)

16
21

b7 − 128(−2+r)(−1+r)r
(−9+r)(−8+r)(r−7) 0

b8
256r3−256r

(−9+r)(−8+r)(r−7) 0

b9 − 512(2+r)r(1+r)
(−9+r)(−8+r)(r−7) 0

b10
1024(2+r)(1+r)(3+r)
(−9+r)(−8+r)(r−7) −256

21

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 + b8x
8 + b9x

9 + b10x
10 + b11x

11. . .

= 1− 4x
3 + 5x2

3 − 40x3

21 + 40x4

21 − 32x5

21 + 16x6

21 − 256x10

21 +O
(
x11)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
10(1− 8x+ 40x2 − 160x3 + 560x4 − 1792x5 + 5376x6 − 15360x7 + 42240x8

− 112640x9 + 292864x10 +O
(
x11))

+ c2

(
1− 4x

3 + 5x2

3 − 40x3

21 + 40x4

21 − 32x5

21 + 16x6

21 − 256x10

21 +O
(
x11))

Hence the final solution is

y = yh

= c1x
10(1− 8x+ 40x2 − 160x3 + 560x4 − 1792x5 + 5376x6 − 15360x7 + 42240x8

− 112640x9 + 292864x10 +O
(
x11))

+ c2

(
1− 4x

3 + 5x2

3 − 40x3

21 + 40x4

21 − 32x5

21 + 16x6

21 − 256x10

21 +O
(
x11))
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Summary
The solution(s) found are the following

(1)

y = c1x
10(1− 8x+ 40x2 − 160x3 + 560x4 − 1792x5 + 5376x6 − 15360x7 + 42240x8

− 112640x9 + 292864x10 +O
(
x11))

+ c2

(
1− 4x

3 + 5x2

3 − 40x3

21 + 40x4

21 − 32x5

21 + 16x6

21 − 256x10

21 +O
(
x11))

Verification of solutions

y = c1x
10(1− 8x+ 40x2 − 160x3 + 560x4 − 1792x5 + 5376x6 − 15360x7 + 42240x8

− 112640x9 + 292864x10 +O
(
x11))

+ c2

(
1− 4x

3 + 5x2

3 − 40x3

21 + 40x4

21 − 32x5

21 + 16x6

21 − 256x10

21 +O
(
x11))

Verified OK.

16.26.1 Maple step by step solution

Let’s solve
x2(1 + 2x) y′′ + (−8x2 − 9x) y′ − 12yx = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = 12y
x(1+2x) +

(9+8x)y′
x(1+2x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (9+8x)y′
x(1+2x) −

12y
x(1+2x) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − 9+8x
(1+2x)x , P3(x) = − 12

x(1+2x)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −9

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0
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◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x(1 + 2x) y′′ + (−8x− 9) y′ − 12y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..2

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(−10 + r)x−1+r +
(

∞∑
k=0

(ak+1(k + r + 1) (k − 9 + r) + 2ak(k + r + 1) (k + r − 6))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−10 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 10}

• Each term in the series must be 0, giving the recursion relation

2(k + r + 1)
(

ak+1(k−9+r)
2 + ak(k + r − 6)

)
= 0

• Recursion relation that defines series solution to ODE
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ak+1 = −2ak(k+r−6)
k−9+r

• Recursion relation for r = 0 ; series terminates at k = 6
ak+1 = −2ak(k−6)

k−9

• Recursion relation that defines the terminating series solution of the ODE for r = 0[
y =

5∑
k=0

akx
k, ak+1 = −2ak(k−6)

k−9

]
• Recursion relation for r = 10

ak+1 = −2ak(k+4)
k+1

• Solution for r = 10[
y =

∞∑
k=0

akx
k+10, ak+1 = −2ak(k+4)

k+1

]
• Combine solutions and rename parameters[

y =
(

5∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+10

)
, a1+k = −2ak(k−6)

k−9 , b1+k = −2bk(4+k)
1+k

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 44� �
Order:=6;
dsolve(x^2*(1+2*x)*diff(y(x),x$2)-x*(9+8*x)*diff(y(x),x)-12*x*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
10(1− 8x+ 40x2 − 160x3 + 560x4 − 1792x5 +O

(
x6))

+ c2
(
−1316818944000 + 1755758592000x− 2194698240000x2

+ 2508226560000x3 − 2508226560000x4 + 2006581248000x5 +O
(
x6))
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3 Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 62� �
AsymptoticDSolveValue[x^2*(1+2*x)*y''[x]-x*(9+8*x)*y'[x]-12*x*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
40x4

21 − 40x3

21 + 5x2

3 − 4x
3 + 1

)
+ c2

(
560x14 − 160x13 + 40x12 − 8x11 + x10)
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16.27.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6720

Internal problem ID [1439]
Internal file name [OUTPUT/1440_Sunday_June_05_2022_02_17_33_AM_88030696/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x2 + 1
)
y′′ − x

(
−2x2 + 7

)
y′ + 12y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x4 + x2) y′′ + (2x3 − 7x
)
y′ + 12y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2x2 − 7
x (x2 + 1)

q(x) = 12
x2 (x2 + 1)
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Table 824: Table p(x), q(x) singularites.

p(x) = 2x2−7
x(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

q(x) = 12
x2(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 + 1
)
y′′ +

(
2x3 − 7x

)
y′ + 12y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
2x3 − 7x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ 12

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+r+2an(n+ r)
)
+

∞∑
n =0

(
−7xn+ran(n+ r)

)
+
(

∞∑
n=0

12anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

2xn+r+2an(n+ r) =
∞∑
n=2

2an−2(n+ r − 2)xn+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

2an−2(n+ r− 2)xn+r

)
+

∞∑
n =0

(
−7xn+ran(n+ r)

)
+
(

∞∑
n=0

12anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 7xn+ran(n+ r) + 12anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− 7xra0r + 12a0xr = 0

Or
(xrr(−1 + r)− 7xrr + 12xr) a0 = 0
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Since a0 6= 0 then the above simplifies to

(r − 2) (r − 6)xr = 0

Since the above is true for all x then the indicial equation becomes

(r − 2) (r − 6) = 0

Solving for r gives the roots of the indicial equation as

r1 = 6
r2 = 2

Since a0 6= 0 then the indicial equation becomes

(r − 2) (r − 6)xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x6

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + x2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+6

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
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of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r) + an(n+ r) (n+ r − 1)
+ 2an−2(n+ r − 2)− 7an(n+ r) + 12an = 0

Solving for an from recursive equation (4) gives

an = −(n+ r − 1) an−2

n+ r − 6 (4)

Which for the root r = 6 becomes

an = −(n+ 5) an−2

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 6 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−1− r

−4 + r

Which for the root r = 6 becomes
a2 = −7

2
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−1−r
−4+r

−7
2
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For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−1−r
−4+r

−7
2

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
(3 + r) (1 + r)
(−4 + r) (r − 2)

Which for the root r = 6 becomes
a4 =

63
8

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−1−r
−4+r

−7
2

a3 0 0
a4

(3+r)(1+r)
(−4+r)(r−2)

63
8

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

−1−r
−4+r

−7
2

a3 0 0
a4

(3+r)(1+r)
(−4+r)(r−2)

63
8

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x6(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x6

(
1− 7x2

2 + 63x4

8 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 4. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a4(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a4

= (3 + r) (1 + r)
(−4 + r) (r − 2)

Therefore

lim
r→r2

(3 + r) (1 + r)
(−4 + r) (r − 2) = lim

r→2

(3 + r) (1 + r)
(−4 + r) (r − 2)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode x2(x2 + 1) y′′+(2x3 − 7x) y′+12y = 0 gives

x2(x2 + 1
)(

Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
2x3 − 7x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+ 12Cy1(x) ln (x) + 12
(

∞∑
n=0

bnx
n+r2

)
= 0

Which can be written as

(7)

((
x2(x2 + 1

)
y′′1(x) +

(
2x3 − 7x

)
y′1(x) + 12y1(x)

)
ln (x)

+ x2(x2 + 1
)(2y′1(x)

x
− y1(x)

x2

)
+ (2x3 − 7x) y1(x)

x

)
C

+ x2(x2 + 1
)( ∞∑

n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
2x3 − 7x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ 12

(
∞∑
n=0

bnx
n+r2

)
= 0
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But since y1(x) is a solution to the ode, then

x2(x2 + 1
)
y′′1(x) +

(
2x3 − 7x

)
y′1(x) + 12y1(x) = 0

Eq (7) simplifes to

(8)

(
x2(x2 + 1

)(2y′1(x)
x

− y1(x)
x2

)
+ (2x3 − 7x) y1(x)

x

)
C

+ x2(x2 + 1
)( ∞∑

n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
2x3 − 7x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ 12

(
∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2x
(
x2 + 1

)( ∞∑
n=0

x−1+n+r1an(n+ r1)
)

+
(
x2 − 8

)( ∞∑
n=0

anx
n+r1

))
C

+
(
x4 + x2)( ∞∑

n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)

+
(
2x3 − 7x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

+ 12
(

∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 6 and r2 = 2 then the above becomes

(10)

(
2x
(
x2 + 1

)( ∞∑
n=0

xn+5an(n+ 6)
)

+
(
x2 − 8

)( ∞∑
n=0

anx
n+6

))
C

+
(
x4 + x2)( ∞∑

n=0

xnbn(n+ 2) (1 + n)
)

+
(
2x3 − 7x

)( ∞∑
n=0

x1+nbn(n+ 2)
)

+ 12
(

∞∑
n=0

bnx
n+2

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

2C xn+8an(n+ 6)
)

+
(

∞∑
n=0

2C xn+6an(n+ 6)
)

+
(

∞∑
n=0

C xn+8an

)
+

∞∑
n =0

(
−8C xn+6an

)
+
(

∞∑
n=0

xn+4bn
(
n2 + 3n+ 2

))

+
(

∞∑
n=0

xn+2bn
(
n2 + 3n+ 2

))
+
(

∞∑
n=0

2xn+4bn(n+ 2)
)

+
∞∑

n =0

(
−7xn+2bn(n+ 2)

)
+
(

∞∑
n=0

12bnxn+2

)
= 0

The next step is to make all powers of x be n + 2 in each summation term. Going
over each summation term above with power of x in it which is not already xn+2 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xn+8an(n+ 6) =
∞∑
n=6

2Can−6nxn+2

∞∑
n =0

2C xn+6an(n+ 6) =
∞∑
n=4

2Can−4(n+ 2)xn+2

∞∑
n =0

C xn+8an =
∞∑
n=6

Can−6x
n+2

∞∑
n =0

(
−8C xn+6an

)
=

∞∑
n=4

(
−8Can−4x

n+2)
∞∑

n =0

xn+4bn
(
n2 + 3n+ 2

)
=

∞∑
n=2

bn−2
(
(n− 2)2 + 3n− 4

)
xn+2

∞∑
n =0

2xn+4bn(n+ 2) =
∞∑
n=2

2bn−2nxn+2

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ 2.

(2B)

(
∞∑
n=6

2Can−6nxn+2

)
+
(

∞∑
n=4

2Can−4(n+ 2)xn+2

)
+
(

∞∑
n=6

Can−6x
n+2

)

+
∞∑

n =4

(
−8Can−4x

n+2)+( ∞∑
n=2

bn−2
(
(n− 2)2 + 3n− 4

)
xn+2

)

+
(

∞∑
n=0

xn+2bn
(
n2 + 3n+ 2

))
+
(

∞∑
n=2

2bn−2nxn+2

)

+
∞∑

n =0

(
−7xn+2bn(n+ 2)

)
+
(

∞∑
n=0

12bnxn+2

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−3b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b1 = 0

Solving the above for b1 gives
b1 = 0

For n = 2, Eq (2B) gives
6b0 − 4b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

6− 4b2 = 0

Solving the above for b2 gives
b2 =

3
2

For n = 3, Eq (2B) gives
12b1 − 3b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b3 = 0

Solving the above for b3 gives
b3 = 0
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For n = N , where N = 4 which is the difference between the two roots, we are free to
choose b4 = 0. Hence for n = 4, Eq (2B) gives

4C + 30 = 0

Which is solved for C. Solving for C gives

C = −15
2

For n = 5, Eq (2B) gives
6Ca1 + 30b3 + 5b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

5b5 = 0
Solving the above for b5 gives

b5 = 0
Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = −15

2 and all bn, then the second solution becomes

y2(x) = −15
2

(
x6
(
1− 7x2

2 + 63x4

8 +O
(
x6))) ln (x) + x2

(
1 + 3x2

2 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
6
(
1− 7x2

2 + 63x4

8 +O
(
x6))

+ c2

(
−15

2

(
x6
(
1− 7x2

2 + 63x4

8 +O
(
x6))) ln (x) + x2

(
1 + 3x2

2 +O
(
x6)))

Hence the final solution is
y = yh

= c1x
6
(
1− 7x2

2 + 63x4

8 +O
(
x6))

+ c2

−
15x6

(
1− 7x2

2 + 63x4

8 +O(x6)
)
ln (x)

2 + x2
(
1 + 3x2

2 +O
(
x6))
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Summary
The solution(s) found are the following

(1)
y = c1x

6
(
1− 7x2

2 + 63x4

8 +O
(
x6))

+ c2

−
15x6

(
1− 7x2

2 + 63x4

8 +O(x6)
)
ln (x)

2 + x2
(
1 + 3x2

2 +O
(
x6))

Verification of solutions

y = c1x
6
(
1− 7x2

2 + 63x4

8 +O
(
x6))

+ c2

−
15x6

(
1− 7x2

2 + 63x4

8 +O(x6)
)
ln (x)

2 + x2
(
1 + 3x2

2 +O
(
x6))

Verified OK.

16.27.1 Maple step by step solution

Let’s solve
x2(x2 + 1) y′′ + (2x3 − 7x) y′ + 12y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 12y
x2(x2+1) −

(
2x2−7

)
y′

x(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
2x2−7

)
y′

x(x2+1) + 12y
x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x2−7
x(x2+1) , P3(x) = 12

x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −7

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= 12

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(x2 + 1) y′′ + x(2x2 − 7) y′ + 12y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(−2 + r) (−6 + r)xr + a1(−1 + r) (−5 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 2) (k + r − 6) + ak−2(k + r − 2) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r) (−6 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {2, 6}

• Each term must be 0
a1(−1 + r) (−5 + r) = 0
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• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) (ak(k + r − 6) + ak−2(k + r − 1)) = 0

• Shift index using k− >k + 2
(k + r) (ak+2(k − 4 + r) + ak(k + r + 1)) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+1)

k−4+r

• Recursion relation for r = 2
ak+2 = −ak(k+3)

k−2

• Series not valid for r = 2 , division by 0 in the recursion relation at k = 2
ak+2 = −ak(k+3)

k−2

• Recursion relation for r = 6
ak+2 = −ak(k+7)

k+2

• Solution for r = 6[
y =

∞∑
k=0

akx
k+6, ak+2 = −ak(k+7)

k+2 , a1 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 49� �
Order:=6;
dsolve(x^2*(1+x^2)*diff(y(x),x$2)-x*(7-2*x^2)*diff(y(x),x)+12*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
c1x

4
(
1− 7

2x
2 + 63

8 x4 +O
(
x6))

+ c2
(
ln (x)

(
1080x4 +O

(
x6))+ (−144− 216x2 + 2106x4 +O

(
x6))))x2

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 57� �
AsymptoticDSolveValue[x^2*(1+x^2)*y''[x]-x*(7-2*x^2)*y'[x]+12*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
63x10

8 − 7x8

2 + x6
)
+ c1

(
−15

2 x6 log(x)− 1
4
(
31x4 − 6x2 − 4

)
x2
)
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16.28 problem 24
16.28.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6736

Internal problem ID [1440]
Internal file name [OUTPUT/1441_Sunday_June_05_2022_02_17_37_AM_11746741/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 24.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − x
(
−x2 + 7

)
y′ + 12y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
x3 − 7x

)
y′ + 12y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x2 − 7
x

q(x) = 12
x2
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Table 826: Table p(x), q(x) singularites.

p(x) = x2−7
x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = 12
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
x3 − 7x

)
y′ + 12y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x3 − 7x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ 12

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+r+2an(n+ r)
)

+
∞∑

n =0

(
−7xn+ran(n+ r)

)
+
(

∞∑
n=0

12anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) =
∞∑
n=2

an−2(n+ r − 2)xn+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

an−2(n+ r − 2)xn+r

)

+
∞∑

n =0

(
−7xn+ran(n+ r)

)
+
(

∞∑
n=0

12anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 7xn+ran(n+ r) + 12anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− 7xra0r + 12a0xr = 0

Or
(xrr(−1 + r)− 7xrr + 12xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(r − 2) (r − 6)xr = 0

Since the above is true for all x then the indicial equation becomes

(r − 2) (r − 6) = 0

6726



Solving for r gives the roots of the indicial equation as

r1 = 6
r2 = 2

Since a0 6= 0 then the indicial equation becomes

(r − 2) (r − 6)xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x6

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + x2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+6

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an−2(n+ r − 2)− 7an(n+ r) + 12an = 0
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Solving for an from recursive equation (4) gives

an = − an−2

n+ r − 6 (4)

Which for the root r = 6 becomes

an = −an−2

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 6 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
−4 + r

Which for the root r = 6 becomes
a2 = −1

2
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

−4+r
−1

2

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

−4+r
−1

2

a3 0 0
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For n = 4, using the above recursive equation gives

a4 =
1

(−4 + r) (r − 2)

Which for the root r = 6 becomes
a4 =

1
8

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

−4+r
−1

2

a3 0 0
a4

1
(−4+r)(r−2)

1
8

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

−4+r
−1

2

a3 0 0
a4

1
(−4+r)(r−2)

1
8

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x6(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x6

(
1− x2

2 + x4

8 +O
(
x6))
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Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 4. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a4(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a4

= 1
(−4 + r) (r − 2)

Therefore

lim
r→r2

1
(−4 + r) (r − 2) = lim

r→2

1
(−4 + r) (r − 2)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode x2y′′ + (x3 − 7x) y′ + 12y = 0 gives

x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
x3 − 7x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+ 12Cy1(x) ln (x) + 12
(

∞∑
n=0

bnx
n+r2

)
= 0

Which can be written as

(7)

((
x2y′′1(x) +

(
x3 − 7x

)
y′1(x) + 12y1(x)

)
ln (x) + x2

(
2y′1(x)

x
− y1(x)

x2

)
+ (x3 − 7x) y1(x)

x

)
C + x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
x3 − 7x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ 12

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

x2y′′1(x) +
(
x3 − 7x

)
y′1(x) + 12y1(x) = 0

Eq (7) simplifes to

(8)

(
x2
(
2y′1(x)

x
− y1(x)

x2

)
+ (x3 − 7x) y1(x)

x

)
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
x3 − 7x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ 12

(
∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x+

(
x2 − 8

)( ∞∑
n=0

anx
n+r1

))
C

+
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2

+
(
x3 − 7x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

+ 12
(

∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 6 and r2 = 2 then the above becomes

(10)

(
2
(

∞∑
n=0

x5+nan(n+ 6)
)
x+

(
x2 − 8

)( ∞∑
n=0

anx
n+6

))
C

+
(

∞∑
n=0

xnbn(n+ 2) (1 + n)
)
x2

+
(
x3 − 7x

)( ∞∑
n=0

x1+nbn(n+ 2)
)

+ 12
(

∞∑
n=0

bnx
n+2

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C xn+6an(n+ 6)
)

+
(

∞∑
n=0

C xn+8an

)
+

∞∑
n =0

(
−8C xn+6an

)
+
(

∞∑
n=0

xn+2bn
(
n2 + 3n+ 2

))
+
(

∞∑
n=0

xn+4bn(n+ 2)
)

+
∞∑

n =0

(
−7xn+2bn(n+ 2)

)
+
(

∞∑
n=0

12bnxn+2

)
= 0

The next step is to make all powers of x be n + 2 in each summation term. Going
over each summation term above with power of x in it which is not already xn+2 and
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adjusting the power and the corresponding index gives

∞∑
n =0

2C xn+6an(n+ 6) =
∞∑
n=4

2Can−4(n+ 2)xn+2

∞∑
n =0

C xn+8an =
∞∑
n=6

Can−6x
n+2

∞∑
n =0

(
−8C xn+6an

)
=

∞∑
n=4

(
−8Can−4x

n+2)
∞∑

n =0

xn+4bn(n+ 2) =
∞∑
n=2

bn−2nxn+2

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ 2.

(2B)

(
∞∑
n=4

2Can−4(n+ 2)xn+2

)
+
(

∞∑
n=6

Can−6x
n+2

)
+

∞∑
n =4

(
−8Can−4x

n+2)
+
(

∞∑
n=0

xn+2bn
(
n2 + 3n+ 2

))
+
(

∞∑
n=2

bn−2nxn+2

)

+
∞∑

n =0

(
−7xn+2bn(n+ 2)

)
+
(

∞∑
n=0

12bnxn+2

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−3b1 = 0
Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b1 = 0
Solving the above for b1 gives

b1 = 0
For n = 2, Eq (2B) gives

−4b2 + 2b0 = 0
Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−4b2 + 2 = 0
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Solving the above for b2 gives
b2 =

1
2

For n = 3, Eq (2B) gives
−3b3 + 3b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b3 = 0

Solving the above for b3 gives
b3 = 0

For n = N , where N = 4 which is the difference between the two roots, we are free to
choose b4 = 0. Hence for n = 4, Eq (2B) gives

4C + 2 = 0

Which is solved for C. Solving for C gives

C = −1
2

For n = 5, Eq (2B) gives
6Ca1 + 5b3 + 5b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

5b5 = 0

Solving the above for b5 gives
b5 = 0

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = −1
2 and all bn, then the second solution becomes

y2(x) = −1
2

(
x6
(
1− x2

2 + x4

8 +O
(
x6))) ln (x) + x2

(
1 + x2

2 +O
(
x6))
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
6
(
1− x2

2 + x4

8 +O
(
x6))

+ c2

(
−1
2

(
x6
(
1− x2

2 + x4

8 +O
(
x6))) ln (x) + x2

(
1 + x2

2 +O
(
x6)))

Hence the final solution is

y = yh

= c1x
6
(
1− x2

2 + x4

8 +O
(
x6))

+ c2

−
x6
(
1− x2

2 + x4

8 +O(x6)
)
ln (x)

2 + x2
(
1 + x2

2 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

6
(
1− x2

2 + x4

8 +O
(
x6))

+ c2

−
x6
(
1− x2

2 + x4

8 +O(x6)
)
ln (x)

2 + x2
(
1 + x2

2 +O
(
x6))

Verification of solutions

y = c1x
6
(
1− x2

2 + x4

8 +O
(
x6))

+ c2

−
x6
(
1− x2

2 + x4

8 +O(x6)
)
ln (x)

2 + x2
(
1 + x2

2 +O
(
x6))

Verified OK.
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16.28.1 Maple step by step solution

Let’s solve
x2y′′ + (x3 − 7x) y′ + 12y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −12y
x2 −

(
x2−7

)
y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
x2−7

)
y′

x
+ 12y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x2−7
x

, P3(x) = 12
x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −7

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 12

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + x(x2 − 7) y′ + 12y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m
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◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−2 + r) (−6 + r)xr + a1(−1 + r) (−5 + r)x1+r +
(

∞∑
k=2

(ak(k + r − 2) (k + r − 6) + ak−2(k + r − 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−2 + r) (−6 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {2, 6}

• Each term must be 0
a1(−1 + r) (−5 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(k + r − 2) (ak(k + r − 6) + ak−2) = 0

• Shift index using k− >k + 2
(k + r) (ak+2(k − 4 + r) + ak) = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

k−4+r

• Recursion relation for r = 2
ak+2 = − ak

k−2

• Series not valid for r = 2 , division by 0 in the recursion relation at k = 2
ak+2 = − ak

k−2

• Recursion relation for r = 6
ak+2 = − ak

k+2

• Solution for r = 6
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[
y =

∞∑
k=0

akx
k+6, ak+2 = − ak

k+2 , a1 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 49� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)-x*(7-x^2)*diff(y(x),x)+12*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
c1x

4
(
1− 1

2x
2 + 1

8x
4 +O

(
x6))

+ c2
(
ln (x)

(
72x4 +O

(
x6))+ (−144− 72x2 + 54x4 +O

(
x6))))x2

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 55� �
AsymptoticDSolveValue[x^2*y''[x]-x*(7-x^2)*y'[x]+12*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x10

8 − x8

2 + x6
)
+ c1

(
−1
2x

6 log(x)− 1
4
(
x4 − 2x2 − 4

)
x2
)
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16.29 problem 25
16.29.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6751

Internal problem ID [1441]
Internal file name [OUTPUT/1442_Sunday_June_05_2022_02_17_41_AM_46253651/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 25.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Lienard]

xy′′ − 5y′ + yx = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ − 5y′ + yx = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −5
x

q(x) = 1
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Table 828: Table p(x), q(x) singularites.

p(x) = − 5
x

singularity type
x = 0 “regular”

q(x) = 1
singularity type

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ − 5y′ + yx = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r− 1) anxn+r−2

)
x− 5

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
x = 0

(1)

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)

+
∞∑

n =0

(
−5(n+ r) anxn+r−1)+( ∞∑

n=0

x1+n+ran

)
= 0

(2A)

6740



The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran =
∞∑
n=2

an−2x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+ r) (n+ r−1)
)
+

∞∑
n =0

(
−5(n+ r) anxn+r−1)+( ∞∑

n=2

an−2x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1)− 5(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r)− 5ra0x−1+r = 0

Or (
x−1+rr(−1 + r)− 5r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(−6 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−6 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 6
r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(−6 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 6 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x6

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+6

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1)− 5an(n+ r) + an−2 = 0

Solving for an from recursive equation (4) gives

an = − an−2

n2 + 2nr + r2 − 6n− 6r (4)

Which for the root r = 6 becomes

an = − an−2

n (n+ 6) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 6 and after as more terms are found using the above recursive equation.
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n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
r2 − 2r − 8

Which for the root r = 6 becomes

a2 = − 1
16

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2−2r−8 − 1
16

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2−2r−8 − 1
16

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

r4 − 20r2 + 64
Which for the root r = 6 becomes

a4 =
1
640

6743



And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2−2r−8 − 1
16

a3 0 0
a4

1
r4−20r2+64

1
640

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2−2r−8 − 1
16

a3 0 0
a4

1
r4−20r2+64

1
640

a5 0 0

For n = 6, using the above recursive equation gives

a6 = − 1
(r4 − 20r2 + 64) r (r + 6)

Which for the root r = 6 becomes

a6 = − 1
46080

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − 1

r2−2r−8 − 1
16

a3 0 0
a4

1
r4−20r2+64

1
640

a5 0 0
a6 − 1

(r4−20r2+64)r(r+6) − 1
46080

Using the above table, then the solution y1(x) is

y1(x) = x6(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7. . .
)

= x6
(
1− x2

16 + x4

640 − x6

46080 +O
(
x7))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 6. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a6(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a6

= − 1
(r4 − 20r2 + 64) r (r + 6)

Therefore

lim
r→r2

− 1
(r4 − 20r2 + 64) r (r + 6) = lim

r→0
− 1
(r4 − 20r2 + 64) r (r + 6)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

6745



Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode xy′′ − 5y′ + yx = 0 gives(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x− 5Cy′1(x) ln (x)−

5Cy1(x)
x

− 5
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
x = 0

Which can be written as

(7)

(
(y′′1(x)x+ y1(x)x− 5y′1(x)) ln (x) +

(
2y′1(x)

x
− y1(x)

x2

)
x− 5y1(x)

x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+
(

∞∑
n=0

bnx
n+r2

)
x− 5

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
= 0

But since y1(x) is a solution to the ode, then

y′′1(x)x+ y1(x)x− 5y′1(x) = 0
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Eq (7) simplifes to

(8)

((
2y′1(x)

x
− y1(x)

x2

)
x− 5y1(x)

x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+
(

∞∑
n=0

bnx
n+r2

)
x− 5

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x− 6

(
∞∑
n=0

anx
n+r1

))
C

x

+

(
∞∑
n=0

bnx
n+r2

)
x2 +

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2 − 5

(
∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x

x
= 0

Since r1 = 6 and r2 = 0 then the above becomes

(10)

(
2
(

∞∑
n=0

x5+nan(n+ 6)
)
x− 6

(
∞∑
n=0

anx
n+6
))

C

x

+

(
∞∑
n=0

bnx
n

)
x2 +

(
∞∑
n=0

xn−2bnn(−1 + n)
)
x2 − 5

(
∞∑
n=0

x−1+nbnn

)
x

x
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C x5+nan(n+ 6)
)

+
∞∑

n =0

(
−6C x5+nan

)
+
(

∞∑
n=0

x1+nbn

)

+
(

∞∑
n=0

nx−1+nbn(−1 + n)
)

+
∞∑

n =0

(
−5x−1+nbnn

)
= 0
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The next step is to make all powers of x be −1 + n in each summation term. Going
over each summation term above with power of x in it which is not already x−1+n and
adjusting the power and the corresponding index gives

∞∑
n =0

2C x5+nan(n+ 6) =
∞∑
n=6

2Ca−6+nnx−1+n

∞∑
n =0

(
−6C x5+nan

)
=

∞∑
n=6

(
−6Ca−6+nx

−1+n
)

∞∑
n =0

x1+nbn =
∞∑
n=2

bn−2x
−1+n

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to −1 + n.

(2B)

(
∞∑
n=6

2Ca−6+nnx−1+n

)
+

∞∑
n =6

(
−6Ca−6+nx

−1+n
)
+
(

∞∑
n=2

bn−2x
−1+n

)

+
(

∞∑
n=0

nx−1+nbn(−1 + n)
)

+
∞∑

n =0

(
−5x−1+nbnn

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−5b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−5b1 = 0

Solving the above for b1 gives
b1 = 0

For n = 2, Eq (2B) gives
b0 − 8b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1− 8b2 = 0

Solving the above for b2 gives
b2 =

1
8
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For n = 3, Eq (2B) gives
b1 − 9b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−9b3 = 0

Solving the above for b3 gives
b3 = 0

For n = 4, Eq (2B) gives
b2 − 8b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1
8 − 8b4 = 0

Solving the above for b4 gives
b4 =

1
64

For n = 5, Eq (2B) gives
b3 − 5b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−5b5 = 0

Solving the above for b5 gives
b5 = 0

For n = N , where N = 6 which is the difference between the two roots, we are free to
choose b6 = 0. Hence for n = 6, Eq (2B) gives

6C + 1
64 = 0

Which is solved for C. Solving for C gives

C = − 1
384

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Using the above value found for C = − 1
384 and all bn, then the second solution becomes

y2(x) = − 1
384

(
x6
(
1− x2

16 + x4

640 − x6

46080 +O
(
x7))) ln (x) + 1 + x2

8 + x4

64 +O
(
x7)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
6
(
1− x2

16 + x4

640 − x6

46080 +O
(
x7))

+c2

(
− 1
384

(
x6
(
1− x2

16+
x4

640−
x6

46080+O
(
x7))) ln (x)+1+ x2

8 + x4

64+O
(
x7))

Hence the final solution is

y = yh

= c1x
6
(
1− x2

16 + x4

640 − x6

46080 +O
(
x7))

+ c2

−
x6
(
1− x2

16 +
x4

640 −
x6

46080 +O(x7)
)
ln (x)

384 + 1 + x2

8 + x4

64 +O
(
x7)

Summary
The solution(s) found are the following

(1)
y = c1x

6
(
1− x2

16 + x4

640 − x6

46080 +O
(
x7))

+ c2

−
x6
(
1− x2

16 +
x4

640 −
x6

46080 +O(x7)
)
ln (x)

384 + 1 + x2

8 + x4

64 +O
(
x7)

Verification of solutions

y = c1x
6
(
1− x2

16 + x4

640 − x6

46080 +O
(
x7))

+ c2

−
x6
(
1− x2

16 +
x4

640 −
x6

46080 +O(x7)
)
ln (x)

384 + 1 + x2

8 + x4

64 +O
(
x7)

Verified OK.
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16.29.1 Maple step by step solution

Let’s solve
y′′x− 5y′ + yx = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 5y′

x
− y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 5y′

x
+ y = 0

• Simplify ODE
x2y′′ − 5y′x+ x2y = 0

• Make a change of variables
y = x3u(x)

• Compute y′

y′ = 3x2u(x) + x3u′(x)
• Compute y′′

y′′ = 6xu(x) + 6x2u′(x) + x3u′′(x)
• Apply change of variables to the ODE

x2u(x) + u′′(x)x2 + u′(x)x− 9u(x) = 0
• ODE is now of the Bessel form
• Solution to Bessel ODE

u(x) = c1BesselJ (3, x) + c2BesselY (3, x)
• Make the change from y back to y

y = (c1BesselJ (3, x) + c2BesselY (3, x))x3
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 32� �
Order:=6;
dsolve(x*diff(y(x),x$2)-5*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);� �
y(x) = c1x

6
(
1− 1

16x
2 + 1

640x
4 +O

(
x6))+ c2

(
−86400− 10800x2 − 1350x4 +O

(
x6))

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 44� �
AsymptoticDSolveValue[x*y''[x]-5*y'[x]+x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x4

64 + x2

8 + 1
)
+ c2

(
x10

640 − x8

16 + x6
)
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16.30 problem 26
16.30.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6765

Internal problem ID [1442]
Internal file name [OUTPUT/1443_Sunday_June_05_2022_02_17_45_AM_21889668/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 26.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + x
(
2x2 + 1

)
y′ −

(
−10x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
2x3 + x

)
y′ +

(
10x2 − 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2x2 + 1
x

q(x) = 10x2 − 1
x2
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Table 830: Table p(x), q(x) singularites.

p(x) = 2x2+1
x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = 10x2−1
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
2x3 + x

)
y′ +

(
10x2 − 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
2x3 + x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
10x2 − 1

)( ∞∑
n=0

anx
n+r

)
= 0

6754



Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+r+2an(n+ r)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

10xn+r+2an

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2xn+r+2an(n+ r) =
∞∑
n=2

2an−2(n+ r − 2)xn+r

∞∑
n =0

10xn+r+2an =
∞∑
n=2

10an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

2an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

10an−2x
n+r

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− anx
n+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r − a0x
r = 0

Or
(xrr(−1 + r) + xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 1

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

r2 − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = −1

Since a0 6= 0 then the indicial equation becomes(
r2 − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x

Or

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−1

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + 2an−2(n+ r − 2) + an(n+ r) + 10an−2 − an = 0

Solving for an from recursive equation (4) gives

an = − 2an−2(n+ r + 3)
n2 + 2nr + r2 − 1 (4)

Which for the root r = 1 becomes

an = −2an−2(n+ 4)
n (n+ 2) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−10− 2r
r2 + 4r + 3

Which for the root r = 1 becomes
a2 = −3

2
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−10−2r
r2+4r+3 −3

2

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

−10−2r
r2+4r+3 −3

2

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
28 + 4r

(r + 3)2 (1 + r)

Which for the root r = 1 becomes
a4 = 1

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−10−2r
r2+4r+3 −3

2

a3 0 0
a4

28+4r
(r+3)2(1+r) 1

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−10−2r
r2+4r+3 −3

2

a3 0 0
a4

28+4r
(r+3)2(1+r) 1

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− 3x2

2 + x4 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a2(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a2

= −10− 2r
r2 + 4r + 3

Therefore

lim
r→r2

−10− 2r
r2 + 4r + 3 = lim

r→−1

−10− 2r
r2 + 4r + 3

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode x2y′′ + (2x3 + x) y′ + (10x2 − 1) y = 0 gives

x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
2x3 + x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+
(
10x2 − 1

)(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
x2y′′1(x)+

(
2x3+x

)
y′1(x)+

(
10x2−1

)
y1(x)

)
ln (x)+x2

(
2y′1(x)

x
− y1(x)

x2

)
+ (2x3 + x) y1(x)

x

)
C + x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
2x3 + x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
10x2 − 1

)( ∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

x2y′′1(x) +
(
2x3 + x

)
y′1(x) +

(
10x2 − 1

)
y1(x) = 0

Eq (7) simplifes to

(8)

(
x2
(
2y′1(x)

x
− y1(x)

x2

)
+ (2x3 + x) y1(x)

x

)
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
2x3 + x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
10x2 − 1

)( ∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

anx
n+r1

)
x2 + 2

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)
x

)
C

+
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2

+
(
2x3 + x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

+ 10
(

∞∑
n=0

bnx
n+r2

)
x2 −

(
∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 1 and r2 = −1 then the above becomes

(10)

(
2
(

∞∑
n=0

anx
n+1

)
x2 + 2

(
∞∑
n=0

xnan(n+ 1)
)
x

)
C

+
(

∞∑
n=0

x−3+nbn(n− 1) (n− 2)
)
x2 +

(
2x3 + x

)( ∞∑
n=0

xn−2bn(n− 1)
)

+ 10
(

∞∑
n=0

bnx
n−1

)
x2 −

(
∞∑
n=0

bnx
n−1

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C x3+nan

)
+
(

∞∑
n=0

2C xn+1an(n+ 1)
)

+
(

∞∑
n=0

xn−1bn
(
n2 − 3n+ 2

))
+
(

∞∑
n=0

2xn+1bn(n− 1)
)

+
(

∞∑
n=0

xn−1bn(n− 1)
)

+
(

∞∑
n=0

10xn+1bn

)
+

∞∑
n =0

(
−bnx

n−1) = 0

The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
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adjusting the power and the corresponding index gives

∞∑
n =0

2C x3+nan =
∞∑
n=4

2Can−4x
n−1

∞∑
n =0

2C xn+1an(n+ 1) =
∞∑
n=2

2Can−2(n− 1)xn−1

∞∑
n =0

2xn+1bn(n− 1) =
∞∑
n=2

2bn−2(−3 + n)xn−1

∞∑
n =0

10xn+1bn =
∞∑
n=2

10bn−2x
n−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1.

(2B)

(
∞∑
n=4

2Can−4x
n−1

)
+
(

∞∑
n=2

2Can−2(n− 1)xn−1

)

+
(

∞∑
n=0

xn−1bn
(
n2 − 3n+ 2

))
+
(

∞∑
n=2

2bn−2(−3 + n)xn−1

)

+
(

∞∑
n=0

xn−1bn(n− 1)
)

+
(

∞∑
n=2

10bn−2x
n−1

)
+

∞∑
n =0

(
−bnx

n−1) = 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−b1 = 0

Solving the above for b1 gives
b1 = 0

For n = N , where N = 2 which is the difference between the two roots, we are free to
choose b2 = 0. Hence for n = 2, Eq (2B) gives

2C + 8 = 0
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Which is solved for C. Solving for C gives

C = −4

For n = 3, Eq (2B) gives
4Ca1 + 10b1 + 3b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

3b3 = 0

Solving the above for b3 gives
b3 = 0

For n = 4, Eq (2B) gives

(2a0 + 6a2)C + 12b2 + 8b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

28 + 8b4 = 0

Solving the above for b4 gives
b4 = −7

2
For n = 5, Eq (2B) gives

(2a1 + 8a3)C + 14b3 + 15b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

15b5 = 0

Solving the above for b5 gives
b5 = 0

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = −4 and all bn, then the second solution becomes

y2(x) = (−4)
(
x

(
1− 3x2

2 + x4 +O
(
x6))) ln (x) +

1− 7x4

2 +O(x6)
x
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− 3x2

2 + x4 +O
(
x6))

+ c2

(
(−4)

(
x

(
1− 3x2

2 + x4 +O
(
x6))) ln (x) +

1− 7x4

2 +O(x6)
x

)

Hence the final solution is

y = yh

= c1x

(
1− 3x2

2 + x4 +O
(
x6))

+ c2

(
−4x

(
1− 3x2

2 + x4 +O
(
x6)) ln (x) +

1− 7x4

2 +O(x6)
x

)

Summary
The solution(s) found are the following

(1)
y = c1x

(
1− 3x2

2 + x4 +O
(
x6))

+ c2

(
−4x

(
1− 3x2

2 + x4 +O
(
x6)) ln (x) +

1− 7x4

2 +O(x6)
x

)
Verification of solutions

y = c1x

(
1− 3x2

2 + x4 +O
(
x6))

+ c2

(
−4x

(
1− 3x2

2 + x4 +O
(
x6)) ln (x) +

1− 7x4

2 +O(x6)
x

)

Verified OK.
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16.30.1 Maple step by step solution

Let’s solve
x2y′′ + (2x3 + x) y′ + (10x2 − 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
10x2−1

)
y

x2 −
(
2x2+1

)
y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
2x2+1

)
y′

x
+
(
10x2−1

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2x2+1
x

, P3(x) = 10x2−1
x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + x(2x2 + 1) y′ + (10x2 − 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + r)xr + a1(2 + r) r x1+r +
(

∞∑
k=2

(ak(k + r + 1) (k + r − 1) + 2ak−2(k + 3 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 1}

• Each term must be 0
a1(2 + r) r = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 1) + 2ak−2(k + 3 + r) = 0

• Shift index using k− >k + 2
ak+2(k + 3 + r) (k + r + 1) + 2ak(k + r + 5) = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 2ak(k+r+5)

(k+3+r)(k+r+1)

• Recursion relation for r = −1
ak+2 = −2ak(k+4)

(k+2)k
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• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = −2ak(k+4)

(k+2)k , a1 = 0
]

• Recursion relation for r = 1
ak+2 = − 2ak(k+6)

(k+4)(k+2)

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = − 2ak(k+6)

(k+4)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
1+k

)
, ak+2 = −2ak(4+k)

(k+2)k , a1 = 0, bk+2 = − 2bk(k+6)
(4+k)(k+2) , b1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special function form of solution, free of uncomputed

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 49� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*(1+2*x^2)*diff(y(x),x)-(1-10*x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1x

2(1− 3
2x

2 + x4 +O(x6)
)
+ c2(ln (x) (8x2 − 12x4 +O(x6)) + (−2 + 2x2 + 4x4 +O(x6)))

x
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3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 52� �
AsymptoticDSolveValue[x^2*y''[x]+x*(1+2*x^2)*y'[x]-(1-10*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x5 − 3x3

2 + x

)
+ c1

(
2x
(
3x2 − 2

)
log(x)− 5x4 − x2 − 1

x

)
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16.31 problem 27
16.31.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6781

Internal problem ID [1443]
Internal file name [OUTPUT/1444_Sunday_June_05_2022_02_17_49_AM_56478400/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 27.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ − y′x−
(
−x2 + 3

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ − y′x+
(
x2 − 3

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −1
x

q(x) = x2 − 3
x2
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Table 832: Table p(x), q(x) singularites.

p(x) = − 1
x

singularity type
x = 0 “regular”

q(x) = x2−3
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ − y′x+
(
x2 − 3

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

−

(
∞∑
n=0

(n+ r) anxn+r−1

)
x+

(
x2 − 3

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

xn+r+2an

)
+

∞∑
n =0

(
−3anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=2

an−2x
n+r

)
+

∞∑
n =0

(
−3anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− xn+ran(n+ r)− 3anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− xra0r − 3a0xr = 0

Or
(xrr(−1 + r)− xrr − 3xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 2r − 3

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − 2r − 3 = 0

6772



Solving for r gives the roots of the indicial equation as

r1 = 3
r2 = −1

Since a0 6= 0 then the indicial equation becomes(
r2 − 2r − 3

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x3

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x

Or

y1(x) =
∞∑
n=0

anx
n+3

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−1

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1)− an(n+ r) + an−2 − 3an = 0
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Solving for an from recursive equation (4) gives

an = − an−2

n2 + 2nr + r2 − 2n− 2r − 3 (4)

Which for the root r = 3 becomes

an = − an−2

n (n+ 4) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
r2 + 2r − 3

Which for the root r = 3 becomes

a2 = − 1
12

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+2r−3 − 1
12

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+2r−3 − 1
12

a3 0 0
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For n = 4, using the above recursive equation gives

a4 =
1

r4 + 8r3 + 14r2 − 8r − 15

Which for the root r = 3 becomes

a4 =
1
384

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+2r−3 − 1
12

a3 0 0
a4

1
r4+8r3+14r2−8r−15

1
384

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

r2+2r−3 − 1
12

a3 0 0
a4

1
r4+8r3+14r2−8r−15

1
384

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x3(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x3

(
1− x2

12 + x4

384 +O
(
x6))
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Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 4. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a4(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a4

= 1
r4 + 8r3 + 14r2 − 8r − 15

Therefore

lim
r→r2

1
r4 + 8r3 + 14r2 − 8r − 15 = lim

r→−1

1
r4 + 8r3 + 14r2 − 8r − 15

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode x2y′′ − y′x+ (x2 − 3) y = 0 gives

x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

−

(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))
x

+
(
x2 − 3

)(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
x2y′′1(x)−y′1(x)x+

(
x2−3

)
y1(x)

)
ln (x)+x2

(
2y′1(x)

x
− y1(x)

x2

)
−y1(x)

)
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

−

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
x+

(
x2 − 3

)( ∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

x2y′′1(x)− y′1(x)x+
(
x2 − 3

)
y1(x) = 0

Eq (7) simplifes to

(8)

(
x2
(
2y′1(x)

x
− y1(x)

x2

)
− y1(x)

)
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

−

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
x+

(
x2 − 3

)( ∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x− 2

(
∞∑
n=0

anx
n+r1

))
C

+
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2 +

(
∞∑
n=0

bnx
n+r2

)
x2

−

(
∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x− 3

(
∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 3 and r2 = −1 then the above becomes

(10)

(
2
(

∞∑
n=0

x2+nan(n+ 3)
)
x− 2

(
∞∑
n=0

anx
n+3

))
C

+
(

∞∑
n=0

x−3+nbn(n− 1) (n− 2)
)
x2 +

(
∞∑
n=0

bnx
n−1

)
x2

−

(
∞∑
n=0

xn−2bn(n− 1)
)
x− 3

(
∞∑
n=0

bnx
n−1

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C xn+3an(n+3)
)
+

∞∑
n =0

(
−2Canx

n+3)+( ∞∑
n=0

xn−1bn
(
n2 − 3n+2

))

+
(

∞∑
n=0

x1+nbn

)
+

∞∑
n =0

(
−xn−1bn(n− 1)

)
+

∞∑
n =0

(
−3bnxn−1) = 0

The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xn+3an(n+ 3) =
∞∑
n=4

2Can−4(n− 1)xn−1

∞∑
n =0

(
−2Canx

n+3) = ∞∑
n=4

(
−2Can−4x

n−1)
∞∑

n =0

x1+nbn =
∞∑
n=2

bn−2x
n−1
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Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1.

(2B)

(
∞∑
n=4

2Can−4(n− 1)xn−1

)
+

∞∑
n =4

(
−2Can−4x

n−1)
+
(

∞∑
n=0

xn−1bn
(
n2 − 3n+ 2

))
+
(

∞∑
n=2

bn−2x
n−1

)

+
∞∑

n =0

(
−xn−1bn(n− 1)

)
+

∞∑
n =0

(
−3bnxn−1) = 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−3b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b1 = 0

Solving the above for b1 gives
b1 = 0

For n = 2, Eq (2B) gives
b0 − 4b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1− 4b2 = 0

Solving the above for b2 gives
b2 =

1
4

For n = 3, Eq (2B) gives
b1 − 3b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b3 = 0

Solving the above for b3 gives
b3 = 0

6779



For n = N , where N = 4 which is the difference between the two roots, we are free to
choose b4 = 0. Hence for n = 4, Eq (2B) gives

4C + 1
4 = 0

Which is solved for C. Solving for C gives

C = − 1
16

For n = 5, Eq (2B) gives
6Ca1 + b3 + 5b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

5b5 = 0
Solving the above for b5 gives

b5 = 0
Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = − 1

16 and all bn, then the second solution becomes

y2(x) = − 1
16

(
x3
(
1− x2

12 + x4

384 +O
(
x6))) ln (x) +

1 + x2

4 +O(x6)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3
(
1− x2

12 + x4

384 +O
(
x6))

+ c2

(
− 1
16

(
x3
(
1− x2

12 + x4

384 +O
(
x6))) ln (x) +

1 + x2

4 +O(x6)
x

)

Hence the final solution is
y = yh

= c1x
3
(
1− x2

12 + x4

384 +O
(
x6))

+ c2

−
x3
(
1− x2

12 +
x4

384 +O(x6)
)
ln (x)

16 +
1 + x2

4 +O(x6)
x
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Summary
The solution(s) found are the following

(1)
y = c1x

3
(
1− x2

12 + x4

384 +O
(
x6))

+ c2

−
x3
(
1− x2

12 +
x4

384 +O(x6)
)
ln (x)

16 +
1 + x2

4 +O(x6)
x


Verification of solutions

y = c1x
3
(
1− x2

12 + x4

384 +O
(
x6))

+ c2

−
x3
(
1− x2

12 +
x4

384 +O(x6)
)
ln (x)

16 +
1 + x2

4 +O(x6)
x


Verified OK.

16.31.1 Maple step by step solution

Let’s solve
x2y′′ − y′x+ (x2 − 3) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2−3

)
y

x2 + y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − y′

x
+
(
x2−3

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = − 1
x
, P3(x) = x2−3

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= −3

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ − y′x+ (x2 − 3) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−3 + r)xr + a1(2 + r) (−2 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 1) (k + r − 3) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 3}

• Each term must be 0
a1(2 + r) (−2 + r) = 0
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• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 1) (k + r − 3) + ak−2 = 0

• Shift index using k− >k + 2
ak+2(k + 3 + r) (k + r − 1) + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(k+3+r)(k+r−1)

• Recursion relation for r = −1
ak+2 = − ak

(k+2)(k−2)

• Series not valid for r = −1 , division by 0 in the recursion relation at k = 2
ak+2 = − ak

(k+2)(k−2)

• Recursion relation for r = 3
ak+2 = − ak

(k+6)(k+2)

• Solution for r = 3[
y =

∞∑
k=0

akx
k+3, ak+2 = − ak

(k+6)(k+2) , a1 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 47� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)-(3-x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1x

4(1− 1
12x

2 + 1
384x

4 +O(x6)
)
+ c2(ln (x) (9x4 +O(x6)) + (−144− 36x2 +O(x6)))

x

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 52� �
AsymptoticDSolveValue[x^2*y''[x]-x*y'[x]-(3-x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
(x2 + 8)2

64x − 1
16x

3 log(x)
)

+ c2

(
x7

384 − x5

12 + x3
)
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16.32 problem 28
16.32.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6797

Internal problem ID [1444]
Internal file name [OUTPUT/1445_Sunday_June_05_2022_02_17_53_AM_50493699/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 28.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2y′′ + 2x
(
x2 + 8

)
y′ +

(
3x2 + 5

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

4x2y′′ +
(
2x3 + 16x

)
y′ +

(
3x2 + 5

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x2 + 8
2x

q(x) = 3x2 + 5
4x2
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Table 834: Table p(x), q(x) singularites.

p(x) = x2+8
2x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = 3x2+5
4x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2y′′ +
(
2x3 + 16x

)
y′ +

(
3x2 + 5

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
2x3 + 16x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
3x2 + 5

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+r+2an(n+ r)
)

+
(

∞∑
n=0

16xn+ran(n+ r)
)

+
(

∞∑
n=0

3xn+r+2an

)
+
(

∞∑
n=0

5anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2xn+r+2an(n+ r) =
∞∑
n=2

2an−2(n+ r − 2)xn+r

∞∑
n =0

3xn+r+2an =
∞∑
n=2

3an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

2an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=0

16xn+ran(n+ r)
)

+
(

∞∑
n=2

3an−2x
n+r

)
+
(

∞∑
n=0

5anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + 16xn+ran(n+ r) + 5anxn+r = 0

When n = 0 the above becomes

4xra0r(−1 + r) + 16xra0r + 5a0xr = 0

Or
(4xrr(−1 + r) + 16xrr + 5xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 + 12r + 5

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

4r2 + 12r + 5 = 0

Solving for r gives the roots of the indicial equation as

r1 = −1
2

r2 = −5
2

Since a0 6= 0 then the indicial equation becomes(
4r2 + 12r + 5

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =

∞∑
n=0

anx
n

√
x

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x
5
2

Or

y1(x) =
∞∑
n=0

anx
n− 1

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n− 5

2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

6788



For 2 ≤ n the recursive equation is

(3)4an(n+ r) (n+ r − 1) + 2an−2(n+ r − 2) + 16an(n+ r) + 3an−2 + 5an = 0

Solving for an from recursive equation (4) gives

an = − an−2(2n+ 2r − 1)
4n2 + 8nr + 4r2 + 12n+ 12r + 5 (4)

Which for the root r = −1
2 becomes

an = −an−2(n− 1)
2n (n+ 2) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = −1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−3− 2r

4r2 + 28r + 45

Which for the root r = −1
2 becomes

a2 = − 1
16

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−3−2r
4r2+28r+45 − 1

16

For n = 3, using the above recursive equation gives

a3 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−3−2r
4r2+28r+45 − 1

16

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
4r2 + 20r + 21

(4r2 + 28r + 45) (4r2 + 44r + 117)
Which for the root r = −1

2 becomes

a4 =
1
256

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−3−2r
4r2+28r+45 − 1

16

a3 0 0
a4

4r2+20r+21
(4r2+28r+45)(4r2+44r+117)

1
256

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−3−2r
4r2+28r+45 − 1

16

a3 0 0
a4

4r2+20r+21
(4r2+28r+45)(4r2+44r+117)

1
256

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) =
1√
x

(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
1− x2

16 +
x4

256 +O(x6)
√
x

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a2(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a2

= −3− 2r
4r2 + 28r + 45

Therefore

lim
r→r2

−3− 2r
4r2 + 28r + 45 = lim

r→− 5
2

−3− 2r
4r2 + 28r + 45

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode 4x2y′′+(2x3 + 16x) y′+(3x2 + 5) y = 0 gives

4x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
2x3 + 16x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+
(
3x2 + 5

)(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
4x2y′′1(x) +

(
2x3 + 16x

)
y′1(x) +

(
3x2 + 5

)
y1(x)

)
ln (x)

+ 4x2
(
2y′1(x)

x
− y1(x)

x2

)
+ (2x3 + 16x) y1(x)

x

)
C

+ 4x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
2x3 + 16x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
3x2 + 5

)( ∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

4x2y′′1(x) +
(
2x3 + 16x

)
y′1(x) +

(
3x2 + 5

)
y1(x) = 0

Eq (7) simplifes to

(8)

(
4x2
(
2y′1(x)

x
− y1(x)

x2

)
+ (2x3 + 16x) y1(x)

x

)
C

+ 4x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
2x3 + 16x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
3x2 + 5

)( ∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
8
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x+ 2

(
x2 + 6

)( ∞∑
n=0

anx
n+r1

))
C

+ 4
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2

+ 2
(
x3 + 8x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

+
(
3x2 + 5

)( ∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = −1
2 and r2 = −5

2 then the above becomes

(10)

(
8
(

∞∑
n=0

x− 3
2+nan

(
n− 1

2

))
x+ 2

(
x2 + 6

)( ∞∑
n=0

anx
n− 1

2

))
C

+ 4
(

∞∑
n=0

x− 9
2+nbn

(
n− 5

2

)(
−7
2 + n

))
x2

+ 2
(
x3 + 8x

)( ∞∑
n=0

x− 7
2+nbn

(
n− 5

2

))
+
(
3x2 + 5

)( ∞∑
n=0

bnx
n− 5

2

)
= 0

Expanding 2C x
3
2 as Taylor series around x = 0 and keeping only the first 6 terms gives

2C x
3
2 = 2C x

3
2 + . . .

= 2C x
3
2

Expanding 12C√
x
as Taylor series around x = 0 and keeping only the first 6 terms gives

12C√
x

= 12C√
x

+ . . .

= 12C√
x

Expanding 1√
x
as Taylor series around x = 0 and keeping only the first 6 terms gives

1√
x
= 1√

x
+ . . .

= 1√
x
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Expanding 8
x
5
2
as Taylor series around x = 0 and keeping only the first 6 terms gives

8
x

5
2
= 8

x
5
2
+ . . .

= 8
x

5
2

Expanding 3√
x
as Taylor series around x = 0 and keeping only the first 6 terms gives

3√
x
= 3√

x
+ . . .

= 3√
x

Expanding 5
x
5
2
as Taylor series around x = 0 and keeping only the first 6 terms gives

5
x

5
2
= 5

x
5
2
+ . . .

= 5
x

5
2

Which simplifies to

(2A)

(
∞∑
n=0

(8n− 4)Canx
n− 1

2

)
+
(

∞∑
n=0

2C xn+ 3
2an

)
+
(

∞∑
n=0

12C xn− 1
2an

)

+
(

∞∑
n=0

xn− 5
2 bn
(
4n2 − 24n+ 35

))
+
(

∞∑
n=0

xn− 1
2 bn(2n− 5)

)

+
(

∞∑
n=0

(16n− 40) bnxn− 5
2

)
+
(

∞∑
n=0

3xn− 1
2 bn

)
+
(

∞∑
n=0

5bnxn− 5
2

)
= 0

The next step is to make all powers of x be n − 5
2 in each summation term. Going

over each summation term above with power of x in it which is not already xn− 5
2 and

adjusting the power and the corresponding index gives

∞∑
n =0

(8n− 4)Canx
n− 1

2 =
∞∑
n=2

Can−2(8n− 20)xn− 5
2

∞∑
n =0

2C xn+ 3
2an =

∞∑
n=4

2Can−4x
n− 5

2
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∞∑
n =0

12C xn− 1
2an =

∞∑
n=2

12Can−2x
n− 5

2

∞∑
n =0

xn− 1
2 bn(2n− 5) =

∞∑
n=2

bn−2(−9 + 2n)xn− 5
2

∞∑
n =0

3xn− 1
2 bn =

∞∑
n=2

3bn−2x
n− 5

2

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 5

2 .

(2B)

(
∞∑
n=2

Can−2(8n−20)xn− 5
2

)
+
(

∞∑
n=4

2Can−4x
n− 5

2

)
+
(

∞∑
n=2

12Can−2x
n− 5

2

)

+
(

∞∑
n=0

xn− 5
2 bn
(
4n2 − 24n+ 35

))
+
(

∞∑
n=2

bn−2(−9 + 2n)xn− 5
2

)

+
(

∞∑
n=0

(16n− 40) bnxn− 5
2

)
+
(

∞∑
n=2

3bn−2x
n− 5

2

)
+
(

∞∑
n=0

5bnxn− 5
2

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−4b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−4b1 = 0

Solving the above for b1 gives
b1 = 0

For n = N , where N = 2 which is the difference between the two roots, we are free to
choose b2 = 0. Hence for n = 2, Eq (2B) gives

8C − 2 = 0

Which is solved for C. Solving for C gives

C = 1
4

For n = 3, Eq (2B) gives
16Ca1 + 12b3 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

12b3 = 0

Solving the above for b3 gives
b3 = 0

For n = 4, Eq (2B) gives

(2a0 + 24a2)C + 2b2 + 32b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1
8 + 32b4 = 0

Solving the above for b4 gives
b4 = − 1

256
For n = 5, Eq (2B) gives

(2a1 + 32a3)C + 4b3 + 60b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

60b5 = 0

Solving the above for b5 gives
b5 = 0

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = 1

4 and all bn, then the second solution becomes

y2(x) =
1
4

(
1− x2

16 +
x4

256 +O(x6)
√
x

)
ln (x) +

1− x4

256 +O(x6)
x

5
2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

=
c1
(
1− x2

16 +
x4

256 +O(x6)
)

√
x

+c2

(
1
4

(
1− x2

16 +
x4

256 +O(x6)
√
x

)
ln (x)+

1− x4

256 +O(x6)
x

5
2

)
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Hence the final solution is

y = yh

=
c1
(
1− x2

16 +
x4

256 +O(x6)
)

√
x

+ c2


(
1− x2

16 +
x4

256 +O(x6)
)
ln (x)

4
√
x

+
1− x4

256 +O(x6)
x

5
2


Summary
The solution(s) found are the following

(1)
y =

c1
(
1− x2

16 +
x4

256 +O(x6)
)

√
x

+ c2


(
1− x2

16 +
x4

256 +O(x6)
)
ln (x)

4
√
x

+
1− x4

256 +O(x6)
x

5
2


Verification of solutions

y =
c1
(
1− x2

16 +
x4

256 +O(x6)
)

√
x

+c2


(
1− x2

16 +
x4

256 +O(x6)
)
ln (x)

4
√
x

+
1− x4

256 +O(x6)
x

5
2


Verified OK.

16.32.1 Maple step by step solution

Let’s solve
4x2y′′ + (2x3 + 16x) y′ + (3x2 + 5) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
3x2+5

)
y

4x2 −
(
x2+8

)
y′

2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
x2+8

)
y′

2x +
(
3x2+5

)
y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x2+8
2x , P3(x) = 3x2+5

4x2

]
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◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 4

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 5
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2y′′ + 2x(x2 + 8) y′ + (3x2 + 5) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(5 + 2r) (1 + 2r)xr + a1(7 + 2r) (3 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 5) (2k + 2r + 1) + ak−2(2k − 1 + 2r))xk+r

)
= 0
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• a0cannot be 0 by assumption, giving the indicial equation
(5 + 2r) (1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−5

2 ,−
1
2

}
• Each term must be 0

a1(7 + 2r) (3 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
(
k + r + 1

2

) (
k + r + 5

2

)
ak + 2

(
k − 1

2 + r
)
ak−2 = 0

• Shift index using k− >k + 2
4
(
k + r + 5

2

) (
k + 9

2 + r
)
ak+2 + 2

(
k + 3

2 + r
)
ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − (2k+2r+3)ak

(2k+2r+5)(2k+9+2r)

• Recursion relation for r = −5
2

ak+2 = − (2k−2)ak
2k(2k+4)

• Solution for r = −5
2[

y =
∞∑
k=0

akx
k− 5

2 , ak+2 = − (2k−2)ak
2k(2k+4) , a1 = 0

]
• Recursion relation for r = −1

2

ak+2 = − (2k+2)ak
(2k+4)(2k+8)

• Solution for r = −1
2[

y =
∞∑
k=0

akx
k− 1

2 , ak+2 = − (2k+2)ak
(2k+4)(2k+8) , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k− 5

2

)
+
(

∞∑
k=0

bkx
k− 1

2

)
, ak+2 = − (2k−2)ak

2k(2k+4) , a1 = 0, bk+2 = − (2k+2)bk
(2k+4)(2k+8) , b1 = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 51� �
Order:=6;
dsolve(4*x^2*diff(y(x),x$2)+2*x*(8+x^2)*diff(y(x),x)+(5+3*x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1
(
1− 1

16x
2 + 1

256x
4 +O(x6)

)
x2 + c2

(
ln (x)

(
−1

2x
2 + 1

32x
4 +O(x6)

)
+
(
−2 + 1

2x
2 − 3

128x
4 +O(x6)

))
x

5
2

3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 72� �
AsymptoticDSolveValue[4*x^2*y''[x]+2*x*(8+x^2)*y'[x]+(5+3*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x7/2

256 − x3/2

16 + 1√
x

)
+ c1

(
5x4 − 96x2 + 256

256x5/2 − (x2 − 16) log(x)
64
√
x

)
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16.33 problem 29
16.33.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6812

Internal problem ID [1445]
Internal file name [OUTPUT/1446_Sunday_June_05_2022_02_17_57_AM_16696302/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 29.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

x2y′′ + x
(
x2 + 1

)
y′ −

(
−3x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
x3 + x

)
y′ +

(
3x2 − 1

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x2 + 1
x

q(x) = 3x2 − 1
x2
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Table 836: Table p(x), q(x) singularites.

p(x) = x2+1
x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = 3x2−1
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
x3 + x

)
y′ +

(
3x2 − 1

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x3 + x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
3x2 − 1

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+r+2an(n+ r)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

3xn+r+2an

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) =
∞∑
n=2

an−2(n+ r − 2)xn+r

∞∑
n =0

3xn+r+2an =
∞∑
n=2

3an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

3an−2x
n+r

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− anx
n+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r − a0x
r = 0

Or
(xrr(−1 + r) + xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 1

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

r2 − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = −1

Since a0 6= 0 then the indicial equation becomes(
r2 − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x

Or

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−1

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an−2(n+ r − 2) + an(n+ r) + 3an−2 − an = 0

Solving for an from recursive equation (4) gives

an = − an−2

n+ r − 1 (4)

Which for the root r = 1 becomes

an = −an−2

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
1 + r

Which for the root r = 1 becomes
a2 = −1

2
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

1+r
−1

2

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − 1

1+r
−1

2

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

(1 + r) (3 + r)

Which for the root r = 1 becomes
a4 =

1
8

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

1+r
−1

2

a3 0 0
a4

1
(1+r)(3+r)

1
8

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

1+r
−1

2

a3 0 0
a4

1
(1+r)(3+r)

1
8

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− x2

2 + x4

8 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a2(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a2

= − 1
1 + r

Therefore

lim
r→r2

− 1
1 + r

= lim
r→−1

− 1
1 + r

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode x2y′′ + (x3 + x) y′ + (3x2 − 1) y = 0 gives

x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
x3 + x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+
(
3x2 − 1

)(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
x2y′′1(x) +

(
x3 + x

)
y′1(x) +

(
3x2 − 1

)
y1(x)

)
ln (x) + x2

(
2y′1(x)

x
− y1(x)

x2

)
+ (x3 + x) y1(x)

x

)
C + x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
x3 + x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
3x2 − 1

)( ∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

x2y′′1(x) +
(
x3 + x

)
y′1(x) +

(
3x2 − 1

)
y1(x) = 0

Eq (7) simplifes to

(8)

(
x2
(
2y′1(x)

x
− y1(x)

x2

)
+ (x3 + x) y1(x)

x

)
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
x3 + x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
3x2 − 1

)( ∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

((
∞∑
n=0

anx
n+r1

)
x2 + 2

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)
x

)
C

+
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2

+
(
x3 + x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

+ 3
(

∞∑
n=0

bnx
n+r2

)
x2 −

(
∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 1 and r2 = −1 then the above becomes

(10)

((
∞∑
n=0

anx
n+1

)
x2 + 2

(
∞∑
n=0

xnan(n+ 1)
)
x

)
C

+
(

∞∑
n=0

x−3+nbn(n− 1) (n− 2)
)
x2 +

(
x3 + x

)( ∞∑
n=0

xn−2bn(n− 1)
)

+ 3
(

∞∑
n=0

bnx
n−1

)
x2 −

(
∞∑
n=0

bnx
n−1

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

C x3+nan

)
+
(

∞∑
n=0

2C xn+1an(n+ 1)
)

+
(

∞∑
n=0

xn−1bn
(
n2 − 3n+ 2

))
+
(

∞∑
n=0

xn+1bn(n− 1)
)

+
(

∞∑
n=0

xn−1bn(n− 1)
)

+
(

∞∑
n=0

3xn+1bn

)
+

∞∑
n =0

(
−bnx

n−1) = 0

The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
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adjusting the power and the corresponding index gives

∞∑
n =0

C x3+nan =
∞∑
n=4

Can−4x
n−1

∞∑
n =0

2C xn+1an(n+ 1) =
∞∑
n=2

2Can−2(n− 1)xn−1

∞∑
n =0

xn+1bn(n− 1) =
∞∑
n=2

bn−2(−3 + n)xn−1

∞∑
n =0

3xn+1bn =
∞∑
n=2

3bn−2x
n−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1.

(2B)

(
∞∑
n=4

Can−4x
n−1

)
+
(

∞∑
n=2

2Can−2(n− 1)xn−1

)

+
(

∞∑
n=0

xn−1bn
(
n2 − 3n+ 2

))
+
(

∞∑
n=2

bn−2(−3 + n)xn−1

)

+
(

∞∑
n=0

xn−1bn(n− 1)
)

+
(

∞∑
n=2

3bn−2x
n−1

)
+

∞∑
n =0

(
−bnx

n−1) = 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−b1 = 0

Solving the above for b1 gives
b1 = 0

For n = N , where N = 2 which is the difference between the two roots, we are free to
choose b2 = 0. Hence for n = 2, Eq (2B) gives

2C + 2 = 0
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Which is solved for C. Solving for C gives

C = −1

For n = 3, Eq (2B) gives
4Ca1 + 3b1 + 3b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

3b3 = 0

Solving the above for b3 gives
b3 = 0

For n = 4, Eq (2B) gives

(a0 + 6a2)C + 4b2 + 8b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

2 + 8b4 = 0

Solving the above for b4 gives
b4 = −1

4
For n = 5, Eq (2B) gives

(a1 + 8a3)C + 5b3 + 15b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

15b5 = 0

Solving the above for b5 gives
b5 = 0

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = −1 and all bn, then the second solution becomes

y2(x) = (−1)
(
x

(
1− x2

2 + x4

8 +O
(
x6))) ln (x) +

1− x4

4 +O(x6)
x
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− x2

2 + x4

8 +O
(
x6))

+ c2

(
(−1)

(
x

(
1− x2

2 + x4

8 +O
(
x6))) ln (x) +

1− x4

4 +O(x6)
x

)

Hence the final solution is

y = yh

= c1x

(
1− x2

2 + x4

8 +O
(
x6))+c2

(
−x

(
1− x2

2 + x4

8 +O
(
x6)) ln (x)+

1− x4

4 +O(x6)
x

)

Summary
The solution(s) found are the following

(1)
y = c1x

(
1− x2

2 + x4

8 +O
(
x6))

+ c2

(
−x

(
1− x2

2 + x4

8 +O
(
x6)) ln (x) +

1− x4

4 +O(x6)
x

)
Verification of solutions

y= c1x

(
1− x2

2 + x4

8 +O
(
x6))+c2

(
−x

(
1− x2

2 + x4

8 +O
(
x6)) ln (x)+

1− x4

4 +O(x6)
x

)

Verified OK.

16.33.1 Maple step by step solution

Let’s solve
x2y′′ + (x3 + x) y′ + (3x2 − 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
3x2−1

)
y

x2 −
(
x2+1

)
y′

x
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
x2+1

)
y′

x
+
(
3x2−1

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = x2+1
x

, P3(x) = 3x2−1
x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + x(x2 + 1) y′ + (3x2 − 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r
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◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−1 + r)xr + a1(2 + r) r x1+r +
(

∞∑
k=2

(ak(k + r + 1) (k + r − 1) + ak−2(k + r + 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 1}

• Each term must be 0
a1(2 + r) r = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
(k + r + 1) (ak(k + r − 1) + ak−2) = 0

• Shift index using k− >k + 2
(k + r + 3) (ak+2(k + r + 1) + ak) = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

k+r+1

• Recursion relation for r = −1
ak+2 = −ak

k

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = −ak

k
, a1 = 0

]
• Recursion relation for r = 1

ak+2 = − ak
k+2

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = − ak

k+2 , a1 = 0
]

• Combine solutions and rename parameters
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[
y =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
1+k

)
, ak+2 = −ak

k
, a1 = 0, bk+2 = − bk

k+2 , b1 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 47� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*(1+x^2)*diff(y(x),x)-(1-3*x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x)=

c1x
2(1− 1

2x
2 + 1

8x
4 +O(x6)

)
+ c2(ln (x) (2x2 − x4 +O(x6)) + (−2 + x2 +O(x6)))

x

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 51� �
AsymptoticDSolveValue[x^2*y''[x]+x*(1+x^2)*y'[x]-(1-3*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x5

8 − x3

2 + x

)
+ c1

(
1
2x
(
x2 − 2

)
log(x)− x4 − 4

4x

)
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16.34 problem 30
16.34.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6827

Internal problem ID [1446]
Internal file name [OUTPUT/1447_Sunday_June_05_2022_02_18_01_AM_20020391/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 30.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + x
(
−2x2 + 1

)
y′ − 4y

(
2x2 + 1

)
= 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
−2x3 + x

)
y′ +

(
−8x2 − 4

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −2x2 − 1
x

q(x) = −4(2x2 + 1)
x2
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Table 838: Table p(x), q(x) singularites.

p(x) = −2x2−1
x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = −4
(
2x2+1

)
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
−2x3 + x

)
y′ +

(
−8x2 − 4

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−2x3 + x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
−8x2 − 4

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−2xn+r+2an(n+ r)

)
+
(

∞∑
n=0

xn+ran(n+ r)
)

+
∞∑

n =0

(
−8xn+r+2an

)
+

∞∑
n =0

(
−4anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2xn+r+2an(n+ r)

)
=

∞∑
n=2

(
−2an−2(n+ r − 2)xn+r

)
∞∑

n =0

(
−8xn+r+2an

)
=

∞∑
n=2

(
−8an−2x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =2

(
−2an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r)
)

+
∞∑

n =2

(
−8an−2x

n+r
)
+

∞∑
n =0

(
−4anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− 4anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r − 4a0xr = 0

Or
(xrr(−1 + r) + xrr − 4xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 4

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

r2 − 4 = 0

Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = −2

Since a0 6= 0 then the indicial equation becomes(
r2 − 4

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x2

Or

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1)− 2an−2(n+ r − 2) + an(n+ r)− 8an−2 − 4an = 0

Solving for an from recursive equation (4) gives

an = 2an−2

n+ r − 2 (4)

Which for the root r = 2 becomes

an = 2an−2

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
2
r

Which for the root r = 2 becomes
a2 = 1

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

2
r

1

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

2
r

1
a3 0 0

For n = 4, using the above recursive equation gives

a4 =
4

r (r + 2)

Which for the root r = 2 becomes
a4 =

1
2

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

2
r

1
a3 0 0
a4

4
r(r+2)

1
2

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

2
r

1
a3 0 0
a4

4
r(r+2)

1
2

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2

(
1 + x2 + x4

2 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 4. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a4(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a4

= 4
r (r + 2)

Therefore

lim
r→r2

4
r (r + 2) = lim

r→−2

4
r (r + 2)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode x2y′′ + (−2x3 + x) y′ + (−8x2 − 4) y = 0
gives

x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−2x3 + x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+
(
−8x2 − 4

)(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
x2y′′1(x) +

(
−2x3 + x

)
y′1(x) +

(
−8x2 − 4

)
y1(x)

)
ln (x) + x2

(
2y′1(x)

x

− y1(x)
x2

)
+ (−2x3 + x) y1(x)

x

)
C + x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2

− bnx
n+r2(n+ r2)

x2

))
+
(
−2x3 + x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
−8x2

− 4
)( ∞∑

n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

x2y′′1(x) +
(
−2x3 + x

)
y′1(x) +

(
−8x2 − 4

)
y1(x) = 0

Eq (7) simplifes to

(8)

(
x2
(
2y′1(x)

x
− y1(x)

x2

)
+ (−2x3 + x) y1(x)

x

)
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−2x3 + x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
−8x2 − 4

)( ∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
−2
(

∞∑
n=0

anx
n+r1

)
x2 + 2

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)
x

)
C

+
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2

+
(
−2x3 + x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

− 8
(

∞∑
n=0

bnx
n+r2

)
x2 − 4

(
∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 2 and r2 = −2 then the above becomes

(10)

(
−2
(

∞∑
n=0

anx
n+2

)
x2 + 2

(
∞∑
n=0

x1+nan(n+ 2)
)
x

)
C

+
(

∞∑
n=0

x−4+nbn(n− 2) (−3 + n)
)
x2 +

(
−2x3 + x

)( ∞∑
n=0

x−3+nbn(n− 2)
)

− 8
(

∞∑
n=0

bnx
n−2

)
x2 − 4

(
∞∑
n=0

bnx
n−2

)
= 0

Which simplifies to

(2A)

∞∑
n =0

(
−2C x4+nan

)
+
(

∞∑
n=0

2C xn+2an(n+ 2)
)

+
(

∞∑
n=0

xn−2bn
(
n2 − 5n+ 6

))
+

∞∑
n =0

(−2xnbn(n− 2))

+
(

∞∑
n=0

xn−2bn(n− 2)
)

+
∞∑

n =0

(−8bnxn) +
∞∑

n =0

(
−4bnxn−2) = 0

The next step is to make all powers of x be n − 2 in each summation term. Going
over each summation term above with power of x in it which is not already xn−2 and
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adjusting the power and the corresponding index gives

∞∑
n =0

(
−2C x4+nan

)
=

∞∑
n=6

(
−2Can−6x

n−2)
∞∑

n =0

2C xn+2an(n+ 2) =
∞∑
n=4

2Ca−4+n(n− 2)xn−2

∞∑
n =0

(−2xnbn(n− 2)) =
∞∑
n=2

(
−2bn−2(−4 + n)xn−2)

∞∑
n =0

(−8bnxn) =
∞∑
n=2

(
−8bn−2x

n−2)
Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 2.

(2B)

∞∑
n =6

(
−2Can−6x

n−2)+( ∞∑
n=4

2Ca−4+n(n− 2)xn−2

)

+
(

∞∑
n=0

xn−2bn
(
n2 − 5n+ 6

))
+

∞∑
n =2

(
−2bn−2(−4 + n)xn−2)

+
(

∞∑
n=0

xn−2bn(n− 2)
)

+
∞∑

n =2

(
−8bn−2x

n−2)+ ∞∑
n =0

(
−4bnxn−2) = 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−3b1 = 0
Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b1 = 0
Solving the above for b1 gives

b1 = 0
For n = 2, Eq (2B) gives

−4b0 − 4b2 = 0
Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−4− 4b2 = 0
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Solving the above for b2 gives
b2 = −1

For n = 3, Eq (2B) gives
−6b1 − 3b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b3 = 0
Solving the above for b3 gives

b3 = 0
For n = N , where N = 4 which is the difference between the two roots, we are free to
choose b4 = 0. Hence for n = 4, Eq (2B) gives

4C + 8 = 0

Which is solved for C. Solving for C gives

C = −2

For n = 5, Eq (2B) gives
6Ca1 − 10b3 + 5b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

5b5 = 0
Solving the above for b5 gives

b5 = 0
Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = −2 and all bn, then the second solution becomes

y2(x) = (−2)
(
x2
(
1 + x2 + x4

2 +O
(
x6))) ln (x) + 1− x2 +O(x6)

x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
(
1 + x2 + x4

2 +O
(
x6))

+ c2

(
(−2)

(
x2
(
1 + x2 + x4

2 +O
(
x6))) ln (x) + 1− x2 +O(x6)

x2

)
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Hence the final solution is

y = yh

= c1x
2
(
1+x2+x4

2 +O
(
x6))+c2

(
−2x2

(
1+x2+x4

2 +O
(
x6)) ln (x)+ 1− x2 +O(x6)

x2

)

Summary
The solution(s) found are the following

(1)
y = c1x

2
(
1 + x2 + x4

2 +O
(
x6))

+ c2

(
−2x2

(
1 + x2 + x4

2 +O
(
x6)) ln (x) + 1− x2 +O(x6)

x2

)
Verification of solutions

y = c1x
2
(
1 + x2 + x4

2 +O
(
x6))

+ c2

(
−2x2

(
1 + x2 + x4

2 +O
(
x6)) ln (x) + 1− x2 +O(x6)

x2

)
Verified OK.

16.34.1 Maple step by step solution

Let’s solve
x2y′′ + (−2x3 + x) y′ + (−8x2 − 4) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = 4
(
2x2+1

)
y

x2 +
(
2x2−1

)
y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ −
(
2x2−1

)
y′

x
− 4

(
2x2+1

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2x2−1
x

, P3(x) = −4
(
2x2+1

)
x2

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ − x(2x2 − 1) y′ + (−8x2 − 4) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−2 + r)xr + a1(3 + r) (−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r − 2)− 2ak−2(k + r + 2))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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(2 + r) (−2 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−2, 2}
• Each term must be 0

a1(3 + r) (−1 + r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

(k + r + 2) (ak(k + r − 2)− 2ak−2) = 0
• Shift index using k− >k + 2

(k + r + 4) (ak+2(k + r)− 2ak) = 0
• Recursion relation that defines series solution to ODE

ak+2 = 2ak
k+r

• Recursion relation for r = −2
ak+2 = 2ak

k−2

• Series not valid for r = −2 , division by 0 in the recursion relation at k = 2
ak+2 = 2ak

k−2

• Recursion relation for r = 2
ak+2 = 2ak

k+2

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+2 = 2ak

k+2 , a1 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 49� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*(1-2*x^2)*diff(y(x),x)-4*(1+2*x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1x

4(1 + x2 + 1
2x

4 +O(x6)
)
+ c2(ln (x) (288x4 +O(x6)) + (−144 + 144x2 + 216x4 +O(x6)))

x2

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 45� �
AsymptoticDSolveValue[x^2*y''[x]+x*(1-2*x^2)*y'[x]-4*(1+2*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
−2x2 log(x)− x4 + x2 − 1

x2

)
+ c2

(
x6

2 + x4 + x2
)
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16.35 problem 31
16.35.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6844

Internal problem ID [1447]
Internal file name [OUTPUT/1448_Sunday_June_05_2022_02_18_05_AM_59615361/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 31.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2y′′ + 8y′x−
(
−x2 + 35

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

4x2y′′ + 8y′x+
(
x2 − 35

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2
x

q(x) = x2 − 35
4x2
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Table 840: Table p(x), q(x) singularites.

p(x) = 2
x

singularity type
x = 0 “regular”

q(x) = x2−35
4x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2y′′ + 8y′x+
(
x2 − 35

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 8
(

∞∑
n=0

(n+ r) anxn+r−1

)
x+

(
x2 − 35

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

8xn+ran(n+ r)
)

+
(

∞∑
n=0

xn+r+2an

)
+

∞∑
n =0

(
−35anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

8xn+ran(n+ r)
)

+
(

∞∑
n=2

an−2x
n+r

)
+

∞∑
n =0

(
−35anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + 8xn+ran(n+ r)− 35anxn+r = 0

When n = 0 the above becomes

4xra0r(−1 + r) + 8xra0r − 35a0xr = 0

Or
(4xrr(−1 + r) + 8xrr − 35xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 + 4r − 35

)
xr = 0

Since the above is true for all x then the indicial equation becomes

4r2 + 4r − 35 = 0
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Solving for r gives the roots of the indicial equation as

r1 =
5
2

r2 = −7
2

Since a0 6= 0 then the indicial equation becomes(
4r2 + 4r − 35

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 6 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x
5
2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x
7
2

Or

y1(x) =
∞∑
n=0

anx
n+ 5

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n− 7

2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)4an(n+ r) (n+ r − 1) + 8an(n+ r) + an−2 − 35an = 0
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Solving for an from recursive equation (4) gives

an = − an−2

4n2 + 8nr + 4r2 + 4n+ 4r − 35 (4)

Which for the root r = 5
2 becomes

an = − an−2

4n (n+ 6) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 5

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 1
4r2 + 20r − 11

Which for the root r = 5
2 becomes

a2 = − 1
64

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

4r2+20r−11 − 1
64

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − 1

4r2+20r−11 − 1
64

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
1

16r4 + 224r3 + 856r2 + 504r − 495
Which for the root r = 5

2 becomes

a4 =
1

10240
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

4r2+20r−11 − 1
64

a3 0 0
a4

1
16r4+224r3+856r2+504r−495

1
10240

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

4r2+20r−11 − 1
64

a3 0 0
a4

1
16r4+224r3+856r2+504r−495

1
10240

a5 0 0
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For n = 6, using the above recursive equation gives

a6 = − 1
64r6 + 1728r5 + 17200r4 + 76320r3 + 138076r2 + 41292r − 65835

Which for the root r = 5
2 becomes

a6 = − 1
2949120

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 1

4r2+20r−11 − 1
64

a3 0 0
a4

1
16r4+224r3+856r2+504r−495

1
10240

a5 0 0
a6 − 1

64r6+1728r5+17200r4+76320r3+138076r2+41292r−65835 − 1
2949120

Using the above table, then the solution y1(x) is

y1(x) = x
5
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7. . .

)
= x

5
2

(
1− x2

64 + x4

10240 − x6

2949120 +O
(
x7))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 6. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a6(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a6

= − 1
64r6 + 1728r5 + 17200r4 + 76320r3 + 138076r2 + 41292r − 65835
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Therefore

lim
r→r2

− 1
64r6 + 1728r5 + 17200r4 + 76320r3 + 138076r2 + 41292r − 65835 = lim

r→− 7
2

− 1
64r6 + 1728r5 + 17200r4 + 76320r3 + 138076r2 + 41292r − 65835

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode 4x2y′′ + 8y′x+ (x2 − 35) y = 0 gives

4x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ 8
(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))
x

+
(
x2 − 35

)(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0
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Which can be written as

(7)

((
4x2y′′1(x) + 8y′1(x)x+

(
x2 − 35

)
y1(x)

)
ln (x) + 4x2

(
2y′1(x)

x
− y1(x)

x2

)
+ 8y1(x)

)
C + 4x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ 8
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
x+

(
x2 − 35

)( ∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

4x2y′′1(x) + 8y′1(x)x+
(
x2 − 35

)
y1(x) = 0

Eq (7) simplifes to

(8)

(
4x2
(
2y′1(x)

x
− y1(x)

x2

)
+ 8y1(x)

)
C

+ 4x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ 8
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
x+

(
x2 − 35

)( ∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
8
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x+ 4

(
∞∑
n=0

anx
n+r1

))
C

+ 4
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2 +

(
∞∑
n=0

bnx
n+r2

)
x2

+ 8
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x− 35

(
∞∑
n=0

bnx
n+r2

)
= 0
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Since r1 = 5
2 and r2 = −7

2 then the above becomes

(10)

(
8
(

∞∑
n=0

x
3
2+nan

(
n+ 5

2

))
x+ 4

(
∞∑
n=0

anx
n+ 5

2

))
C

+ 4
(

∞∑
n=0

x− 11
2 +nbn

(
n− 7

2

)(
−9
2 + n

))
x2 +

(
∞∑
n=0

bnx
n− 7

2

)
x2

+ 8
(

∞∑
n=0

x− 9
2+nbn

(
n− 7

2

))
x− 35

(
∞∑
n=0

bnx
n− 7

2

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

(8n+ 20)Canx
n+ 5

2

)
+
(

∞∑
n=0

4Canx
n+ 5

2

)

+
(

∞∑
n=0

xn− 7
2 bn
(
4n2 − 32n+ 63

))
+
(

∞∑
n=0

x− 3
2+nbn

)

+
(

∞∑
n=0

(8n− 28) bnxn− 7
2

)
+

∞∑
n =0

(
−35bnxn− 7

2

)
= 0

The next step is to make all powers of x be n − 7
2 in each summation term. Going

over each summation term above with power of x in it which is not already xn− 7
2 and

adjusting the power and the corresponding index gives

∞∑
n =0

(8n+ 20)Canx
n+ 5

2 =
∞∑
n=6

Can−6(8n− 28)xn− 7
2

∞∑
n =0

4Canx
n+ 5

2 =
∞∑
n=6

4Can−6x
n− 7

2

∞∑
n =0

x− 3
2+nbn =

∞∑
n=2

bn−2x
n− 7

2

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n− 7
2 .

(2B)

(
∞∑
n=6

Can−6(8n− 28)xn− 7
2

)
+
(

∞∑
n=6

4Can−6x
n− 7

2

)

+
(

∞∑
n=0

xn− 7
2 bn
(
4n2 − 32n+ 63

))
+
(

∞∑
n=2

bn−2x
n− 7

2

)

+
(

∞∑
n=0

(8n− 28) bnxn− 7
2

)
+

∞∑
n =0

(
−35bnxn− 7

2

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−20b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−20b1 = 0

Solving the above for b1 gives
b1 = 0

For n = 2, Eq (2B) gives
−32b2 + b0 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−32b2 + 1 = 0

Solving the above for b2 gives
b2 =

1
32

For n = 3, Eq (2B) gives
−36b3 + b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−36b3 = 0

Solving the above for b3 gives
b3 = 0

For n = 4, Eq (2B) gives
−32b4 + b2 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−32b4 +
1
32 = 0

Solving the above for b4 gives
b4 =

1
1024

For n = 5, Eq (2B) gives
−20b5 + b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−20b5 = 0

Solving the above for b5 gives
b5 = 0

For n = N , where N = 6 which is the difference between the two roots, we are free to
choose b6 = 0. Hence for n = 6, Eq (2B) gives

24C + 1
1024 = 0

Which is solved for C. Solving for C gives

C = − 1
24576

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = − 1
24576 and all bn, then the second solution

becomes

y2(x) = − 1
24576

(
x

5
2

(
1− x2

64 + x4

10240 − x6

2949120 +O
(
x7))) ln (x)

+
1 + x2

32 +
x4

1024 +O(x7)
x

7
2
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
5
2

(
1− x2

64 + x4

10240 − x6

2949120 +O
(
x7))

+ c2

(
− 1
24576

(
x

5
2

(
1− x2

64 + x4

10240 − x6

2949120 +O
(
x7))) ln (x)

+
1 + x2

32 +
x4

1024 +O(x7)
x

7
2

)

Hence the final solution is

y = yh

= c1x
5
2

(
1− x2

64 + x4

10240 − x6

2949120 +O
(
x7))

+ c2

−
x

5
2

(
1− x2

64 +
x4

10240 −
x6

2949120 +O(x7)
)
ln (x)

24576 +
1 + x2

32 +
x4

1024 +O(x7)
x

7
2


Summary
The solution(s) found are the following

y = c1x
5
2

(
1− x2

64 + x4

10240 − x6

2949120 +O
(
x7))

+ c2

−
x

5
2

(
1− x2

64 +
x4

10240 −
x6

2949120 +O(x7)
)
ln (x)

24576 +
1 + x2

32 +
x4

1024 +O(x7)
x

7
2


(1)

Verification of solutions

y = c1x
5
2

(
1− x2

64 + x4

10240 − x6

2949120 +O
(
x7))

+ c2

−
x

5
2

(
1− x2

64 +
x4

10240 −
x6

2949120 +O(x7)
)
ln (x)

24576 +
1 + x2

32 +
x4

1024 +O(x7)
x

7
2


Verified OK.
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16.35.1 Maple step by step solution

Let’s solve
4x2y′′ + 8y′x+ (x2 − 35) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2−35

)
y

4x2 − 2y′
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2y′
x
+
(
x2−35

)
y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 2
x
, P3(x) = x2−35

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −35
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2y′′ + 8y′x+ (x2 − 35) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(7 + 2r) (−5 + 2r)xr + a1(9 + 2r) (−3 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 7) (2k + 2r − 5) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(7 + 2r) (−5 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−7

2 ,
5
2

}
• Each term must be 0

a1(9 + 2r) (−3 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
(
k + r + 7

2

) (
k + r − 5

2

)
ak + ak−2 = 0

• Shift index using k− >k + 2
4
(
k + 11

2 + r
) (

k − 1
2 + r

)
ak+2 + ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak

(2k+11+2r)(2k−1+2r)

• Recursion relation for r = −7
2

ak+2 = − ak
(2k+4)(2k−8)

• Series not valid for r = −7
2 , division by 0 in the recursion relation at k = 4

ak+2 = − ak
(2k+4)(2k−8)
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• Recursion relation for r = 5
2

ak+2 = − ak
(2k+16)(2k+4)

• Solution for r = 5
2[

y =
∞∑
k=0

akx
k+ 5

2 , ak+2 = − ak
(2k+16)(2k+4) , a1 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 35� �
Order:=6;
dsolve(4*x^2*diff(y(x),x$2)+8*x*diff(y(x),x)-(35-x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x) =

c1x
6(1− 1

64x
2 + 1

10240x
4 +O(x6)

)
+ c2

(
−86400− 2700x2 − 675

8 x4 +O(x6)
)

x
7
2
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3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 58� �
AsymptoticDSolveValue[4*x^2*y''[x]+8*x*y'[x]-(35-x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1

32x3/2 + 1
x7/2 +

√
x

1024

)
+ c2

(
x13/2

10240 − x9/2

64 + x5/2
)
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16.36 problem 32
16.36.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6860

Internal problem ID [1448]
Internal file name [OUTPUT/1449_Sunday_June_05_2022_02_18_09_AM_38044428/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 32.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

9x2y′′ − 3x
(
2x2 + 11

)
y′ +

(
10x2 + 13

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

9x2y′′ +
(
−6x3 − 33x

)
y′ +

(
10x2 + 13

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −2x2 + 11
3x

q(x) = 10x2 + 13
9x2
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Table 842: Table p(x), q(x) singularites.

p(x) = −2x2+11
3x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = 10x2+13
9x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

9x2y′′ +
(
−6x3 − 33x

)
y′ +

(
10x2 + 13

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
9x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−6x3 − 33x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
10x2 + 13

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−6xn+r+2an(n+ r)

)
+

∞∑
n =0

(
−33xn+ran(n+ r)

)
+
(

∞∑
n=0

10xn+r+2an

)
+
(

∞∑
n=0

13anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−6xn+r+2an(n+ r)

)
=

∞∑
n=2

(
−6an−2(n+ r − 2)xn+r

)
∞∑

n =0

10xn+r+2an =
∞∑
n=2

10an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

9xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =2

(
−6an−2(n+ r − 2)xn+r

)
+

∞∑
n =0

(
−33xn+ran(n+ r)

)
+
(

∞∑
n=2

10an−2x
n+r

)
+
(

∞∑
n=0

13anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

9xn+ran(n+ r) (n+ r − 1)− 33xn+ran(n+ r) + 13anxn+r = 0

When n = 0 the above becomes

9xra0r(−1 + r)− 33xra0r + 13a0xr = 0

Or
(9xrr(−1 + r)− 33xrr + 13xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
9r2 − 42r + 13

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

9r2 − 42r + 13 = 0

Solving for r gives the roots of the indicial equation as

r1 =
13
3

r2 =
1
3

Since a0 6= 0 then the indicial equation becomes(
9r2 − 42r + 13

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x
13
3

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + x
1
3

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 13

3

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+ 1

3

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)9an(n+ r) (n+ r − 1)− 6an−2(n+ r − 2)− 33an(n+ r) + 10an−2 + 13an = 0

Solving for an from recursive equation (4) gives

an = 2an−2(3n+ 3r − 11)
9n2 + 18nr + 9r2 − 42n− 42r + 13 (4)

Which for the root r = 13
3 becomes

an = 2an−2(3n+ 2)
9n (n+ 4) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 13

3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−10 + 6r

9r2 − 6r − 35

Which for the root r = 13
3 becomes

a2 =
4
27

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−10+6r
9r2−6r−35

4
27

For n = 3, using the above recursive equation gives

a3 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−10+6r
9r2−6r−35

4
27

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
36r2 − 48r − 20

(9r2 − 6r − 35) (9r2 + 30r − 11)
Which for the root r = 13

3 becomes

a4 =
7
486

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−10+6r
9r2−6r−35

4
27

a3 0 0
a4

36r2−48r−20
(9r2−6r−35)(9r2+30r−11)

7
486

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−10+6r
9r2−6r−35

4
27

a3 0 0
a4

36r2−48r−20
(9r2−6r−35)(9r2+30r−11)

7
486

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) = x
13
3
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
13
3

(
1 + 4x2

27 + 7x4

486 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 4. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a4(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a4

= 36r2 − 48r − 20
(9r2 − 6r − 35) (9r2 + 30r − 11)

Therefore

lim
r→r2

36r2 − 48r − 20
(9r2 − 6r − 35) (9r2 + 30r − 11) = lim

r→ 1
3

36r2 − 48r − 20
(9r2 − 6r − 35) (9r2 + 30r − 11)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode 9x2y′′ + (−6x3 − 33x) y′ + (10x2 + 13) y = 0
gives

9x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−6x3 − 33x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+
(
10x2 + 13

)(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
9x2y′′1(x) +

(
−6x3 − 33x

)
y′1(x) +

(
10x2 + 13

)
y1(x)

)
ln (x)

+ 9x2
(
2y′1(x)

x
− y1(x)

x2

)
+ (−6x3 − 33x) y1(x)

x

)
C

+ 9x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−6x3 − 33x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
10x2 + 13

)( ∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

9x2y′′1(x) +
(
−6x3 − 33x

)
y′1(x) +

(
10x2 + 13

)
y1(x) = 0

Eq (7) simplifes to

(8)

(
9x2
(
2y′1(x)

x
− y1(x)

x2

)
+ (−6x3 − 33x) y1(x)

x

)
C

+ 9x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−6x3 − 33x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
10x2 + 13

)( ∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
18
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x+ 6

(
−x2 − 7

)( ∞∑
n=0

anx
n+r1

))
C

+ 9
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2

+3
(
−2x3−11x

)( ∞∑
n=0

x−1+n+r2bn(n+r2)
)
+
(
10x2+13

)( ∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 13
3 and r2 = 1

3 then the above becomes

(10)

(
18
(

∞∑
n=0

x
10
3 +nan

(
n+ 13

3

))
x+ 6

(
−x2 − 7

)( ∞∑
n=0

anx
n+ 13

3

))
C

+ 9
(

∞∑
n=0

x− 5
3+nbn

(
n+ 1

3

)(
−2
3 + n

))
x2

+3
(
−2x3−11x

)( ∞∑
n=0

x− 2
3+nbn

(
n+ 1

3

))
+
(
10x2+13

)( ∞∑
n=0

bnx
n+ 1

3

)
= 0

Expanding −6C x
19
3 as Taylor series around x = 0 and keeping only the first 6 terms

gives

−6C x
19
3 = −6C x

19
3 + . . .

= −6C x
19
3

Expanding −42C x
13
3 as Taylor series around x = 0 and keeping only the first 6 terms

gives

−42C x
13
3 = −42C x

13
3 + . . .

= −42C x
13
3

Expanding −2x 7
3 as Taylor series around x = 0 and keeping only the first 6 terms gives

−2x 7
3 = −2x 7

3 + . . .

= −2x 7
3

6856



Expanding −11x 1
3 as Taylor series around x = 0 and keeping only the first 6 terms

gives

−11x 1
3 = −11x 1

3 + . . .

= −11x 1
3

Expanding 10x 7
3 as Taylor series around x = 0 and keeping only the first 6 terms gives

10x 7
3 = 10x 7

3 + . . .

= 10x 7
3

Expanding 13x 1
3 as Taylor series around x = 0 and keeping only the first 6 terms gives

13x 1
3 = 13x 1

3 + . . .

= 13x 1
3

Which simplifies to

(2A)

(
∞∑
n=0

(18n+78)Canx
n+ 13

3

)
+

∞∑
n =0

(
−6C xn+ 19

3 an
)
+

∞∑
n =0

(
−42C xn+ 13

3 an
)

+
(

∞∑
n=0

xn+ 1
3 bn
(
9n2 − 3n− 2

))
+
(

∞∑
n=0

(−6n− 2) bnxn+ 7
3

)

+
(

∞∑
n=0

(−33n−11) bnxn+ 1
3

)
+
(

∞∑
n=0

10xn+ 7
3 bn

)
+
(

∞∑
n=0

13bnxn+ 1
3

)
= 0

The next step is to make all powers of x be n + 1
3 in each summation term. Going

over each summation term above with power of x in it which is not already xn+ 1
3 and

adjusting the power and the corresponding index gives

∞∑
n =0

(18n+ 78)Canx
n+ 13

3 =
∞∑
n=4

Can−4(18n+ 6)xn+ 1
3

∞∑
n =0

(
−6C xn+ 19

3 an
)
=

∞∑
n=6

(
−6Can−6x

n+ 1
3

)
∞∑

n =0

(
−42C xn+ 13

3 an
)
=

∞∑
n=4

(
−42Can−4x

n+ 1
3

)
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∞∑
n =0

(−6n− 2) bnxn+ 7
3 =

∞∑
n=2

bn−2(−6n+ 10)xn+ 1
3

∞∑
n =0

10xn+ 7
3 bn =

∞∑
n=2

10bn−2x
n+ 1

3

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ 1

3 .

(2B)

(
∞∑
n=4

Can−4(18n+ 6)xn+ 1
3

)
+

∞∑
n =6

(
−6Can−6x

n+ 1
3

)
+

∞∑
n =4

(
−42Can−4x

n+ 1
3

)
+
(

∞∑
n=0

xn+ 1
3 bn
(
9n2 − 3n− 2

))

+
(

∞∑
n=2

bn−2(−6n+ 10)xn+ 1
3

)
+
(

∞∑
n=0

(−33n− 11) bnxn+ 1
3

)

+
(

∞∑
n=2

10bn−2x
n+ 1

3

)
+
(

∞∑
n=0

13bnxn+ 1
3

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−27b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−27b1 = 0

Solving the above for b1 gives
b1 = 0

For n = 2, Eq (2B) gives
−36b2 + 8b0 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−36b2 + 8 = 0

Solving the above for b2 gives
b2 =

2
9
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For n = 3, Eq (2B) gives
−27b3 + 2b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−27b3 = 0
Solving the above for b3 gives

b3 = 0
For n = N , where N = 4 which is the difference between the two roots, we are free to
choose b4 = 0. Hence for n = 4, Eq (2B) gives

36C − 8
9 = 0

Which is solved for C. Solving for C gives

C = 2
81

For n = 5, Eq (2B) gives
54Ca1 − 10b3 + 45b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

45b5 = 0
Solving the above for b5 gives

b5 = 0
Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = 2

81 and all bn, then the second solution becomes

y2(x) =
2
81

(
x

13
3

(
1 + 4x2

27 + 7x4

486 +O
(
x6))) ln (x) + x

1
3

(
1 + 2x2

9 +O
(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
13
3

(
1 + 4x2

27 + 7x4

486 +O
(
x6))

+ c2

(
2
81

(
x

13
3

(
1 + 4x2

27 + 7x4

486 +O
(
x6))) ln (x) + x

1
3

(
1 + 2x2

9 +O
(
x6)))

6859



Hence the final solution is

y = yh

= c1x
13
3

(
1 + 4x2

27 + 7x4

486 +O
(
x6))

+ c2

2x 13
3

(
1 + 4x2

27 + 7x4

486 +O(x6)
)
ln (x)

81 + x
1
3

(
1 + 2x2

9 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

13
3

(
1 + 4x2

27 + 7x4

486 +O
(
x6))

+ c2

2x 13
3

(
1 + 4x2

27 + 7x4

486 +O(x6)
)
ln (x)

81 + x
1
3

(
1 + 2x2

9 +O
(
x6))

Verification of solutions

y = c1x
13
3

(
1 + 4x2

27 + 7x4

486 +O
(
x6))

+ c2

2x 13
3

(
1 + 4x2

27 + 7x4

486 +O(x6)
)
ln (x)

81 + x
1
3

(
1 + 2x2

9 +O
(
x6))

Verified OK.

16.36.1 Maple step by step solution

Let’s solve
9x2y′′ + (−6x3 − 33x) y′ + (10x2 + 13) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
10x2+13

)
y

9x2 +
(
2x2+11

)
y′

3x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ −
(
2x2+11

)
y′

3x +
(
10x2+13

)
y

9x2 = 0
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� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2x2+11
3x , P3(x) = 10x2+13

9x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −11
3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 13
9

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
9x2y′′ − 3x(2x2 + 11) y′ + (10x2 + 13) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion
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x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(−1 + 3r) (−13 + 3r)xr + a1(2 + 3r) (−10 + 3r)x1+r +
(

∞∑
k=2

(ak(3k + 3r − 1) (3k + 3r − 13)− 2ak−2(3k − 11 + 3r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(−1 + 3r) (−13 + 3r) = 0

• Values of r that satisfy the indicial equation
r ∈

{1
3 ,

13
3

}
• Each term must be 0

a1(2 + 3r) (−10 + 3r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

9
(
k + r − 1

3

) (
k + r − 13

3

)
ak − 6

(
k − 11

3 + r
)
ak−2 = 0

• Shift index using k− >k + 2
9
(
k + 5

3 + r
) (

k − 7
3 + r

)
ak+2 − 6

(
k − 5

3 + r
)
ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2(3k+3r−5)ak

(3k+5+3r)(3k−7+3r)

• Recursion relation for r = 1
3

ak+2 = 2(3k−4)ak
(3k+6)(3k−6)

• Series not valid for r = 1
3 , division by 0 in the recursion relation at k = 2

ak+2 = 2(3k−4)ak
(3k+6)(3k−6)

• Recursion relation for r = 13
3

ak+2 = 2(3k+8)ak
(3k+18)(3k+6)

• Solution for r = 13
3[

y =
∞∑
k=0

akx
k+ 13

3 , ak+2 = 2(3k+8)ak
(3k+18)(3k+6) , a1 = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Whittaker successful
<- special function solution successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 49� �
Order:=6;
dsolve(9*x^2*diff(y(x),x$2)-3*x*(11+2*x^2)*diff(y(x),x)+(13+10*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) = x
1
3

((
1 + 4

27x
2 + 7

486x
4 +O

(
x6))x4c1

+ c2

(
ln (x)

(
−32

9 x4 +O
(
x6))+

(
−144− 32x2 − 8

3x
4 +O

(
x6))))

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 62� �
AsymptoticDSolveValue[9*x^2*y''[x]-3*x*(11+2*x^2)*y'[x]+(13+10*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
7x25/3

486 + 4x19/3

27 + x13/3
)
+ c1

(
2
81x

13/3 log(x) + 1
81
(
x2 + 9

)2 3
√
x

)
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16.37 problem 33
16.37.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6875

Internal problem ID [1449]
Internal file name [OUTPUT/1450_Sunday_June_05_2022_02_18_14_AM_4833379/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 33.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries], [_2nd_order , _linear , `

_with_symmetry_ [0,F(x)]`]]

x2y′′ + x
(
−2x2 + 1

)
y′ − 4

(
1− x2) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
−2x3 + x

)
y′ +

(
4x2 − 4

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −2x2 − 1
x

q(x) = 4x2 − 4
x2
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Table 844: Table p(x), q(x) singularites.

p(x) = −2x2−1
x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = 4x2−4
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
−2x3 + x

)
y′ +

(
4x2 − 4

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−2x3 + x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
4x2 − 4

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−2xn+r+2an(n+ r)

)
+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

4xn+r+2an

)
+

∞∑
n =0

(
−4anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2xn+r+2an(n+ r)

)
=

∞∑
n=2

(
−2an−2(n+ r − 2)xn+r

)
∞∑

n =0

4xn+r+2an =
∞∑
n=2

4an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =2

(
−2an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

4an−2x
n+r

)
+

∞∑
n =0

(
−4anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− 4anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r − 4a0xr = 0

Or
(xrr(−1 + r) + xrr − 4xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 4

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

r2 − 4 = 0

Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = −2

Since a0 6= 0 then the indicial equation becomes(
r2 − 4

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x2

Or

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1)− 2an−2(n+ r − 2) + an(n+ r) + 4an−2 − 4an = 0

Solving for an from recursive equation (4) gives

an = 2an−2(n+ r − 4)
n2 + 2nr + r2 − 4 (4)

Which for the root r = 2 becomes

an = 2an−2(n− 2)
n (n+ 4) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−4 + 2r
r (r + 4)

Which for the root r = 2 becomes
a2 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4+2r
r(r+4) 0

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

−4+2r
r(r+4) 0

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
−8 + 4r

(r + 4) (r + 6) (r + 2)

Which for the root r = 2 becomes
a4 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4+2r
r(r+4) 0

a3 0 0
a4

−8+4r
(r+4)(r+6)(r+2) 0

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4+2r
r(r+4) 0

a3 0 0
a4

−8+4r
(r+4)(r+6)(r+2) 0

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2(1 +O

(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 4. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a4(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a4

= −8 + 4r
(r + 4) (r + 6) (r + 2)

Therefore

lim
r→r2

−8 + 4r
(r + 4) (r + 6) (r + 2) = lim

r→−2

−8 + 4r
(r + 4) (r + 6) (r + 2)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode x2y′′ + (−2x3 + x) y′ + (4x2 − 4) y = 0 gives

x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−2x3 + x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+
(
4x2 − 4

)(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
x2y′′1(x)+

(
−2x3+x

)
y′1(x)+

(
4x2−4

)
y1(x)

)
ln (x)+x2

(
2y′1(x)

x
− y1(x)

x2

)
+ (−2x3 + x) y1(x)

x

)
C + x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−2x3 + x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
4x2 − 4

)( ∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

x2y′′1(x) +
(
−2x3 + x

)
y′1(x) +

(
4x2 − 4

)
y1(x) = 0

Eq (7) simplifes to

(8)

(
x2
(
2y′1(x)

x
− y1(x)

x2

)
+ (−2x3 + x) y1(x)

x

)
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−2x3 + x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
4x2 − 4

)( ∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
−2
(

∞∑
n=0

anx
n+r1

)
x2 + 2

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)
x

)
C

+
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2

+
(
−2x3 + x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

+ 4
(

∞∑
n=0

bnx
n+r2

)
x2 − 4

(
∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 2 and r2 = −2 then the above becomes

(10)

(
−2
(

∞∑
n=0

anx
n+2

)
x2 + 2

(
∞∑
n=0

x1+nan(n+ 2)
)
x

)
C

+
(

∞∑
n=0

x−4+nbn(n− 2) (−3 + n)
)
x2 +

(
−2x3 + x

)( ∞∑
n=0

x−3+nbn(n− 2)
)

+ 4
(

∞∑
n=0

bnx
n−2

)
x2 − 4

(
∞∑
n=0

bnx
n−2

)
= 0

Which simplifies to

(2A)

∞∑
n =0

(
−2C xn+4an

)
+
(

∞∑
n=0

2C xn+2an(n+ 2)
)

+
(

∞∑
n=0

xn−2bn
(
n2 − 5n+ 6

))
+

∞∑
n =0

(−2xnbn(n− 2))

+
(

∞∑
n=0

xn−2bn(n− 2)
)

+
(

∞∑
n=0

4bnxn

)
+

∞∑
n =0

(
−4bnxn−2) = 0

The next step is to make all powers of x be n − 2 in each summation term. Going
over each summation term above with power of x in it which is not already xn−2 and
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adjusting the power and the corresponding index gives

∞∑
n =0

(
−2C xn+4an

)
=

∞∑
n=6

(
−2Can−6x

n−2)
∞∑

n =0

2C xn+2an(n+ 2) =
∞∑
n=4

2Ca−4+n(n− 2)xn−2

∞∑
n =0

(−2xnbn(n− 2)) =
∞∑
n=2

(
−2bn−2(−4 + n)xn−2)

∞∑
n =0

4bnxn =
∞∑
n=2

4bn−2x
n−2

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 2.

(2B)

∞∑
n =6

(
−2Can−6x

n−2)+( ∞∑
n=4

2Ca−4+n(n− 2)xn−2

)

+
(

∞∑
n=0

xn−2bn
(
n2 − 5n+ 6

))
+

∞∑
n =2

(
−2bn−2(−4 + n)xn−2)

+
(

∞∑
n=0

xn−2bn(n− 2)
)

+
(

∞∑
n=2

4bn−2x
n−2

)
+

∞∑
n =0

(
−4bnxn−2) = 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−3b1 = 0
Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b1 = 0
Solving the above for b1 gives

b1 = 0
For n = 2, Eq (2B) gives

8b0 − 4b2 = 0
Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

8− 4b2 = 0
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Solving the above for b2 gives
b2 = 2

For n = 3, Eq (2B) gives
6b1 − 3b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b3 = 0

Solving the above for b3 gives
b3 = 0

For n = N , where N = 4 which is the difference between the two roots, we are free to
choose b4 = 0. Hence for n = 4, Eq (2B) gives

4C + 8 = 0

Which is solved for C. Solving for C gives

C = −2

For n = 5, Eq (2B) gives
6Ca1 + 2b3 + 5b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

5b5 = 0

Solving the above for b5 gives
b5 = 0

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = −2 and all bn, then the second solution becomes

y2(x) = (−2)
(
x2(1 +O

(
x6))) ln (x) + 1 + 2x2 +O(x6)

x2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2(1 +O

(
x6))+ c2

(
(−2)

(
x2(1 +O

(
x6))) ln (x) + 1 + 2x2 +O(x6)

x2

)
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Hence the final solution is

y = yh

= c1x
2(1 +O

(
x6))+ c2

(
−2x2(1 +O

(
x6)) ln (x) + 1 + 2x2 +O(x6)

x2

)

Summary
The solution(s) found are the following

(1)y = c1x
2(1 +O

(
x6))+ c2

(
−2x2(1 +O

(
x6)) ln (x) + 1 + 2x2 +O(x6)

x2

)
Verification of solutions

y = c1x
2(1 +O

(
x6))+ c2

(
−2x2(1 +O

(
x6)) ln (x) + 1 + 2x2 +O(x6)

x2

)
Verified OK.

16.37.1 Maple step by step solution

Let’s solve
x2y′′ + (−2x3 + x) y′ + (4x2 − 4) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −4
(
x2−1

)
y

x2 +
(
2x2−1

)
y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ −
(
2x2−1

)
y′

x
+ 4

(
x2−1

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2x2−1
x

, P3(x) = 4
(
x2−1

)
x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= −4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ − x(2x2 − 1) y′ + (4x2 − 4) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−2 + r)xr + a1(3 + r) (−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r − 2)− 2ak−2(k − 4 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 2}
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• Each term must be 0
a1(3 + r) (−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2) (k + r − 2)− 2ak−2(k − 4 + r) = 0

• Shift index using k− >k + 2
ak+2(k + 4 + r) (k + r)− 2ak(k + r − 2) = 0

• Recursion relation that defines series solution to ODE
ak+2 = 2ak(k+r−2)

(k+4+r)(k+r)

• Recursion relation for r = −2 ; series terminates at k = 4
ak+2 = 2ak(k−4)

(k+2)(k−2)

• Series not valid for r = −2 , division by 0 in the recursion relation at k = 2
ak+2 = 2ak(k−4)

(k+2)(k−2)

• Recursion relation for r = 2
ak+2 = 2akk

(k+6)(k+2)

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+2 = 2akk

(k+6)(k+2) , a1 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 45� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*(1-2*x^2)*diff(y(x),x)-4*(1-x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x)

= c1x
2(1 + O

(
x6))+ c2(ln (x) (288x4 +O(x6)) + (−144− 288x2 − 216x4 +O(x6)))

x2

3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 37� �
AsymptoticDSolveValue[x^2*y''[x]+x*(1-2*x^2)*y'[x]-4*(1-x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2x
2 + c1

(
2x4 + 2x2 + 1

x2 − 2x2 log(x)
)
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16.38 problem 34
16.38.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6890

Internal problem ID [1450]
Internal file name [OUTPUT/1451_Sunday_June_05_2022_02_18_18_AM_91871725/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 34.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + x
(
−3x2 + 1

)
y′ − 4

(
−3x2 + 1

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
−3x3 + x

)
y′ +

(
12x2 − 4

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −3x2 − 1
x

q(x) = 12x2 − 4
x2
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Table 846: Table p(x), q(x) singularites.

p(x) = −3x2−1
x

singularity type
x = 0 “regular”
x = ∞ “regular”
x = −∞ “regular”

q(x) = 12x2−4
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
−3x3 + x

)
y′ +

(
12x2 − 4

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−3x3 + x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
12x2 − 4

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−3xn+r+2an(n+ r)

)
+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

12xn+r+2an

)
+

∞∑
n =0

(
−4anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−3xn+r+2an(n+ r)

)
=

∞∑
n=2

(
−3an−2(n+ r − 2)xn+r

)
∞∑

n =0

12xn+r+2an =
∞∑
n=2

12an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =2

(
−3an−2(n+ r − 2)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

12an−2x
n+r

)
+

∞∑
n =0

(
−4anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r)− 4anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r − 4a0xr = 0

Or
(xrr(−1 + r) + xrr − 4xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 4

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

r2 − 4 = 0

Solving for r gives the roots of the indicial equation as

r1 = 2
r2 = −2

Since a0 6= 0 then the indicial equation becomes(
r2 − 4

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x2

Or

y1(x) =
∞∑
n=0

anx
n+2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1)− 3an−2(n+ r − 2) + an(n+ r) + 12an−2 − 4an = 0

Solving for an from recursive equation (4) gives

an = 3an−2(n+ r − 6)
n2 + 2nr + r2 − 4 (4)

Which for the root r = 2 becomes

an = 3an−2(n− 4)
n (n+ 4) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−12 + 3r
r (r + 4)

Which for the root r = 2 becomes
a2 = −1

2
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−12+3r
r(r+4) −1

2

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

−12+3r
r(r+4) −1

2

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
9(−4 + r) (−2 + r)

r (r + 4) (r + 6) (r + 2)

Which for the root r = 2 becomes
a4 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−12+3r
r(r+4) −1

2

a3 0 0
a4

9(−4+r)(−2+r)
r(r+4)(r+6)(r+2) 0

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−12+3r
r(r+4) −1

2

a3 0 0
a4

9(−4+r)(−2+r)
r(r+4)(r+6)(r+2) 0

a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) = x2(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x2

(
1− x2

2 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 4. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a4(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a4

= 9(−4 + r) (−2 + r)
r (r + 4) (r + 6) (r + 2)

Therefore

lim
r→r2

9(−4 + r) (−2 + r)
r (r + 4) (r + 6) (r + 2) = lim

r→−2

9(−4 + r) (−2 + r)
r (r + 4) (r + 6) (r + 2)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode x2y′′+(−3x3 + x) y′+(12x2 − 4) y = 0 gives

x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−3x3 + x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

+
(
12x2 − 4

)(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
x2y′′1(x) +

(
−3x3 + x

)
y′1(x) +

(
12x2 − 4

)
y1(x)

)
ln (x)

+ x2
(
2y′1(x)

x
− y1(x)

x2

)
+ (−3x3 + x) y1(x)

x

)
C + x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2

− bnx
n+r2(n+ r2)

x2

))
+
(
−3x3 + x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
12x2

− 4
)( ∞∑

n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

x2y′′1(x) +
(
−3x3 + x

)
y′1(x) +

(
12x2 − 4

)
y1(x) = 0

Eq (7) simplifes to

(8)

(
x2
(
2y′1(x)

x
− y1(x)

x2

)
+ (−3x3 + x) y1(x)

x

)
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−3x3 + x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(
12x2 − 4

)( ∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
−3
(

∞∑
n=0

anx
n+r1

)
x2 + 2

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)
x

)
C

+
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2

+
(
−3x3 + x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

+ 12
(

∞∑
n=0

bnx
n+r2

)
x2 − 4

(
∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 2 and r2 = −2 then the above becomes

(10)

(
−3
(

∞∑
n=0

anx
n+2

)
x2 + 2

(
∞∑
n=0

x1+nan(n+ 2)
)
x

)
C

+
(

∞∑
n=0

xn−4bn(n− 2) (−3 + n)
)
x2 +

(
−3x3 + x

)( ∞∑
n=0

x−3+nbn(n− 2)
)

+ 12
(

∞∑
n=0

bnx
n−2

)
x2 − 4

(
∞∑
n=0

bnx
n−2

)
= 0

Which simplifies to

(2A)

∞∑
n =0

(
−3C xn+4an

)
+
(

∞∑
n=0

2C xn+2an(n+ 2)
)

+
(

∞∑
n=0

xn−2bn
(
n2 − 5n+ 6

))
+

∞∑
n =0

(−3xnbn(n− 2))

+
(

∞∑
n=0

xn−2bn(n− 2)
)

+
(

∞∑
n=0

12bnxn

)
+

∞∑
n =0

(
−4bnxn−2) = 0

The next step is to make all powers of x be n − 2 in each summation term. Going
over each summation term above with power of x in it which is not already xn−2 and
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adjusting the power and the corresponding index gives

∞∑
n =0

(
−3C xn+4an

)
=

∞∑
n=6

(
−3Can−6x

n−2)
∞∑

n =0

2C xn+2an(n+ 2) =
∞∑
n=4

2Can−4(n− 2)xn−2

∞∑
n =0

(−3xnbn(n− 2)) =
∞∑
n=2

(
−3bn−2(n− 4)xn−2)

∞∑
n =0

12bnxn =
∞∑
n=2

12bn−2x
n−2

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 2.

(2B)

∞∑
n =6

(
−3Can−6x

n−2)+( ∞∑
n=4

2Can−4(n− 2)xn−2

)

+
(

∞∑
n=0

xn−2bn
(
n2 − 5n+ 6

))
+

∞∑
n =2

(
−3bn−2(n− 4)xn−2)

+
(

∞∑
n=0

xn−2bn(n− 2)
)

+
(

∞∑
n=2

12bn−2x
n−2

)
+

∞∑
n =0

(
−4bnxn−2) = 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−3b1 = 0
Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b1 = 0
Solving the above for b1 gives

b1 = 0
For n = 2, Eq (2B) gives

18b0 − 4b2 = 0
Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

18− 4b2 = 0
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Solving the above for b2 gives
b2 =

9
2

For n = 3, Eq (2B) gives
15b1 − 3b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b3 = 0

Solving the above for b3 gives
b3 = 0

For n = N , where N = 4 which is the difference between the two roots, we are free to
choose b4 = 0. Hence for n = 4, Eq (2B) gives

4C + 54 = 0

Which is solved for C. Solving for C gives

C = −27
2

For n = 5, Eq (2B) gives
6Ca1 + 9b3 + 5b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

5b5 = 0

Solving the above for b5 gives
b5 = 0

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = −27
2 and all bn, then the second solution becomes

y2(x) = −27
2

(
x2
(
1− x2

2 +O
(
x6))) ln (x) +

1 + 9x2

2 +O(x6)
x2

6889



Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
2
(
1−x2

2 +O
(
x6))+c2

(
−27

2

(
x2
(
1−x2

2 +O
(
x6))) ln (x)+

1 + 9x2

2 +O(x6)
x2

)

Hence the final solution is

y = yh

= c1x
2
(
1− x2

2 +O
(
x6))+ c2

−
27x2

(
1− x2

2 +O(x6)
)
ln (x)

2 +
1 + 9x2

2 +O(x6)
x2


Summary
The solution(s) found are the following

(1)
y = c1x

2
(
1− x2

2 +O
(
x6))

+ c2

−
27x2

(
1− x2

2 +O(x6)
)
ln (x)

2 +
1 + 9x2

2 +O(x6)
x2


Verification of solutions

y = c1x
2
(
1− x2

2 +O
(
x6))+ c2

−
27x2

(
1− x2

2 +O(x6)
)
ln (x)

2 +
1 + 9x2

2 +O(x6)
x2


Verified OK.

16.38.1 Maple step by step solution

Let’s solve
x2y′′ + (−3x3 + x) y′ + (12x2 − 4) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −4
(
3x2−1

)
y

x2 +
(
3x2−1

)
y′

x
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ −
(
3x2−1

)
y′

x
+ 4

(
3x2−1

)
y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −3x2−1
x

, P3(x) = 4
(
3x2−1

)
x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ − x(3x2 − 1) y′ + (12x2 − 4) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r
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◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(2 + r) (−2 + r)xr + a1(3 + r) (−1 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 2) (k + r − 2)− 3ak−2(k − 6 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(2 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−2, 2}

• Each term must be 0
a1(3 + r) (−1 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 2) (k + r − 2)− 3ak−2(k − 6 + r) = 0

• Shift index using k− >k + 2
ak+2(k + 4 + r) (k + r)− 3ak(k + r − 4) = 0

• Recursion relation that defines series solution to ODE
ak+2 = 3ak(k+r−4)

(k+4+r)(k+r)

• Recursion relation for r = −2 ; series terminates at k = 6
ak+2 = 3ak(k−6)

(k+2)(k−2)

• Series not valid for r = −2 , division by 0 in the recursion relation at k = 2
ak+2 = 3ak(k−6)

(k+2)(k−2)

• Recursion relation for r = 2 ; series terminates at k = 2
ak+2 = 3ak(k−2)

(k+6)(k+2)

• Solution for r = 2[
y =

∞∑
k=0

akx
k+2, ak+2 = 3ak(k−2)

(k+6)(k+2) , a1 = 0
]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form for at least one hypergeometric solution is achieved - returning with no uncomputed integrals

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 47� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*(1-3*x^2)*diff(y(x),x)-4*(1-3*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
2
(
1− 1

2x
2 +O

(
x6))

+ c2(ln (x) (1944x4 +O(x6)) + (−144− 648x2 − 810x4 +O(x6)))
x2
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3 Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 50� �
AsymptoticDSolveValue[x^2*y''[x]+x*(1-3*x^2)*y'[x]-4*(1-3*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x2 − x4

2

)
+ c1

(
18x4 + 9x2 + 2

2x2 − 27
2 x2 log(x)

)
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16.39 problem 35
16.39.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6905

Internal problem ID [1451]
Internal file name [OUTPUT/1452_Sunday_June_05_2022_02_18_22_AM_85121220/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 35.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x2 + 1
)
y′′ + x

(
11x2 + 5

)
y′ + 24x2y = 0

With the expansion point for the power series method at x = 0.

The ODE is (
x4 + x2) y′′ + (11x3 + 5x

)
y′ + 24x2y = 0

Or
x
(
y′′x3 + 11y′x2 + 24yx+ y′′x+ 5y′

)
= 0

For x 6= 0 the above simplifies to(
x3 + x

)
y′′ + 11y′x2 + 24yx+ 5y′ = 0

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x4 + x2) y′′ + (11x3 + 5x
)
y′ + 24x2y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0
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Where

p(x) = 11x2 + 5
x (x2 + 1)

q(x) = 24
x2 + 1

Table 848: Table p(x), q(x) singularites.

p(x) = 11x2+5
x(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

q(x) = 24
x2+1

singularity type
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 + 1
)
y′′ +

(
11x3 + 5x

)
y′ + 24x2y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2
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Substituting the above back into the ode gives

(1)
x2(x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
11x3 + 5x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+ 24x2

(
∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

11xn+r+2an(n+r)
)
+
(

∞∑
n=0

5xn+ran(n+r)
)
+
(

∞∑
n=0

24xn+r+2an

)
=0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

11xn+r+2an(n+ r) =
∞∑
n=2

11an−2(n+ r − 2)xn+r

∞∑
n =0

24xn+r+2an =
∞∑
n=2

24an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

11an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=0

5xn+ran(n+ r)
)

+
(

∞∑
n=2

24an−2x
n+r

)
= 0
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The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 5xn+ran(n+ r) = 0

When n = 0 the above becomes

xra0r(−1 + r) + 5xra0r = 0

Or
(xrr(−1 + r) + 5xrr) a0 = 0

Since a0 6= 0 then the above simplifies to

xrr(4 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(4 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = −4

Since a0 6= 0 then the indicial equation becomes

xrr(4 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x4
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Or

y1(x) =
∞∑
n=0

anx
n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−4

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r) + an(n+ r) (n+ r − 1)
+ 11an−2(n+ r − 2) + 5an(n+ r) + 24an−2 = 0

Solving for an from recursive equation (4) gives

an = −(n+ r + 2) an−2

n+ r
(4)

Which for the root r = 0 becomes

an = −(n+ 2) an−2

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−4− r

r + 2

Which for the root r = 0 becomes
a2 = −2
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4−r
r+2 −2

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4−r
r+2 −2

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
6 + r

r + 2
Which for the root r = 0 becomes

a4 = 3
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4−r
r+2 −2

a3 0 0
a4

6+r
r+2 3

For n = 5, using the above recursive equation gives

a5 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−4−r
r+2 −2

a3 0 0
a4

6+r
r+2 3

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1− 2x2 + 3x4 +O
(
x6)

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 4. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a4(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a4

= 6 + r

r + 2
Therefore

lim
r→r2

6 + r

r + 2 = lim
r→−4

6 + r

r + 2
= −1

The limit is −1. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−4
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Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)bn−2(n+ r − 2) (n− 3 + r) + bn(n+ r) (n+ r − 1)
+ 11bn−2(n+ r − 2) + 5bn(n+ r) + 24bn−2 = 0

Which for for the root r = −4 becomes

(4A)bn−2(n− 6) (n− 7) + bn(n− 4) (n− 5) + 11bn−2(n− 6) + 5bn(n− 4) + 24bn−2 = 0

Solving for bn from the recursive equation (4) gives

bn = −(n+ r + 2) bn−2

n+ r
(5)

Which for the root r = −4 becomes

bn = −(n− 2) bn−2

n− 4 (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −4 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = −4 + r

r + 2

Which for the root r = −4 becomes

b2 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2

−4−r
r+2 0

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−4−r
r+2 0

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
6 + r

r + 2
Which for the root r = −4 becomes

b4 = −1

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−4−r
r+2 0

b3 0 0
b4

6+r
r+2 −1

For n = 5, using the above recursive equation gives

b5 = 0
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−4−r
r+2 0

b3 0 0
b4

6+r
r+2 −1

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = 1
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= 1− x4 +O(x6)
x4

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
(
1− 2x2 + 3x4 +O

(
x6))+ c2(1− x4 +O(x6))

x4

Hence the final solution is

y = yh

= c1
(
1− 2x2 + 3x4 +O

(
x6))+ c2(1− x4 +O(x6))

x4

Summary
The solution(s) found are the following

(1)y = c1
(
1− 2x2 + 3x4 +O

(
x6))+ c2(1− x4 +O(x6))

x4

Verification of solutions

y = c1
(
1− 2x2 + 3x4 +O

(
x6))+ c2(1− x4 +O(x6))

x4

Verified OK.

6904



16.39.1 Maple step by step solution

Let’s solve
x2(x2 + 1) y′′ + (11x3 + 5x) y′ + 24x2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 24y
x2+1 −

(
11x2+5

)
y′

x(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
11x2+5

)
y′

x(x2+1) + 24y
x2+1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 11x2+5
x(x2+1) , P3(x) = 24

x2+1

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
24yx+ (11x2 + 5) y′ + x(x2 + 1) y′′ = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+r+1
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◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k+r

◦ Convert xm · y′ to series expansion form = 0..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(4 + r)x−1+r + a1(1 + r) (5 + r)xr +
(

∞∑
k=1

(ak+1(k + r + 1) (k + 5 + r) + ak−1(k + 5 + r) (k + 3 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(4 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−4, 0}

• Each term must be 0
a1(1 + r) (5 + r) = 0

• Each term in the series must be 0, giving the recursion relation
(k + 5 + r) (ak+1(k + r + 1) + ak−1(k + 3 + r)) = 0

• Shift index using k− >k + 1
(k + r + 6) (ak+2(k + 2 + r) + ak(k + r + 4)) = 0

• Recursion relation that defines series solution to ODE
ak+2 = −ak(k+r+4)

k+2+r

• Recursion relation for r = −4
ak+2 = − akk

k−2
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• Series not valid for r = −4 , division by 0 in the recursion relation at k = 2
ak+2 = − akk

k−2

• Recursion relation for r = 0
ak+2 = −ak(k+4)

k+2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = −ak(k+4)

k+2 , 5a1 = 0
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 30� �
Order:=6;
dsolve(x^2*(1+x^2)*diff(y(x),x$2)+x*(5+11*x^2)*diff(y(x),x)+24*x^2*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1
(
1− 2x2 + 3x4 +O

(
x6))+ c2(−144 + 432x4 +O(x6))

x4
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3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 27� �
AsymptoticDSolveValue[x^2*(1+x^2)*y''[x]+x*(5+11*x^2)*y'[x]+24*x^2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1
x4 − 1

)
+ c2

(
3x4 − 2x2 + 1

)
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16.40 problem 36
16.40.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6920

Internal problem ID [1452]
Internal file name [OUTPUT/1453_Sunday_June_05_2022_02_18_25_AM_23966063/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 36.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2(x2 + 1
)
y′′ + 8y′x−

(
−x2 + 35

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

4x4 + 4x2) y′′ + 8y′x+
(
x2 − 35

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2
x (x2 + 1)

q(x) = x2 − 35
4x2 (x2 + 1)
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Table 850: Table p(x), q(x) singularites.

p(x) = 2
x(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

q(x) = x2−35
4x2(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2(x2 + 1
)
y′′ + 8y′x+

(
x2 − 35

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2(x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ 8
(

∞∑
n=0

(n+ r) anxn+r−1

)
x+

(
x2 − 35

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

8xn+ran(n+ r)
)

+
(

∞∑
n=0

xn+r+2an

)
+

∞∑
n =0

(
−35anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

4an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

4an−2(n+ r− 2) (n− 3+ r)xn+r

)
+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

8xn+ran(n+ r)
)

+
(

∞∑
n=2

an−2x
n+r

)
+

∞∑
n =0

(
−35anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + 8xn+ran(n+ r)− 35anxn+r = 0

When n = 0 the above becomes

4xra0r(−1 + r) + 8xra0r − 35a0xr = 0

Or
(4xrr(−1 + r) + 8xrr − 35xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 + 4r − 35

)
xr = 0
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Since the above is true for all x then the indicial equation becomes

4r2 + 4r − 35 = 0

Solving for r gives the roots of the indicial equation as

r1 =
5
2

r2 = −7
2

Since a0 6= 0 then the indicial equation becomes(
4r2 + 4r − 35

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 6 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x
5
2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x
7
2

Or

y1(x) =
∞∑
n=0

anx
n+ 5

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n− 7

2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0
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For 2 ≤ n the recursive equation is

(3)4an−2(n+ r− 2) (n− 3+ r)+4an(n+ r) (n+ r− 1)+8an(n+ r)+ an−2− 35an = 0

Solving for an from recursive equation (4) gives

an = −(−5 + 2n+ 2r) an−2

2n+ 2r + 7 (4)

Which for the root r = 5
2 becomes

an = −nan−2

n+ 6 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 5

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
1− 2r
11 + 2r

Which for the root r = 5
2 becomes

a2 = −1
4

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1−2r
11+2r −1

4

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

1−2r
11+2r −1

4

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
4r2 + 4r − 3

4r2 + 52r + 165

Which for the root r = 5
2 becomes

a4 =
1
10

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1−2r
11+2r −1

4

a3 0 0
a4

4r2+4r−3
4r2+52r+165

1
10

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1−2r
11+2r −1

4

a3 0 0
a4

4r2+4r−3
4r2+52r+165

1
10

a5 0 0
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For n = 6, using the above recursive equation gives

a6 =
−8r3 − 36r2 − 22r + 21

8r3 + 180r2 + 1318r + 3135

Which for the root r = 5
2 becomes

a6 = − 1
20

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1−2r
11+2r −1

4

a3 0 0
a4

4r2+4r−3
4r2+52r+165

1
10

a5 0 0
a6

−8r3−36r2−22r+21
8r3+180r2+1318r+3135 − 1

20

Using the above table, then the solution y1(x) is

y1(x) = x
5
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7. . .

)
= x

5
2

(
1− x2

4 + x4

10 − x6

20 +O
(
x7))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 6. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a6(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a6

= −8r3 − 36r2 − 22r + 21
8r3 + 180r2 + 1318r + 3135
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Therefore

lim
r→r2

−8r3 − 36r2 − 22r + 21
8r3 + 180r2 + 1318r + 3135 = lim

r→− 7
2

−8r3 − 36r2 − 22r + 21
8r3 + 180r2 + 1318r + 3135

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n− 7

2

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)4bn−2(n+ r− 2) (n− 3+ r) + 4bn(n+ r) (n+ r− 1)+ 8bn(n+ r) + bn−2 − 35bn = 0

Which for for the root r = −7
2 becomes

(4A)4bn−2

(
n− 11

2

)(
n− 13

2

)
+4bn

(
n− 7

2

)(
n− 9

2

)
+8bn

(
n− 7

2

)
+bn−2−35bn = 0

Solving for bn from the recursive equation (4) gives

bn = −(−5 + 2n+ 2r) bn−2

2n+ 2r + 7 (5)

Which for the root r = −7
2 becomes

bn = −(−12 + 2n) bn−2

2n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −7

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0
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For n = 2, using the above recursive equation gives

b2 = − 2r − 1
11 + 2r

Which for the root r = −7
2 becomes

b2 = 2

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1−2r
11+2r 2

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1−2r
11+2r 2

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
4r2 + 4r − 3

(11 + 2r) (15 + 2r)

Which for the root r = −7
2 becomes

b4 = 1

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2

1−2r
11+2r 2

b3 0 0
b4

4r2+4r−3
4r2+52r+165 1

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1−2r
11+2r 2

b3 0 0
b4

4r2+4r−3
4r2+52r+165 1

b5 0 0

For n = 6, using the above recursive equation gives

b6 = − 8r3 + 36r2 + 22r − 21
(11 + 2r) (15 + 2r) (19 + 2r)

Which for the root r = −7
2 becomes

b6 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2

1−2r
11+2r 2

b3 0 0
b4

4r2+4r−3
4r2+52r+165 1

b5 0 0
b6

−8r3−36r2−22r+21
8r3+180r2+1318r+3135 0

Using the above table, then the solution y2(x) is

y2(x) = x
5
2
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6 + b7x
7. . .

)
= 1 + 2x2 + x4 +O(x7)

x
7
2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
5
2

(
1− x2

4 + x4

10 − x6

20 +O
(
x7))+ c2(1 + 2x2 + x4 +O(x7))

x
7
2

Hence the final solution is

y = yh

= c1x
5
2

(
1− x2

4 + x4

10 − x6

20 +O
(
x7))+ c2(1 + 2x2 + x4 +O(x7))

x
7
2

Summary
The solution(s) found are the following

(1)y = c1x
5
2

(
1− x2

4 + x4

10 − x6

20 +O
(
x7))+ c2(1 + 2x2 + x4 +O(x7))

x
7
2

Verification of solutions

y = c1x
5
2

(
1− x2

4 + x4

10 − x6

20 +O
(
x7))+ c2(1 + 2x2 + x4 +O(x7))

x
7
2

Verified OK.
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16.40.1 Maple step by step solution

Let’s solve
4x2(x2 + 1) y′′ + 8y′x+ (x2 − 35) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2−35

)
y

4x2(x2+1) −
2y′

x(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2y′
x(x2+1) +

(
x2−35

)
y

4x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2
x(x2+1) , P3(x) = x2−35

4x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −35
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2(x2 + 1) y′′ + 8y′x+ (x2 − 35) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(7 + 2r) (−5 + 2r)xr + a1(9 + 2r) (−3 + 2r)x1+r +
(

∞∑
k=2

(
ak(2k + 2r + 7) (2k + 2r − 5) + ak−2(2k + 2r − 5)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(7 + 2r) (−5 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−7

2 ,
5
2

}
• Each term must be 0

a1(9 + 2r) (−3 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

4
((
k + r − 5

2

)
ak−2 + ak

(
k + r + 7

2

)) (
k + r − 5

2

)
= 0

• Shift index using k− >k + 2
4
((
k − 1

2 + r
)
ak + ak+2

(
k + 11

2 + r
)) (

k − 1
2 + r

)
= 0

• Recursion relation that defines series solution to ODE
ak+2 = − (2k+2r−1)ak

2k+11+2r

• Recursion relation for r = −7
2 ; series terminates at k = 4

ak+2 = − (2k−8)ak
2k+4

6921



• Solution for r = −7
2[

y =
∞∑
k=0

akx
k− 7

2 , ak+2 = − (2k−8)ak
2k+4 , a1 = 0

]
• Recursion relation for r = 5

2

ak+2 = − (2k+4)ak
2k+16

• Solution for r = 5
2[

y =
∞∑
k=0

akx
k+ 5

2 , ak+2 = − (2k+4)ak
2k+16 , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k− 7

2

)
+
(

∞∑
k=0

bkx
k+ 5

2

)
, ak+2 = − (2k−8)ak

2k+4 , a1 = 0, bk+2 = − (2k+4)bk
2k+16 , b1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
Order:=6;
dsolve(4*x^2*(1+x^2)*diff(y(x),x$2)+8*x*diff(y(x),x)-(35-x^2)*y(x)=0,y(x),type='series',x=0);� �
y(x) =

c1x
6(1− 1

4x
2 + 1

10x
4 +O(x6)

)
+ c2(−86400− 172800x2 − 86400x4 +O(x6))

x
7
2
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3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 52� �
AsymptoticDSolveValue[4*x^2*(1+x^2)*y''[x]+8*x*y'[x]-(35-x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
2

x3/2 + 1
x7/2 +

√
x

)
+ c2

(
x13/2

10 − x9/2

4 + x5/2
)
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16.41 problem 37
16.41.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6937

Internal problem ID [1453]
Internal file name [OUTPUT/1454_Sunday_June_05_2022_02_18_28_AM_33762512/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 37.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x2 + 1
)
y′′ − x

(
−x2 + 5

)
y′ −

(
25x2 + 7

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x4 + x2) y′′ + (x3 − 5x
)
y′ +

(
−25x2 − 7

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x2 − 5
x (x2 + 1)

q(x) = − 25x2 + 7
x2 (x2 + 1)
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Table 852: Table p(x), q(x) singularites.

p(x) = x2−5
x(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

q(x) = − 25x2+7
x2(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 + 1
)
y′′ +

(
x3 − 5x

)
y′ +

(
−25x2 − 7

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
x3 − 5x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
−25x2 − 7

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+r+2an(n+ r)
)

+
∞∑

n =0

(
−5xn+ran(n+ r)

)
+

∞∑
n =0

(
−25xn+r+2an

)
+

∞∑
n =0

(
−7anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

xn+r+2an(n+ r) =
∞∑
n=2

an−2(n+ r − 2)xn+r

∞∑
n =0

(
−25xn+r+2an

)
=

∞∑
n=2

(
−25an−2x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+ r− 2) (n− 3+ r)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r− 1)
)

+
(

∞∑
n=2

an−2(n+ r − 2)xn+r

)
+

∞∑
n =0

(
−5xn+ran(n+ r)

)
+

∞∑
n =2

(
−25an−2x

n+r
)
+

∞∑
n =0

(
−7anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 5xn+ran(n+ r)− 7anxn+r = 0
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When n = 0 the above becomes

xra0r(−1 + r)− 5xra0r − 7a0xr = 0

Or
(xrr(−1 + r)− 5xrr − 7xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 6r − 7

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − 6r − 7 = 0

Solving for r gives the roots of the indicial equation as

r1 = 7
r2 = −1

Since a0 6= 0 then the indicial equation becomes(
r2 − 6r − 7

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 8 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x7

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x

Or

y1(x) =
∞∑
n=0

anx
n+7

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−1

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r) + an(n+ r) (n+ r − 1)
+ an−2(n+ r − 2)− 5an(n+ r)− 25an−2 − 7an = 0

Solving for an from recursive equation (4) gives

an = −(n+ r + 3) an−2

n+ 1 + r
(4)

Which for the root r = 7 becomes

an = −(n+ 10) an−2

n+ 8 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 7 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
−5− r

r + 3
Which for the root r = 7 becomes

a2 = −6
5

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−5−r
r+3 −6

5
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For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−5−r
r+3 −6

5

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
7 + r

r + 3

Which for the root r = 7 becomes
a4 =

7
5

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−5−r
r+3 −6

5

a3 0 0
a4

7+r
r+3

7
5

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

−5−r
r+3 −6

5

a3 0 0
a4

7+r
r+3

7
5

a5 0 0

For n = 6, using the above recursive equation gives

a6 =
−9− r

r + 3

Which for the root r = 7 becomes
a6 = −8

5
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−5−r
r+3 −6

5

a3 0 0
a4

7+r
r+3

7
5

a5 0 0
a6

−9−r
r+3 −8

5

For n = 7, using the above recursive equation gives

a7 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

−5−r
r+3 −6

5

a3 0 0
a4

7+r
r+3

7
5

a5 0 0
a6

−9−r
r+3 −8

5

a7 0 0

For n = 8, using the above recursive equation gives

a8 =
11 + r

r + 3
Which for the root r = 7 becomes

a8 =
9
5

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

−5−r
r+3 −6

5

a3 0 0
a4

7+r
r+3

7
5

a5 0 0
a6

−9−r
r+3 −8

5

a7 0 0
a8

11+r
r+3

9
5

Using the above table, then the solution y1(x) is

y1(x) = x7(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7 + a8x
8 + a9x

9. . .
)

= x7
(
1− 6x2

5 + 7x4

5 − 8x6

5 + 9x8

5 +O
(
x9))
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Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 8. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a8(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a8

= 11 + r

r + 3
Therefore

lim
r→r2

11 + r

r + 3 = lim
r→−1

11 + r

r + 3
= 5

The limit is 5. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−1

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)bn−2(n+ r − 2) (n− 3 + r) + bn(n+ r) (n+ r − 1)
+ bn−2(n+ r − 2)− 5bn(n+ r)− 25bn−2 − 7bn = 0

Which for for the root r = −1 becomes

(4A)bn−2(n−3) (n−4)+bn(n−1) (n−2)+bn−2(n−3)−5bn(n−1)−25bn−2−7bn = 0

Solving for bn from the recursive equation (4) gives

bn = −(n+ r + 3) bn−2

n+ 1 + r
(5)
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Which for the root r = −1 becomes

bn = −(n+ 2) bn−2

n
(6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −1 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = −5 + r

r + 3

Which for the root r = −1 becomes

b2 = −2

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−5−r
r+3 −2

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−5−r
r+3 −2

b3 0 0
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For n = 4, using the above recursive equation gives

b4 =
7 + r

r + 3
Which for the root r = −1 becomes

b4 = 3

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−5−r
r+3 −2

b3 0 0
b4

7+r
r+3 3

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−5−r
r+3 −2

b3 0 0
b4

7+r
r+3 3

b5 0 0

For n = 6, using the above recursive equation gives

b6 = −9 + r

r + 3
Which for the root r = −1 becomes

b6 = −4

6934



And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−5−r
r+3 −2

b3 0 0
b4

7+r
r+3 3

b5 0 0
b6

−9−r
r+3 −4

For n = 7, using the above recursive equation gives

b7 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

−5−r
r+3 −2

b3 0 0
b4

7+r
r+3 3

b5 0 0
b6

−9−r
r+3 −4

b7 0 0

For n = 8, using the above recursive equation gives

b8 =
11 + r

r + 3
Which for the root r = −1 becomes

b8 = 5

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2

−5−r
r+3 −2

b3 0 0
b4

7+r
r+3 3

b5 0 0
b6

−9−r
r+3 −4

b7 0 0
b8

11+r
r+3 5

Using the above table, then the solution y2(x) is

y2(x) = x7(b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 + b8x
8 + b9x

9. . .
)

= 1− 2x2 + 3x4 − 4x6 + 5x8 +O(x9)
x

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
7
(
1− 6x2

5 +7x4

5 − 8x6

5 +9x8

5 +O
(
x9))+ c2(1− 2x2 + 3x4 − 4x6 + 5x8 +O(x9))

x

Hence the final solution is

y = yh

= c1x
7
(
1− 6x2

5 + 7x4

5 − 8x6

5 + 9x8

5 +O
(
x9))+ c2(1− 2x2 + 3x4 − 4x6 + 5x8 +O(x9))

x

Summary
The solution(s) found are the following

(1)
y = c1x

7
(
1− 6x2

5 + 7x4

5 − 8x6

5 + 9x8

5 +O
(
x9))

+ c2(1− 2x2 + 3x4 − 4x6 + 5x8 +O(x9))
x
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Verification of solutions

y= c1x
7
(
1− 6x2

5 + 7x4

5 − 8x6

5 + 9x8

5 +O
(
x9))+ c2(1− 2x2 + 3x4 − 4x6 + 5x8 +O(x9))

x

Verified OK.

16.41.1 Maple step by step solution

Let’s solve
x2(x2 + 1) y′′ + (x3 − 5x) y′ + (−25x2 − 7) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ =
(
25x2+7

)
y

x2(x2+1) −
(
x2−5

)
y′

x(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
x2−5

)
y′

x(x2+1) −
(
25x2+7

)
y

x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = x2−5
x(x2+1) , P3(x) = − 25x2+7

x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −5

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −7

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(x2 + 1) y′′ + x(x2 − 5) y′ + (−25x2 − 7) y = 0

• Assume series solution for y
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y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(1 + r) (−7 + r)xr + a1(2 + r) (−6 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 1) (k + r − 7) + ak−2(k + 3 + r) (k + r − 7))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + r) (−7 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 7}

• Each term must be 0
a1(2 + r) (−6 + r) = 0

• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
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(k + r − 7) (ak(k + r + 1) + ak−2(k + 3 + r)) = 0
• Shift index using k− >k + 2

(k + r − 5) (ak+2(k + 3 + r) + ak(k + r + 5)) = 0
• Recursion relation that defines series solution to ODE

ak+2 = −ak(k+r+5)
k+3+r

• Recursion relation for r = −1
ak+2 = −ak(k+4)

k+2

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+2 = −ak(k+4)

k+2 , a1 = 0
]

• Recursion relation for r = 7
ak+2 = −ak(k+12)

k+10

• Solution for r = 7[
y =

∞∑
k=0

akx
k+7, ak+2 = −ak(k+12)

k+10 , a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k+7
)
, ak+2 = −ak(4+k)

k+2 , a1 = 0, bk+2 = − bk(k+12)
k+10 , b1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
Order:=6;
dsolve(x^2*(1+x^2)*diff(y(x),x$2)-x*(5-x^2)*diff(y(x),x)-(7+25*x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
7
(
1− 6

5x
2 + 7

5x
4 +O

(
x6))

+ c2(−203212800 + 406425600x2 − 609638400x4 +O(x6))
x

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 40� �
AsymptoticDSolveValue[x^2*(1+x^2)*y''[x]-x*(5-x^2)*y'[x]-(7+25*x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
3x3 − 2x+ 1

x

)
+ c2

(
7x11

5 − 6x9

5 + x7
)
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16.42 problem 38
16.42.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6957

Internal problem ID [1454]
Internal file name [OUTPUT/1455_Sunday_June_05_2022_02_18_31_AM_33591993/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 38.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x2 + 1
)
y′′ + x

(
2x2 + 5

)
y′ − 21y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x4 + x2) y′′ + (2x3 + 5x
)
y′ − 21y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2x2 + 5
x (x2 + 1)

q(x) = − 21
x2 (x2 + 1)
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Table 854: Table p(x), q(x) singularites.

p(x) = 2x2+5
x(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

q(x) = − 21
x2(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 + 1
)
y′′ +

(
2x3 + 5x

)
y′ − 21y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2(x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
2x3 + 5x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
− 21

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+r+2an(n+ r)
)
+
(

∞∑
n=0

5xn+ran(n+ r)
)
+

∞∑
n =0

(
−21anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

2xn+r+2an(n+ r) =
∞∑
n=2

2an−2(n+ r − 2)xn+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

)
+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

2an−2(n+ r− 2)xn+r

)
+
(

∞∑
n=0

5xn+ran(n+ r)
)
+

∞∑
n =0

(
−21anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + 5xn+ran(n+ r)− 21anxn+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + 5xra0r − 21a0xr = 0

Or
(xrr(−1 + r) + 5xrr − 21xr) a0 = 0
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Since a0 6= 0 then the above simplifies to

(r + 7) (r − 3)xr = 0

Since the above is true for all x then the indicial equation becomes

(r + 7) (r − 3) = 0

Solving for r gives the roots of the indicial equation as

r1 = 3
r2 = −7

Since a0 6= 0 then the indicial equation becomes

(r + 7) (r − 3)xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 10 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x3

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x7

Or

y1(x) =
∞∑
n=0

anx
n+3

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n−7

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
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of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r) + an(n+ r) (n+ r − 1)
+ 2an−2(n+ r − 2) + 5an(n+ r)− 21an = 0

Solving for an from recursive equation (4) gives

an = −an−2(n2 + 2nr + r2 − 3n− 3r + 2)
n2 + 2nr + r2 + 4n+ 4r − 21 (4)

Which for the root r = 3 becomes

an = −an−2(n2 + 3n+ 2)
n (n+ 10) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − r(1 + r)
r2 + 8r − 9

Which for the root r = 3 becomes
a2 = −1

2
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − r(1+r)

r2+8r−9 −1
2
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For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − r(1+r)

r2+8r−9 −1
2

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
r(r2 + 5r + 6)

(r + 11) (r2 + 8r − 9)

Which for the root r = 3 becomes
a4 =

15
56

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − r(1+r)

r2+8r−9 −1
2

a3 0 0

a4
r
(
r2+5r+6

)
(r+11)(r2+8r−9)

15
56

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − r(1+r)

r2+8r−9 −1
2

a3 0 0

a4
r
(
r2+5r+6

)
(r+11)(r2+8r−9)

15
56

a5 0 0

For n = 6, using the above recursive equation gives

a6 = − (r + 5) (r + 4) r(r + 2)
(r + 13) (r + 11) (r + 9) (−1 + r)

Which for the root r = 3 becomes

a6 = − 5
32

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − r(1+r)

r2+8r−9 −1
2

a3 0 0

a4
r
(
r2+5r+6

)
(r+11)(r2+8r−9)

15
56

a5 0 0
a6 − (r+5)(r+4)r(r+2)

(r+13)(r+11)(r+9)(−1+r) − 5
32

For n = 7, using the above recursive equation gives

a7 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − r(1+r)

r2+8r−9 −1
2

a3 0 0

a4
r
(
r2+5r+6

)
(r+11)(r2+8r−9)

15
56

a5 0 0
a6 − (r+5)(r+4)r(r+2)

(r+13)(r+11)(r+9)(−1+r) − 5
32

a7 0 0

For n = 8, using the above recursive equation gives

a8 =
(r + 7) (r + 6) (r + 2) r(r + 4)

(r + 15) (−1 + r) (r + 9) (r + 11) (r + 13)

Which for the root r = 3 becomes

a8 =
25
256

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − r(1+r)

r2+8r−9 −1
2

a3 0 0

a4
r
(
r2+5r+6

)
(r+11)(r2+8r−9)

15
56

a5 0 0
a6 − (r+5)(r+4)r(r+2)

(r+13)(r+11)(r+9)(−1+r) − 5
32

a7 0 0
a8

(r+7)(r+6)(r+2)r(r+4)
(r+15)(−1+r)(r+9)(r+11)(r+13)

25
256

For n = 9, using the above recursive equation gives

a9 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − r(1+r)

r2+8r−9 −1
2

a3 0 0

a4
r
(
r2+5r+6

)
(r+11)(r2+8r−9)

15
56

a5 0 0
a6 − (r+5)(r+4)r(r+2)

(r+13)(r+11)(r+9)(−1+r) − 5
32

a7 0 0
a8

(r+7)(r+6)(r+2)r(r+4)
(r+15)(−1+r)(r+9)(r+11)(r+13)

25
256

a9 0 0

For n = 10, using the above recursive equation gives

a10 = − (r + 4) r(r + 2) (r + 6) (r + 8)
(r + 17) (r + 13) (r + 11) (−1 + r) (r + 15)

Which for the root r = 3 becomes

a10 = − 33
512

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 − r(1+r)

r2+8r−9 −1
2

a3 0 0

a4
r
(
r2+5r+6

)
(r+11)(r2+8r−9)

15
56

a5 0 0
a6 − (r+5)(r+4)r(r+2)

(r+13)(r+11)(r+9)(−1+r) − 5
32

a7 0 0
a8

(r+7)(r+6)(r+2)r(r+4)
(r+15)(−1+r)(r+9)(r+11)(r+13)

25
256

a9 0 0
a10 − (r+4)r(r+2)(r+6)(r+8)

(r+17)(r+13)(r+11)(−1+r)(r+15) − 33
512

Using the above table, then the solution y1(x) is

y1(x) = x3(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7 + a8x
8 + a9x

9 + a10x
10 + a11x

11. . .
)

= x3
(
1− x2

2 + 15x4

56 − 5x6

32 + 25x8

256 − 33x10

512 +O
(
x11))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken as
the larger root. Hence for this problem we have N = 10. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a10(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a10

= − (r + 4) r(r + 2) (r + 6) (r + 8)
(r + 17) (r + 13) (r + 11) (−1 + r) (r + 15)

Therefore

lim
r→r2

− (r + 4) r(r + 2) (r + 6) (r + 8)
(r + 17) (r + 13) (r + 11) (−1 + r) (r + 15) = lim

r→−7
− (r + 4) r(r + 2) (r + 6) (r + 8)
(r + 17) (r + 13) (r + 11) (−1 + r) (r + 15)

= 7
1024
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The limit is 7
1024 . Since the limit exists then the log term is not needed and we can set

C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n−7

Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)bn−2(n+ r − 2) (n− 3 + r) + bn(n+ r) (n+ r − 1)
+ 2bn−2(n+ r − 2) + 5bn(n+ r)− 21bn = 0

Which for for the root r = −7 becomes

(4A)bn−2(n− 9) (n− 10) + bn(n− 7) (n− 8) + 2bn−2(n− 9) + 5bn(n− 7)− 21bn = 0

Solving for bn from the recursive equation (4) gives

bn = −bn−2(n2 + 2nr + r2 − 3n− 3r + 2)
n2 + 2nr + r2 + 4n+ 4r − 21 (5)

Which for the root r = −7 becomes

bn = −bn−2(n2 − 17n+ 72)
n2 − 10n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −7 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = − r(1 + r)
r2 + 8r − 9
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Which for the root r = −7 becomes

b2 =
21
8

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − r(1+r)

r2+8r−9
21
8

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − r(1+r)

r2+8r−9
21
8

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
r(r2 + 5r + 6)

(r + 11) (r2 + 8r − 9)
Which for the root r = −7 becomes

b4 =
35
16

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − r(1+r)

r2+8r−9
21
8

b3 0 0

b4
r
(
r2+5r+6

)
(r+11)(r2+8r−9)

35
16
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For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − r(1+r)

r2+8r−9
21
8

b3 0 0

b4
r
(
r2+5r+6

)
(r+11)(r2+8r−9)

35
16

b5 0 0

For n = 6, using the above recursive equation gives

b6 = − (r2 + 9r + 20) r(r + 2)
(r + 13) (r + 11) (r2 + 8r − 9)

Which for the root r = −7 becomes

b6 =
35
64

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − r(1+r)

r2+8r−9
21
8

b3 0 0

b4
r
(
r2+5r+6

)
(r+11)(r2+8r−9)

35
16

b5 0 0
b6 − (r+5)(r+4)r(r+2)

(r+13)(r+11)(r+9)(−1+r)
35
64

For n = 7, using the above recursive equation gives

b7 = 0
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − r(1+r)

r2+8r−9
21
8

b3 0 0

b4
r
(
r2+5r+6

)
(r+11)(r2+8r−9)

35
16

b5 0 0
b6 − (r+5)(r+4)r(r+2)

(r+13)(r+11)(r+9)(−1+r)
35
64

b7 0 0

For n = 8, using the above recursive equation gives

b8 =
(r2 + 13r + 42) (r + 2) r(r + 4)

(r + 15) (r + 13) (r + 11) (r2 + 8r − 9)

Which for the root r = −7 becomes

b8 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − r(1+r)

r2+8r−9
21
8

b3 0 0

b4
r
(
r2+5r+6

)
(r+11)(r2+8r−9)

35
16

b5 0 0
b6 − (r+5)(r+4)r(r+2)

(r+13)(r+11)(r+9)(−1+r)
35
64

b7 0 0
b8

(r+7)(r+6)(r+2)r(r+4)
(r+15)(−1+r)(r+9)(r+11)(r+13) 0
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For n = 9, using the above recursive equation gives

b9 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 − r(1+r)

r2+8r−9
21
8

b3 0 0

b4
r
(
r2+5r+6

)
(r+11)(r2+8r−9)

35
16

b5 0 0
b6 − (r+5)(r+4)r(r+2)

(r+13)(r+11)(r+9)(−1+r)
35
64

b7 0 0
b8

(r+7)(r+6)(r+2)r(r+4)
(r+15)(−1+r)(r+9)(r+11)(r+13) 0

b9 0 0

For n = 10, using the above recursive equation gives

b10 = − (r + 4) r(r + 2) (r + 6) (r + 8)
(r + 17) (r + 13) (r + 11) (−1 + r) (r + 15)

Which for the root r = −7 becomes

b10 =
7

1024

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2 − r(1+r)

r2+8r−9
21
8

b3 0 0

b4
r
(
r2+5r+6

)
(r+11)(r2+8r−9)

35
16

b5 0 0
b6 − (r+5)(r+4)r(r+2)

(r+13)(r+11)(r+9)(−1+r)
35
64

b7 0 0
b8

(r+7)(r+6)(r+2)r(r+4)
(r+15)(−1+r)(r+9)(r+11)(r+13) 0

b9 0 0
b10 − (r+4)r(r+2)(r+6)(r+8)

(r+17)(r+13)(r+11)(−1+r)(r+15)
7

1024

Using the above table, then the solution y2(x) is

y2(x) = x3(b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 + b8x
8 + b9x

9 + b10x
10 + b11x

11. . .
)

=
1 + 21x2

8 + 35x4

16 + 35x6

64 + 7x10

1024 +O(x11)
x7

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3
(
1− x2

2 + 15x4

56 − 5x6

32 + 25x8

256 − 33x10

512 +O
(
x11))

+
c2
(
1 + 21x2

8 + 35x4

16 + 35x6

64 + 7x10

1024 +O(x11)
)

x7

Hence the final solution is

y = yh

= c1x
3
(
1− x2

2 + 15x4

56 − 5x6

32 + 25x8

256 − 33x10

512 +O
(
x11))

+
c2
(
1 + 21x2

8 + 35x4

16 + 35x6

64 + 7x10

1024 +O(x11)
)

x7
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Summary
The solution(s) found are the following

(1)
y = c1x

3
(
1− x2

2 + 15x4

56 − 5x6

32 + 25x8

256 − 33x10

512 +O
(
x11))

+
c2
(
1 + 21x2

8 + 35x4

16 + 35x6

64 + 7x10

1024 +O(x11)
)

x7

Verification of solutions

y = c1x
3
(
1− x2

2 + 15x4

56 − 5x6

32 + 25x8

256 − 33x10

512 +O
(
x11))

+
c2
(
1 + 21x2

8 + 35x4

16 + 35x6

64 + 7x10

1024 +O(x11)
)

x7

Verified OK.

16.42.1 Maple step by step solution

Let’s solve
x2(x2 + 1) y′′ + (2x3 + 5x) y′ − 21y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = 21y
x2(x2+1) −

(
2x2+5

)
y′

x(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
2x2+5

)
y′

x(x2+1) − 21y
x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x2+5
x(x2+1) , P3(x) = − 21

x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 5

◦ x2 · P3(x) is analytic at x = 0
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(x2 · P3(x))
∣∣∣∣
x=0

= −21

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x2(x2 + 1) y′′ + x(2x2 + 5) y′ − 21y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(7 + r) (−3 + r)xr + a1(8 + r) (−2 + r)x1+r +
(

∞∑
k=2

(ak(k + r + 7) (k + r − 3) + ak−2(k − 2 + r) (k + r − 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(7 + r) (−3 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−7, 3}

• Each term must be 0
a1(8 + r) (−2 + r) = 0
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• Solve for the dependent coefficient(s)
a1 = 0

• Each term in the series must be 0, giving the recursion relation
ak(k + r + 7) (k + r − 3) + ak−2(k − 2 + r) (k + r − 1) = 0

• Shift index using k− >k + 2
ak+2(k + 9 + r) (k + r − 1) + ak(k + r) (k + r + 1) = 0

• Recursion relation that defines series solution to ODE
ak+2 = − ak(k+r)(k+r+1)

(k+9+r)(k+r−1)

• Recursion relation for r = −7 ; series terminates at k = 6
ak+2 = −ak(k−7)(k−6)

(k+2)(k−8)

• Solution for r = −7[
y =

∞∑
k=0

akx
k−7, ak+2 = −ak(k−7)(k−6)

(k+2)(k−8) , a1 = 0
]

• Recursion relation for r = 3
ak+2 = −ak(k+3)(k+4)

(k+12)(k+2)

• Solution for r = 3[
y =

∞∑
k=0

akx
k+3, ak+2 = −ak(k+3)(k+4)

(k+12)(k+2) , a1 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k−7
)
+
(

∞∑
k=0

bkx
k+3
)
, ak+2 = −ak(k−7)(k−6)

(k+2)(k−8) , a1 = 0, bk+2 = − bk(k+3)(4+k)
(k+12)(k+2) , b1 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 35� �
Order:=6;
dsolve(x^2*(1+x^2)*diff(y(x),x$2)+x*(5+2*x^2)*diff(y(x),x)-21*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
3
(
1− 1

2x
2 + 15

56x
4 +O

(
x6))

+ c2(−1316818944000− 3456649728000x2 − 2880541440000x4 +O(x6))
x7

3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 46� �
AsymptoticDSolveValue[x^2*(1+x^2)*y''[x]+x*(5+2*x^2)*y'[x]-21*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1
x7 + 21

8x5 + 35
16x3

)
+ c2

(
15x7

56 − x5

2 + x3
)
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16.43 problem 39
16.43.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6974

Internal problem ID [1455]
Internal file name [OUTPUT/1456_Sunday_June_05_2022_02_18_36_AM_19784511/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 39.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(1 + 2x2) y′′ − x
(
x2 + 3

)
y′ − 2yx = 0

With the expansion point for the power series method at x = 0.

The ODE is (
2x4 + x2) y′′ + (−x3 − 3x

)
y′ − 2yx = 0

Or
x
(
2y′′x3 − y′x2 + y′′x− 3y′ − 2y

)
= 0

For x 6= 0 the above simplifies to(
2x3 + x

)
y′′ − y′x2 − 2y − 3y′ = 0

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

2x4 + x2) y′′ + (−x3 − 3x
)
y′ − 2yx = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0
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Where

p(x) = − x2 + 3
x (1 + 2x2)

q(x) = − 2
(1 + 2x2)x

Table 856: Table p(x), q(x) singularites.

p(x) = − x2+3
x(1+2x2)

singularity type
x = 0 “regular”

x = − i
√
2

2 “regular”

x = i
√
2

2 “regular”

q(x) = − 2
(1+2x2)x

singularity type
x = 0 “regular”

x = − i
√
2

2 “regular”

x = i
√
2

2 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points :
[
0,− i

√
2

2 , i
√
2

2 ,∞
]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(1 + 2x2) y′′ + (−x3 − 3x
)
y′ − 2yx = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2
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Substituting the above back into the ode gives

(1)
x2(1 + 2x2)( ∞∑

n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
−x3 − 3x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
− 2
(

∞∑
n=0

anx
n+r

)
x = 0

Which simplifies to

(2A)

(
∞∑
n=0

2xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+r+2an(n+ r)

)
+

∞∑
n =0

(
−3xn+ran(n+ r)

)
+

∞∑
n =0

(
−2x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

2xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

2an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

(
−xn+r+2an(n+ r)

)
=

∞∑
n=2

(
−an−2(n+ r − 2)xn+r

)
∞∑

n =0

(
−2x1+n+ran

)
=

∞∑
n=1

(
−2an−1x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

2an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =2

(
−an−2(n+ r − 2)xn+r

)
+

∞∑
n =0

(
−3xn+ran(n+ r)

)
+

∞∑
n =1

(
−2an−1x

n+r
)
= 0
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The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 3xn+ran(n+ r) = 0

When n = 0 the above becomes

xra0r(−1 + r)− 3xra0r = 0

Or
(xrr(−1 + r)− 3xrr) a0 = 0

Since a0 6= 0 then the above simplifies to

xrr(−4 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−4 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 4
r2 = 0

Since a0 6= 0 then the indicial equation becomes

xrr(−4 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x4

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
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Or

y1(x) =
∞∑
n=0

anx
n+4

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 =
2

r2 − 2r − 3
For 2 ≤ n the recursive equation is

(3)2an−2(n+ r − 2) (n− 3 + r) + an(n+ r) (n+ r − 1)
− an−2(n+ r − 2)− 3an(n+ r)− 2an−1 = 0

Solving for an from recursive equation (4) gives

an = −2n2an−2 + 4nran−2 + 2r2an−2 − 11nan−2 − 11ran−2 + 14an−2 − 2an−1

n2 + 2nr + r2 − 4n− 4r (4)

Which for the root r = 4 becomes

an = −2n2an−2 − 5nan−2 − 2an−2 + 2an−1

n (n+ 4) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 4 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

2
r2−2r−3

2
5

For n = 2, using the above recursive equation gives

a2 =
−2r4 + 7r3 − 9r + 4
(r2 − 2r − 3) (r2 − 4)

Which for the root r = 4 becomes
a2 = −8

5
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And the table now becomes

n an,r an

a0 1 1
a1

2
r2−2r−3

2
5

a2
−2r4+7r3−9r+4
(r2−2r−3)(r2−4) −8

5

For n = 3, using the above recursive equation gives

a3 =
−8r4 + 12r3 + 18r2 − 10r
r6 − 14r4 + 49r2 − 36

Which for the root r = 4 becomes

a3 = − 86
105

And the table now becomes

n an,r an

a0 1 1
a1

2
r2−2r−3

2
5

a2
−2r4+7r3−9r+4
(r2−2r−3)(r2−4) −8

5

a3
−8r4+12r3+18r2−10r
r6−14r4+49r2−36 − 86

105

For n = 4, using the above recursive equation gives

a4 =
4r7 − 51r5 + 5r4 + 117r3 − 33r2 − 54r + 24
r7 + 3r6 − 17r5 − 39r4 + 88r3 + 108r2 − 144r

Which for the root r = 4 becomes

a4 =
445
168

And the table now becomes

n an,r an

a0 1 1
a1

2
r2−2r−3

2
5

a2
−2r4+7r3−9r+4
(r2−2r−3)(r2−4) −8

5

a3
−8r4+12r3+18r2−10r
r6−14r4+49r2−36 − 86

105

a4
4r7−51r5+5r4+117r3−33r2−54r+24

r7+3r6−17r5−39r4+88r3+108r2−144r
445
168
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For n = 5, using the above recursive equation gives

a5 =
24r7 + 72r6 − 126r5 − 378r4 − 72r3 + 114r2 − 42r + 24
(r + 5) (1 + r)2 (−1 + r) (r − 2) (r − 3) (r + 4) (r + 3) r

Which for the root r = 4 becomes

a5 =
9571
6300

And the table now becomes

n an,r an

a0 1 1
a1

2
r2−2r−3

2
5

a2
−2r4+7r3−9r+4
(r2−2r−3)(r2−4) −8

5

a3
−8r4+12r3+18r2−10r
r6−14r4+49r2−36 − 86

105

a4
4r7−51r5+5r4+117r3−33r2−54r+24

r7+3r6−17r5−39r4+88r3+108r2−144r
445
168

a5
24r7+72r6−126r5−378r4−72r3+114r2−42r+24
(r+5)(1+r)2(−1+r)(r−2)(r−3)(r+4)(r+3)r

9571
6300

Using the above table, then the solution y1(x) is

y1(x) = x4(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x4

(
1 + 2x

5 − 8x2

5 − 86x3

105 + 445x4

168 + 9571x5

6300 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 4. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a4(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a4

= 4r7 − 51r5 + 5r4 + 117r3 − 33r2 − 54r + 24
r7 + 3r6 − 17r5 − 39r4 + 88r3 + 108r2 − 144r
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Therefore

lim
r→r2

4r7 − 51r5 + 5r4 + 117r3 − 33r2 − 54r + 24
r7 + 3r6 − 17r5 − 39r4 + 88r3 + 108r2 − 144r = lim

r→0

4r7 − 51r5 + 5r4 + 117r3 − 33r2 − 54r + 24
r7 + 3r6 − 17r5 − 39r4 + 88r3 + 108r2 − 144r

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode x2(1 + 2x2) y′′ + (−x3 − 3x) y′ − 2yx = 0
gives

x2(1 + 2x2)(Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−x3 − 3x

)(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

− 2
(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
x = 0
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Which can be written as

(7)

((
x2(1 + 2x2) y′′1(x) + (−x3 − 3x

)
y′1(x)− 2y1(x)x

)
ln (x)

+ x2(1 + 2x2)(2y′1(x)
x

− y1(x)
x2

)
+ (−x3 − 3x) y1(x)

x

)
C

+ x2(1 + 2x2)( ∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−x3 − 3x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
− 2
(

∞∑
n=0

bnx
n+r2

)
x = 0

But since y1(x) is a solution to the ode, then

x2(1 + 2x2) y′′1(x) + (−x3 − 3x
)
y′1(x)− 2y1(x)x = 0

Eq (7) simplifes to

(8)

(
x2(1 + 2x2)(2y′1(x)

x
− y1(x)

x2

)
+ (−x3 − 3x) y1(x)

x

)
C

+ x2(1 + 2x2)( ∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
−x3 − 3x

)( ∞∑
n=0

bnx
n+r2(n+ r2)

x

)
− 2
(

∞∑
n=0

bnx
n+r2

)
x = 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(
2x3 + x

)( ∞∑
n=0

x−1+n+r1an(n+ r1)
)

+
(
−3x2 − 4

)( ∞∑
n=0

anx
n+r1

))
C

+
(
2x4 + x2)( ∞∑

n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)

+
(
−x3 − 3x

)( ∞∑
n=0

x−1+n+r2bn(n+ r2)
)

− 2
(

∞∑
n=0

bnx
n+r2

)
x = 0
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Since r1 = 4 and r2 = 0 then the above becomes

(10)

(
2
(
2x3 + x

)( ∞∑
n=0

x3+nan(n+ 4)
)

+
(
−3x2 − 4

)( ∞∑
n=0

anx
n+4

))
C

+
(
2x4 + x2)( ∞∑

n=0

xn−2bnn(n− 1)
)

+
(
−x3 − 3x

)( ∞∑
n=0

xn−1bnn

)
− 2
(

∞∑
n=0

bnx
n

)
x = 0

Which simplifies to

(2A)

(
∞∑
n=0

4C xn+6an(n+ 4)
)

+
(

∞∑
n=0

2C xn+4an(n+ 4)
)

+
∞∑

n =0

(
−3C xn+6an

)
+

∞∑
n =0

(
−4C xn+4an

)
+
(

∞∑
n=0

2nxn+2bn(n− 1)
)

+
(

∞∑
n=0

xnbnn(n− 1)
)

+
∞∑

n =0

(
−nxn+2bn

)
+

∞∑
n =0

(−3xnbnn) +
∞∑

n =0

(
−2x1+nbn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =0

4C xn+6an(n+ 4) =
∞∑
n=6

4Can−6(n− 2)xn

∞∑
n =0

2C xn+4an(n+ 4) =
∞∑
n=4

2Can−4nxn

∞∑
n =0

(
−3C xn+6an

)
=

∞∑
n=6

(−3Can−6x
n)

∞∑
n =0

(
−4C xn+4an

)
=

∞∑
n=4

(−4Can−4x
n)

∞∑
n =0

2nxn+2bn(n− 1) =
∞∑
n=2

2(n− 2) bn−2(n− 3)xn
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∞∑
n =0

(
−nxn+2bn

)
=

∞∑
n=2

(−(n− 2) bn−2x
n)

∞∑
n =0

(
−2x1+nbn

)
=

∞∑
n=1

(−2bn−1x
n)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n.

(2B)

(
∞∑
n=6

4Can−6(n− 2)xn

)
+
(

∞∑
n=4

2Can−4nxn

)
+

∞∑
n =6

(−3Can−6x
n)

+
∞∑

n =4

(−4Can−4x
n) +

(
∞∑
n=2

2(n− 2) bn−2(n− 3)xn

)

+
(

∞∑
n=0

xnbnn(n− 1)
)

+
∞∑

n =2

(−(n− 2) bn−2x
n)

+
∞∑

n =0

(−3xnbnn) +
∞∑

n =1

(−2bn−1x
n) = 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−3b1 − 2b0 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b1 − 2 = 0

Solving the above for b1 gives
b1 = −2

3
For n = 2, Eq (2B) gives

−4b2 − 2b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−4b2 +
4
3 = 0

Solving the above for b2 gives
b2 =

1
3
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For n = 3, Eq (2B) gives
−3b3 − b1 − 2b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−3b3 = 0

Solving the above for b3 gives
b3 = 0

For n = N , where N = 4 which is the difference between the two roots, we are free to
choose b4 = 0. Hence for n = 4, Eq (2B) gives

4C + 2
3 = 0

Which is solved for C. Solving for C gives

C = −1
6

For n = 5, Eq (2B) gives
6Ca1 + 9b3 − 2b4 + 5b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

5b5 −
2
5 = 0

Solving the above for b5 gives
b5 =

2
25

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = −1
6 and all bn, then the second solution becomes

y2(x) = −1
6

(
x4
(
1 + 2x

5 − 8x2

5 − 86x3

105 + 445x4

168 + 9571x5

6300 +O
(
x6))) ln (x)

+ 1− 2x
3 + x2

3 + 2x5

25 +O
(
x6)
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
4
(
1 + 2x

5 − 8x2

5 − 86x3

105 + 445x4

168 + 9571x5

6300 +O
(
x6))

+ c2

(
−1
6

(
x4
(
1 + 2x

5 − 8x2

5 − 86x3

105 + 445x4

168 + 9571x5

6300 +O
(
x6))) ln (x) + 1

− 2x
3 + x2

3 + 2x5

25 +O
(
x6))

Hence the final solution is

y = yh

= c1x
4
(
1 + 2x

5 − 8x2

5 − 86x3

105 + 445x4

168 + 9571x5

6300 +O
(
x6))

+ c2

−
x4
(
1 + 2x

5 − 8x2

5 − 86x3

105 + 445x4

168 + 9571x5

6300 +O(x6)
)
ln (x)

6 + 1− 2x
3 + x2

3

+ 2x5

25 +O
(
x6)

Summary
The solution(s) found are the following

(1)

y = c1x
4
(
1 + 2x

5 − 8x2

5 − 86x3

105 + 445x4

168 + 9571x5

6300 +O
(
x6))

+ c2

−
x4
(
1 + 2x

5 − 8x2

5 − 86x3

105 + 445x4

168 + 9571x5

6300 +O(x6)
)
ln (x)

6 + 1− 2x
3

+ x2

3 + 2x5

25 +O
(
x6)
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Verification of solutions

y = c1x
4
(
1 + 2x

5 − 8x2

5 − 86x3

105 + 445x4

168 + 9571x5

6300 +O
(
x6))

+ c2

−
x4
(
1 + 2x

5 − 8x2

5 − 86x3

105 + 445x4

168 + 9571x5

6300 +O(x6)
)
ln (x)

6 + 1− 2x
3 + x2

3

+ 2x5

25 +O
(
x6)

Verified OK.

16.43.1 Maple step by step solution

Let’s solve
x2(1 + 2x2) y′′ + (−x3 − 3x) y′ − 2yx = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = 2y
x(1+2x2) +

(
x2+3

)
y′

x(1+2x2)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ −
(
x2+3

)
y′

x(1+2x2) −
2y

x(1+2x2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = − x2+3
x(1+2x2) , P3(x) = − 2

(1+2x2)x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −3

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
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x0 = 0
• Multiply by denominators

x(1 + 2x2) y′′ + (−x2 − 3) y′ − 2y = 0
• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..2

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(−4 + r)x−1+r + (a1(1 + r) (−3 + r)− 2a0)xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (k − 3 + r)− 2ak + ak−1(k + r − 1) (2k − 5 + 2r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−4 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 4}

• Each term must be 0
a1(1 + r) (−3 + r)− 2a0 = 0

• Each term in the series must be 0, giving the recursion relation
2
(
k + r − 5

2

)
(k + r − 1) ak−1 + ak+1(k + 1 + r) (k − 3 + r)− 2ak = 0

• Shift index using k− >k + 1
2
(
k − 3

2 + r
)
(k + r) ak + ak+2(k + 2 + r) (k − 2 + r)− 2ak+1 = 0
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• Recursion relation that defines series solution to ODE

ak+2 = −2k2ak+4krak+2r2ak−3kak−3rak−2ak+1
(k+2+r)(k−2+r)

• Recursion relation for r = 0

ak+2 = −2k2ak−3kak−2ak+1
(k+2)(k−2)

• Series not valid for r = 0 , division by 0 in the recursion relation at k = 2

ak+2 = −2k2ak−3kak−2ak+1
(k+2)(k−2)

• Recursion relation for r = 4

ak+2 = −2k2ak+13kak+20ak−2ak+1
(k+6)(k+2)

• Solution for r = 4[
y =

∞∑
k=0

akx
k+4, ak+2 = −2k2ak+13kak+20ak−2ak+1

(k+6)(k+2) , 5a1 − 2a0 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <> 0, g <> 0, c = 0 `� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 54� �
Order:=6;
dsolve(x^2*(1+2*x^2)*diff(y(x),x$2)-x*(3+x^2)*diff(y(x),x)-2*x*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
4
(
1 + 2

5x− 8
5x

2 − 86
105x

3 + 445
168x

4 + 9571
6300x

5 +O
(
x6))

+ c2

(
ln (x)

(
24x4 + 48

5 x5 +O
(
x6))

+
(
−144 + 96x− 48x2 + 210x4 + 1812

25 x5 +O
(
x6)))
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3 Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 71� �
AsymptoticDSolveValue[x^2*(1+2*x^2)*y''[x]-x*(3+x^2)*y'[x]-2*x*y[x]==0,y[x],{x,0,5}]� �
y(x)→ c1

(
1
12
(
3x4+4x2−8x+12

)
− 1
6x

4 log(x)
)
+c2

(
445x8

168 − 86x7

105 − 8x6

5 + 2x5

5 +x4
)
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16.44 problem 40
16.44.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6989

Internal problem ID [1456]
Internal file name [OUTPUT/1457_Sunday_June_05_2022_02_18_40_AM_84123780/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF
FROBENIUS III. Exercises 7.7. Page 389
Problem number: 40.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

4x2(x2 + 1
)
y′′ + 4x

(
x2 + 2

)
y′ −

(
x2 + 15

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

4x4 + 4x2) y′′ + (4x3 + 8x
)
y′ +

(
−x2 − 15

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x2 + 2
x (x2 + 1)

q(x) = − x2 + 15
4x2 (x2 + 1)
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Table 858: Table p(x), q(x) singularites.

p(x) = x2+2
x(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

q(x) = − x2+15
4x2(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4x2(x2 + 1
)
y′′ +

(
4x3 + 8x

)
y′ +

(
−x2 − 15

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
4x2(x2 + 1

)( ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+
(
4x3 + 8x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
+
(
−x2 − 15

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

4xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

4xn+r+2an(n+ r)
)

+
(

∞∑
n=0

8xn+ran(n+ r)
)

+
∞∑

n =0

(
−xn+r+2an

)
+

∞∑
n =0

(
−15anxn+r

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

4xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

4an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

4xn+r+2an(n+ r) =
∞∑
n=2

4an−2(n+ r − 2)xn+r

∞∑
n =0

(
−xn+r+2an

)
=

∞∑
n=2

(
−an−2x

n+r
)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

4an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=0

4xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=2

4an−2(n+ r − 2)xn+r

)

+
(

∞∑
n=0

8xn+ran(n+ r)
)

+
∞∑

n =2

(
−an−2x

n+r
)
+

∞∑
n =0

(
−15anxn+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

4xn+ran(n+ r) (n+ r − 1) + 8xn+ran(n+ r)− 15anxn+r = 0
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When n = 0 the above becomes

4xra0r(−1 + r) + 8xra0r − 15a0xr = 0

Or
(4xrr(−1 + r) + 8xrr − 15xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
4r2 + 4r − 15

)
xr = 0

Since the above is true for all x then the indicial equation becomes

4r2 + 4r − 15 = 0

Solving for r gives the roots of the indicial equation as

r1 =
3
2

r2 = −5
2

Since a0 6= 0 then the indicial equation becomes(
4r2 + 4r − 15

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 4 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x
3
2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

x
5
2

Or

y1(x) =
∞∑
n=0

anx
n+ 3

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n− 5

2

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)4an−2(n+ r − 2) (n− 3 + r) + 4an(n+ r) (n+ r − 1)
+ 4an−2(n+ r − 2) + 8an(n+ r)− an−2 − 15an = 0

Solving for an from recursive equation (4) gives

an = −(2n+ 2r − 5) an−2

2n+ 2r + 5 (4)

Which for the root r = 3
2 becomes

an = −(n− 1) an−2

n+ 4 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 =
1− 2r
9 + 2r

Which for the root r = 3
2 becomes

a2 = −1
6

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1−2r
9+2r −1

6
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For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1−2r
9+2r −1

6

a3 0 0

For n = 4, using the above recursive equation gives

a4 =
4r2 + 4r − 3

4r2 + 44r + 117

Which for the root r = 3
2 becomes

a4 =
1
16

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2

1−2r
9+2r −1

6

a3 0 0
a4

4r2+4r−3
4r2+44r+117

1
16

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2

1−2r
9+2r −1

6

a3 0 0
a4

4r2+4r−3
4r2+44r+117

1
16

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
3
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
3
2

(
1− x2

6 + x4

16 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 4. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a4(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a4

= 4r2 + 4r − 3
4r2 + 44r + 117

Therefore

lim
r→r2

4r2 + 4r − 3
4r2 + 44r + 117 = lim

r→− 5
2

4r2 + 4r − 3
4r2 + 44r + 117

= 3
8

The limit is 3
8 . Since the limit exists then the log term is not needed and we can set

C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n− 5

2
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Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0

For 2 ≤ n the recursive equation is

(4)4bn−2(n+ r − 2) (n− 3 + r) + 4bn(n+ r) (n+ r − 1)
+ 4bn−2(n+ r − 2) + 8bn(n+ r)− bn−2 − 15bn = 0

Which for for the root r = −5
2 becomes

(4A)4bn−2

(
n− 9

2

)(
n− 11

2

)
+ 4bn

(
n− 5

2

)(
n− 7

2

)
+ 4bn−2

(
n− 9

2

)
+ 8bn

(
n− 5

2

)
− bn−2 − 15bn = 0

Solving for bn from the recursive equation (4) gives

bn = −(2n+ 2r − 5) bn−2

2n+ 2r + 5 (5)

Which for the root r = −5
2 becomes

bn = −(2n− 10) bn−2

2n (6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = −5

2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = −2r − 1
9 + 2r

Which for the root r = −5
2 becomes

b2 =
3
2
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1−2r
9+2r

3
2

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1−2r
9+2r

3
2

b3 0 0

For n = 4, using the above recursive equation gives

b4 =
4r2 + 4r − 3

(9 + 2r) (13 + 2r)

Which for the root r = −5
2 becomes

b4 =
3
8

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1−2r
9+2r

3
2

b3 0 0
b4

4r2+4r−3
4r2+44r+117

3
8
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For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2

1−2r
9+2r

3
2

b3 0 0
b4

4r2+4r−3
4r2+44r+117

3
8

b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x
3
2
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

=
1 + 3x2

2 + 3x4

8 +O(x6)
x

5
2

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3
2

(
1− x2

6 + x4

16 +O
(
x6))+

c2
(
1 + 3x2

2 + 3x4

8 +O(x6)
)

x
5
2

Hence the final solution is

y = yh

= c1x
3
2

(
1− x2

6 + x4

16 +O
(
x6))+

c2
(
1 + 3x2

2 + 3x4

8 +O(x6)
)

x
5
2

Summary
The solution(s) found are the following

(1)y = c1x
3
2

(
1− x2

6 + x4

16 +O
(
x6))+

c2
(
1 + 3x2

2 + 3x4

8 +O(x6)
)

x
5
2
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Verification of solutions

y = c1x
3
2

(
1− x2

6 + x4

16 +O
(
x6))+

c2
(
1 + 3x2

2 + 3x4

8 +O(x6)
)

x
5
2

Verified OK.

16.44.1 Maple step by step solution

Let’s solve
4x2(x2 + 1) y′′ + (4x3 + 8x) y′ + (−x2 − 15) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
x2+2

)
y′

x(x2+1) +
(
x2+15

)
y

4x2(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ +
(
x2+2

)
y′

x(x2+1) −
(
x2+15

)
y

4x2(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = x2+2
x(x2+1) , P3(x) = − x2+15

4x2(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −15
4

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2(x2 + 1) y′′ + 4x(x2 + 2) y′ + (−x2 − 15) y = 0

• Assume series solution for y
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y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert xm · y′ to series expansion form = 1..3

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 2..4

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0(5 + 2r) (−3 + 2r)xr + a1(7 + 2r) (−1 + 2r)x1+r +
(

∞∑
k=2

(ak(2k + 2r + 5) (2k + 2r − 3) + ak−2(2k + 2r − 3) (2k − 5 + 2r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(5 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−5

2 ,
3
2

}
• Each term must be 0

a1(7 + 2r) (−1 + 2r) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation
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4
(
k + r − 3

2

) ((
k + r − 5

2

)
ak−2 + ak

(
k + r + 5

2

))
= 0

• Shift index using k− >k + 2
4
(
k + 1

2 + r
) ((

k − 1
2 + r

)
ak + ak+2

(
k + 9

2 + r
))

= 0

• Recursion relation that defines series solution to ODE
ak+2 = − (2k+2r−1)ak

2k+9+2r

• Recursion relation for r = −5
2

ak+2 = − (2k−6)ak
2k+4

• Solution for r = −5
2[

y =
∞∑
k=0

akx
k− 5

2 , ak+2 = − (2k−6)ak
2k+4 , a1 = 0

]
• Recursion relation for r = 3

2

ak+2 = − (2k+2)ak
2k+12

• Solution for r = 3
2[

y =
∞∑
k=0

akx
k+ 3

2 , ak+2 = − (2k+2)ak
2k+12 , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k− 5

2

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+2 = − (2k−6)ak

2k+4 , a1 = 0, bk+2 = − (2k+2)bk
2k+12 , b1 = 0

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
Order:=6;
dsolve(4*x^2*(1+x^2)*diff(y(x),x$2)+4*x*(2+x^2)*diff(y(x),x)-(15+x^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
c1x

4(1− 1
6x

2 + 1
16x

4 +O(x6)
)
+ c2(−144− 216x2 − 54x4 +O(x6))
x

5
2

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 58� �
AsymptoticDSolveValue[4*x^2*(1+x^2)*y''[x]+4*x*(2+x^2)*y'[x]-(15+x^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
3x3/2

8 + 1
x5/2 + 3

2
√
x

)
+ c2

(
x11/2

16 − x7/2

6 + x3/2
)
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17.1 problem section 9.1, problem 2
17.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 6997

Internal problem ID [1457]
Internal file name [OUTPUT/1458_Sunday_June_05_2022_02_18_44_AM_72604641/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.1. Page 471
Problem number: section 9.1, problem 2.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_con-
stant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order , _exact , _linear , _homogeneous ]]

x3y′′′ − x2y′′ − 2y′x+ 6y = 0

With initial conditions

[y(−1) = −4, y′(−1) = −14, y′′(−1) = −20]

This is Euler ODE of higher order. Let y = xλ. Hence

y′ = λxλ−1

y′′ = λ(λ− 1)xλ−2

y′′′ = λ(λ− 1) (λ− 2)xλ−3

Substituting these back into

x3y′′′ − x2y′′ − 2y′x+ 6y = 0

gives
−2xλxλ−1 − x2λ(λ− 1)xλ−2 + x3λ(λ− 1) (λ− 2)xλ−3 + 6xλ = 0

Which simplifies to

−2λxλ − λ(λ− 1)xλ + λ(λ− 1) (λ− 2)xλ + 6xλ = 0
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And since xλ 6= 0 then dividing through by xλ, the above becomes

−2λ− λ(λ− 1) + λ(λ− 1) (λ− 2) + 6 = 0

Simplifying gives the characteristic equation as

λ3 − 4λ2 + λ+ 6 = 0

Solving the above gives the following roots

λ1 = 2
λ2 = 3
λ3 = −1

This table summarises the result

root multiplicity type of root

−1 1 real root

2 1 real root

3 1 real root

The solution is generated by going over the above table. For each real root λ of multiplic-
ity one generates a c1x

λ basis solution. Each real root of multiplicty two, generates c1xλ

and c2x
λ ln (x) basis solutions. Each real root of multiplicty three, generates c1xλ and

c2x
λ ln (x) and c3x

λ ln (x)2 basis solutions, and so on. Each complex root α±iβ of multi-
plicity one generates xα(c1 cos(β ln (x)) + c2 sin(β ln (x))) basis solutions. And each com-
plex root α± iβ of multiplicity two generates ln (x)xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And each complex root α±iβ of multiplicity three generates ln (x)2 xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And so on. Using the above show that the solution is

y = c1
x

+ c2x
2 + c3x

3

The fundamental set of solutions for the homogeneous solution are the following

y1 =
1
x

y2 = x2

y3 = x3

Initial conditions are used to solve for the constants of integration.
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Looking at the above solution

y = c1
x

+ c2x
2 + c3x

3 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −4 and
x = −1 in the above gives

−4 = −c1 + c2 − c3 (1A)

Taking derivative of the solution gives

y′ = − c1
x2 + 2c2x+ 3c3x2

substituting y′ = −14 and x = −1 in the above gives

−14 = −c1 − 2c2 + 3c3 (2A)

Taking two derivatives of the solution gives

y′′ = 2c1
x3 + 2c2 + 6c3x

substituting y′′ = −20 and x = −1 in the above gives

−20 = −2c1 + 2c2 − 6c3 (3A)

Equations {1A,2A,3A} are now solved for {c1, c2, c3}. Solving for the constants gives

c1 =
25
3

c2 =
22
3

c3 = 3

Substituting these values back in above solution results in

y = 9x4 + 22x3 + 25
3x

Summary
The solution(s) found are the following

(1)y = 9x4 + 22x3 + 25
3x
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Figure 537: Solution plot

Verification of solutions

y = 9x4 + 22x3 + 25
3x

Verified OK.

17.1.1 Maple step by step solution

Let’s solve[
x3y′′′ − x2y′′ − 2y′x+ 6y = 0, y(−1) = −4, y′

∣∣∣{x=−1}
= −14, y′′

∣∣∣{x=−1}
= −20

]
• Highest derivative means the order of the ODE is 3

y′′′

• Isolate 3rd derivative
y′′′ = − 6y

x3 + y′′x+2y′
x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ − y′′

x
− 2y′

x2 + 6y
x3 = 0

• Multiply by denominators of the ODE
x3y′′′ − x2y′′ − 2y′x+ 6y = 0
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• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

y′ =
(

d
dt
y(t)

)
t′(x)

◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

◦ Calculate the 3rd derivative of y with respect to x , using the chain rule

y′′′ =
(

d3

dt3
y(t)

)
t′(x)3 + 3t′(x) t′′(x)

(
d2

dt2
y(t)

)
+ t′′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′′ =
d3
dt3 y(t)

x3 −
3
(

d2
dt2 y(t)

)
x3 +

2
(

d
dt
y(t)

)
x3

Substitute the change of variables back into the ODE

x3
(

d3
dt3 y(t)

x3 −
3
(

d2
dt2 y(t)

)
x3 +

2
(

d
dt
y(t)

)
x3

)
− x2

(
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
− 2 d

dt
y(t) + 6y(t) = 0

• Simplify
d3

dt3
y(t)− 4 d2

dt2
y(t) + d

dt
y(t) + 6y(t) = 0

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(t)

y1(t) = y(t)
◦ Define new variable y2(t)

y2(t) = d
dt
y(t)

◦ Define new variable y3(t)
y3(t) = d2

dt2
y(t)

◦ Isolate for d
dt
y3(t) using original ODE
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d
dt
y3(t) = 4y3(t)− y2(t)− 6y1(t)

Convert linear ODE into a system of first order ODEs[
y2(t) = d

dt
y1(t) , y3(t) = d

dt
y2(t) , d

dt
y3(t) = 4y3(t)− y2(t)− 6y1(t)

]
• Define vector

→
y (t) =


y1(t)
y2(t)
y3(t)


• System to solve

d
dt

→
y (t) =


0 1 0
0 0 1
−6 −1 4

 · →y (t)

• Define the coefficient matrix

A =


0 1 0
0 0 1
−6 −1 4


• Rewrite the system as

d
dt

→
y (t) = A · →y (t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


1
−1
1


 ,

2,


1
4
1
2

1


 ,

3,


1
9
1
3

1





• Consider eigenpair−1,


1
−1
1




• Solution to homogeneous system from eigenpair
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→
y 1 = e−t ·


1
−1
1


• Consider eigenpair2,


1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 2 = e2t ·


1
4
1
2

1


• Consider eigenpair3,


1
9
1
3

1




• Solution to homogeneous system from eigenpair

→
y 3 = e3t ·


1
9
1
3

1


• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3

• Substitute solutions into the general solution

→
y = c1e−t ·


1
−1
1

+ c2e2t ·


1
4
1
2

1

+ c3e3t ·


1
9
1
3

1


• First component of the vector is the solution to the ODE

y(t) = c1e−t + c2e2t
4 + c3e3t

9
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• Change variables back using t = ln (x)
y = c1

x
+ c2x2

4 + c3x3

9

• Use the initial condition y(−1) = −4
−4 = −c1 + c2

4 − c3
9

• Calculate the 1st derivative of the solution
y′ = − c1

x2 + c2x
2 + c3x2

3

• Use the initial condition y′
∣∣∣{x=−1}

= −14

−14 = −c1 − c2
2 + c3

3

• Calculate the 2nd derivative of the solution
y′′ = 2c1

x3 + c2
2 + 2c3x

3

• Use the initial condition y′′
∣∣∣{x=−1}

= −20

−20 = −2c1 + c2
2 − 2c3

3

• Solve for the unknown coefficients{
c1 = 25

3 , c2 =
88
3 , c3 = 27, x = x

}
• Solution to the IVP

y = 25
3x + 22x2

3 + 3x3

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
dsolve([x^3*diff(y(x),x$3)-x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+6*y(x)=0,y(-1) = -4, D(y)(-1) = -14, (D@@2)(y)(-1) = -20],y(x), singsol=all)� �

y(x) = 3x3 + 22x2

3 + 25
3x

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 24� �
DSolve[{x^3*y'''[x]-x^2*y''[x]-2*x*y'[x]+6*y[x]==0,{y[-1]==-4,y'[-1]==-14,y''[-1]==-20}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 9x4 + 22x3 + 25
3x
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17.2 problem section 9.1, problem 3
17.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7006

Internal problem ID [1458]
Internal file name [OUTPUT/1459_Sunday_June_05_2022_02_18_45_AM_77226135/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.1. Page 471
Problem number: section 9.1, problem 3.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

y′′′′ + y′′′ − 7y′′ − y′ + 6y = 0

With initial conditions

[y(0) = 5, y′(0) = −6, y′′(0) = 10, y′′′(0) = −36]

The characteristic equation is

λ4 + λ3 − 7λ2 − λ+ 6 = 0

The roots of the above equation are

λ1 = 1
λ2 = 2
λ3 = −3
λ4 = −1

Therefore the homogeneous solution is

yh(x) = c1e−x + c2ex + e−3xc3 + e2xc4
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The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = ex

y3 = e−3x

y4 = e2x

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e−x + c2ex + e−3xc3 + e2xc4 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 5 and x = 0
in the above gives

5 = c1 + c2 + c3 + c4 (1A)

Taking derivative of the solution gives

y′ = −c1e−x + c2ex − 3 e−3xc3 + 2 e2xc4

substituting y′ = −6 and x = 0 in the above gives

−6 = −c1 + c2 − 3c3 + 2c4 (2A)

Taking two derivatives of the solution gives

y′′ = c1e−x + c2ex + 9 e−3xc3 + 4 e2xc4

substituting y′′ = 10 and x = 0 in the above gives

10 = c1 + c2 + 9c3 + 4c4 (3A)

Taking three derivatives of the solution gives

y′′′ = −c1e−x + c2ex − 27 e−3xc3 + 8 e2xc4

substituting y′′′ = −36 and x = 0 in the above gives

−36 = −c1 + c2 − 27c3 + 8c4 (4A)

7004



Equations {1A,2A,3A,4A} are now solved for {c1, c2, c3, c4}. Solving for the constants
gives

c1 = 3
c2 = 2
c3 = 1
c4 = −1

Substituting these values back in above solution results in

y = 3 e−x + 2 ex + e−3x − e2x

Summary
The solution(s) found are the following

(1)y = 3 e−x + 2 ex + e−3x − e2x

Figure 538: Solution plot

Verification of solutions

y = 3 e−x + 2 ex + e−3x − e2x

Verified OK.
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17.2.1 Maple step by step solution

Let’s solve[
y′′′′ + y′′′ − 7y′′ − y′ + 6y = 0, y(0) = 5, y′

∣∣∣{x=0}
= −6, y′′

∣∣∣{x=0}
= 10, y′′′

∣∣∣{x=0}
= −36

]
• Highest derivative means the order of the ODE is 4

y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = −y4(x) + 7y3(x) + y2(x)− 6y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = −y4(x) + 7y3(x) + y2(x)− 6y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
−6 1 7 −1

 · →y (x)
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• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
−6 1 7 −1


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−3,


− 1

27
1
9

−1
3

1



 ,

−1,


−1
1
−1
1



 ,

1,


1
1
1
1



 ,

2,


1
8
1
4
1
2

1






• Consider eigenpair−3,


− 1

27
1
9

−1
3

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−3x ·


− 1

27
1
9

−1
3

1


• Consider eigenpair−1,


−1
1
−1
1
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• Solution to homogeneous system from eigenpair

→
y 2 = e−x ·


−1
1
−1
1


• Consider eigenpair1,


1
1
1
1




• Solution to homogeneous system from eigenpair

→
y 3 = ex ·


1
1
1
1


• Consider eigenpair2,


1
8
1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 4 = e2x ·


1
8
1
4
1
2

1


• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 + c4

→
y 4

• Substitute solutions into the general solution
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→
y = c1e−3x ·


− 1

27
1
9

−1
3

1

+ c2e−x ·


−1
1
−1
1

+ c3ex ·


1
1
1
1

+ e2xc4 ·


1
8
1
4
1
2

1


• First component of the vector is the solution to the ODE

y = −

(
27c2e2x−27 e4xc3− 27 e5xc4

8 +c1

)
e−3x

27

• Use the initial condition y(0) = 5
5 = −c2 + c3 + c4

8 − c1
27

• Calculate the 1st derivative of the solution

y′ = −

(
54c2e2x−108 e4xc3− 135 e5xc4

8

)
e−3x

27 +

(
27c2e2x−27 e4xc3− 27 e5xc4

8 +c1

)
e−3x

9

• Use the initial condition y′
∣∣∣{x=0}

= −6

−6 = c2 + c3 + c4
4 + c1

9

• Calculate the 2nd derivative of the solution

y′′ = −

(
108c2e2x−432 e4xc3− 675 e5xc4

8

)
e−3x

27 +
2
(
54c2e2x−108 e4xc3− 135 e5xc4

8

)
e−3x

9 −

(
27c2e2x−27 e4xc3− 27 e5xc4

8 +c1

)
e−3x

3

• Use the initial condition y′′
∣∣∣{x=0}

= 10

10 = −c2 + c3 + c4
2 − c1

3

• Calculate the 3rd derivative of the solution

y′′′ = −

(
216c2e2x−1728 e4xc3− 3375 e5xc4

8

)
e−3x

27 +

(
108c2e2x−432 e4xc3− 675 e5xc4

8

)
e−3x

3 −
(
54c2e2x − 108 e4xc3 − 135 e5xc4

8

)
e−3x +

(
27c2e2x − 27 e4xc3 − 27 e5xc4

8 + c1
)
e−3x

• Use the initial condition y′′′
∣∣∣{x=0}

= −36

−36 = c1 + c2 + c3 + c4

• Solve for the unknown coefficients
{c1 = −27, c2 = −3, c3 = 2, c4 = −8}

• Solution to the IVP
y = (−e5x + 2 e4x + 3 e2x + 1) e−3x
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 25� �
dsolve([diff(y(x),x$4)+diff(y(x),x$3)-7*diff(y(x),x$2)-diff(y(x),x)+6*y(x)=0,y(0) = 5, D(y)(0) = -6, (D@@2)(y)(0) = 10, (D@@3)(y)(0) = -36],y(x), singsol=all)� �

y(x) =
(
−e5x + 2 e4x + 3 e2x + 1

)
e−3x

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 30� �
DSolve[{y''''[x]+y'''[x]-7*y''[x]-y'[x]+6*y[x]==0,{y[0]==5,y'[0]==-6,y''[0]==10,y'''[0]==-36}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−3x + 3e−x + 2ex − e2x
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17.3 problem section 9.1, problem 5(b) 1
17.3.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7014

Internal problem ID [1459]
Internal file name [OUTPUT/1460_Sunday_June_05_2022_02_18_47_AM_32992798/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.1. Page 471
Problem number: section 9.1, problem 5(b) 1.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_con-
stant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order , _exact , _linear , _homogeneous ]]

x3y′′′ − x2y′′ − 2y′x+ 6y = 0

With initial conditions

[y(1) = 1, y′(1) = 0, y′′(1) = 0]

This is Euler ODE of higher order. Let y = xλ. Hence

y′ = λxλ−1

y′′ = λ(λ− 1)xλ−2

y′′′ = λ(λ− 1) (λ− 2)xλ−3

Substituting these back into

x3y′′′ − x2y′′ − 2y′x+ 6y = 0

gives
−2xλxλ−1 − x2λ(λ− 1)xλ−2 + x3λ(λ− 1) (λ− 2)xλ−3 + 6xλ = 0

Which simplifies to

−2λxλ − λ(λ− 1)xλ + λ(λ− 1) (λ− 2)xλ + 6xλ = 0
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And since xλ 6= 0 then dividing through by xλ, the above becomes

−2λ− λ(λ− 1) + λ(λ− 1) (λ− 2) + 6 = 0

Simplifying gives the characteristic equation as

λ3 − 4λ2 + λ+ 6 = 0

Solving the above gives the following roots

λ1 = 2
λ2 = 3
λ3 = −1

This table summarises the result

root multiplicity type of root

−1 1 real root

2 1 real root

3 1 real root

The solution is generated by going over the above table. For each real root λ of multiplic-
ity one generates a c1x

λ basis solution. Each real root of multiplicty two, generates c1xλ

and c2x
λ ln (x) basis solutions. Each real root of multiplicty three, generates c1xλ and

c2x
λ ln (x) and c3x

λ ln (x)2 basis solutions, and so on. Each complex root α±iβ of multi-
plicity one generates xα(c1 cos(β ln (x)) + c2 sin(β ln (x))) basis solutions. And each com-
plex root α± iβ of multiplicity two generates ln (x)xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And each complex root α±iβ of multiplicity three generates ln (x)2 xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And so on. Using the above show that the solution is

y = c1
x

+ c2x
2 + c3x

3

The fundamental set of solutions for the homogeneous solution are the following

y1 =
1
x

y2 = x2

y3 = x3

Initial conditions are used to solve for the constants of integration.
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Looking at the above solution

y = c1
x

+ c2x
2 + c3x

3 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1 and x = 1
in the above gives

1 = c1 + c2 + c3 (1A)

Taking derivative of the solution gives

y′ = − c1
x2 + 2c2x+ 3c3x2

substituting y′ = 0 and x = 1 in the above gives

0 = −c1 + 2c2 + 3c3 (2A)

Taking two derivatives of the solution gives

y′′ = 2c1
x3 + 2c2 + 6c3x

substituting y′′ = 0 and x = 1 in the above gives

0 = 2c1 + 2c2 + 6c3 (3A)

Equations {1A,2A,3A} are now solved for {c1, c2, c3}. Solving for the constants gives

c1 =
1
2

c2 = 1

c3 = −1
2

Substituting these values back in above solution results in

y = −x4 − 2x3 − 1
2x

Summary
The solution(s) found are the following

(1)y = −x4 − 2x3 − 1
2x
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Figure 539: Solution plot

Verification of solutions

y = −x4 − 2x3 − 1
2x

Verified OK.

17.3.1 Maple step by step solution

Let’s solve[
x3y′′′ − x2y′′ − 2y′x+ 6y = 0, y(1) = 1, y′

∣∣∣{x=1}
= 0, y′′

∣∣∣{x=1}
= 0
]

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative
y′′′ = − 6y

x3 + y′′x+2y′
x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ − y′′

x
− 2y′

x2 + 6y
x3 = 0

• Multiply by denominators of the ODE
x3y′′′ − x2y′′ − 2y′x+ 6y = 0

• Make a change of variables
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t = ln (x)
� Substitute the change of variables back into the ODE

◦ Calculate the 1st derivative of y with respect to x , using the chain rule
y′ =

(
d
dt
y(t)

)
t′(x)

◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

◦ Calculate the 3rd derivative of y with respect to x , using the chain rule

y′′′ =
(

d3

dt3
y(t)

)
t′(x)3 + 3t′(x) t′′(x)

(
d2

dt2
y(t)

)
+ t′′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′′ =
d3
dt3 y(t)

x3 −
3
(

d2
dt2 y(t)

)
x3 +

2
(

d
dt
y(t)

)
x3

Substitute the change of variables back into the ODE

x3
(

d3
dt3 y(t)

x3 −
3
(

d2
dt2 y(t)

)
x3 +

2
(

d
dt
y(t)

)
x3

)
− x2

(
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
− 2 d

dt
y(t) + 6y(t) = 0

• Simplify
d3

dt3
y(t)− 4 d2

dt2
y(t) + d

dt
y(t) + 6y(t) = 0

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(t)

y1(t) = y(t)
◦ Define new variable y2(t)

y2(t) = d
dt
y(t)

◦ Define new variable y3(t)
y3(t) = d2

dt2
y(t)

◦ Isolate for d
dt
y3(t) using original ODE

d
dt
y3(t) = 4y3(t)− y2(t)− 6y1(t)
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Convert linear ODE into a system of first order ODEs[
y2(t) = d

dt
y1(t) , y3(t) = d

dt
y2(t) , d

dt
y3(t) = 4y3(t)− y2(t)− 6y1(t)

]
• Define vector

→
y (t) =


y1(t)
y2(t)
y3(t)


• System to solve

d
dt

→
y (t) =


0 1 0
0 0 1
−6 −1 4

 · →y (t)

• Define the coefficient matrix

A =


0 1 0
0 0 1
−6 −1 4


• Rewrite the system as

d
dt

→
y (t) = A · →y (t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


1
−1
1


 ,

2,


1
4
1
2

1


 ,

3,


1
9
1
3

1





• Consider eigenpair−1,


1
−1
1




• Solution to homogeneous system from eigenpair
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→
y 1 = e−t ·


1
−1
1


• Consider eigenpair2,


1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 2 = e2t ·


1
4
1
2

1


• Consider eigenpair3,


1
9
1
3

1




• Solution to homogeneous system from eigenpair

→
y 3 = e3t ·


1
9
1
3

1


• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3

• Substitute solutions into the general solution

→
y = c1e−t ·


1
−1
1

+ c2e2t ·


1
4
1
2

1

+ c3e3t ·


1
9
1
3

1


• First component of the vector is the solution to the ODE

y(t) = c1e−t + c2e2t
4 + c3e3t

9
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• Change variables back using t = ln (x)
y = c1

x
+ c2x2

4 + c3x3

9

• Use the initial condition y(1) = 1
1 = c1 + c2

4 + c3
9

• Calculate the 1st derivative of the solution
y′ = − c1

x2 + c2x
2 + c3x2

3

• Use the initial condition y′
∣∣∣{x=1}

= 0

0 = −c1 + c2
2 + c3

3

• Calculate the 2nd derivative of the solution
y′′ = 2c1

x3 + c2
2 + 2c3x

3

• Use the initial condition y′′
∣∣∣{x=1}

= 0

0 = 2c1 + c2
2 + 2c3

3

• Solve for the unknown coefficients{
c1 = 1

2 , c2 = 4, c3 = −9
2 , x = x

}
• Solution to the IVP

y = 1
2x + x2 − x3

2

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 18� �
dsolve([x^3*diff(y(x),x$3)-x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+6*y(x)=0,y(1) = 1, D(y)(1) = 0, (D@@2)(y)(1) = 0],y(x), singsol=all)� �

y(x) = −x3

2 + x2 + 1
2x

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 23� �
DSolve[{x^3*y'''[x]-x^2*y''[x]-2*x*y'[x]+6*y[x]==0,{y[1]==1,y'[1]==0,y''[1]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x3

2 + x2 + 1
2x
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17.4 problem section 9.1, problem 5(b) 2
17.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7023

Internal problem ID [1460]
Internal file name [OUTPUT/1461_Sunday_June_05_2022_02_18_49_AM_34964901/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.1. Page 471
Problem number: section 9.1, problem 5(b) 2.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_con-
stant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order , _exact , _linear , _homogeneous ]]

x3y′′′ − x2y′′ − 2y′x+ 6y = 0

With initial conditions

[y(1) = 0, y′(1) = 1, y′′(1) = 0]

This is Euler ODE of higher order. Let y = xλ. Hence

y′ = λxλ−1

y′′ = λ(λ− 1)xλ−2

y′′′ = λ(λ− 1) (λ− 2)xλ−3

Substituting these back into

x3y′′′ − x2y′′ − 2y′x+ 6y = 0

gives
−2xλxλ−1 − x2λ(λ− 1)xλ−2 + x3λ(λ− 1) (λ− 2)xλ−3 + 6xλ = 0

Which simplifies to

−2λxλ − λ(λ− 1)xλ + λ(λ− 1) (λ− 2)xλ + 6xλ = 0
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And since xλ 6= 0 then dividing through by xλ, the above becomes

−2λ− λ(λ− 1) + λ(λ− 1) (λ− 2) + 6 = 0

Simplifying gives the characteristic equation as

λ3 − 4λ2 + λ+ 6 = 0

Solving the above gives the following roots

λ1 = 2
λ2 = 3
λ3 = −1

This table summarises the result

root multiplicity type of root

−1 1 real root

2 1 real root

3 1 real root

The solution is generated by going over the above table. For each real root λ of multiplic-
ity one generates a c1x

λ basis solution. Each real root of multiplicty two, generates c1xλ

and c2x
λ ln (x) basis solutions. Each real root of multiplicty three, generates c1xλ and

c2x
λ ln (x) and c3x

λ ln (x)2 basis solutions, and so on. Each complex root α±iβ of multi-
plicity one generates xα(c1 cos(β ln (x)) + c2 sin(β ln (x))) basis solutions. And each com-
plex root α± iβ of multiplicity two generates ln (x)xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And each complex root α±iβ of multiplicity three generates ln (x)2 xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And so on. Using the above show that the solution is

y = c1
x

+ c2x
2 + c3x

3

The fundamental set of solutions for the homogeneous solution are the following

y1 =
1
x

y2 = x2

y3 = x3

Initial conditions are used to solve for the constants of integration.
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Looking at the above solution

y = c1
x

+ c2x
2 + c3x

3 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 1
in the above gives

0 = c1 + c2 + c3 (1A)

Taking derivative of the solution gives

y′ = − c1
x2 + 2c2x+ 3c3x2

substituting y′ = 1 and x = 1 in the above gives

1 = −c1 + 2c2 + 3c3 (2A)

Taking two derivatives of the solution gives

y′′ = 2c1
x3 + 2c2 + 6c3x

substituting y′′ = 0 and x = 1 in the above gives

0 = 2c1 + 2c2 + 6c3 (3A)

Equations {1A,2A,3A} are now solved for {c1, c2, c3}. Solving for the constants gives

c1 = −1
3

c2 =
1
3

c3 = 0

Substituting these values back in above solution results in

y = x3 − 1
3x

Summary
The solution(s) found are the following

(1)y = x3 − 1
3x
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Figure 540: Solution plot

Verification of solutions

y = x3 − 1
3x

Verified OK.

17.4.1 Maple step by step solution

Let’s solve[
x3y′′′ − x2y′′ − 2y′x+ 6y = 0, y(1) = 0, y′

∣∣∣{x=1}
= 1, y′′

∣∣∣{x=1}
= 0
]

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative
y′′′ = − 6y

x3 + y′′x+2y′
x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ − y′′

x
− 2y′

x2 + 6y
x3 = 0

• Multiply by denominators of the ODE
x3y′′′ − x2y′′ − 2y′x+ 6y = 0

• Make a change of variables
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t = ln (x)
� Substitute the change of variables back into the ODE

◦ Calculate the 1st derivative of y with respect to x , using the chain rule
y′ =

(
d
dt
y(t)

)
t′(x)

◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

◦ Calculate the 3rd derivative of y with respect to x , using the chain rule

y′′′ =
(

d3

dt3
y(t)

)
t′(x)3 + 3t′(x) t′′(x)

(
d2

dt2
y(t)

)
+ t′′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′′ =
d3
dt3 y(t)

x3 −
3
(

d2
dt2 y(t)

)
x3 +

2
(

d
dt
y(t)

)
x3

Substitute the change of variables back into the ODE

x3
(

d3
dt3 y(t)

x3 −
3
(

d2
dt2 y(t)

)
x3 +

2
(

d
dt
y(t)

)
x3

)
− x2

(
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
− 2 d

dt
y(t) + 6y(t) = 0

• Simplify
d3

dt3
y(t)− 4 d2

dt2
y(t) + d

dt
y(t) + 6y(t) = 0

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(t)

y1(t) = y(t)
◦ Define new variable y2(t)

y2(t) = d
dt
y(t)

◦ Define new variable y3(t)
y3(t) = d2

dt2
y(t)

◦ Isolate for d
dt
y3(t) using original ODE

d
dt
y3(t) = 4y3(t)− y2(t)− 6y1(t)
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Convert linear ODE into a system of first order ODEs[
y2(t) = d

dt
y1(t) , y3(t) = d

dt
y2(t) , d

dt
y3(t) = 4y3(t)− y2(t)− 6y1(t)

]
• Define vector

→
y (t) =


y1(t)
y2(t)
y3(t)


• System to solve

d
dt

→
y (t) =


0 1 0
0 0 1
−6 −1 4

 · →y (t)

• Define the coefficient matrix

A =


0 1 0
0 0 1
−6 −1 4


• Rewrite the system as

d
dt

→
y (t) = A · →y (t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


1
−1
1


 ,

2,


1
4
1
2

1


 ,

3,


1
9
1
3

1





• Consider eigenpair−1,


1
−1
1




• Solution to homogeneous system from eigenpair
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→
y 1 = e−t ·


1
−1
1


• Consider eigenpair2,


1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 2 = e2t ·


1
4
1
2

1


• Consider eigenpair3,


1
9
1
3

1




• Solution to homogeneous system from eigenpair

→
y 3 = e3t ·


1
9
1
3

1


• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3

• Substitute solutions into the general solution

→
y = c1e−t ·


1
−1
1

+ c2e2t ·


1
4
1
2

1

+ c3e3t ·


1
9
1
3

1


• First component of the vector is the solution to the ODE

y(t) = c1e−t + c2e2t
4 + c3e3t

9
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• Change variables back using t = ln (x)
y = c1

x
+ c2x2

4 + c3x3

9

• Use the initial condition y(1) = 0
0 = c1 + c2

4 + c3
9

• Calculate the 1st derivative of the solution
y′ = − c1

x2 + c2x
2 + c3x2

3

• Use the initial condition y′
∣∣∣{x=1}

= 1

1 = −c1 + c2
2 + c3

3

• Calculate the 2nd derivative of the solution
y′′ = 2c1

x3 + c2
2 + 2c3x

3

• Use the initial condition y′′
∣∣∣{x=1}

= 0

0 = 2c1 + c2
2 + 2c3

3

• Solve for the unknown coefficients{
c1 = −1

3 , c2 =
4
3 , c3 = 0, x = x

}
• Solution to the IVP

y = x3−1
3x

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
dsolve([x^3*diff(y(x),x$3)-x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+6*y(x)=0,y(1) = 0, D(y)(1) = 1, (D@@2)(y)(1) = 0],y(x), singsol=all)� �

y(x) = x3 − 1
3x

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 17� �
DSolve[{x^3*y'''[x]-x^2*y''[x]-2*x*y'[x]+6*y[x]==0,{y[1]==0,y'[1]==1,y''[1]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x3 − 1
3x
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17.5 problem section 9.1, problem 5(b) 3
17.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7032

Internal problem ID [1461]
Internal file name [OUTPUT/1462_Sunday_June_05_2022_02_18_50_AM_77436272/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.1. Page 471
Problem number: section 9.1, problem 5(b) 3.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_con-
stant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order , _exact , _linear , _homogeneous ]]

x3y′′′ − x2y′′ − 2y′x+ 6y = 0

With initial conditions

[y(1) = 0, y′(1) = 0, y′′(1) = 1]

This is Euler ODE of higher order. Let y = xλ. Hence

y′ = λxλ−1

y′′ = λ(λ− 1)xλ−2

y′′′ = λ(λ− 1) (λ− 2)xλ−3

Substituting these back into

x3y′′′ − x2y′′ − 2y′x+ 6y = 0

gives
−2xλxλ−1 − x2λ(λ− 1)xλ−2 + x3λ(λ− 1) (λ− 2)xλ−3 + 6xλ = 0

Which simplifies to

−2λxλ − λ(λ− 1)xλ + λ(λ− 1) (λ− 2)xλ + 6xλ = 0
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And since xλ 6= 0 then dividing through by xλ, the above becomes

−2λ− λ(λ− 1) + λ(λ− 1) (λ− 2) + 6 = 0

Simplifying gives the characteristic equation as

λ3 − 4λ2 + λ+ 6 = 0

Solving the above gives the following roots

λ1 = 2
λ2 = 3
λ3 = −1

This table summarises the result

root multiplicity type of root

−1 1 real root

2 1 real root

3 1 real root

The solution is generated by going over the above table. For each real root λ of multiplic-
ity one generates a c1x

λ basis solution. Each real root of multiplicty two, generates c1xλ

and c2x
λ ln (x) basis solutions. Each real root of multiplicty three, generates c1xλ and

c2x
λ ln (x) and c3x

λ ln (x)2 basis solutions, and so on. Each complex root α±iβ of multi-
plicity one generates xα(c1 cos(β ln (x)) + c2 sin(β ln (x))) basis solutions. And each com-
plex root α± iβ of multiplicity two generates ln (x)xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And each complex root α±iβ of multiplicity three generates ln (x)2 xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And so on. Using the above show that the solution is

y = c1
x

+ c2x
2 + c3x

3

The fundamental set of solutions for the homogeneous solution are the following

y1 =
1
x

y2 = x2

y3 = x3

Initial conditions are used to solve for the constants of integration.
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Looking at the above solution

y = c1
x

+ c2x
2 + c3x

3 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 1
in the above gives

0 = c1 + c2 + c3 (1A)

Taking derivative of the solution gives

y′ = − c1
x2 + 2c2x+ 3c3x2

substituting y′ = 0 and x = 1 in the above gives

0 = −c1 + 2c2 + 3c3 (2A)

Taking two derivatives of the solution gives

y′′ = 2c1
x3 + 2c2 + 6c3x

substituting y′′ = 1 and x = 1 in the above gives

1 = 2c1 + 2c2 + 6c3 (3A)

Equations {1A,2A,3A} are now solved for {c1, c2, c3}. Solving for the constants gives

c1 =
1
12

c2 = −1
3

c3 =
1
4

Substituting these values back in above solution results in

y = 3x4 − 4x3 + 1
12x

Summary
The solution(s) found are the following

(1)y = 3x4 − 4x3 + 1
12x
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Figure 541: Solution plot

Verification of solutions

y = 3x4 − 4x3 + 1
12x

Verified OK.

17.5.1 Maple step by step solution

Let’s solve[
x3y′′′ − x2y′′ − 2y′x+ 6y = 0, y(1) = 0, y′

∣∣∣{x=1}
= 0, y′′

∣∣∣{x=1}
= 1
]

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative
y′′′ = − 6y

x3 + y′′x+2y′
x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ − y′′

x
− 2y′

x2 + 6y
x3 = 0

• Multiply by denominators of the ODE
x3y′′′ − x2y′′ − 2y′x+ 6y = 0

• Make a change of variables
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t = ln (x)
� Substitute the change of variables back into the ODE

◦ Calculate the 1st derivative of y with respect to x , using the chain rule
y′ =

(
d
dt
y(t)

)
t′(x)

◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

◦ Calculate the 3rd derivative of y with respect to x , using the chain rule

y′′′ =
(

d3

dt3
y(t)

)
t′(x)3 + 3t′(x) t′′(x)

(
d2

dt2
y(t)

)
+ t′′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′′ =
d3
dt3 y(t)

x3 −
3
(

d2
dt2 y(t)

)
x3 +

2
(

d
dt
y(t)

)
x3

Substitute the change of variables back into the ODE

x3
(

d3
dt3 y(t)

x3 −
3
(

d2
dt2 y(t)

)
x3 +

2
(

d
dt
y(t)

)
x3

)
− x2

(
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
− 2 d

dt
y(t) + 6y(t) = 0

• Simplify
d3

dt3
y(t)− 4 d2

dt2
y(t) + d

dt
y(t) + 6y(t) = 0

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(t)

y1(t) = y(t)
◦ Define new variable y2(t)

y2(t) = d
dt
y(t)

◦ Define new variable y3(t)
y3(t) = d2

dt2
y(t)

◦ Isolate for d
dt
y3(t) using original ODE

d
dt
y3(t) = 4y3(t)− y2(t)− 6y1(t)
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Convert linear ODE into a system of first order ODEs[
y2(t) = d

dt
y1(t) , y3(t) = d

dt
y2(t) , d

dt
y3(t) = 4y3(t)− y2(t)− 6y1(t)

]
• Define vector

→
y (t) =


y1(t)
y2(t)
y3(t)


• System to solve

d
dt

→
y (t) =


0 1 0
0 0 1
−6 −1 4

 · →y (t)

• Define the coefficient matrix

A =


0 1 0
0 0 1
−6 −1 4


• Rewrite the system as

d
dt

→
y (t) = A · →y (t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


1
−1
1


 ,

2,


1
4
1
2

1


 ,

3,


1
9
1
3

1





• Consider eigenpair−1,


1
−1
1




• Solution to homogeneous system from eigenpair
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→
y 1 = e−t ·


1
−1
1


• Consider eigenpair2,


1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 2 = e2t ·


1
4
1
2

1


• Consider eigenpair3,


1
9
1
3

1




• Solution to homogeneous system from eigenpair

→
y 3 = e3t ·


1
9
1
3

1


• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3

• Substitute solutions into the general solution

→
y = c1e−t ·


1
−1
1

+ c2e2t ·


1
4
1
2

1

+ c3e3t ·


1
9
1
3

1


• First component of the vector is the solution to the ODE

y(t) = c1e−t + c2e2t
4 + c3e3t

9
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• Change variables back using t = ln (x)
y = c1

x
+ c2x2

4 + c3x3

9

• Use the initial condition y(1) = 0
0 = c1 + c2

4 + c3
9

• Calculate the 1st derivative of the solution
y′ = − c1

x2 + c2x
2 + c3x2

3

• Use the initial condition y′
∣∣∣{x=1}

= 0

0 = −c1 + c2
2 + c3

3

• Calculate the 2nd derivative of the solution
y′′ = 2c1

x3 + c2
2 + 2c3x

3

• Use the initial condition y′′
∣∣∣{x=1}

= 1

1 = 2c1 + c2
2 + 2c3

3

• Solve for the unknown coefficients{
c1 = 1

12 , c2 = −4
3 , c3 =

9
4 , x = x

}
• Solution to the IVP

y = 3x4−4x3+1
12x

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 20� �
dsolve([x^3*diff(y(x),x$3)-x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+6*y(x)=0,y(1) = 0, D(y)(1) = 0, (D@@2)(y)(1) = 1],y(x), singsol=all)� �

y(x) = 3x4 − 4x3 + 1
12x

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 24� �
DSolve[{x^3*y'''[x]-x^2*y''[x]-2*x*y'[x]+6*y[x]==0,{y[1]==0,y'[1]==0,y''[1]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3x4 − 4x3 + 1
12x
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17.6 problem section 9.1, problem 5(b)
17.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7041

Internal problem ID [1462]
Internal file name [OUTPUT/1463_Sunday_June_05_2022_02_18_52_AM_32337383/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.1. Page 471
Problem number: section 9.1, problem 5(b).
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_con-
stant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order , _exact , _linear , _homogeneous ]]

x3y′′′ − x2y′′ − 2y′x+ 6y = 0

With initial conditions

[y(1) = k0, y
′(1) = k1, y

′′(1) = k2]

This is Euler ODE of higher order. Let y = xλ. Hence

y′ = λxλ−1

y′′ = λ(λ− 1)xλ−2

y′′′ = λ(λ− 1) (λ− 2)xλ−3

Substituting these back into

x3y′′′ − x2y′′ − 2y′x+ 6y = 0

gives
−2xλxλ−1 − x2λ(λ− 1)xλ−2 + x3λ(λ− 1) (λ− 2)xλ−3 + 6xλ = 0

Which simplifies to

−2λxλ − λ(λ− 1)xλ + λ(λ− 1) (λ− 2)xλ + 6xλ = 0

7038



And since xλ 6= 0 then dividing through by xλ, the above becomes

−2λ− λ(λ− 1) + λ(λ− 1) (λ− 2) + 6 = 0

Simplifying gives the characteristic equation as

λ3 − 4λ2 + λ+ 6 = 0

Solving the above gives the following roots

λ1 = 2
λ2 = 3
λ3 = −1

This table summarises the result

root multiplicity type of root

−1 1 real root

2 1 real root

3 1 real root

The solution is generated by going over the above table. For each real root λ of multiplic-
ity one generates a c1x

λ basis solution. Each real root of multiplicty two, generates c1xλ

and c2x
λ ln (x) basis solutions. Each real root of multiplicty three, generates c1xλ and

c2x
λ ln (x) and c3x

λ ln (x)2 basis solutions, and so on. Each complex root α±iβ of multi-
plicity one generates xα(c1 cos(β ln (x)) + c2 sin(β ln (x))) basis solutions. And each com-
plex root α± iβ of multiplicity two generates ln (x)xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And each complex root α±iβ of multiplicity three generates ln (x)2 xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And so on. Using the above show that the solution is

y = c1
x

+ c2x
2 + c3x

3

The fundamental set of solutions for the homogeneous solution are the following

y1 =
1
x

y2 = x2

y3 = x3

Initial conditions are used to solve for the constants of integration.
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Looking at the above solution

y = c1
x

+ c2x
2 + c3x

3 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = k0 and x = 1
in the above gives

k0 = c1 + c2 + c3 (1A)

Taking derivative of the solution gives

y′ = − c1
x2 + 2c2x+ 3c3x2

substituting y′ = k1 and x = 1 in the above gives

k1 = −c1 + 2c2 + 3c3 (2A)

Taking two derivatives of the solution gives

y′′ = 2c1
x3 + 2c2 + 6c3x

substituting y′′ = k2 and x = 1 in the above gives

k2 = 2c1 + 2c2 + 6c3 (3A)

Equations {1A,2A,3A} are now solved for {c1, c2, c3}. Solving for the constants gives

c1 =
k0
2 − k1

3 + k2
12

c2 =
k1
3 + k0 −

k2
3

c3 =
k2
4 − k0

2

Substituting these values back in above solution results in

y = −6x4k0 − 3x4k2 − 12x3k0 − 4x3k1 + 4x3k2 − 6k0 + 4k1 − k2
12x

Which simplifies to

y = 3(k2 − 2k0)x4 + 4(k1 + 3k0 − k2)x3 + 6k0 − 4k1 + k2
12x
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Summary
The solution(s) found are the following

(1)y = 3(k2 − 2k0)x4 + 4(k1 + 3k0 − k2)x3 + 6k0 − 4k1 + k2
12x

Verification of solutions

y = 3(k2 − 2k0)x4 + 4(k1 + 3k0 − k2)x3 + 6k0 − 4k1 + k2
12x

Verified OK.

17.6.1 Maple step by step solution

Let’s solve[
x3y′′′ − x2y′′ − 2y′x+ 6y = 0, y(1) = k0, y

′∣∣∣{x=1}
= k1, y

′′∣∣∣{x=1}
= k2

]
• Highest derivative means the order of the ODE is 3

y′′′

• Isolate 3rd derivative
y′′′ = − 6y

x3 + y′′x+2y′
x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ − y′′

x
− 2y′

x2 + 6y
x3 = 0

• Multiply by denominators of the ODE
x3y′′′ − x2y′′ − 2y′x+ 6y = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

y′ =
(

d
dt
y(t)

)
t′(x)

◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
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◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

◦ Calculate the 3rd derivative of y with respect to x , using the chain rule

y′′′ =
(

d3

dt3
y(t)

)
t′(x)3 + 3t′(x) t′′(x)

(
d2

dt2
y(t)

)
+ t′′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′′ =
d3
dt3 y(t)

x3 −
3
(

d2
dt2 y(t)

)
x3 +

2
(

d
dt
y(t)

)
x3

Substitute the change of variables back into the ODE

x3
(

d3
dt3 y(t)

x3 −
3
(

d2
dt2 y(t)

)
x3 +

2
(

d
dt
y(t)

)
x3

)
− x2

(
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
− 2 d

dt
y(t) + 6y(t) = 0

• Simplify
d3

dt3
y(t)− 4 d2

dt2
y(t) + d

dt
y(t) + 6y(t) = 0

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(t)

y1(t) = y(t)
◦ Define new variable y2(t)

y2(t) = d
dt
y(t)

◦ Define new variable y3(t)
y3(t) = d2

dt2
y(t)

◦ Isolate for d
dt
y3(t) using original ODE

d
dt
y3(t) = 4y3(t)− y2(t)− 6y1(t)

Convert linear ODE into a system of first order ODEs[
y2(t) = d

dt
y1(t) , y3(t) = d

dt
y2(t) , d

dt
y3(t) = 4y3(t)− y2(t)− 6y1(t)

]
• Define vector

→
y (t) =


y1(t)
y2(t)
y3(t)


• System to solve
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d
dt

→
y (t) =


0 1 0
0 0 1
−6 −1 4

 · →y (t)

• Define the coefficient matrix

A =


0 1 0
0 0 1
−6 −1 4


• Rewrite the system as

d
dt

→
y (t) = A · →y (t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


1
−1
1


 ,

2,


1
4
1
2

1


 ,

3,


1
9
1
3

1





• Consider eigenpair−1,


1
−1
1




• Solution to homogeneous system from eigenpair

→
y 1 = e−t ·


1
−1
1


• Consider eigenpair2,


1
4
1
2

1




• Solution to homogeneous system from eigenpair
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→
y 2 = e2t ·


1
4
1
2

1


• Consider eigenpair3,


1
9
1
3

1




• Solution to homogeneous system from eigenpair

→
y 3 = e3t ·


1
9
1
3

1


• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3

• Substitute solutions into the general solution

→
y = c1e−t ·


1
−1
1

+ c2e2t ·


1
4
1
2

1

+ c3e3t ·


1
9
1
3

1


• First component of the vector is the solution to the ODE

y(t) = c1e−t + c2e2t
4 + c3e3t

9

• Change variables back using t = ln (x)
y = c1

x
+ c2x2

4 + c3x3

9

• Use the initial condition y(1) = k0

k0 = c1 + c2
4 + c3

9

• Calculate the 1st derivative of the solution
y′ = − c1

x2 + c2x
2 + c3x2

3

• Use the initial condition y′
∣∣∣{x=1}

= k1

k1 = −c1 + c2
2 + c3

3
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• Calculate the 2nd derivative of the solution
y′′ = 2c1

x3 + c2
2 + 2c3x

3

• Use the initial condition y′′
∣∣∣{x=1}

= k2

k2 = 2c1 + c2
2 + 2c3

3

• Solve for the unknown coefficients{
c1 = k0

2 − k1
3 + k2

12 , c2 = −4k2
3 + 4k0 + 4k1

3 , c3 = −9k0
2 + 9k2

4 , x = x
}

• Solution to the IVP

y = 3(k2−2k0)x4+4(k1+3k0−k2)x3+6k0−4k1+k2
12x

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 40� �
dsolve([x^3*diff(y(x),x$3)-x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+6*y(x)=0,y(1) = k__0, D(y)(1) = k__1, (D@@2)(y)(1) = k__2],y(x), singsol=all)� �

y(x) = 3(−2k0 + k2)x4 + 4(k1 + 3k0 − k2)x3 + 6k0 − 4k1 + k2
12x

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 47� �
DSolve[{x^3*y'''[x]-x^2*y''[x]-2*x*y'[x]+6*y[x]==0,{y[1]==k0,y'[1]==k1,y''[1]==k2}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −6k0(x4 − 2x3 − 1) + 4k1(x3 − 1) + 3k2x4 − 4k2x3 + k2
12x
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17.7 problem section 9.1, problem 6(a)
17.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7047

Internal problem ID [1463]
Internal file name [OUTPUT/1464_Sunday_June_05_2022_02_18_54_AM_93893289/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.1. Page 471
Problem number: section 9.1, problem 6(a).
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

y′′′ + y′′ − y′ − y = 0

The characteristic equation is

λ3 + λ2 − λ− 1 = 0

The roots of the above equation are

λ1 = 1
λ2 = −1
λ3 = −1

Therefore the homogeneous solution is

yh(x) = c1e−x + x e−xc2 + c3ex

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = x e−x

y3 = ex
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Summary
The solution(s) found are the following

(1)y = c1e−x + x e−xc2 + c3ex

Verification of solutions

y = c1e−x + x e−xc2 + c3ex

Verified OK.

17.7.1 Maple step by step solution

Let’s solve
y′′′ + y′′ − y′ − y = 0

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = −y3(x) + y2(x) + y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = −y3(x) + y2(x) + y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve
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→
y
′
(x) =


0 1 0
0 0 1
1 1 −1

 · →y (x)

• Define the coefficient matrix

A =


0 1 0
0 0 1
1 1 −1


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


1
−1
1


 ,

−1,


0
0
0


 ,

1,


1
1
1





• Consider eigenpair, with eigenvalue of algebraic multiplicity 2−1,


1
−1
1




• First solution from eigenvalue − 1

→
y 1(x) = e−x ·


1
−1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = −1 is the eigenvalue, and →
v is the eigenvector

→
y 2(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = −1

• Substitute →
y 2(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A
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λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 2(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue − 1


0 1 0
0 0 1
1 1 −1

− (−1) ·


1 0 0
0 1 0
0 0 1


 · →p =


1
−1
1


• Choice of →

p

→
p =


1
0
0


• Second solution from eigenvalue − 1

→
y 2(x) = e−x ·

x ·


1
−1
1

+


1
0
0




• Consider eigenpair1,


1
1
1




• Solution to homogeneous system from eigenpair

→
y 3 = ex ·


1
1
1


• General solution to the system of ODEs
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→
y = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3

• Substitute solutions into the general solution

→
y = c1e−x ·


1
−1
1

+ c2e−x ·

x ·


1
−1
1

+


1
0
0


+ c3ex ·


1
1
1


• First component of the vector is the solution to the ODE

y = ((x+ 1) c2 + c1) e−x + c3ex

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x$3)+diff(y(x),x$2)-diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

y(x) = (c3x+ c2) e−x + exc1

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 26� �
DSolve[y'''[x]+y''[x]-y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x
(
c2x+ c3e

2x + c1
)
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17.8 problem section 9.1, problem 6(b)
17.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7052

Internal problem ID [1464]
Internal file name [OUTPUT/1465_Sunday_June_05_2022_02_18_55_AM_2191687/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.1. Page 471
Problem number: section 9.1, problem 6(b).
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

y′′′ − 3y′′ + 7y′ − 5y = 0

The characteristic equation is

λ3 − 3λ2 + 7λ− 5 = 0

The roots of the above equation are

λ1 = 1
λ2 = 1− 2i
λ3 = 1 + 2i

Therefore the homogeneous solution is

yh(x) = c1ex + e(1+2i)xc2 + e(1−2i)xc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = e(1+2i)x

y3 = e(1−2i)x
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Summary
The solution(s) found are the following

(1)y = c1ex + e(1+2i)xc2 + e(1−2i)xc3

Verification of solutions

y = c1ex + e(1+2i)xc2 + e(1−2i)xc3

Verified OK.

17.8.1 Maple step by step solution

Let’s solve
y′′′ − 3y′′ + 7y′ − 5y = 0

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = 3y3(x)− 7y2(x) + 5y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 3y3(x)− 7y2(x) + 5y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve
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→
y
′
(x) =


0 1 0
0 0 1
5 −7 3

 · →y (x)

• Define the coefficient matrix

A =


0 1 0
0 0 1
5 −7 3


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

1,


1
1
1


 ,

1− 2 I,


− 3

25 +
4 I
25

1
5 +

2 I
5

1


 ,

1 + 2 I,


− 3

25 −
4 I
25

1
5 −

2 I
5

1





• Consider eigenpair1,


1
1
1




• Solution to homogeneous system from eigenpair

→
y 1 = ex ·


1
1
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored1− 2 I,


− 3

25 +
4 I
25

1
5 +

2 I
5

1




• Solution from eigenpair
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e(1−2 I)x ·


− 3

25 +
4 I
25

1
5 +

2 I
5

1


• Use Euler identity to write solution in terms of sin and cos

ex · (cos (2x)− I sin (2x)) ·


− 3

25 +
4 I
25

1
5 +

2 I
5

1


• Simplify expression

ex ·


(
− 3

25 +
4 I
25

)
(cos (2x)− I sin (2x))(1

5 +
2 I
5

)
(cos (2x)− I sin (2x))

cos (2x)− I sin (2x)


• Both real and imaginary parts are solutions to the homogeneous system→

y 2(x) = ex ·


−3 cos(2x)

25 + 4 sin(2x)
25

cos(2x)
5 + 2 sin(2x)

5

cos (2x)

 ,
→
y 3(x) = ex ·


3 sin(2x)

25 + 4 cos(2x)
25

− sin(2x)
5 + 2 cos(2x)

5

− sin (2x)




• General solution to the system of ODEs
→
y = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x)

• Substitute solutions into the general solution

→
y = c1ex ·


1
1
1

+ c2ex ·


−3 cos(2x)

25 + 4 sin(2x)
25

cos(2x)
5 + 2 sin(2x)

5

cos (2x)

+ c3ex ·


3 sin(2x)

25 + 4 cos(2x)
25

− sin(2x)
5 + 2 cos(2x)

5

− sin (2x)


• First component of the vector is the solution to the ODE

y = − ex(3c2 cos(2x)−4c3 cos(2x)−4c2 sin(2x)−3c3 sin(2x)−25c1)
25
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 21� �
dsolve(diff(y(x),x$3)-3*diff(y(x),x$2)+7*diff(y(x),x)-5*y(x)=0,y(x), singsol=all)� �

y(x) = ex(c1 + sin (2x) c2 + cos (2x) c3)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 26� �
DSolve[y'''[x]-3*y''[x]+7*y'[x]-5*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(c2 cos(2x) + c1 sin(2x) + c3)
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18 Chapter 9 Introduction to Linear Higher Order
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Page 483
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18.1 problem section 9.2, problem 1
Internal problem ID [1465]
Internal file name [OUTPUT/1466_Sunday_June_05_2022_02_18_56_AM_89074572/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 1.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

y′′′ − 3y′′ + 3y′ − y = 0

The characteristic equation is

λ3 − 3λ2 + 3λ− 1 = 0

The roots of the above equation are

λ1 = 1
λ2 = 1
λ3 = 1

Therefore the homogeneous solution is

yh(x) = c1ex + c2x ex + x2exc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = x ex

y3 = x2ex
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Summary
The solution(s) found are the following

(1)y = c1ex + c2x ex + x2exc3
Verification of solutions

y = c1ex + c2x ex + x2exc3

Verified OK.

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 17� �
dsolve(diff(y(x),x$3)-3*diff(y(x),x$2)+3*diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

y(x) = ex
(
c3x

2 + c2x+ c1
)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 21� �
DSolve[y'''[x]-3*y''[x]+3*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(x(c3x+ c2) + c1)
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18.2 problem section 9.2, problem 2
18.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7060

Internal problem ID [1466]
Internal file name [OUTPUT/1467_Sunday_June_05_2022_02_18_57_AM_34749542/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 2.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

y′′′′ + 8y′′ − 9y = 0

The characteristic equation is
λ4 + 8λ2 − 9 = 0

The roots of the above equation are

λ1 = 1
λ2 = −1
λ3 = 3i
λ4 = −3i

Therefore the homogeneous solution is

yh(x) = c1e−x + c2ex + e−3ixc3 + e3ixc4
The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = ex

y3 = e−3ix

y4 = e3ix
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Summary
The solution(s) found are the following

(1)y = c1e−x + c2ex + e−3ixc3 + e3ixc4
Verification of solutions

y = c1e−x + c2ex + e−3ixc3 + e3ixc4

Verified OK.

18.2.1 Maple step by step solution

Let’s solve
y′′′′ + 8y′′ − 9y = 0

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = −8y3(x) + 9y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = −8y3(x) + 9y1(x)]

• Define vector
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→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
9 0 −8 0

 · →y (x)

• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
9 0 −8 0


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


−1
1
−1
1



 ,

1,


1
1
1
1



 ,

−3 I,


− I

27

−1
9

I
3

1



 ,

3 I,


I
27

−1
9

− I
3

1






• Consider eigenpair−1,


−1
1
−1
1




• Solution to homogeneous system from eigenpair
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→
y 1 = e−x ·


−1
1
−1
1


• Consider eigenpair1,


1
1
1
1




• Solution to homogeneous system from eigenpair

→
y 2 = ex ·


1
1
1
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−3 I,


− I

27

−1
9

I
3

1




• Solution from eigenpair

e−3 Ix ·


− I

27

−1
9

I
3

1


• Use Euler identity to write solution in terms of sin and cos
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(cos (3x)− I sin (3x)) ·


− I

27

−1
9

I
3

1


• Simplify expression

− I
27(cos (3x)− I sin (3x))

− cos(3x)
9 + I sin(3x)

9
I
3(cos (3x)− I sin (3x))

cos (3x)− I sin (3x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) =


− sin(3x)

27

− cos(3x)
9

sin(3x)
3

cos (3x)

 ,
→
y 4(x) =


− cos(3x)

27
sin(3x)

9
cos(3x)

3

− sin (3x)




• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x)

• Substitute solutions into the general solution

→
y = c1e−x ·


−1
1
−1
1

+ c2ex ·


1
1
1
1

+


− c3 sin(3x)

27 − c4 cos(3x)
27

− c3 cos(3x)
9 + c4 sin(3x)

9
c3 sin(3x)

3 + c4 cos(3x)
3

c3 cos (3x)− c4 sin (3x)


• First component of the vector is the solution to the ODE

y = −c1e−x + c2ex − c4 cos(3x)
27 − c3 sin(3x)

27
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(diff(y(x),x$4)+8*diff(y(x),x$2)-9*y(x)=0,y(x), singsol=all)� �

y(x) = e−xc1 + c2ex + c3 sin (3x) + c4 cos (3x)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 34� �
DSolve[y''''[x]+8*y''[x]-9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c3e
−x + c4e

x + c1 cos(3x) + c2 sin(3x)
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18.3 problem section 9.2, problem 3
18.3.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7066

Internal problem ID [1467]
Internal file name [OUTPUT/1468_Sunday_June_05_2022_02_18_58_AM_77789978/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 3.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

y′′′ − y′′ + 16y′ − 16y = 0

The characteristic equation is

λ3 − λ2 + 16λ− 16 = 0

The roots of the above equation are

λ1 = 1
λ2 = 4i
λ3 = −4i

Therefore the homogeneous solution is

yh(x) = c1ex + e−4ixc2 + e4ixc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = e−4ix

y3 = e4ix
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Summary
The solution(s) found are the following

(1)y = c1ex + e−4ixc2 + e4ixc3
Verification of solutions

y = c1ex + e−4ixc2 + e4ixc3

Verified OK.

18.3.1 Maple step by step solution

Let’s solve
y′′′ − y′′ + 16y′ − 16y = 0

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = y3(x)− 16y2(x) + 16y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = y3(x)− 16y2(x) + 16y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve
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→
y
′
(x) =


0 1 0
0 0 1
16 −16 1

 · →y (x)

• Define the coefficient matrix

A =


0 1 0
0 0 1
16 −16 1


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

1,


1
1
1


 ,

−4 I,


− 1

16
I
4

1


 ,

4 I,


− 1
16

− I
4

1





• Consider eigenpair1,


1
1
1




• Solution to homogeneous system from eigenpair

→
y 1 = ex ·


1
1
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−4 I,


− 1

16
I
4

1




• Solution from eigenpair
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e−4 Ix ·


− 1

16
I
4

1


• Use Euler identity to write solution in terms of sin and cos

(cos (4x)− I sin (4x)) ·


− 1

16
I
4

1


• Simplify expression

− cos(4x)
16 + I sin(4x)

16
I
4(cos (4x)− I sin (4x))

cos (4x)− I sin (4x)


• Both real and imaginary parts are solutions to the homogeneous system→

y 2(x) =


− cos(4x)

16
sin(4x)

4

cos (4x)

 ,
→
y 3(x) =


sin(4x)

16
cos(4x)

4

− sin (4x)




• General solution to the system of ODEs
→
y = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x)

• Substitute solutions into the general solution

→
y = c1ex ·


1
1
1

+


− c2 cos(4x)

16 + c3 sin(4x)
16

c2 sin(4x)
4 + c3 cos(4x)

4

c2 cos (4x)− c3 sin (4x)


• First component of the vector is the solution to the ODE

y = c1ex + c3 sin(4x)
16 − c2 cos(4x)

16
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(diff(y(x),x$3)-diff(y(x),x$2)+16*diff(y(x),x)-16*y(x)=0,y(x), singsol=all)� �

y(x) = exc1 + sin (4x) c2 + c3 cos (4x)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 26� �
DSolve[y'''[x]-y''[x]+16*y'[x]-16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c3e
x + c1 cos(4x) + c2 sin(4x)
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18.4 problem section 9.2, problem 4
18.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7071

Internal problem ID [1468]
Internal file name [OUTPUT/1469_Sunday_June_05_2022_02_19_00_AM_92486463/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 4.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

2y′′′ + 3y′′ − 2y′ − 3y = 0

The characteristic equation is

2λ3 + 3λ2 − 2λ− 3 = 0

The roots of the above equation are

λ1 = 1

λ2 = −3
2

λ3 = −1

Therefore the homogeneous solution is

yh(x) = c1e−x + c2ex + e− 3x
2 c3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = ex

y3 = e− 3x
2
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Summary
The solution(s) found are the following

(1)y = c1e−x + c2ex + e− 3x
2 c3

Verification of solutions

y = c1e−x + c2ex + e− 3x
2 c3

Verified OK.

18.4.1 Maple step by step solution

Let’s solve
2y′′′ + 3y′′ − 2y′ − 3y = 0

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative
y′′′ = −3y′′

2 + y′ + 3y
2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ + 3y′′

2 − y′ − 3y
2 = 0

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = −3y3(x)

2 + y2(x) + 3y1(x)
2

Convert linear ODE into a system of first order ODEs[
y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = −3y3(x)

2 + y2(x) + 3y1(x)
2

]
• Define vector
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→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
3
2 1 −3

2

 · →y (x)

• Define the coefficient matrix

A =


0 1 0
0 0 1
3
2 1 −3

2


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−3
2 ,


4
9

−2
3

1


 ,

−1,


1
−1
1


 ,

1,


1
1
1





• Consider eigenpair−3
2 ,


4
9

−2
3

1




• Solution to homogeneous system from eigenpair

→
y 1 = e− 3x

2 ·


4
9

−2
3

1


• Consider eigenpair
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−1,


1
−1
1




• Solution to homogeneous system from eigenpair

→
y 2 = e−x ·


1
−1
1


• Consider eigenpair1,


1
1
1




• Solution to homogeneous system from eigenpair

→
y 3 = ex ·


1
1
1


• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3

• Substitute solutions into the general solution

→
y = c1e−

3x
2 ·


4
9

−2
3

1

+ c2e−x ·


1
−1
1

+ c3ex ·


1
1
1


• First component of the vector is the solution to the ODE

y =
(
9c3e

5x
2 +9c2e

x
2 +4c1

)
e−

3x
2

9
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 23� �
dsolve(2*diff(y(x),x$3)+3*diff(y(x),x$2)-2*diff(y(x),x)-3*y(x)=0,y(x), singsol=all)� �

y(x) =
(
c3e

5x
2 + c2e

x
2 + c1

)
e− 3x

2

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30� �
DSolve[2*y'''[x]+3*y''[x]-2*y'[x]-3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−3x/2 + c2e

−x + c3e
x
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18.5 problem section 9.2, problem 5
18.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7076

Internal problem ID [1469]
Internal file name [OUTPUT/1470_Sunday_June_05_2022_02_19_01_AM_68935447/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 5.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

y′′′ + 5y′′ + 9y′ + 5y = 0

The characteristic equation is

λ3 + 5λ2 + 9λ+ 5 = 0

The roots of the above equation are

λ1 = −1
λ2 = −2− i

λ3 = −2 + i

Therefore the homogeneous solution is

yh(x) = c1e−x + e(−2+i)xc2 + e(−2−i)xc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = e(−2+i)x

y3 = e(−2−i)x
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Summary
The solution(s) found are the following

(1)y = c1e−x + e(−2+i)xc2 + e(−2−i)xc3

Verification of solutions

y = c1e−x + e(−2+i)xc2 + e(−2−i)xc3

Verified OK.

18.5.1 Maple step by step solution

Let’s solve
y′′′ + 5y′′ + 9y′ + 5y = 0

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = −5y3(x)− 9y2(x)− 5y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = −5y3(x)− 9y2(x)− 5y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve
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→
y
′
(x) =


0 1 0
0 0 1
−5 −9 −5

 · →y (x)

• Define the coefficient matrix

A =


0 1 0
0 0 1
−5 −9 −5


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


1
−1
1


 ,

−2− I,


3
25 −

4 I
25

−2
5 +

I
5

1


 ,

−2 + I,


3
25 +

4 I
25

−2
5 −

I
5

1





• Consider eigenpair−1,


1
−1
1




• Solution to homogeneous system from eigenpair

→
y 1 = e−x ·


1
−1
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−2− I,


3
25 −

4 I
25

−2
5 +

I
5

1




• Solution from eigenpair
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e(−2−I)x ·


3
25 −

4 I
25

−2
5 +

I
5

1


• Use Euler identity to write solution in terms of sin and cos

e−2x · (cos (x)− I sin (x)) ·


3
25 −

4 I
25

−2
5 +

I
5

1


• Simplify expression

e−2x ·


( 3
25 −

4 I
25

)
(cos (x)− I sin (x))(

−2
5 +

I
5

)
(cos (x)− I sin (x))

cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system→

y 2(x) = e−2x ·


3 cos(x)

25 − 4 sin(x)
25

−2 cos(x)
5 + sin(x)

5

cos (x)

 ,
→
y 3(x) = e−2x ·


−3 sin(x)

25 − 4 cos(x)
25

2 sin(x)
5 + cos(x)

5

− sin (x)




• General solution to the system of ODEs
→
y = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x)

• Substitute solutions into the general solution

→
y = c1e−x ·


1
−1
1

+ c2e−2x ·


3 cos(x)

25 − 4 sin(x)
25

−2 cos(x)
5 + sin(x)

5

cos (x)

+ c3e−2x ·


−3 sin(x)

25 − 4 cos(x)
25

2 sin(x)
5 + cos(x)

5

− sin (x)


• First component of the vector is the solution to the ODE

y =
(
cos(x)(3c2−4c3)−4

(
c2+ 3c3

4

)
sin(x)

)
e−2x

25 + c1e−x
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 27� �
dsolve(diff(y(x),x$3)+5*diff(y(x),x$2)+9*diff(y(x),x)+5*y(x)=0,y(x), singsol=all)� �

y(x) = e−xc1 + c2e−2x sin (x) + c3e−2x cos (x)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 28� �
DSolve[y'''[x]+5*y''[x]+9*y'[x]+5*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(c3ex + c2 cos(x) + c1 sin(x))
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18.6 problem section 9.2, problem 6
18.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7081

Internal problem ID [1470]
Internal file name [OUTPUT/1471_Sunday_June_05_2022_02_19_03_AM_20746883/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 6.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

4y′′′ − 8y′′ + 5y′ − y = 0

The characteristic equation is

4λ3 − 8λ2 + 5λ− 1 = 0

The roots of the above equation are

λ1 = 1

λ2 =
1
2

λ3 =
1
2

Therefore the homogeneous solution is

yh(x) = c1ex + c2e
x
2 + x ex

2 c3

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = ex
2

y3 = ex
2x
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Summary
The solution(s) found are the following

(1)y = c1ex + c2e
x
2 + x ex

2 c3

Verification of solutions

y = c1ex + c2e
x
2 + x ex

2 c3

Verified OK.

18.6.1 Maple step by step solution

Let’s solve
4y′′′ − 8y′′ + 5y′ − y = 0

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative
y′′′ = 2y′′ − 5y′

4 + y
4

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ − 2y′′ + 5y′

4 − y
4 = 0

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = 2y3(x)− 5y2(x)

4 + y1(x)
4

Convert linear ODE into a system of first order ODEs[
y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 2y3(x)− 5y2(x)

4 + y1(x)
4

]
• Define vector
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→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
1
4 −5

4 2

 · →y (x)

• Define the coefficient matrix

A =


0 1 0
0 0 1
1
4 −5

4 2


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

1
2 ,


4
2
1


 ,

1
2 ,


0
0
0


 ,

1,


1
1
1





• Consider eigenpair, with eigenvalue of algebraic multiplicity 21
2 ,


4
2
1




• First solution from eigenvalue 1
2

→
y 1(x) = ex

2 ·


4
2
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 1
2 is the eigenvalue, and →

v is the eigenvector
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→
y 2(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 1

2

• Substitute →
y 2(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 2(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 1

2


0 1 0
0 0 1
1
4 −5

4 2

− 1
2 ·


1 0 0
0 1 0
0 0 1


 · →p =


4
2
1


• Choice of →

p

→
p =


−8
0
0


• Second solution from eigenvalue 1

2

→
y 2(x) = ex

2 ·

x ·


4
2
1

+


−8
0
0




• Consider eigenpair
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1,


1
1
1




• Solution to homogeneous system from eigenpair

→
y 3 = ex ·


1
1
1


• General solution to the system of ODEs

→
y = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3

• Substitute solutions into the general solution

→
y = c1e

x
2 ·


4
2
1

+ c2e
x
2 ·

x ·


4
2
1

+


−8
0
0


+ c3ex ·


1
1
1


• First component of the vector is the solution to the ODE

y = ((4x− 8) c2 + 4c1) e
x
2 + c3ex

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(4*diff(y(x),x$3)-8*diff(y(x),x$2)+5*diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

y(x) = (c3x+ c2) e
x
2 + exc1
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30� �
DSolve[4*y'''[x]-8*y''[x]+5*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex/2
(
c2x+ c3e

x/2 + c1
)
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18.7 problem section 9.2, problem 7
Internal problem ID [1471]
Internal file name [OUTPUT/1472_Sunday_June_05_2022_02_19_04_AM_89291697/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 7.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

27y′′′ + 27y′′ + 9y′ + y = 0

The characteristic equation is

27λ3 + 27λ2 + 9λ+ 1 = 0

The roots of the above equation are

λ1 = −1
3

λ2 = −1
3

λ3 = −1
3

Therefore the homogeneous solution is

yh(x) = c1e−
x
3 + c2x e−

x
3 + x2e−x

3 c3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x
3

y2 = x e−x
3

y3 = x2e−x
3
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Summary
The solution(s) found are the following

(1)y = c1e−
x
3 + c2x e−

x
3 + x2e−x

3 c3

Verification of solutions

y = c1e−
x
3 + c2x e−

x
3 + x2e−x

3 c3

Verified OK.

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 19� �
dsolve(27*diff(y(x),x$3)+27*diff(y(x),x$2)+9*diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) = e−x
3
(
c3x

2 + c2x+ c1
)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 25� �
DSolve[27*y'''[x]+27*y''[x]+9*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x/3(x(c3x+ c2) + c1)
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18.8 problem section 9.2, problem 8
18.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7089

Internal problem ID [1472]
Internal file name [OUTPUT/1473_Sunday_June_05_2022_02_19_05_AM_84385381/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 8.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

y′′′′ + y′′ = 0

The characteristic equation is
λ4 + λ2 = 0

The roots of the above equation are

λ1 = 0
λ2 = 0
λ3 = i

λ4 = −i

Therefore the homogeneous solution is

yh(x) = c2x+ c1 + e−ixc3 + eixc4
The fundamental set of solutions for the homogeneous solution are the following

y1 = 1
y2 = x

y3 = e−ix

y4 = eix
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Summary
The solution(s) found are the following

(1)y = c2x+ c1 + e−ixc3 + eixc4
Verification of solutions

y = c2x+ c1 + e−ixc3 + eixc4

Verified OK.

18.8.1 Maple step by step solution

Let’s solve
y′′′′ + y′′ = 0

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = −y3(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = −y3(x)]

• Define vector
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→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 −1 0

 · →y (x)

• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 −1 0


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

0,


1
0
0
0



 ,

0,


0
0
0
0



 ,

−I,


−I
−1
I
1



 ,

I,


I
−1
−I
1






• Consider eigenpair0,


1
0
0
0




• Solution to homogeneous system from eigenpair
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→
y 1 =


1
0
0
0


• Consider eigenpair0,


0
0
0
0




• Solution to homogeneous system from eigenpair

→
y 2 =


0
0
0
0


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−I,


−I
−1
I
1




• Solution from eigenpair

e−Ix ·


−I
−1
I
1


• Use Euler identity to write solution in terms of sin and cos

7091



(cos (x)− I sin (x)) ·


−I
−1
I
1


• Simplify expression

−I(cos (x)− I sin (x))
− cos (x) + I sin (x)
I(cos (x)− I sin (x))
cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) =


− sin (x)
− cos (x)
sin (x)
cos (x)

 ,
→
y 4(x) =


− cos (x)
sin (x)
cos (x)
− sin (x)




• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x)

• Substitute solutions into the general solution

→
y =


−c4 cos (x)− c3 sin (x) + c1

c4 sin (x)− c3 cos (x)
c4 cos (x) + c3 sin (x)
−c4 sin (x) + c3 cos (x)


• First component of the vector is the solution to the ODE

y = −c4 cos (x)− c3 sin (x) + c1
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(diff(y(x),x$4)+diff(y(x),x$2)=0,y(x), singsol=all)� �

y(x) = c1 + c2x+ c3 sin (x) + c4 cos (x)

3 Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 24� �
DSolve[y''''[x]+y''[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c4x− c1 cos(x)− c2 sin(x) + c3
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18.9 problem section 9.2, problem 9
18.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7095

Internal problem ID [1473]
Internal file name [OUTPUT/1474_Sunday_June_05_2022_02_19_06_AM_78568510/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 9.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

y′′′′ − 16y = 0

The characteristic equation is
λ4 − 16 = 0

The roots of the above equation are

λ1 = 2
λ2 = −2
λ3 = 2i
λ4 = −2i

Therefore the homogeneous solution is

yh(x) = c1e−2x + c2e2x + e2ixc3 + e−2ixc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−2x

y2 = e2x

y3 = e2ix

y4 = e−2ix
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Summary
The solution(s) found are the following

(1)y = c1e−2x + c2e2x + e2ixc3 + e−2ixc4

Verification of solutions

y = c1e−2x + c2e2x + e2ixc3 + e−2ixc4

Verified OK.

18.9.1 Maple step by step solution

Let’s solve
y′′′′ − 16y = 0

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = 16y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = 16y1(x)]

• Define vector
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→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
16 0 0 0

 · →y (x)

• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
16 0 0 0


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−2,


−1

8
1
4

−1
2

1



 ,

2,


1
8
1
4
1
2

1



 ,

−2 I,


− I

8

−1
4

I
2

1



 ,

2 I,


I
8

−1
4

− I
2

1






• Consider eigenpair−2,


−1

8
1
4

−1
2

1




• Solution to homogeneous system from eigenpair
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→
y 1 = e−2x ·


−1

8
1
4

−1
2

1


• Consider eigenpair2,


1
8
1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 2 = e2x ·


1
8
1
4
1
2

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−2 I,


− I

8

−1
4

I
2

1




• Solution from eigenpair

e−2 Ix ·


− I

8

−1
4

I
2

1


• Use Euler identity to write solution in terms of sin and cos
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(cos (2x)− I sin (2x)) ·


− I

8

−1
4

I
2

1


• Simplify expression

− I
8(cos (2x)− I sin (2x))

− cos(2x)
4 + I sin(2x)

4
I
2(cos (2x)− I sin (2x))

cos (2x)− I sin (2x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) =


− sin(2x)

8

− cos(2x)
4

sin(2x)
2

cos (2x)

 ,
→
y 4(x) =


− cos(2x)

8
sin(2x)

4
cos(2x)

2

− sin (2x)




• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x)

• Substitute solutions into the general solution

→
y = c1e−2x ·


−1

8
1
4

−1
2

1

+ c2e2x ·


1
8
1
4
1
2

1

+


− c3 sin(2x)

8 − c4 cos(2x)
8

− c3 cos(2x)
4 + c4 sin(2x)

4
c3 sin(2x)

2 + c4 cos(2x)
2

c3 cos (2x)− c4 sin (2x)


• First component of the vector is the solution to the ODE

y = − c1e−2x

8 + c2e2x
8 − c4 cos(2x)

8 − c3 sin(2x)
8
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve(diff(y(x),x$4)-16*y(x)=0,y(x), singsol=all)� �

y(x) = c1e2x + e−2xc2 + c3 sin (2x) + c4 cos (2x)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 36� �
DSolve[y''''[x]-16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
2x + c3e

−2x + c2 cos(2x) + c4 sin(2x)

7099



18.10 problem section 9.2, problem 10
Internal problem ID [1474]
Internal file name [OUTPUT/1475_Sunday_June_05_2022_02_19_07_AM_84899194/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 10.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

y′′′′ + 12y′′ + 36y = 0

The characteristic equation is

λ4 + 12λ2 + 36 = 0

The roots of the above equation are

λ1 = i
√
6

λ2 = −i
√
6

λ3 = i
√
6

λ4 = −i
√
6

Therefore the homogeneous solution is

yh(x) = e−i
√
6xc1 + x e−i

√
6xc2 + ei

√
6xc3 + x ei

√
6xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−i
√
6x

y2 = x e−i
√
6x

y3 = ei
√
6x

y4 = x ei
√
6x
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Summary
The solution(s) found are the following

(1)y = e−i
√
6xc1 + x e−i

√
6xc2 + ei

√
6xc3 + x ei

√
6xc4

Verification of solutions

y = e−i
√
6xc1 + x e−i

√
6xc2 + ei

√
6xc3 + x ei

√
6xc4

Verified OK.

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 29� �
dsolve(diff(y(x),x$4)+12*diff(y(x),x$2)+36*y(x)=0,y(x), singsol=all)� �

y(x) = (c4x+ c2) cos
(√

6x
)
+ sin

(√
6x
)
(c3x+ c1)

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 38� �
DSolve[y''''[x]+12*y''[x]+36*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (c2x+ c1) cos
(√

6x
)
+ (c4x+ c3) sin

(√
6x
)
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18.11 problem section 9.2, problem 11
18.11.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7103

Internal problem ID [1475]
Internal file name [OUTPUT/1476_Sunday_June_05_2022_02_19_09_AM_66588318/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 11.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

16y′′′′ − 72y′′ + 81y = 0

The characteristic equation is

16λ4 − 72λ2 + 81 = 0

The roots of the above equation are

λ1 =
3
2

λ2 =
3
2

λ3 = −3
2

λ4 = −3
2

Therefore the homogeneous solution is

yh(x) = c1e−
3x
2 + c2x e−

3x
2 + e 3x

2 c3 + x e 3x
2 c4
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The fundamental set of solutions for the homogeneous solution are the following

y1 = e− 3x
2

y2 = x e− 3x
2

y3 = e 3x
2

y4 = x e 3x
2

Summary
The solution(s) found are the following

(1)y = c1e−
3x
2 + c2x e−

3x
2 + e 3x

2 c3 + x e 3x
2 c4

Verification of solutions

y = c1e−
3x
2 + c2x e−

3x
2 + e 3x

2 c3 + x e 3x
2 c4

Verified OK.

18.11.1 Maple step by step solution

Let’s solve
16y′′′′ − 72y′′ + 81y = 0

• Highest derivative means the order of the ODE is 4
y′′′′

• Isolate 4th derivative
y′′′′ = 9y′′

2 − 81y
16

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′′ − 9y′′

2 + 81y
16 = 0

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
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y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) =

9y3(x)
2 − 81y1(x)

16

Convert linear ODE into a system of first order ODEs[
y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) =

9y3(x)
2 − 81y1(x)

16

]
• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1

−81
16 0 9

2 0

 · →y (x)

• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1

−81
16 0 9

2 0


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−
3
2 ,


− 8

27
4
9

−2
3

1



 ,

−3
2 ,


0
0
0
0



 ,


3
2 ,


8
27
4
9
2
3

1



 ,

3
2 ,


0
0
0
0
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• Consider eigenpair, with eigenvalue of algebraic multiplicity 2−
3
2 ,


− 8

27
4
9

−2
3

1




• First solution from eigenvalue − 3

2

→
y 1(x) = e− 3x

2 ·


− 8

27
4
9

−2
3

1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = −3
2 is the eigenvalue, and →

v is the eigenvector
→
y 2(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = −3

2

• Substitute →
y 2(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 2(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue − 3

2
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0 1 0 0
0 0 1 0
0 0 0 1

−81
16 0 9

2 0

−−3
2 ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 · →p =


− 8

27
4
9

−2
3

1


• Choice of →

p

→
p =


−16

81

0
0
0


• Second solution from eigenvalue − 3

2

→
y 2(x) = e− 3x

2 ·

x ·


− 8

27
4
9

−2
3

1

+


−16

81

0
0
0




• Consider eigenpair, with eigenvalue of algebraic multiplicity 2

3
2 ,


8
27
4
9
2
3

1




• First solution from eigenvalue 3

2

→
y 3(x) = e 3x

2 ·


8
27
4
9
2
3

1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 3
2 is the eigenvalue, and →

v is the eigenvector
→
y 4(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 3

2
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• Substitute →
y 4(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 4(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 3

2


0 1 0 0
0 0 1 0
0 0 0 1

−81
16 0 9

2 0

− 3
2 ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 · →p =


8
27
4
9
2
3

1


• Choice of →

p

→
p =


−16

81

0
0
0


• Second solution from eigenvalue 3

2

→
y 4(x) = e 3x

2 ·

x ·


8
27
4
9
2
3

1

+


−16

81

0
0
0




• General solution to the system of ODEs

→
y = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4(x)

• Substitute solutions into the general solution
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→
y = c1e−

3x
2 ·


− 8

27
4
9

−2
3

1

+ c2e−
3x
2 ·

x ·


− 8

27
4
9

−2
3

1

+


−16

81

0
0
0



+ e 3x
2 c3 ·


8
27
4
9
2
3

1

+ e 3x
2 c4 ·

x ·


8
27
4
9
2
3

1

+


−16

81

0
0
0




• First component of the vector is the solution to the ODE

y = 8((−3x−2)c2−3c1)e−
3x
2

81 + 8
((
x− 2

3
)
c4+c3

)
e
3x
2

27

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 25� �
dsolve(16*diff(y(x),x$4)-72*diff(y(x),x$2)+81*y(x)=0,y(x), singsol=all)� �

y(x) = e− 3x
2 (c2x+ c1) + e 3x

2 (c4x+ c3)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 37� �
DSolve[16*y''''[x]-72*y''[x]+81*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−3x/2(c3e3x + x
(
c4e

3x + c2
)
+ c1

)

7108



18.12 problem section 9.2, problem 12
18.12.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7110

Internal problem ID [1476]
Internal file name [OUTPUT/1477_Sunday_June_05_2022_02_19_10_AM_42483123/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 12.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

6y′′′′ + 5y′′′ + 7y′′ + 5y′ + y = 0

The characteristic equation is

6λ4 + 5λ3 + 7λ2 + 5λ+ 1 = 0

The roots of the above equation are

λ1 = −1
2

λ2 = −1
3

λ3 = i

λ4 = −i

Therefore the homogeneous solution is

yh(x) = e−ixc1 + eixc2 + e−x
2 c3 + e−x

3 c4
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The fundamental set of solutions for the homogeneous solution are the following

y1 = e−ix

y2 = eix

y3 = e−x
2

y4 = e−x
3

Summary
The solution(s) found are the following

(1)y = e−ixc1 + eixc2 + e−x
2 c3 + e−x

3 c4

Verification of solutions

y = e−ixc1 + eixc2 + e−x
2 c3 + e−x

3 c4

Verified OK.

18.12.1 Maple step by step solution

Let’s solve
6y′′′′ + 5y′′′ + 7y′′ + 5y′ + y = 0

• Highest derivative means the order of the ODE is 4
y′′′′

• Isolate 4th derivative
y′′′′ = −5y′′′

6 − 7y′′
6 − 5y′

6 − y
6

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′′ + 5y′′′

6 + 7y′′
6 + 5y′

6 + y
6 = 0

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
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y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = −5y4(x)

6 − 7y3(x)
6 − 5y2(x)

6 − y1(x)
6

Convert linear ODE into a system of first order ODEs[
y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = −5y4(x)

6 − 7y3(x)
6 − 5y2(x)

6 − y1(x)
6

]
• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
−1

6 −5
6 −7

6 −5
6

 · →y (x)

• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
−1

6 −5
6 −7

6 −5
6


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1
2 ,


−8
4
−2
1



 ,

−1
3 ,


−27
9
−3
1



 ,

−I,


−I
−1
I
1



 ,

I,


I
−1
−I
1
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• Consider eigenpair−1
2 ,


−8
4
−2
1




• Solution to homogeneous system from eigenpair

→
y 1 = e−x

2 ·


−8
4
−2
1


• Consider eigenpair−1

3 ,


−27
9
−3
1




• Solution to homogeneous system from eigenpair

→
y 2 = e−x

3 ·


−27
9
−3
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−I,


−I
−1
I
1




• Solution from eigenpair
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e−Ix ·


−I
−1
I
1


• Use Euler identity to write solution in terms of sin and cos

(cos (x)− I sin (x)) ·


−I
−1
I
1


• Simplify expression

−I(cos (x)− I sin (x))
− cos (x) + I sin (x)
I(cos (x)− I sin (x))
cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) =


− sin (x)
− cos (x)
sin (x)
cos (x)

 ,
→
y 4(x) =


− cos (x)
sin (x)
cos (x)
− sin (x)




• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x)

• Substitute solutions into the general solution

→
y = c1e−

x
2 ·


−8
4
−2
1

+ c2e−
x
3 ·


−27
9
−3
1

+


−c3 sin (x)− c4 cos (x)
c4 sin (x)− c3 cos (x)
c4 cos (x) + c3 sin (x)
−c4 sin (x) + c3 cos (x)


• First component of the vector is the solution to the ODE

y = −8c1e−
x
2 − 27c2e−

x
3 − c4 cos (x)− c3 sin (x)
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 25� �
dsolve(6*diff(y(x),x$4)+5*diff(y(x),x$3)+7*diff(y(x),x$2)+5*diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) = c1e−
x
2 + c2e−

x
3 + c3 sin (x) + c4 cos (x)

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 37� �
DSolve[6*y''''[x]+5*y'''[x]+7*y''[x]+5*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x/2(c3ex/6 + c4
)
+ c1 cos(x) + c2 sin(x)
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18.13 problem section 9.2, problem 13
18.13.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7116

Internal problem ID [1477]
Internal file name [OUTPUT/1478_Sunday_June_05_2022_02_19_11_AM_51871714/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 13.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

4y′′′′ + 12y′′′ + 3y′′ − 13y′ − 6y = 0

The characteristic equation is

4λ4 + 12λ3 + 3λ2 − 13λ− 6 = 0

The roots of the above equation are

λ1 = 1

λ2 = −3
2

λ3 = −1
2

λ4 = −2

Therefore the homogeneous solution is

yh(x) = c1e−2x + c2ex + e−x
2 c3 + e− 3x

2 c4
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The fundamental set of solutions for the homogeneous solution are the following

y1 = e−2x

y2 = ex

y3 = e−x
2

y4 = e− 3x
2

Summary
The solution(s) found are the following

(1)y = c1e−2x + c2ex + e−x
2 c3 + e− 3x

2 c4

Verification of solutions

y = c1e−2x + c2ex + e−x
2 c3 + e− 3x

2 c4

Verified OK.

18.13.1 Maple step by step solution

Let’s solve
4y′′′′ + 12y′′′ + 3y′′ − 13y′ − 6y = 0

• Highest derivative means the order of the ODE is 4
y′′′′

• Isolate 4th derivative
y′′′′ = −3y′′′ − 3y′′

4 + 13y′
4 + 3y

2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′′ + 3y′′′ + 3y′′

4 − 13y′
4 − 3y

2 = 0

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)

7116



y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = −3y4(x)− 3y3(x)

4 + 13y2(x)
4 + 3y1(x)

2

Convert linear ODE into a system of first order ODEs[
y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = −3y4(x)− 3y3(x)

4 + 13y2(x)
4 + 3y1(x)

2

]
• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
3
2

13
4 −3

4 −3

 · →y (x)

• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
3
2

13
4 −3

4 −3


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−2,


−1

8
1
4

−1
2

1



 ,

−
3
2 ,


− 8

27
4
9

−2
3

1



 ,

−1
2 ,


−8
4
−2
1



 ,

1,


1
1
1
1
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• Consider eigenpair−2,


−1

8
1
4

−1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−2x ·


−1

8
1
4

−1
2

1


• Consider eigenpair−

3
2 ,


− 8

27
4
9

−2
3

1




• Solution to homogeneous system from eigenpair

→
y 2 = e− 3x

2 ·


− 8

27
4
9

−2
3

1


• Consider eigenpair−1

2 ,


−8
4
−2
1




• Solution to homogeneous system from eigenpair
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→
y 3 = e−x

2 ·


−8
4
−2
1


• Consider eigenpair1,


1
1
1
1




• Solution to homogeneous system from eigenpair

→
y 4 = ex ·


1
1
1
1


• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 + c4

→
y 4

• Substitute solutions into the general solution

→
y = c1e−2x ·


−1

8
1
4

−1
2

1

+ c2e−
3x
2 ·


− 8

27
4
9

−2
3

1

+ e−x
2 c3 ·


−8
4
−2
1

+ exc4 ·


1
1
1
1


• First component of the vector is the solution to the ODE

y = −

(
64c2e

x
2

27 +64 e
3x
2 c3−8 e3xc4+c1

)
e−2x

8
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve(4*diff(y(x),x$4)+12*diff(y(x),x$3)+3*diff(y(x),x$2)-13*diff(y(x),x)-6*y(x)=0,y(x), singsol=all)� �

y(x) =
(
c4e3x + c3e

3x
2 + c1e

x
2 + c2

)
e−2x

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 42� �
DSolve[4*y''''[x]+12*y'''[x]+3*y''[x]-13*y'[x]-6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(c1ex/2 + c2e
3x/2 + c4e

3x + c3
)
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18.14 problem section 9.2, problem 14
18.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7122

Internal problem ID [1478]
Internal file name [OUTPUT/1479_Sunday_June_05_2022_02_19_12_AM_14232300/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 14.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

y′′′′ − 4y′′′ + 7y′′ − 6y′ + 2y = 0

The characteristic equation is

λ4 − 4λ3 + 7λ2 − 6λ+ 2 = 0

The roots of the above equation are

λ1 = 1− i

λ2 = 1 + i

λ3 = 1
λ4 = 1

Therefore the homogeneous solution is

yh(x) = c1ex + c2x ex + e(1−i)xc3 + e(1+i)xc4
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The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = x ex

y3 = e(1−i)x

y4 = e(1+i)x

Summary
The solution(s) found are the following

(1)y = c1ex + c2x ex + e(1−i)xc3 + e(1+i)xc4

Verification of solutions

y = c1ex + c2x ex + e(1−i)xc3 + e(1+i)xc4

Verified OK.

18.14.1 Maple step by step solution

Let’s solve
y′′′′ − 4y′′′ + 7y′′ − 6y′ + 2y = 0

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = 4y4(x)− 7y3(x) + 6y2(x)− 2y1(x)
Convert linear ODE into a system of first order ODEs
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[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = 4y4(x)− 7y3(x) + 6y2(x)− 2y1(x)]
• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
−2 6 −7 4

 · →y (x)

• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
−2 6 −7 4


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

1,


1
1
1
1



 ,

1,


0
0
0
0



 ,

1− I,


−1

4 +
I
4

I
2

1
2 +

I
2

1



 ,

1 + I,


−1

4 −
I
4

− I
2

1
2 −

I
2

1






• Consider eigenpair, with eigenvalue of algebraic multiplicity 2
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1,


1
1
1
1




• First solution from eigenvalue 1

→
y 1(x) = ex ·


1
1
1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 1 is the eigenvalue, and →
v is the eigenvector

→
y 2(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 1

• Substitute →
y 2(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 2(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 1


0 1 0 0
0 0 1 0
0 0 0 1
−2 6 −7 4

− 1 ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 · →p =


1
1
1
1


• Choice of →

p
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→
p =


−1
0
0
0


• Second solution from eigenvalue 1

→
y 2(x) = ex ·

x ·


1
1
1
1

+


−1
0
0
0




• Consider complex eigenpair, complex conjugate eigenvalue can be ignored1− I,


−1

4 +
I
4

I
2

1
2 +

I
2

1




• Solution from eigenpair

e(1−I)x ·


−1

4 +
I
4

I
2

1
2 +

I
2

1


• Use Euler identity to write solution in terms of sin and cos

ex · (cos (x)− I sin (x)) ·


−1

4 +
I
4

I
2

1
2 +

I
2

1


• Simplify expression
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ex ·



(
−1

4 +
I
4

)
(cos (x)− I sin (x))

I
2(cos (x)− I sin (x))(1

2 +
I
2

)
(cos (x)− I sin (x))

cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) = ex ·


− cos(x)

4 + sin(x)
4

sin(x)
2

cos(x)
2 + sin(x)

2

cos (x)

 ,
→
y 4(x) = ex ·



sin(x)
4 + cos(x)

4
cos(x)

2
cos(x)

2 − sin(x)
2

− sin (x)




• General solution to the system of ODEs

→
y = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4(x)

• Substitute solutions into the general solution

→
y = c1ex ·


1
1
1
1

+ c2ex ·

x ·


1
1
1
1

+


−1
0
0
0



+ c3ex ·


− cos(x)

4 + sin(x)
4

sin(x)
2

cos(x)
2 + sin(x)

2

cos (x)

+ exc4 ·



sin(x)
4 + cos(x)

4
cos(x)

2
cos(x)

2 − sin(x)
2

− sin (x)


• First component of the vector is the solution to the ODE

y =
(

(−c3+c4) cos(x)
4 + (c3+c4) sin(x)

4 + (x− 1) c2 + c1
)
ex

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(diff(y(x),x$4)-4*diff(y(x),x$3)+7*diff(y(x),x$2)-6*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)� �

y(x) = ex(c1 + c2x+ c3 sin (x) + c4 cos (x))

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 26� �
DSolve[y''''[x]-4*y'''[x]+7*y''[x]-6*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(c4x+ c2 cos(x) + c1 sin(x) + c3)
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18.15 problem section 9.2, problem 15
18.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7130

Internal problem ID [1479]
Internal file name [OUTPUT/1480_Sunday_June_05_2022_02_19_14_AM_82956636/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 15.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

y′′′ − 2y′′ + 4y′ − 8y = 0

With initial conditions

[y(0) = 2, y′(0) = −2, y′′(0) = 2]

The characteristic equation is

λ3 − 2λ2 + 4λ− 8 = 0

The roots of the above equation are

λ1 = 2
λ2 = 2i
λ3 = −2i

Therefore the homogeneous solution is

yh(x) = c1e2x + e2ixc2 + e−2ixc3
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The fundamental set of solutions for the homogeneous solution are the following

y1 = e2x

y2 = e2ix

y3 = e−2ix

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e2x + e2ixc2 + e−2ixc3 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 2 and x = 0
in the above gives

2 = c1 + c2 + c3 (1A)

Taking derivative of the solution gives

y′ = 2c1e2x + 2ie2ixc2 − 2ie−2ixc3

substituting y′ = −2 and x = 0 in the above gives

−2 = 2c2i− 2c3i+ 2c1 (2A)

Taking two derivatives of the solution gives

y′′ = 4c1e2x − 4 e2ixc2 − 4 e−2ixc3

substituting y′′ = 2 and x = 0 in the above gives

2 = 4c1 − 4c2 − 4c3 (3A)

Equations {1A,2A,3A} are now solved for {c1, c2, c3}. Solving for the constants gives

c1 =
5
4

c2 =
3
8 + 9i

8
c3 =

3
8 − 9i

8
Substituting these values back in above solution results in

y = 5 e2x
4 + 3 cos (2x)

4 − 9 sin (2x)
4
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Summary
The solution(s) found are the following

(1)y = 5 e2x
4 + 3 cos (2x)

4 − 9 sin (2x)
4

Figure 542: Solution plot

Verification of solutions

y = 5 e2x
4 + 3 cos (2x)

4 − 9 sin (2x)
4

Verified OK.

18.15.1 Maple step by step solution

Let’s solve[
y′′′ − 2y′′ + 4y′ − 8y = 0, y(0) = 2, y′

∣∣∣{x=0}
= −2, y′′

∣∣∣{x=0}
= 2
]

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y
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◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = 2y3(x)− 4y2(x) + 8y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 2y3(x)− 4y2(x) + 8y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
8 −4 2

 · →y (x)

• Define the coefficient matrix

A =


0 1 0
0 0 1
8 −4 2


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

2,


1
4
1
2

1


 ,

−2 I,


−1

4
I
2

1


 ,

2 I,


−1
4

− I
2

1





• Consider eigenpair
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2,


1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e2x ·


1
4
1
2

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−2 I,


−1

4
I
2

1




• Solution from eigenpair

e−2 Ix ·


−1

4
I
2

1


• Use Euler identity to write solution in terms of sin and cos

(cos (2x)− I sin (2x)) ·


−1

4
I
2

1


• Simplify expression

− cos(2x)
4 + I sin(2x)

4
I
2(cos (2x)− I sin (2x))

cos (2x)− I sin (2x)


• Both real and imaginary parts are solutions to the homogeneous system→

y 2(x) =


− cos(2x)

4
sin(2x)

2

cos (2x)

 ,
→
y 3(x) =


sin(2x)

4
cos(2x)

2

− sin (2x)
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• General solution to the system of ODEs
→
y = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x)

• Substitute solutions into the general solution

→
y = c1e2x ·


1
4
1
2

1

+


− c2 cos(2x)

4 + c3 sin(2x)
4

c2 sin(2x)
2 + c3 cos(2x)

2

c2 cos (2x)− c3 sin (2x)


• First component of the vector is the solution to the ODE

y = c1e2x
4 + c3 sin(2x)

4 − c2 cos(2x)
4

• Use the initial condition y(0) = 2
2 = c1

4 − c2
4

• Calculate the 1st derivative of the solution
y′ = c1e2x

2 + c3 cos(2x)
2 + c2 sin(2x)

2

• Use the initial condition y′
∣∣∣{x=0}

= −2

−2 = c1
2 + c3

2

• Calculate the 2nd derivative of the solution
y′′ = c1e2x − c3 sin (2x) + c2 cos (2x)

• Use the initial condition y′′
∣∣∣{x=0}

= 2

2 = c1 + c2

• Solve for the unknown coefficients
{c1 = 5, c2 = −3, c3 = −9}

• Solution to the IVP
y = 5 e2x

4 + 3 cos(2x)
4 − 9 sin(2x)

4
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 23� �
dsolve([diff(y(x),x$3)-2*diff(y(x),x$2)+4*diff(y(x),x)-8*y(x)=0,y(0) = 2, D(y)(0) = -2, (D@@2)(y)(0) = 2],y(x), singsol=all)� �

y(x) = 5 e2x
4 − 9 sin (2x)

4 + 3 cos (2x)
4

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 21� �
DSolve[{y'''[x]-2*y''[x]+4*y'[x]-8*y[x]==0,{y[0]==2,y'[0]==-2,y''[0]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e2x − 2 sin(2x) + cos(2x)
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18.16 problem section 9.2, problem 16
18.16.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7137

Internal problem ID [1480]
Internal file name [OUTPUT/1481_Sunday_June_05_2022_02_19_16_AM_55814989/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 16.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

y′′′ + 3y′′ − y′ − 3y = 0

With initial conditions

[y(0) = 0, y′(0) = 14, y′′(0) = −40]

The characteristic equation is

λ3 + 3λ2 − λ− 3 = 0

The roots of the above equation are

λ1 = 1
λ2 = −3
λ3 = −1

Therefore the homogeneous solution is

yh(x) = c1e−x + c2ex + e−3xc3
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The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = ex

y3 = e−3x

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e−x + c2ex + e−3xc3 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 0
in the above gives

0 = c1 + c2 + c3 (1A)

Taking derivative of the solution gives

y′ = −c1e−x + c2ex − 3 e−3xc3

substituting y′ = 14 and x = 0 in the above gives

14 = −c1 + c2 − 3c3 (2A)

Taking two derivatives of the solution gives

y′′ = c1e−x + c2ex + 9 e−3xc3

substituting y′′ = −40 and x = 0 in the above gives

−40 = c1 + c2 + 9c3 (3A)

Equations {1A,2A,3A} are now solved for {c1, c2, c3}. Solving for the constants gives

c1 = 3
c2 = 2
c3 = −5

Substituting these values back in above solution results in

y = 3 e−x + 2 ex − 5 e−3x
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Summary
The solution(s) found are the following

(1)y = 3 e−x + 2 ex − 5 e−3x

Figure 543: Solution plot

Verification of solutions

y = 3 e−x + 2 ex − 5 e−3x

Verified OK.

18.16.1 Maple step by step solution

Let’s solve[
y′′′ + 3y′′ − y′ − 3y = 0, y(0) = 0, y′

∣∣∣{x=0}
= 14, y′′

∣∣∣{x=0}
= −40

]
• Highest derivative means the order of the ODE is 3

y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)

7137



y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = −3y3(x) + y2(x) + 3y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = −3y3(x) + y2(x) + 3y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
3 1 −3

 · →y (x)

• Define the coefficient matrix

A =


0 1 0
0 0 1
3 1 −3


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−3,


1
9

−1
3

1


 ,

−1,


1
−1
1


 ,

1,


1
1
1





• Consider eigenpair
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−3,


1
9

−1
3

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−3x ·


1
9

−1
3

1


• Consider eigenpair−1,


1
−1
1




• Solution to homogeneous system from eigenpair

→
y 2 = e−x ·


1
−1
1


• Consider eigenpair1,


1
1
1




• Solution to homogeneous system from eigenpair

→
y 3 = ex ·


1
1
1


• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3

• Substitute solutions into the general solution
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→
y = c1e−3x ·


1
9

−1
3

1

+ c2e−x ·


1
−1
1

+ c3ex ·


1
1
1


• First component of the vector is the solution to the ODE

y =
(
9 e4xc3+9c2e2x+c1

)
e−3x

9

• Use the initial condition y(0) = 0
0 = c3 + c2 + c1

9

• Calculate the 1st derivative of the solution

y′ =
(
36 e4xc3+18c2e2x

)
e−3x

9 −
(
9 e4xc3+9c2e2x+c1

)
e−3x

3

• Use the initial condition y′
∣∣∣{x=0}

= 14

14 = c3 − c2 − c1
3

• Calculate the 2nd derivative of the solution

y′′ =
(
144 e4xc3+36c2e2x

)
e−3x

9 − 2
(
36 e4xc3+18c2e2x

)
e−3x

3 + (9 e4xc3 + 9c2e2x + c1) e−3x

• Use the initial condition y′′
∣∣∣{x=0}

= −40

−40 = c1 + c2 + c3

• Solve for the unknown coefficients
{c1 = −45, c2 = 3, c3 = 2}

• Solution to the IVP
y = (2 e4x + 3 e2x − 5) e−3x

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 21� �
dsolve([diff(y(x),x$3)+3*diff(y(x),x$2)-diff(y(x),x)-3*y(x)=0,y(0) = 0, D(y)(0) = 14, (D@@2)(y)(0) = -40],y(x), singsol=all)� �

y(x) =
(
2 e4x + 3 e2x − 5

)
e−3x

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 25� �
DSolve[{y'''[x]+3*y''[x]-y'[x]-3*y[x]==0,{y[0]==0,y'[0]==14,y''[0]==-40}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −5e−3x + 3e−x + 2ex
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18.17 problem section 9.2, problem 17
18.17.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7144

Internal problem ID [1481]
Internal file name [OUTPUT/1482_Sunday_June_05_2022_02_19_17_AM_40863832/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 17.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

y′′′ − y′′ − y′ + y = 0

With initial conditions

[y(0) = −2, y′(0) = 9, y′′(0) = 4]

The characteristic equation is

λ3 − λ2 − λ+ 1 = 0

The roots of the above equation are

λ1 = −1
λ2 = 1
λ3 = 1

Therefore the homogeneous solution is

yh(x) = c1e−x + c2ex + x exc3
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The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = ex

y3 = x ex

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e−x + c2ex + x exc3 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −2 and
x = 0 in the above gives

−2 = c1 + c2 (1A)

Taking derivative of the solution gives

y′ = −c1e−x + c2ex + c3ex + x exc3

substituting y′ = 9 and x = 0 in the above gives

9 = −c1 + c2 + c3 (2A)

Taking two derivatives of the solution gives

y′′ = c1e−x + c2ex + 2c3ex + x exc3

substituting y′′ = 4 and x = 0 in the above gives

4 = c1 + c2 + 2c3 (3A)

Equations {1A,2A,3A} are now solved for {c1, c2, c3}. Solving for the constants gives

c1 = −4
c2 = 2
c3 = 3

Substituting these values back in above solution results in

y = 3x ex − 4 e−x + 2 ex
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Which simplifies to
y = −4 e−x + ex(3x+ 2)

Summary
The solution(s) found are the following

(1)y = −4 e−x + ex(3x+ 2)

Figure 544: Solution plot

Verification of solutions

y = −4 e−x + ex(3x+ 2)

Verified OK.

18.17.1 Maple step by step solution

Let’s solve[
y′′′ − y′′ − y′ + y = 0, y(0) = −2, y′

∣∣∣{x=0}
= 9, y′′

∣∣∣{x=0}
= 4
]

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
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◦ Define new variable y1(x)
y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = y3(x) + y2(x)− y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = y3(x) + y2(x)− y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
−1 1 1

 · →y (x)

• Define the coefficient matrix

A =


0 1 0
0 0 1
−1 1 1


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


1
−1
1


 ,

1,


1
1
1


 ,

1,


0
0
0
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• Consider eigenpair−1,


1
−1
1




• Solution to homogeneous system from eigenpair

→
y 1 = e−x ·


1
−1
1


• Consider eigenpair, with eigenvalue of algebraic multiplicity 21,


1
1
1




• First solution from eigenvalue 1

→
y 2(x) = ex ·


1
1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 1 is the eigenvalue, and →
v is the eigenvector

→
y 3(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 1

• Substitute →
y 3(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 3(x) to be a solution to the homogeneous system
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(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 1


0 1 0
0 0 1
−1 1 1

− 1 ·


1 0 0
0 1 0
0 0 1


 · →p =


1
1
1


• Choice of →

p

→
p =


−1
0
0


• Second solution from eigenvalue 1

→
y 3(x) = ex ·

x ·


1
1
1

+


−1
0
0




• General solution to the system of ODEs
→
y = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x)

• Substitute solutions into the general solution

→
y = c1e−x ·


1
−1
1

+ c2ex ·


1
1
1

+ c3ex ·

x ·


1
1
1

+


−1
0
0




• First component of the vector is the solution to the ODE
y = c1e−x + ((x− 1) c3 + c2) ex

• Use the initial condition y(0) = −2
−2 = c1 + c2 − c3

• Calculate the 1st derivative of the solution
y′ = −c1e−x + c3ex + ((x− 1) c3 + c2) ex

• Use the initial condition y′
∣∣∣{x=0}

= 9

9 = −c1 + c2

• Calculate the 2nd derivative of the solution
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y′′ = c1e−x + 2c3ex + ((x− 1) c3 + c2) ex

• Use the initial condition y′′
∣∣∣{x=0}

= 4

4 = c1 + c2 + c3

• Solve for the unknown coefficients
{c1 = −4, c2 = 5, c3 = 3}

• Solution to the IVP
y = −4 e−x + ex(3x+ 2)

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 20� �
dsolve([diff(y(x),x$3)-diff(y(x),x$2)-diff(y(x),x)+y(x)=0,y(0) = -2, D(y)(0) = 9, (D@@2)(y)(0) = 4],y(x), singsol=all)� �

y(x) = −4 e−x + (3x+ 2) ex

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 22� �
DSolve[{y'''[x]-y''[x]-y'[x]+y[x]==0,{y[0]==-2,y'[0]==9,y''[0]==4}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(3x+ 2)− 4e−x
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18.18 problem section 9.2, problem 18
18.18.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7151

Internal problem ID [1482]
Internal file name [OUTPUT/1483_Sunday_June_05_2022_02_19_19_AM_45254044/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 18.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

y′′′ − 2y′ − 4y = 0

With initial conditions

[y(0) = 6, y′(0) = 3, y′′(0) = 22]

The characteristic equation is
λ3 − 2λ− 4 = 0

The roots of the above equation are

λ1 = 2
λ2 = −1− i

λ3 = −1 + i

Therefore the homogeneous solution is

yh(x) = e(−1−i)xc1 + c2e2x + e(−1+i)xc3
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The fundamental set of solutions for the homogeneous solution are the following

y1 = e(−1−i)x

y2 = e2x

y3 = e(−1+i)x

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = e(−1−i)xc1 + c2e2x + e(−1+i)xc3 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 6 and x = 0
in the above gives

6 = c1 + c2 + c3 (1A)

Taking derivative of the solution gives

y′ = (−1− i) e(−1−i)xc1 + 2c2e2x + (−1 + i) e(−1+i)xc3

substituting y′ = 3 and x = 0 in the above gives

3 = (−1− i) c1 + 2c2 + (−1 + i) c3 (2A)

Taking two derivatives of the solution gives

y′′ = 2ie(−1−i)xc1 + 4c2e2x − 2ie(−1+i)xc3

substituting y′′ = 22 and x = 0 in the above gives

22 = 2c1i− 2c3i+ 4c2 (3A)

Equations {1A,2A,3A} are now solved for {c1, c2, c3}. Solving for the constants gives

c1 = 1− 3i
2

c2 = 4

c3 = 1 + 3i
2

Substituting these values back in above solution results in

y = e(−1−i)x − 3ie(−1−i)x

2 + 4 e2x + e(−1+i)x + 3ie(−1+i)x

2
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Summary
The solution(s) found are the following

(1)y =
(
1− 3i

2

)
e(−1−i)x +

(
1 + 3i

2

)
e(−1+i)x + 4 e2x

Verification of solutions

y =
(
1− 3i

2

)
e(−1−i)x +

(
1 + 3i

2

)
e(−1+i)x + 4 e2x

Verified OK.

18.18.1 Maple step by step solution

Let’s solve[
y′′′ − 2y′ − 4y = 0, y(0) = 6, y′

∣∣∣{x=0}
= 3, y′′

∣∣∣{x=0}
= 22

]
• Highest derivative means the order of the ODE is 3

y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = 2y2(x) + 4y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 2y2(x) + 4y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
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• System to solve

→
y
′
(x) =


0 1 0
0 0 1
4 2 0

 · →y (x)

• Define the coefficient matrix

A =


0 1 0
0 0 1
4 2 0


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

2,


1
4
1
2

1


 ,

−1− I,


− I

2

−1
2 +

I
2

1


 ,

−1 + I,


I
2

−1
2 −

I
2

1





• Consider eigenpair2,


1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e2x ·


1
4
1
2

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−1− I,


− I

2

−1
2 +

I
2

1
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• Solution from eigenpair

e(−1−I)x ·


− I

2

−1
2 +

I
2

1


• Use Euler identity to write solution in terms of sin and cos

e−x · (cos (x)− I sin (x)) ·


− I

2

−1
2 +

I
2

1


• Simplify expression

e−x ·


− I

2(cos (x)− I sin (x))(
−1

2 +
I
2

)
(cos (x)− I sin (x))

cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system→

y 2(x) = e−x ·


− sin(x)

2

− cos(x)
2 + sin(x)

2

cos (x)

 ,
→
y 3(x) = e−x ·


− cos(x)

2
cos(x)

2 + sin(x)
2

− sin (x)




• General solution to the system of ODEs
→
y = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x)

• Substitute solutions into the general solution

→
y = c1e2x ·


1
4
1
2

1

+ c2e−x ·


− sin(x)

2

− cos(x)
2 + sin(x)

2

cos (x)

+ c3e−x ·


− cos(x)

2
cos(x)

2 + sin(x)
2

− sin (x)


• First component of the vector is the solution to the ODE

y = (−2c2 sin(x)−2c3 cos(x))e−x

4 + c1e2x
4

• Use the initial condition y(0) = 6
6 = − c3

2 + c1
4

• Calculate the 1st derivative of the solution
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y′ = (−2c2 cos(x)+2c3 sin(x))e−x

4 − (−2c2 sin(x)−2c3 cos(x))e−x

4 + c1e2x
2

• Use the initial condition y′
∣∣∣{x=0}

= 3

3 = − c2
2 + c3

2 + c1
2

• Calculate the 2nd derivative of the solution

y′′ = (2c2 sin(x)+2c3 cos(x))e−x

4 − (−2c2 cos(x)+2c3 sin(x))e−x

2 + (−2c2 sin(x)−2c3 cos(x))e−x

4 + c1e2x

• Use the initial condition y′′
∣∣∣{x=0}

= 22

22 = c1 + c2

• Solve for the unknown coefficients
{c1 = 16, c2 = 6, c3 = −4}

• Solution to the IVP
y = (−3 sin (x) + 2 cos (x)) e−x + 4 e2x

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 27� �
dsolve([diff(y(x),x$3)-2*diff(y(x),x)-4*y(x)=0,y(0) = 6, D(y)(0) = 3, (D@@2)(y)(0) = 22],y(x), singsol=all)� �

y(x) = 4 e2x + (−3 sin (x) + 2 cos (x)) e−x

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 27� �
DSolve[{y'''[x]-2*y'[x]-4*y[x]==0,{y[0]==6,y'[0]==3,y''[0]==22}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x
(
4e3x − 3 sin(x) + 2 cos(x)

)
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18.19 problem section 9.2, problem 19
18.19.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7157

Internal problem ID [1483]
Internal file name [OUTPUT/1484_Sunday_June_05_2022_02_19_21_AM_92724626/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 19.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

3y′′′ − y′′ − 7y′ + 5y = 0

With initial conditions [
y(0) = 14

5 , y′(0) = 0, y′′(0) = 10
]

The characteristic equation is

3λ3 − λ2 − 7λ+ 5 = 0

The roots of the above equation are

λ1 = −5
3

λ2 = 1
λ3 = 1

Therefore the homogeneous solution is

yh(x) = c1ex + c2x ex + e− 5x
3 c3
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The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = x ex

y3 = e− 5x
3

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1ex + c2x ex + e− 5x
3 c3 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 14

5 and x = 0
in the above gives

14
5 = c1 + c3 (1A)

Taking derivative of the solution gives

y′ = c1ex + c2ex + c2x ex −
5 e− 5x

3 c3
3

substituting y′ = 0 and x = 0 in the above gives

0 = c1 + c2 −
5c3
3 (2A)

Taking two derivatives of the solution gives

y′′ = c1ex + 2c2ex + c2x ex +
25 e− 5x

3 c3
9

substituting y′′ = 10 and x = 0 in the above gives

10 = c1 + 2c2 +
25c3
9 (3A)

Equations {1A,2A,3A} are now solved for {c1, c2, c3}. Solving for the constants gives

c1 = 1
c2 = 2

c3 =
9
5
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Substituting these values back in above solution results in

y = 2x ex + 9 e− 5x
3

5 + ex

Summary
The solution(s) found are the following

(1)y = 2x ex + 9 e− 5x
3

5 + ex

Figure 545: Solution plot

Verification of solutions

y = 2x ex + 9 e− 5x
3

5 + ex

Verified OK.

18.19.1 Maple step by step solution

Let’s solve[
3y′′′ − y′′ − 7y′ + 5y = 0, y(0) = 14

5 , y
′∣∣∣{x=0}

= 0, y′′
∣∣∣{x=0}

= 10
]

• Highest derivative means the order of the ODE is 3
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y′′′

• Isolate 3rd derivative
y′′′ = y′′

3 + 7y′
3 − 5y

3

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ − y′′

3 − 7y′
3 + 5y

3 = 0

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) =

y3(x)
3 + 7y2(x)

3 − 5y1(x)
3

Convert linear ODE into a system of first order ODEs[
y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) =

y3(x)
3 + 7y2(x)

3 − 5y1(x)
3

]
• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
−5

3
7
3

1
3

 · →y (x)

• Define the coefficient matrix

A =


0 1 0
0 0 1
−5

3
7
3

1
3
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• Rewrite the system as
→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−5
3 ,


9
25

−3
5

1


 ,

1,


1
1
1


 ,

1,


0
0
0





• Consider eigenpair−5
3 ,


9
25

−3
5

1




• Solution to homogeneous system from eigenpair

→
y 1 = e− 5x

3 ·


9
25

−3
5

1


• Consider eigenpair, with eigenvalue of algebraic multiplicity 21,


1
1
1




• First solution from eigenvalue 1

→
y 2(x) = ex ·


1
1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 1 is the eigenvalue, and →
v is the eigenvector

→
y 3(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 1

• Substitute →
y 3(x) into the homogeneous system
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λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 3(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 1


0 1 0
0 0 1
−5

3
7
3

1
3

− 1 ·


1 0 0
0 1 0
0 0 1


 · →p =


1
1
1


• Choice of →

p

→
p =


−1
0
0


• Second solution from eigenvalue 1

→
y 3(x) = ex ·

x ·


1
1
1

+


−1
0
0




• General solution to the system of ODEs
→
y = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x)

• Substitute solutions into the general solution

→
y = c1e−

5x
3 ·


9
25

−3
5

1

+ c2ex ·


1
1
1

+ c3ex ·

x ·


1
1
1

+


−1
0
0




• First component of the vector is the solution to the ODE
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y =
(
((x− 1) c3 + c2) e

8x
3 + 9c1

25

)
e− 5x

3

• Use the initial condition y(0) = 14
5

14
5 = c2 − c3 + 9c1

25

• Calculate the 1st derivative of the solution

y′ =
(
c3e

8x
3 + 8((x−1)c3+c2)e

8x
3

3

)
e− 5x

3 −
5
(
((x−1)c3+c2)e

8x
3 + 9c1

25

)
e−

5x
3

3

• Use the initial condition y′
∣∣∣{x=0}

= 0

0 = c2 − 3c1
5

• Calculate the 2nd derivative of the solution

y′′ =
(

16c3e
8x
3

3 + 64((x−1)c3+c2)e
8x
3

9

)
e− 5x

3 −
10
(
c3e

8x
3 + 8((x−1)c3+c2)e

8x
3

3

)
e−

5x
3

3 +
25
(
((x−1)c3+c2)e

8x
3 + 9c1

25

)
e−

5x
3

9

• Use the initial condition y′′
∣∣∣{x=0}

= 10

10 = c1 + c2 + c3

• Solve for the unknown coefficients
{c1 = 5, c2 = 3, c3 = 2}

• Solution to the IVP

y = e− 5x
3

(
9
5 + (1 + 2x) e 8x

3

)

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 18� �
dsolve([3*diff(y(x),x$3)-diff(y(x),x$2)-7*diff(y(x),x)+5*y(x)=0,y(0) = 14/5, D(y)(0) = 0, (D@@2)(y)(0) = 10],y(x), singsol=all)� �

y(x) = e− 5x
3

(
9
5 + (2x+ 1) e 8x

3

)
3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 26� �
DSolve[{3*y'''[x]-y''[x]-7*y'[x]+5*y[x]==0,{y[0]==14/5,y'[0]==0,y''[0]==10}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(2x+ 1) + 9
5e

−5x/3
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18.20 problem section 9.2, problem 20
Internal problem ID [1484]
Internal file name [OUTPUT/1485_Sunday_June_05_2022_02_19_22_AM_88452520/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 20.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

y′′′ − 6y′′ + 12y′ − 8y = 0

With initial conditions

[y(0) = 1, y′(0) = −1, y′′(0) = −4]

The characteristic equation is

λ3 − 6λ2 + 12λ− 8 = 0

The roots of the above equation are

λ1 = 2
λ2 = 2
λ3 = 2

Therefore the homogeneous solution is

yh(x) = c1e2x + c2x e2x + x2e2xc3
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The fundamental set of solutions for the homogeneous solution are the following

y1 = e2x

y2 = x e2x

y3 = x2e2x

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e2x + c2x e2x + x2e2xc3 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1 and x = 0
in the above gives

1 = c1 (1A)

Taking derivative of the solution gives

y′ = 2c1e2x + c2e2x + 2c2x e2x + 2x e2xc3 + 2x2e2xc3

substituting y′ = −1 and x = 0 in the above gives

−1 = 2c1 + c2 (2A)

Taking two derivatives of the solution gives

y′′ = 4c1e2x + 4c2e2x + 4c2x e2x + 2c3e2x + 8x e2xc3 + 4x2e2xc3

substituting y′′ = −4 and x = 0 in the above gives

−4 = 4c1 + 4c2 + 2c3 (3A)

Equations {1A,2A,3A} are now solved for {c1, c2, c3}. Solving for the constants gives

c1 = 1
c2 = −3
c3 = 2

Substituting these values back in above solution results in

y = 2x2e2x − 3x e2x + e2x
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Which simplifies to
y = e2x

(
2x2 − 3x+ 1

)
Summary
The solution(s) found are the following

(1)y = e2x
(
2x2 − 3x+ 1

)

Figure 546: Solution plot

Verification of solutions

y = e2x
(
2x2 − 3x+ 1

)
Verified OK.

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 19� �
dsolve([diff(y(x),x$3)-6*diff(y(x),x$2)+12*diff(y(x),x)-8*y(x)=0,y(0) = 1, D(y)(0) = -1, (D@@2)(y)(0) = -4],y(x), singsol=all)� �

y(x) = e2x
(
2x2 − 3x+ 1

)
3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 21� �
DSolve[{y'''[x]-6*y''[x]+12*y'[x]-8*y[x]==0,{y[0]==1,y'[0]==-1,y''[0]==-4}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e2x
(
2x2 − 3x+ 1

)
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18.21 problem section 9.2, problem 21
18.21.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7169

Internal problem ID [1485]
Internal file name [OUTPUT/1486_Sunday_June_05_2022_02_19_24_AM_93199483/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 21.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

2y′′′ − 11y′′ + 12y′ + 9y = 0

With initial conditions

[y(0) = 6, y′(0) = 3, y′′(0) = 13]

The characteristic equation is

2λ3 − 11λ2 + 12λ+ 9 = 0

The roots of the above equation are

λ1 = −1
2

λ2 = 3
λ3 = 3

Therefore the homogeneous solution is

yh(x) = c1e3x + c2x e3x + e−x
2 c3
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The fundamental set of solutions for the homogeneous solution are the following

y1 = e3x

y2 = x e3x

y3 = e−x
2

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e3x + c2x e3x + e−x
2 c3 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 6 and x = 0
in the above gives

6 = c1 + c3 (1A)

Taking derivative of the solution gives

y′ = 3c1e3x + c2e3x + 3c2x e3x −
e−x

2 c3
2

substituting y′ = 3 and x = 0 in the above gives

3 = 3c1 + c2 −
c3
2 (2A)

Taking two derivatives of the solution gives

y′′ = 9c1e3x + 6c2e3x + 9c2x e3x +
e−x

2 c3
4

substituting y′′ = 13 and x = 0 in the above gives

13 = 9c1 + 6c2 +
c3
4 (3A)

Equations {1A,2A,3A} are now solved for {c1, c2, c3}. Solving for the constants gives

c1 = 2
c2 = −1
c3 = 4

Substituting these values back in above solution results in

y = −x e3x + 2 e3x + 4 e−x
2
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Which simplifies to
y = 4 e−x

2 + (2− x) e3x

Summary
The solution(s) found are the following

(1)y = 4 e−x
2 + (2− x) e3x

Figure 547: Solution plot

Verification of solutions

y = 4 e−x
2 + (2− x) e3x

Verified OK.

18.21.1 Maple step by step solution

Let’s solve[
2y′′′ − 11y′′ + 12y′ + 9y = 0, y(0) = 6, y′

∣∣∣{x=0}
= 3, y′′

∣∣∣{x=0}
= 13

]
• Highest derivative means the order of the ODE is 3

y′′′

• Isolate 3rd derivative
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y′′′ = 11y′′
2 − 6y′ − 9y

2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ − 11y′′

2 + 6y′ + 9y
2 = 0

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) =

11y3(x)
2 − 6y2(x)− 9y1(x)

2

Convert linear ODE into a system of first order ODEs[
y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) =

11y3(x)
2 − 6y2(x)− 9y1(x)

2

]
• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
−9

2 −6 11
2

 · →y (x)

• Define the coefficient matrix

A =


0 1 0
0 0 1
−9

2 −6 11
2


• Rewrite the system as

→
y
′
(x) = A · →y (x)
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• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1
2 ,


4
−2
1


 ,

3,


1
9
1
3

1


 ,

3,


0
0
0





• Consider eigenpair−1
2 ,


4
−2
1




• Solution to homogeneous system from eigenpair

→
y 1 = e−x

2 ·


4
−2
1


• Consider eigenpair, with eigenvalue of algebraic multiplicity 23,


1
9
1
3

1




• First solution from eigenvalue 3

→
y 2(x) = e3x ·


1
9
1
3

1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 3 is the eigenvalue, and →
v is the eigenvector

→
y 3(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 3

• Substitute →
y 3(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A
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λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 3(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 3


0 1 0
0 0 1
−9

2 −6 11
2

− 3 ·


1 0 0
0 1 0
0 0 1


 · →p =


1
9
1
3

1


• Choice of →

p

→
p =


− 1

27

0
0


• Second solution from eigenvalue 3

→
y 3(x) = e3x ·

x ·


1
9
1
3

1

+


− 1

27

0
0




• General solution to the system of ODEs
→
y = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x)

• Substitute solutions into the general solution

→
y = c1e−

x
2 ·


4
−2
1

+ c2e3x ·


1
9
1
3

1

+ c3e3x ·

x ·


1
9
1
3

1

+


− 1

27

0
0




• First component of the vector is the solution to the ODE

y = 4c1e−
x
2 +

((
x− 1

3
)
c3+c2

)
e3x

9

• Use the initial condition y(0) = 6
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6 = 4c1 − c3
27 +

c2
9

• Calculate the 1st derivative of the solution

y′ = −2c1e−
x
2 + c3e3x

9 +
((
x− 1

3
)
c3+c2

)
e3x

3

• Use the initial condition y′
∣∣∣{x=0}

= 3

3 = −2c1 + c2
3

• Calculate the 2nd derivative of the solution
y′′ = c1e−

x
2 + 2c3e3x

3 +
((
x− 1

3

)
c3 + c2

)
e3x

• Use the initial condition y′′
∣∣∣{x=0}

= 13

13 = c1 + c3
3 + c2

• Solve for the unknown coefficients
{c1 = 1, c2 = 15, c3 = −9}

• Solution to the IVP
y = 4 e−x

2 + (2− x) e3x

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 21� �
dsolve([2*diff(y(x),x$3)-11*diff(y(x),x$2)+12*diff(y(x),x)+9*y(x)=0,y(0) = 6, D(y)(0) = 3, (D@@2)(y)(0) = 13],y(x), singsol=all)� �

y(x) = 4 e−x
2 + (2− x) e3x
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 25� �
DSolve[{2*y'''[x]-11*y''[x]+12*y'[x]+9*y[x]==0,{y[0]==6,y'[0]==3,y''[0]==13}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 4e−x/2 − e3x(x− 2)
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18.22 problem section 9.2, problem 22
18.22.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7177

Internal problem ID [1486]
Internal file name [OUTPUT/1487_Sunday_June_05_2022_02_19_25_AM_18782849/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 22.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

8y′′′ − 4y′′ − 2y′ + y = 0

With initial conditions

[y(0) = 4, y′(0) = −3, y′′(0) = −1]

The characteristic equation is

8λ3 − 4λ2 − 2λ+ 1 = 0

The roots of the above equation are

λ1 = −1
2

λ2 =
1
2

λ3 =
1
2

Therefore the homogeneous solution is

yh(x) = c1e−
x
2 + c2e

x
2 + x ex

2 c3
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The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x
2

y2 = ex
2

y3 = ex
2x

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e−
x
2 + c2e

x
2 + x ex

2 c3 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 4 and x = 0
in the above gives

4 = c1 + c2 (1A)

Taking derivative of the solution gives

y′ = −c1e−
x
2

2 + c2e
x
2

2 + c3e
x
2 + x ex

2 c3
2

substituting y′ = −3 and x = 0 in the above gives

−3 = −c1
2 + c2

2 + c3 (2A)

Taking two derivatives of the solution gives

y′′ = c1e−
x
2

4 + c2e
x
2

4 + c3e
x
2 + x ex

2 c3
4

substituting y′′ = −1 and x = 0 in the above gives

−1 = c1
4 + c2

4 + c3 (3A)

Equations {1A,2A,3A} are now solved for {c1, c2, c3}. Solving for the constants gives

c1 = 3
c2 = 1
c3 = −2

Substituting these values back in above solution results in

y = −2 ex
2x+ 3 e−x

2 + ex
2
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Summary
The solution(s) found are the following

(1)y = −2 ex
2x+ 3 e−x

2 + ex
2

Figure 548: Solution plot

Verification of solutions

y = −2 ex
2x+ 3 e−x

2 + ex
2

Verified OK.

18.22.1 Maple step by step solution

Let’s solve[
8y′′′ − 4y′′ − 2y′ + y = 0, y(0) = 4, y′

∣∣∣{x=0}
= −3, y′′

∣∣∣{x=0}
= −1

]
• Highest derivative means the order of the ODE is 3

y′′′

• Isolate 3rd derivative
y′′′ = y′′

2 + y′

4 − y
8

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ − y′′

2 − y′

4 + y
8 = 0
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� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) =

y3(x)
2 + y2(x)

4 − y1(x)
8

Convert linear ODE into a system of first order ODEs[
y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) =

y3(x)
2 + y2(x)

4 − y1(x)
8

]
• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
−1

8
1
4

1
2

 · →y (x)

• Define the coefficient matrix

A =


0 1 0
0 0 1
−1

8
1
4

1
2


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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−1

2 ,


4
−2
1


 ,

1
2 ,


4
2
1


 ,

1
2 ,


0
0
0





• Consider eigenpair−1
2 ,


4
−2
1




• Solution to homogeneous system from eigenpair

→
y 1 = e−x

2 ·


4
−2
1


• Consider eigenpair, with eigenvalue of algebraic multiplicity 21

2 ,


4
2
1




• First solution from eigenvalue 1
2

→
y 2(x) = ex

2 ·


4
2
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 1
2 is the eigenvalue, and →

v is the eigenvector
→
y 3(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 1

2

• Substitute →
y 3(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation
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λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 3(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 1

2


0 1 0
0 0 1
−1

8
1
4

1
2

− 1
2 ·


1 0 0
0 1 0
0 0 1


 · →p =


4
2
1


• Choice of →

p

→
p =


−8
0
0


• Second solution from eigenvalue 1

2

→
y 3(x) = ex

2 ·

x ·


4
2
1

+


−8
0
0




• General solution to the system of ODEs
→
y = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x)

• Substitute solutions into the general solution

→
y = c1e−

x
2 ·


4
−2
1

+ c2e
x
2 ·


4
2
1

+ c3e
x
2 ·

x ·


4
2
1

+


−8
0
0




• First component of the vector is the solution to the ODE
y = ((4x− 8) c3 + 4c2) e

x
2 + 4c1e−

x
2

• Use the initial condition y(0) = 4
4 = −8c3 + 4c2 + 4c1

• Calculate the 1st derivative of the solution
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y′ = 4c3e
x
2 + ((4x−8)c3+4c2)e

x
2

2 − 2c1e−
x
2

• Use the initial condition y′
∣∣∣{x=0}

= −3

−3 = 2c2 − 2c1
• Calculate the 2nd derivative of the solution

y′′ = 4c3e
x
2 + ((4x−8)c3+4c2)e

x
2

4 + c1e−
x
2

• Use the initial condition y′′
∣∣∣{x=0}

= −1

−1 = c1 + c2 + 2c3
• Solve for the unknown coefficients{

c1 = 3
4 , c2 = −3

4 , c3 = −1
2

}
• Solution to the IVP

y = −2 ex
2x+ 3 e−x

2 + ex
2

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 22� �
dsolve([8*diff(y(x),x$3)-4*diff(y(x),x$2)-2*diff(y(x),x)+y(x)=0,y(0) = 4, D(y)(0) = -3, (D@@2)(y)(0) = -1],y(x), singsol=all)� �

y(x) = 3 e−x
2 + ex

2 − 2 ex
2x
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 57� �
DSolve[{8*y'''[x]-4*y''[x]-2*y'[x]-2*y[x]==0,{y[0]==4,y'[0]==-3,y''[0]==-1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 2
21e

−x/4

(
9e5x/4 + 13

√
3 sin

(√
3x
4

)
− 51 cos

(√
3x
4

))
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18.23 problem section 9.2, problem 23
18.23.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7186

Internal problem ID [1487]
Internal file name [OUTPUT/1488_Sunday_June_05_2022_02_19_27_AM_35409308/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 23.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

y′′′′ − 16y = 0

With initial conditions

[y(0) = 2, y′(0) = 2, y′′(0) = −2, y′′′(0) = 0]

The characteristic equation is
λ4 − 16 = 0

The roots of the above equation are

λ1 = 2
λ2 = −2
λ3 = 2i
λ4 = −2i

Therefore the homogeneous solution is

yh(x) = c1e−2x + c2e2x + e2ixc3 + e−2ixc4
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The fundamental set of solutions for the homogeneous solution are the following

y1 = e−2x

y2 = e2x

y3 = e2ix

y4 = e−2ix

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e−2x + c2e2x + e2ixc3 + e−2ixc4 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 2 and x = 0
in the above gives

2 = c1 + c2 + c3 + c4 (1A)

Taking derivative of the solution gives

y′ = −2c1e−2x + 2c2e2x + 2ie2ixc3 − 2ie−2ixc4

substituting y′ = 2 and x = 0 in the above gives

2 = 2c3i− 2c4i− 2c1 + 2c2 (2A)

Taking two derivatives of the solution gives

y′′ = 4c1e−2x + 4c2e2x − 4 e2ixc3 − 4 e−2ixc4

substituting y′′ = −2 and x = 0 in the above gives

−2 = 4c1 + 4c2 − 4c3 − 4c4 (3A)

Taking three derivatives of the solution gives

y′′′ = −8c1e−2x + 8c2e2x − 8ie2ixc3 + 8ie−2ixc4

substituting y′′′ = 0 and x = 0 in the above gives

0 = −8c3i+ 8c4i− 8c1 + 8c2 (4A)
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Equations {1A,2A,3A,4A} are now solved for {c1, c2, c3, c4}. Solving for the constants
gives

c1 =
1
8

c2 =
5
8

c3 =
5
8 − i

4
c4 =

5
8 + i

4
Substituting these values back in above solution results in

y = e−2x

8 + 5 e2x
8 + 5 cos (2x)

4 + sin (2x)
2

Summary
The solution(s) found are the following

(1)y = e−2x

8 + 5 e2x
8 + 5 cos (2x)

4 + sin (2x)
2

Figure 549: Solution plot

Verification of solutions

y = e−2x

8 + 5 e2x
8 + 5 cos (2x)

4 + sin (2x)
2

Verified OK.
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18.23.1 Maple step by step solution

Let’s solve[
y′′′′ − 16y = 0, y(0) = 2, y′

∣∣∣{x=0}
= 2, y′′

∣∣∣{x=0}
= −2, y′′′

∣∣∣{x=0}
= 0
]

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = 16y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = 16y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
16 0 0 0

 · →y (x)
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• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
16 0 0 0


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−2,


−1

8
1
4

−1
2

1



 ,

2,


1
8
1
4
1
2

1



 ,

−2 I,


− I

8

−1
4

I
2

1



 ,

2 I,


I
8

−1
4

− I
2

1






• Consider eigenpair−2,


−1

8
1
4

−1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−2x ·


−1

8
1
4

−1
2

1


• Consider eigenpair2,


1
8
1
4
1
2

1
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• Solution to homogeneous system from eigenpair

→
y 2 = e2x ·


1
8
1
4
1
2

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−2 I,


− I

8

−1
4

I
2

1




• Solution from eigenpair

e−2 Ix ·


− I

8

−1
4

I
2

1


• Use Euler identity to write solution in terms of sin and cos

(cos (2x)− I sin (2x)) ·


− I

8

−1
4

I
2

1


• Simplify expression

− I
8(cos (2x)− I sin (2x))

− cos(2x)
4 + I sin(2x)

4
I
2(cos (2x)− I sin (2x))

cos (2x)− I sin (2x)


• Both real and imaginary parts are solutions to the homogeneous system
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→
y 3(x) =


− sin(2x)

8

− cos(2x)
4

sin(2x)
2

cos (2x)

 ,
→
y 4(x) =


− cos(2x)

8
sin(2x)

4
cos(2x)

2

− sin (2x)




• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x)

• Substitute solutions into the general solution

→
y = c1e−2x ·


−1

8
1
4

−1
2

1

+ c2e2x ·


1
8
1
4
1
2

1

+


− c3 sin(2x)

8 − c4 cos(2x)
8

− c3 cos(2x)
4 + c4 sin(2x)

4
c3 sin(2x)

2 + c4 cos(2x)
2

c3 cos (2x)− c4 sin (2x)


• First component of the vector is the solution to the ODE

y = − c1e−2x

8 + c2e2x
8 − c4 cos(2x)

8 − c3 sin(2x)
8

• Use the initial condition y(0) = 2
2 = − c1

8 + c2
8 − c4

8

• Calculate the 1st derivative of the solution
y′ = c1e−2x

4 + c2e2x
4 + c4 sin(2x)

4 − c3 cos(2x)
4

• Use the initial condition y′
∣∣∣{x=0}

= 2

2 = c1
4 + c2

4 − c3
4

• Calculate the 2nd derivative of the solution
y′′ = − c1e−2x

2 + c2e2x
2 + c4 cos(2x)

2 + c3 sin(2x)
2

• Use the initial condition y′′
∣∣∣{x=0}

= −2

−2 = − c1
2 + c2

2 + c4
2

• Calculate the 3rd derivative of the solution
y′′′ = c1e−2x + c2e2x − c4 sin (2x) + c3 cos (2x)

• Use the initial condition y′′′
∣∣∣{x=0}

= 0

0 = c1 + c2 + c3
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• Solve for the unknown coefficients
{c1 = −1, c2 = 5, c3 = −4, c4 = −10}

• Solution to the IVP
y = e−2x

8 + 5 e2x
8 + 5 cos(2x)

4 + sin(2x)
2

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 29� �
dsolve([diff(y(x),x$4)-16*y(x)=0,y(0) = 2, D(y)(0) = 2, (D@@2)(y)(0) = -2, (D@@3)(y)(0) = 0],y(x), singsol=all)� �

y(x) = 5 e2x
8 + e−2x

8 + sin (2x)
2 + 5 cos (2x)

4

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 34� �
DSolve[{y''''[x]-16*y[x]==0,{y[0]==2,y'[0]==2,y''[0]==-2,y'''[0]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
8
(
e−2x + 5e2x + 4 sin(2x) + 10 cos(2x)

)
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18.24 problem section 9.2, problem 24
18.24.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7194

Internal problem ID [1488]
Internal file name [OUTPUT/1489_Sunday_June_05_2022_02_19_29_AM_18528297/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 24.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

y′′′′ − 6y′′′ + 7y′′ + 6y′ − 8y = 0

With initial conditions

[y(0) = −2, y′(0) = −8, y′′(0) = −14, y′′′(0) = −62]

The characteristic equation is

λ4 − 6λ3 + 7λ2 + 6λ− 8 = 0

The roots of the above equation are

λ1 = 1
λ2 = 2
λ3 = 4
λ4 = −1

Therefore the homogeneous solution is

yh(x) = c1e−x + c2ex + c3e2x + c4e4x
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The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = ex

y3 = e2x

y4 = e4x

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e−x + c2ex + c3e2x + c4e4x (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −2 and
x = 0 in the above gives

−2 = c1 + c2 + c3 + c4 (1A)

Taking derivative of the solution gives

y′ = −c1e−x + c2ex + 2c3e2x + 4c4e4x

substituting y′ = −8 and x = 0 in the above gives

−8 = −c1 + c2 + 2c3 + 4c4 (2A)

Taking two derivatives of the solution gives

y′′ = c1e−x + c2ex + 4c3e2x + 16c4e4x

substituting y′′ = −14 and x = 0 in the above gives

−14 = c1 + c2 + 4c3 + 16c4 (3A)

Taking three derivatives of the solution gives

y′′′ = −c1e−x + c2ex + 8c3e2x + 64c4e4x

substituting y′′′ = −62 and x = 0 in the above gives

−62 = −c1 + c2 + 8c3 + 64c4 (4A)
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Equations {1A,2A,3A,4A} are now solved for {c1, c2, c3, c4}. Solving for the constants
gives

c1 = 2
c2 = −4
c3 = 1
c4 = −1

Substituting these values back in above solution results in

y = 2 e−x − 4 ex + e2x − e4x

Summary
The solution(s) found are the following

(1)y = 2 e−x − 4 ex + e2x − e4x

Figure 550: Solution plot

Verification of solutions

y = 2 e−x − 4 ex + e2x − e4x

Verified OK.

7193



18.24.1 Maple step by step solution

Let’s solve[
y′′′′ − 6y′′′ + 7y′′ + 6y′ − 8y = 0, y(0) = −2, y′

∣∣∣{x=0}
= −8, y′′

∣∣∣{x=0}
= −14, y′′′

∣∣∣{x=0}
= −62

]
• Highest derivative means the order of the ODE is 4

y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = 6y4(x)− 7y3(x)− 6y2(x) + 8y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = 6y4(x)− 7y3(x)− 6y2(x) + 8y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
8 −6 −7 6

 · →y (x)
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• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
8 −6 −7 6


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


−1
1
−1
1



 ,

1,


1
1
1
1



 ,

2,


1
8
1
4
1
2

1



 ,

4,


1
64
1
16
1
4

1






• Consider eigenpair−1,


−1
1
−1
1




• Solution to homogeneous system from eigenpair

→
y 1 = e−x ·


−1
1
−1
1


• Consider eigenpair1,


1
1
1
1
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• Solution to homogeneous system from eigenpair

→
y 2 = ex ·


1
1
1
1


• Consider eigenpair2,


1
8
1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 3 = e2x ·


1
8
1
4
1
2

1


• Consider eigenpair4,


1
64
1
16
1
4

1




• Solution to homogeneous system from eigenpair

→
y 4 = e4x ·


1
64
1
16
1
4

1


• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 + c4

→
y 4

• Substitute solutions into the general solution
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→
y = c1e−x ·


−1
1
−1
1

+ c2ex ·


1
1
1
1

+ c3e2x ·


1
8
1
4
1
2

1

+ c4e4x ·


1
64
1
16
1
4

1


• First component of the vector is the solution to the ODE

y = −c1e−x + c2ex + c3e2x
8 + c4e4x

64

• Use the initial condition y(0) = −2
−2 = −c1 + c2 + c3

8 + c4
64

• Calculate the 1st derivative of the solution
y′ = c1e−x + c2ex + c3e2x

4 + c4e4x
16

• Use the initial condition y′
∣∣∣{x=0}

= −8

−8 = c1 + c2 + c3
4 + c4

16

• Calculate the 2nd derivative of the solution
y′′ = −c1e−x + c2ex + c3e2x

2 + c4e4x
4

• Use the initial condition y′′
∣∣∣{x=0}

= −14

−14 = −c1 + c2 + c3
2 + c4

4

• Calculate the 3rd derivative of the solution
y′′′ = c1e−x + c2ex + c3e2x + c4e4x

• Use the initial condition y′′′
∣∣∣{x=0}

= −62

−62 = c1 + c2 + c3 + c4

• Solve for the unknown coefficients
{c1 = −2, c2 = −4, c3 = 8, c4 = −64}

• Solution to the IVP
y = 2 e−x − 4 ex + e2x − e4x
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 25� �
dsolve([diff(y(x),x$4)-6*diff(y(x),x$3)+7*diff(y(x),x$2)+6*diff(y(x),x)-8*y(x)=0,y(0) = -2, D(y)(0) = -8, (D@@2)(y)(0) = -14, (D@@3)(y)(0) = -62],y(x), singsol=all)� �

y(x) = e2x − e4x + 2 e−x − 4 ex

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30� �
DSolve[{y''''[x]-6*y'''[x]+7*y''[x]+6*y'[x]-8*y[x]==0,{y[0]==-2,y'[0]==-8,y''[0]==-14,y'''[0]==-62}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2e−x − 4ex + e2x − e4x
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18.25 problem section 9.2, problem 25
18.25.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7202

Internal problem ID [1489]
Internal file name [OUTPUT/1490_Sunday_June_05_2022_02_19_30_AM_21780042/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 25.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

4y′′′′ − 13y′′ + 9y = 0

With initial conditions

[y(0) = 1, y′(0) = 3, y′′(0) = 1, y′′′(0) = 3]

The characteristic equation is

4λ4 − 13λ2 + 9 = 0

The roots of the above equation are

λ1 = 1
λ2 = −1

λ3 = −3
2

λ4 =
3
2

Therefore the homogeneous solution is

yh(x) = c1e−x + c2ex + e− 3x
2 c3 + e 3x

2 c4
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The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = ex

y3 = e− 3x
2

y4 = e 3x
2

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e−x + c2ex + e− 3x
2 c3 + e 3x

2 c4 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1 and x = 0
in the above gives

1 = c1 + c2 + c3 + c4 (1A)

Taking derivative of the solution gives

y′ = −c1e−x + c2ex −
3 e− 3x

2 c3
2 + 3 e 3x

2 c4
2

substituting y′ = 3 and x = 0 in the above gives

3 = −c1 + c2 −
3c3
2 + 3c4

2 (2A)

Taking two derivatives of the solution gives

y′′ = c1e−x + c2ex +
9 e− 3x

2 c3
4 + 9 e 3x

2 c4
4

substituting y′′ = 1 and x = 0 in the above gives

1 = c1 + c2 +
9c3
4 + 9c4

4 (3A)

Taking three derivatives of the solution gives

y′′′ = −c1e−x + c2ex −
27 e− 3x

2 c3
8 + 27 e 3x

2 c4
8

substituting y′′′ = 3 and x = 0 in the above gives

3 = −c1 + c2 −
27c3
8 + 27c4

8 (4A)
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Equations {1A,2A,3A,4A} are now solved for {c1, c2, c3, c4}. Solving for the constants
gives

c1 = −1
c2 = 2
c3 = 0
c4 = 0

Substituting these values back in above solution results in

y = −e−x + 2 ex

Summary
The solution(s) found are the following

(1)y = −e−x + 2 ex

Figure 551: Solution plot

Verification of solutions

y = −e−x + 2 ex

Verified OK.
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18.25.1 Maple step by step solution

Let’s solve[
4y′′′′ − 13y′′ + 9y = 0, y(0) = 1, y′

∣∣∣{x=0}
= 3, y′′

∣∣∣{x=0}
= 1, y′′′

∣∣∣{x=0}
= 3
]

• Highest derivative means the order of the ODE is 4
y′′′′

• Isolate 4th derivative
y′′′′ = 13y′′

4 − 9y
4

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′′ − 13y′′

4 + 9y
4 = 0

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) =

13y3(x)
4 − 9y1(x)

4

Convert linear ODE into a system of first order ODEs[
y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) =

13y3(x)
4 − 9y1(x)

4

]
• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve
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→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
−9

4 0 13
4 0

 · →y (x)

• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
−9

4 0 13
4 0


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−
3
2 ,


− 8

27
4
9

−2
3

1



 ,

−1,


−1
1
−1
1



 ,

1,


1
1
1
1



 ,


3
2 ,


8
27
4
9
2
3

1






• Consider eigenpair−

3
2 ,


− 8

27
4
9

−2
3

1




• Solution to homogeneous system from eigenpair

→
y 1 = e− 3x

2 ·


− 8

27
4
9

−2
3

1


• Consider eigenpair
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−1,


−1
1
−1
1




• Solution to homogeneous system from eigenpair

→
y 2 = e−x ·


−1
1
−1
1


• Consider eigenpair1,


1
1
1
1




• Solution to homogeneous system from eigenpair

→
y 3 = ex ·


1
1
1
1


• Consider eigenpair

3
2 ,


8
27
4
9
2
3

1




• Solution to homogeneous system from eigenpair
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→
y 4 = e 3x

2 ·


8
27
4
9
2
3

1


• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 + c4

→
y 4

• Substitute solutions into the general solution

→
y = c1e−

3x
2 ·


− 8

27
4
9

−2
3

1

+ c2e−x ·


−1
1
−1
1

+ c3ex ·


1
1
1
1

+ e 3x
2 c4 ·


8
27
4
9
2
3

1


• First component of the vector is the solution to the ODE

y = −
(
−8 e3xc4−27c3e

5x
2 +27c2e

x
2 +8c1

)
e−

3x
2

27

• Use the initial condition y(0) = 1
1 = 8c4

27 + c3 − c2 − 8c1
27

• Calculate the 1st derivative of the solution

y′ = −

(
−24 e3xc4− 135c3e

5x
2

2 + 27c2e
x
2

2

)
e−

3x
2

27 +
(
−8 e3xc4−27c3e

5x
2 +27c2e

x
2 +8c1

)
e−

3x
2

18

• Use the initial condition y′
∣∣∣{x=0}

= 3

3 = 4c4
9 + c3 + c2 + 4c1

9

• Calculate the 2nd derivative of the solution

y′′ = −

(
−72 e3xc4− 675c3e

5x
2

4 + 27c2e
x
2

4

)
e−

3x
2

27 +

(
−24 e3xc4− 135c3e

5x
2

2 + 27c2e
x
2

2

)
e−

3x
2

9 −
(
−8 e3xc4−27c3e

5x
2 +27c2e

x
2 +8c1

)
e−

3x
2

12

• Use the initial condition y′′
∣∣∣{x=0}

= 1

1 = 2c4
3 + c3 − c2 − 2c1

3

• Calculate the 3rd derivative of the solution

y′′′ = −

(
−216 e3xc4− 3375c3e

5x
2

8 + 27c2e
x
2

8

)
e−

3x
2

27 +

(
−72 e3xc4− 675c3e

5x
2

4 + 27c2e
x
2

4

)
e−

3x
2

6 −

(
−24 e3xc4− 135c3e

5x
2

2 + 27c2e
x
2

2

)
e−

3x
2

4 +
(
−8 e3xc4−27c3e

5x
2 +27c2e

x
2 +8c1

)
e−

3x
2

8
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• Use the initial condition y′′′
∣∣∣{x=0}

= 3

3 = c1 + c2 + c3 + c4

• Solve for the unknown coefficients
{c1 = 0, c2 = 1, c3 = 2, c4 = 0}

• Solution to the IVP
y = −e−x + 2 ex

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 15� �
dsolve([4*diff(y(x),x$4)-13*diff(y(x),x$2)+9*y(x)=0,y(0) = 1, D(y)(0) = 3, (D@@2)(y)(0) = 1, (D@@3)(y)(0) = 3],y(x), singsol=all)� �

y(x) = −e−x + 2 ex

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 18� �
DSolve[{4*y''''[x]-13*y''[x]+9*y[x]==0,{y[0]==1,y'[0]==3,y''[0]==1,y'''[0]==3}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2ex − e−x
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18.26 problem section 9.2, problem 26
18.26.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7209

Internal problem ID [1490]
Internal file name [OUTPUT/1491_Sunday_June_05_2022_02_19_32_AM_68701485/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 26.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

y′′′′ + 2y′′′ − 2y′′ − 8y′ − 8y = 0

With initial conditions

[y(0) = 5, y′(0) = −2, y′′(0) = 6, y′′′(0) = 8]

The characteristic equation is

λ4 + 2λ3 − 2λ2 − 8λ− 8 = 0

The roots of the above equation are

λ1 = 2
λ2 = −2
λ3 = −1− i

λ4 = −1 + i

Therefore the homogeneous solution is

yh(x) = c1e−2x + e(−1−i)xc2 + c3e2x + e(−1+i)xc4
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The fundamental set of solutions for the homogeneous solution are the following

y1 = e−2x

y2 = e(−1−i)x

y3 = e2x

y4 = e(−1+i)x

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e−2x + e(−1−i)xc2 + c3e2x + e(−1+i)xc4 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 5 and x = 0
in the above gives

5 = c1 + c2 + c3 + c4 (1A)

Taking derivative of the solution gives

y′ = −2c1e−2x + (−1− i) e(−1−i)xc2 + 2c3e2x + (−1 + i) e(−1+i)xc4

substituting y′ = −2 and x = 0 in the above gives

−2 = −2c1 + (−1− i) c2 + 2c3 + (−1 + i) c4 (2A)

Taking two derivatives of the solution gives

y′′ = 4c1e−2x + 2ie(−1−i)xc2 + 4c3e2x − 2ie(−1+i)xc4

substituting y′′ = 6 and x = 0 in the above gives

6 = 2c2i− 2c4i+ 4c1 + 4c3 (3A)

Taking three derivatives of the solution gives

y′′′ = −8c1e−2x + (2− 2i) e(−1−i)xc2 + 8c3e2x + (2 + 2i) e(−1+i)xc4

substituting y′′′ = 8 and x = 0 in the above gives

8 = −8c1 + (2− 2i) c2 + 8c3 + (2 + 2i) c4 (4A)
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Equations {1A,2A,3A,4A} are now solved for {c1, c2, c3, c4}. Solving for the constants
gives

c1 = 1

c2 =
3
2 + i

2
c3 = 1

c4 =
3
2 − i

2

Substituting these values back in above solution results in

y = e−2x + 3 e(−1−i)x

2 + ie(−1−i)x

2 + e2x + 3 e(−1+i)x

2 − ie(−1+i)x

2

Summary
The solution(s) found are the following

(1)y =
(
3
2 + i

2

)
e(−1−i)x +

(
3
2 − i

2

)
e(−1+i)x + e−2x + e2x

Verification of solutions

y =
(
3
2 + i

2

)
e(−1−i)x +

(
3
2 − i

2

)
e(−1+i)x + e−2x + e2x

Verified OK.

18.26.1 Maple step by step solution

Let’s solve[
y′′′′ + 2y′′′ − 2y′′ − 8y′ − 8y = 0, y(0) = 5, y′

∣∣∣{x=0}
= −2, y′′

∣∣∣{x=0}
= 6, y′′′

∣∣∣{x=0}
= 8
]

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′
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◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = −2y4(x) + 2y3(x) + 8y2(x) + 8y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = −2y4(x) + 2y3(x) + 8y2(x) + 8y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
8 8 2 −2

 · →y (x)

• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
8 8 2 −2


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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−2,


−1

8
1
4

−1
2

1



 ,

2,


1
8
1
4
1
2

1



 ,

−1− I,


1
4 +

I
4

− I
2

−1
2 +

I
2

1



 ,

−1 + I,


1
4 −

I
4

I
2

−1
2 −

I
2

1






• Consider eigenpair−2,


−1

8
1
4

−1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−2x ·


−1

8
1
4

−1
2

1


• Consider eigenpair2,


1
8
1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 2 = e2x ·


1
8
1
4
1
2

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored
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−1− I,


1
4 +

I
4

− I
2

−1
2 +

I
2

1




• Solution from eigenpair

e(−1−I)x ·


1
4 +

I
4

− I
2

−1
2 +

I
2

1


• Use Euler identity to write solution in terms of sin and cos

e−x · (cos (x)− I sin (x)) ·


1
4 +

I
4

− I
2

−1
2 +

I
2

1


• Simplify expression

e−x ·



(1
4 +

I
4

)
(cos (x)− I sin (x))

− I
2(cos (x)− I sin (x))(

−1
2 +

I
2

)
(cos (x)− I sin (x))

cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) = e−x ·



sin(x)
4 + cos(x)

4

− sin(x)
2

− cos(x)
2 + sin(x)

2

cos (x)

 ,
→
y 4(x) = e−x ·



cos(x)
4 − sin(x)

4

− cos(x)
2

cos(x)
2 + sin(x)

2

− sin (x)




• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x)

• Substitute solutions into the general solution
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→
y = c1e−2x ·


−1

8
1
4

−1
2

1

+ c2e2x ·


1
8
1
4
1
2

1

+ c3e−x ·



sin(x)
4 + cos(x)

4

− sin(x)
2

− cos(x)
2 + sin(x)

2

cos (x)

+ c4e−x ·



cos(x)
4 − sin(x)

4

− cos(x)
2

cos(x)
2 + sin(x)

2

− sin (x)


• First component of the vector is the solution to the ODE

y =
(
c2e4x+((2c3+2c4) cos(x)+2(c3−c4) sin(x))ex−c1

)
e−2x

8

• Use the initial condition y(0) = 5
5 = c2

8 + c3
4 + c4

4 − c1
8

• Calculate the 1st derivative of the solution

y′ =
(
4c2e4x+(−(2c3+2c4) sin(x)+2(c3−c4) cos(x))ex+((2c3+2c4) cos(x)+2(c3−c4) sin(x))ex

)
e−2x

8 −
(
c2e4x+((2c3+2c4) cos(x)+2(c3−c4) sin(x))ex−c1

)
e−2x

4

• Use the initial condition y′
∣∣∣{x=0}

= −2

−2 = c2
4 − c4

2 + c1
4

• Calculate the 2nd derivative of the solution

y′′ =
(
16c2e4x+(−(2c3+2c4) cos(x)−2(c3−c4) sin(x))ex+2(−(2c3+2c4) sin(x)+2(c3−c4) cos(x))ex+((2c3+2c4) cos(x)+2(c3−c4) sin(x))ex

)
e−2x

8 −
(
4c2e4x+(−(2c3+2c4) sin(x)+2(c3−c4) cos(x))ex+((2c3+2c4) cos(x)+2(c3−c4) sin(x))ex

)
e−2x

2 +
(
c2e4x+((2c3+2c4) cos(x)+2(c3−c4) sin(x))ex−c1

)
e−2x

2

• Use the initial condition y′′
∣∣∣{x=0}

= 6

6 = c2
2 − c3

2 + c4
2 − c1

2

• Calculate the 3rd derivative of the solution

y′′′ =
(
64c2e4x+((2c3+2c4) sin(x)−2(c3−c4) cos(x))ex+3(−(2c3+2c4) cos(x)−2(c3−c4) sin(x))ex+3(−(2c3+2c4) sin(x)+2(c3−c4) cos(x))ex+((2c3+2c4) cos(x)+2(c3−c4) sin(x))ex

)
e−2x

8 − 3
(
16c2e4x+(−(2c3+2c4) cos(x)−2(c3−c4) sin(x))ex+2(−(2c3+2c4) sin(x)+2(c3−c4) cos(x))ex+((2c3+2c4) cos(x)+2(c3−c4) sin(x))ex

)
e−2x

4 + 3
(
4c2e4x+(−(2c3+2c4) sin(x)+2(c3−c4) cos(x))ex+((2c3+2c4) cos(x)+2(c3−c4) sin(x))ex

)
e−2x

2 − (c2e4x + ((2c3 + 2c4) cos (x) + 2(c3 − c4) sin (x)) ex − c1) e−2x

• Use the initial condition y′′′
∣∣∣{x=0}

= 8

8 = c1 + c2 + c3

• Solve for the unknown coefficients
{c1 = −8, c2 = 8, c3 = 8, c4 = 4}

• Solution to the IVP
y = (e4x + (3 cos (x) + sin (x)) ex + 1) e−2x
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 28� �
dsolve([diff(y(x),x$4)+2*diff(y(x),x$3)-2*diff(y(x),x$2)-8*diff(y(x),x)-8*y(x)=0,y(0) = 5, D(y)(0) = -2, (D@@2)(y)(0) = 6, (D@@3)(y)(0) = 8],y(x), singsol=all)� �

y(x) =
(
1 + (sin (x) + 3 cos (x)) ex + e4x

)
e−2x

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 31� �
DSolve[{y''''[x]+2*y'''[x]-2*y''[x]-8*y'[x]-8*y[x]==0,{y[0]==5,y'[0]==-2,y''[0]==6,y'''[0]==8}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(e4x + ex sin(x) + 3ex cos(x) + 1
)
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18.27 problem section 9.2, problem 27
18.27.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7218

Internal problem ID [1491]
Internal file name [OUTPUT/1492_Sunday_June_05_2022_02_19_34_AM_95161317/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 27.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

4y′′′′ + 8y′′′ + 19y′′ + 32y′ + 12y = 0

With initial conditions[
y(0) = 3, y′(0) = −3, y′′(0) = −7

2 , y
′′′(0) = 31

4

]
The characteristic equation is

4λ4 + 8λ3 + 19λ2 + 32λ+ 12 = 0

The roots of the above equation are

λ1 = −3
2

λ2 = −1
2

λ3 = 2i
λ4 = −2i

Therefore the homogeneous solution is

yh(x) = c1e−
x
2 + e2ixc2 + e−2ixc3 + e− 3x

2 c4
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The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x
2

y2 = e2ix

y3 = e−2ix

y4 = e− 3x
2

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e−
x
2 + e2ixc2 + e−2ixc3 + e− 3x

2 c4 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 3 and x = 0
in the above gives

3 = c1 + c2 + c3 + c4 (1A)

Taking derivative of the solution gives

y′ = −c1e−
x
2

2 + 2ie2ixc2 − 2ie−2ixc3 −
3 e− 3x

2 c4
2

substituting y′ = −3 and x = 0 in the above gives

−3 = −1
2c1 + 2ic2 − 2ic3 −

3
2c4 (2A)

Taking two derivatives of the solution gives

y′′ = c1e−
x
2

4 − 4 e2ixc2 − 4 e−2ixc3 +
9 e− 3x

2 c4
4

substituting y′′ = −7
2 and x = 0 in the above gives

−7
2 = c1

4 − 4c2 − 4c3 +
9c4
4 (3A)

Taking three derivatives of the solution gives

y′′′ = −c1e−
x
2

8 − 8ie2ixc2 + 8ie−2ixc3 −
27 e− 3x

2 c4
8

substituting y′′′ = 31
4 and x = 0 in the above gives

31
4 = −1

8c1 − 8ic2 + 8ic3 −
27
8 c4 (4A)
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Equations {1A,2A,3A,4A} are now solved for {c1, c2, c3, c4}. Solving for the constants
gives

c1 = 2

c2 =
1
2 + i

2
c3 =

1
2 − i

2
c4 = 0

Substituting these values back in above solution results in

y = 2 e−x
2 + cos (2x)− sin (2x)

Summary
The solution(s) found are the following

(1)y = 2 e−x
2 + cos (2x)− sin (2x)

Figure 552: Solution plot

Verification of solutions

y = 2 e−x
2 + cos (2x)− sin (2x)

Verified OK.
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18.27.1 Maple step by step solution

Let’s solve[
4y′′′′ + 8y′′′ + 19y′′ + 32y′ + 12y = 0, y(0) = 3, y′

∣∣∣{x=0}
= −3, y′′

∣∣∣{x=0}
= −7

2 , y
′′′∣∣∣{x=0}

= 31
4

]
• Highest derivative means the order of the ODE is 4

y′′′′

• Isolate 4th derivative
y′′′′ = −2y′′′ − 19y′′

4 − 8y′ − 3y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′′ + 2y′′′ + 19y′′

4 + 8y′ + 3y = 0

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = −2y4(x)− 19y3(x)

4 − 8y2(x)− 3y1(x)

Convert linear ODE into a system of first order ODEs[
y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = −2y4(x)− 19y3(x)

4 − 8y2(x)− 3y1(x)
]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve
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→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
−3 −8 −19

4 −2

 · →y (x)

• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
−3 −8 −19

4 −2


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−
3
2 ,


− 8

27
4
9

−2
3

1



 ,

−1
2 ,


−8
4
−2
1



 ,

−2 I,


− I

8

−1
4

I
2

1



 ,

2 I,


I
8

−1
4

− I
2

1






• Consider eigenpair−

3
2 ,


− 8

27
4
9

−2
3

1




• Solution to homogeneous system from eigenpair

→
y 1 = e− 3x

2 ·


− 8

27
4
9

−2
3

1


• Consider eigenpair
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−1
2 ,


−8
4
−2
1




• Solution to homogeneous system from eigenpair

→
y 2 = e−x

2 ·


−8
4
−2
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−2 I,


− I

8

−1
4

I
2

1




• Solution from eigenpair

e−2 Ix ·


− I

8

−1
4

I
2

1


• Use Euler identity to write solution in terms of sin and cos

(cos (2x)− I sin (2x)) ·


− I

8

−1
4

I
2

1


• Simplify expression

7220




− I

8(cos (2x)− I sin (2x))

− cos(2x)
4 + I sin(2x)

4
I
2(cos (2x)− I sin (2x))

cos (2x)− I sin (2x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) =


− sin(2x)

8

− cos(2x)
4

sin(2x)
2

cos (2x)

 ,
→
y 4(x) =


− cos(2x)

8
sin(2x)

4
cos(2x)

2

− sin (2x)




• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x)

• Substitute solutions into the general solution

→
y = c1e−

3x
2 ·


− 8

27
4
9

−2
3

1

+ c2e−
x
2 ·


−8
4
−2
1

+


− c3 sin(2x)

8 − c4 cos(2x)
8

− c3 cos(2x)
4 + c4 sin(2x)

4
c3 sin(2x)

2 + c4 cos(2x)
2

c3 cos (2x)− c4 sin (2x)


• First component of the vector is the solution to the ODE

y = −8c1e−
3x
2

27 − 8c2e−
x
2 − c4 cos(2x)

8 − c3 sin(2x)
8

• Use the initial condition y(0) = 3
3 = −8c1

27 − 8c2 − c4
8

• Calculate the 1st derivative of the solution

y′ = 4c1e−
3x
2

9 + 4c2e−
x
2 + c4 sin(2x)

4 − c3 cos(2x)
4

• Use the initial condition y′
∣∣∣{x=0}

= −3

−3 = 4c1
9 + 4c2 − c3

4

• Calculate the 2nd derivative of the solution

y′′ = −2c1e−
3x
2

3 − 2c2e−
x
2 + c4 cos(2x)

2 + c3 sin(2x)
2
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• Use the initial condition y′′
∣∣∣{x=0}

= −7
2

−7
2 = −2c1

3 − 2c2 + c4
2

• Calculate the 3rd derivative of the solution
y′′′ = c1e−

3x
2 + c2e−

x
2 − c4 sin (2x) + c3 cos (2x)

• Use the initial condition y′′′
∣∣∣{x=0}

= 31
4

31
4 = c1 + c2 + c3

• Solve for the unknown coefficients{
c1 = 0, c2 = −1

4 , c3 = 8, c4 = −8
}

• Solution to the IVP
y = 2 e−x

2 + cos (2x)− sin (2x)

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 21� �
dsolve([4*diff(y(x),x$4)+8*diff(y(x),x$3)+19*diff(y(x),x$2)+32*diff(y(x),x)+12*y(x)=0,y(0) = 3, D(y)(0) = -3, (D@@2)(y)(0) = -7/2, (D@@3)(y)(0) = 31/4],y(x), singsol=all)� �

y(x) = 2 e−x
2 − sin (2x) + cos (2x)

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 31� �
DSolve[{y''''[x]+2*y'''[x]-2*y''[x]-8*y'[x]-8*y[x]==0,{y[0]==5,y'[0]==-2,y''[0]==6,y'''[0]==8}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(e4x + ex sin(x) + 3ex cos(x) + 1
)
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18.28 problem section 9.2, problem 43(a)
18.28.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7224

Internal problem ID [1492]
Internal file name [OUTPUT/1493_Sunday_June_05_2022_02_19_36_AM_96881931/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 43(a).
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

y′′′′ − y = 0

The characteristic equation is
λ4 − 1 = 0

The roots of the above equation are

λ1 = 1
λ2 = −1
λ3 = i

λ4 = −i

Therefore the homogeneous solution is

yh(x) = c1e−x + c2ex + e−ixc3 + eixc4
The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = ex

y3 = e−ix

y4 = eix
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Summary
The solution(s) found are the following

(1)y = c1e−x + c2ex + e−ixc3 + eixc4
Verification of solutions

y = c1e−x + c2ex + e−ixc3 + eixc4

Verified OK.

18.28.1 Maple step by step solution

Let’s solve
y′′′′ − y = 0

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = y1(x)]

• Define vector
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→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 · →y (x)

• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


−1
1
−1
1



 ,

1,


1
1
1
1



 ,

−I,


−I
−1
I
1



 ,

I,


I
−1
−I
1






• Consider eigenpair−1,


−1
1
−1
1




• Solution to homogeneous system from eigenpair
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→
y 1 = e−x ·


−1
1
−1
1


• Consider eigenpair1,


1
1
1
1




• Solution to homogeneous system from eigenpair

→
y 2 = ex ·


1
1
1
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−I,


−I
−1
I
1




• Solution from eigenpair

e−Ix ·


−I
−1
I
1


• Use Euler identity to write solution in terms of sin and cos
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(cos (x)− I sin (x)) ·


−I
−1
I
1


• Simplify expression

−I(cos (x)− I sin (x))
− cos (x) + I sin (x)
I(cos (x)− I sin (x))
cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) =


− sin (x)
− cos (x)
sin (x)
cos (x)

 ,
→
y 4(x) =


− cos (x)
sin (x)
cos (x)
− sin (x)




• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x)

• Substitute solutions into the general solution

→
y = c1e−x ·


−1
1
−1
1

+ c2ex ·


1
1
1
1

+


−c3 sin (x)− c4 cos (x)
c4 sin (x)− c3 cos (x)
c4 cos (x) + c3 sin (x)
−c4 sin (x) + c3 cos (x)


• First component of the vector is the solution to the ODE

y = −c1e−x + c2ex − c4 cos (x)− c3 sin (x)
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 23� �
dsolve(diff(y(x),x$4)-y(x)=0,y(x), singsol=all)� �

y(x) = e−xc1 + c2ex + c3 sin (x) + c4 cos (x)

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 30� �
DSolve[y''''[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x + c3e

−x + c2 cos(x) + c4 sin(x)
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18.29 problem section 9.2, problem 43(b)
18.29.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7230

Internal problem ID [1493]
Internal file name [OUTPUT/1494_Sunday_June_05_2022_02_19_37_AM_76649214/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 43(b).
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

y′′′′ + y = 0

The characteristic equation is
λ4 + 1 = 0

The roots of the above equation are

λ1 =
√
2
2 + i

√
2

2

λ2 = −
√
2
2 + i

√
2

2

λ3 = −
√
2
2 − i

√
2

2

λ4 =
√
2
2 − i

√
2

2

Therefore the homogeneous solution is

yh(x) = e
(√

2
2 − i

√
2

2

)
x
c1 + e

(√
2

2 + i
√

2
2

)
x
c2 + e

(
−

√
2

2 − i
√
2

2

)
x
c3 + e

(
−

√
2

2 + i
√
2

2

)
x
c4
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The fundamental set of solutions for the homogeneous solution are the following

y1 = e
(√

2
2 − i

√
2

2

)
x

y2 = e
(√

2
2 + i

√
2

2

)
x

y3 = e
(
−

√
2

2 − i
√
2

2

)
x

y4 = e
(
−

√
2

2 + i
√
2

2

)
x

Summary
The solution(s) found are the following

(1)y = e
(√

2
2 − i

√
2

2

)
x
c1 + e

(√
2
2 + i

√
2

2

)
x
c2 + e

(
−

√
2

2 − i
√
2

2

)
x
c3 + e

(
−

√
2
2 + i

√
2

2

)
x
c4

Verification of solutions

y = e
(√

2
2 − i

√
2

2

)
x
c1 + e

(√
2
2 + i

√
2

2

)
x
c2 + e

(
−

√
2

2 − i
√
2

2

)
x
c3 + e

(
−

√
2
2 + i

√
2

2

)
x
c4

Verified OK.

18.29.1 Maple step by step solution

Let’s solve
y′′′′ + y = 0

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = −y1(x)
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Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = −y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0

 · →y (x)

• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A


−

√
2
2 − I

√
2

2 ,



1(
−

√
2
2 − I

√
2

2

)3
1(

−
√
2
2 − I

√
2

2

)2
1

−
√
2

2 − I
√
2

2

1




,


−

√
2
2 + I

√
2

2 ,



1(
−

√
2

2 + I
√
2

2

)3
1(

−
√
2

2 + I
√
2

2

)2
1

−
√
2

2 + I
√
2

2

1




,


√
2
2 − I

√
2

2 ,



1(√
2

2 − I
√
2

2

)3
1(√

2
2 − I

√
2

2

)2
1√

2
2 − I

√
2

2

1




,


√
2
2 + I

√
2

2 ,



1(√
2
2 + I

√
2

2

)3
1(√

2
2 + I

√
2

2

)2
1√

2
2 + I

√
2

2

1






• Consider complex eigenpair, complex conjugate eigenvalue can be ignored
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−

√
2
2 − I

√
2

2 ,



1(
−

√
2

2 − I
√

2
2

)3
1(

−
√
2

2 − I
√

2
2

)2
1

−
√
2

2 − I
√
2

2

1




• Solution from eigenpair

e
(
−

√
2
2 − I

√
2

2

)
x ·



1(
−

√
2

2 − I
√
2

2

)3
1(

−
√
2

2 − I
√
2

2

)2
1

−
√

2
2 − I

√
2

2

1


• Use Euler identity to write solution in terms of sin and cos

e−
√
2 x
2 ·

(
cos
(√

2x
2

)
− I sin

(√
2x
2

))
·



1(
−

√
2

2 − I
√
2

2

)3
1(

−
√
2

2 − I
√
2

2

)2
1

−
√

2
2 − I

√
2

2

1


• Simplify expression

e−
√
2 x
2 ·



cos
(√

2 x
2

)
−I sin

(√
2 x
2

)
(
−

√
2

2 − I
√
2

2

)3
cos
(√

2 x
2

)
−I sin

(√
2 x
2

)
(
−

√
2

2 − I
√
2

2

)2
cos
(√

2 x
2

)
−I sin

(√
2 x
2

)
−

√
2

2 − I
√
2

2

cos
(√

2x
2

)
− I sin

(√
2x
2

)


• Both real and imaginary parts are solutions to the homogeneous system
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→
y 1(x) = e−

√
2 x
2 ·



cos
(√

2 x
2

)√
2

2 +
sin
(√

2 x
2

)√
2

2

− sin
(√

2x
2

)
−

cos
(√

2 x
2

)√
2

2 +
sin
(√

2 x
2

)√
2

2

cos
(√

2x
2

)


,
→
y 2(x) = e−

√
2 x
2 ·



cos
(√

2 x
2

)√
2

2 −
sin
(√

2 x
2

)√
2

2

− cos
(√

2x
2

)
cos
(√

2 x
2

)√
2

2 +
sin
(√

2 x
2

)√
2

2

− sin
(√

2x
2

)




• Consider complex eigenpair, complex conjugate eigenvalue can be ignored

√
2
2 − I

√
2

2 ,



1(√
2

2 − I
√
2

2

)3
1(√

2
2 − I

√
2

2

)2
1√

2
2 − I

√
2

2

1




• Solution from eigenpair

e
(√

2
2 − I

√
2

2

)
x ·



1(√
2

2 − I
√
2

2

)3
1(√

2
2 − I

√
2

2

)2
1√

2
2 − I

√
2

2

1


• Use Euler identity to write solution in terms of sin and cos

e
√
2 x
2 ·

(
cos
(√

2x
2

)
− I sin

(√
2x
2

))
·



1(√
2

2 − I
√
2

2

)3
1(√

2
2 − I

√
2

2

)2
1√

2
2 − I

√
2

2

1


• Simplify expression
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e
√
2 x
2 ·



cos
(√

2 x
2

)
−I sin

(√
2 x
2

)
(√

2
2 − I

√
2

2

)3
cos
(√

2 x
2

)
−I sin

(√
2 x
2

)
(√

2
2 − I

√
2

2

)2
cos
(√

2 x
2

)
−I sin

(√
2 x
2

)
√
2

2 − I
√
2

2

cos
(√

2x
2

)
− I sin

(√
2x
2

)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) = e

√
2 x
2 ·



−
cos
(√

2 x
2

)√
2

2 +
sin
(√

2 x
2

)√
2

2

sin
(√

2x
2

)
cos
(√

2 x
2

)√
2

2 +
sin
(√

2 x
2

)√
2

2

cos
(√

2x
2

)


,
→
y 4(x) = e

√
2 x
2 ·



cos
(√

2 x
2

)√
2

2 +
sin
(√

2 x
2

)√
2

2

cos
(√

2x
2

)
cos
(√

2 x
2

)√
2

2 −
sin
(√

2 x
2

)√
2

2

− sin
(√

2x
2

)




• General solution to the system of ODEs

→
y = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4(x)

• Substitute solutions into the general solution

→
y = c1e−

√
2 x
2 ·



cos
(√

2 x
2

)√
2

2 +
sin
(√

2 x
2

)√
2

2

− sin
(√

2x
2

)
−

cos
(√

2 x
2

)√
2

2 +
sin
(√

2 x
2

)√
2

2

cos
(√

2x
2

)


+ c2e−

√
2 x
2 ·



cos
(√

2 x
2

)√
2

2 −
sin
(√

2 x
2

)√
2

2

− cos
(√

2x
2

)
cos
(√

2 x
2

)√
2

2 +
sin
(√

2 x
2

)√
2

2

− sin
(√

2x
2

)


+ c3e

√
2 x
2 ·



−
cos
(√

2 x
2

)√
2

2 +
sin
(√

2 x
2

)√
2

2

sin
(√

2x
2

)
cos
(√

2 x
2

)√
2

2 +
sin
(√

2 x
2

)√
2

2

cos
(√

2x
2

)


+ c4e

√
2 x
2 ·



cos
(√

2 x
2

)√
2

2 +
sin
(√

2 x
2

)√
2

2

cos
(√

2x
2

)
cos
(√

2 x
2

)√
2

2 −
sin
(√

2 x
2

)√
2

2

− sin
(√

2x
2

)


• First component of the vector is the solution to the ODE

y =

((
(c1+c2)e−

√
2 x
2 −e

√
2 x
2 (c3−c4)

)
cos
(√

2 x
2

)
+sin

(√
2 x
2

)(
(c1−c2)e−

√
2 x
2 +e

√
2 x
2 (c3+c4)

))√
2

2
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 61� �
dsolve(diff(y(x),x$4)+y(x)=0,y(x), singsol=all)� �

y(x) =
(
−e−

√
2 x
2 c1 − e

√
2 x
2 c2

)
sin
(√

2x
2

)
+
(
c3e−

√
2 x
2 + c4e

√
2 x
2

)
cos
(√

2x
2

)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 65� �
DSolve[y''''[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e
− x√

2

((
c1e

√
2x + c2

)
cos
(

x√
2

)
+
(
c4e

√
2x + c3

)
sin
(

x√
2

))
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18.30 problem section 9.2, problem 43(c)
18.30.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7237

Internal problem ID [1494]
Internal file name [OUTPUT/1495_Sunday_June_05_2022_02_19_38_AM_63443292/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 43(c).
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

y′′′′ + 64y = 0

The characteristic equation is
λ4 + 64 = 0

The roots of the above equation are

λ1 = 2− 2i
λ2 = 2 + 2i
λ3 = −2− 2i
λ4 = −2 + 2i

Therefore the homogeneous solution is

yh(x) = e(2−2i)xc1 + e(−2+2i)xc2 + e(−2−2i)xc3 + e(2+2i)xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e(2−2i)x

y2 = e(−2+2i)x

y3 = e(−2−2i)x

y4 = e(2+2i)x
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Summary
The solution(s) found are the following

(1)y = e(2−2i)xc1 + e(−2+2i)xc2 + e(−2−2i)xc3 + e(2+2i)xc4

Verification of solutions

y = e(2−2i)xc1 + e(−2+2i)xc2 + e(−2−2i)xc3 + e(2+2i)xc4

Verified OK.

18.30.1 Maple step by step solution

Let’s solve
y′′′′ + 64y = 0

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = −64y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = −64y1(x)]

• Define vector
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→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1

−64 0 0 0

 · →y (x)

• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1

−64 0 0 0


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−2− 2 I,


1
32 +

I
32

− I
8

−1
4 +

I
4

1



 ,

−2 + 2 I,


1
32 −

I
32

I
8

−1
4 −

I
4

1



 ,

2− 2 I,


− 1

32 +
I
32

I
8

1
4 +

I
4

1



 ,

2 + 2 I,


− 1

32 −
I
32

− I
8

1
4 −

I
4

1






• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−2− 2 I,


1
32 +

I
32

− I
8

−1
4 +

I
4

1




• Solution from eigenpair
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e(−2−2 I)x ·


1
32 +

I
32

− I
8

−1
4 +

I
4

1


• Use Euler identity to write solution in terms of sin and cos

e−2x · (cos (2x)− I sin (2x)) ·


1
32 +

I
32

− I
8

−1
4 +

I
4

1


• Simplify expression

e−2x ·



( 1
32 +

I
32

)
(cos (2x)− I sin (2x))

− I
8(cos (2x)− I sin (2x))(

−1
4 +

I
4

)
(cos (2x)− I sin (2x))

cos (2x)− I sin (2x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 1(x) = e−2x ·



cos(2x)
32 + sin(2x)

32

− sin(2x)
8

− cos(2x)
4 + sin(2x)

4

cos (2x)

 ,
→
y 2(x) = e−2x ·



cos(2x)
32 − sin(2x)

32

− cos(2x)
8

sin(2x)
4 + cos(2x)

4

− sin (2x)




• Consider complex eigenpair, complex conjugate eigenvalue can be ignored2− 2 I,


− 1

32 +
I
32

I
8

1
4 +

I
4

1




• Solution from eigenpair
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e(2−2 I)x ·


− 1

32 +
I
32

I
8

1
4 +

I
4

1


• Use Euler identity to write solution in terms of sin and cos

e2x · (cos (2x)− I sin (2x)) ·


− 1

32 +
I
32

I
8

1
4 +

I
4

1


• Simplify expression

e2x ·



(
− 1

32 +
I
32

)
(cos (2x)− I sin (2x))

I
8(cos (2x)− I sin (2x))(1

4 +
I
4

)
(cos (2x)− I sin (2x))

cos (2x)− I sin (2x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) = e2x ·


− cos(2x)

32 + sin(2x)
32

sin(2x)
8

sin(2x)
4 + cos(2x)

4

cos (2x)

 ,
→
y 4(x) = e2x ·



cos(2x)
32 + sin(2x)

32
cos(2x)

8
cos(2x)

4 − sin(2x)
4

− sin (2x)




• General solution to the system of ODEs

→
y = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4(x)

• Substitute solutions into the general solution

→
y = c1e−2x ·



cos(2x)
32 + sin(2x)

32

− sin(2x)
8

− cos(2x)
4 + sin(2x)

4

cos (2x)

+ c2e−2x ·



cos(2x)
32 − sin(2x)

32

− cos(2x)
8

sin(2x)
4 + cos(2x)

4

− sin (2x)

+ c3e2x ·


− cos(2x)

32 + sin(2x)
32

sin(2x)
8

sin(2x)
4 + cos(2x)

4

cos (2x)

+ e2xc4 ·



cos(2x)
32 + sin(2x)

32
cos(2x)

8
cos(2x)

4 − sin(2x)
4

− sin (2x)


• First component of the vector is the solution to the ODE
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y =
(
(c1+c2)e−2x−(c3−c4)e2x

)
cos(2x)

32 +
(
(c1−c2)e−2x+(c3+c4)e2x

)
sin(2x)

32

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 41� �
dsolve(diff(y(x),x$4)+64*y(x)=0,y(x), singsol=all)� �

y(x) =
(
c2e2x + c4e−2x) cos (2x) + sin (2x)

(
c1e2x + c3e−2x)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 44� �
DSolve[y''''[x]+64*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x((c4e4x + c1
)
cos(2x) +

(
c3e

4x + c2
)
sin(2x)

)
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18.31 problem section 9.2, problem 43(d)
18.31.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7243

Internal problem ID [1495]
Internal file name [OUTPUT/1496_Sunday_June_05_2022_02_19_40_AM_23184824/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 43(d).
ODE order: 6.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

y(6) − y = 0

The characteristic equation is
λ6 − 1 = 0

The roots of the above equation are

λ1 = 1
λ2 = −1

λ3 =
√

−2i
√
3− 2

2

λ4 = −
√
−2i

√
3− 2

2

λ5 =
√

2i
√
3− 2
2

λ6 = −
√
2i
√
3− 2
2

7242



Therefore the homogeneous solution is

yh(x) = c1e−x + c2ex + e
√

2i
√
3−2 x
2 c3 + e

√
−2i

√
3−2 x

2 c4 + e−
√

2i
√
3−2 x
2 c5 + e−

√
−2i

√
3−2 x

2 c6

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = ex

y3 = e
√

2i
√
3−2 x
2

y4 = e
√

−2i
√
3−2 x

2

y5 = e−
√

2i
√
3−2 x
2

y6 = e−
√

−2i
√
3−2 x

2

Summary
The solution(s) found are the following

(1)y = c1e−x + c2ex + e
√

2i
√
3−2 x
2 c3 + e

√
−2i

√
3−2 x

2 c4 + e−
√

2i
√
3−2 x
2 c5 + e−

√
−2i

√
3−2 x

2 c6

Verification of solutions

y = c1e−x + c2ex + e
√

2i
√
3−2 x
2 c3 + e

√
−2i

√
3−2 x

2 c4 + e−
√

2i
√
3−2 x
2 c5 + e−

√
−2i

√
3−2 x

2 c6

Verified OK.

18.31.1 Maple step by step solution

Let’s solve
y(6) − y = 0

• Highest derivative means the order of the ODE is 6
y(6)

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
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y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Define new variable y5(x)
y5(x) = y′′′′

◦ Define new variable y6(x)
y6(x) = y(5)

◦ Isolate for y′6(x) using original ODE
y′6(x) = y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y5(x) = y′4(x) , y6(x) = y′5(x) , y′6(x) = y1(x)]

• Define vector

→
y (x) =



y1(x)
y2(x)
y3(x)
y4(x)
y5(x)
y6(x)


• System to solve

→
y
′
(x) =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0


· →y (x)

• Define the coefficient matrix
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A =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A


−1,



−1
1
−1
1
−1
1




,


1,



1
1
1
1
1
1




,



−1
2 −

I
√
3

2 ,



1(
− 1

2−
I
√
3

2

)5
1(

− 1
2−

I
√
3

2

)4
1(

− 1
2−

I
√
3

2

)3
1(

− 1
2−

I
√
3

2

)2
1

− 1
2−

I
√
3

2

1





,



−1
2 +

I
√
3

2 ,



1(
− 1

2+
I
√

3
2

)5
1(

− 1
2+

I
√

3
2

)4
1(

− 1
2+

I
√

3
2

)3
1(

− 1
2+

I
√

3
2

)2
1

− 1
2+

I
√

3
2

1





,



1
2 −

I
√
3

2 ,



1(
1
2−

I
√
3

2

)5
1(

1
2−

I
√
3

2

)4
1(

1
2−

I
√
3

2

)3
1(

1
2−

I
√
3

2

)2
1

1
2−

I
√

3
2

1





,



1
2 +

I
√
3

2 ,



1(
1
2+

I
√
3

2

)5
1(

1
2+

I
√
3

2

)4
1(

1
2+

I
√
3

2

)3
1(

1
2+

I
√
3

2

)2
1

1
2+

I
√
3

2

1






• Consider eigenpair

−1,



−1
1
−1
1
−1
1




• Solution to homogeneous system from eigenpair
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→
y 1 = e−x ·



−1
1
−1
1
−1
1


• Consider eigenpair

1,



1
1
1
1
1
1




• Solution to homogeneous system from eigenpair

→
y 2 = ex ·



1
1
1
1
1
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored
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−1
2 −

I
√
3

2 ,



1(
− 1

2−
I
√
3

2

)5
1(

− 1
2−

I
√
3

2

)4
1(

− 1
2−

I
√
3

2

)3
1(

− 1
2−

I
√
3

2

)2
1

− 1
2−

I
√
3

2

1




• Solution from eigenpair

e
(
− 1

2−
I
√
3

2

)
x ·



1(
− 1

2−
I
√
3

2

)5
1(

− 1
2−

I
√
3

2

)4
1(

− 1
2−

I
√
3

2

)3
1(

− 1
2−

I
√
3

2

)2
1

− 1
2−

I
√
3

2

1


• Use Euler identity to write solution in terms of sin and cos

e−x
2 ·
(
cos
(√

3x
2

)
− I sin

(√
3x
2

))
·



1(
− 1

2−
I
√
3

2

)5
1(

− 1
2−

I
√
3

2

)4
1(

− 1
2−

I
√
3

2

)3
1(

− 1
2−

I
√
3

2

)2
1

− 1
2−

I
√
3

2

1


• Simplify expression
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e−x
2 ·



cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(
− 1

2−
I
√
3

2

)5
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(
− 1

2−
I
√
3

2

)4
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(
− 1

2−
I
√
3

2

)3
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(
− 1

2−
I
√
3

2

)2
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
− 1

2−
I
√
3

2

cos
(√

3x
2

)
− I sin

(√
3x
2

)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) = e−x

2 ·



<

(
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(
− 1

2−
I
√

3
2

)5
)

<

(
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(
− 1

2−
I
√

3
2

)4
)

cos
(√

3x
2

)
−

cos
(√

3 x
2

)
2 −

sin
(√

3 x
2

)√
3

2

−
cos
(√

3 x
2

)
2 +

sin
(√

3 x
2

)√
3

2

cos
(√

3x
2

)



,
→
y 4(x) = e−x

2 ·



=

(
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(
− 1

2−
I
√

3
2

)5
)

=

(
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(
− 1

2−
I
√

3
2

)4
)

− sin
(√

3x
2

)
−

cos
(√

3 x
2

)√
3

2 +
sin
(√

3 x
2

)
2

cos
(√

3 x
2

)√
3

2 +
sin
(√

3 x
2

)
2

− sin
(√

3x
2

)




• Consider complex eigenpair, complex conjugate eigenvalue can be ignored
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1
2 −

I
√
3

2 ,



1(
1
2−

I
√
3

2

)5
1(

1
2−

I
√
3

2

)4
1(

1
2−

I
√
3

2

)3
1(

1
2−

I
√
3

2

)2
1

1
2−

I
√
3

2

1




• Solution from eigenpair

e
(

1
2−

I
√
3

2

)
x ·



1(
1
2−

I
√
3

2

)5
1(

1
2−

I
√
3

2

)4
1(

1
2−

I
√
3

2

)3
1(

1
2−

I
√
3

2

)2
1

1
2−

I
√
3

2

1


• Use Euler identity to write solution in terms of sin and cos

ex
2 ·
(
cos
(√

3x
2

)
− I sin

(√
3x
2

))
·



1(
1
2−

I
√
3

2

)5
1(

1
2−

I
√
3

2

)4
1(

1
2−

I
√
3

2

)3
1(

1
2−

I
√
3

2

)2
1

1
2−

I
√
3

2

1


• Simplify expression
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ex
2 ·



cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(

1
2−

I
√
3

2

)5
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(

1
2−

I
√
3

2

)4
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(

1
2−

I
√
3

2

)3
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(

1
2−

I
√
3

2

)2
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
1
2−

I
√
3

2

cos
(√

3x
2

)
− I sin

(√
3x
2

)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 5(x) = ex

2 ·



<

(
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(

1
2−

I
√
3

2

)5
)

<

(
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(

1
2−

I
√
3

2

)4
)

− cos
(√

3x
2

)
−

cos
(√

3 x
2

)
2 +

sin
(√

3 x
2

)√
3

2

cos
(√

3 x
2

)
2 +

sin
(√

3 x
2

)√
3

2

cos
(√

3x
2

)



,
→
y 6(x) = ex

2 ·



=

(
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(

1
2−

I
√
3

2

)5
)

=

(
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(

1
2−

I
√
3

2

)4
)

sin
(√

3x
2

)
cos
(√

3 x
2

)√
3

2 +
sin
(√

3 x
2

)
2

cos
(√

3 x
2

)√
3

2 −
sin
(√

3 x
2

)
2

− sin
(√

3x
2

)




• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) + c5

→
y 5(x) + c6

→
y 6(x)

• Substitute solutions into the general solution
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→
y = c1e−x ·



−1
1
−1
1
−1
1


+ c2ex ·



1
1
1
1
1
1


+ e−x

2 c3 ·



<

(
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(
− 1

2−
I
√
3

2

)5
)

<

(
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(
− 1

2−
I
√
3

2

)4
)

cos
(√

3x
2

)
−

cos
(√

3 x
2

)
2 −

sin
(√

3 x
2

)√
3

2

−
cos
(√

3 x
2

)
2 +

sin
(√

3 x
2

)√
3

2

cos
(√

3x
2

)



+ c4e−
x
2 ·



=

(
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(
− 1

2−
I
√
3

2

)5
)

=

(
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(
− 1

2−
I
√
3

2

)4
)

− sin
(√

3x
2

)
−

cos
(√

3 x
2

)√
3

2 +
sin
(√

3 x
2

)
2

cos
(√

3 x
2

)√
3

2 +
sin
(√

3 x
2

)
2

− sin
(√

3x
2

)



+ c5e
x
2 ·



<

(
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(

1
2−

I
√

3
2

)5
)

<

(
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(

1
2−

I
√

3
2

)4
)

− cos
(√

3x
2

)
−

cos
(√

3 x
2

)
2 +

sin
(√

3 x
2

)√
3

2

cos
(√

3 x
2

)
2 +

sin
(√

3 x
2

)√
3

2

cos
(√

3x
2

)



+ c6e
x
2 ·



=

(
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(

1
2−

I
√
3

2

)5
)

=

(
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(

1
2−

I
√
3

2

)4
)

sin
(√

3x
2

)
cos
(√

3 x
2

)√
3

2 +
sin
(√

3 x
2

)
2

cos
(√

3 x
2

)√
3

2 −
sin
(√

3 x
2

)
2

− sin
(√

3x
2

)


• First component of the vector is the solution to the ODE

y =
(
c2e2x + 32c5e

3x
2 <

(
sin
(√

3 x
2

)
+I cos

(√
3 x
2

)
(√

3+I
)5

)
+ 32c6e

3x
2 =

(
sin
(√

3 x
2

)
+I cos

(√
3 x
2

)
(√

3+I
)5

)
+ 32c3<

(
sin
(√

3 x
2

)
+I cos

(√
3 x
2

)
(
−I+

√
3
)5

)
ex

2 + 32c4=
(

sin
(√

3 x
2

)
+I cos

(√
3 x
2

)
(
−I+

√
3
)5

)
ex

2 − c1

)
e−x

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 59� �
dsolve(diff(y(x),x$6)-y(x)=0,y(x), singsol=all)� �
y(x) =

((
ex

2 c6 + e 3x
2 c4
)
cos
(√

3x
2

)
+
(
ex

2 c5 + c3e
3x
2

)
sin
(√

3x
2

)
+ c2e2x + c1

)
e−x
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 78� �
DSolve[y''''''[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → e−x

(
c1e

2x + ex/2(c2ex + c3) cos
(√

3x
2

)
+ ex/2(c6ex + c5) sin

(√
3x
2

)
+ c4

)

7252



18.32 problem section 9.2, problem 43(e)
18.32.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7254

Internal problem ID [1496]
Internal file name [OUTPUT/1497_Sunday_June_05_2022_02_19_41_AM_26235213/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 43(e).
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

y′′′′ + 64y = 0

The characteristic equation is
λ4 + 64 = 0

The roots of the above equation are

λ1 = 2− 2i
λ2 = 2 + 2i
λ3 = −2− 2i
λ4 = −2 + 2i

Therefore the homogeneous solution is

yh(x) = e(2−2i)xc1 + e(−2+2i)xc2 + e(−2−2i)xc3 + e(2+2i)xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e(2−2i)x

y2 = e(−2+2i)x

y3 = e(−2−2i)x

y4 = e(2+2i)x
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Summary
The solution(s) found are the following

(1)y = e(2−2i)xc1 + e(−2+2i)xc2 + e(−2−2i)xc3 + e(2+2i)xc4

Verification of solutions

y = e(2−2i)xc1 + e(−2+2i)xc2 + e(−2−2i)xc3 + e(2+2i)xc4

Verified OK.

18.32.1 Maple step by step solution

Let’s solve
y′′′′ + 64y = 0

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = −64y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = −64y1(x)]

• Define vector
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→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1

−64 0 0 0

 · →y (x)

• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1

−64 0 0 0


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−2− 2 I,


1
32 +

I
32

− I
8

−1
4 +

I
4

1



 ,

−2 + 2 I,


1
32 −

I
32

I
8

−1
4 −

I
4

1



 ,

2− 2 I,


− 1

32 +
I
32

I
8

1
4 +

I
4

1



 ,

2 + 2 I,


− 1

32 −
I
32

− I
8

1
4 −

I
4

1






• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−2− 2 I,


1
32 +

I
32

− I
8

−1
4 +

I
4

1




• Solution from eigenpair
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e(−2−2 I)x ·


1
32 +

I
32

− I
8

−1
4 +

I
4

1


• Use Euler identity to write solution in terms of sin and cos

e−2x · (cos (2x)− I sin (2x)) ·


1
32 +

I
32

− I
8

−1
4 +

I
4

1


• Simplify expression

e−2x ·



( 1
32 +

I
32

)
(cos (2x)− I sin (2x))

− I
8(cos (2x)− I sin (2x))(

−1
4 +

I
4

)
(cos (2x)− I sin (2x))

cos (2x)− I sin (2x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 1(x) = e−2x ·



cos(2x)
32 + sin(2x)

32

− sin(2x)
8

− cos(2x)
4 + sin(2x)

4

cos (2x)

 ,
→
y 2(x) = e−2x ·



cos(2x)
32 − sin(2x)

32

− cos(2x)
8

sin(2x)
4 + cos(2x)

4

− sin (2x)




• Consider complex eigenpair, complex conjugate eigenvalue can be ignored2− 2 I,


− 1

32 +
I
32

I
8

1
4 +

I
4

1




• Solution from eigenpair
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e(2−2 I)x ·


− 1

32 +
I
32

I
8

1
4 +

I
4

1


• Use Euler identity to write solution in terms of sin and cos

e2x · (cos (2x)− I sin (2x)) ·


− 1

32 +
I
32

I
8

1
4 +

I
4

1


• Simplify expression

e2x ·



(
− 1

32 +
I
32

)
(cos (2x)− I sin (2x))

I
8(cos (2x)− I sin (2x))(1

4 +
I
4

)
(cos (2x)− I sin (2x))

cos (2x)− I sin (2x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) = e2x ·


− cos(2x)

32 + sin(2x)
32

sin(2x)
8

sin(2x)
4 + cos(2x)

4

cos (2x)

 ,
→
y 4(x) = e2x ·



cos(2x)
32 + sin(2x)

32
cos(2x)

8
cos(2x)

4 − sin(2x)
4

− sin (2x)




• General solution to the system of ODEs

→
y = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4(x)

• Substitute solutions into the general solution

→
y = c1e−2x ·



cos(2x)
32 + sin(2x)

32

− sin(2x)
8

− cos(2x)
4 + sin(2x)

4

cos (2x)

+ c2e−2x ·



cos(2x)
32 − sin(2x)

32

− cos(2x)
8

sin(2x)
4 + cos(2x)

4

− sin (2x)

+ c3e2x ·


− cos(2x)

32 + sin(2x)
32

sin(2x)
8

sin(2x)
4 + cos(2x)

4

cos (2x)

+ e2xc4 ·



cos(2x)
32 + sin(2x)

32
cos(2x)

8
cos(2x)

4 − sin(2x)
4

− sin (2x)


• First component of the vector is the solution to the ODE
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y =
(
(c1+c2)e−2x−(c3−c4)e2x

)
cos(2x)

32 +
(
(c1−c2)e−2x+(c3+c4)e2x

)
sin(2x)

32

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 41� �
dsolve(diff(y(x),x$4)+64*y(x)=0,y(x), singsol=all)� �

y(x) =
(
c2e2x + c4e−2x) cos (2x) + sin (2x)

(
c1e2x + c3e−2x)

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 44� �
DSolve[y''''[x]+64*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x((c4e4x + c1
)
cos(2x) +

(
c3e

4x + c2
)
sin(2x)

)
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18.33 problem section 9.2, problem 43(g)
18.33.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7260

Internal problem ID [1497]
Internal file name [OUTPUT/1498_Sunday_June_05_2022_02_19_42_AM_93887519/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.2. constant
coefficient. Page 483
Problem number: section 9.2, problem 43(g).
ODE order: 5.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

y(5) + y′′′′ + y′′′ + y′′ + y′ + y = 0

The characteristic equation is

λ5 + λ4 + λ3 + λ2 + λ+ 1 = 0

The roots of the above equation are

λ1 = −1

λ2 = −1
2 − i

√
3

2

λ3 = −1
2 + i

√
3

2

λ4 =
1
2 − i

√
3

2

λ5 =
1
2 + i

√
3

2
Therefore the homogeneous solution is

yh(x) = c1e−x + e
(
− 1

2+
i
√
3

2

)
x
c2 + e

(
1
2−

i
√
3

2

)
x
c3 + e

(
1
2+

i
√
3

2

)
x
c4 + e

(
− 1

2−
i
√
3

2

)
x
c5
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The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = e
(
− 1

2+
i
√
3

2

)
x

y3 = e
(

1
2−

i
√
3

2

)
x

y4 = e
(

1
2+

i
√
3

2

)
x

y5 = e
(
− 1

2−
i
√
3

2

)
x

Summary
The solution(s) found are the following

(1)y = c1e−x + e
(
− 1

2+
i
√
3

2

)
x
c2 + e

(
1
2−

i
√
3

2

)
x
c3 + e

(
1
2+

i
√
3

2

)
x
c4 + e

(
− 1

2−
i
√
3

2

)
x
c5

Verification of solutions

y = c1e−x + e
(
− 1

2+
i
√
3

2

)
x
c2 + e

(
1
2−

i
√
3

2

)
x
c3 + e

(
1
2+

i
√
3

2

)
x
c4 + e

(
− 1

2−
i
√
3

2

)
x
c5

Verified OK.

18.33.1 Maple step by step solution

Let’s solve
y(5) + y′′′′ + y′′′ + y′′ + y′ + y = 0

• Highest derivative means the order of the ODE is 5
y(5)

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Define new variable y5(x)
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y5(x) = y′′′′

◦ Isolate for y′5(x) using original ODE
y′5(x) = −y5(x)− y4(x)− y3(x)− y2(x)− y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y5(x) = y′4(x) , y′5(x) = −y5(x)− y4(x)− y3(x)− y2(x)− y1(x)]

• Define vector

→
y (x) =



y1(x)
y2(x)
y3(x)
y4(x)
y5(x)


• System to solve

→
y
′
(x) =



0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−1 −1 −1 −1 −1


· →y (x)

• Define the coefficient matrix

A =



0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−1 −1 −1 −1 −1


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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−1,



1
−1
1
−1
1




,


−1

2 −
I
√
3

2 ,



1(
− 1

2−
I
√
3

2

)4
1(

− 1
2−

I
√
3

2

)3
1(

− 1
2−

I
√
3

2

)2
1

− 1
2−

I
√
3

2

1




,


−1

2 +
I
√
3

2 ,



1(
− 1

2+
I
√

3
2

)4
1(

− 1
2+

I
√

3
2

)3
1(

− 1
2+

I
√

3
2

)2
1

− 1
2+

I
√
3

2

1




,


1
2 −

I
√
3

2 ,



1(
1
2−

I
√
3

2

)4
1(

1
2−

I
√
3

2

)3
1(

1
2−

I
√
3

2

)2
1

1
2−

I
√
3

2

1




,


1
2 +

I
√
3

2 ,



1(
1
2+

I
√

3
2

)4
1(

1
2+

I
√

3
2

)3
1(

1
2+

I
√

3
2

)2
1

1
2+

I
√
3

2

1






• Consider eigenpair

−1,



1
−1
1
−1
1




• Solution to homogeneous system from eigenpair

→
y 1 = e−x ·



1
−1
1
−1
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored

−1
2 −

I
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3

2 ,



1(
− 1

2−
I
√
3

2

)4
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− 1
2−

I
√
3

2

)3
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− 1
2−

I
√
3

2

)2
1

− 1
2−

I
√
3

2

1




• Solution from eigenpair
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e
(
− 1

2−
I
√
3

2

)
x ·



1(
− 1

2−
I
√
3

2

)4
1(

− 1
2−

I
√
3

2

)3
1(

− 1
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I
√
3

2

)2
1

− 1
2−

I
√
3

2

1


• Use Euler identity to write solution in terms of sin and cos

e−x
2 ·
(
cos
(√

3x
2

)
− I sin

(√
3x
2

))
·



1(
− 1

2−
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√
3

2

)4
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I
√
3

2

)3
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I
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− 1
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I
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3

2
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• Simplify expression

e−x
2 ·
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− I sin
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• Both real and imaginary parts are solutions to the homogeneous system
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→
y 2(x) = e−x

2 ·



<

(
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(
− 1

2−
I
√

3
2

)4
)

cos
(√

3x
2

)
−

cos
(√

3 x
2

)
2 −

sin
(√

3 x
2

)√
3

2

−
cos
(√

3 x
2

)
2 +

sin
(√

3 x
2

)√
3

2

cos
(√

3x
2

)


,
→
y 3(x) = e−x

2 ·



=

(
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(
− 1

2−
I
√

3
2

)4
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− sin
(√

3x
2
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(√

3 x
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3
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sin
(√

3 x
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(√

3 x
2
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3
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sin
(√

3 x
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− sin
(√

3x
2

)




• Consider complex eigenpair, complex conjugate eigenvalue can be ignored
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• Solution from eigenpair

e
(

1
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I
√
3
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)
x ·
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1
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• Use Euler identity to write solution in terms of sin and cos
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ex
2 ·
(
cos
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)
− I sin
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• Simplify expression

ex
2 ·
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−I sin
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• Both real and imaginary parts are solutions to the homogeneous system

→
y 4(x) = ex

2 ·



<
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cos
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,
→
y 5(x) = ex
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• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4(x) + c5

→
y 5(x)

• Substitute solutions into the general solution
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→
y = c1e−x ·



1
−1
1
−1
1


+ c2e−
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2 ·
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• First component of the vector is the solution to the ODE

y = 16 e−x

(
c4e

3x
2 =

(
sin
(√

3 x
2

)
+I cos

(√
3 x
2

)
(√

3+I
)4

)
− c5e

3x
2 <

(
sin
(√
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2
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+I cos

(√
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(√
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)4
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+ c2=

(
sin
(√
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(
−I+

√
3
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)
ex

2 − c3<

(
sin
(√
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2

)
+I cos

(√
3 x
2
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(
−I+

√
3
)4

)
ex

2 + c1
16

)

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 53� �
dsolve(diff(y(x),x$5)+diff(y(x),x$4)+diff(y(x),x$3)+diff(y(x),x$2)+diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) = e−x

((
ex

2 c5 + c3e
3x
2

)
cos
(√

3x
2

)
+
(
c2e

3x
2 + c4e

x
2

)
sin
(√

3x
2

)
+ c1

)

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 70� �
DSolve[y'''''[x]+y''''[x]+y'''[x]+y''[x]+y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x

(
ex/2(c3ex + c2) cos

(√
3x
2

)
+ ex/2(c4ex + c1) sin

(√
3x
2

)
+ c5

)
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19.1 problem section 9.3, problem 1
19.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7272

Internal problem ID [1498]
Internal file name [OUTPUT/1499_Sunday_June_05_2022_02_19_44_AM_49068004/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 1.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ − 6y′′ + 11y′ − 6y = −ex
(
−24x2 + 76x+ 4

)
This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − 6y′′ + 11y′ − 6y = 0

The characteristic equation is

λ3 − 6λ2 + 11λ− 6 = 0

The roots of the above equation are

λ1 = 1
λ2 = 2
λ3 = 3
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Therefore the homogeneous solution is

yh(x) = c1ex + c2e2x + c3e3x

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = e2x

y3 = e3x

Now the particular solution to the given ODE is found

y′′′ − 6y′′ + 11y′ − 6y = −ex
(
−24x2 + 76x+ 4

)
The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

−ex
(
−24x2 + 76x+ 4

)
Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x ex, x2ex, ex}]

While the set of the basis functions for the homogeneous solution found earlier is

{ex, e2x, e3x}

Since ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x ex, x2ex, exx3}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x ex + A2x
2ex + A3exx3

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

6A3exx2 − 18A3exx+ 4A2x ex + 6A3ex − 6A2ex + 2A1ex = −ex
(
−24x2 + 76x+ 4

)
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Solving for the unknowns by comparing coefficients results in

[A1 = −17, A2 = −1, A3 = 4]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = −17x ex − x2ex + 4 exx3

Therefore the general solution is

y = yh + yp

=
(
c1ex + c2e2x + c3e3x

)
+
(
−17x ex − x2ex + 4 exx3)

Summary
The solution(s) found are the following

(1)y = c1ex + c2e2x + c3e3x − 17x ex − x2ex + 4 exx3

Verification of solutions

y = c1ex + c2e2x + c3e3x − 17x ex − x2ex + 4 exx3

Verified OK.

19.1.1 Maple step by step solution

Let’s solve
y′′′ − 6y′′ + 11y′ − 6y = −ex(−24x2 + 76x+ 4)

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative
y′′′ = 6y + 24x2ex − 76x ex − 4 ex + 6y′′ − 11y′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ − 6y′′ + 11y′ − 6y = 4 ex(6x2 − 19x− 1)

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y
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◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = 24x2ex − 76x ex + 6y3(x)− 11y2(x) + 6y1(x)− 4 ex

Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 24x2ex − 76x ex + 6y3(x)− 11y2(x) + 6y1(x)− 4 ex]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
6 −11 6

 · →y (x) +


0
0

24x2ex − 76x ex − 4 ex


• Define the forcing function

→
f (x) =


0
0

24x2ex − 76x ex − 4 ex


• Define the coefficient matrix

A =


0 1 0
0 0 1
6 −11 6


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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1,


1
1
1


 ,

2,


1
4
1
2

1


 ,

3,


1
9
1
3

1





• Consider eigenpair1,


1
1
1




• Solution to homogeneous system from eigenpair

→
y 1 = ex ·


1
1
1


• Consider eigenpair2,


1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 2 = e2x ·


1
4
1
2

1


• Consider eigenpair3,


1
9
1
3

1




• Solution to homogeneous system from eigenpair

→
y 3 = e3x ·


1
9
1
3

1
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• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


ex e2x

4
e3x
9

ex e2x
2

e3x
3

ex e2x e3x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


ex e2x

4
e3x
9

ex e2x
2

e3x
3

ex e2x e3x

 · 1
1 1

4
1
9

1 1
2

1
3

1 1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


3 ex − 3 e2x + e3x −5 ex

2 + 4 e2x − 3 e3x
2

ex
2 − e2x + e3x

2

3 ex − 6 e2x + 3 e3x −5 ex
2 + 8 e2x − 9 e3x

2
ex
2 − 2 e2x + 3 e3x

2

3 ex − 12 e2x + 9 e3x −5 ex
2 + 16 e2x − 27 e3x

2
ex
2 − 4 e2x + 9 e3x

2


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)
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◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


32 e2x − 15 e3x

2 +
(
8x3−2x2−34x−49

)
ex

2

64 e2x − 45 e3x
2 +

(
8x3+22x2−38x−83

)
ex

2

128 e2x − 135 e3x
2 +

(
8x3+46x2+6x−121

)
ex

2


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +


32 e2x − 15 e3x

2 +
(
8x3−2x2−34x−49

)
ex

2

64 e2x − 45 e3x
2 +

(
8x3+22x2−38x−83

)
ex

2

128 e2x − 135 e3x
2 +

(
8x3+46x2+6x−121

)
ex

2


• First component of the vector is the solution to the ODE

y = (128+c2)e2x
4 + (−135+2c3)e3x

18 + 4
(
x3 − 1

4x
2 − 17

4 x+ 1
4c1 −

49
8

)
ex
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 32� �
dsolve(diff(y(x),x$3)-6*diff(y(x),x$2)+11*diff(y(x),x)-6*y(x)=-exp(x)*(4+76*x-24*x^2),y(x), singsol=all)� �

y(x) = ex
(
c3e2x + 4x3 + c2ex − x2 + c1 − 17x

)
3 Solution by Mathematica
Time used: 0.103 (sec). Leaf size: 47� �
DSolve[y'''[x]-6*y''[x]+11*y'[x]-6*y[x]==-Exp[x]*(4+76*x-24*x^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

x
(
8x3 − 2x2 − 34x+ 2c2ex + 2c3e2x − 49 + 2c1

)

7277



19.2 problem section 9.3, problem 2
19.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7280

Internal problem ID [1499]
Internal file name [OUTPUT/1500_Sunday_June_05_2022_02_19_46_AM_21485494/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 2.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ − 2y′′ − 5y′ + 6y = e−3x(6x2 − 23x+ 32
)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − 2y′′ − 5y′ + 6y = 0

The characteristic equation is

λ3 − 2λ2 − 5λ+ 6 = 0

The roots of the above equation are

λ1 = 1
λ2 = 3
λ3 = −2

7278



Therefore the homogeneous solution is

yh(x) = c1e−2x + c2ex + c3e3x

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−2x

y2 = ex

y3 = e3x

Now the particular solution to the given ODE is found

y′′′ − 2y′′ − 5y′ + 6y = e−3x(6x2 − 23x+ 32
)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

e−3x(6x2 − 23x+ 32
)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e−3x, x2e−3x, e−3x}]

While the set of the basis functions for the homogeneous solution found earlier is

{ex, e−2x, e3x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1x e−3x + A2x
2e−3x + A3e−3x

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

34A1e−3x − 24A1x e−3x − 22A2e−3x + 68A2x e−3x − 24A2x
2e−3x − 24A3e−3x

= e−3x(6x2 − 23x+ 32
)
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Solving for the unknowns by comparing coefficients results in[
A1 =

1
4 , A2 = −1

4 , A3 = −3
4

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x e−3x

4 − x2e−3x

4 − 3 e−3x

4

Therefore the general solution is

y = yh + yp

=
(
c1e−2x + c2ex + c3e3x

)
+
(
x e−3x

4 − x2e−3x

4 − 3 e−3x

4

)

Summary
The solution(s) found are the following

(1)y = c1e−2x + c2ex + c3e3x +
x e−3x

4 − x2e−3x

4 − 3 e−3x

4
Verification of solutions

y = c1e−2x + c2ex + c3e3x +
x e−3x

4 − x2e−3x

4 − 3 e−3x

4

Verified OK.

19.2.1 Maple step by step solution

Let’s solve
y′′′ − 2y′′ − 5y′ + 6y = e−3x(6x2 − 23x+ 32)

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′
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◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = 6x2e−3x − 23x e−3x + 2y3(x) + 5y2(x)− 6y1(x) + 32 e−3x

Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 6x2e−3x − 23x e−3x + 2y3(x) + 5y2(x)− 6y1(x) + 32 e−3x]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
−6 5 2

 · →y (x) +


0
0

6x2e−3x − 23x e−3x + 32 e−3x


• Define the forcing function

→
f (x) =


0
0

6x2e−3x − 23x e−3x + 32 e−3x


• Define the coefficient matrix

A =


0 1 0
0 0 1
−6 5 2


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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−2,


1
4

−1
2

1


 ,

1,


1
1
1


 ,

3,


1
9
1
3

1





• Consider eigenpair−2,


1
4

−1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−2x ·


1
4

−1
2

1


• Consider eigenpair1,


1
1
1




• Solution to homogeneous system from eigenpair

→
y 2 = ex ·


1
1
1


• Consider eigenpair3,


1
9
1
3

1




• Solution to homogeneous system from eigenpair

→
y 3 = e3x ·


1
9
1
3

1
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• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


e−2x

4 ex e3x
9

− e−2x

2 ex e3x
3

e−2x ex e3x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e−2x

4 ex e3x
9

− e−2x

2 ex e3x
3

e−2x ex e3x

 · 1

1
4 1 1

9

−1
2 1 1

3

1 1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


−
(
e5x−5 e3x−1

)
e−2x

5

(
3 e5x+5 e3x−8

)
e−2x

30

(
3 e5x−5 e3x+2

)
e−2x

30

−
(
3 e5x−5 e3x+2

)
e−2x

5

(
9 e5x+5 e3x+16

)
e−2x

30

(
9 e5x−5 e3x−4

)
e−2x

30

−
(
9 e5x−5 e3x−4

)
e−2x

5

(
27 e5x+5 e3x−32

)
e−2x

30

(
27 e5x−5 e3x+8

)
e−2x

30


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)
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◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


(
19 e6x−45 e4x−10x2+56 ex+10x−30

)
e−3x

40

−
(
−57 e6x+45 e4x−30x2+112 ex+50x−100

)
e−3x

40(
171 e6x−45 e4x−90x2+224 ex+210x−350

)
e−3x

40


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +


(
19 e6x−45 e4x−10x2+56 ex+10x−30

)
e−3x

40

−
(
−57 e6x+45 e4x−30x2+112 ex+50x−100

)
e−3x

40(
171 e6x−45 e4x−90x2+224 ex+210x−350

)
e−3x

40


• First component of the vector is the solution to the ODE

y =
(
c2 − 9

8

)
e−3xe4x −

(
90x2−90c1ex−40c3e6x−90x−504 ex−171 e6x+270

)
e−3x

360
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 37� �
dsolve(diff(y(x),x$3)-2*diff(y(x),x$2)-5*diff(y(x),x)+6*y(x)=exp(-3*x)*(32-23*x+6*x^2),y(x), singsol=all)� �

y(x) = (4c3e6x + 4 e4xc1 + 4c2ex − x2 + x− 3) e−3x

4

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 45� �
DSolve[y'''[x]-2*y''[x]-5*y'[x]+6*y[x]==Exp[-3*x]*(32-23*x+6*x^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
4e

−3x(x2 − x+ 3
)
+ c1e

−2x + c2e
x + c3e

3x
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19.3 problem section 9.3, problem 3
19.3.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7288

Internal problem ID [1500]
Internal file name [OUTPUT/1501_Sunday_June_05_2022_02_19_48_AM_67624774/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 3.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

4y′′′ + 8y′′ − y′ − 2y = −ex
(
6x2 + 45x+ 4

)
This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

4y′′′ + 8y′′ − y′ − 2y = 0

The characteristic equation is

4λ3 + 8λ2 − λ− 2 = 0

The roots of the above equation are

λ1 = −1
2

λ2 =
1
2

λ3 = −2
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Therefore the homogeneous solution is

yh(x) = c1e−2x + c2e−
x
2 + c3e

x
2

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−2x

y2 = e−x
2

y3 = ex
2

Now the particular solution to the given ODE is found

4y′′′ + 8y′′ − y′ − 2y = −ex
(
6x2 + 45x+ 4

)
The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

−ex
(
6x2 + 45x+ 4

)
Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x ex, x2ex, ex}]

While the set of the basis functions for the homogeneous solution found earlier is{
e−2x, e−x

2 , ex
2
}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1x ex + A2x
2ex + A3ex

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

27A1ex + 9A1x ex + 40A2ex + 54A2x ex + 9A2x
2ex + 9A3ex = −ex

(
6x2 + 45x+ 4

)
Solving for the unknowns by comparing coefficients results in[

A1 = −1, A2 = −2
3 , A3 =

149
27

]
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Substituting the above back in the above trial solution yp, gives the particular solution

yp = −x ex − 2x2ex
3 + 149 ex

27

Therefore the general solution is

y = yh + yp

=
(
c1e−2x + c2e−

x
2 + c3e

x
2
)
+
(
−x ex − 2x2ex

3 + 149 ex
27

)

Summary
The solution(s) found are the following

(1)y = c1e−2x + c2e−
x
2 + c3e

x
2 − x ex − 2x2ex

3 + 149 ex
27

Verification of solutions

y = c1e−2x + c2e−
x
2 + c3e

x
2 − x ex − 2x2ex

3 + 149 ex
27

Verified OK.

19.3.1 Maple step by step solution

Let’s solve
4y′′′ + 8y′′ − y′ − 2y = −ex(6x2 + 45x+ 4)

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative
y′′′ = y

2 − 2y′′ + y′

4 − 3x2ex
2 − 45x ex

4 − ex

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′′ + 2y′′ − y′

4 − y
2 = − ex

(
6x2+45x+4

)
4

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
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y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = −3x2ex

2 − 45x ex
4 − ex − 2y3(x) + y2(x)

4 + y1(x)
2

Convert linear ODE into a system of first order ODEs[
y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = −3x2ex

2 − 45x ex
4 − ex − 2y3(x) + y2(x)

4 + y1(x)
2

]
• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
1
2

1
4 −2

 · →y (x) +


0
0

−3x2ex
2 − 45x ex

4 − ex


• Define the forcing function

→
f (x) =


0
0

−3x2ex
2 − 45x ex

4 − ex


• Define the coefficient matrix

A =


0 1 0
0 0 1
1
2

1
4 −2


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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−2,


1
4

−1
2

1


 ,

−1
2 ,


4
−2
1


 ,

1
2 ,


4
2
1





• Consider eigenpair−2,


1
4

−1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−2x ·


1
4

−1
2

1


• Consider eigenpair−1

2 ,


4
−2
1




• Solution to homogeneous system from eigenpair

→
y 2 = e−x

2 ·


4
−2
1


• Consider eigenpair1

2 ,


4
2
1




• Solution to homogeneous system from eigenpair

→
y 3 = ex

2 ·


4
2
1
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• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


e−2x

4 4 e−x
2 4 ex

2

− e−2x

2 −2 e−x
2 2 ex

2

e−2x e−x
2 ex

2


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e−2x

4 4 e−x
2 4 ex

2

− e−2x

2 −2 e−x
2 2 ex

2

e−2x e−x
2 ex

2

 · 1

1
4 4 4

−1
2 −2 2

1 1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =



(
6 e

5x
2 +10 e

3x
2 −1

)
e−2x

15 −e−x
2 + ex

2
2
(
3 e

5x
2 −5 e

3x
2 +2

)
e−2x

15(
3 e

5x
2 −5 e

3x
2 +2

)
e−2x

15
e−

x
2

2 + e
x
2
2

(
3 e

5x
2 +5 e

3x
2 −8

)
e−2x

15(
3 e

5x
2 +5 e

3x
2 −8

)
e−2x

30 − e−
x
2

4 + e
x
2
4

(
3 e

5x
2 −5 e

3x
2 +32

)
e−2x

30


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system
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A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


−
(
90x2e3x+135x e3x−745 e3x+1026 e

5x
2 −310 e

3x
2 +29

)
e−2x

135

−
(
90x2e3x+315x e3x−610 e3x+513 e

5x
2 +155 e

3x
2 −58

)
e−2x

135

−
(
180x2e3x+990x e3x−590 e3x+513 e

5x
2 −155 e

3x
2 +232

)
e−2x

270


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +


−
(
90x2e3x+135x e3x−745 e3x+1026 e

5x
2 −310 e

3x
2 +29

)
e−2x

135

−
(
90x2e3x+315x e3x−610 e3x+513 e

5x
2 +155 e

3x
2 −58

)
e−2x

135

−
(
180x2e3x+990x e3x−590 e3x+513 e

5x
2 −155 e

3x
2 +232

)
e−2x

270


• First component of the vector is the solution to the ODE

y = −
2
((

−6c2− 31
9
)
e
3x
2 +

(
−6c3+ 57

5
)
e
5x
2 +

(
x2+ 3

2x−
149
18
)
e3x− 3c1

8 + 29
90

)
e−2x

3
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 50� �
dsolve(4*diff(y(x),x$3)+8*diff(y(x),x$2)-diff(y(x),x)-2*y(x)=-exp(x)*(4+45*x+6*x^2),y(x), singsol=all)� �

y(x) =

(
−18x2e3x − 27x e3x + 149 e3x + 27c3e

5x
2 + 27c2e

3x
2 + 27c1

)
e−2x

27

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 52� �
DSolve[4*y'''[x]+8*y''[x]-y'[x]-2*y[x]==-Exp[x]*(4+45*x+6*x^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex
(
−2x2

3 − x+ 149
27

)
+ c1e

−x/2 + c2e
x/2 + c3e

−2x
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19.4 problem section 9.3, problem 4
19.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7296

Internal problem ID [1501]
Internal file name [OUTPUT/1502_Sunday_June_05_2022_02_19_50_AM_99008672/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 4.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ + 3y′′ − y′ − 3y = e−2x(3x2 − 17x+ 2
)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ + 3y′′ − y′ − 3y = 0

The characteristic equation is

λ3 + 3λ2 − λ− 3 = 0

The roots of the above equation are

λ1 = 1
λ2 = −3
λ3 = −1
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Therefore the homogeneous solution is

yh(x) = c1e−x + c2ex + e−3xc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = ex

y3 = e−3x

Now the particular solution to the given ODE is found

y′′′ + 3y′′ − y′ − 3y = e−2x(3x2 − 17x+ 2
)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

e−2x(3x2 − 17x+ 2
)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x2e−2x, e−2xx, e−2x}]

While the set of the basis functions for the homogeneous solution found earlier is

{ex, e−3x, e−x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1x
2e−2x + A2e−2xx+ A3e−2x

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−6A1e−2x − 2A1x e−2x + 3A1x
2e−2x + 3A2e−2xx− A2e−2x + 3A3e−2x

= e−2x(3x2 − 17x+ 2
)
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Solving for the unknowns by comparing coefficients results in

[A1 = 1, A2 = −5, A3 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x2e−2x − 5 e−2xx+ e−2x

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2ex + e−3xc3

)
+
(
x2e−2x − 5 e−2xx+ e−2x)

Summary
The solution(s) found are the following

(1)y = c1e−x + c2ex + e−3xc3 + x2e−2x − 5 e−2xx+ e−2x

Verification of solutions

y = c1e−x + c2ex + e−3xc3 + x2e−2x − 5 e−2xx+ e−2x

Verified OK.

19.4.1 Maple step by step solution

Let’s solve
y′′′ + 3y′′ − y′ − 3y = e−2x(3x2 − 17x+ 2)

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′
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◦ Isolate for y′3(x) using original ODE
y′3(x) = 3x2e−2x − 17 e−2xx+ 2 e−2x − 3y3(x) + y2(x) + 3y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 3x2e−2x − 17 e−2xx+ 2 e−2x − 3y3(x) + y2(x) + 3y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
3 1 −3

 · →y (x) +


0
0

3x2e−2x − 17 e−2xx+ 2 e−2x


• Define the forcing function

→
f (x) =


0
0

3x2e−2x − 17 e−2xx+ 2 e−2x


• Define the coefficient matrix

A =


0 1 0
0 0 1
3 1 −3


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−3,


1
9

−1
3

1


 ,

−1,


1
−1
1


 ,

1,


1
1
1





• Consider eigenpair
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−3,


1
9

−1
3

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−3x ·


1
9

−1
3

1


• Consider eigenpair−1,


1
−1
1




• Solution to homogeneous system from eigenpair

→
y 2 = e−x ·


1
−1
1


• Consider eigenpair1,


1
1
1




• Solution to homogeneous system from eigenpair

→
y 3 = ex ·


1
1
1


• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.
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φ(x) =


e−3x

9 e−x ex

− e−3x

3 −e−x ex

e−3x e−x ex


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e−3x

9 e−x ex

− e−3x

3 −e−x ex

e−3x e−x ex

 · 1

1
9 1 1

−1
3 −1 1

1 1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


(
3 e4x+6 e2x−1

)
e−3x

8 − e−x

2 + ex
2

(
e4x−2 e2x+1

)
e−3x

8
3
(
e4x−2 e2x+1

)
e−3x

8
ex
2 + e−x

2

(
e4x+2 e2x−3

)
e−3x

8
3
(
e4x+2 e2x−3

)
e−3x

8 − e−x

2 + ex
2

(
e4x−2 e2x+9

)
e−3x

8


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
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→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


(
−25+18 e2x−e4x+8

(
x2−5x+1

)
ex
)
e−3x

8(
−18 e2x−e4x+75+

(
−16x2+96x−56

)
ex
)
e−3x

8(
18 e2x−e4x−225+

(
32x2−224x+208

)
ex
)
e−3x

8


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +


(
−25+18 e2x−e4x+8

(
x2−5x+1

)
ex
)
e−3x

8(
−18 e2x−e4x+75+

(
−16x2+96x−56

)
ex
)
e−3x

8(
18 e2x−e4x−225+

(
32x2−224x+208

)
ex
)
e−3x

8


• First component of the vector is the solution to the ODE

y =
(
72 e4xc3−9 e4x+72c2e2x+72x2ex+162 e2x−360x ex+72 ex+8c1−225

)
e−3x

72

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 34� �
dsolve(diff(y(x),x$3)+3*diff(y(x),x$2)-diff(y(x),x)-3*y(x)=exp(-2*x)*(2-17*x+3*x^2),y(x), singsol=all)� �

y(x) =
(
c3e2x + e4xc1 +

(
x2 − 5x+ 1

)
ex + c2

)
e−3x

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 42� �
DSolve[y'''[x]+3*y''[x]-y'[x]-3*y[x]==Exp[-2*x]*(2-17*x+3*x^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−3x(ex(x2 − 5x+ 1
)
+ c2e

2x + c3e
4x + c1

)
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19.5 problem section 9.3, problem 5
19.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7304

Internal problem ID [1502]
Internal file name [OUTPUT/1503_Sunday_June_05_2022_02_19_52_AM_4034753/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 5.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ + 3y′′ − y′ − 3y = ex
(
16x3 + 24x2 + 2x− 1

)
This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ + 3y′′ − y′ − 3y = 0

The characteristic equation is

λ3 + 3λ2 − λ− 3 = 0

The roots of the above equation are

λ1 = 1
λ2 = −3
λ3 = −1
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Therefore the homogeneous solution is

yh(x) = c1e−x + c2ex + e−3xc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = ex

y3 = e−3x

Now the particular solution to the given ODE is found

y′′′ + 3y′′ − y′ − 3y = ex
(
16x3 + 24x2 + 2x− 1

)
The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

ex
(
16x3 + 24x2 + 2x− 1

)
Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x ex, x2ex, exx3, ex}]

While the set of the basis functions for the homogeneous solution found earlier is

{ex, e−3x, e−x}

Since ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x ex, x2ex, exx3, exx4}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x ex + A2x
2ex + A3exx3 + A4exx4

The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

24A3exx2 + 32A4exx3 + 36A3exx+ 72A4exx2 + 24A4exx+ 16A2x ex
+ 12A2ex + 8A1ex + 6A3ex = ex

(
16x3 + 24x2 + 2x− 1

)
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Solving for the unknowns by comparing coefficients results in[
A1 = −1

2 , A2 =
1
2 , A3 = −1

2 , A4 =
1
2

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −x ex
2 + x2ex

2 − exx3

2 + exx4

2

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2ex + e−3xc3

)
+
(
−x ex

2 + x2ex
2 − exx3

2 + exx4

2

)

Summary
The solution(s) found are the following

(1)y = c1e−x + c2ex + e−3xc3 −
x ex
2 + x2ex

2 − exx3

2 + exx4

2
Verification of solutions

y = c1e−x + c2ex + e−3xc3 −
x ex
2 + x2ex

2 − exx3

2 + exx4

2

Verified OK.

19.5.1 Maple step by step solution

Let’s solve
y′′′ + 3y′′ − y′ − 3y = ex(16x3 + 24x2 + 2x− 1)

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

7304



◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = 16 exx3 + 24x2ex + 2x ex − ex − 3y3(x) + y2(x) + 3y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 16 exx3 + 24x2ex + 2x ex − ex − 3y3(x) + y2(x) + 3y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
3 1 −3

 · →y (x) +


0
0

16 exx3 + 24x2ex + 2x ex − ex


• Define the forcing function

→
f (x) =


0
0

16 exx3 + 24x2ex + 2x ex − ex


• Define the coefficient matrix

A =


0 1 0
0 0 1
3 1 −3


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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−3,


1
9

−1
3

1


 ,

−1,


1
−1
1


 ,

1,


1
1
1





• Consider eigenpair−3,


1
9

−1
3

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−3x ·


1
9

−1
3

1


• Consider eigenpair−1,


1
−1
1




• Solution to homogeneous system from eigenpair

→
y 2 = e−x ·


1
−1
1


• Consider eigenpair1,


1
1
1




• Solution to homogeneous system from eigenpair

→
y 3 = ex ·


1
1
1
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• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


e−3x

9 e−x ex

− e−3x

3 −e−x ex

e−3x e−x ex


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e−3x

9 e−x ex

− e−3x

3 −e−x ex

e−3x e−x ex

 · 1

1
9 1 1

−1
3 −1 1

1 1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


(
3 e4x+6 e2x−1

)
e−3x

8 − e−x

2 + ex
2

(
e4x−2 e2x+1

)
e−3x

8
3
(
e4x−2 e2x+1

)
e−3x

8
ex
2 + e−x

2

(
e4x+2 e2x−3

)
e−3x

8
3
(
e4x+2 e2x−3

)
e−3x

8 − e−x

2 + ex
2

(
e4x−2 e2x+9

)
e−3x

8


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)
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◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


− e−x

4 +
(
2x4−2x3+2x2−2x+1

)
ex

4

e−x

4 +
(
2x4+6x3−4x2+2x−1

)
ex

4

− e−x

4 +
(
2x4+14x3+14x2−6x+1

)
ex

4


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +


− e−x

4 +
(
2x4−2x3+2x2−2x+1

)
ex

4

e−x

4 +
(
2x4+6x3−4x2+2x−1

)
ex

4

− e−x

4 +
(
2x4+14x3+14x2−6x+1

)
ex

4


• First component of the vector is the solution to the ODE

y =
((

x4−x3+x2−x+2c3+ 1
2
)
e4x+

(
2c2− 1

2
)
e2x+ 2c1

9

)
e−3x

2
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 44� �
dsolve(diff(y(x),x$3)+3*diff(y(x),x$2)-diff(y(x),x)-3*y(x)=exp(x)*(-1+2*x+24*x^2+16*x^3),y(x), singsol=all)� �

y(x) = ((x4 − x3 + x2 + 2c1 − x) e4x + 2c3e2x + 2c2) e−3x

2

3 Solution by Mathematica
Time used: 0.071 (sec). Leaf size: 53� �
DSolve[y'''[x]+3*y''[x]-y'[x]-3*y[x]==Exp[x]*(-1+2*x+24*x^2+16*x^3),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4e

x
(
2x4 − 2x3 + 2x2 − 2x+ 1 + 4c3

)
+ c1e

−3x + c2e
−x
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19.6 problem section 9.3, problem 6
19.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7312

Internal problem ID [1503]
Internal file name [OUTPUT/1504_Sunday_June_05_2022_02_19_54_AM_73131463/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 6.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ + y′′ − 2y = ex
(
15x2 + 34x+ 14

)
This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ + y′′ − 2y = 0

The characteristic equation is
λ3 + λ2 − 2 = 0

The roots of the above equation are

λ1 = 1
λ2 = −1− i

λ3 = −1 + i
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Therefore the homogeneous solution is

yh(x) = c1ex + e(−1−i)xc2 + e(−1+i)xc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = e(−1−i)x

y3 = e(−1+i)x

Now the particular solution to the given ODE is found

y′′′ + y′′ − 2y = ex
(
15x2 + 34x+ 14

)
The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

ex
(
15x2 + 34x+ 14

)
Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x ex, x2ex, ex}]

While the set of the basis functions for the homogeneous solution found earlier is

{ex, e(−1−i)x, e(−1+i)x}

Since ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x ex, x2ex, exx3}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x ex + A2x
2ex + A3exx3

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

5A1ex + 8A2ex + 10A2x ex + 15A3exx2 + 24A3exx+ 6A3ex = ex
(
15x2 + 34x+ 14

)
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Solving for the unknowns by comparing coefficients results in

[A1 = 0, A2 = 1, A3 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x2ex + exx3

Therefore the general solution is

y = yh + yp

=
(
c1ex + e(−1−i)xc2 + e(−1+i)xc3

)
+
(
x2ex + exx3)

Summary
The solution(s) found are the following

(1)y = c1ex + e(−1−i)xc2 + e(−1+i)xc3 + x2ex + exx3

Verification of solutions

y = c1ex + e(−1−i)xc2 + e(−1+i)xc3 + x2ex + exx3

Verified OK.

19.6.1 Maple step by step solution

Let’s solve
y′′′ + y′′ − 2y = ex(15x2 + 34x+ 14)

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′
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◦ Isolate for y′3(x) using original ODE
y′3(x) = 15x2ex + 34x ex − y3(x) + 2y1(x) + 14 ex

Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 15x2ex + 34x ex − y3(x) + 2y1(x) + 14 ex]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
2 0 −1

 · →y (x) +


0
0

15x2ex + 34x ex + 14 ex


• Define the forcing function

→
f (x) =


0
0

15x2ex + 34x ex + 14 ex


• Define the coefficient matrix

A =


0 1 0
0 0 1
2 0 −1


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

1,


1
1
1


 ,

−1− I,


− I

2

−1
2 +

I
2

1


 ,

−1 + I,


I
2

−1
2 −

I
2

1





• Consider eigenpair
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1,


1
1
1




• Solution to homogeneous system from eigenpair

→
y 1 = ex ·


1
1
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−1− I,


− I

2

−1
2 +

I
2

1




• Solution from eigenpair

e(−1−I)x ·


− I

2

−1
2 +

I
2

1


• Use Euler identity to write solution in terms of sin and cos

e−x · (cos (x)− I sin (x)) ·


− I

2

−1
2 +

I
2

1


• Simplify expression

e−x ·


− I

2(cos (x)− I sin (x))(
−1

2 +
I
2

)
(cos (x)− I sin (x))

cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system→

y 2(x) = e−x ·


− sin(x)

2

− cos(x)
2 + sin(x)

2

cos (x)

 ,
→
y 3(x) = e−x ·


− cos(x)

2
cos(x)

2 + sin(x)
2

− sin (x)
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• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


ex − sin(x)e−x

2 − cos(x)e−x

2

ex e−x
(
− cos(x)

2 + sin(x)
2

)
e−x
(

cos(x)
2 + sin(x)

2

)
ex cos (x) e−x − sin (x) e−x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


ex − sin(x)e−x

2 − cos(x)e−x

2

ex e−x
(
− cos(x)

2 + sin(x)
2

)
e−x
(

cos(x)
2 + sin(x)

2

)
ex cos (x) e−x − sin (x) e−x

 · 1
1 0 −1

2

1 −1
2

1
2

1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


(3 cos(x)+sin(x))e−x

5 + 2 ex
5

(−2 cos(x)+sin(x))e−x

5 + 2 ex
5

(−2 sin(x)−cos(x))e−x

5 + ex
5

(−4 sin(x)−2 cos(x))e−x

5 + 2 ex
5

(3 cos(x)+sin(x))e−x

5 + 2 ex
5

(− cos(x)+3 sin(x))e−x

5 + ex
5

(−2 cos(x)+6 sin(x))e−x

5 + 2 ex
5

(−4 sin(x)−2 cos(x))e−x

5 + 2 ex
5

(4 cos(x)−2 sin(x))e−x

5 + ex
5


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system
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A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


(4 sin(x)+2 cos(x))e−x

5 + ex
(
5x3+5x2−2

)
5

(2 cos(x)−6 sin(x))e−x

5 +
(
x3 + 4x2 + 2x− 2

5

)
ex

(−8 cos(x)+4 sin(x))e−x

5 +
(
10x+ 7x2 + 8

5 + x3) ex


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +


(4 sin(x)+2 cos(x))e−x

5 + ex
(
5x3+5x2−2

)
5

(2 cos(x)−6 sin(x))e−x

5 +
(
x3 + 4x2 + 2x− 2

5

)
ex

(−8 cos(x)+4 sin(x))e−x

5 +
(
10x+ 7x2 + 8

5 + x3) ex


• First component of the vector is the solution to the ODE

y = ((−5c3+4) cos(x)+(−5c2+8) sin(x))e−x

10 +
(
c1 + x3 + x2 − 2

5

)
ex
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 30� �
dsolve(diff(y(x),x$3)+diff(y(x),x$2)-2*y(x)=exp(x)*(14+34*x+15*x^2),y(x), singsol=all)� �

y(x) = (c2 cos (x) + c3 sin (x)) e−x + ex
(
x3 + x2 + c1

)
3 Solution by Mathematica
Time used: 0.159 (sec). Leaf size: 49� �
DSolve[y'''[x]+y''[x]-2*y[x]==Exp[x]*(14+34*x+15*x^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
5e

−x
(
e2x
(
5x3 + 5x2 − 2 + 5c3

)
+ 5c2 cos(x) + 5c1 sin(x)

)
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19.7 problem section 9.3, problem 7
19.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7320

Internal problem ID [1504]
Internal file name [OUTPUT/1505_Sunday_June_05_2022_02_19_56_AM_24707965/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 7.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

4y′′′ + 8y′′ − y′ − 2y = −e−2x(1− 15x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

4y′′′ + 8y′′ − y′ − 2y = 0

The characteristic equation is

4λ3 + 8λ2 − λ− 2 = 0

The roots of the above equation are

λ1 = −1
2

λ2 =
1
2

λ3 = −2
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Therefore the homogeneous solution is

yh(x) = c1e−2x + c2e−
x
2 + c3e

x
2

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−2x

y2 = e−x
2

y3 = ex
2

Now the particular solution to the given ODE is found

4y′′′ + 8y′′ − y′ − 2y = −e−2x(1− 15x)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

−e−2x(1− 15x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−2xx, e−2x}]

While the set of the basis functions for the homogeneous solution found earlier is{
e−2x, e−x

2 , ex
2
}

Since e−2x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2e−2x, e−2xx}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
2e−2x + A2e−2xx

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−32A1e−2x + 30A1x e−2x + 15A2e−2x = −e−2x(1− 15x)

7319



Solving for the unknowns by comparing coefficients results in[
A1 =

1
2 , A2 = 1

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x2e−2x

2 + e−2xx

Therefore the general solution is

y = yh + yp

=
(
c1e−2x + c2e−

x
2 + c3e

x
2
)
+
(
x2e−2x

2 + e−2xx

)

Summary
The solution(s) found are the following

(1)y = c1e−2x + c2e−
x
2 + c3e

x
2 + x2e−2x

2 + e−2xx

Verification of solutions

y = c1e−2x + c2e−
x
2 + c3e

x
2 + x2e−2x

2 + e−2xx

Verified OK.

19.7.1 Maple step by step solution

Let’s solve
4y′′′ + 8y′′ − y′ − 2y = −e−2x(1− 15x)

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative
y′′′ = y

2 − 2y′′ + y′

4 + 15 e−2xx
4 − e−2x

4

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′′ + 2y′′ − y′

4 − y
2 = e−2x(15x−1)

4

� Convert linear ODE into a system of first order ODEs
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◦ Define new variable y1(x)
y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = 15 e−2xx

4 − e−2x

4 − 2y3(x) + y2(x)
4 + y1(x)

2

Convert linear ODE into a system of first order ODEs[
y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 15 e−2xx

4 − e−2x

4 − 2y3(x) + y2(x)
4 + y1(x)

2

]
• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
1
2

1
4 −2

 · →y (x) +


0
0

15 e−2xx
4 − e−2x

4


• Define the forcing function

→
f (x) =


0
0

15 e−2xx
4 − e−2x

4


• Define the coefficient matrix

A =


0 1 0
0 0 1
1
2

1
4 −2


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f
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• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−2,


1
4

−1
2

1


 ,

−1
2 ,


4
−2
1


 ,

1
2 ,


4
2
1





• Consider eigenpair−2,


1
4

−1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−2x ·


1
4

−1
2

1


• Consider eigenpair−1

2 ,


4
−2
1




• Solution to homogeneous system from eigenpair

→
y 2 = e−x

2 ·


4
−2
1


• Consider eigenpair1

2 ,


4
2
1




• Solution to homogeneous system from eigenpair
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→
y 3 = ex

2 ·


4
2
1


• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


e−2x

4 4 e−x
2 4 ex

2

− e−2x

2 −2 e−x
2 2 ex

2

e−2x e−x
2 ex

2


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e−2x

4 4 e−x
2 4 ex

2

− e−2x

2 −2 e−x
2 2 ex

2

e−2x e−x
2 ex

2

 · 1

1
4 4 4

−1
2 −2 2

1 1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =



(
6 e

5x
2 +10 e

3x
2 −1

)
e−2x

15 −e−x
2 + ex

2
2
(
3 e

5x
2 −5 e

3x
2 +2

)
e−2x

15(
3 e

5x
2 −5 e

3x
2 +2

)
e−2x

15
e−

x
2

2 + e
x
2
2

(
3 e

5x
2 +5 e

3x
2 −8

)
e−2x

15(
3 e

5x
2 +5 e

3x
2 −8

)
e−2x

30 − e−
x
2

4 + e
x
2
4

(
3 e

5x
2 −5 e

3x
2 +32

)
e−2x

30


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)
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◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =



(
2 e

5x
2 −10 e

3x
2 +5x2+10x+8

)
e−2x

10(
e
5x
2 +5 e

3x
2 −10x2−10x−6

)
e−2x

10(
e
5x
2 −5 e

3x
2 +40x2+4

)
e−2x

20


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +



(
2 e

5x
2 −10 e

3x
2 +5x2+10x+8

)
e−2x

10(
e
5x
2 +5 e

3x
2 −10x2−10x−6

)
e−2x

10(
e
5x
2 −5 e

3x
2 +40x2+4

)
e−2x

20


• First component of the vector is the solution to the ODE

y =
(
80c3e

5x
2 +4 e

5x
2 +80c2e

3x
2 −20 e

3x
2 +10x2+5c1+20x+16

)
e−2x

20
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 34� �
dsolve(4*diff(y(x),x$3)+8*diff(y(x),x$2)-diff(y(x),x)-2*y(x)=-exp(-2*x)*(1-15*x),y(x), singsol=all)� �

y(x) =

(
2c3e

5x
2 + 2c2e

3x
2 + x2 + 2c1 + 2x

)
e−2x

2

3 Solution by Mathematica
Time used: 0.075 (sec). Leaf size: 53� �
DSolve[4*y'''[x]+8*y''[x]-y'[x]-2*y[x]==-Exp[-2*x]*(1-15*x),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
10e

−2x(5x2 + 10x+ 2
(
5c1e3x/2 + 5c2e5x/2 + 4 + 5c3

))
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19.8 problem section 9.3, problem 8
19.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7328

Internal problem ID [1505]
Internal file name [OUTPUT/1506_Sunday_June_05_2022_02_19_58_AM_19111488/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 8.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ − y′′ − y′ + y = −ex(7 + 6x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − y′′ − y′ + y = 0

The characteristic equation is

λ3 − λ2 − λ+ 1 = 0

The roots of the above equation are

λ1 = −1
λ2 = 1
λ3 = 1
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Therefore the homogeneous solution is

yh(x) = c1e−x + c2ex + x exc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = ex

y3 = x ex

Now the particular solution to the given ODE is found

y′′′ − y′′ − y′ + y = −ex(7 + 6x)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

−ex(7 + 6x)
Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x ex, ex}]
While the set of the basis functions for the homogeneous solution found earlier is

{x ex, ex, e−x}

Since ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x ex, x2ex}]
Since x ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2ex, exx3}]
Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
2ex + A2exx3

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

4A1ex + 12A2exx+ 6A2ex = −ex(7 + 6x)
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Solving for the unknowns by comparing coefficients results in[
A1 = −1, A2 = −1

2

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −x2ex − exx3

2

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2ex + x exc3

)
+
(
−x2ex − exx3

2

)

Which simplifies to

y = c1e−x + ex(c3x+ c2)− x2ex − exx3

2

Summary
The solution(s) found are the following

(1)y = c1e−x + ex(c3x+ c2)− x2ex − exx3

2
Verification of solutions

y = c1e−x + ex(c3x+ c2)− x2ex − exx3

2

Verified OK.

19.8.1 Maple step by step solution

Let’s solve
y′′′ − y′′ − y′ + y = −ex(7 + 6x)

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
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◦ Define new variable y1(x)
y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = −6x ex + y3(x) + y2(x)− y1(x)− 7 ex

Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = −6x ex + y3(x) + y2(x)− y1(x)− 7 ex]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
−1 1 1

 · →y (x) +


0
0

−6x ex − 7 ex


• Define the forcing function

→
f (x) =


0
0

−6x ex − 7 ex


• Define the coefficient matrix

A =


0 1 0
0 0 1
−1 1 1


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f
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• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


1
−1
1


 ,

1,


1
1
1


 ,

1,


0
0
0





• Consider eigenpair−1,


1
−1
1




• Solution to homogeneous system from eigenpair

→
y 1 = e−x ·


1
−1
1


• Consider eigenpair, with eigenvalue of algebraic multiplicity 21,


1
1
1




• First solution from eigenvalue 1

→
y 2(x) = ex ·


1
1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 1 is the eigenvalue, and →
v is the eigenvector

→
y 3(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 1

• Substitute →
y 3(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A
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λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 3(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 1


0 1 0
0 0 1
−1 1 1

− 1 ·


1 0 0
0 1 0
0 0 1


 · →p =


1
1
1


• Choice of →

p

→
p =


−1
0
0


• Second solution from eigenvalue 1

→
y 3(x) = ex ·

x ·


1
1
1

+


−1
0
0




• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


e−x ex (x− 1) ex

−e−x ex x ex

e−x ex x ex


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)
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◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e−x ex (x− 1) ex

−e−x ex x ex

e−x ex x ex

 · 1
1 1 −1
−1 1 0
1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


−(x− 1) ex − e−x

2 + ex
2

e−x

2 − ex
2 + x ex

−x ex ex
2 + e−x

2 − e−x

2 + ex
2 + x ex

−x ex − e−x

2 + ex
2

e−x

2 + ex
2 + x ex


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute
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→
y p(x) =


e−x + (−x3 − 2x2 + 2x− 1) ex

−e−x + (−x3 − 5x2 − 2x+ 1) ex

e−x + (−x3 − 5x2 − 5x− 1) ex


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +


e−x + (−x3 − 2x2 + 2x− 1) ex

−e−x + (−x3 − 5x2 − 2x+ 1) ex

e−x + (−x3 − 5x2 − 5x− 1) ex


• First component of the vector is the solution to the ODE

y = (1 + c1) e−x − ex(x3 + 2x2 + (−c3 − 2)x− c2 + c3 + 1)

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 31� �
dsolve(diff(y(x),x$3)-diff(y(x),x$2)-diff(y(x),x)+y(x)=-exp(x)*(7+6*x),y(x), singsol=all)� �

y(x) = e−xc2 −
ex(x3 − 2c3x+ 2x2 − 2c1)

2
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3 Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 41� �
DSolve[y'''[x]-y''[x]-y'[x]+y[x]==-Exp[x]*(7+6*x),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex
(
−x3

2 − x2 + x+ c3x− 1
2 + c2

)
+ c1e

−x
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19.9 problem section 9.3, problem 9
19.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7338

Internal problem ID [1506]
Internal file name [OUTPUT/1507_Sunday_June_05_2022_02_20_00_AM_31149122/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 9.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

2y′′′ − 7y′′ + 4y′ + 4y = e2x(17 + 30x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

2y′′′ − 7y′′ + 4y′ + 4y = 0

The characteristic equation is

2λ3 − 7λ2 + 4λ+ 4 = 0

The roots of the above equation are

λ1 = −1
2

λ2 = 2
λ3 = 2
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Therefore the homogeneous solution is

yh(x) = c1e2x + c2x e2x + e−x
2 c3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e2x

y2 = x e2x

y3 = e−x
2

Now the particular solution to the given ODE is found

2y′′′ − 7y′′ + 4y′ + 4y = e2x(17 + 30x)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

e2x(17 + 30x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e2x, e2x}]

While the set of the basis functions for the homogeneous solution found earlier is{
x e2x, e2x, e−x

2
}

Since e2x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e2x, x2e2x}]

Since x e2x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2e2x, e2xx3}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
2e2x + A2e2xx3
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The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

10A1e2x + 30A2e2xx+ 12A2e2x = e2x(17 + 30x)

Solving for the unknowns by comparing coefficients results in[
A1 =

1
2 , A2 = 1

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x2e2x
2 + e2xx3

Therefore the general solution is

y = yh + yp

=
(
c1e2x + c2x e2x + e−x

2 c3
)
+
(
x2e2x
2 + e2xx3

)

Which simplifies to

y = e−x
2 c3 + e2x(c2x+ c1) +

x2e2x
2 + e2xx3

Summary
The solution(s) found are the following

(1)y = e−x
2 c3 + e2x(c2x+ c1) +

x2e2x
2 + e2xx3

Verification of solutions

y = e−x
2 c3 + e2x(c2x+ c1) +

x2e2x
2 + e2xx3

Verified OK.
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19.9.1 Maple step by step solution

Let’s solve
2y′′′ − 7y′′ + 4y′ + 4y = e2x(17 + 30x)

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative
y′′′ = −2y + 7y′′

2 − 2y′ + 15x e2x + 17 e2x
2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′′ − 7y′′
2 + 2y′ + 2y = e2x(17+30x)

2

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = 15x e2x + 17 e2x

2 + 7y3(x)
2 − 2y2(x)− 2y1(x)

Convert linear ODE into a system of first order ODEs[
y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 15x e2x + 17 e2x

2 + 7y3(x)
2 − 2y2(x)− 2y1(x)

]
• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
−2 −2 7

2

 · →y (x) +


0
0

15x e2x + 17 e2x
2
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• Define the forcing function

→
f (x) =


0
0

15x e2x + 17 e2x
2


• Define the coefficient matrix

A =


0 1 0
0 0 1
−2 −2 7

2


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1
2 ,


4
−2
1


 ,

2,


1
4
1
2

1


 ,

2,


0
0
0





• Consider eigenpair−1
2 ,


4
−2
1




• Solution to homogeneous system from eigenpair

→
y 1 = e−x

2 ·


4
−2
1


• Consider eigenpair, with eigenvalue of algebraic multiplicity 22,


1
4
1
2

1
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• First solution from eigenvalue 2

→
y 2(x) = e2x ·


1
4
1
2

1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 2 is the eigenvalue, and →
v is the eigenvector

→
y 3(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 2

• Substitute →
y 3(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 3(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 2


0 1 0
0 0 1
−2 −2 7

2

− 2 ·


1 0 0
0 1 0
0 0 1


 · →p =


1
4
1
2

1


• Choice of →

p

→
p =


−1

8

0
0


• Second solution from eigenvalue 2
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→
y 3(x) = e2x ·

x ·


1
4
1
2

1

+


−1

8

0
0




• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


4 e−x

2 e2x
4 e2x

(
x
4 −

1
8

)
−2 e−x

2 e2x
2

x e2x
2

e−x
2 e2x x e2x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


4 e−x

2 e2x
4 e2x

(
x
4 −

1
8

)
−2 e−x

2 e2x
2

x e2x
2

e−x
2 e2x x e2x

 · 1
4 1

4 −1
8

−2 1
2 0

1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


(1− 2x) e2x −8 e−

x
2

5 + 8 e2x
5 − 3x e2x 4 e−

x
2

5 − 4 e2x
5 + 2x e2x

−4x e2x 4 e−
x
2

5 + e2x
5 − 6x e2x −2 e−

x
2

5 + 2 e2x
5 + 4x e2x

−8x e2x −2 e−
x
2

5 + 2 e2x
5 − 12x e2x e−

x
2

5 + 4 e2x
5 + 8x e2x


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs
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Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


−4 e−

x
2

5 +
(
50x3+25x2−20x+8

)
e2x

10

2 e−
x
2

5 +
(
50x3+100x2+5x−2

)
e2x

5

− e−
x
2

5 +
(
100x3+200x2+40x+1

)
e2x

5


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +


−4 e−

x
2

5 +
(
50x3+25x2−20x+8

)
e2x

10

2 e−
x
2

5 +
(
50x3+100x2+5x−2

)
e2x

5

− e−
x
2

5 +
(
100x3+200x2+40x+1

)
e2x

5


• First component of the vector is the solution to the ODE

y = (160c1−32)e−
x
2

40 + 5
(
x3 + x2

2 +
(
c3
20 −

2
5

)
x+ c2

20 −
c3
40 +

4
25

)
e2x
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 29� �
dsolve(2*diff(y(x),x$3)-7*diff(y(x),x$2)+4*diff(y(x),x)+4*y(x)=exp(2*x)*(17+30*x),y(x), singsol=all)� �

y(x) = e−x
2 c2 + e2x

(
x3 + 1

2x
2 + c1 + c3x

)
3 Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 46� �
DSolve[2*y'''[x]-7*y''[x]+4*y'[x]+4*y[x]==Exp[2*x]*(17+30*x),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e2x
(
x3 + x2

2 +
(
−2
5 + c3

)
x+ 4

25 + c2

)
+ c1e

−x/2
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19.10 problem section 9.3, problem 10
19.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7347

Internal problem ID [1507]
Internal file name [OUTPUT/1508_Sunday_June_05_2022_02_20_02_AM_9230329/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 10.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ − 5y′′ + 3y′ + 9y = 2 e3x(11− 24x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − 5y′′ + 3y′ + 9y = 0

The characteristic equation is

λ3 − 5λ2 + 3λ+ 9 = 0

The roots of the above equation are

λ1 = −1
λ2 = 3
λ3 = 3
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Therefore the homogeneous solution is

yh(x) = c1e−x + c2e3x + c3e3xx

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = e3x

y3 = x e3x

Now the particular solution to the given ODE is found

y′′′ − 5y′′ + 3y′ + 9y = 2 e3x(11− 24x)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

2 e3x(11− 24x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e3x, e3x}]

While the set of the basis functions for the homogeneous solution found earlier is

{x e3x, e−x, e3x}

Since e3x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e3x, x2e3x}]

Since x e3x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2e3x, x3e3x}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
2e3x + A2x

3e3x
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The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

8A1e3x + 6A2e3x + 24A2x e3x = 2 e3x(11− 24x)

Solving for the unknowns by comparing coefficients results in[
A1 =

17
4 , A2 = −2

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
17x2e3x

4 − 2x3e3x

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2e3x + c3e3xx

)
+
(
17x2e3x

4 − 2x3e3x
)

Which simplifies to

y = (c3x+ c2) e3x + c1e−x + 17x2e3x
4 − 2x3e3x

Summary
The solution(s) found are the following

(1)y = (c3x+ c2) e3x + c1e−x + 17x2e3x
4 − 2x3e3x

Verification of solutions

y = (c3x+ c2) e3x + c1e−x + 17x2e3x
4 − 2x3e3x

Verified OK.
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19.10.1 Maple step by step solution

Let’s solve
y′′′ − 5y′′ + 3y′ + 9y = 2 e3x(11− 24x)

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative
y′′′ = −9y − 48x e3x + 5y′′ − 3y′ + 22 e3x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ − 5y′′ + 3y′ + 9y = −2 e3x(−11 + 24x)

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = −48x e3x + 22 e3x + 5y3(x)− 3y2(x)− 9y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = −48x e3x + 22 e3x + 5y3(x)− 3y2(x)− 9y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
−9 −3 5

 · →y (x) +


0
0

−48x e3x + 22 e3x


• Define the forcing function
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→
f (x) =


0
0

−48x e3x + 22 e3x


• Define the coefficient matrix

A =


0 1 0
0 0 1
−9 −3 5


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


1
−1
1


 ,

3,


1
9
1
3

1


 ,

3,


0
0
0





• Consider eigenpair−1,


1
−1
1




• Solution to homogeneous system from eigenpair

→
y 1 = e−x ·


1
−1
1


• Consider eigenpair, with eigenvalue of algebraic multiplicity 23,


1
9
1
3

1




• First solution from eigenvalue 3
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→
y 2(x) = e3x ·


1
9
1
3

1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 3 is the eigenvalue, and →
v is the eigenvector

→
y 3(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 3

• Substitute →
y 3(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 3(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 3


0 1 0
0 0 1
−9 −3 5

− 3 ·


1 0 0
0 1 0
0 0 1


 · →p =


1
9
1
3

1


• Choice of →

p

→
p =


− 1

27

0
0


• Second solution from eigenvalue 3
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→
y 3(x) = e3x ·

x ·


1
9
1
3

1

+


− 1

27

0
0




• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


e−x e3x

9 e3x
(
x
9 −

1
27

)
−e−x e3x

3
x e3x
3

e−x e3x x e3x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e−x e3x

9 e3x
(
x
9 −

1
27

)
−e−x e3x

3
x e3x
3

e−x e3x x e3x

 · 1
1 1

9 − 1
27

−1 1
3 0

1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


(−3x+ 1) e3x −3 e−x

4 + 3 e3x
4 − 2x e3x e−x

4 − e3x
4 + x e3x

−9x e3x 3 e−x

4 + e3x
4 − 6x e3x − e−x

4 + e3x
4 + 3x e3x

−27x e3x −3 e−x

4 + 3 e3x
4 − 18x e3x e−x

4 + 3 e3x
4 + 9x e3x


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs
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Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


(
−64x3+136x2−68x+17

)
e3x

8 − 17 e−x

8(
−192x3+216x2+68x−17

)
e3x

8 + 17 e−x

8(
−576x3+648x2+108x+17

)
e3x

8 − 17 e−x

8


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +


(
−64x3+136x2−68x+17

)
e3x

8 − 17 e−x

8(
−192x3+216x2+68x−17

)
e3x

8 + 17 e−x

8(
−576x3+648x2+108x+17

)
e3x

8 − 17 e−x

8


• First component of the vector is the solution to the ODE

y =
(
−1728x3+3672x2+(24c3−1836)x+24c2−8c3+459

)
e3x

216 + (216c1−459)e−x

216
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
dsolve(diff(y(x),x$3)-5*diff(y(x),x$2)+3*diff(y(x),x)+9*y(x)=2*exp(3*x)*(11-24*x),y(x), singsol=all)� �

y(x) = (−8x3 + 4c3x+ 17x2 + 4c2) e3x
4 + e−xc1

3 Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 46� �
DSolve[y'''[x]-5*y''[x]+3*y'[x]+9*y[x]==2*Exp[3*x]*(11-24*x),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e3x
(
−2x3 + 17x2

4 +
(
−17

8 + c3

)
x+ 17

32 + c2

)
+ c1e

−x
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19.11 problem section 9.3, problem 11
19.11.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7355

Internal problem ID [1508]
Internal file name [OUTPUT/1509_Sunday_June_05_2022_02_20_04_AM_97221995/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 11.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ − 7y′′ + 8y′ + 16y = 2 e4x(13 + 15x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − 7y′′ + 8y′ + 16y = 0

The characteristic equation is

λ3 − 7λ2 + 8λ+ 16 = 0

The roots of the above equation are

λ1 = −1
λ2 = 4
λ3 = 4
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Therefore the homogeneous solution is

yh(x) = c1e−x + c2e4x + x e4xc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = e4x

y3 = x e4x

Now the particular solution to the given ODE is found

y′′′ − 7y′′ + 8y′ + 16y = 2 e4x(13 + 15x)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

2 e4x(13 + 15x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e4x, e4x}]

While the set of the basis functions for the homogeneous solution found earlier is

{x e4x, e−x, e4x}

Since e4x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e4x, x2e4x}]

Since x e4x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2e4x, e4xx3}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
2e4x + A2e4xx3
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The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

10A1e4x + 30A2e4xx+ 6A2e4x = 2 e4x(13 + 15x)

Solving for the unknowns by comparing coefficients results in

[A1 = 2, A2 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2x2e4x + e4xx3

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2e4x + x e4xc3

)
+
(
2x2e4x + e4xx3)

Which simplifies to

y = (c3x+ c2) e4x + c1e−x + 2x2e4x + e4xx3

Summary
The solution(s) found are the following

(1)y = (c3x+ c2) e4x + c1e−x + 2x2e4x + e4xx3

Verification of solutions

y = (c3x+ c2) e4x + c1e−x + 2x2e4x + e4xx3

Verified OK.

19.11.1 Maple step by step solution

Let’s solve
y′′′ − 7y′′ + 8y′ + 16y = 2 e4x(13 + 15x)

• Highest derivative means the order of the ODE is 3
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y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = 30x e4x + 26 e4x + 7y3(x)− 8y2(x)− 16y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 30x e4x + 26 e4x + 7y3(x)− 8y2(x)− 16y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1

−16 −8 7

 · →y (x) +


0
0

30x e4x + 26 e4x


• Define the forcing function

→
f (x) =


0
0

30x e4x + 26 e4x


• Define the coefficient matrix

A =


0 1 0
0 0 1

−16 −8 7


• Rewrite the system as
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→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


1
−1
1


 ,

4,


1
16
1
4

1


 ,

4,


0
0
0





• Consider eigenpair−1,


1
−1
1




• Solution to homogeneous system from eigenpair

→
y 1 = e−x ·


1
−1
1


• Consider eigenpair, with eigenvalue of algebraic multiplicity 24,


1
16
1
4

1




• First solution from eigenvalue 4

→
y 2(x) = e4x ·


1
16
1
4

1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 4 is the eigenvalue, and →
v is the eigenvector

→
y 3(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 4

• Substitute →
y 3(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)
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• Use the fact that →
v is an eigenvector of A

λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 3(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 4


0 1 0
0 0 1

−16 −8 7

− 4 ·


1 0 0
0 1 0
0 0 1


 · →p =


1
16
1
4

1


• Choice of →

p

→
p =


− 1

64

0
0


• Second solution from eigenvalue 4

→
y 3(x) = e4x ·

x ·


1
16
1
4

1

+


− 1

64

0
0




• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


e−x e4x

16 e4x
(

x
16 −

1
64

)
−e−x e4x

4
x e4x
4

e−x e4x x e4x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix
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Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e−x e4x

16 e4x
(

x
16 −

1
64

)
−e−x e4x

4
x e4x
4

e−x e4x x e4x

 · 1
1 1

16 − 1
64

−1 1
4 0

1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


(−4x+ 1) e4x −4 e−x

5 + 4 e4x
5 − 3x e4x e−x

5 − e4x
5 + x e4x

−16x e4x 4 e−x

5 + e4x
5 − 12x e4x − e−x

5 + e4x
5 + 4x e4x

−64x e4x −4 e−x

5 + 4 e4x
5 − 48x e4x e−x

5 + 4 e4x
5 + 16x e4x


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution
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→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


(
25x3+50x2−20x+4

)
e4x

5 − 4 e−x

5(
100x3+275x2+20x−4

)
e4x

5 + 4 e−x

5
2
(
200x3+550x2+55x+2

)
e4x

5 − 4 e−x

5


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +


(
25x3+50x2−20x+4

)
e4x

5 − 4 e−x

5(
100x3+275x2+20x−4

)
e4x

5 + 4 e−x

5
2
(
200x3+550x2+55x+2

)
e4x

5 − 4 e−x

5


• First component of the vector is the solution to the ODE

y =
(
256+1600x3+3200x2+20(−64+c3)x+20c2−5c3

)
e4x

320 + e−x(5c1−4)
5

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 29� �
dsolve(diff(y(x),x$3)-7*diff(y(x),x$2)+8*diff(y(x),x)+16*y(x)=2*exp(4*x)*(13+15*x),y(x), singsol=all)� �

y(x) =
(
x3 + c3x+ 2x2 + c2

)
e4x + e−xc1

7360



3 Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 42� �
DSolve[y'''[x]-7*y''[x]+8*y'[x]+16*y[x]==2*Exp[4*x]*(13+15*x),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e4x
(
x3 + 2x2 +

(
−4
5 + c3

)
x+ 4

25 + c2

)
+ c1e

−x
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19.12 problem section 9.3, problem 12
Internal problem ID [1509]
Internal file name [OUTPUT/1510_Sunday_June_05_2022_02_20_06_AM_92045200/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 12.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

8y′′′ − 12y′′ + 6y′ − y = ex
2 (4x+ 1)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

8y′′′ − 12y′′ + 6y′ − y = 0

The characteristic equation is

8λ3 − 12λ2 + 6λ− 1 = 0

The roots of the above equation are

λ1 =
1
2

λ2 =
1
2

λ3 =
1
2
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Therefore the homogeneous solution is

yh(x) = c1e
x
2 + c2e

x
2x+ x2ex

2 c3

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex
2

y2 = ex
2x

y3 = x2ex
2

Now the particular solution to the given ODE is found

8y′′′ − 12y′′ + 6y′ − y = ex
2 (4x+ 1)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

ex
2 (4x+ 1)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is [{

ex
2x, ex

2
}]

While the set of the basis functions for the homogeneous solution found earlier is{
x2ex

2 , ex
2x, ex

2
}

Since ex
2 is duplicated in the UC_set, then this basis is multiplied by extra x. The

UC_set becomes [{
x2ex

2 , ex
2x
}]

Since ex
2x is duplicated in the UC_set, then this basis is multiplied by extra x. The

UC_set becomes [{
x2ex

2 , x3ex
2
}]

Since x2ex
2 is duplicated in the UC_set, then this basis is multiplied by extra x. The

UC_set becomes [{
x3ex

2 , x4ex
2
}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
3ex

2 + A2x
4ex

2
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The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

48A1e
x
2 + 192A2x e

x
2 = ex

2 (4x+ 1)

Solving for the unknowns by comparing coefficients results in[
A1 =

1
48 , A2 =

1
48

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x3ex

2

48 + x4ex
2

48

Therefore the general solution is

y = yh + yp

=
(
c1e

x
2 + c2e

x
2x+ x2ex

2 c3
)
+
(
x3ex

2

48 + x4ex
2

48

)

Which simplifies to

y = ex
2
(
c3x

2 + c2x+ c1
)
+ x3ex

2

48 + x4ex
2

48

Summary
The solution(s) found are the following

(1)y = ex
2
(
c3x

2 + c2x+ c1
)
+ x3ex

2

48 + x4ex
2

48
Verification of solutions

y = ex
2
(
c3x

2 + c2x+ c1
)
+ x3ex

2

48 + x4ex
2

48

Verified OK.
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 33� �
dsolve(8*diff(y(x),x$3)-12*diff(y(x),x$2)+6*diff(y(x),x)-y(x)=exp(x/2)*(1+4*x),y(x), singsol=all)� �

y(x) =
(
x4 + x3 +

(
48c2 + 3

16

)
x2 + 48c3x+ 48c1

)
ex

2

48

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 39� �
DSolve[8*y'''[x]-12*y''[x]+6*y'[x]-y[x]==Exp[x/2]*(1+4*x),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
48e

x/2(x4 + x3 + 48c3x2 + 48c2x+ 48c1
)

7365



19.13 problem section 9.3, problem 13
19.13.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7368

Internal problem ID [1510]
Internal file name [OUTPUT/1511_Sunday_June_05_2022_02_20_08_AM_9104730/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 13.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ + 3y′′′ − 3y′′ − 7y′ + 6y = −3 e−x
(
−8x2 + 8x+ 12

)
This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ + 3y′′′ − 3y′′ − 7y′ + 6y = 0

The characteristic equation is

λ4 + 3λ3 − 3λ2 − 7λ+ 6 = 0

The roots of the above equation are

λ1 = −3
λ2 = −2
λ3 = 1
λ4 = 1
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Therefore the homogeneous solution is

yh(x) = c1e−2x + c2ex + x exc3 + e−3xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−2x

y2 = ex

y3 = x ex

y4 = e−3x

Now the particular solution to the given ODE is found

y′′′′ + 3y′′′ − 3y′′ − 7y′ + 6y = −3 e−x
(
−8x2 + 8x+ 12

)
The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

−3 e−x
(
−8x2 + 8x+ 12

)
Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e−x, x2e−x, e−x}]

While the set of the basis functions for the homogeneous solution found earlier is

{x ex, ex, e−3x, e−2x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1x e−x + A2x
2e−x + A3e−x

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

8A2x e−x + 8A1x e−x + 8A2x
2e−x + 8A3e−x − 12A2e−x + 4A1e−x

= −3 e−x
(
−8x2 + 8x+ 12

)
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Solving for the unknowns by comparing coefficients results in

[A1 = −6, A2 = 3, A3 = 3]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = −6x e−x + 3x2e−x + 3 e−x

Therefore the general solution is

y = yh + yp

=
(
c1e−2x + c2ex + x exc3 + e−3xc4

)
+
(
−6x e−x + 3x2e−x + 3 e−x

)
Which simplifies to

y =
(
(c3x+ c2) e4x + c1ex + c4

)
e−3x − 6x e−x + 3x2e−x + 3 e−x

Summary
The solution(s) found are the following

(1)y =
(
(c3x+ c2) e4x + c1ex + c4

)
e−3x − 6x e−x + 3x2e−x + 3 e−x

Verification of solutions

y =
(
(c3x+ c2) e4x + c1ex + c4

)
e−3x − 6x e−x + 3x2e−x + 3 e−x

Verified OK.

19.13.1 Maple step by step solution

Let’s solve
y′′′′ + 3y′′′ − 3y′′ − 7y′ + 6y = −3 e−x(−8x2 + 8x+ 12)

• Highest derivative means the order of the ODE is 4
y′′′′

• Isolate 4th derivative
y′′′′ = −6y + 24x2e−x − 24x e−x − 36 e−x − 3y′′′ + 3y′′ + 7y′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′′ + 3y′′′ − 3y′′ − 7y′ + 6y = 12 e−x(2x2 − 2x− 3)
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� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = 24x2e−x − 24x e−x − 36 e−x − 3y4(x) + 3y3(x) + 7y2(x)− 6y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = 24x2e−x − 24x e−x − 36 e−x − 3y4(x) + 3y3(x) + 7y2(x)− 6y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
−6 7 3 −3

 · →y (x) +


0
0
0

24x2e−x − 24x e−x − 36 e−x


• Define the forcing function

→
f (x) =


0
0
0

24x2e−x − 24x e−x − 36 e−x


• Define the coefficient matrix
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A =


0 1 0 0
0 0 1 0
0 0 0 1
−6 7 3 −3


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−3,


− 1

27
1
9

−1
3

1



 ,

−2,


−1

8
1
4

−1
2

1



 ,

1,


1
1
1
1



 ,

1,


0
0
0
0






• Consider eigenpair−3,


− 1

27
1
9

−1
3

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−3x ·


− 1

27
1
9

−1
3

1


• Consider eigenpair−2,


−1

8
1
4

−1
2

1
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• Solution to homogeneous system from eigenpair

→
y 2 = e−2x ·


−1

8
1
4

−1
2

1


• Consider eigenpair, with eigenvalue of algebraic multiplicity 21,


1
1
1
1




• First solution from eigenvalue 1

→
y 3(x) = ex ·


1
1
1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 1 is the eigenvalue, and →
v is the eigenvector

→
y 4(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 1

• Substitute →
y 4(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 4(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v
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• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 1


0 1 0 0
0 0 1 0
0 0 0 1
−6 7 3 −3

− 1 ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 · →p =


1
1
1
1


• Choice of →

p

→
p =


−1
0
0
0


• Second solution from eigenvalue 1

→
y 4(x) = ex ·

x ·


1
1
1
1

+


−1
0
0
0




• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


− e−3x

27 − e−2x

8 ex (x− 1) ex

e−3x

9
e−2x

4 ex x ex

− e−3x

3 − e−2x

2 ex x ex

e−3x e−2x ex x ex


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)
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Φ(x) =


− e−3x

27 − e−2x

8 ex (x− 1) ex

e−3x

9
e−2x

4 ex x ex

− e−3x

3 − e−2x

2 ex x ex

e−3x e−2x ex x ex

 · 1

− 1
27 −1

8 1 −1
1
9

1
4 1 0

−1
3 −1

2 1 0

1 1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =



−(x− 1) ex
(
(2+x)e4x−3 ex+1

)
e−3x

6

(
8x e4x−3 e4x+4 ex−1

)
e−3x

12

(
2x e4x−e4x+2 ex−1

)
e−3x

12

−x ex
(
(x+3)e4x+6 ex−3

)
e−3x

6 −
(
−8x e4x−5 e4x+8 ex−3

)
e−3x

12

(
2x e4x+e4x−4 ex+3

)
e−3x

12

−x ex
(
(x+3)e4x−12 ex+9

)
e−3x

6

(
8x e4x+5 e4x+16 ex−9

)
e−3x

12

(
2x e4x+e4x+8 ex−9

)
e−3x

12

−x ex
(
(x+3)e4x+24 ex−27

)
e−3x

6 −
(
−8x e4x−5 e4x+32 ex−27

)
e−3x

12

(
2x e4x+e4x−16 ex+27

)
e−3x

12


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution
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→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =



e−3x
(
(5x2 − 9x+ 4) e2x − 3x e4x − 6 ex + 5 e4x

2 − 1
2

)
e−3x

(
(−5x2 + 19x− 13) e2x − 3x e4x + 12 ex − e4x

2 + 3
2

)
e−3x

(
(7x2 − 29x+ 29) e2x − 3x e4x − 24 ex − e4x

2 − 9
2

)
e−3x

(
(−5x2 + 43x− 61) e2x − 3x e4x + 48 ex − e4x

2 + 27
2

)


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +



e−3x
(
(5x2 − 9x+ 4) e2x − 3x e4x − 6 ex + 5 e4x

2 − 1
2

)
e−3x

(
(−5x2 + 19x− 13) e2x − 3x e4x + 12 ex − e4x

2 + 3
2

)
e−3x

(
(7x2 − 29x+ 29) e2x − 3x e4x − 24 ex − e4x

2 − 9
2

)
e−3x

(
(−5x2 + 43x− 61) e2x − 3x e4x + 48 ex − e4x

2 + 27
2

)


• First component of the vector is the solution to the ODE

y = 5
(
− 1

10 +
(

1
2 +

(c4−3)x
5 + c3

5 − c4
5

)
e4x +

(
x2 − 9

5x+ 4
5

)
e2x +

(
−6− c2

8
)
ex

5 − c1
135

)
e−3x

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 40� �
dsolve(diff(y(x),x$4)+3*diff(y(x),x$3)-3*diff(y(x),x$2)-7*diff(y(x),x)+6*y(x)=-3*exp(-x)*(12+8*x-8*x^2),y(x), singsol=all)� �

y(x) = 3
(
(x− 1)2 e2x + (c4x+ c1) e4x

3 + c3ex
3 + c2

3

)
e−3x

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 45� �
DSolve[y''''[x]+3*y'''[x]-3*y''[x]-7*y'[x]+6*y[x]==-3*Exp[-x]*(12+8*x-8*x^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−3x(3e2x(x− 1)2 + c2e
x + e4x(c4x+ c3) + c1

)

7375



19.14 problem section 9.3, problem 14
19.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7378

Internal problem ID [1511]
Internal file name [OUTPUT/1512_Sunday_June_05_2022_02_20_10_AM_58351539/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 14.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ + 3y′′′ + y′′ − 3y′ − 2y = −3 e2x(11 + 12x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ + 3y′′′ + y′′ − 3y′ − 2y = 0

The characteristic equation is

λ4 + 3λ3 + λ2 − 3λ− 2 = 0

The roots of the above equation are

λ1 = −2
λ2 = 1
λ3 = −1
λ4 = −1
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Therefore the homogeneous solution is

yh(x) = c1e−x + x e−xc2 + e−2xc3 + exc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = x e−x

y3 = e−2x

y4 = ex

Now the particular solution to the given ODE is found

y′′′′ + 3y′′′ + y′′ − 3y′ − 2y = −3 e2x(11 + 12x)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

−3 e2x(11 + 12x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e2x, e2x}]

While the set of the basis functions for the homogeneous solution found earlier is

{x e−x, ex, e−2x, e−x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1x e2x + A2e2x

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

69A1e2x + 36A1x e2x + 36A2e2x = −3 e2x(11 + 12x)
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Solving for the unknowns by comparing coefficients results in

[A1 = −1, A2 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = −x e2x + e2x

Therefore the general solution is

y = yh + yp

=
(
c1e−x + x e−xc2 + e−2xc3 + exc4

)
+
(
−x e2x + e2x

)
Which simplifies to

y =
(
e3xc4 + ex(c2x+ c1) + c3

)
e−2x − x e2x + e2x

Summary
The solution(s) found are the following

(1)y =
(
e3xc4 + ex(c2x+ c1) + c3

)
e−2x − x e2x + e2x

Verification of solutions

y =
(
e3xc4 + ex(c2x+ c1) + c3

)
e−2x − x e2x + e2x

Verified OK.

19.14.1 Maple step by step solution

Let’s solve
y′′′′ + 3y′′′ + y′′ − 3y′ − 2y = −3 e2x(11 + 12x)

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
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y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = −36x e2x − 33 e2x − 3y4(x)− y3(x) + 3y2(x) + 2y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = −36x e2x − 33 e2x − 3y4(x)− y3(x) + 3y2(x) + 2y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
2 3 −1 −3

 · →y (x) +


0
0
0

−36x e2x − 33 e2x


• Define the forcing function

→
f (x) =


0
0
0

−36x e2x − 33 e2x


• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
2 3 −1 −3
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• Rewrite the system as
→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−2,


−1

8
1
4

−1
2

1



 ,

−1,


−1
1
−1
1



 ,

−1,


0
0
0
0



 ,

1,


1
1
1
1






• Consider eigenpair−2,


−1

8
1
4

−1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−2x ·


−1

8
1
4

−1
2

1


• Consider eigenpair, with eigenvalue of algebraic multiplicity 2−1,


−1
1
−1
1




• First solution from eigenvalue − 1

→
y 2(x) = e−x ·


−1
1
−1
1
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• Form of the 2nd homogeneous solution where →
p is to be solved for, λ = −1 is the eigenvalue, and →

v is the eigenvector
→
y 3(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = −1

• Substitute →
y 3(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 3(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue − 1


0 1 0 0
0 0 1 0
0 0 0 1
2 3 −1 −3

− (−1) ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 · →p =


−1
1
−1
1


• Choice of →

p

→
p =


−1
0
0
0


• Second solution from eigenvalue − 1

→
y 3(x) = e−x ·

x ·


−1
1
−1
1

+


−1
0
0
0
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• Consider eigenpair1,


1
1
1
1




• Solution to homogeneous system from eigenpair

→
y 4 = ex ·


1
1
1
1


• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4 +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


− e−2x

8 −e−x e−x(−x− 1) ex

e−2x

4 e−x x e−x ex

− e−2x

2 −e−x −x e−x ex

e−2x e−x x e−x ex


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


− e−2x

8 −e−x e−x(−x− 1) ex

e−2x

4 e−x x e−x ex

− e−2x

2 −e−x −x e−x ex

e−2x e−x x e−x ex

 · 1

−1
8 −1 −1 1

1
4 1 0 1

−1
2 −1 0 1

1 1 0 1


◦ Evaluate and simplify to get the fundamental matrix
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Φ(x) =



(x+ 1) e−x
(
2 e3x+1+(3x−3)ex

)
e−2x

6 − e−x

2 − x e−x + ex
2

(
e3x−3x ex−1

)
e−2x

6

−x e−x
(
2 e3x−2+(6−3x)ex

)
e−2x

6 − e−x

2 + x e−x + ex
2

(
e3x+2+(3x−3)ex

)
e−2x

6

x e−x
(
2 e3x+4+(3x−6)ex

)
e−2x

6
e−x

2 − x e−x + ex
2

(
e3x−4+(−3x+3)ex

)
e−2x

6

−x e−x
(
2 e3x−8+(6−3x)ex

)
e−2x

6 − e−x

2 + x e−x + ex
2

(
e3x+8+(3x−3)ex

)
e−2x

6


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =



−
(
5x e4x−4 e4x+e3x+7x ex+ex+2

)
e−2x

2

−
(
10x e4x−3 e4x+e3x−7x ex+6 ex−4

)
e−2x

2

−
(
8x e4x−3 e4x+e3x+7x ex−6 ex+8

)
e−2x

2

−
(
28x e4x+9 e4x+e3x−7x ex+6 ex−16

)
e−2x

2
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• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4 +



−
(
5x e4x−4 e4x+e3x+7x ex+ex+2

)
e−2x

2

−
(
10x e4x−3 e4x+e3x−7x ex+6 ex−4

)
e−2x

2

−
(
8x e4x−3 e4x+e3x+7x ex−6 ex+8

)
e−2x

2

−
(
28x e4x+9 e4x+e3x−7x ex+6 ex−16

)
e−2x

2


• First component of the vector is the solution to the ODE

y = −
((
−c4 + 1

2

)
e3x +

(5x
2 − 2

)
e4x +

((
c3 + 7

2

)
x+ c2 + c3 + 1

2

)
ex + c1

8 + 1
)
e−2x

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 37� �
dsolve(diff(y(x),x$4)+3*diff(y(x),x$3)+diff(y(x),x$2)-3*diff(y(x),x)-2*y(x)=-3*exp(2*x)*(11+12*x),y(x), singsol=all)� �

y(x) =
(
−e4xx+ e4x + c1e3x + c4x ex + c3ex + c2

)
e−2x

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 43� �
DSolve[y''''[x]+3*y'''[x]+y''[x]-3*y'[x]-2*y[x]==-3*Exp[2*x]*(11+12*x),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(−e4x(x− 1) + ex(c3x+ c2) + c4e
3x + c1

)
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19.15 problem section 9.3, problem 15
19.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7387

Internal problem ID [1512]
Internal file name [OUTPUT/1513_Sunday_June_05_2022_02_20_12_AM_13644452/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 15.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_y ]]

y′′′′ + 8y′′′ + 24y′′ + 32y′ = −16 e−2x(−x3 + x2 + x+ 1
)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ + 8y′′′ + 24y′′ + 32y′ = 0

The characteristic equation is

λ4 + 8λ3 + 24λ2 + 32λ = 0

The roots of the above equation are

λ1 = 0
λ2 = −4
λ3 = −2− 2i
λ4 = −2 + 2i
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Therefore the homogeneous solution is

yh(x) = c1 + c2e−4x + e(−2+2i)xc3 + e(−2−2i)xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = 1

y2 = e−4x

y3 = e(−2+2i)x

y4 = e(−2−2i)x

Now the particular solution to the given ODE is found

y′′′′ + 8y′′′ + 24y′′ + 32y′ = −16 e−2x(−x3 + x2 + x+ 1
)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

−16 e−2x(−x3 + x2 + x+ 1
)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x2e−2x, x3e−2x, e−2xx, e−2x}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, e(−2−2i)x, e(−2+2i)x, e−4x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1x
2e−2x + A2x

3e−2x + A3e−2xx+ A4e−2x

The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

−16A4e−2x − 16A1x
2e−2x − 16A2x

3e−2x − 16A3e−2xx = −16 e−2x(−x3 + x2 + x+ 1
)

7386



Solving for the unknowns by comparing coefficients results in

[A1 = 1, A2 = −1, A3 = 1, A4 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x2e−2x − x3e−2x + e−2xx+ e−2x

Therefore the general solution is

y = yh + yp

=
(
c1 + c2e−4x + e(−2+2i)xc3 + e(−2−2i)xc4

)
+
(
x2e−2x − x3e−2x + e−2xx+ e−2x)

Summary
The solution(s) found are the following

(1)y = c1 + c2e−4x + e(−2+2i)xc3 + e(−2−2i)xc4 + x2e−2x − x3e−2x + e−2xx+ e−2x

Verification of solutions

y = c1 + c2e−4x + e(−2+2i)xc3 + e(−2−2i)xc4 + x2e−2x − x3e−2x + e−2xx+ e−2x

Verified OK.

19.15.1 Maple step by step solution

Let’s solve
y′′′′ + 8y′′′ + 24y′′ + 32y′ = −16 e−2x(−x3 + x2 + x+ 1)

• Highest derivative means the order of the ODE is 4
y′′′′

• Isolate 4th derivative
y′′′′ = 16x3e−2x − 16x2e−2x − 16 e−2xx− 16 e−2x − 8y′′′ − 24y′′ − 32y′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′′ + 8y′′′ + 24y′′ + 32y′ = 16 e−2x(x3 − x2 − x− 1)

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y
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◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = 16x3e−2x − 16x2e−2x − 16 e−2xx− 16 e−2x − 8y4(x)− 24y3(x)− 32y2(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = 16x3e−2x − 16x2e−2x − 16 e−2xx− 16 e−2x − 8y4(x)− 24y3(x)− 32y2(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
0 −32 −24 −8

 · →y (x) +


0
0
0

16x3e−2x − 16x2e−2x − 16 e−2xx− 16 e−2x


• Define the forcing function

→
f (x) =


0
0
0

16x3e−2x − 16x2e−2x − 16 e−2xx− 16 e−2x


• Define the coefficient matrix
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A =


0 1 0 0
0 0 1 0
0 0 0 1
0 −32 −24 −8


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−4,


− 1

64
1
16

−1
4

1



 ,

0,


1
0
0
0



 ,

−2− 2 I,


1
32 +

I
32

− I
8

−1
4 +

I
4

1



 ,

−2 + 2 I,


1
32 −

I
32

I
8

−1
4 −

I
4

1






• Consider eigenpair−4,


− 1

64
1
16

−1
4

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−4x ·


− 1

64
1
16

−1
4

1


• Consider eigenpair0,


1
0
0
0




• Solution to homogeneous system from eigenpair
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→
y 2 =


1
0
0
0


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−2− 2 I,


1
32 +

I
32

− I
8

−1
4 +

I
4

1




• Solution from eigenpair

e(−2−2 I)x ·


1
32 +

I
32

− I
8

−1
4 +

I
4

1


• Use Euler identity to write solution in terms of sin and cos

e−2x · (cos (2x)− I sin (2x)) ·


1
32 +

I
32

− I
8

−1
4 +

I
4

1


• Simplify expression

e−2x ·



( 1
32 +

I
32

)
(cos (2x)− I sin (2x))

− I
8(cos (2x)− I sin (2x))(

−1
4 +

I
4

)
(cos (2x)− I sin (2x))

cos (2x)− I sin (2x)


• Both real and imaginary parts are solutions to the homogeneous system
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→
y 3(x) = e−2x ·



cos(2x)
32 + sin(2x)

32

− sin(2x)
8

− cos(2x)
4 + sin(2x)

4

cos (2x)

 ,
→
y 4(x) = e−2x ·



cos(2x)
32 − sin(2x)

32

− cos(2x)
8

sin(2x)
4 + cos(2x)

4

− sin (2x)




• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =



− e−4x

64 1 e−2x
(

cos(2x)
32 + sin(2x)

32

)
e−2x

(
cos(2x)

32 − sin(2x)
32

)
e−4x

16 0 − e−2x sin(2x)
8 − e−2x cos(2x)

8

− e−4x

4 0 e−2x
(
− cos(2x)

4 + sin(2x)
4

)
e−2x

(
sin(2x)

4 + cos(2x)
4

)
e−4x 0 e−2x cos (2x) −e−2x sin (2x)


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =



− e−4x

64 1 e−2x
(

cos(2x)
32 + sin(2x)

32

)
e−2x

(
cos(2x)

32 − sin(2x)
32

)
e−4x

16 0 − e−2x sin(2x)
8 − e−2x cos(2x)

8

− e−4x

4 0 e−2x
(
− cos(2x)

4 + sin(2x)
4

)
e−2x

(
sin(2x)

4 + cos(2x)
4

)
e−4x 0 e−2x cos (2x) −e−2x sin (2x)


· 1

− 1
64 1 1

32
1
32

1
16 0 0 −1

8

−1
4 0 −1

4
1
4

1 0 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


1 (−2 cos(2x)−2 sin(2x))e−2x

4 − e−4x

4 + 3
4

(− cos(2x)−3 sin(2x))e−2x

8 − e−4x

8 + 1
4 − e−2x sin(2x)

16 − e−4x

32 + 1
32

0 e−4x + 2 e−2x sin (2x) (− cos(2x)+2 sin(2x))e−2x

2 + e−4x

2
e−2x(− cos(2x)+sin(2x))

8 + e−4x

8

0 −4 e−4x + (4 cos (2x)− 4 sin (2x)) e−2x (3 cos (2x)− sin (2x)) e−2x − 2 e−4x e−2x cos(2x)
2 − e−4x

2

0 16 e−4x − 16 e−2x cos (2x) (−8 cos (2x)− 4 sin (2x)) e−2x + 8 e−4x (− cos (2x)− sin (2x)) e−2x + 2 e−4x


� Find a particular solution of the system of ODEs using variation of parameters
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◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


− 5

16 +
(
−8x3+8x2+8x−2 cos(2x)−5 sin(2x)+8

)
e−2x

8 − 7 e−4x

16(
8x3−20x2−3 cos(2x)+7 sin(2x)−4

)
e−2x

4 + 7 e−4x

4

(−4x3 + 16x2 − 10x+ 5 cos (2x)− 2 sin (2x) + 2) e−2x − 7 e−4x

(8x3 − 44x2 + 52x− 14 cos (2x)− 6 sin (2x)− 14) e−2x + 28 e−4x


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +


− 5

16 +
(
−8x3+8x2+8x−2 cos(2x)−5 sin(2x)+8

)
e−2x

8 − 7 e−4x

16(
8x3−20x2−3 cos(2x)+7 sin(2x)−4

)
e−2x

4 + 7 e−4x

4

(−4x3 + 16x2 − 10x+ 5 cos (2x)− 2 sin (2x) + 2) e−2x − 7 e−4x

(8x3 − 44x2 + 52x− 14 cos (2x)− 6 sin (2x)− 14) e−2x + 28 e−4x


• First component of the vector is the solution to the ODE
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y = − 5
16 +

(
32+(−8+c3+c4) cos(2x)+(−20+c3−c4) sin(2x)−32x3+32x2+32x

)
e−2x

32 + (−c1−28)e−4x

64 + c2

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(diff(_b(_a), _a), _a), _a) = 16*exp(-2*_a)*_a^3-16*exp(-2*_a)*_a^2-16*exp(-2*_a)*_a-16*e

Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful

<- differential order: 4; linear nonhomogeneous with symmetry [0,1] successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 56� �
dsolve(diff(y(x),x$4)+8*diff(y(x),x$3)+24*diff(y(x),x$2)+32*diff(y(x),x)=-16*exp(-2*x)*(1+x+x^2-x^3),y(x), singsol=all)� �
y(x) = ((−c2 − c3) cos (2x) + (c2 − c3) sin (2x)− 4x3 + 4x2 + 4x+ 4) e−2x

4 − e−4xc1
4 +c4

3 Solution by Mathematica
Time used: 0.712 (sec). Leaf size: 64� �
DSolve[y''''[x]+8*y'''[x]+24*y''[x]+32*y'[x]==-16*Exp[-2*x]*(1+x+x^2-x^3),y[x],x,IncludeSingularSolutions -> True]� �
y(x) → 1

4e
−2x(−4x3 +4x2 +4x− c3e

−2x − (c1 + c2) cos(2x) + (c2 − c1) sin(2x) + 4
)
+ c4
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19.16 problem section 9.3, problem 16
19.16.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7396

Internal problem ID [1513]
Internal file name [OUTPUT/1514_Sunday_June_05_2022_02_20_14_AM_64334905/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 16.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

4y′′′′ − 11y′′ − 9y′ − 2y = −ex(1− 6x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

4y′′′′ − 11y′′ − 9y′ − 2y = 0

The characteristic equation is

4λ4 − 11λ2 − 9λ− 2 = 0

The roots of the above equation are

λ1 = −1
λ2 = 2

λ3 = −1
2

λ4 = −1
2
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Therefore the homogeneous solution is

yh(x) = c1e−x + c2e2x + e−x
2 c3 + x e−x

2 c4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = e2x

y3 = e−x
2

y4 = x e−x
2

Now the particular solution to the given ODE is found

4y′′′′ − 11y′′ − 9y′ − 2y = −ex(1− 6x)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

−ex(1− 6x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x ex, ex}]

While the set of the basis functions for the homogeneous solution found earlier is{
x e−x

2 , e−x, e2x, e−x
2
}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1x ex + A2ex

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−15A1ex − 18A1x ex − 18A2ex = −ex(1− 6x)

Solving for the unknowns by comparing coefficients results in[
A1 = −1

3 , A2 =
1
3

]
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Substituting the above back in the above trial solution yp, gives the particular solution

yp = −x ex
3 + ex

3

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2e2x + e−x

2 c3 + x e−x
2 c4
)
+
(
−x ex

3 + ex
3

)

Which simplifies to

y =
(
(c4x+ c3) e

x
2 + c2e3x + c1

)
e−x − x ex

3 + ex
3

Summary
The solution(s) found are the following

(1)y =
(
(c4x+ c3) e

x
2 + c2e3x + c1

)
e−x − x ex

3 + ex
3

Verification of solutions

y =
(
(c4x+ c3) e

x
2 + c2e3x + c1

)
e−x − x ex

3 + ex
3

Verified OK.

19.16.1 Maple step by step solution

Let’s solve
4y′′′′ − 11y′′ − 9y′ − 2y = −ex(1− 6x)

• Highest derivative means the order of the ODE is 4
y′′′′

• Isolate 4th derivative
y′′′′ = y

2 +
11y′′
4 + 9y′

4 + 3x ex
2 − ex

4

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′′ − 11y′′

4 − 9y′
4 − y

2 = ex(−1+6x)
4
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� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = 3x ex

2 − ex
4 + 11y3(x)

4 + 9y2(x)
4 + y1(x)

2

Convert linear ODE into a system of first order ODEs[
y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = 3x ex

2 − ex
4 + 11y3(x)

4 + 9y2(x)
4 + y1(x)

2

]
• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
1
2

9
4

11
4 0

 · →y (x) +


0
0
0

3x ex
2 − ex

4


• Define the forcing function

→
f (x) =


0
0
0

3x ex
2 − ex

4
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• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
1
2

9
4

11
4 0


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


−1
1
−1
1



 ,

−1
2 ,


−8
4
−2
1



 ,

−1
2 ,


0
0
0
0



 ,

2,


1
8
1
4
1
2

1






• Consider eigenpair−1,


−1
1
−1
1




• Solution to homogeneous system from eigenpair

→
y 1 = e−x ·


−1
1
−1
1


• Consider eigenpair, with eigenvalue of algebraic multiplicity 2−1

2 ,


−8
4
−2
1
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• First solution from eigenvalue − 1
2

→
y 2(x) = e−x

2 ·


−8
4
−2
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = −1
2 is the eigenvalue, and →

v is the eigenvector
→
y 3(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = −1

2

• Substitute →
y 3(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 3(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue − 1

2


0 1 0 0
0 0 1 0
0 0 0 1
1
2

9
4

11
4 0

−−1
2 ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 · →p =


−8
4
−2
1


• Choice of →

p

→
p =


−16
0
0
0
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• Second solution from eigenvalue − 1
2

→
y 3(x) = e−x

2 ·

x ·


−8
4
−2
1

+


−16
0
0
0




• Consider eigenpair2,


1
8
1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 4 = e2x ·


1
8
1
4
1
2

1


• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4 +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


−e−x −8 e−x

2 e−x
2 (−8x− 16) e2x

8

e−x 4 e−x
2 4x e−x

2 e2x
4

−e−x −2 e−x
2 −2x e−x

2 e2x
2

e−x e−x
2 x e−x

2 e2x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)
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Φ(x) =


−e−x −8 e−x

2 e−x
2 (−8x− 16) e2x

8

e−x 4 e−x
2 4x e−x

2 e2x
4

−e−x −2 e−x
2 −2x e−x

2 e2x
2

e−x e−x
2 x e−x

2 e2x

 · 1

−1 −8 −16 1
8

1 4 0 1
4

−1 −2 0 1
2

1 1 0 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =



e−
x
2 (2+x)
2

(
2 e3x+75 e

x
2 x−42 e

x
2 +40

)
e−x

60

(
2 e3x+5 e

x
2 x−22 e

x
2 +20

)
e−x

20

(
2 e3x−15 e

x
2 x+18 e

x
2 −20

)
e−x

30

−x e−
x
2

4

(
8 e3x−75 e

x
2 x+192 e

x
2 −80

)
e−x

120

(
8 e3x−5 e

x
2 x+32 e

x
2 −40

)
e−x

40

(
8 e3x+15 e

x
2 x−48 e

x
2 +40

)
e−x

60

x e−
x
2

8

(
32 e3x+75 e

x
2 x−192 e

x
2 +160

)
e−x

240

(
32 e3x+5 e

x
2 x−32 e

x
2 +80

)
e−x

80

(
32 e3x−15 e

x
2 x+48 e

x
2 −80

)
e−x

120

−x e−
x
2

16

(
128 e3x−75 e

x
2 x+192 e

x
2 −320

)
e−x

480

(
128 e3x−5 e

x
2 x+32 e

x
2 −160

)
e−x

160

(
128 e3x+15 e

x
2 x−48 e

x
2 +160

)
e−x

240


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds
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◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =



(
e3x−4x e2x+3 e2x−5 e

x
2 x−4

)
e−x

12(
4 e3x−8x e2x−2 e2x+5 e

x
2 x−10 e

x
2 +8

)
e−x

24

e−x

(
− 5(−2+x)e

x
2

2 −14x e2x−5 e2x+8 e3x−8
)

24

e−x

(
5(−2+x)e

x
2

2 −22x e2x−43 e2x+32 e3x+16
)

48


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4 +



(
e3x−4x e2x+3 e2x−5 e

x
2 x−4

)
e−x

12(
4 e3x−8x e2x−2 e2x+5 e

x
2 x−10 e

x
2 +8

)
e−x

24

e−x

(
− 5(−2+x)e

x
2

2 −14x e2x−5 e2x+8 e3x−8
)

24

e−x

(
5(−2+x)e

x
2

2 −22x e2x−43 e2x+32 e3x+16
)

48


• First component of the vector is the solution to the ODE

y = −8
(((

c3 + 5
96

)
x+ c2 + 2c3

)
ex

2 +
(

x
24 −

1
32

)
e2x +

(
− c4

64 −
1
96

)
e3x + c1

8 + 1
24

)
e−x

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 40� �
dsolve(4*diff(y(x),x$4)-11*diff(y(x),x$2)-9*diff(y(x),x)-2*y(x)=-exp(x)*(1-6*x),y(x), singsol=all)� �

y(x) = e−x

(
(c4x+ c3) e

x
2 − e2xx

3 + c2e3x + c1 +
e2x
3

)
3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 47� �
DSolve[4*y''''[x]-11*y''[x]-9*y'[x]-2*y[x]==-Exp[x]*(1-6*x),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
3e

x(x− 1) + e−x/2(c2x+ c1) + c3e
−x + c4e

2x
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19.17 problem section 9.3, problem 17
Internal problem ID [1514]
Internal file name [OUTPUT/1515_Sunday_June_05_2022_02_20_17_AM_28180072/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 17.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ − 2y′′′ + 3y′ − y = ex
(
x2 + 4x+ 3

)
This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − 2y′′′ + 3y′ − y = 0

The characteristic equation is

λ4 − 2λ3 + 3λ− 1 = 0

The roots of the above equation are

λ1 = RootOf
(
_Z4 − 2_Z3 + 3_Z− 1, index = 1

)
λ2 = RootOf

(
_Z4 − 2_Z3 + 3_Z− 1, index = 2

)
λ3 = RootOf

(
_Z4 − 2_Z3 + 3_Z− 1, index = 3

)
λ4 = RootOf

(
_Z4 − 2_Z3 + 3_Z− 1, index = 4

)
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Therefore the homogeneous solution is

yh(x) = eRootOf
(
_Z4−2_Z3+3_Z−1,index=3

)
xc1+eRootOf

(
_Z4−2_Z3+3_Z−1,index=2

)
xc2+eRootOf

(
_Z4−2_Z3+3_Z−1,index=1

)
xc3+eRootOf

(
_Z4−2_Z3+3_Z−1,index=4

)
xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = eRootOf
(
_Z4−2_Z3+3_Z−1,index=3

)
x

y2 = eRootOf
(
_Z4−2_Z3+3_Z−1,index=2

)
x

y3 = eRootOf
(
_Z4−2_Z3+3_Z−1,index=1

)
x

y4 = eRootOf
(
_Z4−2_Z3+3_Z−1,index=4

)
x

Now the particular solution to the given ODE is found

y′′′′ − 2y′′′ + 3y′ − y = ex
(
x2 + 4x+ 3

)
The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

ex
(
x2 + 4x+ 3

)
Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x ex, x2ex, ex}]

While the set of the basis functions for the homogeneous solution found earlier is

{eRootOf
(
_Z4−2_Z3+3_Z−1,index=1

)
x, eRootOf

(
_Z4−2_Z3+3_Z−1,index=2

)
x, eRootOf

(
_Z4−2_Z3+3_Z−1,index=3

)
x, eRootOf

(
_Z4−2_Z3+3_Z−1,index=4

)
x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1x ex + A2x
2ex + A3ex

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

A1ex + A1x ex + 2A2x ex + A2x
2ex + A3ex = ex

(
x2 + 4x+ 3

)
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Solving for the unknowns by comparing coefficients results in

[A1 = 2, A2 = 1, A3 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2x ex + x2ex + ex

Therefore the general solution is

y = yh + yp

=
(
eRootOf

(
_Z4−2_Z3+3_Z−1,index=3

)
xc1 + eRootOf

(
_Z4−2_Z3+3_Z−1,index=2

)
xc2

+ eRootOf
(
_Z4−2_Z3+3_Z−1,index=1

)
xc3 + eRootOf

(
_Z4−2_Z3+3_Z−1,index=4

)
xc4
)

+
(
2x ex + x2ex + ex

)
Summary
The solution(s) found are the following

(1)
y = eRootOf

(
_Z4−2_Z3+3_Z−1,index=3

)
xc1 + eRootOf

(
_Z4−2_Z3+3_Z−1,index=2

)
xc2

+ eRootOf
(
_Z4−2_Z3+3_Z−1,index=1

)
xc3

+ eRootOf
(
_Z4−2_Z3+3_Z−1,index=4

)
xc4 + 2x ex + x2ex + ex

Verification of solutions

y = eRootOf
(
_Z4−2_Z3+3_Z−1,index=3

)
xc1 + eRootOf

(
_Z4−2_Z3+3_Z−1,index=2

)
xc2

+ eRootOf
(
_Z4−2_Z3+3_Z−1,index=1

)
xc3

+ eRootOf
(
_Z4−2_Z3+3_Z−1,index=4

)
xc4 + 2x ex + x2ex + ex

Verified OK.

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 101� �
dsolve(diff(y(x),x$4)-2*diff(y(x),x$3)+0*diff(y(x),x$2)+3*diff(y(x),x)-y(x)=exp(x)*(3+4*x+x^2),y(x), singsol=all)� �

y(x) = c1eRootOf
(
_Z4−2_Z3+3_Z−1,index=1

)
x + c2eRootOf

(
_Z4−2_Z3+3_Z−1,index=2

)
x

+ c3eRootOf
(
_Z4−2_Z3+3_Z−1,index=3

)
x

+ c4eRootOf
(
_Z4−2_Z3+3_Z−1,index=4

)
x + (x+ 1)2 ex

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 123� �
DSolve[y''''[x]-2*y'''[x]+0*y''[x]+3*y'[x]-y[x]==Exp[x]*(3+4*x+x^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2 exp
(
xRoot

[
#14 − 2#13 + 3#1− 1&, 2

])
+ c3 exp

(
xRoot

[
#14 − 2#13 + 3#1− 1&, 3

])
+ c4 exp

(
xRoot

[
#14 − 2#13 + 3#1− 1&, 4

])
+ c1 exp

(
xRoot

[
#14 − 2#13 + 3#1− 1&, 1

])
+ ex(x+ 1)2
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19.18 problem section 9.3, problem 18
19.18.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7411

Internal problem ID [1515]
Internal file name [OUTPUT/1516_Sunday_June_05_2022_02_20_19_AM_9905438/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 18.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ − 4y′′′ + 6y′′ − 4y′ + 2y = e2x
(
x4 + x+ 24

)
This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − 4y′′′ + 6y′′ − 4y′ + 2y = 0

The characteristic equation is

λ4 − 4λ3 + 6λ2 − 4λ+ 2 = 0
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The roots of the above equation are

λ1 =
√
2
2 + i

√
2

2 + 1

λ2 = −
√
2
2 + i

√
2

2 + 1

λ3 = −
√
2
2 − i

√
2

2 + 1

λ4 =
√
2
2 − i

√
2

2 + 1

Therefore the homogeneous solution is

yh(x) = e
(
−

√
2

2 + i
√
2

2 +1
)
x
c1 + e

(√
2

2 + i
√
2

2 +1
)
x
c2 + e

(√
2
2 − i

√
2

2 +1
)
x
c3 + e

(
−

√
2
2 − i

√
2

2 +1
)
x
c4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e
(
−

√
2

2 + i
√
2

2 +1
)
x

y2 = e
(√

2
2 + i

√
2

2 +1
)
x

y3 = e
(√

2
2 − i

√
2

2 +1
)
x

y4 = e
(
−

√
2

2 − i
√
2

2 +1
)
x

Now the particular solution to the given ODE is found

y′′′′ − 4y′′′ + 6y′′ − 4y′ + 2y = e2x
(
x4 + x+ 24

)
The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

e2x
(
x4 + x+ 24

)
Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e2x, x2e2x, e2xx3, e2xx4, e2x}]

While the set of the basis functions for the homogeneous solution found earlier is{
e
(
−

√
2

2 − i
√
2

2 +1
)
x
, e
(
−

√
2

2 + i
√
2

2 +1
)
x
, e
(√

2
2 − i

√
2

2 +1
)
x
, e
(√

2
2 + i

√
2

2 +1
)
x

}
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Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1x e2x + A2x
2e2x + A3e2xx3 + A4e2xx4 + A5e2x

The unknowns {A1, A2, A3, A4, A5} are found by substituting the above trial solution
yp into the ODE and comparing coefficients. Substituting the trial solution into the
ODE and simplifying gives

8A2x e2x + 12A3e2xx2 + 16A4e2xx3 + 36A3e2xx+ 72A4e2xx2

+ 96A4e2xx+ 2A4e2xx4 + 12A2e2x + 2A5e2x + 2A2x
2e2x + 2A3e2xx3

+ 4A1e2x + 2A1x e2x + 24A3e2x + 24A4e2x = e2x
(
x4 + x+ 24

)
Solving for the unknowns by comparing coefficients results in[

A1 =
49
2 , A2 = 6, A3 = −4, A4 =

1
2 , A5 = −31

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
49x e2x

2 + 6x2e2x − 4 e2xx3 + e2xx4

2 − 31 e2x

Therefore the general solution is

y = yh + yp

=
(
e
(
−

√
2

2 + i
√
2

2 +1
)
x
c1 + e

(√
2
2 + i

√
2

2 +1
)
x
c2 + e

(√
2

2 − i
√
2

2 +1
)
x
c3 + e

(
−

√
2

2 − i
√
2

2 +1
)
x
c4

)
+
(
49x e2x

2 + 6x2e2x − 4 e2xx3 + e2xx4

2 − 31 e2x
)

Which simplifies to

y = e
(
2+(−1+i)

√
2
)
x

2 c1 + e
x
(
2+(1+i)

√
2
)

2 c2 + e−
(
−2+(−1+i)

√
2
)
x

2 c3

+ e−
(
−2+(1+i)

√
2
)
x

2 c4 +
49x e2x

2 + 6x2e2x − 4 e2xx3 + e2xx4

2 − 31 e2x
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Summary
The solution(s) found are the following

(1)y = e
(
2+(−1+i)

√
2
)
x

2 c1 + e
x
(
2+(1+i)

√
2
)

2 c2 + e−
(
−2+(−1+i)

√
2
)
x

2 c3

+ e−
(
−2+(1+i)

√
2
)
x

2 c4 +
49x e2x

2 + 6x2e2x − 4 e2xx3 + e2xx4

2 − 31 e2x

Verification of solutions

y = e
(
2+(−1+i)

√
2
)
x

2 c1 + e
x
(
2+(1+i)

√
2
)

2 c2 + e−
(
−2+(−1+i)

√
2
)
x

2 c3

+ e−
(
−2+(1+i)

√
2
)
x

2 c4 +
49x e2x

2 + 6x2e2x − 4 e2xx3 + e2xx4

2 − 31 e2x

Verified OK.

19.18.1 Maple step by step solution

Let’s solve
y′′′′ − 4y′′′ + 6y′′ − 4y′ + 2y = e2x(x4 + x+ 24)

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = e2xx4 + x e2x + 24 e2x + 4y4(x)− 6y3(x) + 4y2(x)− 2y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = e2xx4 + x e2x + 24 e2x + 4y4(x)− 6y3(x) + 4y2(x)− 2y1(x)]

• Define vector
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→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
−2 4 −6 4

 · →y (x) +


0
0
0

e2xx4 + x e2x + 24 e2x


• Define the forcing function

→
f (x) =


0
0
0

e2xx4 + x e2x + 24 e2x


• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
−2 4 −6 4


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A


−

√
2
2 − I

√
2

2 + 1,



1(
−

√
2

2 − I
√
2

2 +1
)3

1(
−

√
2

2 − I
√
2

2 +1
)2

1
−

√
2

2 − I
√
2

2 +1

1




,


−

√
2
2 + I

√
2

2 + 1,



1(
−

√
2
2 + I

√
2

2 +1
)3

1(
−

√
2
2 + I

√
2

2 +1
)2

1
−

√
2

2 + I
√
2

2 +1

1




,


√
2
2 − I

√
2

2 + 1,



1(√
2

2 − I
√
2

2 +1
)3

1(√
2

2 − I
√
2

2 +1
)2

1√
2
2 − I

√
2

2 +1

1




,


√
2
2 + I

√
2

2 + 1,



1(√
2

2 + I
√

2
2 +1

)3
1(√

2
2 + I

√
2

2 +1
)2

1√
2

2 + I
√

2
2 +1

1
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• Consider complex eigenpair, complex conjugate eigenvalue can be ignored
−

√
2
2 − I

√
2

2 + 1,



1(
−

√
2
2 − I

√
2

2 +1
)3

1(
−

√
2
2 − I

√
2

2 +1
)2

1
−

√
2

2 − I
√
2

2 +1

1




• Solution from eigenpair

e
(
−

√
2
2 − I

√
2

2 +1
)
x ·



1(
−

√
2

2 − I
√
2

2 +1
)3

1(
−

√
2

2 − I
√
2

2 +1
)2

1
−

√
2

2 − I
√
2

2 +1

1


• Use Euler identity to write solution in terms of sin and cos

e
(
−

√
2
2 +1

)
x ·
(
cos
(√

2x
2

)
− I sin

(√
2x
2

))
·



1(
−

√
2

2 − I
√
2

2 +1
)3

1(
−

√
2

2 − I
√
2

2 +1
)2

1
−

√
2

2 − I
√
2

2 +1

1


• Simplify expression

e
(
−

√
2
2 +1

)
x ·



cos
(√

2 x
2

)
−I sin

(√
2 x
2

)
(
−

√
2

2 − I
√
2

2 +1
)3

cos
(√

2 x
2

)
−I sin

(√
2 x
2

)
(
−

√
2

2 − I
√
2

2 +1
)2

cos
(√

2 x
2

)
−I sin

(√
2 x
2

)
−

√
2

2 − I
√
2

2 +1

cos
(√

2x
2

)
− I sin

(√
2x
2

)


• Both real and imaginary parts are solutions to the homogeneous system
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→
y 1(x) = e

(
−

√
2

2 +1
)
x ·



cos
(√

2 x
2

)√
2−2 sin

(√
2 x
2

)√
2−cos

(√
2 x
2

)
+3 sin

(√
2 x
2

)
(
−2+

√
2
)3

−
cos
(√

2 x
2

)√
2−sin

(√
2 x
2

)√
2−cos

(√
2 x
2

)
+sin

(√
2 x
2

)
(
−2+

√
2
)2

cos
(√

2 x
2

)√
2−sin

(√
2 x
2

)√
2−2 cos

(√
2 x
2

)
2
(
−2+

√
2
)

cos
(√

2x
2

)


,
→
y 2(x) = e

(
−

√
2

2 +1
)
x ·



−
2 cos

(√
2 x
2

)√
2+sin

(√
2 x
2

)√
2−3 cos

(√
2 x
2

)
−sin

(√
2 x
2

)
(
−2+

√
2
)3

cos
(√

2 x
2

)√
2+sin

(√
2 x
2

)√
2−cos

(√
2 x
2

)
−sin

(√
2 x
2

)
(
−2+

√
2
)2

−
cos
(√

2 x
2

)√
2+sin

(√
2 x
2

)√
2−2 sin

(√
2 x
2

)
2
(
−2+

√
2
)

− sin
(√

2x
2

)




• Consider complex eigenpair, complex conjugate eigenvalue can be ignored

√
2
2 − I

√
2

2 + 1,



1(√
2
2 − I

√
2

2 +1
)3

1(√
2
2 − I

√
2

2 +1
)2

1√
2

2 − I
√

2
2 +1

1




• Solution from eigenpair

e
(√

2
2 − I

√
2

2 +1
)
x ·



1(√
2

2 − I
√
2

2 +1
)3

1(√
2

2 − I
√
2

2 +1
)2

1√
2

2 − I
√
2

2 +1

1


• Use Euler identity to write solution in terms of sin and cos

e
(√

2
2 +1

)
x ·
(
cos
(√

2x
2

)
− I sin

(√
2x
2

))
·



1(√
2

2 − I
√
2

2 +1
)3

1(√
2

2 − I
√
2

2 +1
)2

1√
2

2 − I
√
2

2 +1

1


• Simplify expression
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e
(√

2
2 +1

)
x ·



cos
(√

2 x
2

)
−I sin

(√
2 x
2

)
(√

2
2 − I

√
2

2 +1
)3

cos
(√

2 x
2

)
−I sin

(√
2 x
2

)
(√

2
2 − I

√
2

2 +1
)2

cos
(√

2 x
2

)
−I sin

(√
2 x
2

)
√
2

2 − I
√
2

2 +1

cos
(√

2x
2

)
− I sin

(√
2x
2

)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) = e

(√
2

2 +1
)
x ·



cos
(√

2 x
2

)√
2+2 sin

(√
2 x
2

)√
2+cos

(√
2 x
2

)
+3 sin

(√
2 x
2

)
(
2+

√
2
)3

cos
(√

2 x
2

)√
2+sin

(√
2 x
2

)√
2+cos

(√
2 x
2

)
+sin

(√
2 x
2

)
(
2+

√
2
)2

cos
(√

2 x
2

)√
2+sin

(√
2 x
2

)√
2+2 cos

(√
2 x
2

)
2
(
2+

√
2
)

cos
(√

2x
2

)


,
→
y 4(x) = e

(√
2

2 +1
)
x ·



2 cos
(√

2 x
2

)√
2−sin

(√
2 x
2

)√
2+3 cos

(√
2 x
2

)
−sin

(√
2 x
2

)
(
2+

√
2
)3

cos
(√

2 x
2

)√
2−sin

(√
2 x
2

)√
2+cos

(√
2 x
2

)
−sin

(√
2 x
2

)
(
2+

√
2
)2

cos
(√

2 x
2

)√
2−sin

(√
2 x
2

)√
2−2 sin

(√
2 x
2

)
2
(
2+

√
2
)

− sin
(√

2x
2

)




• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =



e

(
−

√
2
2 +1

)
x(

cos
(√

2 x
2

)√
2−2 sin

(√
2 x
2

)√
2−cos

(√
2 x
2

)
+3 sin

(√
2 x
2

))
(
−2+

√
2
)3 −

e

(
−

√
2

2 +1
)
x(

2 cos
(√

2 x
2

)√
2+sin

(√
2 x
2

)√
2−3 cos

(√
2 x
2

)
−sin

(√
2 x
2

))
(
−2+

√
2
)3 e

(√
2
2 +1

)
x(

cos
(√

2 x
2

)√
2+2 sin

(√
2 x
2

)√
2+cos

(√
2 x
2

)
+3 sin

(√
2 x
2

))
(
2+

√
2
)3 e

(√
2

2 +1
)
x(

2 cos
(√

2 x
2

)√
2−sin

(√
2 x
2

)√
2+3 cos

(√
2 x
2

)
−sin

(√
2 x
2

))
(
2+

√
2
)3

−
e

(
−

√
2
2 +1

)
x(

cos
(√

2 x
2

)√
2−sin

(√
2 x
2

)√
2−cos

(√
2 x
2

)
+sin

(√
2 x
2

))
(
−2+

√
2
)2 e

(
−

√
2

2 +1
)
x(

cos
(√

2 x
2

)√
2+sin

(√
2 x
2

)√
2−cos

(√
2 x
2

)
−sin

(√
2 x
2

))
(
−2+

√
2
)2 e

(√
2

2 +1
)
x(

cos
(√

2 x
2

)√
2+sin

(√
2 x
2

)√
2+cos

(√
2 x
2

)
+sin

(√
2 x
2

))
(
2+

√
2
)2 e

(√
2

2 +1
)
x(

cos
(√

2 x
2

)√
2−sin

(√
2 x
2

)√
2+cos

(√
2 x
2

)
−sin

(√
2 x
2

))
(
2+

√
2
)2

e

(
−

√
2

2 +1
)
x(

cos
(√

2 x
2

)√
2−sin

(√
2 x
2

)√
2−2 cos

(√
2 x
2

))
2
(
−2+

√
2
) −

e

(
−

√
2

2 +1
)
x(

cos
(√

2 x
2

)√
2+sin

(√
2 x
2

)√
2−2 sin

(√
2 x
2

))
2
(
−2+

√
2
) e

(√
2

2 +1
)
x(

cos
(√

2 x
2

)√
2+sin

(√
2 x
2

)√
2+2 cos

(√
2 x
2

))
2
(
2+

√
2
) e

(√
2

2 +1
)
x(

cos
(√

2 x
2

)√
2−sin

(√
2 x
2

)√
2−2 sin

(√
2 x
2

))
2
(
2+

√
2
)

e
(
−

√
2

2 +1
)
x cos

(√
2x
2

)
−e

(
−

√
2

2 +1
)
x sin

(√
2x
2

)
e
(√

2
2 +1

)
x cos

(√
2x
2

)
−e

(√
2

2 +1
)
x sin

(√
2x
2

)


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)
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Φ(x) =



e

(
−

√
2

2 +1
)
x(

cos
(√

2 x
2

)√
2−2 sin

(√
2 x
2

)√
2−cos

(√
2 x
2

)
+3 sin

(√
2 x
2

))
(
−2+

√
2
)3 −

e

(
−

√
2

2 +1
)
x(

2 cos
(√

2 x
2

)√
2+sin

(√
2 x
2

)√
2−3 cos

(√
2 x
2

)
−sin

(√
2 x
2

))
(
−2+

√
2
)3 e

(√
2

2 +1
)
x(

cos
(√

2 x
2

)√
2+2 sin

(√
2 x
2

)√
2+cos

(√
2 x
2

)
+3 sin

(√
2 x
2

))
(
2+

√
2
)3 e

(√
2

2 +1
)
x(

2 cos
(√

2 x
2

)√
2−sin

(√
2 x
2

)√
2+3 cos

(√
2 x
2

)
−sin

(√
2 x
2

))
(
2+

√
2
)3

−
e

(
−

√
2
2 +1

)
x(

cos
(√

2 x
2

)√
2−sin

(√
2 x
2

)√
2−cos

(√
2 x
2

)
+sin

(√
2 x
2

))
(
−2+

√
2
)2 e

(
−

√
2
2 +1

)
x(

cos
(√

2 x
2

)√
2+sin

(√
2 x
2

)√
2−cos

(√
2 x
2

)
−sin

(√
2 x
2

))
(
−2+

√
2
)2 e

(√
2

2 +1
)
x(

cos
(√

2 x
2

)√
2+sin

(√
2 x
2

)√
2+cos

(√
2 x
2

)
+sin

(√
2 x
2

))
(
2+

√
2
)2 e

(√
2
2 +1

)
x(

cos
(√

2 x
2

)√
2−sin

(√
2 x
2

)√
2+cos

(√
2 x
2

)
−sin

(√
2 x
2

))
(
2+

√
2
)2

e

(
−

√
2

2 +1
)
x(

cos
(√

2 x
2

)√
2−sin

(√
2 x
2

)√
2−2 cos

(√
2 x
2

))
2
(
−2+

√
2
) −

e

(
−

√
2

2 +1
)
x(

cos
(√

2 x
2

)√
2+sin

(√
2 x
2

)√
2−2 sin

(√
2 x
2

))
2
(
−2+

√
2
) e

(√
2

2 +1
)
x(

cos
(√

2 x
2

)√
2+sin

(√
2 x
2

)√
2+2 cos

(√
2 x
2

))
2
(
2+

√
2
) e

(√
2

2 +1
)
x(

cos
(√

2 x
2

)√
2−sin

(√
2 x
2

)√
2−2 sin

(√
2 x
2

))
2
(
2+

√
2
)

e
(
−

√
2
2 +1

)
x cos

(√
2x
2

)
−e

(
−

√
2

2 +1
)
x sin

(√
2x
2

)
e
(√

2
2 +1

)
x cos

(√
2x
2

)
−e

(√
2

2 +1
)
x sin

(√
2x
2

)


· 1

√
2−1(

−2+
√
2
)3 − −3+2

√
2(

−2+
√
2
)3 1+

√
2(

2+
√
2
)3 3+2

√
2(

2+
√
2
)3

−
√
2−1(

−2+
√
2
)2 √

2−1(
−2+

√
2
)2 1+

√
2(

2+
√
2
)2 1+

√
2(

2+
√
2
)2

1
2 −

√
2

2
(
−2+

√
2
) 1

2

√
2

2
(
2+

√
2
)

1 0 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =



((
−8

√
2+12

)
cos
(√

2 x
2

)
−4 sin

(√
2 x
2

)(√
2−1

))
e−
(
−2+

√
2
)
x

2 −8

(√2− 3
2

)
cos
(√

2 x
2

)
+

5
(√

2− 7
5
)
sin
(√

2 x
2

)
2

e

(
2+

√
2
)
x

2

(
−2+

√
2
)3(

2+
√
2
)3(

−3+2
√
2
)

((
−8

√
2+8

)
cos
(√

2 x
2

)
+
(
24

√
2−32

)
sin
(√

2 x
2

))
e

(
2+

√
2
)
x

2 +8
((√

2−1
)
cos
(√

2 x
2

)
+sin

(√
2 x
2

)√
2
)
e−
(
−2+

√
2
)
x

2(
−2+

√
2
)3(

−3+2
√
2
)(√

2−1
)(

4+3
√
2
)(

2+
√
2
)3

((
−12

√
2+12

)
cos
(√

2 x
2

)
+
(
−8

√
2+4

)
sin
(√

2 x
2

))
e−
(
−2+

√
2
)
x

2 +12

(√2−1
)
cos
(√

2 x
2

)
−

4 sin
(√

2 x
2

)(√
2− 5

4
)

3

e

(
2+

√
2
)
x

2

(
−2+

√
2
)3(

−3+2
√
2
)(√

2−1
)(

4+3
√
2
)(

2+
√
2
)3

(
4 cos

(√
2 x
2

)
+4 sin

(√
2 x
2

))
e−
(
−2+

√
2
)
x

2 −4
(
cos
(√

2 x
2

)
−sin

(√
2 x
2

))
e

(
2+

√
2
)
x

2(
2+

√
2
)3(

4+3
√
2
)(

−3+2
√
2
)(

−2+
√
2
)3

6

(cos(√
2 x
2

)
+sin

(√
2 x
2

))
e−
(
−2+

√
2
)
x

2 −
(
cos
(√

2 x
2

)
−sin

(√
2 x
2

))
e

(
2+

√
2
)
x

2

(√2− 4
3

)
(
−2+

√
2
)2(

2+
√
2
)2(

−3+2
√
2
)

((
−6

√
2+4

)
cos
(√

2 x
2

)
+
(
−6

√
2+8

)
sin
(√

2 x
2

))
e−
(
−2+

√
2
)
x

2 +10

(√2− 6
5

)
cos
(√

2 x
2

)
−

sin
(√

2 x
2

)√
2

5

e

(
2+

√
2
)
x

2

(
−2+

√
2
)2(

−3+2
√
2
)(√

2−1
)(

4+3
√
2
)(

2+
√
2
)2

((
8
√
2−8

)
cos
(√

2 x
2

)
+
(
8
√
2−12

)
sin
(√

2 x
2

))
e−
(
−2+

√
2
)
x

2 −8

(√2−1
)
cos
(√

2 x
2

)
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sin
(√

2 x
2

)
2

e

(
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√
2
)
x

2

(
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√
2
)2(
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√
2
)(√

2−1
)(

4+3
√
2
)(
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√
2
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√
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)
cos
(√

2 x
2

)
+
(
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√
2
)
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(√
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2

))
e−
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√
2
)
x
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((√
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e
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√
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)(√

2−1
)(

4+3
√
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√
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(√
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√
2
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√
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√
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e
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√
2
)
x
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√
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√
2
)
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(√
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2

)
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(
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√
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(√
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2
)
x
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((√
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)
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2
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2
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√
2
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√
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√
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√
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√
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√
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√
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√
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−2+

√
2

((
3
√
2−6

)
sin
(√

2 x
2

)
−cos

(√
2 x
2

)√
2
)
e−
(
−2+

√
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√
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√
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√
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√
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5
√
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√
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√
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√
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√
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√
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2
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� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)
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◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =



((
−2267904

√
2+3207296

)
cos
(√

2 x
2

)
+
(
−1956096

√
2+2766336

)
sin
(√

2 x
2

))
e−
(
−2+

√
2
)
x

2 +
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√
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)
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(√

2 x
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)
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(
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√
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)
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(√
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2
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e
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√
2
)
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(√
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√
2
)8(

−3+2
√
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)(√

2−1
)(
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√
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√
2
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√
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√
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(√
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2

)
+
(
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√
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(√
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2

))
e−
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√
2
)
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√
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(√
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2

)
+
(
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√
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)
sin
(√

2 x
2

))
e

(
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√
2
)
x
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(√

2− 338
239
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2
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√
2
)7(
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√
2
)(√
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)(
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√
2
)(
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√
2
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√
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−548432
√
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(√
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2

)
+
(
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√
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(√

2 x
2
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√
2
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√
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√
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√
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√
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√
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√
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√
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(√

2 x
2

)
+
(
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√
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)
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(√

2 x
2

))
e−
(
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√
2
)
x

2 +
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√
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)
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(√
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(
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√
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(√
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√
2
)
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√
2
)6(

70
√
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)(
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√
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• Plug particular solution back into general solution

→
y (x) = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4(x) +



((
−2267904

√
2+3207296

)
cos
(√

2 x
2

)
+
(
−1956096

√
2+2766336

)
sin
(√

2 x
2

))
e−
(
−2+

√
2
)
x

2 +
((

371200
√
2−524928

)
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(√

2 x
2

)
+
(
−120576

√
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(√
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2
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√
2
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x
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(√
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√
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√
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√
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√
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√
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√
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2

)
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√
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√
2
)
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−113568

√
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2
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√
2
)
x
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(√
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)(
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2
)
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√
2
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√
2
)(√
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)(
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√
2
)(
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√
2
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√
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√
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)
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(√

2 x
2

)
+
(
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√
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)
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2
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√
2
)
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2 +
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−75632
√
2+106960

)
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2
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+
(
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√
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)
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(√
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2

))
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(
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)
x

2 −89152
(√
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)5(
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√
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√
2
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)
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(√
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2

)
+
(
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√
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√
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2 +
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√
2−30832
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(√

2 x
2

)
+
(
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√
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√
2
)
x
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(
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√
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• First component of the vector is the solution to the ODE
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y =
((

(−3712c1+8960c2−2267904)
√
2+5248c1−12672c2+3207296

)
cos
(√

2 x
2

)
+8960

((
c1+ 29c2

70 − 7641
35

)√
2− 99c1

70 − 41c2
70 + 10806

35

)
sin
(√

2 x
2

))
e−
(
−2+

√
2
)
x

2 +
((

(126080c3−52224c4+371200)
√
2−178304c3+73856c4−524928

)
cos
(√

2 x
2

)
−52224

((
c3+ 985c4

408 + 157
68

)√
2− 577c3

408 − 1393c4
408 − 111

34

)
sin
(√

2 x
2

))
e

(
2+

√
2
)
x

2 −30592
(√

2− 338
239

)(
x4−8x3+12x2+49x−62

)
e2x(

−2+
√
2
)8(

−3+2
√
2
)(√

2−1
)(

4+3
√
2
)(

2+
√
2
)8(

70
√
2−99

)

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 87� �
dsolve(diff(y(x),x$4)-4*diff(y(x),x$3)+6*diff(y(x),x$2)-4*diff(y(x),x)+2*y(x)=exp(2*x)*(24+x+x^4),y(x), singsol=all)� �

y(x) = e
(
2+

√
2
)
x

2

(
cos
(√

2x
2

)
c1 + sin

(√
2x
2

)
c2

)

+
(
cos
(√

2x
2

)
c3 + sin

(√
2x
2

)
c4

)
e−

(√
2−2

)
x

2

+ e2x(x4 − 8x3 + 12x2 + 49x− 62)
2

3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 102� �
DSolve[y''''[x]-4*y'''[x]+6*y''[x]-4*y'[x]+2*y[x]==Exp[2*x]*(24+x+x^4),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

x− x√
2

(
e

x√
2+x(

x4 − 8x3 + 12x2 + 49x− 62
)
+ 2
(
c4e

√
2x + c2

)
cos
(

x√
2

)
+ 2
(
c1e

√
2x + c3

)
sin
(

x√
2

))
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19.19 problem section 9.3, problem 19
19.19.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7421

Internal problem ID [1516]
Internal file name [OUTPUT/1517_Sunday_June_05_2022_02_20_21_AM_73873428/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 19.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

2y′′′′ + 5y′′′ − 5y′ − 2y = 18 ex(2x+ 5)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

2y′′′′ + 5y′′′ − 5y′ − 2y = 0

The characteristic equation is

2λ4 + 5λ3 − 5λ− 2 = 0

The roots of the above equation are

λ1 = 1

λ2 = −1
2

λ3 = −2
λ4 = −1
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Therefore the homogeneous solution is

yh(x) = c1e−x + c2e−2x + c3ex + e−x
2 c4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = e−2x

y3 = ex

y4 = e−x
2

Now the particular solution to the given ODE is found

2y′′′′ + 5y′′′ − 5y′ − 2y = 18 ex(2x+ 5)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

18 ex(2x+ 5)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x ex, ex}]

While the set of the basis functions for the homogeneous solution found earlier is{
ex, e−2x, e−x, e−x

2
}

Since ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x ex, x2ex}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x ex + A2x
2ex

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

18A1ex + 54A2ex + 36A2x ex = 18 ex(2x+ 5)
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Solving for the unknowns by comparing coefficients results in

[A1 = 2, A2 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2x ex + x2ex

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2e−2x + c3ex + e−x

2 c4
)
+
(
2x ex + x2ex

)
Summary
The solution(s) found are the following

(1)y = c1e−x + c2e−2x + c3ex + e−x
2 c4 + 2x ex + x2ex

Verification of solutions

y = c1e−x + c2e−2x + c3ex + e−x
2 c4 + 2x ex + x2ex

Verified OK.

19.19.1 Maple step by step solution

Let’s solve
2y′′′′ + 5y′′′ − 5y′ − 2y = 18 ex(2x+ 5)

• Highest derivative means the order of the ODE is 4
y′′′′

• Isolate 4th derivative
y′′′′ = y − 5y′′′

2 + 5y′
2 + 18x ex + 45 ex

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′′ + 5y′′′

2 − 5y′
2 − y = 9 ex(2x+ 5)

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y
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◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = 18x ex + 45 ex − 5y4(x)

2 + 5y2(x)
2 + y1(x)

Convert linear ODE into a system of first order ODEs[
y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = 18x ex + 45 ex − 5y4(x)

2 + 5y2(x)
2 + y1(x)

]
• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
1 5

2 0 −5
2

 · →y (x) +


0
0
0

18x ex + 45 ex


• Define the forcing function

→
f (x) =


0
0
0

18x ex + 45 ex


• Define the coefficient matrix
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A =


0 1 0 0
0 0 1 0
0 0 0 1
1 5

2 0 −5
2


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−2,


−1

8
1
4

−1
2

1



 ,

−1,


−1
1
−1
1



 ,

−1
2 ,


−8
4
−2
1



 ,

1,


1
1
1
1






• Consider eigenpair−2,


−1

8
1
4

−1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−2x ·


−1

8
1
4

−1
2

1


• Consider eigenpair−1,


−1
1
−1
1




• Solution to homogeneous system from eigenpair
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→
y 2 = e−x ·


−1
1
−1
1


• Consider eigenpair−1

2 ,


−8
4
−2
1




• Solution to homogeneous system from eigenpair

→
y 3 = e−x

2 ·


−8
4
−2
1


• Consider eigenpair1,


1
1
1
1




• Solution to homogeneous system from eigenpair

→
y 4 = ex ·


1
1
1
1


• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 + c4

→
y 4 +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

7424



φ(x) =


− e−2x

8 −e−x −8 e−x
2 ex

e−2x

4 e−x 4 e−x
2 ex

− e−2x

2 −e−x −2 e−x
2 ex

e−2x e−x e−x
2 ex


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


− e−2x

8 −e−x −8 e−x
2 ex

e−2x

4 e−x 4 e−x
2 ex

− e−2x

2 −e−x −2 e−x
2 ex

e−2x e−x e−x
2 ex

 · 1

−1
8 −1 −8 1

1
4 1 4 1

−1
2 −1 −2 1

1 1 1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =



−
(
−e3x−16 e

3x
2 +9 ex−1

)
e−2x

9 −
(
−7 e3x−16 e

3x
2 +27 ex−4

)
e−2x

18

(
7 e3x−32 e

3x
2 +27 ex−2

)
e−2x

18

(
e3x−8 e

3x
2 +9 ex−2

)
e−2x

9(
e3x−8 e

3x
2 +9 ex−2

)
e−2x

9

(
7 e3x−8 e

3x
2 +27 ex−8

)
e−2x

18 −
(
−7 e3x−16 e

3x
2 +27 ex−4

)
e−2x

18 −
(
−e3x−4 e

3x
2 +9 ex−4

)
e−2x

9

−
(
−e3x−4 e

3x
2 +9 ex−4

)
e−2x

9 −
(
−7 e3x−4 e

3x
2 +27 ex−16

)
e−2x

18

(
7 e3x−8 e

3x
2 +27 ex−8

)
e−2x

18

(
e3x−2 e

3x
2 +9 ex−8

)
e−2x

9(
e3x−2 e

3x
2 +9 ex−8

)
e−2x

9

(
7 e3x−2 e

3x
2 +27 ex−32

)
e−2x

18 −
(
−7 e3x−4 e

3x
2 +27 ex−16

)
e−2x

18 −
(
−e3x−e

3x
2 +9 ex−16

)
e−2x

9


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system
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A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =



−
(
−9x2e3x−18x e3x+40 e3x−176 e

3x
2 +162 ex−26

)
e−2x

9(
9x2e3x+36x e3x−22 e3x−88 e

3x
2 +162 ex−52

)
e−2x

9

−
(
−9x2e3x−54x e3x−14 e3x−44 e

3x
2 +162 ex−104

)
e−2x

9(
9x2e3x+72x e3x+68 e3x−22 e

3x
2 +162 ex−208

)
e−2x

9


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 + c4

→
y 4 +



−
(
−9x2e3x−18x e3x+40 e3x−176 e

3x
2 +162 ex−26

)
e−2x

9(
9x2e3x+36x e3x−22 e3x−88 e

3x
2 +162 ex−52

)
e−2x

9

−
(
−9x2e3x−54x e3x−14 e3x−44 e

3x
2 +162 ex−104

)
e−2x

9(
9x2e3x+72x e3x+68 e3x−22 e

3x
2 +162 ex−208

)
e−2x

9


• First component of the vector is the solution to the ODE

y =
((

−8c3 + 176
9

)
e 3x

2 +
(
c4 + x2 + 2x− 40

9

)
e3x + (−c2 − 18) ex − c1

8 + 26
9

)
e−2x
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 34� �
dsolve(2*diff(y(x),x$4)+5*diff(y(x),x$3)+0*diff(y(x),x$2)-5*diff(y(x),x)-2*y(x)=18*exp(x)*(5+2*x),y(x), singsol=all)� �

y(x) = e−2x
(
e 3x

2 c4 +
(
x2 + c1 + 2x

)
e3x + c3ex + c2

)
3 Solution by Mathematica
Time used: 0.069 (sec). Leaf size: 48� �
DSolve[2*y''''[x]+5*y'''[x]+0*y''[x]-5*y'[x]-2*y[x]==18*Exp[x]*(5+2*x),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x
(
e3x
(
x2 + 2x− 40

9 + c4

)
+ c1e

3x/2 + c3e
x + c2

)
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19.20 problem section 9.3, problem 20
19.20.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7430

Internal problem ID [1517]
Internal file name [OUTPUT/1518_Sunday_June_05_2022_02_20_23_AM_71425407/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 20.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ + y′′′ − 2y′′ − 6y′ − 4y = −e2x
(
15x2 + 28x+ 4

)
This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ + y′′′ − 2y′′ − 6y′ − 4y = 0

The characteristic equation is

λ4 + λ3 − 2λ2 − 6λ− 4 = 0

The roots of the above equation are

λ1 = 2
λ2 = −1
λ3 = −1− i

λ4 = −1 + i
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Therefore the homogeneous solution is

yh(x) = c1e−x + e(−1−i)xc2 + c3e2x + e(−1+i)xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = e(−1−i)x

y3 = e2x

y4 = e(−1+i)x

Now the particular solution to the given ODE is found

y′′′′ + y′′′ − 2y′′ − 6y′ − 4y = −e2x
(
15x2 + 28x+ 4

)
The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

−e2x
(
15x2 + 28x+ 4

)
Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e2x, x2e2x, e2x}]
While the set of the basis functions for the homogeneous solution found earlier is

{e(−1−i)x, e(−1+i)x, e−x, e2x}

Since e2x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e2x, x2e2x, e2xx3}]
Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x e2x + A2x
2e2x + A3e2xx3

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

90A3e2xx2 + 168A3e2xx+ 60A2x e2x + 56A2e2x + 30A1e2x + 54A3e2x
= −e2x

(
15x2 + 28x+ 4

)

7429



Solving for the unknowns by comparing coefficients results in[
A1 =

1
6 , A2 = 0, A3 = −1

6

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x e2x
6 − e2xx3

6

Therefore the general solution is

y = yh + yp

=
(
c1e−x + e(−1−i)xc2 + c3e2x + e(−1+i)xc4

)
+
(
x e2x
6 − e2xx3

6

)

Summary
The solution(s) found are the following

(1)y = c1e−x + e(−1−i)xc2 + c3e2x + e(−1+i)xc4 +
x e2x
6 − e2xx3

6
Verification of solutions

y = c1e−x + e(−1−i)xc2 + c3e2x + e(−1+i)xc4 +
x e2x
6 − e2xx3

6

Verified OK.

19.20.1 Maple step by step solution

Let’s solve
y′′′′ + y′′′ − 2y′′ − 6y′ − 4y = −e2x(15x2 + 28x+ 4)

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′
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◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = −15x2e2x − 28x e2x − 4 e2x − y4(x) + 2y3(x) + 6y2(x) + 4y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = −15x2e2x − 28x e2x − 4 e2x − y4(x) + 2y3(x) + 6y2(x) + 4y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
4 6 2 −1

 · →y (x) +


0
0
0

−15x2e2x − 28x e2x − 4 e2x


• Define the forcing function

→
f (x) =


0
0
0

−15x2e2x − 28x e2x − 4 e2x


• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
4 6 2 −1


• Rewrite the system as
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→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


−1
1
−1
1



 ,

2,


1
8
1
4
1
2

1



 ,

−1− I,


1
4 +

I
4

− I
2

−1
2 +

I
2

1



 ,

−1 + I,


1
4 −

I
4

I
2

−1
2 −

I
2

1






• Consider eigenpair−1,


−1
1
−1
1




• Solution to homogeneous system from eigenpair

→
y 1 = e−x ·


−1
1
−1
1


• Consider eigenpair2,


1
8
1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 2 = e2x ·


1
8
1
4
1
2

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored
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−1− I,


1
4 +

I
4

− I
2

−1
2 +

I
2

1




• Solution from eigenpair

e(−1−I)x ·


1
4 +

I
4

− I
2

−1
2 +

I
2

1


• Use Euler identity to write solution in terms of sin and cos

e−x · (cos (x)− I sin (x)) ·


1
4 +

I
4

− I
2

−1
2 +

I
2

1


• Simplify expression

e−x ·



(1
4 +

I
4

)
(cos (x)− I sin (x))

− I
2(cos (x)− I sin (x))(

−1
2 +

I
2

)
(cos (x)− I sin (x))

cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) = e−x ·



sin(x)
4 + cos(x)

4

− sin(x)
2

− cos(x)
2 + sin(x)

2

cos (x)

 ,
→
y 4(x) = e−x ·



cos(x)
4 − sin(x)

4

− cos(x)
2

cos(x)
2 + sin(x)

2

− sin (x)




• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +

→
y p(x)

� Fundamental matrix
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◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =



−e−x e2x
8 e−x

(
sin(x)

4 + cos(x)
4

)
e−x
(

cos(x)
4 − sin(x)

4

)
e−x e2x

4 − sin(x)e−x

2 − cos(x)e−x

2

−e−x e2x
2 e−x

(
− cos(x)

2 + sin(x)
2

)
e−x
(

cos(x)
2 + sin(x)

2

)
e−x e2x cos (x) e−x − sin (x) e−x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =



−e−x e2x
8 e−x

(
sin(x)

4 + cos(x)
4

)
e−x
(

cos(x)
4 − sin(x)

4

)
e−x e2x

4 − sin(x)e−x

2 − cos(x)e−x

2

−e−x e2x
2 e−x

(
− cos(x)

2 + sin(x)
2

)
e−x
(

cos(x)
2 + sin(x)

2

)
e−x e2x cos (x) e−x − sin (x) e−x


· 1

−1 1
8

1
4

1
4

1 1
4 0 −1

2

−1 1
2 −1

2
1
2

1 1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =



2(10−3 cos(x)+6 sin(x))e−x

15 + e2x
15

(10−12 cos(x)+9 sin(x))e−x

15 + 2 e2x
15

(− cos(x)−3 sin(x))e−x

10 + e2x
10

(−10+9 cos(x)−3 sin(x))e−x

30 + e2x
30

2(−10+9 cos(x)−3 sin(x))e−x

15 + 2 e2x
15

(−10+3 sin(x)+21 cos(x))e−x

15 + 4 e2x
15

(2 sin(x)−cos(x))e−x

5 + e2x
5

(5−3 sin(x)−6 cos(x))e−x

15 + e2x
15

4(5−3 sin(x)−6 cos(x))e−x

15 + 4 e2x
15

2(5−9 cos(x)−12 sin(x))e−x

15 + 8 e2x
15

(3 cos(x)−sin(x))e−x

5 + 2 e2x
5

(−5+3 cos(x)+9 sin(x))e−x

15 + 2 e2x
15

4(−5+3 cos(x)+9 sin(x))e−x

15 + 8 e2x
15

2(−5−3 cos(x)+21 sin(x))e−x

15 + 16 e2x
15

(−2 sin(x)−4 cos(x))e−x

5 + 4 e2x
5

(5+6 cos(x)−12 sin(x))e−x

15 + 4 e2x
15


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system
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A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =



(−9 cos(x)+18 sin(x)+20)e−x

90 −
(
x3−x+ 11

15
)
e2x

6(
−30x3−45x2+30x−7

)
e2x

90 +
3
(
cos(x)− sin(x)

3 − 20
27

)
e−x

10(
−30x3−90x2−15x+8

)
e2x

45 −
2
(
cos(x)+ sin(x)

2 − 5
9

)
e−x

5(
−60x3−270x2−210x+1

)
e2x

45 +
(
cos(x)+3 sin(x)− 10

9
)
e−x

5


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +



(−9 cos(x)+18 sin(x)+20)e−x

90 −
(
x3−x+ 11

15
)
e2x

6(
−30x3−45x2+30x−7

)
e2x

90 +
3
(
cos(x)− sin(x)

3 − 20
27

)
e−x

10(
−30x3−90x2−15x+8

)
e2x

45 −
2
(
cos(x)+ sin(x)

2 − 5
9

)
e−x

5(
−60x3−270x2−210x+1

)
e2x

45 +
(
cos(x)+3 sin(x)− 10

9
)
e−x

5


• First component of the vector is the solution to the ODE

y = ((90c3+90c4−36) cos(x)+(90c3−90c4+72) sin(x)−360c1+80)e−x

360 −
(
x3−x− 3

4 c2+
11
15
)
e2x

6
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 36� �
dsolve(1*diff(y(x),x$4)+1*diff(y(x),x$3)-2*diff(y(x),x$2)-6*diff(y(x),x)-4*y(x)=-exp(2*x)*(4+28*x+15*x^2),y(x), singsol=all)� �

y(x) = (cos (x) c3 + c4 sin (x) + c1) e−x − e2x(x3 − 6c2 − x)
6

3 Solution by Mathematica
Time used: 0.193 (sec). Leaf size: 65� �
DSolve[1*y''''[x]+1*y'''[x]-2*y''[x]-6*y'[x]-4*y[x]==-Exp[2*x]*(4+28*x+15*x^2),y[x],x,IncludeSingularSolutions -> True]� �
y(x) → 1

90e
−x
(
−15e3xx3 + 15e3xx− 11e3x + 90c4e3x + 90c2 cos(x) + 90c1 sin(x) + 90c3

)
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19.21 problem section 9.3, problem 21
19.21.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7439

Internal problem ID [1518]
Internal file name [OUTPUT/1519_Sunday_June_05_2022_02_20_26_AM_55030780/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 21.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

2y′′′′ + y′′′ − 2y′ − y = 3 e−x
2 (1− 6x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

2y′′′′ + y′′′ − 2y′ − y = 0

The characteristic equation is

2λ4 + λ3 − 2λ− 1 = 0

The roots of the above equation are

λ1 = 1

λ2 = −1
2

λ3 = −1
2 − i

√
3

2

λ4 = −1
2 + i

√
3

2
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Therefore the homogeneous solution is

yh(x) = c1ex + e
(
− 1

2+
i
√
3

2

)
x
c2 + e−x

2 c3 + e
(
− 1

2−
i
√
3

2

)
x
c4

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = e
(
− 1

2+
i
√
3

2

)
x

y3 = e−x
2

y4 = e
(
− 1

2−
i
√
3

2

)
x

Now the particular solution to the given ODE is found

2y′′′′ + y′′′ − 2y′ − y = 3 e−x
2 (1− 6x)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

3 e−x
2 (1− 6x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is [{

x e−x
2 , e−x

2
}]

While the set of the basis functions for the homogeneous solution found earlier is{
ex, e

(
− 1

2−
i
√
3

2

)
x
, e
(
− 1

2+
i
√
3

2

)
x
, e−x

2

}
Since e−x

2 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes [{

x e−x
2 , e−x

2x2}]
Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x e−
x
2 + A2e−

x
2x2
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The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−9A1e−
x
2

4 − 9A2e−
x
2x

2 + 3A2e−
x
2 = 3 e−x

2 (1− 6x)

Solving for the unknowns by comparing coefficients results in

[A1 = 4, A2 = 4]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 4x e−x
2 + 4 e−x

2x2

Therefore the general solution is

y = yh + yp

=
(
c1ex + e

(
− 1

2+
i
√
3

2

)
x
c2 + e−x

2 c3 + e
(
− 1

2−
i
√
3

2

)
x
c4

)
+
(
4x e−x

2 + 4 e−x
2x2)

Summary
The solution(s) found are the following

(1)y = c1ex + e
(
− 1

2+
i
√
3

2

)
x
c2 + e−x

2 c3 + e
(
− 1

2−
i
√
3

2

)
x
c4 + 4x e−x

2 + 4 e−x
2x2

Verification of solutions

y = c1ex + e
(
− 1

2+
i
√
3

2

)
x
c2 + e−x

2 c3 + e
(
− 1

2−
i
√
3

2

)
x
c4 + 4x e−x

2 + 4 e−x
2x2

Verified OK.

19.21.1 Maple step by step solution

Let’s solve
2y′′′′ + y′′′ − 2y′ − y = 3 e−x

2 (1− 6x)
• Highest derivative means the order of the ODE is 4

y′′′′

• Isolate 4th derivative
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y′′′′ = y
2 −

y′′′

2 + y′ − 9x e−x
2 + 3 e−

x
2

2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′′′ + y′′′

2 − y′ − y
2 = −3 e−

x
2 (−1+6x)

2

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE

y′4(x) = −9x e−x
2 + 3 e−

x
2

2 − y4(x)
2 + y2(x) + y1(x)

2

Convert linear ODE into a system of first order ODEs[
y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = −9x e−x

2 + 3 e−
x
2

2 − y4(x)
2 + y2(x) + y1(x)

2

]
• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
1
2 1 0 −1

2

 · →y (x) +


0
0
0

−9x e−x
2 + 3 e−

x
2

2


• Define the forcing function
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→
f (x) =


0
0
0

−9x e−x
2 + 3 e−

x
2

2


• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
1
2 1 0 −1

2


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

1,


1
1
1
1



 ,

−1
2 ,


−8
4
−2
1



 ,


−1

2 −
I
√
3

2 ,



1(
− 1

2−
I
√
3

2

)3
1(

− 1
2−

I
√
3

2

)2
1

− 1
2−

I
√
3

2

1




,


−1

2 +
I
√
3

2 ,



1(
− 1

2+
I
√
3

2

)3
1(

− 1
2+

I
√
3

2

)2
1

− 1
2+

I
√
3

2

1






• Consider eigenpair1,


1
1
1
1




• Solution to homogeneous system from eigenpair

→
y 1 = ex ·


1
1
1
1
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• Consider eigenpair−1
2 ,


−8
4
−2
1




• Solution to homogeneous system from eigenpair

→
y 2 = e−x

2 ·


−8
4
−2
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored

−1
2 −

I
√
3

2 ,



1(
− 1

2−
I
√
3

2

)3
1(

− 1
2−

I
√
3

2

)2
1

− 1
2−

I
√
3

2

1




• Solution from eigenpair

e
(
− 1

2−
I
√
3

2

)
x ·



1(
− 1

2−
I
√
3

2

)3
1(

− 1
2−

I
√
3

2

)2
1

− 1
2−

I
√
3

2

1


• Use Euler identity to write solution in terms of sin and cos
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e−x
2 ·
(
cos
(√

3x
2

)
− I sin

(√
3x
2

))
·



1(
− 1

2−
I
√
3

2

)3
1(

− 1
2−

I
√
3

2

)2
1

− 1
2−

I
√
3

2

1


• Simplify expression

e−x
2 ·



cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(
− 1

2−
I
√
3

2

)3
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
(
− 1

2−
I
√
3

2

)2
cos
(√

3 x
2

)
−I sin

(√
3 x
2

)
− 1

2−
I
√
3

2

cos
(√

3x
2

)
− I sin

(√
3x
2

)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) = e−x

2 ·



cos
(√

3x
2

)
−

cos
(√

3 x
2

)
2 −

sin
(√

3 x
2

)√
3

2

−
cos
(√

3 x
2

)
2 +

sin
(√

3 x
2

)√
3

2

cos
(√

3x
2

)


,
→
y 4(x) = e−x

2 ·



− sin
(√

3x
2

)
−

cos
(√

3 x
2

)√
3

2 +
sin
(√

3 x
2

)
2

cos
(√

3 x
2

)√
3

2 +
sin
(√

3 x
2

)
2

− sin
(√

3x
2

)




• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.
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φ(x) =



ex −8 e−x
2 e−x

2 cos
(√

3x
2

)
−e−x

2 sin
(√

3x
2

)
ex 4 e−x

2 e−x
2

(
−

cos
(√

3 x
2

)
2 −

sin
(√

3 x
2

)√
3

2

)
e−x

2

(
−

cos
(√

3 x
2

)√
3

2 +
sin
(√

3 x
2

)
2

)
ex −2 e−x

2 e−x
2

(
−

cos
(√

3 x
2

)
2 +

sin
(√

3 x
2

)√
3

2

)
e−x

2

(
cos
(√

3 x
2

)√
3

2 +
sin
(√

3 x
2

)
2

)
ex e−x

2 e−x
2 cos

(√
3x
2

)
−e−x

2 sin
(√

3x
2

)


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =



ex −8 e−x
2 e−x

2 cos
(√

3x
2

)
−e−x

2 sin
(√

3x
2

)
ex 4 e−x

2 e−x
2

(
−

cos
(√

3 x
2

)
2 −

sin
(√

3 x
2

)√
3

2

)
e−x

2

(
−

cos
(√

3 x
2

)√
3

2 +
sin
(√

3 x
2

)
2

)
ex −2 e−x

2 e−x
2

(
−

cos
(√

3 x
2

)
2 +

sin
(√

3 x
2

)√
3

2

)
e−x

2

(
cos
(√

3 x
2

)√
3

2 +
sin
(√

3 x
2

)
2

)
ex e−x

2 e−x
2 cos

(√
3x
2

)
−e−x

2 sin
(√

3x
2

)


· 1

1 −8 1 0

1 4 −1
2 −

√
3
2

1 −2 −1
2

√
3
2

1 1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =



ex
9 + 8 e−

x
2

9 +
2 sin

(√
3 x
2

)
e−

x
2
√
3

9
ex
3 −

e−
x
2 cos

(√
3 x
2

)
3 +

sin
(√

3 x
2

)
e−

x
2
√
3

3
ex
3 −

e−
x
2 cos

(√
3 x
2

)
3 −

sin
(√

3 x
2

)
e−

x
2
√
3

3
2 ex
9 − 8 e−

x
2

9 +
2 e−

x
2 cos

(√
3 x
2

)
3 −

2 sin
(√

3 x
2

)
e−

x
2
√
3

9

−
sin
(√

3 x
2

)
e−

x
2
√
3

9 +
e−

x
2 cos

(√
3 x
2

)
3 − 4 e−

x
2

9 + ex
9

2 e−
x
2 cos

(√
3 x
2

)
3 + ex

3
ex
3 −

e−
x
2 cos

(√
3 x
2

)
3 +

sin
(√

3 x
2

)
e−

x
2
√
3

3 −
2 e−

x
2 cos

(√
3 x
2

)
3 −

2 sin
(√

3 x
2

)
e−

x
2
√
3

9 + 4 e−
x
2

9 + 2 ex
9

−
sin
(√

3 x
2

)
e−

x
2
√
3

9 −
e−

x
2 cos

(√
3 x
2

)
3 + 2 e−

x
2

9 + ex
9

ex
3 −

e−
x
2 cos

(√
3 x
2

)
3 −

sin
(√

3 x
2

)
e−

x
2
√
3

3
2 e−

x
2 cos

(√
3 x
2

)
3 + ex

3
4 sin

(√
3 x
2

)
e−

x
2
√
3

9 − 2 e−
x
2

9 + 2 ex
9

ex
9 − e−

x
2

9 +
2 sin

(√
3 x
2

)
e−

x
2
√
3

9
ex
3 −

e−
x
2 cos

(√
3 x
2

)
3 +

sin
(√

3 x
2

)
e−

x
2
√
3

3
ex
3 −

e−
x
2 cos

(√
3 x
2

)
3 −

sin
(√

3 x
2

)
e−

x
2
√
3

3
2 ex
9 + e−

x
2

9 +
2 e−

x
2 cos

(√
3 x
2

)
3 −

2 sin
(√

3 x
2

)
e−

x
2
√
3

9


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs
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Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =



26 e−
x
2 cos

(√
3 x
2

)
3 − 2 sin

(√
3x
2

)
e−x

2
√
3 + 4(x2 + x− 2) e−x

2 − 2 ex
3

−
22 e−

x
2 cos

(√
3 x
2

)
3 −

10 sin
(√

3 x
2

)
e−

x
2
√
3

3 + 2(−x2 + 3x+ 4) e−x
2 − 2 ex

3

−
4 e−

x
2 cos

(√
3 x
2

)
3 +

16 sin
(√

3 x
2

)
e−

x
2
√
3

3 + (x2 − 7x+ 2) e−x
2 − 2 ex

3

26 e−
x
2 cos

(√
3 x
2

)
3 − 2 sin

(√
3x
2

)
e−x

2
√
3 +

(
−3x2+33x−48

)
e−

x
2

6 − 2 ex
3


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +



26 e−
x
2 cos

(√
3 x
2

)
3 − 2 sin

(√
3x
2

)
e−x

2
√
3 + 4(x2 + x− 2) e−x

2 − 2 ex
3

−
22 e−

x
2 cos

(√
3 x
2

)
3 −

10 sin
(√

3 x
2

)
e−

x
2
√
3

3 + 2(−x2 + 3x+ 4) e−x
2 − 2 ex

3

−
4 e−

x
2 cos

(√
3 x
2

)
3 +

16 sin
(√

3 x
2

)
e−

x
2
√
3

3 + (x2 − 7x+ 2) e−x
2 − 2 ex

3

26 e−
x
2 cos

(√
3 x
2

)
3 − 2 sin

(√
3x
2

)
e−x

2
√
3 +

(
−3x2+33x−48

)
e−

x
2

6 − 2 ex
3


• First component of the vector is the solution to the ODE

y =
e−

x
2 (3c3+26) cos

(√
3 x
2

)
3 − e−x

2
(
c4 + 2

√
3
)
sin
(√

3x
2

)
+ 4(x2 − 2c2 + x− 2) e−x

2 + ex(3c1−2)
3
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 50� �
dsolve(2*diff(y(x),x$4)+1*diff(y(x),x$3)-0*diff(y(x),x$2)-2*diff(y(x),x)-1*y(x)=3*exp(-x/2)*(1-6*x),y(x), singsol=all)� �

y(x) = c3e−
x
2 cos

(√
3x
2

)
+ c4e−

x
2 sin

(√
3x
2

)
+
(
4x2 + c2 + 4x

)
e−x

2 + exc1

3 Solution by Mathematica
Time used: 0.635 (sec). Leaf size: 63� �
DSolve[2*y''''[x]+1*y'''[x]-0*y''[x]-2*y'[x]-1*y[x]==3*Exp[-x/2]*(1-6*x),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x/2

(
4x2 + 4x+ c4e

3x/2 + c2 cos
(√

3x
2

)
+ c1 sin

(√
3x
2

)
− 8 + c3

)
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19.22 problem section 9.3, problem 22
19.22.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7449

Internal problem ID [1519]
Internal file name [OUTPUT/1520_Sunday_June_05_2022_02_20_28_AM_83982495/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 22.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ − 5y′′ + 4y = ex
(
−3x2 + x+ 3

)
This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − 5y′′ + 4y = 0

The characteristic equation is
λ4 − 5λ2 + 4 = 0

The roots of the above equation are

λ1 = 2
λ2 = −2
λ3 = 1
λ4 = −1
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Therefore the homogeneous solution is

yh(x) = c1e−x + c2e−2x + c3ex + e2xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = e−2x

y3 = ex

y4 = e2x

Now the particular solution to the given ODE is found

y′′′′ − 5y′′ + 4y = ex
(
−3x2 + x+ 3

)
The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

ex
(
−3x2 + x+ 3

)
Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x ex, x2ex, ex}]

While the set of the basis functions for the homogeneous solution found earlier is

{ex, e−2x, e−x, e2x}

Since ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x ex, x2ex, exx3}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x ex + A2x
2ex + A3exx3

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−6A1ex + 2A2ex − 12A2x ex − 18A3exx2 + 6A3exx+ 24A3ex = ex
(
−3x2 + x+ 3

)
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Solving for the unknowns by comparing coefficients results in[
A1 =

1
6 , A2 = 0, A3 =

1
6

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x ex
6 + exx3

6

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2e−2x + c3ex + e2xc4

)
+
(
x ex
6 + exx3

6

)

Summary
The solution(s) found are the following

(1)y = c1e−x + c2e−2x + c3ex + e2xc4 +
x ex
6 + exx3

6
Verification of solutions

y = c1e−x + c2e−2x + c3ex + e2xc4 +
x ex
6 + exx3

6

Verified OK.

19.22.1 Maple step by step solution

Let’s solve
y′′′′ − 5y′′ + 4y = ex(−3x2 + x+ 3)

• Highest derivative means the order of the ODE is 4
y′′′′

• Isolate 4th derivative
y′′′′ = −4y − 3x2ex + x ex + 3 ex + 5y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′′ − 5y′′ + 4y = −ex(3x2 − x− 3)

� Convert linear ODE into a system of first order ODEs
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◦ Define new variable y1(x)
y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = −3x2ex + x ex + 3 ex + 5y3(x)− 4y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = −3x2ex + x ex + 3 ex + 5y3(x)− 4y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
−4 0 5 0

 · →y (x) +


0
0
0

−3x2ex + x ex + 3 ex


• Define the forcing function

→
f (x) =


0
0
0

−3x2ex + x ex + 3 ex


• Define the coefficient matrix
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A =


0 1 0 0
0 0 1 0
0 0 0 1
−4 0 5 0


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−2,


−1

8
1
4

−1
2

1



 ,

−1,


−1
1
−1
1



 ,

1,


1
1
1
1



 ,

2,


1
8
1
4
1
2

1






• Consider eigenpair−2,


−1

8
1
4

−1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−2x ·


−1

8
1
4

−1
2

1


• Consider eigenpair−1,


−1
1
−1
1




• Solution to homogeneous system from eigenpair
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→
y 2 = e−x ·


−1
1
−1
1


• Consider eigenpair1,


1
1
1
1




• Solution to homogeneous system from eigenpair

→
y 3 = ex ·


1
1
1
1


• Consider eigenpair2,


1
8
1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 4 = e2x ·


1
8
1
4
1
2

1


• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 + c4

→
y 4 +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.
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φ(x) =


− e−2x

8 −e−x ex e2x
8

e−2x

4 e−x ex e2x
4

− e−2x

2 −e−x ex e2x
2

e−2x e−x ex e2x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


− e−2x

8 −e−x ex e2x
8

e−2x

4 e−x ex e2x
4

− e−2x

2 −e−x ex e2x
2

e−2x e−x ex e2x

 · 1

−1
8 −1 1 1

8
1
4 1 1 1

4

−1
2 −1 1 1

2

1 1 1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =



(
−e4x+4 e3x+4 ex−1

)
e−2x

6 −
(
e4x−8 e3x+8 ex−1

)
e−2x

12 −
(
−e4x+e3x+ex−1

)
e−2x

6

(
e4x−2 e3x+2 ex−1

)
e−2x

12

−
(
e4x−2 e3x+2 ex−1

)
e−2x

3

(
−e4x+4 e3x+4 ex−1

)
e−2x

6

(
2 e4x−e3x+ex−2

)
e−2x

6 −
(
−e4x+e3x+ex−1

)
e−2x

6
2
(
−e4x+e3x+ex−1

)
e−2x

3 −
(
e4x−2 e3x+2 ex−1

)
e−2x

3 −
(
−4 e4x+e3x+ex−4

)
e−2x

6

(
2 e4x−e3x+ex−2

)
e−2x

6

−2
(
2 e4x−e3x+ex−2

)
e−2x

3
2
(
−e4x+e3x+ex−1

)
e−2x

3

(
8 e4x−e3x+ex−8

)
e−2x

6 −
(
−4 e4x+e3x+ex−4

)
e−2x

6


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)
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◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =



e−2x((6x3+6x+7
)
e3x−3 ex−6 e4x+2

)
36((

x3+3x2+x+ 13
6
)
e3x+ ex

2 −2 e4x− 2
3

)
e−2x

6((
x3+6x2+7x+ 19

6
)
e3x− ex

2 −4 e4x+ 4
3

)
e−2x

6

e−2x
((

x3+9x2+19x+ 61
6
)
e3x+ ex

2 −8 e4x− 8
3

)
6


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 + c4

→
y 4 +



e−2x((6x3+6x+7
)
e3x−3 ex−6 e4x+2

)
36((

x3+3x2+x+ 13
6
)
e3x+ ex

2 −2 e4x− 2
3

)
e−2x

6((
x3+6x2+7x+ 19

6
)
e3x− ex

2 −4 e4x+ 4
3

)
e−2x

6

e−2x
((

x3+9x2+19x+ 61
6
)
e3x+ ex

2 −8 e4x− 8
3

)
6


• First component of the vector is the solution to the ODE

y =
((

x3+x+6c3+ 7
6
)
e3x+

(
3c4
4 −1

)
e4x+

(
−6c2− 1

2
)
ex− 3c1

4 + 1
3

)
e−2x

6
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 39� �
dsolve(1*diff(y(x),x$4)+0*diff(y(x),x$3)-5*diff(y(x),x$2)-0*diff(y(x),x)+4*y(x)=exp(x)*(3+x-3*x^2),y(x), singsol=all)� �

y(x) = ((x3 + 6c1 + x) e3x + 6c3ex + 6c4e4x + 6c2) e−2x

6

3 Solution by Mathematica
Time used: 0.111 (sec). Leaf size: 51� �
DSolve[1*y''''[x]+0*y'''[x]-5*y''[x]-0*y'[x]+4*y[x]==Exp[x]*(3+x-3*x^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
36e

x
(
6x3 + 6x+ 7 + 36c3

)
+ c1e

−2x + c2e
−x + c4e

2x
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19.23 problem section 9.3, problem 23
Internal problem ID [1520]
Internal file name [OUTPUT/1521_Sunday_June_05_2022_02_20_29_AM_88806639/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 23.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ − 2y′′′ − 3y′′ + 4y′ + 4y = e2x
(
18x2 + 33x+ 13

)
This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − 2y′′′ − 3y′′ + 4y′ + 4y = 0

The characteristic equation is

λ4 − 2λ3 − 3λ2 + 4λ+ 4 = 0

The roots of the above equation are

λ1 = −1
λ2 = −1
λ3 = 2
λ4 = 2
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Therefore the homogeneous solution is

yh(x) = c1e−x + x e−xc2 + c3e2x + x e2xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = x e−x

y3 = e2x

y4 = x e2x

Now the particular solution to the given ODE is found

y′′′′ − 2y′′′ − 3y′′ + 4y′ + 4y = e2x
(
18x2 + 33x+ 13

)
The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

e2x
(
18x2 + 33x+ 13

)
Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e2x, x2e2x, e2x}]

While the set of the basis functions for the homogeneous solution found earlier is

{x e−x, x e2x, e−x, e2x}

Since e2x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e2x, x2e2x, e2xx3}]

Since x e2x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2e2x, e2xx3, e2xx4}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
2e2x + A2e2xx3 + A3e2xx4
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The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

144A3e2xx+ 54A2e2xx+ 108A3e2xx2 + 18A1e2x + 36A2e2x + 24A3e2x
= e2x

(
18x2 + 33x+ 13

)
Solving for the unknowns by comparing coefficients results in[

A1 =
1
6 , A2 =

1
6 , A3 =

1
6

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x2e2x
6 + e2xx3

6 + e2xx4

6

Therefore the general solution is

y = yh + yp

=
(
c1e−x + x e−xc2 + c3e2x + x e2xc4

)
+
(
x2e2x
6 + e2xx3

6 + e2xx4

6

)

Which simplifies to

y = (c2x+ c1) e−x + (c4x+ c3) e2x +
x2e2x
6 + e2xx3

6 + e2xx4

6

Summary
The solution(s) found are the following

(1)y = (c2x+ c1) e−x + (c4x+ c3) e2x +
x2e2x
6 + e2xx3

6 + e2xx4

6
Verification of solutions

y = (c2x+ c1) e−x + (c4x+ c3) e2x +
x2e2x
6 + e2xx3

6 + e2xx4

6

Verified OK.
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 38� �
dsolve(1*diff(y(x),x$4)-2*diff(y(x),x$3)-3*diff(y(x),x$2)+4*diff(y(x),x)+4*y(x)=exp(2*x)*(13+33*x+18*x^2),y(x), singsol=all)� �

y(x) = (x4 + x3 + 6c4x+ x2 + 6c2) e2x
6 + e−x(c3x+ c1)

3 Solution by Mathematica
Time used: 0.104 (sec). Leaf size: 58� �
DSolve[1*y''''[x]-2*y'''[x]-3*y''[x]+4*y'[x]+4*y[x]==Exp[2*x]*(13+33*x+18*x^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
54e

2x(9x4 + 9x3 + 9x2 + 18(−1 + 3c4)x+ 10 + 54c3
)
+ e−x(c2x+ c1)
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19.24 problem section 9.3, problem 24
Internal problem ID [1521]
Internal file name [OUTPUT/1522_Sunday_June_05_2022_02_20_32_AM_57783203/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 24.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_y ]]

y′′′′ − 3y′′′ + 4y′ = e2x
(
12x2 + 26x+ 15

)
This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − 3y′′′ + 4y′ = 0

The characteristic equation is

λ4 − 3λ3 + 4λ = 0

The roots of the above equation are

λ1 = 0
λ2 = −1
λ3 = 2
λ4 = 2
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Therefore the homogeneous solution is

yh(x) = c1e−x + c2 + c3e2x + x e2xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = 1

y3 = e2x

y4 = x e2x

Now the particular solution to the given ODE is found

y′′′′ − 3y′′′ + 4y′ = e2x
(
12x2 + 26x+ 15

)
The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

e2x
(
12x2 + 26x+ 15

)
Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e2x, x2e2x, e2x}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, x e2x, e−x, e2x}

Since e2x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e2x, x2e2x, e2xx3}]

Since x e2x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2e2x, e2xx3, e2xx4}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
2e2x + A2e2xx3 + A3e2xx4
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The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

36A2e2xx+ 72A3e2xx2 + 120A3e2xx+ 30A2e2x + 24A3e2x + 12A1e2x
= e2x

(
12x2 + 26x+ 15

)
Solving for the unknowns by comparing coefficients results in[

A1 =
1
2 , A2 =

1
6 , A3 =

1
6

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x2e2x
2 + e2xx3

6 + e2xx4

6

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2 + c3e2x + x e2xc4

)
+
(
x2e2x
2 + e2xx3

6 + e2xx4

6

)

Which simplifies to

y = (c4x+ c3) e2x + c1e−x + c2 +
x2e2x
2 + e2xx3

6 + e2xx4

6

Summary
The solution(s) found are the following

(1)y = (c4x+ c3) e2x + c1e−x + c2 +
x2e2x
2 + e2xx3

6 + e2xx4

6
Verification of solutions

y = (c4x+ c3) e2x + c1e−x + c2 +
x2e2x
2 + e2xx3

6 + e2xx4

6

Verified OK.

7462



Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(diff(_b(_a), _a), _a), _a) = 12*exp(2*_a)*_a^2+26*exp(2*_a)*_a+15*exp(2*_a)-4*_b(_a)+3*(

Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful

<- differential order: 4; linear nonhomogeneous with symmetry [0,1] successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 49� �
dsolve(1*diff(y(x),x$4)-3*diff(y(x),x$3)-0*diff(y(x),x$2)+4*diff(y(x),x)+0*y(x)=exp(2*x)*(15+26*x+12*x^2),y(x), singsol=all)� �

y(x) = (2x4 + 2x3 + 6x2 + (6c3 − 6)x+ 6c2 − 3c3 + 3) e2x
12 − e−xc1 + c4

3 Solution by Mathematica
Time used: 0.189 (sec). Leaf size: 58� �
DSolve[1*y''''[x]-3*y'''[x]-0*y''[x]+4*y'[x]+0*y[x]==Exp[2*x]*(15+26*x+12*x^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
12e

2x(2x4 + 2x3 + 6x2 + 6(−2 + c3)x+ 8 + 6c2 − 3c3
)
+ c1

(
−e−x

)
+ c4
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19.25 problem section 9.3, problem 25
Internal problem ID [1522]
Internal file name [OUTPUT/1523_Sunday_June_05_2022_02_20_34_AM_18447264/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 25.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ − 2y′′′ + 2y′ − y = (x+ 1) ex

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − 2y′′′ + 2y′ − y = 0

The characteristic equation is

λ4 − 2λ3 + 2λ− 1 = 0

The roots of the above equation are

λ1 = −1
λ2 = 1
λ3 = 1
λ4 = 1
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Therefore the homogeneous solution is

yh(x) = c1e−x + c2ex + x exc3 + x2exc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = ex

y3 = x ex

y4 = x2ex

Now the particular solution to the given ODE is found

y′′′′ − 2y′′′ + 2y′ − y = (x+ 1) ex

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

(x+ 1) ex

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x ex, ex}]

While the set of the basis functions for the homogeneous solution found earlier is

{x ex, x2ex, ex, e−x}

Since ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x ex, x2ex}]

Since x ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2ex, exx3}]

Since x2ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{exx3, exx4}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1exx3 + A2exx4
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The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

12A1ex + 48A2exx+ 24A2ex = (x+ 1) ex

Solving for the unknowns by comparing coefficients results in[
A1 =

1
24 , A2 =

1
48

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
exx3

24 + exx4

48

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2ex + x exc3 + x2exc4

)
+
(
exx3

24 + exx4

48

)

Which simplifies to

y = c1e−x + ex
(
c4x

2 + c3x+ c2
)
+ exx3

24 + exx4

48

Summary
The solution(s) found are the following

(1)y = c1e−x + ex
(
c4x

2 + c3x+ c2
)
+ exx3

24 + exx4

48
Verification of solutions

y = c1e−x + ex
(
c4x

2 + c3x+ c2
)
+ exx3

24 + exx4

48

Verified OK.
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 37� �
dsolve(1*diff(y(x),x$4)-2*diff(y(x),x$3)-0*diff(y(x),x$2)+2*diff(y(x),x)-1*y(x)=exp(x)*(1+x),y(x), singsol=all)� �

y(x) = e−xc2 +
ex(x4 + 48c4x2 + 2x3 + 48c3x+ 48c1)

48

3 Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 55� �
DSolve[1*y''''[x]-2*y'''[x]-0*y''[x]+2*y'[x]-1*y[x]==Exp[x]*(1+x),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
96e

x
(
2x4 + 4x3 + (−6 + 96c4)x2 + (6 + 96c3)x− 3 + 96c2

)
+ c1e

−x
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19.26 problem section 9.3, problem 26
Internal problem ID [1523]
Internal file name [OUTPUT/1524_Sunday_June_05_2022_02_20_36_AM_21649587/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 26.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

2y′′′′ − 5y′′′ + 3y′′ + y′ − y = ex(11 + 12x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

2y′′′′ − 5y′′′ + 3y′′ + y′ − y = 0

The characteristic equation is

2λ4 − 5λ3 + 3λ2 + λ− 1 = 0

The roots of the above equation are

λ1 = −1
2

λ2 = 1
λ3 = 1
λ4 = 1
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Therefore the homogeneous solution is

yh(x) = c1ex + c2x ex + x2exc3 + e−x
2 c4

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = x ex

y3 = x2ex

y4 = e−x
2

Now the particular solution to the given ODE is found

2y′′′′ − 5y′′′ + 3y′′ + y′ − y = ex(11 + 12x)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

ex(11 + 12x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x ex, ex}]

While the set of the basis functions for the homogeneous solution found earlier is{
x ex, x2ex, ex, e−x

2
}

Since ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x ex, x2ex}]

Since x ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2ex, exx3}]

Since x2ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{exx3, exx4}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1exx3 + A2exx4
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The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

72A2exx+ 48A2ex + 18A1ex = ex(11 + 12x)

Solving for the unknowns by comparing coefficients results in[
A1 =

1
6 , A2 =

1
6

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
exx3

6 + exx4

6

Therefore the general solution is

y = yh + yp

=
(
c1ex + c2x ex + x2exc3 + e−x

2 c4
)
+
(
exx3

6 + exx4

6

)

Which simplifies to

y = e−x
2 c4 + ex

(
c3x

2 + c2x+ c1
)
+ exx3

6 + exx4

6

Summary
The solution(s) found are the following

(1)y = e−x
2 c4 + ex

(
c3x

2 + c2x+ c1
)
+ exx3

6 + exx4

6
Verification of solutions

y = e−x
2 c4 + ex

(
c3x

2 + c2x+ c1
)
+ exx3

6 + exx4

6

Verified OK.

7470



Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
dsolve(2*diff(y(x),x$4)-5*diff(y(x),x$3)+3*diff(y(x),x$2)+1*diff(y(x),x)-1*y(x)=exp(x)*(11+12*x),y(x), singsol=all)� �

y(x) = c4e−
x
2 + ex(x4 + 6c3x2 + x3 + 6c2x+ 6c1)

6

3 Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 58� �
DSolve[2*y''''[x]-5*y'''[x]+3*y''[x]+1*y'[x]-1*y[x]==Exp[x]*(11+12*x),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex
(
x4

6 + x3

6 +
(
−1
3 + c4

)
x2 +

(
4
9 + c3

)
x− 8

27 + c2

)
+ c1e

−x/2
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19.27 problem section 9.3, problem 27
Internal problem ID [1524]
Internal file name [OUTPUT/1525_Sunday_June_05_2022_02_20_38_AM_56632814/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 27.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_y ]]

y′′′′ + 3y′′′ + 3y′′ + y′ = e−x
(
10x2 − 24x+ 5

)
This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ + 3y′′′ + 3y′′ + y′ = 0

The characteristic equation is

λ4 + 3λ3 + 3λ2 + λ = 0

The roots of the above equation are

λ1 = 0
λ2 = −1
λ3 = −1
λ4 = −1
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Therefore the homogeneous solution is

yh(x) = c1e−x + x e−xc2 + x2e−xc3 + c4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = x e−x

y3 = x2e−x

y4 = 1

Now the particular solution to the given ODE is found

y′′′′ + 3y′′′ + 3y′′ + y′ = e−x
(
10x2 − 24x+ 5

)
The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

e−x
(
10x2 − 24x+ 5

)
Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e−x, x2e−x, e−x}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, x e−x, x2e−x, e−x}

Since e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e−x, x2e−x, e−xx3}]

Since x e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2e−x, e−xx3, e−xx4}]

Since x2e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x5e−x, e−xx3, e−xx4}]
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Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
5e−x + A2e−xx3 + A3e−xx4

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

120A1x e−x − 60A1x
2e−x − 24A3e−xx+ 24A3e−x − 6A2e−x = e−x

(
10x2 − 24x+ 5

)
Solving for the unknowns by comparing coefficients results in[

A1 = −1
6 , A2 = −1

6 , A3 =
1
6

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −x5e−x

6 − e−xx3

6 + e−xx4

6

Therefore the general solution is

y = yh + yp

=
(
c1e−x + x e−xc2 + x2e−xc3 + c4

)
+
(
−x5e−x

6 − e−xx3

6 + e−xx4

6

)

Which simplifies to

y = e−x
(
c3x

2 + c2x+ c1
)
+ c4 −

x5e−x

6 − e−xx3

6 + e−xx4

6

Summary
The solution(s) found are the following

(1)y = e−x
(
c3x

2 + c2x+ c1
)
+ c4 −

x5e−x

6 − e−xx3

6 + e−xx4

6
Verification of solutions

y = e−x
(
c3x

2 + c2x+ c1
)
+ c4 −

x5e−x

6 − e−xx3

6 + e−xx4

6

Verified OK.
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(diff(_b(_a), _a), _a), _a) = 10*exp(-_a)*_a^2-24*_a*exp(-_a)+5*exp(-_a)-_b(_a)-3*(diff(_

Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful

<- differential order: 4; linear nonhomogeneous with symmetry [0,1] successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 55� �
dsolve(1*diff(y(x),x$4)+3*diff(y(x),x$3)+3*diff(y(x),x$2)+1*diff(y(x),x)-0*y(x)=exp(-x)*(5-24*x+10*x^2),y(x), singsol=all)� �
y(x)

= (−x5 + x4 − x3 + (−6c3 − 3)x2 + (−6c2 − 12c3 − 6)x− 6c1 − 6c2 − 12c3 − 6) e−x

6
+ c4

3 Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 65� �
DSolve[1*y''''[x]+3*y'''[x]+3*y''[x]+1*y'[x]-0*y[x]==Exp[-x]*(5-24*x+10*x^2),y[x],x,IncludeSingularSolutions -> True]� �
y(x)→ 1

6e
−x
(
−x5+x4−x3− 3(1+2c3)x2− 6(1+ c2+2c3)x− 6(1+ c1+ c2+2c3)

)
+ c4
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19.28 problem section 9.3, problem 28
Internal problem ID [1525]
Internal file name [OUTPUT/1526_Sunday_June_05_2022_02_20_40_AM_76968418/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 28.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ − 7y′′′ + 18y′′ − 20y′ + 8y = e2x
(
−5x2 − 8x+ 3

)
This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − 7y′′′ + 18y′′ − 20y′ + 8y = 0

The characteristic equation is

λ4 − 7λ3 + 18λ2 − 20λ+ 8 = 0

The roots of the above equation are

λ1 = 1
λ2 = 2
λ3 = 2
λ4 = 2
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Therefore the homogeneous solution is

yh(x) = c1ex + c2e2x + c3x e2x + x2e2xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = e2x

y3 = x e2x

y4 = x2e2x

Now the particular solution to the given ODE is found

y′′′′ − 7y′′′ + 18y′′ − 20y′ + 8y = e2x
(
−5x2 − 8x+ 3

)
The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

e2x
(
−5x2 − 8x+ 3

)
Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e2x, x2e2x, e2x}]

While the set of the basis functions for the homogeneous solution found earlier is

{x e2x, x2e2x, ex, e2x}

Since e2x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e2x, x2e2x, e2xx3}]

Since x e2x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2e2x, e2xx3, e2xx4}]

Since x2e2x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x5e2x, e2xx3, e2xx4}]
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Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
5e2x + A2e2xx3 + A3e2xx4

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

120A1x e2x + 60A1x
2e2x + 24A3e2xx+ 24A3e2x + 6A2e2x = e2x

(
−5x2 − 8x+ 3

)
Solving for the unknowns by comparing coefficients results in[

A1 = − 1
12 , A2 =

1
6 , A3 =

1
12

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −x5e2x
12 + e2xx3

6 + e2xx4

12

Therefore the general solution is

y = yh + yp

=
(
c1ex + c2e2x + c3x e2x + x2e2xc4

)
+
(
−x5e2x

12 + e2xx3

6 + e2xx4

12

)

Which simplifies to

y =
(
c4x

2 + c3x+ c2
)
e2x + c1ex −

x5e2x
12 + e2xx3

6 + e2xx4

12

Summary
The solution(s) found are the following

(1)y =
(
c4x

2 + c3x+ c2
)
e2x + c1ex −

x5e2x
12 + e2xx3

6 + e2xx4

12
Verification of solutions

y =
(
c4x

2 + c3x+ c2
)
e2x + c1ex −

x5e2x
12 + e2xx3

6 + e2xx4

12

Verified OK.
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 42� �
dsolve(1*diff(y(x),x$4)-7*diff(y(x),x$3)+18*diff(y(x),x$2)-20*diff(y(x),x)+8*y(x)=exp(2*x)*(3-8*x-5*x^2),y(x), singsol=all)� �

y(x) = −ex((x5 − x4 − 12c4x2 − 2x3 − 12c3x− 12c2) ex − 12c1)
12

3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 59� �
DSolve[1*y''''[x]-7*y'''[x]+18*y''[x]-20*y'[x]+8*y[x]==Exp[2*x]*(3-8*x-5*x^2),y[x],x,IncludeSingularSolutions -> True]� �
y(x) → 1

12e
2x(−x5 + x4 + 2x3 + 6(−1 + 2c4)x2 + 12(1 + c3)x+ 12(−1 + c2)

)
+ c1e

x
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19.29 problem section 9.3, problem 29
19.29.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7482

Internal problem ID [1526]
Internal file name [OUTPUT/1527_Sunday_June_05_2022_02_20_43_AM_72947374/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 29.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ − y′′ − 4y′ + 4y = e−x((16 + 10x) cos (x) + (30− 10x) sin (x))

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − y′′ − 4y′ + 4y = 0

The characteristic equation is

λ3 − λ2 − 4λ+ 4 = 0

The roots of the above equation are

λ1 = 1
λ2 = 2
λ3 = −2
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Therefore the homogeneous solution is

yh(x) = c1e−2x + c2ex + c3e2x

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−2x

y2 = ex

y3 = e2x

Now the particular solution to the given ODE is found

y′′′ − y′′ − 4y′ + 4y = e−x((16 + 10x) cos (x) + (30− 10x) sin (x))

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

e−x((16 + 10x) cos (x) + (30− 10x) sin (x))

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) e−x, sin (x) e−x, x cos (x) e−x, sin (x)x e−x}]

While the set of the basis functions for the homogeneous solution found earlier is

{ex, e−2x, e2x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) e−x + A2 sin (x) e−x + A3x cos (x) e−x + A4 sin (x)x e−x

The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

10A3x cos (x) e−x − 2A3 cos (x) e−x + 10A4 sin (x)x e−x − 8A4 cos (x) e−x

− 2A4 sin (x) e−x + 10A2 sin (x) e−x + 10A1 cos (x) e−x

+ 8A3 sin (x) e−x = e−x((16 + 10x) cos (x) + (30− 10x) sin (x))
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Solving for the unknowns by comparing coefficients results in

[A1 = 1, A2 = 2, A3 = 1, A4 = −1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = cos (x) e−x + 2 sin (x) e−x + x cos (x) e−x − sin (x)x e−x

Therefore the general solution is

y = yh + yp

=
(
c1e−2x + c2ex + c3e2x

)
+
(
cos (x) e−x + 2 sin (x) e−x + x cos (x) e−x − sin (x)x e−x

)
Summary
The solution(s) found are the following

(1)y = c1e−2x + c2ex + c3e2x + cos (x) e−x + 2 sin (x) e−x + x cos (x) e−x − sin (x)x e−x

Verification of solutions

y = c1e−2x + c2ex + c3e2x + cos (x) e−x + 2 sin (x) e−x + x cos (x) e−x − sin (x)x e−x

Verified OK.

19.29.1 Maple step by step solution

Let’s solve
y′′′ − y′′ − 4y′ + 4y = e−x((16 + 10x) cos (x) + (30− 10x) sin (x))

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative
y′′′ = −4y + 10x cos (x) e−x − 10 sin (x)x e−x + 16 cos (x) e−x + 30 sin (x) e−x + y′′ + 4y′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ − y′′ − 4y′ + 4y = 2 e−x(−5 sin (x)x+ 5x cos (x) + 15 sin (x) + 8 cos (x))

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y
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◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = 10x cos (x) e−x − 10 sin (x)x e−x + 16 cos (x) e−x + 30 sin (x) e−x + y3(x) + 4y2(x)− 4y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 10x cos (x) e−x − 10 sin (x)x e−x + 16 cos (x) e−x + 30 sin (x) e−x + y3(x) + 4y2(x)− 4y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
−4 4 1

 · →y (x) +


0
0

−10 sin (x)x e−x + 10x cos (x) e−x + 30 sin (x) e−x + 16 cos (x) e−x


• Define the forcing function

→
f (x) =


0
0

−10 sin (x)x e−x + 10x cos (x) e−x + 30 sin (x) e−x + 16 cos (x) e−x


• Define the coefficient matrix

A =


0 1 0
0 0 1
−4 4 1


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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−2,


1
4

−1
2

1


 ,

1,


1
1
1


 ,

2,


1
4
1
2

1





• Consider eigenpair−2,


1
4

−1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−2x ·


1
4

−1
2

1


• Consider eigenpair1,


1
1
1




• Solution to homogeneous system from eigenpair

→
y 2 = ex ·


1
1
1


• Consider eigenpair2,


1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 3 = e2x ·


1
4
1
2

1
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• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


e−2x

4 ex e2x
4

− e−2x

2 ex e2x
2

e−2x ex e2x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e−2x

4 ex e2x
4

− e−2x

2 ex e2x
2

e−2x ex e2x

 · 1

1
4 1 1

4

−1
2 1 1

2

1 1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


−
(
3 e4x−8 e3x−1

)
e−2x

6 − e−2x

4 + e2x
4

(
3 e4x−4 e3x+1

)
e−2x

12

−
(
3 e4x−4 e3x+1

)
e−2x

3
e−2x

2 + e2x
2

(
3 e4x−2 e3x−1

)
e−2x

6

−2
(
3 e4x−2 e3x−1

)
e−2x

3 −e−2x + e2x −
(
−3 e4x+e3x−1

)
e−2x

3


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)
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◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


(−4 e3x + 2 e4x + 1 + ((x+ 1) cos (x) + (2− x) sin (x)) ex) e−2x

−2(2 e3x − 2 e4x + 1 + ((x− 1) cos (x) + 2 sin (x)) ex) e−2x

2(−2 e3x + 4 e4x + 2 + ((x− 4) cos (x) + (x+ 1) sin (x)) ex) e−2x


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +


(−4 e3x + 2 e4x + 1 + ((x+ 1) cos (x) + (2− x) sin (x)) ex) e−2x

−2(2 e3x − 2 e4x + 1 + ((x− 1) cos (x) + 2 sin (x)) ex) e−2x

2(−2 e3x + 4 e4x + 2 + ((x− 4) cos (x) + (x+ 1) sin (x)) ex) e−2x


• First component of the vector is the solution to the ODE

y =
(
(c2 − 4) e3x +

(
c3
4 + 2

)
e4x + ((x+ 1) cos (x)− (−2 + x) sin (x)) ex + c1

4 + 1
)
e−2x

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 40� �
dsolve(0*diff(y(x),x$4)+1*diff(y(x),x$3)-1*diff(y(x),x$2)-4*diff(y(x),x)+4*y(x)=exp(-x)*((16+10*x)*cos(x)+(30-10*x)*sin(x)),y(x), singsol=all)� �

y(x) =
(
c1e3x + c3e4x + ((x+ 1) cos (x)− sin (x) (−2 + x)) ex + c2

)
e−2x

3 Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 49� �
DSolve[0*y''''[x]+1*y'''[x]-1*y''[x]-4*y'[x]+4*y[x]==Exp[-x]*((16+10*x)*Cos[x]+(30-10*x)*Sin[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(−ex(x− 2) sin(x) + ex(x+ 1) cos(x) + c2e
3x + c3e

4x + c1
)
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19.30 problem section 9.3, problem 30
19.30.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7490

Internal problem ID [1527]
Internal file name [OUTPUT/1528_Sunday_June_05_2022_02_20_45_AM_76185064/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 30.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ + y′′ − 4y′ − 4y = e−x((1− 22x) cos (2x)− (1 + 6x) sin (2x))

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ + y′′ − 4y′ − 4y = 0

The characteristic equation is

λ3 + λ2 − 4λ− 4 = 0

The roots of the above equation are

λ1 = 2
λ2 = −2
λ3 = −1
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Therefore the homogeneous solution is

yh(x) = c1e−x + c2e−2x + c3e2x

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = e−2x

y3 = e2x

Now the particular solution to the given ODE is found

y′′′ + y′′ − 4y′ − 4y = e−x((1− 22x) cos (2x)− (1 + 6x) sin (2x))

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

e−x((1− 22x) cos (2x)− (1 + 6x) sin (2x))

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (2x) e−x, sin (2x) e−x, cos (2x) e−xx, sin (2x) e−xx}]

While the set of the basis functions for the homogeneous solution found earlier is

{e−2x, e−x, e2x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (2x) e−x + A2 sin (2x) e−x + A3 cos (2x) e−xx+ A4 sin (2x) e−xx

The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

8A4 sin (2x) e−xx+ 8A3 cos (2x) e−xx− 15A4 sin (2x) e−x − 14A4 cos (2x) e−xx

− 15A3 cos (2x) e−x + 14A3 sin (2x) e−xx+ 8A3 sin (2x) e−x

− 8A4 cos (2x) e−x + 14A1 sin (2x) e−x − 14A2 cos (2x) e−x + 8A1 cos (2x) e−x

+ 8A2 sin (2x) e−x = e−x((1− 22x) cos (2x)− (1 + 6x) sin (2x))
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Solving for the unknowns by comparing coefficients results in

[A1 = 1, A2 = 1, A3 = −1, A4 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = cos (2x) e−x + sin (2x) e−x − cos (2x) e−xx+ sin (2x) e−xx

Therefore the general solution is

y = yh + yp

=
(
c1e−x+ c2e−2x+ c3e2x

)
+
(
cos (2x) e−x+sin (2x) e−x− cos (2x) e−xx+sin (2x) e−xx

)
Which simplifies to

y =
(
e4xc3 + c1ex + c2

)
e−2x + cos (2x) e−x + sin (2x) e−x − cos (2x) e−xx+ sin (2x) e−xx

Summary
The solution(s) found are the following

(1)y =
(
e4xc3 + c1ex + c2

)
e−2x + cos (2x) e−x

+ sin (2x) e−x − cos (2x) e−xx+ sin (2x) e−xx

Verification of solutions

y =
(
e4xc3 + c1ex + c2

)
e−2x + cos (2x) e−x + sin (2x) e−x − cos (2x) e−xx+ sin (2x) e−xx

Verified OK.

19.30.1 Maple step by step solution

Let’s solve
y′′′ + y′′ − 4y′ − 4y = e−x((1− 22x) cos (2x)− (1 + 6x) sin (2x))

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative
y′′′ = 4y − 22 cos (2x) e−xx− 6 sin (2x) e−xx+ cos (2x) e−x − sin (2x) e−x − y′′ + 4y′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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y′′′ + y′′ − 4y′ − 4y = −e−x(6x sin (2x) + 22x cos (2x) + sin (2x)− cos (2x))
� Convert linear ODE into a system of first order ODEs

◦ Define new variable y1(x)
y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = −22 cos (2x) e−xx− 6 sin (2x) e−xx+ cos (2x) e−x − sin (2x) e−x − y3(x) + 4y2(x) + 4y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = −22 cos (2x) e−xx− 6 sin (2x) e−xx+ cos (2x) e−x − sin (2x) e−x − y3(x) + 4y2(x) + 4y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
4 4 −1

 · →y (x) +


0
0

−6 sin (2x) e−xx− 22 cos (2x) e−xx− sin (2x) e−x + cos (2x) e−x


• Define the forcing function

→
f (x) =


0
0

−6 sin (2x) e−xx− 22 cos (2x) e−xx− sin (2x) e−x + cos (2x) e−x


• Define the coefficient matrix

A =


0 1 0
0 0 1
4 4 −1


• Rewrite the system as
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→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−2,


1
4

−1
2

1


 ,

−1,


1
−1
1


 ,

2,


1
4
1
2

1





• Consider eigenpair−2,


1
4

−1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−2x ·


1
4

−1
2

1


• Consider eigenpair−1,


1
−1
1




• Solution to homogeneous system from eigenpair

→
y 2 = e−x ·


1
−1
1


• Consider eigenpair2,


1
4
1
2

1




• Solution to homogeneous system from eigenpair
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→
y 3 = e2x ·


1
4
1
2

1


• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


e−2x

4 e−x e2x
4

− e−2x

2 −e−x e2x
2

e−2x e−x e2x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e−2x

4 e−x e2x
4

− e−2x

2 −e−x e2x
2

e−2x e−x e2x

 · 1

1
4 1 1

4

−1
2 −1 1

2

1 1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


(
e4x+8 ex−3

)
e−2x

6 − e−2x

4 + e2x
4

(
e4x−4 ex+3

)
e−2x

12(
e4x−4 ex+3

)
e−2x

3
e−2x

2 + e2x
2

(
e4x+2 ex−3

)
e−2x

6
2
(
e4x+2 ex−3

)
e−2x

3 −e−2x + e2x −
(
−e4x+ex−3

)
e−2x

3


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs
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Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


−
(
(x− 1) ex cos (2x)− (x+ 1) ex sin (2x) + 5 ex

3 + e4x
12 − 3

4

)
e−2x

e−2x
(
ex(−2 + x) sin (2x) + 3 cos (2x) exx+ 5 ex

3 − e4x
6 − 3

2

)
−
(
(x+ 1) ex cos (2x) + ex(7x− 3) sin (2x) + 5 ex

3 + e4x
3 − 3

)
e−2x


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +


−
(
(x− 1) ex cos (2x)− (x+ 1) ex sin (2x) + 5 ex

3 + e4x
12 − 3

4

)
e−2x

e−2x
(
ex(−2 + x) sin (2x) + 3 cos (2x) exx+ 5 ex

3 − e4x
6 − 3

2

)
−
(
(x+ 1) ex cos (2x) + ex(7x− 3) sin (2x) + 5 ex

3 + e4x
3 − 3

)
e−2x


• First component of the vector is the solution to the ODE

y = −
(
(x− 1) ex cos (2x) +

(
− c3

4 + 1
12

)
e4x − (x+ 1) ex sin (2x) +

(
−c2 + 5

3

)
ex − c1

4 − 3
4

)
e−2x
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 50� �
dsolve(1*diff(y(x),x$3)+1*diff(y(x),x$2)-4*diff(y(x),x)-4*y(x)=exp(-x)*((1-22*x)*cos(2*x)-(1+6*x)*sin(2*x)),y(x), singsol=all)� �
y(x) = −

(
ex(x− 1) cos (2x)− (x+ 1) ex sin (2x)− c3e4x +

(
−c2 +

5
3

)
ex − c1

)
e−2x

3 Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 51� �
DSolve[1*y'''[x]+1*y''[x]-4*y'[x]-4*y[x]==Exp[-x]*((1-22*x)*Cos[2*x]-(1+6*x)*Sin[2*x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(ex(x+ 1) sin(2x)− ex(x− 1) cos(2x) + c2e
x + c3e

4x + c1
)
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19.31 problem section 9.3, problem 31
19.31.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7498

Internal problem ID [1528]
Internal file name [OUTPUT/1529_Sunday_June_05_2022_02_20_48_AM_48538573/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 31.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ − y′′ + 2y′ − 2y = e2x
((
−x2 + 5x+ 27

)
cos (x) +

(
9x2 + 13x+ 2

)
sin (x)

)
This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − y′′ + 2y′ − 2y = 0

The characteristic equation is

λ3 − λ2 + 2λ− 2 = 0

The roots of the above equation are

λ1 = 1
λ2 = i

√
2

λ3 = −i
√
2
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Therefore the homogeneous solution is

yh(x) = c1ex + e−i
√
2xc2 + ei

√
2xc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = e−i
√
2x

y3 = ei
√
2x

Now the particular solution to the given ODE is found

y′′′ − y′′ + 2y′ − 2y = e2x
((
−x2 + 5x+ 27

)
cos (x) +

(
9x2 + 13x+ 2

)
sin (x)

)
The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

e2x
((
−x2 + 5x+ 27

)
cos (x) +

(
9x2 + 13x+ 2

)
sin (x)

)
Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e2x cos (x) , e2x sin (x) , e2x cos (x)x, e2x cos (x)x2, e2x sin (x)x, e2x sin (x)x2}]

While the set of the basis functions for the homogeneous solution found earlier is{
ex, ei

√
2x, e−i

√
2x
}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1e2x cos (x) + A2e2x sin (x) + A3e2x cos (x)x
+ A4e2x cos (x)x2 + A5e2x sin (x)x+ A6e2x sin (x)x2

The unknowns {A1, A2, A3, A4, A5, A6} are found by substituting the above trial solution
yp into the ODE and comparing coefficients. Substituting the trial solution into the
ODE and simplifying gives

A3e2x cos (x)x− 9A3e2x sin (x)x− 9A4e2x sin (x)x2 + 9A5e2x cos (x)x+ 7A5e2x sin (x)
+10A5e2x cos (x)+9A6e2x cos (x)x2−10A3e2x sin (x)+10A6e2x sin (x)+7A3e2x cos (x)
+ 14A4e2x cos (x)x+ 14A6e2x sin (x)x+ 20A6e2x cos (x)x+ 10A4e2x cos (x)
+ A4e2x cos (x)x2 + A5e2x sin (x)x+ A6e2x sin (x)x2 − 20A4e2x sin (x)x
+ 6A6e2x cos (x) + A2e2x sin (x) + A1e2x cos (x)− 6A4e2x sin (x) + 9A2e2x cos (x)
− 9A1e2x sin (x) = e2x

((
−x2 + 5x+ 27

)
cos (x) +

(
9x2 + 13x+ 2

)
sin (x)

)
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Solving for the unknowns by comparing coefficients results in

[A1 = 1, A2 = 1, A3 = 1, A4 = −1, A5 = 2, A6 = 0]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = e2x cos (x) + e2x sin (x) + e2x cos (x)x− e2x cos (x)x2 + 2 e2x sin (x)x

Therefore the general solution is

y = yh + yp

=
(
c1ex + e−i

√
2xc2 + ei

√
2xc3

)
+
(
e2x cos (x) + e2x sin (x) + e2x cos (x)x− e2x cos (x)x2 + 2 e2x sin (x)x

)
Summary
The solution(s) found are the following

(1)y = c1ex + e−i
√
2xc2 + ei

√
2xc3 + e2x cos (x) + e2x sin (x)

+ e2x cos (x)x− e2x cos (x)x2 + 2 e2x sin (x)x
Verification of solutions

y = c1ex + e−i
√
2xc2 + ei

√
2xc3 + e2x cos (x) + e2x sin (x)

+ e2x cos (x)x− e2x cos (x)x2 + 2 e2x sin (x)x

Verified OK.

19.31.1 Maple step by step solution

Let’s solve
y′′′ − y′′ + 2y′ − 2y = e2x((−x2 + 5x+ 27) cos (x) + (9x2 + 13x+ 2) sin (x))

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative
y′′′ = 2y − e2x cos (x)x2 + 9 e2x sin (x)x2 + 5 e2x cos (x)x+ 13 e2x sin (x)x+ 27 e2x cos (x) + 2 e2x sin (x) + y′′ − 2y′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ − y′′ + 2y′ − 2y = −e2x(−9 sin (x)x2 + x2 cos (x)− 13 sin (x)x− 5x cos (x)− 2 sin (x)− 27 cos (x))
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� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = −e2x cos (x)x2 + 9 e2x sin (x)x2 + 5 e2x cos (x)x+ 13 e2x sin (x)x+ 27 e2x cos (x) + 2 e2x sin (x) + y3(x)− 2y2(x) + 2y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = −e2x cos (x)x2 + 9 e2x sin (x)x2 + 5 e2x cos (x)x+ 13 e2x sin (x)x+ 27 e2x cos (x) + 2 e2x sin (x) + y3(x)− 2y2(x) + 2y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
2 −2 1

 · →y (x) +


0
0

9 e2x sin (x)x2 − e2x cos (x)x2 + 13 e2x sin (x)x+ 5 e2x cos (x)x+ 2 e2x sin (x) + 27 e2x cos (x)


• Define the forcing function

→
f (x) =


0
0

9 e2x sin (x)x2 − e2x cos (x)x2 + 13 e2x sin (x)x+ 5 e2x cos (x)x+ 2 e2x sin (x) + 27 e2x cos (x)


• Define the coefficient matrix

A =


0 1 0
0 0 1
2 −2 1


• Rewrite the system as
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→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

1,


1
1
1


 ,

−I
√
2,


−1

2
I
2

√
2

1


 ,

I√2,


−1

2

− I
2

√
2

1





• Consider eigenpair1,


1
1
1




• Solution to homogeneous system from eigenpair

→
y 1 = ex ·


1
1
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−I

√
2,


−1

2
I
2

√
2

1




• Solution from eigenpair

e−I
√
2x ·


−1

2
I
2

√
2

1


• Use Euler identity to write solution in terms of sin and cos

(
cos
(√

2x
)
− I sin

(√
2x
))

·


−1

2
I
2

√
2

1


• Simplify expression
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−

cos
(√

2x
)

2 +
I sin

(√
2x
)

2
I
2

(
cos
(√

2x
)
− I sin

(√
2x
))√

2

cos
(√

2x
)
− I sin

(√
2x
)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 2(x) =


−

cos
(√

2x
)

2
√
2 sin

(√
2x
)

2

cos
(√

2x
)

 ,
→
y 3(x) =


sin
(√

2x
)

2
√
2 cos

(√
2x
)

2

− sin
(√

2x
)




• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


ex −

cos
(√

2x
)

2
sin
(√

2x
)

2

ex
√
2 sin

(√
2x
)

2

√
2 cos

(√
2x
)

2

ex cos
(√

2x
)

− sin
(√

2x
)


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


ex −

cos
(√

2x
)

2
sin
(√

2x
)

2

ex
√
2 sin

(√
2x
)

2

√
2 cos

(√
2x
)

2

ex cos
(√

2x
)

− sin
(√

2x
)

 · 1
1 −1

2 0

1 0
√
2
2

1 1 0


◦ Evaluate and simplify to get the fundamental matrix
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Φ(x) =


2 ex
3 +

cos
(√

2x
)

3 −
√
2 sin

(√
2x
)

3

√
2 sin

(√
2x
)

2
ex
3 −

cos
(√

2x
)

3 −
√
2 sin

(√
2x
)

6

2 ex
3 −

√
2 sin

(√
2x
)

3 −
2 cos

(√
2x
)

3 cos
(√

2x
) ex

3 +
√
2 sin

(√
2x
)

3 −
cos
(√

2x
)

3

2 ex
3 −

2 cos
(√

2x
)

3 +
2
√
2 sin

(√
2x
)

3 −
√
2 sin

(√
2x
) ex

3 +
2 cos

(√
2x
)

3 +
√
2 sin

(√
2x
)

3


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


4 cos

(√
2x
)
+

√
2 sin

(√
2x
)

2 + ((−x2 + x+ 1) cos (x) + sin (x) (1 + 2x)) e2x − 5 ex

cos
(√

2x
)
− 4

√
2 sin

(√
2x
)
+ ((−2x2 + 2x+ 4) cos (x) + (x2 + 3x+ 3) sin (x)) e2x − 5 ex

−8 cos
(√

2x
)
−

√
2 sin

(√
2x
)
+ ((−3x2 + 3x+ 13) cos (x) + (4x2 + 6x+ 5) sin (x)) e2x − 5 ex


• Plug particular solution back into general solution
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→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +


4 cos

(√
2x
)
+

√
2 sin

(√
2x
)

2 + ((−x2 + x+ 1) cos (x) + sin (x) (1 + 2x)) e2x − 5 ex

cos
(√

2x
)
− 4

√
2 sin

(√
2x
)
+ ((−2x2 + 2x+ 4) cos (x) + (x2 + 3x+ 3) sin (x)) e2x − 5 ex

−8 cos
(√

2x
)
−

√
2 sin

(√
2x
)
+ ((−3x2 + 3x+ 13) cos (x) + (4x2 + 6x+ 5) sin (x)) e2x − 5 ex


• First component of the vector is the solution to the ODE

y =
(−c2+8) cos

(√
2x
)

2 +
(
c3+

√
2
)
sin
(√

2x
)

2 + ((−x2 + x+ 1) cos (x) + sin (x) (1 + 2x)) e2x + ex(−5 + c1)

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.266 (sec). Leaf size: 179� �
dsolve(1*diff(y(x),x$3)-1*diff(y(x),x$2)+2*diff(y(x),x)-2*y(x)=exp(2*x)*((27+5*x-x^2)*cos(1*x)+(2+13*x+9*x^2)*sin(1*x)),y(x), singsol=all)� �
y(x)

=
√
2
(∫

e2x
(√

2 cos
(√

2x
)
− sin

(√
2x
))

((−9x2 − 13x− 2) sin (x) + (x2 − 5x− 27) cos (x)) dx
)
cos
(√

2x
)

6

−
√
2
(∫

−e2x
(√

2 sin
(√

2x
)
+ cos

(√
2x
))

((−9x2 − 13x− 2) sin (x) + (x2 − 5x− 27) cos (x)) dx
)
sin
(√

2x
)

6
+ c2 cos

(√
2x
)
+ c3 sin

(√
2x
)

+
(
5(−x2 + x+ 3) cos (x) + 4

(
x2 + 5

2x+ 7
4

)
sin (x)

)
e2x

3 + exc1
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3 Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 60� �
DSolve[1*y'''[x]-1*y''[x]+2*y'[x]-2*y[x]==Exp[2*x]*((27+5*x-x^2)*Cos[1*x]+(2+13*x+9*x^2)*Sin[1*x]),y[x],x,IncludeSingularSolutions -> True]� �
y(x)→ e2x

((
−x2+x+1

)
cos(x)+(2x+1) sin(x)

)
+ c3e

x+ c1 cos
(√

2x
)
+ c2 sin

(√
2x
)
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19.32 problem section 9.3, problem 32
19.32.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7507

Internal problem ID [1529]
Internal file name [OUTPUT/1530_Sunday_June_05_2022_02_20_50_AM_91271860/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 32.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ − 2y′′ + y′ − 2y = −ex
((
4x2 + 5x+ 9

)
cos (2x)−

(
−3x2 − 5x+ 6

)
sin (2x)

)
This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − 2y′′ + y′ − 2y = 0

The characteristic equation is

λ3 − 2λ2 + λ− 2 = 0

The roots of the above equation are

λ1 = 2
λ2 = i

λ3 = −i
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Therefore the homogeneous solution is

yh(x) = c1e2x + c2e−ix + eixc3
The fundamental set of solutions for the homogeneous solution are the following

y1 = e2x

y2 = e−ix

y3 = eix

Now the particular solution to the given ODE is found

y′′′ − 2y′′ + y′ − 2y = −ex
((
4x2 + 5x+ 9

)
cos (2x)−

(
−3x2 − 5x+ 6

)
sin (2x)

)
The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

−ex
((
4x2 + 5x+ 9

)
cos (2x)−

(
−3x2 − 5x+ 6

)
sin (2x)

)
Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{ex cos (2x) , ex sin (2x) , cos (2x) exx, cos (2x) exx2, sin (2x) exx, sin (2x) exx2}]

While the set of the basis functions for the homogeneous solution found earlier is

{eix, e2x, e−ix}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1ex cos (2x) + A2ex sin (2x) + A3 cos (2x) exx
+ A4 cos (2x) exx2 + A5 sin (2x) exx+ A6 sin (2x) exx2

The unknowns {A1, A2, A3, A4, A5, A6} are found by substituting the above trial solution
yp into the ODE and comparing coefficients. Substituting the trial solution into the
ODE and simplifying gives

−8A6 cos (2x) exx2 − 4A3 sin (2x) ex − 6A3 cos (2x) exx+ 2A6 sin (2x) ex

+ 2A4 cos (2x) ex + 8A4 sin (2x) exx2 − 12A5 sin (2x) ex − 8A5 cos (2x) exx
− 12A3 cos (2x) ex + 8A3 sin (2x) exx− 6A4 cos (2x) exx2 − 6A5 sin (2x) exx
− 6A6 sin (2x) exx2 − 24A6 sin (2x) exx− 8A4 sin (2x) exx+ 4A5 cos (2x) ex
+ 8A6 cos (2x) exx− 24A4 cos (2x) exx− 6A1ex cos (2x)− 12A4 sin (2x) ex
+ 8A1ex sin (2x) + 12A6 cos (2x) ex − 8A2ex cos (2x)− 6A2ex sin (2x) =

−ex
((
4x2 + 5x+ 9

)
cos (2x)−

(
−3x2 − 5x+ 6

)
sin (2x)

)
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Solving for the unknowns by comparing coefficients results in[
A1 =

61
50 , A2 = −27

50 , A3 =
11
10 , A4 = 0, A5 =

3
10 , A6 =

1
2

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
61 ex cos (2x)

50 − 27 ex sin (2x)
50 + 11 cos (2x) exx

10 + 3 sin (2x) exx
10 + sin (2x) exx2

2

Therefore the general solution is

y = yh + yp

=
(
c1e2x + c2e−ix + eixc3

)
+
(
61 ex cos (2x)

50 − 27 ex sin (2x)
50 + 11 cos (2x) exx

10 + 3 sin (2x) exx
10 + sin (2x) exx2

2

)

Summary
The solution(s) found are the following

(1)
y = c1e2x + c2e−ix + eixc3 +

61 ex cos (2x)
50 − 27 ex sin (2x)

50
+ 11 cos (2x) exx

10 + 3 sin (2x) exx
10 + sin (2x) exx2

2
Verification of solutions

y = c1e2x + c2e−ix + eixc3 +
61 ex cos (2x)

50 − 27 ex sin (2x)
50

+ 11 cos (2x) exx
10 + 3 sin (2x) exx

10 + sin (2x) exx2

2

Verified OK.

19.32.1 Maple step by step solution

Let’s solve
y′′′ − 2y′′ + y′ − 2y = −ex((4x2 + 5x+ 9) cos (2x)− (−3x2 − 5x+ 6) sin (2x))

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative
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y′′′ = 2y − 4 cos (2x) exx2 − 3 sin (2x) exx2 − 5 cos (2x) exx− 5 sin (2x) exx− 9 ex cos (2x) + 6 ex sin (2x) + 2y′′ − y′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ − 2y′′ + y′ − 2y = −ex(3 sin (2x)x2 + 4x2 cos (2x) + 5x sin (2x) + 5x cos (2x)− 6 sin (2x) + 9 cos (2x))

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = −4 cos (2x) exx2 − 3 sin (2x) exx2 − 5 cos (2x) exx− 5 sin (2x) exx− 9 ex cos (2x) + 6 ex sin (2x) + 2y3(x)− y2(x) + 2y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = −4 cos (2x) exx2 − 3 sin (2x) exx2 − 5 cos (2x) exx− 5 sin (2x) exx− 9 ex cos (2x) + 6 ex sin (2x) + 2y3(x)− y2(x) + 2y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
2 −1 2

 · →y (x) +


0
0

−3 sin (2x) exx2 − 4 cos (2x) exx2 − 5 sin (2x) exx− 5 cos (2x) exx+ 6 ex sin (2x)− 9 ex cos (2x)


• Define the forcing function

→
f (x) =


0
0

−3 sin (2x) exx2 − 4 cos (2x) exx2 − 5 sin (2x) exx− 5 cos (2x) exx+ 6 ex sin (2x)− 9 ex cos (2x)


• Define the coefficient matrix
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A =


0 1 0
0 0 1
2 −1 2


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

2,


1
4
1
2

1


 ,

−I,


−1
I
1


 ,

I,


−1
−I
1





• Consider eigenpair2,


1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e2x ·


1
4
1
2

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−I,


−1
I
1




• Solution from eigenpair

e−Ix ·


−1
I
1


• Use Euler identity to write solution in terms of sin and cos
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(cos (x)− I sin (x)) ·


−1
I
1


• Simplify expression

− cos (x) + I sin (x)
I(cos (x)− I sin (x))
cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system→

y 2(x) =


− cos (x)
sin (x)
cos (x)

 ,
→
y 3(x) =


sin (x)
cos (x)
− sin (x)




• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


e2x
4 − cos (x) sin (x)
e2x
2 sin (x) cos (x)

e2x cos (x) − sin (x)


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e2x
4 − cos (x) sin (x)
e2x
2 sin (x) cos (x)

e2x cos (x) − sin (x)

 · 1

1
4 −1 0
1
2 0 1

1 1 0


◦ Evaluate and simplify to get the fundamental matrix
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Φ(x) =


e2x
5 + 4 cos(x)

5 − 2 sin(x)
5 sin (x) e2x

5 − cos(x)
5 − 2 sin(x)

5
2 e2x
5 − 4 sin(x)

5 − 2 cos(x)
5 cos (x) 2 e2x

5 + sin(x)
5 − 2 cos(x)

5
4 e2x
5 − 4 cos(x)

5 + 2 sin(x)
5 − sin (x) 4 e2x

5 + cos(x)
5 + 2 sin(x)

5


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


6 e2x
25 +

(
(110x+122) cos(x)2+

(
50x2+30x−54

)
sin(x) cos(x)−55x−61

)
ex

50 − 73 cos(x)
50 − 43 sin(x)

25

12 e2x
25 +

((
100x2+170x+124

)
cos(x)2+

(
50x2−90x−268

)
sin(x) cos(x)−50x2−85x−62

)
ex

50 − 43 cos(x)
25 + 73 sin(x)

50

24 e2x
25 +

((
200x2+190x−242

)
cos(x)2+

(
−150x2−330x−606

)
sin(x) cos(x)−100x2−95x+121

)
ex

50 + 73 cos(x)
50 + 43 sin(x)

25


• Plug particular solution back into general solution
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→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +


6 e2x
25 +

(
(110x+122) cos(x)2+

(
50x2+30x−54

)
sin(x) cos(x)−55x−61

)
ex

50 − 73 cos(x)
50 − 43 sin(x)

25

12 e2x
25 +

((
100x2+170x+124

)
cos(x)2+

(
50x2−90x−268

)
sin(x) cos(x)−50x2−85x−62

)
ex

50 − 43 cos(x)
25 + 73 sin(x)

50

24 e2x
25 +

((
200x2+190x−242

)
cos(x)2+

(
−150x2−330x−606

)
sin(x) cos(x)−100x2−95x+121

)
ex

50 + 73 cos(x)
50 + 43 sin(x)

25


• First component of the vector is the solution to the ODE

y = (25c1+24)e2x
100 + (55x+61)ex cos(x)2

25 +
(
−73+50

(
x2+ 3

5x−
27
25
)
sin(x)ex−50c2

)
cos(x)

50 + (−55x−61)ex
50 + sin(x)(25c3−43)

25

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 48� �
dsolve(1*diff(y(x),x$3)-2*diff(y(x),x$2)+1*diff(y(x),x)-2*y(x)=-exp(x)*((9+5*x+4*x^2)*cos(2*x)-(6-5*x-3*x^2)*sin(2*x)),y(x), singsol=all)� �
y(x) =

ex
(
x2 + 3

5x− 27
25

)
sin (2x)

2 + (55x+ 61) ex cos (2x)
50 + cos (x) c1+sin (x) c2+ c3e2x

3 Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 65� �
DSolve[1*y'''[x]-2*y''[x]+1*y'[x]-2*y[x]==Exp[2*x]*((9+5*x+4*x^2)*Cos[2*x]-(6-5*x-3*x^2)*Sin[2*x]),y[x],x,IncludeSingularSolutions -> True]� �
y(x) → −e2x((6760x2 − 17680x− 29907) sin(2x) + 2(5915x2 + 7345x+ 3928) cos(2x))

43940
+ c3e

2x + c1 cos(x) + c2 sin(x)
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19.33 problem section 9.3, problem 33
19.33.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7517

Internal problem ID [1530]
Internal file name [OUTPUT/1531_Sunday_June_05_2022_02_20_53_AM_84926883/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 33.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ + 3y′′ + 4y′ + 12y = 8 cos (2x)− 16 sin (2x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ + 3y′′ + 4y′ + 12y = 0

The characteristic equation is

λ3 + 3λ2 + 4λ+ 12 = 0

The roots of the above equation are

λ1 = −3
λ2 = 2i
λ3 = −2i
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Therefore the homogeneous solution is

yh(x) = c1e−3x + e2ixc2 + e−2ixc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−3x

y2 = e2ix

y3 = e−2ix

Now the particular solution to the given ODE is found

y′′′ + 3y′′ + 4y′ + 12y = 8 cos (2x)− 16 sin (2x)

Let the particular solution be

yp = U1y1 + U2y2 + U3y3

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3

y′′1 y′′2 y′′3

∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


e−3x e2ix e−2ix

−3 e−3x 2ie2ix −2ie−2ix

9 e−3x −4 e2ix −4 e−2ix


|W | = −52ie−3xe2ixe−2ix

7514



The determinant simplifies to

|W | = −52ie−3x

Now we determine Wi for each Ui.

W1(x) = det

 e2ix e−2ix

2ie2ix −2ie−2ix


= −4i

W2(x) = det

 e−3x e−2ix

−3 e−3x −2ie−2ix


= (3− 2i) e(−3−2i)x

W3(x) = det

 e−3x e2ix

−3 e−3x 2ie2ix


= (3 + 2i) e(−3+2i)x

Now we are ready to evaluate each Ui(x).

U1 = (−1)3−1
∫

F (x)W1(x)
aW (x) dx

= (−1)2
∫ (8 cos (2x)− 16 sin (2x)) (−4i)

(1) (−52ie−3x) dx

=
∫

−4i(8 cos (2x)− 16 sin (2x))
−52ie−3x dx

=
∫ (8(cos (2x)− 2 sin (2x)) e3x

13

)
dx

= 16(3 cos (x) + 2 sin (x)) e3x cos (x)
169 − 24 e3x

169 − 16 e3x(3 sin (2x)− 2 cos (2x))
169

= 16(3 cos (x) + 2 sin (x)) e3x cos (x)
169 − 24 e3x

169 − 16 e3x(3 sin (2x)− 2 cos (2x))
169
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U2 = (−1)3−2
∫

F (x)W2(x)
aW (x) dx

= (−1)1
∫ (8 cos (2x)− 16 sin (2x))

(
(3− 2i) e(−3−2i)x)

(1) (−52ie−3x) dx

= −
∫ (3− 2i) (8 cos (2x)− 16 sin (2x)) e(−3−2i)x

−52ie−3x dx

= −
∫ (( 4

13 + 6i
13

)
(cos (2x)− 2 sin (2x)) e−2ix

)
dx

= 4x
13 − 7ix

13 − e−4ix

52 − 2ie−4ix

13

= 4x
13 − 7ix

13 − e−4ix

52 − 2ie−4ix

13

U3 = (−1)3−3
∫

F (x)W3(x)
aW (x) dx

= (−1)0
∫ (8 cos (2x)− 16 sin (2x))

(
(3 + 2i) e(−3+2i)x)

(1) (−52ie−3x) dx

=
∫ (3 + 2i) (8 cos (2x)− 16 sin (2x)) e(−3+2i)x

−52ie−3x dx

=
∫ ((

− 4
13 + 6i

13

)
(cos (2x)− 2 sin (2x)) e2ix

)
dx

= 4x
13 + 7ix

13 − e4ix
52 + 2ie4ix

13

= 4x
13 + 7ix

13 − e4ix
52 + 2ie4ix

13
Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3

Hence

yp =
(
16(3 cos (x) + 2 sin (x)) e3x cos (x)

169 − 24 e3x
169 − 16 e3x(3 sin (2x)− 2 cos (2x))

169

)(
e−3x)

+
(
4x
13 − 7ix

13 − e−4ix

52 − 2ie−4ix

13

)(
e2ix
)

+
(
4x
13 + 7ix

13 − e4ix
52 + 2ie4ix

13

)(
e−2ix)

Therefore the particular solution is

yp =
(208x+ 99) cos (2x)

338 + 14(−6 + 13x) sin (2x)
169
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Therefore the general solution is

y = yh + yp

=
(
c1e−3x + e2ixc2 + e−2ixc3

)
+
(
(208x+ 99) cos (2x)

338 + 14(−6 + 13x) sin (2x)
169

)

Summary
The solution(s) found are the following

(1)y = c1e−3x + e2ixc2 + e−2ixc3 +
(208x+ 99) cos (2x)

338 + 14(−6 + 13x) sin (2x)
169

Verification of solutions

y = c1e−3x + e2ixc2 + e−2ixc3 +
(208x+ 99) cos (2x)

338 + 14(−6 + 13x) sin (2x)
169

Verified OK.

19.33.1 Maple step by step solution

Let’s solve
y′′′ + 3y′′ + 4y′ + 12y = 8 cos (2x)− 16 sin (2x)

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = 8 cos (2x)− 16 sin (2x)− 3y3(x)− 4y2(x)− 12y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 8 cos (2x)− 16 sin (2x)− 3y3(x)− 4y2(x)− 12y1(x)]

• Define vector

7517



→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1

−12 −4 −3

 · →y (x) +


0
0

8 cos (2x)− 16 sin (2x)


• Define the forcing function

→
f (x) =


0
0

8 cos (2x)− 16 sin (2x)


• Define the coefficient matrix

A =


0 1 0
0 0 1

−12 −4 −3


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−3,


1
9

−1
3

1


 ,

−2 I,


−1

4
I
2

1


 ,

2 I,


−1
4

− I
2

1





• Consider eigenpair−3,


1
9

−1
3

1




• Solution to homogeneous system from eigenpair
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→
y 1 = e−3x ·


1
9

−1
3

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−2 I,


−1

4
I
2

1




• Solution from eigenpair

e−2 Ix ·


−1

4
I
2

1


• Use Euler identity to write solution in terms of sin and cos

(cos (2x)− I sin (2x)) ·


−1

4
I
2

1


• Simplify expression

− cos(2x)
4 + I sin(2x)

4
I
2(cos (2x)− I sin (2x))

cos (2x)− I sin (2x)


• Both real and imaginary parts are solutions to the homogeneous system→

y 2(x) =


− cos(2x)

4
sin(2x)

2

cos (2x)

 ,
→
y 3(x) =


sin(2x)

4
cos(2x)

2

− sin (2x)




• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.
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φ(x) =


e−3x

9 − cos(2x)
4

sin(2x)
4

− e−3x

3
sin(2x)

2
cos(2x)

2

e−3x cos (2x) − sin (2x)


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e−3x

9 − cos(2x)
4

sin(2x)
4

− e−3x

3
sin(2x)

2
cos(2x)

2

e−3x cos (2x) − sin (2x)

 · 1

1
9 −1

4 0

−1
3 0 1

2

1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


4 e−3x

13 + 9 cos(2x)
13 + 6 sin(2x)

13
sin(2x)

2
e−3x

13 − cos(2x)
13 + 3 sin(2x)

26

−12 e−3x

13 − 18 sin(2x)
13 + 12 cos(2x)

13 cos (2x) −3 e−3x

13 + 2 sin(2x)
13 + 3 cos(2x)

13
36 e−3x

13 − 36 cos(2x)
13 − 24 sin(2x)

13 −2 sin (2x) 9 e−3x

13 + 4 cos(2x)
13 − 6 sin(2x)

13


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)
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◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


8(7+13x) cos(2x)

169 + 2(91x−68) sin(2x)
169 − 56 e−3x

169
28(−6+13x) cos(2x)

169 + 2(−104x+35) sin(2x)
169 + 168 e−3x

169
8(−52x+63) cos(2x)

169 + 8(−91x+16) sin(2x)
169 − 504 e−3x

169


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +


8(7+13x) cos(2x)

169 + 2(91x−68) sin(2x)
169 − 56 e−3x

169
28(−6+13x) cos(2x)

169 + 2(−104x+35) sin(2x)
169 + 168 e−3x

169
8(−52x+63) cos(2x)

169 + 8(−91x+16) sin(2x)
169 − 504 e−3x

169


• First component of the vector is the solution to the ODE

y = (224+416x−169c2) cos(2x)
676 + (−544+728x+169c3) sin(2x)

676 + e−3x(169c1−504)
1521

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 39� �
dsolve(1*diff(y(x),x$3)+3*diff(y(x),x$2)+4*diff(y(x),x)+12*y(x)=8*cos(2*x)-16*sin(2*x),y(x), singsol=all)� �

y(x) = (169c1 + 104x+ 56) cos (2x)
169 + (182x+ 169c3 − 136) sin (2x)

169 + e−3xc2

3 Solution by Mathematica
Time used: 0.199 (sec). Leaf size: 47� �
DSolve[1*y'''[x]+3*y''[x]+4*y'[x]+12*y[x]==8*Cos[2*x]-16*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]� �
y(x) → 1

169
(
169c3e−3x + (104x+ 43 + 169c1) cos(2x) + (182x− 32 + 169c2) sin(2x)

)
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19.34 problem section 9.3, problem 34
19.34.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7527

Internal problem ID [1531]
Internal file name [OUTPUT/1532_Sunday_June_05_2022_02_20_56_AM_8322504/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 34.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ − y′′ + 2y = ex((20 + 4x) cos (x)− (12x+ 12) sin (x))

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − y′′ + 2y = 0

The characteristic equation is
λ3 − λ2 + 2 = 0

The roots of the above equation are

λ1 = −1
λ2 = 1− i

λ3 = 1 + i
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Therefore the homogeneous solution is

yh(x) = c1e−x + e(1−i)xc2 + e(1+i)xc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = e(1−i)x

y3 = e(1+i)x

Now the particular solution to the given ODE is found

y′′′ − y′′ + 2y = ex((20 + 4x) cos (x)− (12x+ 12) sin (x))

Let the particular solution be

yp = U1y1 + U2y2 + U3y3

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3

y′′1 y′′2 y′′3

∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


e−x e(1−i)x e(1+i)x

−e−x (1− i) e(1−i)x (1 + i) e(1+i)x

e−x −2ie(1−i)x 2ie(1+i)x


|W | = 10ie−xe(1−i)xe(1+i)x
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The determinant simplifies to

|W | = 10iex

Now we determine Wi for each Ui.

W1(x) = det

 e(1−i)x e(1+i)x

(1− i) e(1−i)x (1 + i) e(1+i)x


= 2ie2x

W2(x) = det

 e−x e(1+i)x

−e−x (1 + i) e(1+i)x


= (2 + i) eix

W3(x) = det

 e−x e(1−i)x

−e−x (1− i) e(1−i)x


= (2− i) e−ix

Now we are ready to evaluate each Ui(x).

U1 = (−1)3−1
∫

F (x)W1(x)
aW (x) dx

= (−1)2
∫ (ex((20 + 4x) cos (x)− (12x+ 12) sin (x))) (2ie2x)

(1) (10iex) dx

=
∫ 2iex((20 + 4x) cos (x)− (12x+ 12) sin (x)) e2x

10iex dx

=
∫ (4((x+ 5) cos (x)− 3(x+ 1) sin (x)) e2x

5

)
dx

=
4
(2x

5 − 3
25

)
e2x cos (x)
5 −

4
(
−x

5 +
4
25

)
e2x sin (x)

5 −
12
(
−x

5 +
4
25

)
e2x cos (x)

5 −
12
(2x

5 − 3
25

)
e2x sin (x)

5 + 52 e2x cos (x)
25 − 4 e2x sin (x)

25

=
4
(2x

5 − 3
25

)
e2x cos (x)
5 −

4
(
−x

5 +
4
25

)
e2x sin (x)

5 −
12
(
−x

5 +
4
25

)
e2x cos (x)

5 −
12
(2x

5 − 3
25

)
e2x sin (x)

5 + 52 e2x cos (x)
25 − 4 e2x sin (x)

25
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U2 = (−1)3−2
∫

F (x)W2(x)
aW (x) dx

= (−1)1
∫ (ex((20 + 4x) cos (x)− (12x+ 12) sin (x))) ((2 + i) eix)

(1) (10iex) dx

= −
∫ (2 + i) ex((20 + 4x) cos (x)− (12x+ 12) sin (x)) eix

10iex dx

= −
∫ ((2

5 − 4i
5

)
((x+ 5) cos (x)− 3(x+ 1) sin (x)) eix

)
dx

= x2

2 + x

5 + 13ix
5 + ix2

2 +
(
− 1
100 + 7i

100

)
(14− 7i+ 10x) e2ix

= x2

2 + x

5 + 13ix
5 + ix2

2 +
(
− 1
100 + 7i

100

)
(14− 7i+ 10x) e2ix

U3 = (−1)3−3
∫

F (x)W3(x)
aW (x) dx

= (−1)0
∫ (ex((20 + 4x) cos (x)− (12x+ 12) sin (x))) ((2− i) e−ix)

(1) (10iex) dx

=
∫ (2− i) ex((20 + 4x) cos (x)− (12x+ 12) sin (x)) e−ix

10iex dx

=
∫ ((

−2
5 − 4i

5

)
((x+ 5) cos (x)− 3(x+ 1) sin (x)) e−ix

)
dx

=
∫ (

−2
5 − 4i

5

)
((x+ 5) cos (x)− 3(x+ 1) sin (x)) e−ixdx

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3

Hence

yp =
(
4
(2x

5 − 3
25

)
e2x cos (x)
5 −

4
(
−x

5 +
4
25

)
e2x sin (x)

5 −
12
(
−x

5 +
4
25

)
e2x cos (x)

5 −
12
(2x

5 − 3
25

)
e2x sin (x)

5 + 52 e2x cos (x)
25 − 4 e2x sin (x)

25

)(
e−x
)

+
(
x2

2 + x

5 + 13ix
5 + ix2

2 +
(
− 1
100 + 7i

100

)
(14− 7i+ 10x) e2ix

)(
e(1−i)x)

+
(∫ (

−2
5 − 4i

5

)
((x+ 5) cos (x)− 3(x+ 1) sin (x)) e−ixdx

)(
e(1+i)x)

Therefore the particular solution is

yp =
23
((20

23x
2 + 25

23 + i+ 20
23x
)
cos (x)− 21

(
− 20

21x
2+ 65

21+i− 20
7 x
)
sin(x)

23

)
ex

20
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Which simplifies to

yp =
23
((20

23x
2 + 25

23 + i+ 20
23x
)
cos (x)− 21

(
− 20

21x
2+ 65

21+i− 20
7 x
)
sin(x)

23

)
ex

20

Therefore the general solution is

y = yh + yp

=
(
c1e−x + e(1−i)xc2 + e(1+i)xc3

)
+

23
((20

23x
2 + 25

23 + i+ 20
23x
)
cos (x)− 21

(
− 20

21x
2+ 65

21+i− 20
7 x
)
sin(x)

23

)
ex

20


Summary
The solution(s) found are the following

(1)
y = c1e−x + e(1−i)xc2 + e(1+i)xc3

+
23
((20

23x
2 + 25

23 + i+ 20
23x
)
cos (x)− 21

(
− 20

21x
2+ 65

21+i− 20
7 x
)
sin(x)

23

)
ex

20
Verification of solutions

y = c1e−x + e(1−i)xc2 + e(1+i)xc3

+
23
((20

23x
2 + 25

23 + i+ 20
23x
)
cos (x)− 21

(
− 20

21x
2+ 65

21+i− 20
7 x
)
sin(x)

23

)
ex

20

Verified OK.

19.34.1 Maple step by step solution

Let’s solve
y′′′ − y′′ + 2y = ex((20 + 4x) cos (x)− (12x+ 12) sin (x))

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative
y′′′ = −2y + 4 ex cos (x)x− 12 ex sin (x)x+ 20 cos (x) ex − 12 sin (x) ex + y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ − y′′ + 2y = 4 ex(−3 sin (x)x+ x cos (x)− 3 sin (x) + 5 cos (x))
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� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = 4 ex cos (x)x− 12 ex sin (x)x+ 20 cos (x) ex − 12 sin (x) ex + y3(x)− 2y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 4 ex cos (x)x− 12 ex sin (x)x+ 20 cos (x) ex − 12 sin (x) ex + y3(x)− 2y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
−2 0 1

 · →y (x) +


0
0

−12 ex sin (x)x+ 4 ex cos (x)x− 12 sin (x) ex + 20 cos (x) ex


• Define the forcing function

→
f (x) =


0
0

−12 ex sin (x)x+ 4 ex cos (x)x− 12 sin (x) ex + 20 cos (x) ex


• Define the coefficient matrix

A =


0 1 0
0 0 1
−2 0 1


• Rewrite the system as
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→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


1
−1
1


 ,

1− I,


I
2

1
2 +

I
2

1


 ,

1 + I,


− I

2
1
2 −

I
2

1





• Consider eigenpair−1,


1
−1
1




• Solution to homogeneous system from eigenpair

→
y 1 = e−x ·


1
−1
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored1− I,


I
2

1
2 +

I
2

1




• Solution from eigenpair

e(1−I)x ·


I
2

1
2 +

I
2

1


• Use Euler identity to write solution in terms of sin and cos

ex · (cos (x)− I sin (x)) ·


I
2

1
2 +

I
2

1


• Simplify expression
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ex ·


I
2(cos (x)− I sin (x))(1

2 +
I
2

)
(cos (x)− I sin (x))

cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system→

y 2(x) = ex ·


sin(x)

2
cos(x)

2 + sin(x)
2

cos (x)

 ,
→
y 3(x) = ex ·


cos(x)

2
cos(x)

2 − sin(x)
2

− sin (x)




• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


e−x sin(x)ex

2
cos(x)ex

2

−e−x ex
(

cos(x)
2 + sin(x)

2

) (
cos(x)

2 − sin(x)
2

)
ex

e−x cos (x) ex − sin (x) ex


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e−x sin(x)ex

2
cos(x)ex

2

−e−x ex
(

cos(x)
2 + sin(x)

2

) (
cos(x)

2 − sin(x)
2

)
ex

e−x cos (x) ex − sin (x) ex

 · 1
1 0 1

2

−1 1
2

1
2

1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


2 e−x

5 + (3 cos(x)−sin(x))ex
5 −2 e−x

5 + (2 cos(x)+sin(x))ex
5

e−x

5 + (2 sin(x)−cos(x))ex
5

−2 e−x

5 + (−4 sin(x)+2 cos(x))ex
5

2 e−x

5 + (3 cos(x)−sin(x))ex
5 − e−x

5 + (cos(x)+3 sin(x))ex
5

2 e−x

5 + (−2 cos(x)−6 sin(x))ex
5 −2 e−x

5 + (−4 sin(x)+2 cos(x))ex
5

e−x

5 + (4 cos(x)+2 sin(x))ex
5


� Find a particular solution of the system of ODEs using variation of parameters
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◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


−8 e−x

5 +
((
5x2+5x+8

)
cos(x)+

(
5x2+15x−21

)
sin(x)

)
ex

5

8 e−x

5 + 2
((
5x2+15x−4

)
cos(x)+(−7+10x) sin(x)

)
ex

5

−8 e−x

5 + 2
((
5x2+35x+4

)
cos(x)+

(
−5x2−5x+7

)
sin(x)

)
ex

5


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +


−8 e−x

5 +
((
5x2+5x+8

)
cos(x)+

(
5x2+15x−21

)
sin(x)

)
ex

5

8 e−x

5 + 2
((
5x2+15x−4

)
cos(x)+(−7+10x) sin(x)

)
ex

5

−8 e−x

5 + 2
((
5x2+35x+4

)
cos(x)+

(
−5x2−5x+7

)
sin(x)

)
ex

5


• First component of the vector is the solution to the ODE

y = (−8+5c1)e−x

5 +
((1

2c3 + x2 + x+ 8
5

)
cos (x) + sin (x)

(
x2 + 3x+ 1

2c2 −
21
5

))
ex
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 37� �
dsolve(1*diff(y(x),x$3)-1*diff(y(x),x$2)+0*diff(y(x),x)+2*y(x)=exp(x)*((20+4*x)*cos(x)-(12+12*x)*sin(x)),y(x), singsol=all)� �

y(x) = e−xc1 + ex
((

x2 + x+ c2 +
22
5

)
cos (x) + sin (x)

(
x2 + 3x+ 1

5 + c3

))
3 Solution by Mathematica
Time used: 0.308 (sec). Leaf size: 60� �
DSolve[1*y'''[x]-1*y''[x]+0*y'[x]+2*y[x]==Exp[x]*((20+4*x)*Cos[x]-(12+12*x)*Sin[x]),y[x],x,IncludeSingularSolutions -> True]� �
y(x)→ 1

10e
x
(
10x2+10x+23+10c2

)
cos(x)+ 1

10e
x
(
10x2+30x−21+10c1

)
sin(x)+c3e

−x
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19.35 problem section 9.3, problem 35
19.35.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7537

Internal problem ID [1532]
Internal file name [OUTPUT/1533_Sunday_June_05_2022_02_21_00_AM_99028836/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 35.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ − 7y′′ + 20y′ − 24y = −e2x((13− 8x) cos (2x)− (8− 4x) sin (2x))

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − 7y′′ + 20y′ − 24y = 0

The characteristic equation is

λ3 − 7λ2 + 20λ− 24 = 0

The roots of the above equation are

λ1 = 3
λ2 = 2− 2i
λ3 = 2 + 2i
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Therefore the homogeneous solution is

yh(x) = c1e3x + e(2−2i)xc2 + e(2+2i)xc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e3x

y2 = e(2−2i)x

y3 = e(2+2i)x

Now the particular solution to the given ODE is found

y′′′ − 7y′′ + 20y′ − 24y = −e2x((13− 8x) cos (2x)− (8− 4x) sin (2x))

Let the particular solution be

yp = U1y1 + U2y2 + U3y3

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3

y′′1 y′′2 y′′3

∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


e3x e(2−2i)x e(2+2i)x

3 e3x (2− 2i) e(2−2i)x (2 + 2i) e(2+2i)x

9 e3x −8ie(2−2i)x 8ie(2+2i)x


|W | = 20ie3xe(2−2i)xe(2+2i)x
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The determinant simplifies to

|W | = 20ie7x

Now we determine Wi for each Ui.

W1(x) = det

 e(2−2i)x e(2+2i)x

(2− 2i) e(2−2i)x (2 + 2i) e(2+2i)x


= 4ie4x

W2(x) = det

 e3x e(2+2i)x

3 e3x (2 + 2i) e(2+2i)x


= (−1 + 2i) e(5+2i)x

W3(x) = det

 e3x e(2−2i)x

3 e3x (2− 2i) e(2−2i)x


= (−1− 2i) e(5−2i)x

Now we are ready to evaluate each Ui(x).

U1 = (−1)3−1
∫

F (x)W1(x)
aW (x) dx

= (−1)2
∫ (−e2x((13− 8x) cos (2x)− (8− 4x) sin (2x))) (4ie4x)

(1) (20ie7x) dx

=
∫

−4ie2x((13− 8x) cos (2x)− (8− 4x) sin (2x)) e4x
20ie7x dx

=
∫ ((−4x sin (2x) + 8x cos (2x) + 8 sin (2x)− 13 cos (2x)) e−x

5

)
dx

= −
4
(
−2x

5 − 4
25

)
e−x cos (2x)

5 −
4
(
−x

5 +
3
25

)
e−x sin (2x)
5 +

8
(
−x

5 +
3
25

)
e−x cos (2x)
5 −

8
(
−2x

5 − 4
25

)
e−x sin (2x)

5 − 13 e−x

25 + 8 e−x(− sin (2x)− 2 cos (2x))
25 − 26(2 sin (x)− cos (x)) e−x cos (x)

25

= −
4
(
−2x

5 − 4
25

)
e−x cos (2x)

5 −
4
(
−x

5 +
3
25

)
e−x sin (2x)
5 +

8
(
−x

5 +
3
25

)
e−x cos (2x)
5 −

8
(
−2x

5 − 4
25

)
e−x sin (2x)

5 − 13 e−x

25 + 8 e−x(− sin (2x)− 2 cos (2x))
25 − 26(2 sin (x)− cos (x)) e−x cos (x)

25
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U2 = (−1)3−2
∫

F (x)W2(x)
aW (x) dx

= (−1)1
∫ (−e2x((13− 8x) cos (2x)− (8− 4x) sin (2x)))

(
(−1 + 2i) e(5+2i)x)

(1) (20ie7x) dx

= −
∫ (1− 2i) e2x((13− 8x) cos (2x)− (8− 4x) sin (2x)) e(5+2i)x

20ie7x dx

= −
∫ (( 1

10 + i

20

)
(−4x sin (2x) + 8x cos (2x) + 8 sin (2x)− 13 cos (2x)) e2ix

)
dx

= −x2

4 + 17x
20 − 3ix

40 +
(
− 1
100 + 3i

400

)
(−17 + i+ 10x) e4ix

= −x2

4 + 17x
20 − 3ix

40 +
(
− 1
100 + 3i

400

)
(−17 + i+ 10x) e4ix

U3 = (−1)3−3
∫

F (x)W3(x)
aW (x) dx

= (−1)0
∫ (−e2x((13− 8x) cos (2x)− (8− 4x) sin (2x)))

(
(−1− 2i) e(5−2i)x)

(1) (20ie7x) dx

=
∫ (1 + 2i) e2x((13− 8x) cos (2x)− (8− 4x) sin (2x)) e(5−2i)x

20ie7x dx

=
∫ ((

− 1
10 + i

20

)
(−4x sin (2x) + 8x cos (2x) + 8 sin (2x)− 13 cos (2x)) e−2ix

)
dx

= 3ix
40 − x2

4 + 17x
20 +

(
− 1
100 − 3i

400

)
(−17− i+ 10x) e−4ix

= 3ix
40 − x2

4 + 17x
20 +

(
− 1
100 − 3i

400

)
(−17− i+ 10x) e−4ix

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3

Hence

yp =
(
−
4
(
−2x

5 − 4
25

)
e−x cos (2x)

5 −
4
(
−x

5 +
3
25

)
e−x sin (2x)
5 +

8
(
−x

5 +
3
25

)
e−x cos (2x)
5 −

8
(
−2x

5 − 4
25

)
e−x sin (2x)

5 − 13 e−x

25 + 8 e−x(− sin (2x)− 2 cos (2x))
25 − 26(2 sin (x)− cos (x)) e−x cos (x)

25

)(
e3x
)

+
(
−x2

4 + 17x
20 − 3ix

40 +
(
− 1
100 + 3i

400

)
(−17 + i+ 10x) e4ix

)(
e(2−2i)x)

+
(
3ix
40 − x2

4 + 17x
20 +

(
− 1
100 − 3i

400

)
(−17− i+ 10x) e−4ix

)(
e(2+2i)x)

Therefore the particular solution is

yp = −
((
x2 − 3x− 21

20

)
cos (2x)−

(
x− 37

20

)
sin (2x)

)
e2x

2
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Therefore the general solution is

y = yh + yp

=
(
c1e3x+e(2−2i)xc2+e(2+2i)xc3

)
+
(
−
((
x2 − 3x− 21

20

)
cos (2x)−

(
x− 37

20

)
sin (2x)

)
e2x

2

)

Summary
The solution(s) found are the following

(1)y = c1e3x + e(2−2i)xc2 + e(2+2i)xc3 −
((
x2 − 3x− 21

20

)
cos (2x)−

(
x− 37

20

)
sin (2x)

)
e2x

2
Verification of solutions

y = c1e3x + e(2−2i)xc2 + e(2+2i)xc3 −
((
x2 − 3x− 21

20

)
cos (2x)−

(
x− 37

20

)
sin (2x)

)
e2x

2

Verified OK.

19.35.1 Maple step by step solution

Let’s solve
y′′′ − 7y′′ + 20y′ − 24y = −e2x((13− 8x) cos (2x)− (8− 4x) sin (2x))

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative
y′′′ = 24y + 8 cos (2x) e2xx− 4 sin (2x) e2xx− 13 cos (2x) e2x + 8 sin (2x) e2x + 7y′′ − 20y′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ − 7y′′ + 20y′ − 24y = e2x(−4x sin (2x) + 8x cos (2x) + 8 sin (2x)− 13 cos (2x))

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′
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◦ Isolate for y′3(x) using original ODE
y′3(x) = 8 cos (2x) e2xx− 4 sin (2x) e2xx− 13 cos (2x) e2x + 8 sin (2x) e2x + 7y3(x)− 20y2(x) + 24y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 8 cos (2x) e2xx− 4 sin (2x) e2xx− 13 cos (2x) e2x + 8 sin (2x) e2x + 7y3(x)− 20y2(x) + 24y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
24 −20 7

 · →y (x) +


0
0

−4 sin (2x) e2xx+ 8 cos (2x) e2xx+ 8 sin (2x) e2x − 13 cos (2x) e2x


• Define the forcing function

→
f (x) =


0
0

−4 sin (2x) e2xx+ 8 cos (2x) e2xx+ 8 sin (2x) e2x − 13 cos (2x) e2x


• Define the coefficient matrix

A =


0 1 0
0 0 1
24 −20 7


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

3,


1
9
1
3

1


 ,

2− 2 I,


I
8

1
4 +

I
4

1


 ,

2 + 2 I,


− I

8
1
4 −

I
4

1





• Consider eigenpair

7538



3,


1
9
1
3

1




• Solution to homogeneous system from eigenpair

→
y 1 = e3x ·


1
9
1
3

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored2− 2 I,


I
8

1
4 +

I
4

1




• Solution from eigenpair

e(2−2 I)x ·


I
8

1
4 +

I
4

1


• Use Euler identity to write solution in terms of sin and cos

e2x · (cos (2x)− I sin (2x)) ·


I
8

1
4 +

I
4

1


• Simplify expression

e2x ·


I
8(cos (2x)− I sin (2x))(1

4 +
I
4

)
(cos (2x)− I sin (2x))

cos (2x)− I sin (2x)


• Both real and imaginary parts are solutions to the homogeneous system→

y 2(x) = e2x ·


sin(2x)

8
sin(2x)

4 + cos(2x)
4

cos (2x)

 ,
→
y 3(x) = e2x ·


cos(2x)

8
cos(2x)

4 − sin(2x)
4

− sin (2x)
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• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


e3x
9

sin(2x)e2x
8

cos(2x)e2x
8

e3x
3 e2x

(
sin(2x)

4 + cos(2x)
4

)
e2x
(

cos(2x)
4 − sin(2x)

4

)
e3x cos (2x) e2x − sin (2x) e2x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e3x
9

sin(2x)e2x
8

cos(2x)e2x
8

e3x
3 e2x

(
sin(2x)

4 + cos(2x)
4

)
e2x
(

cos(2x)
4 − sin(2x)

4

)
e3x cos (2x) e2x − sin (2x) e2x

 · 1

1
9 0 1

8
1
3

1
4

1
4

1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


(−3 cos(2x)−9 sin(2x))e2x

5 + 8 e3x
5

(8 cos(2x)+9 sin(2x))e2x
10 − 4 e3x

5
(− sin(2x)−2 cos(2x))e2x

10 + e3x
5

12(− sin(2x)−2 cos(2x))e2x
5 + 24 e3x

5
(17 cos(2x)+sin(2x))e2x

5 − 12 e3x
5

(−3 cos(2x)+sin(2x))e2x
5 + 3 e3x

5
24(−3 cos(2x)+sin(2x))e2x

5 + 72 e3x
5

4(9 cos(2x)−8 sin(2x))e2x
5 − 36 e3x

5
(−4 cos(2x)+8 sin(2x))e2x

5 + 9 e3x
5


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system
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A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


((
−10x2+30x+4

)
cos(2x)+sin(2x)(10x−13)

)
e2x

20 − e3x
5((

−5x2+15x+3
)
cos(2x)+5 sin(2x)

(
x2−2x− 6

5
))
e2x

5 − 3 e3x
5

e2x
(
4
(
5x2−10x−7

)
sin(2x)−9 ex+9 cos(2x)

)
5


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +


((
−10x2+30x+4

)
cos(2x)+sin(2x)(10x−13)

)
e2x

20 − e3x
5((

−5x2+15x+3
)
cos(2x)+5 sin(2x)

(
x2−2x− 6

5
))
e2x

5 − 3 e3x
5

e2x
(
4
(
5x2−10x−7

)
sin(2x)−9 ex+9 cos(2x)

)
5


• First component of the vector is the solution to the ODE

y =
((
−20x2+5c3+60x+8

)
cos(2x)+20 sin(2x)

(
x+ c2

4 − 13
10
))
e2x

40 + e3x(5c1−9)
45
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 48� �
dsolve(1*diff(y(x),x$3)-7*diff(y(x),x$2)+20*diff(y(x),x)-24*y(x)=-exp(2*x)*((13-8*x)*cos(2*x)-(8-4*x)*sin(2*x)),y(x), singsol=all)� �
y(x) =

(
(−20x2 + 40c2 + 60x− 83) cos (2x) + 20 sin (2x)

(
x+ 2c3 − 47

10

))
e2x

40 + c1e3x

3 Solution by Mathematica
Time used: 0.955 (sec). Leaf size: 55� �
DSolve[1*y'''[x]-7*y''[x]+20*y'[x]-24*y[x]==-Exp[2*x]*((13-8*x)*Cos[2*x]-(8-4*x)*Sin[2*x]),y[x],x,IncludeSingularSolutions -> True]� �
y(x) → 1

40e
2x((−20x2 + 60x+ 21+ 40c2

)
cos(2x) + 40c3ex + (20x− 37 + 40c1) sin(2x)

)

7542



19.36 problem section 9.3, problem 36
19.36.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7547

Internal problem ID [1533]
Internal file name [OUTPUT/1534_Sunday_June_05_2022_02_21_03_AM_38095410/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 36.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_y ]]

y′′′ − 6y′′ + 18y′ = −e3x((−3x+ 2) cos (3x)− (3 + 3x) sin (3x))

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − 6y′′ + 18y′ = 0

The characteristic equation is

λ3 − 6λ2 + 18λ = 0

The roots of the above equation are

λ1 = 0
λ2 = 3 + 3i
λ3 = 3− 3i
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Therefore the homogeneous solution is

yh(x) = c1 + e(3−3i)xc2 + e(3+3i)xc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = 1

y2 = e(3−3i)x

y3 = e(3+3i)x

Now the particular solution to the given ODE is found

y′′′ − 6y′′ + 18y′ = −e3x((−3x+ 2) cos (3x)− (3 + 3x) sin (3x))

Let the particular solution be

yp = U1y1 + U2y2 + U3y3

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3

y′′1 y′′2 y′′3

∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


1 e(3−3i)x e(3+3i)x

0 (3− 3i) e(3−3i)x (3 + 3i) e(3+3i)x

0 −18ie(3−3i)x 18ie(3+3i)x


|W | = 108ie(3−3i)xe(3+3i)x
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The determinant simplifies to

|W | = 108ie6x

Now we determine Wi for each Ui.

W1(x) = det

 e(3−3i)x e(3+3i)x

(3− 3i) e(3−3i)x (3 + 3i) e(3+3i)x


= 6ie6x

W2(x) = det

 1 e(3+3i)x

0 (3 + 3i) e(3+3i)x


= (3 + 3i) e(3+3i)x

W3(x) = det

 1 e(3−3i)x

0 (3− 3i) e(3−3i)x


= (3− 3i) e(3−3i)x

Now we are ready to evaluate each Ui(x).

U1 = (−1)3−1
∫

F (x)W1(x)
aW (x) dx

= (−1)2
∫ (−e3x((−3x+ 2) cos (3x)− (3 + 3x) sin (3x))) (6ie6x)

(1) (108ie6x) dx

=
∫

−6ie3x((−3x+ 2) cos (3x)− (3 + 3x) sin (3x)) e6x
108ie6x dx

=
∫ (

−e3x((−3x+ 2) cos (3x)− (3 + 3x) sin (3x))
18

)
dx

= cos (3x) e3xx
36 −

(
−3x

2 + 1
2

)
e3x sin (3x)
54 +

(
−3x

2 + 1
2

)
e3x cos (3x)
54 + sin (3x) e3xx

36 − 5 cos (3x) e3x
108 + sin (3x) e3x

108
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U2 = (−1)3−2
∫

F (x)W2(x)
aW (x) dx

= (−1)1
∫ (−e3x((−3x+ 2) cos (3x)− (3 + 3x) sin (3x)))

(
(3 + 3i) e(3+3i)x)

(1) (108ie6x) dx

= −
∫ (−3− 3i) e3x((−3x+ 2) cos (3x)− (3 + 3x) sin (3x)) e(3+3i)x

108ie6x dx

= −
∫ (( 1

36 − i

36

)
(3x sin (3x) + 3x cos (3x) + 3 sin (3x)− 2 cos (3x)) e3ix

)
dx

= −x2

24 − x

72 − 5ix
72 + (1− 4i+ 6x) e6ix

432

= −x2

24 − x

72 − 5ix
72 + (1− 4i+ 6x) e6ix

432

U3 = (−1)3−3
∫

F (x)W3(x)
aW (x) dx

= (−1)0
∫ (−e3x((−3x+ 2) cos (3x)− (3 + 3x) sin (3x)))

(
(3− 3i) e(3−3i)x)

(1) (108ie6x) dx

=
∫ (−3 + 3i) e3x((−3x+ 2) cos (3x)− (3 + 3x) sin (3x)) e(3−3i)x

108ie6x dx

=
∫ ((

− 1
36 − i

36

)
(3x sin (3x) + 3x cos (3x) + 3 sin (3x)− 2 cos (3x)) e−3ix

)
dx

= 5ix
72 − x2

24 − x

72 + (1 + 4i+ 6x) e−6ix

432

= 5ix
72 − x2

24 − x

72 + (1 + 4i+ 6x) e−6ix

432
Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3

Hence

yp =
(
cos (3x) e3xx

36 −
(
−3x

2 + 1
2

)
e3x sin (3x)
54 +

(
−3x

2 + 1
2

)
e3x cos (3x)
54 + sin (3x) e3xx

36 − 5 cos (3x) e3x
108 + sin (3x) e3x

108

)

+
(
−x2

24 − x

72 − 5ix
72 + (1− 4i+ 6x) e6ix

432

)(
e(3−3i)x)

+
(
5ix
72 − x2

24 − x

72 + (1 + 4i+ 6x) e−6ix

432

)(
e(3+3i)x)

Therefore the particular solution is

yp = −e3x(18 cos (3x)x2 + 18x sin (3x) + 7 cos (3x)− 4 sin (3x))
216
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Therefore the general solution is

y = yh + yp

=
(
c1 + e(3−3i)xc2 + e(3+3i)xc3

)
+
(
−e3x(18 cos (3x)x2 + 18x sin (3x) + 7 cos (3x)− 4 sin (3x))

216

)

Summary
The solution(s) found are the following

(1)
y = c1 + e(3−3i)xc2 + e(3+3i)xc3

− e3x(18 cos (3x)x2 + 18x sin (3x) + 7 cos (3x)− 4 sin (3x))
216

Verification of solutions

y= c1+e(3−3i)xc2+e(3+3i)xc3−
e3x(18 cos (3x)x2 + 18x sin (3x) + 7 cos (3x)− 4 sin (3x))

216

Verified OK.

19.36.1 Maple step by step solution

Let’s solve
y′′′ − 6y′′ + 18y′ = −e3x((−3x+ 2) cos (3x)− (3 + 3x) sin (3x))

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative
y′′′ = 3 cos (3x) e3xx+ 3 sin (3x) e3xx− 2 cos (3x) e3x + 3 sin (3x) e3x + 6y′′ − 18y′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ − 6y′′ + 18y′ = e3x(3x sin (3x) + 3x cos (3x) + 3 sin (3x)− 2 cos (3x))

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
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y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = 3 cos (3x) e3xx+ 3 sin (3x) e3xx− 2 cos (3x) e3x + 3 sin (3x) e3x + 6y3(x)− 18y2(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 3 cos (3x) e3xx+ 3 sin (3x) e3xx− 2 cos (3x) e3x + 3 sin (3x) e3x + 6y3(x)− 18y2(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
0 −18 6

 · →y (x) +


0
0

3 sin (3x) e3xx+ 3 cos (3x) e3xx+ 3 sin (3x) e3x − 2 cos (3x) e3x


• Define the forcing function

→
f (x) =


0
0

3 sin (3x) e3xx+ 3 cos (3x) e3xx+ 3 sin (3x) e3x − 2 cos (3x) e3x


• Define the coefficient matrix

A =


0 1 0
0 0 1
0 −18 6


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

0,


1
0
0


 ,

3− 3 I,


I
18

1
6 +

I
6

1


 ,

3 + 3 I,


− I

18
1
6 −

I
6

1
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• Consider eigenpair0,


1
0
0




• Solution to homogeneous system from eigenpair

→
y 1 =


1
0
0


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored3− 3 I,


I
18

1
6 +

I
6

1




• Solution from eigenpair

e(3−3 I)x ·


I
18

1
6 +

I
6

1


• Use Euler identity to write solution in terms of sin and cos

e3x · (cos (3x)− I sin (3x)) ·


I
18

1
6 +

I
6

1


• Simplify expression

e3x ·


I
18(cos (3x)− I sin (3x))(1

6 +
I
6

)
(cos (3x)− I sin (3x))

cos (3x)− I sin (3x)


• Both real and imaginary parts are solutions to the homogeneous system
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→
y 2(x) = e3x ·


sin(3x)

18
cos(3x)

6 + sin(3x)
6

cos (3x)

 ,
→
y 3(x) = e3x ·


cos(3x)

18

− sin(3x)
6 + cos(3x)

6

− sin (3x)




• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


1 sin(3x)e3x

18
cos(3x)e3x

18

0 e3x
(

cos(3x)
6 + sin(3x)

6

)
e3x
(
− sin(3x)

6 + cos(3x)
6

)
0 cos (3x) e3x − sin (3x) e3x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


1 sin(3x)e3x

18
cos(3x)e3x

18

0 e3x
(

cos(3x)
6 + sin(3x)

6

)
e3x
(
− sin(3x)

6 + cos(3x)
6

)
0 cos (3x) e3x − sin (3x) e3x

 · 1
1 0 1

18

0 1
6

1
6

0 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


1 −1

3 +
cos(3x)e3x

3
1
18 +

(sin(3x)−cos(3x))e3x
18

0 e3x(− sin (3x) + cos (3x)) sin(3x)e3x
3

0 −6 sin (3x) e3x e3x(sin (3x) + cos (3x))


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)
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◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


1
27 +

e3x
(
−9 cos(3x)x2−9x sin(3x)−4 cos(3x)+4 sin(3x)

)
108

−
((
−x2+x− 5

9
)
sin(3x)+cos(3x)x

(
x+ 5

3
))
e3x

4

3
((

x+ 1
3
)2 sin(3x)− 5x cos(3x)

3

)
e3x

2


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +


1
27 +

e3x
(
−9 cos(3x)x2−9x sin(3x)−4 cos(3x)+4 sin(3x)

)
108

−
((
−x2+x− 5

9
)
sin(3x)+cos(3x)x

(
x+ 5

3
))
e3x

4

3
((

x+ 1
3
)2 sin(3x)− 5x cos(3x)

3

)
e3x

2


• First component of the vector is the solution to the ODE

y =
((

−9x2+6c3−4
)
cos(3x)−9

(
x− 2c2

3 − 4
9

)
sin(3x)

)
e3x

108 + c1 + 1
27

7551



Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = 3*exp(3*_a)*cos(3*_a)*_a+3*exp(3*_a)*sin(3*_a)*_a-2*exp(3*_a)*cos(3*_

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 46� �
dsolve(1*diff(y(x),x$3)-6*diff(y(x),x$2)+18*diff(y(x),x)-0*y(x)=-exp(3*x)*((2-3*x)*cos(3*x)-(3+3*x)*sin(3*x)),y(x), singsol=all)� �

y(x) =
(
(−3x2 + 6c1 − 6c2 − 1) cos (3x)− 3 sin (3x)

(
x− 2c1 − 2c2 + 1

9

))
e3x

36 + c3

3 Solution by Mathematica
Time used: 3.765 (sec). Leaf size: 57� �
DSolve[1*y'''[x]-6*y''[x]+18*y'[x]-0*y[x]==-Exp[3*x]*((2-3*x)*Cos[3*x]-(3+3*x)*Sin[3*x]),y[x],x,IncludeSingularSolutions -> True]� �
y(x) → c3 −

1
216e

3x(6(3x2 + 1 + 6c1 − 6c2
)
cos(3x) + (18x+ 1− 36c1 − 36c2) sin(3x)

)
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19.37 problem section 9.3, problem 37
19.37.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7555

Internal problem ID [1534]
Internal file name [OUTPUT/1535_Sunday_June_05_2022_02_21_07_AM_21645714/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 37.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ + 2y′′′ − 2y′′ − 8y′ − 8y = ex(8 cos (x) + 16 sin (x))

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ + 2y′′′ − 2y′′ − 8y′ − 8y = 0

The characteristic equation is

λ4 + 2λ3 − 2λ2 − 8λ− 8 = 0

The roots of the above equation are

λ1 = 2
λ2 = −2
λ3 = −1− i

λ4 = −1 + i
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Therefore the homogeneous solution is

yh(x) = c1e−2x + e(−1−i)xc2 + c3e2x + e(−1+i)xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−2x

y2 = e(−1−i)x

y3 = e2x

y4 = e(−1+i)x

Now the particular solution to the given ODE is found

y′′′′ + 2y′′′ − 2y′′ − 8y′ − 8y = ex(8 cos (x) + 16 sin (x))

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

ex(8 cos (x) + 16 sin (x))

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) ex, sin (x) ex}]

While the set of the basis functions for the homogeneous solution found earlier is

{e(−1−i)x, e(−1+i)x, e−2x, e2x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) ex + A2 sin (x) ex

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−24A1 cos (x) ex − 24A2 sin (x) ex + 8A1 sin (x) ex − 8A2 cos (x) ex
= ex(8 cos (x) + 16 sin (x))
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Solving for the unknowns by comparing coefficients results in[
A1 = − 1

10 , A2 = − 7
10

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −cos (x) ex
10 − 7 sin (x) ex

10

Therefore the general solution is

y = yh + yp

=
(
c1e−2x + e(−1−i)xc2 + c3e2x + e(−1+i)xc4

)
+
(
−cos (x) ex

10 − 7 sin (x) ex
10

)

Summary
The solution(s) found are the following

(1)y = c1e−2x + e(−1−i)xc2 + c3e2x + e(−1+i)xc4 −
cos (x) ex

10 − 7 sin (x) ex
10

Verification of solutions

y = c1e−2x + e(−1−i)xc2 + c3e2x + e(−1+i)xc4 −
cos (x) ex

10 − 7 sin (x) ex
10

Verified OK.

19.37.1 Maple step by step solution

Let’s solve
y′′′′ + 2y′′′ − 2y′′ − 8y′ − 8y = ex(8 cos (x) + 16 sin (x))

• Highest derivative means the order of the ODE is 4
y′′′′

• Isolate 4th derivative
y′′′′ = 8y + 8 cos (x) ex + 16 sin (x) ex − 2y′′′ + 2y′′ + 8y′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′′ + 2y′′′ − 2y′′ − 8y′ − 8y = 8 ex(cos (x) + 2 sin (x))

� Convert linear ODE into a system of first order ODEs
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◦ Define new variable y1(x)
y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = 8 cos (x) ex + 16 sin (x) ex − 2y4(x) + 2y3(x) + 8y2(x) + 8y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = 8 cos (x) ex + 16 sin (x) ex − 2y4(x) + 2y3(x) + 8y2(x) + 8y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
8 8 2 −2

 · →y (x) +


0
0
0

16 sin (x) ex + 8 cos (x) ex


• Define the forcing function

→
f (x) =


0
0
0

16 sin (x) ex + 8 cos (x) ex


• Define the coefficient matrix
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A =


0 1 0 0
0 0 1 0
0 0 0 1
8 8 2 −2


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−2,


−1

8
1
4

−1
2

1



 ,

2,


1
8
1
4
1
2

1



 ,

−1− I,


1
4 +

I
4

− I
2

−1
2 +

I
2

1



 ,

−1 + I,


1
4 −

I
4

I
2

−1
2 −

I
2

1






• Consider eigenpair−2,


−1

8
1
4

−1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−2x ·


−1

8
1
4

−1
2

1


• Consider eigenpair2,


1
8
1
4
1
2

1
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• Solution to homogeneous system from eigenpair

→
y 2 = e2x ·


1
8
1
4
1
2

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−1− I,


1
4 +

I
4

− I
2

−1
2 +

I
2

1




• Solution from eigenpair

e(−1−I)x ·


1
4 +

I
4

− I
2

−1
2 +

I
2

1


• Use Euler identity to write solution in terms of sin and cos

e−x · (cos (x)− I sin (x)) ·


1
4 +

I
4

− I
2

−1
2 +

I
2

1


• Simplify expression

e−x ·



(1
4 +

I
4

)
(cos (x)− I sin (x))

− I
2(cos (x)− I sin (x))(

−1
2 +

I
2

)
(cos (x)− I sin (x))

cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system
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→
y 3(x) = e−x ·



sin(x)
4 + cos(x)

4

− sin(x)
2

− cos(x)
2 + sin(x)

2

cos (x)

 ,
→
y 4(x) = e−x ·



cos(x)
4 − sin(x)

4

− cos(x)
2

cos(x)
2 + sin(x)

2

− sin (x)




• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =



− e−2x

8
e2x
8 e−x

(
sin(x)

4 + cos(x)
4

)
e−x
(

cos(x)
4 − sin(x)

4

)
e−2x

4
e2x
4 − sin(x)e−x

2 − cos(x)e−x

2

− e−2x

2
e2x
2 e−x

(
− cos(x)

2 + sin(x)
2

)
e−x
(

cos(x)
2 + sin(x)

2

)
e−2x e2x cos (x) e−x − sin (x) e−x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =



− e−2x

8
e2x
8 e−x

(
sin(x)

4 + cos(x)
4

)
e−x
(

cos(x)
4 − sin(x)

4

)
e−2x

4
e2x
4 − sin(x)e−x

2 − cos(x)e−x

2

− e−2x

2
e2x
2 e−x

(
− cos(x)

2 + sin(x)
2

)
e−x
(

cos(x)
2 + sin(x)

2

)
e−2x e2x cos (x) e−x − sin (x) e−x


· 1

−1
8

1
8

1
4

1
4

1
4

1
4 0 −1

2

−1
2

1
2 −1

2
1
2

1 1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =



(
e4x+4 cos(x)ex+12 sin(x)ex+5

)
e−2x

10 −
2
(
− 3 e4x

8 − 5
8+(−2 sin(x)+cos(x))ex

)
e−2x

5
(− cos(x)−3 sin(x))e−x

10 + e2x
10

(
e4x−5+(4 cos(x)−8 sin(x))ex

)
e−2x

40(
e4x−5+(4 cos(x)−8 sin(x))ex

)
e−2x

5

(
3 e4x−5+(12 cos(x)−4 sin(x))ex

)
e−2x

10
(2 sin(x)−cos(x))e−x

5 + e2x
5

(
e4x+5+(−6 cos(x)+2 sin(x))ex

)
e−2x

20
2
(
5+e4x+2(sin(x)−3 cos(x))ex

)
e−2x

5

(
3 e4x+5+(−8 cos(x)−4 sin(x))ex

)
e−2x

5
(3 cos(x)−sin(x))e−x

5 + 2 e2x
5

(
e4x−5+(4 cos(x)+2 sin(x))ex

)
e−2x

10

4
(
−5+e4x+2(2 cos(x)+sin(x))ex

)
e−2x

5
4
(

3 e4x
2 − 5

2+(cos(x)+3 sin(x))ex
)
e−2x

5
(−4 cos(x)−2 sin(x))e−x

5 + 4 e2x
5 −

(
−e4x−5+(cos(x)+3 sin(x))ex

)
e−2x

5
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� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =



e−2x(−(cos(x)+7 sin(x))e3x−3 cos(x)ex+sin(x)ex+3 e4x+1
)

10
e−2x((−3 sin(x)−4 cos(x))e3x+2 cos(x)ex+sin(x)ex+3 e4x−1

)
5

−
(
(7 cos(x)−sin(x))e3x+cos(x)ex+3 sin(x)ex−6 e4x−2

)
e−2x

5

−2
(
(3 cos(x)−4 sin(x))e3x+cos(x)ex−2 sin(x)ex−6 e4x+2

)
e−2x

5


• Plug particular solution back into general solution
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→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +



e−2x(−(cos(x)+7 sin(x))e3x−3 cos(x)ex+sin(x)ex+3 e4x+1
)

10
e−2x((−3 sin(x)−4 cos(x))e3x+2 cos(x)ex+sin(x)ex+3 e4x−1

)
5

−
(
(7 cos(x)−sin(x))e3x+cos(x)ex+3 sin(x)ex−6 e4x−2

)
e−2x

5

−2
(
(3 cos(x)−4 sin(x))e3x+cos(x)ex−2 sin(x)ex−6 e4x+2

)
e−2x

5


• First component of the vector is the solution to the ODE

y = −

(
(cos(x)+7 sin(x))e3x+

(
− 5c2

4 −3
)
e4x+

((
− 5c3

2 − 5c4
2 +3

)
cos(x)−

5
(
c3−c4+

2
5
)
sin(x)

2

)
ex+ 5c1

4 −1
)
e−2x

10

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 47� �
dsolve(1*diff(y(x),x$4)+2*diff(y(x),x$3)-2*diff(y(x),x$2)-8*diff(y(x),x)-8*y(x)=exp(x)*(8*cos(x)+16*sin(x)),y(x), singsol=all)� �
y(x)

= −((7 sin (x) + cos (x)) e3x − 10c3 cos (x) ex − 10c4 sin (x) ex − 10c2e4x − 10c1) e−2x

10

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 56� �
DSolve[1*y''''[x]+2*y'''[x]-2*y''[x]-8*y'[x]-8*y[x]==Exp[x]*(8*Cos[x]+16*Sin[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c3e
−2x + c4e

2x − 1
10e

x(7 sin(x) + cos(x)) + c2e
−x cos(x) + c1e

−x sin(x)
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19.38 problem section 9.3, problem 38
19.38.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7564

Internal problem ID [1535]
Internal file name [OUTPUT/1536_Sunday_June_05_2022_02_21_09_AM_72758574/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 38.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ − 3y′′′ + 2y′′ + 2y′ − 4y = ex(− sin (2x) + 2 cos (2x))

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − 3y′′′ + 2y′′ + 2y′ − 4y = 0

The characteristic equation is

λ4 − 3λ3 + 2λ2 + 2λ− 4 = 0

The roots of the above equation are

λ1 = 2
λ2 = −1
λ3 = 1− i

λ4 = 1 + i
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Therefore the homogeneous solution is

yh(x) = c1e−x + c2e2x + e(1−i)xc3 + e(1+i)xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = e2x

y3 = e(1−i)x

y4 = e(1+i)x

Now the particular solution to the given ODE is found

y′′′′ − 3y′′′ + 2y′′ + 2y′ − 4y = ex(− sin (2x) + 2 cos (2x))

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

ex(− sin (2x) + 2 cos (2x))

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{ex cos (2x) , ex sin (2x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{e(1−i)x, e(1+i)x, e−x, e2x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1ex cos (2x) + A2ex sin (2x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

18A1ex cos (2x) + 6A1ex sin (2x) + 18A2ex sin (2x)− 6A2ex cos (2x)
= ex(− sin (2x) + 2 cos (2x))
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Solving for the unknowns by comparing coefficients results in[
A1 =

1
12 , A2 = − 1

12

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
ex cos (2x)

12 − ex sin (2x)
12

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2e2x + e(1−i)xc3 + e(1+i)xc4

)
+
(
ex cos (2x)

12 − ex sin (2x)
12

)

Summary
The solution(s) found are the following

(1)y = c1e−x + c2e2x + e(1−i)xc3 + e(1+i)xc4 +
ex cos (2x)

12 − ex sin (2x)
12

Verification of solutions

y = c1e−x + c2e2x + e(1−i)xc3 + e(1+i)xc4 +
ex cos (2x)

12 − ex sin (2x)
12

Verified OK.

19.38.1 Maple step by step solution

Let’s solve
y′′′′ − 3y′′′ + 2y′′ + 2y′ − 4y = ex(− sin (2x) + 2 cos (2x))

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′
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◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = 2 ex cos (2x)− ex sin (2x) + 3y4(x)− 2y3(x)− 2y2(x) + 4y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = 2 ex cos (2x)− ex sin (2x) + 3y4(x)− 2y3(x)− 2y2(x) + 4y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
4 −2 −2 3

 · →y (x) +


0
0
0

2 ex cos (2x)− ex sin (2x)


• Define the forcing function

→
f (x) =


0
0
0

2 ex cos (2x)− ex sin (2x)


• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
4 −2 −2 3


• Rewrite the system as
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→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


−1
1
−1
1



 ,

2,


1
8
1
4
1
2

1



 ,

1− I,


−1

4 +
I
4

I
2

1
2 +

I
2

1



 ,

1 + I,


−1

4 −
I
4

− I
2

1
2 −

I
2

1






• Consider eigenpair−1,


−1
1
−1
1




• Solution to homogeneous system from eigenpair

→
y 1 = e−x ·


−1
1
−1
1


• Consider eigenpair2,


1
8
1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 2 = e2x ·


1
8
1
4
1
2

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored
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1− I,


−1

4 +
I
4

I
2

1
2 +

I
2

1




• Solution from eigenpair

e(1−I)x ·


−1

4 +
I
4

I
2

1
2 +

I
2

1


• Use Euler identity to write solution in terms of sin and cos

ex · (cos (x)− I sin (x)) ·


−1

4 +
I
4

I
2

1
2 +

I
2

1


• Simplify expression

ex ·



(
−1

4 +
I
4

)
(cos (x)− I sin (x))

I
2(cos (x)− I sin (x))(1

2 +
I
2

)
(cos (x)− I sin (x))

cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) = ex ·


− cos(x)

4 + sin(x)
4

sin(x)
2

cos(x)
2 + sin(x)

2

cos (x)

 ,
→
y 4(x) = ex ·



sin(x)
4 + cos(x)

4
cos(x)

2
cos(x)

2 − sin(x)
2

− sin (x)




• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +

→
y p(x)

� Fundamental matrix
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◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =



−e−x e2x
8 ex

(
− cos(x)

4 + sin(x)
4

)
ex
(

sin(x)
4 + cos(x)

4

)
e−x e2x

4
sin(x)ex

2
cos(x)ex

2

−e−x e2x
2 ex

(
cos(x)

2 + sin(x)
2

) (
cos(x)

2 − sin(x)
2

)
ex

e−x e2x cos (x) ex − sin (x) ex


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =



−e−x e2x
8 ex

(
− cos(x)

4 + sin(x)
4

)
ex
(

sin(x)
4 + cos(x)

4

)
e−x e2x

4
sin(x)ex

2
cos(x)ex

2

−e−x e2x
2 ex

(
cos(x)

2 + sin(x)
2

) (
cos(x)

2 − sin(x)
2

)
ex

e−x e2x cos (x) ex − sin (x) ex


· 1

−1 1
8 −1

4
1
4

1 1
4 0 1

2

−1 1
2

1
2

1
2

1 1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


4 e−x

15 + e2x
3 + 2(−2 sin(x)+cos(x))ex

5 −2 e−x

5 + (2 cos(x)+sin(x))ex
5

4 e−x

15 − e2x
6 + (− cos(x)+7 sin(x))ex

10 − e−x

15 + e2x
6 + (−3 cos(x)−9 sin(x))ex

30

−4 e−x

15 + 2 e2x
3 + 2(− cos(x)−3 sin(x))ex

5
2 e−x

5 + (3 cos(x)−sin(x))ex
5 −4 e−x

15 − e2x
3 + (3 cos(x)+4 sin(x))ex

5
e−x

15 + e2x
3 + (−2 cos(x)−sin(x))ex

5
4 e−x

15 + 4 e2x
3 + 4(−2 cos(x)−sin(x))ex

5 −2 e−x

5 + (−4 sin(x)+2 cos(x))ex
5

4 e−x

15 − 2 e2x
3 + (7 cos(x)+sin(x))ex

5 − e−x

15 + 2 e2x
3 + (sin(x)−3 cos(x))ex

5

−4 e−x

15 + 8 e2x
3 + 4(sin(x)−3 cos(x))ex

5
2 e−x

5 + (−2 cos(x)−6 sin(x))ex
5 −4 e−x

15 − 4 e2x
3 + 2(4 cos(x)−3 sin(x))ex

5
e−x

15 + 4 e2x
3 + 2(2 sin(x)−cos(x))ex

5


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system
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A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =



e−x

20 +
(
10 cos(x)2+(−10 sin(x)−8) cos(x)+16 sin(x)−5

)
ex

60

− e−x

20 +
(
−10 cos(x)2+(−30 sin(x)+8) cos(x)+24 sin(x)+5

)
ex

60

e−x

20 +
(
−70 cos(x)2+(−10 sin(x)+32) cos(x)+16 sin(x)+35

)
ex

60

− e−x

20 +
(
−90 cos(x)2+(130 sin(x)+48) cos(x)−16 sin(x)+45

)
ex

60


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +



e−x

20 +
(
10 cos(x)2+(−10 sin(x)−8) cos(x)+16 sin(x)−5

)
ex

60

− e−x

20 +
(
−10 cos(x)2+(−30 sin(x)+8) cos(x)+24 sin(x)+5

)
ex

60

e−x

20 +
(
−70 cos(x)2+(−10 sin(x)+32) cos(x)+16 sin(x)+35

)
ex

60

− e−x

20 +
(
−90 cos(x)2+(130 sin(x)+48) cos(x)−16 sin(x)+45

)
ex

60


• First component of the vector is the solution to the ODE

y = (1−20c1)e−x

20 + c2e2x
8 −

(
− 2 cos(x)2

3 +
(
c3−c4+ 2 sin(x)

3 + 8
15

)
cos(x)+ 1

3+
(
−c3−c4− 16

15
)
sin(x)

)
ex

4
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 41� �
dsolve(1*diff(y(x),x$4)-3*diff(y(x),x$3)+2*diff(y(x),x$2)+2*diff(y(x),x)-4*y(x)=exp(x)*(2*cos(2*x)-sin(2*x)),y(x), singsol=all)� �

y(x) = e−xc1 + c2e2x + ex
(
cos (x)2

6 +
(
c3 −

sin (x)
6

)
cos (x) + c4 sin (x)−

1
12

)

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 56� �
DSolve[1*y''''[x]-3*y'''[x]+2*y''[x]+2*y'[x]-4*y[x]==Exp[x]*(2*Cos[2*x]-Sin[2*x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c3e
−x + c4e

2x + 1
12e

x(cos(2x)− sin(2x)) + c2e
x cos(x) + c1e

x sin(x)
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19.39 problem section 9.3, problem 39
19.39.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7573

Internal problem ID [1536]
Internal file name [OUTPUT/1537_Sunday_June_05_2022_02_21_12_AM_48519893/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 39.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ − 8y′′′ + 24y′′ − 32y′ + 15y = e2x(15x cos (2x) + 32 sin (2x))

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − 8y′′′ + 24y′′ − 32y′ + 15y = 0

The characteristic equation is

λ4 − 8λ3 + 24λ2 − 32λ+ 15 = 0

The roots of the above equation are

λ1 = 3
λ2 = 1
λ3 = 2 + i

λ4 = 2− i
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Therefore the homogeneous solution is

yh(x) = c1ex + c2e3x + e(2+i)xc3 + e(2−i)xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = e3x

y3 = e(2+i)x

y4 = e(2−i)x

Now the particular solution to the given ODE is found

y′′′′ − 8y′′′ + 24y′′ − 32y′ + 15y = e2x(15x cos (2x) + 32 sin (2x))

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

e2x(15x cos (2x) + 32 sin (2x))

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (2x) e2x, sin (2x) e2x, cos (2x) e2xx, sin (2x) e2xx}]

While the set of the basis functions for the homogeneous solution found earlier is

{ex, e(2−i)x, e(2+i)x, e3x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (2x) e2x + A2 sin (2x) e2x + A3 cos (2x) e2xx+ A4 sin (2x) e2xx

The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

15A4 sin (2x) e2xx+ 15A3 cos (2x) e2xx− 32A4 cos (2x) e2x + 32A3 sin (2x) e2x

+ 15A1 cos (2x) e2x + 15A2 sin (2x) e2x = e2x(15x cos (2x) + 32 sin (2x))
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Solving for the unknowns by comparing coefficients results in

[A1 = 0, A2 = 0, A3 = 1, A4 = 0]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = cos (2x) e2xx

Therefore the general solution is

y = yh + yp

=
(
c1ex + c2e3x + e(2+i)xc3 + e(2−i)xc4

)
+
(
cos (2x) e2xx

)
Summary
The solution(s) found are the following

(1)y = c1ex + c2e3x + e(2+i)xc3 + e(2−i)xc4 + cos (2x) e2xx
Verification of solutions

y = c1ex + c2e3x + e(2+i)xc3 + e(2−i)xc4 + cos (2x) e2xx

Verified OK.

19.39.1 Maple step by step solution

Let’s solve
y′′′′ − 8y′′′ + 24y′′ − 32y′ + 15y = e2x(15x cos (2x) + 32 sin (2x))

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′
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◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = 15 cos (2x) e2xx+ 32 sin (2x) e2x + 8y4(x)− 24y3(x) + 32y2(x)− 15y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = 15 cos (2x) e2xx+ 32 sin (2x) e2x + 8y4(x)− 24y3(x) + 32y2(x)− 15y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1

−15 32 −24 8

 · →y (x) +


0
0
0

15 cos (2x) e2xx+ 32 sin (2x) e2x


• Define the forcing function

→
f (x) =


0
0
0

15 cos (2x) e2xx+ 32 sin (2x) e2x


• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1

−15 32 −24 8


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f
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• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

1,


1
1
1
1



 ,

3,


1
27
1
9
1
3

1



 ,

2− I,


2

125 +
11 I
125

3
25 +

4 I
25

2
5 +

I
5

1



 ,

2 + I,


2

125 −
11 I
125

3
25 −

4 I
25

2
5 −

I
5

1






• Consider eigenpair1,


1
1
1
1




• Solution to homogeneous system from eigenpair

→
y 1 = ex ·


1
1
1
1


• Consider eigenpair3,


1
27
1
9
1
3

1




• Solution to homogeneous system from eigenpair

→
y 2 = e3x ·


1
27
1
9
1
3

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored
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2− I,


2

125 +
11 I
125

3
25 +

4 I
25

2
5 +

I
5

1




• Solution from eigenpair

e(2−I)x ·


2

125 +
11 I
125

3
25 +

4 I
25

2
5 +

I
5

1


• Use Euler identity to write solution in terms of sin and cos

e2x · (cos (x)− I sin (x)) ·


2

125 +
11 I
125

3
25 +

4 I
25

2
5 +

I
5

1


• Simplify expression

e2x ·



( 2
125 +

11 I
125

)
(cos (x)− I sin (x))( 3

25 +
4 I
25

)
(cos (x)− I sin (x))(2

5 +
I
5

)
(cos (x)− I sin (x))

cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) = e2x ·



2 cos(x)
125 + 11 sin(x)

125
3 cos(x)

25 + 4 sin(x)
25

sin(x)
5 + 2 cos(x)

5

cos (x)

 ,
→
y 4(x) = e2x ·


−2 sin(x)

125 + 11 cos(x)
125

−3 sin(x)
25 + 4 cos(x)

25

−2 sin(x)
5 + cos(x)

5

− sin (x)




• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +

→
y p(x)

� Fundamental matrix
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◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =



ex e3x
27 e2x

(
2 cos(x)
125 + 11 sin(x)

125

)
e2x
(
−2 sin(x)

125 + 11 cos(x)
125

)
ex e3x

9 e2x
(

3 cos(x)
25 + 4 sin(x)

25

)
e2x
(
−3 sin(x)

25 + 4 cos(x)
25

)
ex e3x

3 e2x
(

sin(x)
5 + 2 cos(x)

5

)
e2x
(
−2 sin(x)

5 + cos(x)
5

)
ex e3x e2x cos (x) −e2x sin (x)


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =



ex e3x
27 e2x

(
2 cos(x)
125 + 11 sin(x)

125

)
e2x
(
−2 sin(x)

125 + 11 cos(x)
125

)
ex e3x

9 e2x
(

3 cos(x)
25 + 4 sin(x)

25

)
e2x
(
−3 sin(x)

25 + 4 cos(x)
25

)
ex e3x

3 e2x
(

sin(x)
5 + 2 cos(x)

5

)
e2x
(
−2 sin(x)

5 + cos(x)
5

)
ex e3x e2x cos (x) −e2x sin (x)


· 1

1 1
27

2
125

11
125

1 1
9

3
25

4
25

1 1
3

2
5

1
5

1 1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =



3(2 sin(x)−cos(x))e2x
2 + 15 ex

4 − 5 e3x
4

(8 cos(x)−22 sin(x))e2x
4 − 17 ex

4 + 9 e3x
4

(− cos(x)+6 sin(x))e2x
2 + 7 ex

4 − 5 e3x
4 − e2x sin(x)

2 − ex
4 + e3x

4
15 e2x sin(x)

2 + 15 ex
4 − 15 e3x

4
(−6 cos(x)−52 sin(x))e2x

4 − 17 ex
4 + 27 e3x

4
(8 cos(x)+26 sin(x))e2x

4 + 7 ex
4 − 15 e3x

4
(−2 cos(x)−4 sin(x))e2x

4 − ex
4 + 3 e3x

4
15(cos(x)+2 sin(x))e2x

2 + 15 ex
4 − 45 e3x

4
(−64 cos(x)−98 sin(x))e2x

4 − 17 ex
4 + 81 e3x

4
(42 cos(x)+44 sin(x))e2x

4 + 7 ex
4 − 45 e3x

4
(−8 cos(x)−6 sin(x))e2x

4 − ex
4 + 9 e3x

4
15(4 cos(x)+3 sin(x))e2x

2 + 15 ex
4 − 135 e3x

4
(−113 cos(x)−66 sin(x))e2x

2 − 17 ex
4 + 243 e3x

4
(64 cos(x)+23 sin(x))e2x

2 + 7 ex
4 − 135 e3x

4
(−22 cos(x)−4 sin(x))e2x

4 − ex
4 + 27 e3x

4


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)
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◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =



ex
(
8 ex cos(x)2x−26 sin(x)ex−4x ex+11 e2x−11

)
4

4
(

33 e2x
16 − 11

16 +
((

x+ 1
2

)
cos (x)2 +

(
− sin (x)x− 13

8

)
cos (x)− x

2 −
13 sin(x)

4 − 1
4

)
ex
)
ex

−16
(
−99 e2x

64 + 11
64 +

(
− cos(x)2

2 +
(13

8 +
(
x+ 1

2

)
sin (x)

)
cos (x) + 39 sin(x)

32 + 1
4

)
ex
)
ex

−32
(
−297 e2x

128 + 11
128 +

(
cos (x)2 x+

(143
64 +

(
x+ 3

2

)
sin (x)

)
cos (x)− x

2 +
13 sin(x)

32

)
ex
)
ex


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +



ex
(
8 ex cos(x)2x−26 sin(x)ex−4x ex+11 e2x−11

)
4

4
(

33 e2x
16 − 11

16 +
((

x+ 1
2

)
cos (x)2 +

(
− sin (x)x− 13

8

)
cos (x)− x

2 −
13 sin(x)

4 − 1
4

)
ex
)
ex

−16
(
−99 e2x

64 + 11
64 +

(
− cos(x)2

2 +
(13

8 +
(
x+ 1

2

)
sin (x)

)
cos (x) + 39 sin(x)

32 + 1
4

)
ex
)
ex

−32
(
−297 e2x

128 + 11
128 +

(
cos (x)2 x+

(143
64 +

(
x+ 3

2

)
sin (x)

)
cos (x)− x

2 +
13 sin(x)

32

)
ex
)
ex


• First component of the vector is the solution to the ODE

y =
(
27000 cos(x)2x+(216c3+1188c4) cos(x)+(1188c3−216c4−87750) sin(x)−13500x

)
e2x

13500 + (500c2+37125)e3x
13500 +

(
c1 − 11

4

)
ex
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 41� �
dsolve(1*diff(y(x),x$4)-8*diff(y(x),x$3)+24*diff(y(x),x$2)-32*diff(y(x),x)+15*y(x)=exp(2*x)*(15*x*cos(2*x)+32*sin(2*x)),y(x), singsol=all)� �

y(x) = ex
(
2 exx cos (x)2 + c4 sin (x) ex + c3 cos (x) ex − x ex + c2e2x + c1

)
3 Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 45� �
DSolve[1*y''''[x]-8*y'''[x]+24*y''[x]-32*y'[x]+15*y[x]==Exp[2*x]*(15*x*Cos[2*x]+32*Sin[2*x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex
(
exx cos(2x) + c4e

2x + c2e
x cos(x) + c1e

x sin(x) + c3
)
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19.40 problem section 9.3, problem 40
Internal problem ID [1537]
Internal file name [OUTPUT/1538_Sunday_June_05_2022_02_21_14_AM_13504486/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 40.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ + 6y′′′ + 13y′′ + 12y′ + 4y = e−x((−x+ 4) cos (x)− (x+ 5) sin (x))

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ + 6y′′′ + 13y′′ + 12y′ + 4y = 0

The characteristic equation is

λ4 + 6λ3 + 13λ2 + 12λ+ 4 = 0

The roots of the above equation are

λ1 = −2
λ2 = −2
λ3 = −1
λ4 = −1
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Therefore the homogeneous solution is

yh(x) = c1e−x + x e−xc2 + e−2xc3 + x e−2xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = x e−x

y3 = e−2x

y4 = e−2xx

Now the particular solution to the given ODE is found

y′′′′ + 6y′′′ + 13y′′ + 12y′ + 4y = e−x((−x+ 4) cos (x)− (x+ 5) sin (x))

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

e−x((−x+ 4) cos (x)− (x+ 5) sin (x))

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) e−x, sin (x) e−x, x cos (x) e−x, sin (x)x e−x}]

While the set of the basis functions for the homogeneous solution found earlier is

{x e−x, e−2xx, e−2x, e−x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) e−x + A2 sin (x) e−x + A3x cos (x) e−x + A4 sin (x)x e−x

The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

−2A4 cos (x) e−x + 2A3x sin (x) e−x − 2A4 cos (x)x e−x

− 6A4 sin (x) e−x − 6A3 cos (x) e−x − 2A2 cos (x) e−x + 2A3 sin (x) e−x

+ 2A1 sin (x) e−x = e−x((−x+ 4) cos (x)− (x+ 5) sin (x))
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Solving for the unknowns by comparing coefficients results in[
A1 = −1

2 , A2 = −1, A3 = −1
2 , A4 =

1
2

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −cos (x) e−x

2 − sin (x) e−x − x cos (x) e−x

2 + sin (x)x e−x

2

Therefore the general solution is

y = yh + yp

=
(
c1e−x + x e−xc2 + e−2xc3 + x e−2xc4

)
+
(
−cos (x) e−x

2 − sin (x) e−x − x cos (x) e−x

2 + sin (x)x e−x

2

)

Which simplifies to

y= (c4x+c3) e−2x+(c2x+c1) e−x− cos (x) e−x

2 −sin (x) e−x− x cos (x) e−x

2 + sin (x)x e−x

2

Summary
The solution(s) found are the following

(1)
y = (c4x+ c3) e−2x + (c2x+ c1) e−x − cos (x) e−x

2
− sin (x) e−x − x cos (x) e−x

2 + sin (x)x e−x

2
Verification of solutions

y= (c4x+c3) e−2x+(c2x+c1) e−x− cos (x) e−x

2 −sin (x) e−x− x cos (x) e−x

2 + sin (x)x e−x

2

Verified OK.
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 43� �
dsolve(1*diff(y(x),x$4)+6*diff(y(x),x$3)+13*diff(y(x),x$2)+12*diff(y(x),x)+4*y(x)=exp(-1*x)*((4-x)*cos(x)-(5+x)*sin(x)),y(x), singsol=all)� �

y(x) = ((−x− 1) cos (x) + sin (x) (−2 + x) + 2c3x+ 2c2) e−x

2 + e−2x(c4x+ c1)

3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 56� �
DSolve[1*y''''[x]+6*y'''[x]+13*y''[x]+12*y'[x]+4*y[x]==Exp[-1*x]*((4-x)*Cos[x]-(5+x)*Sin[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

−2x(ex(x− 2) sin(x)− ex(x+ 1) cos(x) + 2(c2x+ c3e
x + c4e

xx+ c1))
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19.41 problem section 9.3, problem 41
19.41.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7589

Internal problem ID [1538]
Internal file name [OUTPUT/1539_Sunday_June_05_2022_02_21_17_AM_67691959/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 41.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ + 3y′′′ + 2y′′ − 2y′ − 4y = −e−x(cos (x)− sin (x))

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ + 3y′′′ + 2y′′ − 2y′ − 4y = 0

The characteristic equation is

λ4 + 3λ3 + 2λ2 − 2λ− 4 = 0

The roots of the above equation are

λ1 = 1
λ2 = −2
λ3 = −1− i

λ4 = −1 + i
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Therefore the homogeneous solution is

yh(x) = c1e−2x + c2ex + e(−1−i)xc3 + e(−1+i)xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−2x

y2 = ex

y3 = e(−1−i)x

y4 = e(−1+i)x

Now the particular solution to the given ODE is found

y′′′′ + 3y′′′ + 2y′′ − 2y′ − 4y = −e−x(cos (x)− sin (x))

Let the particular solution be

yp = U1y1 + U2y2 + U3y3 + U4y4

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


e−2x ex e(−1−i)x e(−1+i)x

−2 e−2x ex (−1− i) e(−1−i)x (−1 + i) e(−1+i)x

4 e−2x ex 2ie(−1−i)x −2ie(−1+i)x

−8 e−2x ex (2− 2i) e(−1−i)x (2 + 2i) e(−1+i)x


|W | = 60ie−2xexe(−1−i)xe(−1+i)x
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The determinant simplifies to

|W | = 60ie−3x

Now we determine Wi for each Ui.

W1(x) = det


ex e(−1−i)x e(−1+i)x

ex (−1− i) e(−1−i)x (−1 + i) e(−1+i)x

ex 2ie(−1−i)x −2ie(−1+i)x


= 10ie−x

W2(x) = det


e−2x e(−1−i)x e(−1+i)x

−2 e−2x (−1− i) e(−1−i)x (−1 + i) e(−1+i)x

4 e−2x 2ie(−1−i)x −2ie(−1+i)x


= 4ie−4x

W3(x) = det


e−2x ex e(−1+i)x

−2 e−2x ex (−1 + i) e(−1+i)x

4 e−2x ex −2ie(−1+i)x


= (−9− 3i) e(−2+i)x

W4(x) = det


e−2x ex e(−1−i)x

−2 e−2x ex (−1− i) e(−1−i)x

4 e−2x ex 2ie(−1−i)x


= (−9 + 3i) e(−2−i)x

Now we are ready to evaluate each Ui(x).

U1 = (−1)4−1
∫

F (x)W1(x)
aW (x) dx

= (−1)3
∫ (−e−x(cos (x)− sin (x))) (10ie−x)

(1) (60ie−3x) dx

= −
∫

−10ie−2x(cos (x)− sin (x))
60ie−3x dx

= −
∫ ((− cos (x) + sin (x)) ex

6

)
dx

= cos (x) ex
6
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U2 = (−1)4−2
∫

F (x)W2(x)
aW (x) dx

= (−1)2
∫ (−e−x(cos (x)− sin (x))) (4ie−4x)

(1) (60ie−3x) dx

=
∫

−4ie−x(cos (x)− sin (x)) e−4x

60ie−3x dx

=
∫ ((− cos (x) + sin (x)) e−2x

15

)
dx

= e−2x cos (x)
75 − e−2x sin (x)

25

= e−2x cos (x)
75 − e−2x sin (x)

25

U3 = (−1)4−3
∫

F (x)W3(x)
aW (x) dx

= (−1)1
∫ (−e−x(cos (x)− sin (x)))

(
(−9− 3i) e(−2+i)x)

(1) (60ie−3x) dx

= −
∫ (9 + 3i) e−x(cos (x)− sin (x)) e(−2+i)x

60ie−3x dx

= −
∫ ((

− 1
20 + 3i

20

)
(− cos (x) + sin (x)) eix

)
dx

= x

20 + ix

10 + e2ix
40 + ie2ix

20

= x

20 + ix

10 + e2ix
40 + ie2ix

20

U4 = (−1)4−4
∫

F (x)W4(x)
aW (x) dx

= (−1)0
∫ (−e−x(cos (x)− sin (x)))

(
(−9 + 3i) e(−2−i)x)

(1) (60ie−3x) dx

=
∫ (9− 3i) e−x(cos (x)− sin (x)) e(−2−i)x

60ie−3x dx

=
∫ (( 1

20 + 3i
20

)
(− cos (x) + sin (x)) e−ix

)
dx

=
∫ ( 1

20 + 3i
20

)
(− cos (x) + sin (x)) e−ixdx

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3 + U4y4
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Hence

yp =
(
cos (x) ex

6

)(
e−2x)

+
(
e−2x cos (x)

75 − e−2x sin (x)
25

)
(ex)

+
(

x

20 + ix

10 + e2ix
40 + ie2ix

20

)(
e(−1−i)x)

+
(∫ ( 1

20 + 3i
20

)
(− cos (x) + sin (x)) e−ixdx

)(
e(−1+i)x)

Therefore the particular solution is

yp =

((41
10 + i+ 2x

)
cos (x)−

( 38
5 +i−8x

)
sin(x)

2

)
e−x

20

Which simplifies to

yp =

((41
10 + i+ 2x

)
cos (x)−

( 38
5 +i−8x

)
sin(x)

2

)
e−x

20

Therefore the general solution is

y = yh + yp

=
(
c1e−2x + c2ex + e(−1−i)xc3 + e(−1+i)xc4

)
+


((41

10 + i+ 2x
)
cos (x)−

( 38
5 +i−8x

)
sin(x)

2

)
e−x

20


Summary
The solution(s) found are the following

(1)
y = c1e−2x + c2ex + e(−1−i)xc3 + e(−1+i)xc4

+

((41
10 + i+ 2x

)
cos (x)−

( 38
5 +i−8x

)
sin(x)

2

)
e−x

20
Verification of solutions

y = c1e−2x + c2ex +e(−1−i)xc3 +e(−1+i)xc4 +

((41
10 + i+ 2x

)
cos (x)−

( 38
5 +i−8x

)
sin(x)

2

)
e−x

20

Verified OK.

7588



19.41.1 Maple step by step solution

Let’s solve
y′′′′ + 3y′′′ + 2y′′ − 2y′ − 4y = −e−x(cos (x)− sin (x))

• Highest derivative means the order of the ODE is 4
y′′′′

• Isolate 4th derivative
y′′′′ = 4y + sin (x) e−x − cos (x) e−x − 3y′′′ − 2y′′ + 2y′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′′ + 3y′′′ + 2y′′ − 2y′ − 4y = e−x(− cos (x) + sin (x))

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = sin (x) e−x − cos (x) e−x − 3y4(x)− 2y3(x) + 2y2(x) + 4y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = sin (x) e−x − cos (x) e−x − 3y4(x)− 2y3(x) + 2y2(x) + 4y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve
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→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
4 2 −2 −3

 · →y (x) +


0
0
0

sin (x) e−x − cos (x) e−x


• Define the forcing function

→
f (x) =


0
0
0

sin (x) e−x − cos (x) e−x


• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
4 2 −2 −3


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−2,


−1

8
1
4

−1
2

1



 ,

1,


1
1
1
1



 ,

−1− I,


1
4 +

I
4

− I
2

−1
2 +

I
2

1



 ,

−1 + I,


1
4 −

I
4

I
2

−1
2 −

I
2

1






• Consider eigenpair−2,


−1

8
1
4

−1
2

1




• Solution to homogeneous system from eigenpair
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→
y 1 = e−2x ·


−1

8
1
4

−1
2

1


• Consider eigenpair1,


1
1
1
1




• Solution to homogeneous system from eigenpair

→
y 2 = ex ·


1
1
1
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−1− I,


1
4 +

I
4

− I
2

−1
2 +

I
2

1




• Solution from eigenpair

e(−1−I)x ·


1
4 +

I
4

− I
2

−1
2 +

I
2

1


• Use Euler identity to write solution in terms of sin and cos
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e−x · (cos (x)− I sin (x)) ·


1
4 +

I
4

− I
2

−1
2 +

I
2

1


• Simplify expression

e−x ·



(1
4 +

I
4

)
(cos (x)− I sin (x))

− I
2(cos (x)− I sin (x))(

−1
2 +

I
2

)
(cos (x)− I sin (x))

cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) = e−x ·



sin(x)
4 + cos(x)

4

− sin(x)
2

− cos(x)
2 + sin(x)

2

cos (x)

 ,
→
y 4(x) = e−x ·



cos(x)
4 − sin(x)

4

− cos(x)
2

cos(x)
2 + sin(x)

2

− sin (x)




• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =



− e−2x

8 ex e−x
(

sin(x)
4 + cos(x)

4

)
e−x
(

cos(x)
4 − sin(x)

4

)
e−2x

4 ex − sin(x)e−x

2 − cos(x)e−x

2

− e−2x

2 ex e−x
(
− cos(x)

2 + sin(x)
2

)
e−x
(

cos(x)
2 + sin(x)

2

)
e−2x ex cos (x) e−x − sin (x) e−x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)
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Φ(x) =



− e−2x

8 ex e−x
(

sin(x)
4 + cos(x)

4

)
e−x
(

cos(x)
4 − sin(x)

4

)
e−2x

4 ex − sin(x)e−x

2 − cos(x)e−x

2

− e−2x

2 ex e−x
(
− cos(x)

2 + sin(x)
2

)
e−x
(

cos(x)
2 + sin(x)

2

)
e−2x ex cos (x) e−x − sin (x) e−x


· 1

−1
8 1 1

4
1
4

1
4 1 0 −1

2

−1
2 1 −1

2
1
2

1 1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =



2
(

2 e3x
3 + 5

6+ex(cos(x)+2 sin(x))
)
e−2x

5
(−2 cos(x)+sin(x))e−x

5 + 2 ex
5 −

e−2x
(
− 8 e3x

3 + 5
3+(cos(x)+7 sin(x))ex

)
10

(
2 e3x−5+(−9 sin(x)+3 cos(x))ex

)
e−2x

30

2
(

2 e3x
3 − 5

3+(cos(x)−3 sin(x))ex
)
e−2x

5
(3 cos(x)+sin(x))e−x

5 + 2 ex
5 −

3 e−2x
(
− 4 e3x

9 − 5
9+
(
cos(x)− 4 sin(x)

3

)
ex
)

5

(
e3x+5+(3 sin(x)−6 cos(x))ex

)
e−2x

15
4
(
5+e3x+3(−2 cos(x)+sin(x))ex

)
e−2x

15
(−2 cos(x)−4 sin(x))e−x

5 + 2 ex
5

(
4 e3x−10+(−3 sin(x)+21 cos(x))ex

)
e−2x

15

(
e3x−10+(3 sin(x)+9 cos(x))ex

)
e−2x

15

4
(
−10+e3x+3(3 cos(x)+sin(x))ex

)
e−2x

15
(−2 cos(x)+6 sin(x))e−x

5 + 2 ex
5 −

8
(
− e3x

6 − 5
6+
(
cos(x)+ 3 sin(x)

4

)
ex
)
e−2x

5 −
2
(
− e3x

6 − 10
3 +ex(cos(x)+2 sin(x))

)
e−2x

5


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds
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◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =



(
− 5

3−
2 e3x
15 +

((
x+ 9

5
)
cos(x)+2

(
x− 6

5
)
sin(x)

)
ex
)
e−2x

10(
− 2 e3x

15 + 10
3 +
((
x− 16

5
)
cos(x)+

(
−3x+ 13

5
)
sin(x)

)
ex
)
e−2x

10

−
(
−15 ex sin(x)x+30 ex cos(x)x+e3x+18 sin(x)ex−51 cos(x)ex+50

)
e−2x

75

3
(
− e3x

45 + 20
9 +
((

x− 11
5
)
cos(x)+

(
x− 6

5
)
sin(x)

3

)
ex
)
e−2x

5


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +



(
− 5

3−
2 e3x
15 +

((
x+ 9

5
)
cos(x)+2

(
x− 6

5
)
sin(x)

)
ex
)
e−2x

10(
− 2 e3x

15 + 10
3 +
((
x− 16

5
)
cos(x)+

(
−3x+ 13

5
)
sin(x)

)
ex
)
e−2x

10

−
(
−15 ex sin(x)x+30 ex cos(x)x+e3x+18 sin(x)ex−51 cos(x)ex+50

)
e−2x

75

3
(
− e3x

45 + 20
9 +
((

x− 11
5
)
cos(x)+

(
x− 6

5
)
sin(x)

3

)
ex
)
e−2x

5


• First component of the vector is the solution to the ODE

y =
((

10c2− 2
15
)
e3x+

((
x+ 5c3

2 + 5c4
2 + 9

5

)
cos(x)+2

(
x+ 5c3

4 − 5c4
4 − 6

5

)
sin(x)

)
ex− 5c1

4 − 5
3

)
e−2x

10

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 44� �
dsolve(1*diff(y(x),x$4)+3*diff(y(x),x$3)+2*diff(y(x),x$2)-2*diff(y(x),x)-4*y(x)=-exp(-1*x)*(cos(x)-sin(x)),y(x), singsol=all)� �
y(x) =

(
10c1e3x +

((
x+ 10c3 + 14

5

)
cos (x) + 2 sin (x)

(
x+ 5c4 − 1

5

))
ex + 10c2

)
e−2x

10

3 Solution by Mathematica
Time used: 0.136 (sec). Leaf size: 58� �
DSolve[1*y''''[x]+3*y'''[x]+2*y''[x]-2*y'[x]-4*y[x]==-Exp[-1*x]*(Cos[x]-Sin[x]),y[x],x,IncludeSingularSolutions -> True]� �
y(x) → 1

50e
−2x(50(c4e3x + c3

)
+ ex(5x+ 14 + 50c2) cos(x) + ex(10x− 7 + 50c1) sin(x)

)

7595



19.42 problem section 9.3, problem 42
19.42.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7601

Internal problem ID [1539]
Internal file name [OUTPUT/1540_Sunday_June_05_2022_02_21_21_AM_71404590/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 42.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ − 5y′′′ + 13y′′ − 19y′ + 10y = ex(cos (2x) + sin (2x))

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − 5y′′′ + 13y′′ − 19y′ + 10y = 0

The characteristic equation is

λ4 − 5λ3 + 13λ2 − 19λ+ 10 = 0

The roots of the above equation are

λ1 = 1
λ2 = 2
λ3 = 1− 2i
λ4 = 1 + 2i
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Therefore the homogeneous solution is

yh(x) = c1ex + c2e2x + e(1+2i)xc3 + e(1−2i)xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = e2x

y3 = e(1+2i)x

y4 = e(1−2i)x

Now the particular solution to the given ODE is found

y′′′′ − 5y′′′ + 13y′′ − 19y′ + 10y = ex(cos (2x) + sin (2x))

Let the particular solution be

yp = U1y1 + U2y2 + U3y3 + U4y4

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


ex e2x e(1+2i)x e(1−2i)x

ex 2 e2x (1 + 2i) e(1+2i)x (1− 2i) e(1−2i)x

ex 4 e2x (−3 + 4i) e(1+2i)x (−3− 4i) e(1−2i)x

ex 8 e2x (−11− 2i) e(1+2i)x (−11 + 2i) e(1−2i)x


|W | = −80iexe2xe(1+2i)xe(1−2i)x
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The determinant simplifies to

|W | = −80ie5x

Now we determine Wi for each Ui.

W1(x) = det


e2x e(1+2i)x e(1−2i)x

2 e2x (1 + 2i) e(1+2i)x (1− 2i) e(1−2i)x

4 e2x (−3 + 4i) e(1+2i)x (−3− 4i) e(1−2i)x


= −20ie4x

W2(x) = det


ex e(1+2i)x e(1−2i)x

ex (1 + 2i) e(1+2i)x (1− 2i) e(1−2i)x

ex (−3 + 4i) e(1+2i)x (−3− 4i) e(1−2i)x


= −16ie3x

W3(x) = det


ex e2x e(1−2i)x

ex 2 e2x (1− 2i) e(1−2i)x

ex 4 e2x (−3− 4i) e(1−2i)x


= (−4 + 2i) e(4−2i)x

W4(x) = det


ex e2x e(1+2i)x

ex 2 e2x (1 + 2i) e(1+2i)x

ex 4 e2x (−3 + 4i) e(1+2i)x


= (−4− 2i) e(4+2i)x

Now we are ready to evaluate each Ui(x).

U1 = (−1)4−1
∫

F (x)W1(x)
aW (x) dx

= (−1)3
∫ (ex(cos (2x) + sin (2x))) (−20ie4x)

(1) (−80ie5x) dx

= −
∫

−20iex(cos (2x) + sin (2x)) e4x
−80ie5x dx

= −
∫ (sin (2x)

4 + cos (2x)
4

)
dx

= −sin (2x)
8 + cos (2x)

8
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U2 = (−1)4−2
∫

F (x)W2(x)
aW (x) dx

= (−1)2
∫ (ex(cos (2x) + sin (2x))) (−16ie3x)

(1) (−80ie5x) dx

=
∫

−16iex(cos (2x) + sin (2x)) e3x
−80ie5x dx

=
∫ ((cos (2x) + sin (2x)) e−x

5

)
dx

= e−x(− sin (2x)− 2 cos (2x))
25 + 2(2 sin (x)− cos (x)) e−x cos (x)

25 + e−x

25

= e−x(− sin (2x)− 2 cos (2x))
25 + 2(2 sin (x)− cos (x)) e−x cos (x)

25 + e−x

25

U3 = (−1)4−3
∫

F (x)W3(x)
aW (x) dx

= (−1)1
∫ (ex(cos (2x) + sin (2x)))

(
(−4 + 2i) e(4−2i)x)

(1) (−80ie5x) dx

= −
∫ (−4 + 2i) ex(cos (2x) + sin (2x)) e(4−2i)x

−80ie5x dx

= −
∫ ((

− 1
40 − i

20

)
(cos (2x) + sin (2x)) e−2ix

)
dx

= 3x
80 + ix

80 − 3 e−4ix

320 − ie−4ix

320

= 3x
80 + ix

80 − 3 e−4ix

320 − ie−4ix

320

U4 = (−1)4−4
∫

F (x)W4(x)
aW (x) dx

= (−1)0
∫ (ex(cos (2x) + sin (2x)))

(
(−4− 2i) e(4+2i)x)

(1) (−80ie5x) dx

=
∫ (−4− 2i) ex(cos (2x) + sin (2x)) e(4+2i)x

−80ie5x dx

=
∫ (( 1

40 − i

20

)
(cos (2x) + sin (2x)) e2ix

)
dx

= 3x
80 − ix

80 − 3 e4ix
320 + ie4ix

320

= 3x
80 − ix

80 − 3 e4ix
320 + ie4ix

320
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Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3 + U4y4

Hence

yp =
(
−sin (2x)

8 + cos (2x)
8

)
(ex)

+
(
e−x(− sin (2x)− 2 cos (2x))

25 + 2(2 sin (x)− cos (x)) e−x cos (x)
25 + e−x

25

)(
e2x
)

+
(
3x
80 + ix

80 − 3 e−4ix

320 − ie−4ix

320

)(
e(1+2i)x)

+
(
3x
80 − ix

80 − 3 e4ix
320 + ie4ix

320

)(
e(1−2i)x)

Therefore the particular solution is

yp =
ex(60x cos (2x)− 20x sin (2x)− 11 cos (2x)− 73 sin (2x))

800

Therefore the general solution is

y = yh + yp

=
(
c1ex + c2e2x + e(1+2i)xc3 + e(1−2i)xc4

)
+
(
ex(60x cos (2x)− 20x sin (2x)− 11 cos (2x)− 73 sin (2x))

800

)

Summary
The solution(s) found are the following

(1)
y = c1ex + c2e2x + e(1+2i)xc3 + e(1−2i)xc4

+ ex(60x cos (2x)− 20x sin (2x)− 11 cos (2x)− 73 sin (2x))
800

Verification of solutions

y = c1ex + c2e2x + e(1+2i)xc3 + e(1−2i)xc4

+ ex(60x cos (2x)− 20x sin (2x)− 11 cos (2x)− 73 sin (2x))
800

Verified OK.
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19.42.1 Maple step by step solution

Let’s solve
y′′′′ − 5y′′′ + 13y′′ − 19y′ + 10y = ex(cos (2x) + sin (2x))

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = ex cos (2x) + ex sin (2x) + 5y4(x)− 13y3(x) + 19y2(x)− 10y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = ex cos (2x) + ex sin (2x) + 5y4(x)− 13y3(x) + 19y2(x)− 10y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1

−10 19 −13 5

 · →y (x) +


0
0
0

ex cos (2x) + ex sin (2x)


• Define the forcing function
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→
f (x) =


0
0
0

ex cos (2x) + ex sin (2x)


• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1

−10 19 −13 5


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

1,


1
1
1
1



 ,

2,


1
8
1
4
1
2

1



 ,

1− 2 I,


− 11

125 −
2 I
125

− 3
25 +

4 I
25

1
5 +

2 I
5

1



 ,

1 + 2 I,


− 11

125 +
2 I
125

− 3
25 −

4 I
25

1
5 −

2 I
5

1






• Consider eigenpair1,


1
1
1
1




• Solution to homogeneous system from eigenpair

→
y 1 = ex ·


1
1
1
1


• Consider eigenpair
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2,


1
8
1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 2 = e2x ·


1
8
1
4
1
2

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored1− 2 I,


− 11

125 −
2 I
125

− 3
25 +

4 I
25

1
5 +

2 I
5

1




• Solution from eigenpair

e(1−2 I)x ·


− 11

125 −
2 I
125

− 3
25 +

4 I
25

1
5 +

2 I
5

1


• Use Euler identity to write solution in terms of sin and cos

ex · (cos (2x)− I sin (2x)) ·


− 11

125 −
2 I
125

− 3
25 +

4 I
25

1
5 +

2 I
5

1


• Simplify expression
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ex ·



(
− 11

125 −
2 I
125

)
(cos (2x)− I sin (2x))(

− 3
25 +

4 I
25

)
(cos (2x)− I sin (2x))(1

5 +
2 I
5

)
(cos (2x)− I sin (2x))

cos (2x)− I sin (2x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) = ex ·


−11 cos(2x)

125 − 2 sin(2x)
125

−3 cos(2x)
25 + 4 sin(2x)

25
cos(2x)

5 + 2 sin(2x)
5

cos (2x)

 ,
→
y 4(x) = ex ·



11 sin(2x)
125 − 2 cos(2x)

125
3 sin(2x)

25 + 4 cos(2x)
25

− sin(2x)
5 + 2 cos(2x)

5

− sin (2x)




• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =



ex e2x
8 ex

(
−11 cos(2x)

125 − 2 sin(2x)
125

)
ex
(

11 sin(2x)
125 − 2 cos(2x)

125

)
ex e2x

4 ex
(
−3 cos(2x)

25 + 4 sin(2x)
25

)
ex
(

3 sin(2x)
25 + 4 cos(2x)

25

)
ex e2x

2 ex
(

cos(2x)
5 + 2 sin(2x)

5

)
ex
(
− sin(2x)

5 + 2 cos(2x)
5

)
ex e2x ex cos (2x) −ex sin (2x)


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =



ex e2x
8 ex

(
−11 cos(2x)

125 − 2 sin(2x)
125

)
ex
(

11 sin(2x)
125 − 2 cos(2x)

125

)
ex e2x

4 ex
(
−3 cos(2x)

25 + 4 sin(2x)
25

)
ex
(

3 sin(2x)
25 + 4 cos(2x)

25

)
ex e2x

2 ex
(

cos(2x)
5 + 2 sin(2x)

5

)
ex
(
− sin(2x)

5 + 2 cos(2x)
5

)
ex e2x ex cos (2x) −ex sin (2x)


· 1

1 1
8 − 11

125 − 2
125

1 1
4 − 3

25
4
25

1 1
2

1
5

2
5

1 1 1 0
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◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


− ex cos(2x)

2 + 5 ex
2 − e2x 17 ex cos(2x)

20 − ex sin(2x)
5 − 9 ex

4 + 7 e2x
5 −2 ex cos(2x)

5 + 3 ex sin(2x)
10 + ex − 3 e2x

5
ex cos(2x)

20 − ex sin(2x)
10 − ex

4 + e2x
5

− ex cos(2x)
2 + ex sin (2x) + 5 ex

2 − 2 e2x 9 ex cos(2x)
20 − 19 ex sin(2x)

10 − 9 ex
4 + 14 e2x

5
ex cos(2x)

5 + 11 ex sin(2x)
10 + ex − 6 e2x

5 −3 ex cos(2x)
20 − ex sin(2x)

5 − ex
4 + 2 e2x

5
3 ex cos(2x)

2 + 2 ex sin (2x) + 5 ex
2 − 4 e2x −67 ex cos(2x)

20 − 14 ex sin(2x)
5 − 9 ex

4 + 28 e2x
5

12 ex cos(2x)
5 + 7 ex sin(2x)

10 + ex − 12 e2x
5 −11 ex cos(2x)

20 + ex sin(2x)
10 − ex

4 + 4 e2x
5

5 ex
2 − 8 e2x + 11 ex cos(2x)

2 − ex sin (2x) −9 ex
4 + 56 e2x

5 − 179 ex cos(2x)
20 + 39 ex sin(2x)

10 ex − 24 e2x
5 + 19 ex cos(2x)

5 − 41 ex sin(2x)
10 − ex

4 + 8 e2x
5 − 7 ex cos(2x)

20 + 6 ex sin(2x)
5


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute
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→
y p(x) =



(
30 cos(x)2x−10x cos(x) sin(x)+2 cos(x)2−39 cos(x) sin(x)+24 ex−15x−26

)
ex

200(
10 cos(x)2x−70x cos(x) sin(x)−46 cos(x)2−53 cos(x) sin(x)+48 ex−5x−2

)
ex

200

(−130x−142)ex cos(x)2
200 − 9 sin(x)

(
x+ 31

90
)
ex cos(x)

20 − (−65x−96 ex−46)ex
200

(−310x−334)ex cos(x)2
200 + 17

(
x+ 163

170
)
sin(x)ex cos(x)
20 − (−155x−192 ex−142)ex

200


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +



(
30 cos(x)2x−10x cos(x) sin(x)+2 cos(x)2−39 cos(x) sin(x)+24 ex−15x−26

)
ex

200(
10 cos(x)2x−70x cos(x) sin(x)−46 cos(x)2−53 cos(x) sin(x)+48 ex−5x−2

)
ex

200

(−130x−142)ex cos(x)2
200 − 9 sin(x)

(
x+ 31

90
)
ex cos(x)

20 − (−65x−96 ex−46)ex
200

(−310x−334)ex cos(x)2
200 + 17

(
x+ 163

170
)
sin(x)ex cos(x)
20 − (−155x−192 ex−142)ex

200


• First component of the vector is the solution to the ODE

y =
3
(
x− 88c3

75 − 16c4
75 + 1

15

)
ex cos(2x)

40 −
(
x+ 16c3

25 − 88c4
25 + 39

10

)
ex sin(2x)

40 + (24+25c2)e2x
200 + ex(−1+8c1)

8

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 48� �
dsolve(1*diff(y(x),x$4)-5*diff(y(x),x$3)+13*diff(y(x),x$2)-19*diff(y(x),x)+10*y(x)=exp(x)*(cos(2*x)+sin(2*x)),y(x), singsol=all)� �
y(x) =

3 ex
(
x+ 40c3

3 + 1
15

)
cos (2x)

40 −
ex
(
x− 40c4 + 39

10

)
sin (2x)

40 + c2e2x +
ex(8c1 + 1)

8
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3 Solution by Mathematica
Time used: 0.186 (sec). Leaf size: 53� �
DSolve[1*y''''[x]-5*y'''[x]+13*y''[x]-19*y'[x]+10*y[x]==Exp[x]*(Cos[2*x]+Sin[2*x]),y[x],x,IncludeSingularSolutions -> True]� �
y(x) → 1

400e
x(400(c4ex + c3) + (30x− 13+ 400c2) cos(2x)− 2(5x+17− 200c1) sin(2x))
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19.43 problem section 9.3, problem 43
19.43.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7613

Internal problem ID [1540]
Internal file name [OUTPUT/1541_Sunday_June_05_2022_02_21_25_AM_68185977/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 43.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ + 8y′′′ + 32y′′ + 64y′ + 39y = e−2x((4− 15x) cos (3x)− (4 + 15x) sin (3x))

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ + 8y′′′ + 32y′′ + 64y′ + 39y = 0

The characteristic equation is

λ4 + 8λ3 + 32λ2 + 64λ+ 39 = 0

The roots of the above equation are

λ1 = −3
λ2 = −1
λ3 = −2− 3i
λ4 = −2 + 3i
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Therefore the homogeneous solution is

yh(x) = c1e−x + e−3xc2 + e(−2+3i)xc3 + e(−2−3i)xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = e−3x

y3 = e(−2+3i)x

y4 = e(−2−3i)x

Now the particular solution to the given ODE is found

y′′′′ + 8y′′′ + 32y′′ + 64y′ + 39y = e−2x((4− 15x) cos (3x)− (4 + 15x) sin (3x))

Let the particular solution be

yp = U1y1 + U2y2 + U3y3 + U4y4

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


e−x e−3x e(−2+3i)x e(−2−3i)x

−e−x −3 e−3x (−2 + 3i) e(−2+3i)x (−2− 3i) e(−2−3i)x

e−x 9 e−3x (−5− 12i) e(−2+3i)x (−5 + 12i) e(−2−3i)x

−e−x −27 e−3x (46 + 9i) e(−2+3i)x (46− 9i) e(−2−3i)x


|W | = 1200ie−xe−3xe(−2+3i)xe(−2−3i)x
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The determinant simplifies to

|W | = 1200ie−8x

Now we determine Wi for each Ui.

W1(x) = det


e−3x e(−2+3i)x e(−2−3i)x

−3 e−3x (−2 + 3i) e(−2+3i)x (−2− 3i) e(−2−3i)x

9 e−3x (−5− 12i) e(−2+3i)x (−5 + 12i) e(−2−3i)x


= −60ie−7x

W2(x) = det


e−x e(−2+3i)x e(−2−3i)x

−e−x (−2 + 3i) e(−2+3i)x (−2− 3i) e(−2−3i)x

e−x (−5− 12i) e(−2+3i)x (−5 + 12i) e(−2−3i)x


= −60ie−5x

W3(x) = det


e−x e−3x e(−2−3i)x

−e−x −3 e−3x (−2− 3i) e(−2−3i)x

e−x 9 e−3x (−5 + 12i) e(−2−3i)x


= 20 e(−6−3i)x

W4(x) = det


e−x e−3x e(−2+3i)x

−e−x −3 e−3x (−2 + 3i) e(−2+3i)x

e−x 9 e−3x (−5− 12i) e(−2+3i)x


= 20 e(−6+3i)x
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Now we are ready to evaluate each Ui(x).

U1 = (−1)4−1
∫

F (x)W1(x)
aW (x) dx

= (−1)3
∫ (e−2x((4− 15x) cos (3x)− (4 + 15x) sin (3x))) (−60ie−7x)

(1) (1200ie−8x) dx

= −
∫

−60ie−2x((4− 15x) cos (3x)− (4 + 15x) sin (3x)) e−7x

1200ie−8x dx

= −
∫ ((15x sin (3x) + 15x cos (3x) + 4 sin (3x)− 4 cos (3x)) e−x

20

)
dx

= −
3
(
−3x

10 −
3
50

)
e−x cos (3x)

4 −
3
(
− x

10 +
2
25

)
e−x sin (3x)

4 −
3
(
− x

10 +
2
25

)
e−x cos (3x)
4 +

3
(
−3x

10 −
3
50

)
e−x sin (3x)

4 + 3 e−x cos (3x)
50 + e−x sin (3x)

50 + 3 cos (x) e−x

10 − 3 sin (x) e−x

10 + 2(− cos (x) + 3 sin (x)) e−x cos (x)2

25 + 6 e−x(− cos (x) + sin (x))
25

= −
3
(
−3x

10 −
3
50

)
e−x cos (3x)

4 −
3
(
− x

10 +
2
25

)
e−x sin (3x)

4 −
3
(
− x

10 +
2
25

)
e−x cos (3x)
4 +

3
(
−3x

10 −
3
50

)
e−x sin (3x)

4 + 3 e−x cos (3x)
50 + e−x sin (3x)

50 + 3 cos (x) e−x

10 − 3 sin (x) e−x

10 + 2(− cos (x) + 3 sin (x)) e−x cos (x)2

25 + 6 e−x(− cos (x) + sin (x))
25

U2 = (−1)4−2
∫

F (x)W2(x)
aW (x) dx

= (−1)2
∫ (e−2x((4− 15x) cos (3x)− (4 + 15x) sin (3x))) (−60ie−5x)

(1) (1200ie−8x) dx

=
∫

−60ie−2x((4− 15x) cos (3x)− (4 + 15x) sin (3x)) e−5x

1200ie−8x dx

=
∫ ((15x sin (3x) + 15x cos (3x) + 4 sin (3x)− 4 cos (3x)) ex

20

)
dx

=
3
(
−3x

10 +
3
50

)
ex cos (3x)

4 +
3
(

x
10 +

2
25

)
ex sin (3x)
4 +

3
(

x
10 +

2
25

)
ex cos (3x)
4 −

3
(
−3x

10 +
3
50

)
ex sin (3x)

4 − 3 ex cos (3x)
50 + ex sin (3x)

50 + 3 cos (x) ex
10 + 3 sin (x) ex

10 − 2(cos (x) + 3 sin (x)) ex cos (x)2

25 − 6 ex(cos (x) + sin (x))
25

=
3
(
−3x

10 +
3
50

)
ex cos (3x)

4 +
3
(

x
10 +

2
25

)
ex sin (3x)
4 +

3
(

x
10 +

2
25

)
ex cos (3x)
4 −

3
(
−3x

10 +
3
50

)
ex sin (3x)

4 − 3 ex cos (3x)
50 + ex sin (3x)

50 + 3 cos (x) ex
10 + 3 sin (x) ex

10 − 2(cos (x) + 3 sin (x)) ex cos (x)2

25 − 6 ex(cos (x) + sin (x))
25

U3 = (−1)4−3
∫

F (x)W3(x)
aW (x) dx

= (−1)1
∫ (e−2x((4− 15x) cos (3x)− (4 + 15x) sin (3x)))

(
20 e(−6−3i)x)

(1) (1200ie−8x) dx

= −
∫ 20 e−2x((4− 15x) cos (3x)− (4 + 15x) sin (3x)) e(−6−3i)x

1200ie−8x dx

= −
∫ (

i(15x sin (3x) + 15x cos (3x) + 4 sin (3x)− 4 cos (3x)) e−3ix

60

)
dx

= ix

30 − x2

16 − x

30 − ix2

16 +
(

1
480 + i

480

)
(i+ 10x) e−6ix

= ix

30 − x2

16 − x

30 − ix2

16 +
(

1
480 + i

480

)
(i+ 10x) e−6ix

7611



U4 = (−1)4−4
∫

F (x)W4(x)
aW (x) dx

= (−1)0
∫ (e−2x((4− 15x) cos (3x)− (4 + 15x) sin (3x)))

(
20 e(−6+3i)x)

(1) (1200ie−8x) dx

=
∫ 20 e−2x((4− 15x) cos (3x)− (4 + 15x) sin (3x)) e(−6+3i)x

1200ie−8x dx

=
∫ (

i(15x sin (3x) + 15x cos (3x) + 4 sin (3x)− 4 cos (3x)) e3ix
60

)
dx

= − ix

30 − x2

16 − x

30 + ix2

16 +
(

1
480 − i

480

)
(−i+ 10x) e6ix

= − ix

30 − x2

16 − x

30 + ix2

16 +
(

1
480 − i

480

)
(−i+ 10x) e6ix

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3 + U4y4

Hence

yp =
(
−
3
(
−3x

10 −
3
50

)
e−x cos (3x)

4 −
3
(
− x

10 +
2
25

)
e−x sin (3x)

4 −
3
(
− x

10 +
2
25

)
e−x cos (3x)
4 +

3
(
−3x

10 −
3
50

)
e−x sin (3x)

4 + 3 e−x cos (3x)
50 + e−x sin (3x)

50 + 3 cos (x) e−x

10 − 3 sin (x) e−x

10 + 2(− cos (x) + 3 sin (x)) e−x cos (x)2

25 + 6 e−x(− cos (x) + sin (x))
25

)(
e−x
)

+
(
3
(
−3x

10 +
3
50

)
ex cos (3x)

4 +
3
(

x
10 +

2
25

)
ex sin (3x)
4 +

3
(

x
10 +

2
25

)
ex cos (3x)
4 −

3
(
−3x

10 +
3
50

)
ex sin (3x)

4 − 3 ex cos (3x)
50 + ex sin (3x)

50 + 3 cos (x) ex
10 + 3 sin (x) ex

10 − 2(cos (x) + 3 sin (x)) ex cos (x)2

25 − 6 ex(cos (x) + sin (x))
25

)(
e−3x)

+
(
ix

30 − x2

16 − x

30 − ix2

16 +
(

1
480 + i

480

)
(i+ 10x) e−6ix

)(
e(−2+3i)x)

+
(
− ix

30 − x2

16 − x

30 + ix2

16 +
(

1
480 − i

480

)
(−i+ 10x) e6ix

)(
e(−2−3i)x)

Therefore the particular solution is

yp = −
((
x2 − x− 11

30

)
cos (3x)−

(
x2 + x− 11

30

)
sin (3x)

)
e−2x

8

Therefore the general solution is

y = yh + yp

=
(
c1e−x + e−3xc2 + e(−2+3i)xc3 + e(−2−3i)xc4

)
+
(
−
((
x2 − x− 11

30

)
cos (3x)−

(
x2 + x− 11

30

)
sin (3x)

)
e−2x

8

)
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Summary
The solution(s) found are the following

(1)
y = c1e−x + e−3xc2 + e(−2+3i)xc3 + e(−2−3i)xc4

−
((
x2 − x− 11

30

)
cos (3x)−

(
x2 + x− 11

30

)
sin (3x)

)
e−2x

8
Verification of solutions

y = c1e−x + e−3xc2 + e(−2+3i)xc3 + e(−2−3i)xc4

−
((
x2 − x− 11

30

)
cos (3x)−

(
x2 + x− 11

30

)
sin (3x)

)
e−2x

8

Verified OK.

19.43.1 Maple step by step solution

Let’s solve
y′′′′ + 8y′′′ + 32y′′ + 64y′ + 39y = e−2x((4− 15x) cos (3x)− (4 + 15x) sin (3x))

• Highest derivative means the order of the ODE is 4
y′′′′

• Isolate 4th derivative
y′′′′ = −39y − 15 cos (3x) e−2xx− 15 sin (3x) e−2xx+ 4 cos (3x) e−2x − 4 sin (3x) e−2x − 8y′′′ − 32y′′ − 64y′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′′ + 8y′′′ + 32y′′ + 64y′ + 39y = −e−2x(15x sin (3x) + 15x cos (3x) + 4 sin (3x)− 4 cos (3x))

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = −15 cos (3x) e−2xx− 15 sin (3x) e−2xx+ 4 cos (3x) e−2x − 4 sin (3x) e−2x − 8y4(x)− 32y3(x)− 64y2(x)− 39y1(x)
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Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = −15 cos (3x) e−2xx− 15 sin (3x) e−2xx+ 4 cos (3x) e−2x − 4 sin (3x) e−2x − 8y4(x)− 32y3(x)− 64y2(x)− 39y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1

−39 −64 −32 −8

 · →y (x) +


0
0
0

−15 sin (3x) e−2xx− 15 cos (3x) e−2xx− 4 sin (3x) e−2x + 4 cos (3x) e−2x


• Define the forcing function

→
f (x) =


0
0
0

−15 sin (3x) e−2xx− 15 cos (3x) e−2xx− 4 sin (3x) e−2x + 4 cos (3x) e−2x


• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1

−39 −64 −32 −8


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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−3,


− 1

27
1
9

−1
3

1



 ,

−1,


−1
1
−1
1



 ,

−2− 3 I,


46

2197 +
9 I

2197

− 5
169 −

12 I
169

− 2
13 +

3 I
13

1



 ,

−2 + 3 I,


46

2197 −
9 I

2197

− 5
169 +

12 I
169

− 2
13 −

3 I
13

1






• Consider eigenpair−3,


− 1

27
1
9

−1
3

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−3x ·


− 1

27
1
9

−1
3

1


• Consider eigenpair−1,


−1
1
−1
1




• Solution to homogeneous system from eigenpair

→
y 2 = e−x ·


−1
1
−1
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored
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−2− 3 I,


46

2197 +
9 I

2197

− 5
169 −

12 I
169

− 2
13 +

3 I
13

1




• Solution from eigenpair

e(−2−3 I)x ·


46

2197 +
9 I

2197

− 5
169 −

12 I
169

− 2
13 +

3 I
13

1


• Use Euler identity to write solution in terms of sin and cos

e−2x · (cos (3x)− I sin (3x)) ·


46

2197 +
9 I

2197

− 5
169 −

12 I
169

− 2
13 +

3 I
13

1


• Simplify expression

e−2x ·



( 46
2197 +

9 I
2197

)
(cos (3x)− I sin (3x))(

− 5
169 −

12 I
169

)
(cos (3x)− I sin (3x))(

− 2
13 +

3 I
13

)
(cos (3x)− I sin (3x))

cos (3x)− I sin (3x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) = e−2x ·



46 cos(3x)
2197 + 9 sin(3x)

2197

−5 cos(3x)
169 − 12 sin(3x)

169

−2 cos(3x)
13 + 3 sin(3x)

13

cos (3x)

 ,
→
y 4(x) = e−2x ·


−46 sin(3x)

2197 + 9 cos(3x)
2197

5 sin(3x)
169 − 12 cos(3x)

169
2 sin(3x)

13 + 3 cos(3x)
13

− sin (3x)




• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +

→
y p(x)

� Fundamental matrix
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◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =



− e−3x

27 −e−x e−2x
(

46 cos(3x)
2197 + 9 sin(3x)

2197

)
e−2x

(
−46 sin(3x)

2197 + 9 cos(3x)
2197

)
e−3x

9 e−x e−2x
(
−5 cos(3x)

169 − 12 sin(3x)
169

)
e−2x

(
5 sin(3x)

169 − 12 cos(3x)
169

)
− e−3x

3 −e−x e−2x
(
−2 cos(3x)

13 + 3 sin(3x)
13

)
e−2x

(
2 sin(3x)

13 + 3 cos(3x)
13

)
e−3x e−x cos (3x) e−2x − sin (3x) e−2x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =



− e−3x

27 −e−x e−2x
(

46 cos(3x)
2197 + 9 sin(3x)

2197

)
e−2x

(
−46 sin(3x)

2197 + 9 cos(3x)
2197

)
e−3x

9 e−x e−2x
(
−5 cos(3x)

169 − 12 sin(3x)
169

)
e−2x

(
5 sin(3x)

169 − 12 cos(3x)
169

)
− e−3x

3 −e−x e−2x
(
−2 cos(3x)

13 + 3 sin(3x)
13

)
e−2x

(
2 sin(3x)

13 + 3 cos(3x)
13

)
e−3x e−x cos (3x) e−2x − sin (3x) e−2x


· 1

− 1
27 −1 46

2197
9

2197
1
9 1 − 5

169 − 12
169

−1
3 −1 − 2

13
3
13

1 1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =



(−6 cos(3x)−4 sin(3x))e−2x

20 − 13 e−3x

20 + 39 e−x

20
(−24 cos(3x)−22 sin(3x))e−2x

60 − 17 e−3x

20 + 5 e−x

4
(−2 cos(3x)−4 sin(3x))e−2x

20 − e−3x

4 + 7 e−x

20 − sin(3x)e−2x

30 + e−x

20 − e−3x

20
13 sin(3x)e−2x

10 − 39 e−x

20 + 39 e−3x

20
(−9 cos(3x)+58 sin(3x))e−2x

30 + 51 e−3x

20 − 5 e−x

4
(−4 cos(3x)+7 sin(3x))e−2x

10 + 3 e−3x

4 − 7 e−x

20
(−6 cos(3x)+4 sin(3x))e−2x

60 + 3 e−3x

20 − e−x

20
13(3 cos(3x)−2 sin(3x))e−2x

10 − 117 e−3x

20 + 39 e−x

20
(192 cos(3x)−89 sin(3x))e−2x

30 − 153 e−3x

20 + 5 e−x

4
(58 cos(3x)−4 sin(3x))e−2x

20 − 9 e−3x

4 + 7 e−x

20
(12 cos(3x)+5 sin(3x))e−2x

30 − 9 e−3x

20 + e−x

20
13(−12 cos(3x)−5 sin(3x))e−2x

10 + 351 e−3x

20 − 39 e−x

20
(−651 cos(3x)−398 sin(3x))e−2x

30 + 459 e−3x

20 − 5 e−x

4
(−64 cos(3x)−83 sin(3x))e−2x

10 + 27 e−3x

4 − 7 e−x

20
(−9 cos(3x)−46 sin(3x))e−2x

30 + 27 e−3x

20 − e−x

20


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

7617



◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =



((
−5x2+5x+2

)
cos(3x)+5

(
x2+x− 1

3
)
sin(3x)

)
e−2x

40 − e−3x

40 − e−x

40((
25x2−5x−4

)
cos(3x)+5

(
x2−3x+ 7

15
)
sin(3x)

)
e−2x

40 + 3 e−3x

40 + e−x

40((
−105x2+45x+30

)
cos(3x)+

(
−255x2+165x−23

)
sin(3x)

)
e−2x

120 − 9 e−3x

40 − e−x

40((
−185x2+65x−28

)
cos(3x)+275

(
x2− 13

11x+
11
75
)
sin(3x)

)
e−2x

40 + 27 e−3x

40 + e−x

40


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +



((
−5x2+5x+2

)
cos(3x)+5

(
x2+x− 1

3
)
sin(3x)

)
e−2x

40 − e−3x

40 − e−x

40((
25x2−5x−4

)
cos(3x)+5

(
x2−3x+ 7

15
)
sin(3x)

)
e−2x

40 + 3 e−3x

40 + e−x

40((
−105x2+45x+30

)
cos(3x)+

(
−255x2+165x−23

)
sin(3x)

)
e−2x

120 − 9 e−3x

40 − e−x

40((
−185x2+65x−28

)
cos(3x)+275

(
x2− 13

11x+
11
75
)
sin(3x)

)
e−2x

40 + 27 e−3x

40 + e−x

40


• First component of the vector is the solution to the ODE

y =
((
−10985x2+1840c3+360c4+10985x+4394

)
cos(3x)+10985 sin(3x)

(
x2+x+ 72

2197 c3−
368
2197 c4−

1
3
))
e−2x

87880 + (−27−40c1)e−3x

1080 −
(
c2 + 1

40

)
e−x
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 57� �
dsolve(1*diff(y(x),x$4)+8*diff(y(x),x$3)+32*diff(y(x),x$2)+64*diff(y(x),x)+39*y(x)=exp(-2*x)*((4-15*x)*cos(3*x)-(4+15*x)*sin(3*x)),y(x), singsol=all)� �
y(x) =

(
(−30x2 + 240c3 + 30x+ 11) cos (3x) + 30

(
x2 + x+ 8c4 − 11

30

)
sin (3x)

)
e−2x

240
+ c1e−3x + e−xc2

3 Solution by Mathematica
Time used: 0.841 (sec). Leaf size: 73� �
DSolve[1*y''''[x]+8*y'''[x]+32*y''[x]+64*y'[x]+39*y[x]==Exp[-2*x]*((4-15*x)*Cos[3*x]-(4+15*x)*Sin[3*x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
720e

−3x(−5ex
(
18x2 − 18x− 5− 144c2

)
cos(3x)

+ ex
(
90x2 + 90x− 41 + 720c1

)
sin(3x) + 720

(
c4e

2x + c3
))
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19.44 problem section 9.3, problem 44
19.44.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7625

Internal problem ID [1541]
Internal file name [OUTPUT/1542_Sunday_June_05_2022_02_21_29_AM_55063930/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 44.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ − 5y′′′ + 13y′′ − 19y′ + 10y = ex((8x+ 7) cos (2x) + (8− 4x) sin (2x))

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − 5y′′′ + 13y′′ − 19y′ + 10y = 0

The characteristic equation is

λ4 − 5λ3 + 13λ2 − 19λ+ 10 = 0

The roots of the above equation are

λ1 = 1
λ2 = 2
λ3 = 1− 2i
λ4 = 1 + 2i
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Therefore the homogeneous solution is

yh(x) = c1ex + c2e2x + e(1+2i)xc3 + e(1−2i)xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = e2x

y3 = e(1+2i)x

y4 = e(1−2i)x

Now the particular solution to the given ODE is found

y′′′′ − 5y′′′ + 13y′′ − 19y′ + 10y = ex((8x+ 7) cos (2x) + (8− 4x) sin (2x))

Let the particular solution be

yp = U1y1 + U2y2 + U3y3 + U4y4

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


ex e2x e(1+2i)x e(1−2i)x

ex 2 e2x (1 + 2i) e(1+2i)x (1− 2i) e(1−2i)x

ex 4 e2x (−3 + 4i) e(1+2i)x (−3− 4i) e(1−2i)x

ex 8 e2x (−11− 2i) e(1+2i)x (−11 + 2i) e(1−2i)x


|W | = −80iexe2xe(1+2i)xe(1−2i)x
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The determinant simplifies to

|W | = −80ie5x

Now we determine Wi for each Ui.

W1(x) = det


e2x e(1+2i)x e(1−2i)x

2 e2x (1 + 2i) e(1+2i)x (1− 2i) e(1−2i)x

4 e2x (−3 + 4i) e(1+2i)x (−3− 4i) e(1−2i)x


= −20ie4x

W2(x) = det


ex e(1+2i)x e(1−2i)x

ex (1 + 2i) e(1+2i)x (1− 2i) e(1−2i)x

ex (−3 + 4i) e(1+2i)x (−3− 4i) e(1−2i)x


= −16ie3x

W3(x) = det


ex e2x e(1−2i)x

ex 2 e2x (1− 2i) e(1−2i)x

ex 4 e2x (−3− 4i) e(1−2i)x


= (−4 + 2i) e(4−2i)x

W4(x) = det


ex e2x e(1+2i)x

ex 2 e2x (1 + 2i) e(1+2i)x

ex 4 e2x (−3 + 4i) e(1+2i)x


= (−4− 2i) e(4+2i)x
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Now we are ready to evaluate each Ui(x).

U1 = (−1)4−1
∫

F (x)W1(x)
aW (x) dx

= (−1)3
∫ (ex((8x+ 7) cos (2x) + (8− 4x) sin (2x))) (−20ie4x)

(1) (−80ie5x) dx

= −
∫

−20iex((8x+ 7) cos (2x) + (8− 4x) sin (2x)) e4x
−80ie5x dx

= −
∫ ((8x+ 7) cos (2x)

4 − (−2 + x) sin (2x)
)

dx

= cos (2x)
2 − x sin (2x)− 5 sin (2x)

8 − x cos (2x)
2

= cos (2x)
2 − x sin (2x)− 5 sin (2x)

8 − x cos (2x)
2

U2 = (−1)4−2
∫

F (x)W2(x)
aW (x) dx

= (−1)2
∫ (ex((8x+ 7) cos (2x) + (8− 4x) sin (2x))) (−16ie3x)

(1) (−80ie5x) dx

=
∫

−16iex((8x+ 7) cos (2x) + (8− 4x) sin (2x)) e3x
−80ie5x dx

=
∫ ((−4x sin (2x) + 8x cos (2x) + 8 sin (2x) + 7 cos (2x)) e−x

5

)
dx

=
8
(
−x

5 +
3
25

)
e−x cos (2x)
5 −

8
(
−2x

5 − 4
25

)
e−x sin (2x)

5 + 7 e−x

25 −
4
(
−2x

5 − 4
25

)
e−x cos (2x)

5 −
4
(
−x

5 +
3
25

)
e−x sin (2x)
5 + 14(2 sin (x)− cos (x)) e−x cos (x)

25 + 8 e−x(− sin (2x)− 2 cos (2x))
25

=
8
(
−x

5 +
3
25

)
e−x cos (2x)
5 −

8
(
−2x

5 − 4
25

)
e−x sin (2x)

5 + 7 e−x

25 −
4
(
−2x

5 − 4
25

)
e−x cos (2x)

5 −
4
(
−x

5 +
3
25

)
e−x sin (2x)
5 + 14(2 sin (x)− cos (x)) e−x cos (x)

25 + 8 e−x(− sin (2x)− 2 cos (2x))
25

U3 = (−1)4−3
∫

F (x)W3(x)
aW (x) dx

= (−1)1
∫ (ex((8x+ 7) cos (2x) + (8− 4x) sin (2x)))

(
(−4 + 2i) e(4−2i)x)

(1) (−80ie5x) dx

= −
∫ (−4 + 2i) ex((8x+ 7) cos (2x) + (8− 4x) sin (2x)) e(4−2i)x

−80ie5x dx

= −
∫ ((

− 1
40 − i

20

)
(−4x sin (2x) + 8x cos (2x) + 8 sin (2x) + 7 cos (2x)) e−2ix

)
dx

= 23x
80 + ix2

8 + 3ix
40 +

(
− 3
800 + i

200

)
(3 + 9i+ 10x) e−4ix

= 23x
80 + ix2

8 + 3ix
40 +

(
− 3
800 + i

200

)
(3 + 9i+ 10x) e−4ix
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U4 = (−1)4−4
∫

F (x)W4(x)
aW (x) dx

= (−1)0
∫ (ex((8x+ 7) cos (2x) + (8− 4x) sin (2x)))

(
(−4− 2i) e(4+2i)x)

(1) (−80ie5x) dx

=
∫ (−4− 2i) ex((8x+ 7) cos (2x) + (8− 4x) sin (2x)) e(4+2i)x

−80ie5x dx

=
∫ (( 1

40 − i

20

)
(−4x sin (2x) + 8x cos (2x) + 8 sin (2x) + 7 cos (2x)) e2ix

)
dx

= 23x
80 − ix2

8 − 3ix
40 +

(
− 3
800 − i

200

)
(3− 9i+ 10x) e4ix

= 23x
80 − ix2

8 − 3ix
40 +

(
− 3
800 − i

200

)
(3− 9i+ 10x) e4ix

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3 + U4y4

Hence

yp =
(
cos (2x)

2 − x sin (2x)− 5 sin (2x)
8 − x cos (2x)

2

)
(ex)

+
(
8
(
−x

5 +
3
25

)
e−x cos (2x)
5 −

8
(
−2x

5 − 4
25

)
e−x sin (2x)

5 + 7 e−x

25 −
4
(
−2x

5 − 4
25

)
e−x cos (2x)

5 −
4
(
−x

5 +
3
25

)
e−x sin (2x)
5 + 14(2 sin (x)− cos (x)) e−x cos (x)

25 + 8 e−x(− sin (2x)− 2 cos (2x))
25

)(
e2x
)

+
(
23x
80 + ix2

8 + 3ix
40 +

(
− 3
800 + i

200

)
(3 + 9i+ 10x) e−4ix

)(
e(1+2i)x)

+
(
23x
80 − ix2

8 − 3ix
40 +

(
− 3
800 − i

200

)
(3− 9i+ 10x) e4ix

)(
e(1−2i)x)

Therefore the particular solution is

yp = −

((
x2 + x+ 21

20

)
sin (2x) + 17 cos(2x)

20

)
ex

4

Therefore the general solution is

y = yh + yp

=
(
c1ex + c2e2x + e(1+2i)xc3 + e(1−2i)xc4

)
+

−

((
x2 + x+ 21

20

)
sin (2x) + 17 cos(2x)

20

)
ex

4
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Summary
The solution(s) found are the following

(1)y = c1ex + c2e2x + e(1+2i)xc3 + e(1−2i)xc4 −

((
x2 + x+ 21

20

)
sin (2x) + 17 cos(2x)

20

)
ex

4
Verification of solutions

y = c1ex + c2e2x + e(1+2i)xc3 + e(1−2i)xc4 −

((
x2 + x+ 21

20

)
sin (2x) + 17 cos(2x)

20

)
ex

4

Verified OK.

19.44.1 Maple step by step solution

Let’s solve
y′′′′ − 5y′′′ + 13y′′ − 19y′ + 10y = ex((8x+ 7) cos (2x) + (8− 4x) sin (2x))

• Highest derivative means the order of the ODE is 4
y′′′′

• Isolate 4th derivative
y′′′′ = −10y + 8 cos (2x) exx− 4 sin (2x) exx+ 7 ex cos (2x) + 8 ex sin (2x) + 5y′′′ − 13y′′ + 19y′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′′ − 5y′′′ + 13y′′ − 19y′ + 10y = ex(−4x sin (2x) + 8x cos (2x) + 8 sin (2x) + 7 cos (2x))

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = 8 cos (2x) exx− 4 sin (2x) exx+ 7 ex cos (2x) + 8 ex sin (2x) + 5y4(x)− 13y3(x) + 19y2(x)− 10y1(x)
Convert linear ODE into a system of first order ODEs
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[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = 8 cos (2x) exx− 4 sin (2x) exx+ 7 ex cos (2x) + 8 ex sin (2x) + 5y4(x)− 13y3(x) + 19y2(x)− 10y1(x)]
• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1

−10 19 −13 5

 · →y (x) +


0
0
0

−4 sin (2x) exx+ 8 cos (2x) exx+ 8 ex sin (2x) + 7 ex cos (2x)


• Define the forcing function

→
f (x) =


0
0
0

−4 sin (2x) exx+ 8 cos (2x) exx+ 8 ex sin (2x) + 7 ex cos (2x)


• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1

−10 19 −13 5


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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1,


1
1
1
1



 ,

2,


1
8
1
4
1
2

1



 ,

1− 2 I,


− 11

125 −
2 I
125

− 3
25 +

4 I
25

1
5 +

2 I
5

1



 ,

1 + 2 I,


− 11

125 +
2 I
125

− 3
25 −

4 I
25

1
5 −

2 I
5

1






• Consider eigenpair1,


1
1
1
1




• Solution to homogeneous system from eigenpair

→
y 1 = ex ·


1
1
1
1


• Consider eigenpair2,


1
8
1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 2 = e2x ·


1
8
1
4
1
2

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored
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1− 2 I,


− 11

125 −
2 I
125

− 3
25 +

4 I
25

1
5 +

2 I
5

1




• Solution from eigenpair

e(1−2 I)x ·


− 11

125 −
2 I
125

− 3
25 +

4 I
25

1
5 +

2 I
5

1


• Use Euler identity to write solution in terms of sin and cos

ex · (cos (2x)− I sin (2x)) ·


− 11

125 −
2 I
125

− 3
25 +

4 I
25

1
5 +

2 I
5

1


• Simplify expression

ex ·



(
− 11

125 −
2 I
125

)
(cos (2x)− I sin (2x))(

− 3
25 +

4 I
25

)
(cos (2x)− I sin (2x))(1

5 +
2 I
5

)
(cos (2x)− I sin (2x))

cos (2x)− I sin (2x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) = ex ·


−11 cos(2x)

125 − 2 sin(2x)
125

−3 cos(2x)
25 + 4 sin(2x)

25
cos(2x)

5 + 2 sin(2x)
5

cos (2x)

 ,
→
y 4(x) = ex ·



11 sin(2x)
125 − 2 cos(2x)

125
3 sin(2x)

25 + 4 cos(2x)
25

− sin(2x)
5 + 2 cos(2x)

5

− sin (2x)




• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +

→
y p(x)

� Fundamental matrix
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◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =



ex e2x
8 ex

(
−11 cos(2x)

125 − 2 sin(2x)
125

)
ex
(

11 sin(2x)
125 − 2 cos(2x)

125

)
ex e2x

4 ex
(
−3 cos(2x)

25 + 4 sin(2x)
25

)
ex
(

3 sin(2x)
25 + 4 cos(2x)

25

)
ex e2x

2 ex
(

cos(2x)
5 + 2 sin(2x)

5

)
ex
(
− sin(2x)

5 + 2 cos(2x)
5

)
ex e2x ex cos (2x) −ex sin (2x)


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =



ex e2x
8 ex

(
−11 cos(2x)

125 − 2 sin(2x)
125

)
ex
(

11 sin(2x)
125 − 2 cos(2x)

125

)
ex e2x

4 ex
(
−3 cos(2x)

25 + 4 sin(2x)
25

)
ex
(

3 sin(2x)
25 + 4 cos(2x)

25

)
ex e2x

2 ex
(

cos(2x)
5 + 2 sin(2x)

5

)
ex
(
− sin(2x)

5 + 2 cos(2x)
5

)
ex e2x ex cos (2x) −ex sin (2x)


· 1

1 1
8 − 11

125 − 2
125

1 1
4 − 3

25
4
25

1 1
2

1
5

2
5

1 1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


− ex cos(2x)

2 + 5 ex
2 − e2x 17 ex cos(2x)

20 − ex sin(2x)
5 − 9 ex

4 + 7 e2x
5 −2 ex cos(2x)

5 + 3 ex sin(2x)
10 + ex − 3 e2x

5
ex cos(2x)

20 − ex sin(2x)
10 − ex

4 + e2x
5

− ex cos(2x)
2 + ex sin (2x) + 5 ex

2 − 2 e2x 9 ex cos(2x)
20 − 19 ex sin(2x)

10 − 9 ex
4 + 14 e2x

5
ex cos(2x)

5 + 11 ex sin(2x)
10 + ex − 6 e2x

5 −3 ex cos(2x)
20 − ex sin(2x)

5 − ex
4 + 2 e2x

5
3 ex cos(2x)

2 + 2 ex sin (2x) + 5 ex
2 − 4 e2x −67 ex cos(2x)

20 − 14 ex sin(2x)
5 − 9 ex

4 + 28 e2x
5

12 ex cos(2x)
5 + 7 ex sin(2x)

10 + ex − 12 e2x
5 −11 ex cos(2x)

20 + ex sin(2x)
10 − ex

4 + 4 e2x
5

5 ex
2 − 8 e2x + 11 ex cos(2x)

2 − ex sin (2x) −9 ex
4 + 56 e2x

5 − 179 ex cos(2x)
20 + 39 ex sin(2x)

10 ex − 24 e2x
5 + 19 ex cos(2x)

5 − 41 ex sin(2x)
10 − ex

4 + 8 e2x
5 − 7 ex cos(2x)

20 + 6 ex sin(2x)
5


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)
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◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =



−
((

x2+x+ 6
5
)
sin(2x)− 12 ex

5 + 2 cos(2x)
5 +2

)
ex

4

−
(
x2+x+ 7

5
)
ex cos(2x)

2 −
(
x2+3x+ 7

5
)
ex sin(2x)

4 − ex
2 + 6 e2x

5

−
(
x2 + 3x+ 19

10

)
ex cos (2x) + ex

(
15x2−5x+6

)
sin(2x)

20 − ex
2 + 12 e2x

5(
x2−11x− 43

5
)
ex cos(2x)

2 + 11
(
x2+ 29

11x+
7
5
)
ex sin(2x)

4 − ex
2 + 24 e2x

5


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +



−
((

x2+x+ 6
5
)
sin(2x)− 12 ex

5 + 2 cos(2x)
5 +2

)
ex

4

−
(
x2+x+ 7

5
)
ex cos(2x)

2 −
(
x2+3x+ 7

5
)
ex sin(2x)

4 − ex
2 + 6 e2x

5

−
(
x2 + 3x+ 19

10

)
ex cos (2x) + ex

(
15x2−5x+6

)
sin(2x)

20 − ex
2 + 12 e2x

5(
x2−11x− 43

5
)
ex cos(2x)

2 + 11
(
x2+ 29

11x+
7
5
)
ex sin(2x)

4 − ex
2 + 24 e2x

5


• First component of the vector is the solution to the ODE

y = −
(
x2+x+ 8

125 c3−
44
125 c4+

6
5
)
ex sin(2x)

4 −
11
(
c3+ 2c4

11 + 25
22

)
ex cos(2x)

125 + (24+5c2)e2x
40 + ex(−1+2c1)

2
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 50� �
dsolve(1*diff(y(x),x$4)-5*diff(y(x),x$3)+13*diff(y(x),x$2)-19*diff(y(x),x)+10*y(x)=exp(x)*((7+8*x)*cos(2*x)+(8-4*x)*sin(2*x)),y(x), singsol=all)� �
y(x) = −

ex
(
x2 + x− 4c4 + 23

4

)
sin (2x)

4 + (4c3 + 3) ex cos (2x)
4 + c2e2x +

ex(2c1 + 7)
2

3 Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 172� �
DSolve[1*y''''[x]-5*y'''[x]+13*y''[x]-19*y'[x]-10*y[x]==Exp[x]*((7+8*x)*Cos[2*x]+(8-4*x)*Sin[2*x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 exp
(
xRoot

[
#14 − 5#13 + 13#12 − 19#1− 10&, 1

])
+ c3 exp

(
xRoot

[
#14 − 5#13 + 13#12 − 19#1− 10&, 3

])
+ c4 exp

(
xRoot

[
#14 − 5#13 + 13#12 − 19#1− 10&, 4

])
+ c2 exp

(
xRoot

[
#14 − 5#13 + 13#12 − 19#1− 10&, 2

])
− 1

100e
x(−20x sin(2x) + 64 sin(2x) + 40x cos(2x) + 67 cos(2x))
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19.45 problem section 9.3, problem 45
Internal problem ID [1542]
Internal file name [OUTPUT/1543_Sunday_June_05_2022_02_21_34_AM_62348847/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 45.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ + 4y′′′ + 8y′′ + 8y′ + 4y = −2 ex(cos (x)− sin (x))

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ + 4y′′′ + 8y′′ + 8y′ + 4y = 0

The characteristic equation is

λ4 + 4λ3 + 8λ2 + 8λ+ 4 = 0

The roots of the above equation are

λ1 = −1− i

λ2 = −1 + i

λ3 = −1− i

λ4 = −1 + i
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Therefore the homogeneous solution is

yh(x) = e(−1−i)xc1 + x e(−1−i)xc2 + e(−1+i)xc3 + x e(−1+i)xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e(−1−i)x

y2 = e(−1−i)xx

y3 = e(−1+i)x

y4 = x e(−1+i)x

Now the particular solution to the given ODE is found

y′′′′ + 4y′′′ + 8y′′ + 8y′ + 4y = −2 ex(cos (x)− sin (x))

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

−2 ex(cos (x)− sin (x))

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) ex, sin (x) ex}]

While the set of the basis functions for the homogeneous solution found earlier is

{x e(−1+i)x, e(−1−i)xx, e(−1−i)x, e(−1+i)x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) ex + A2 sin (x) ex

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−32A1 sin (x) ex + 32A2 cos (x) ex = −2 ex(cos (x)− sin (x))
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Solving for the unknowns by comparing coefficients results in[
A1 = − 1

16 , A2 = − 1
16

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −cos (x) ex
16 − sin (x) ex

16

Therefore the general solution is

y = yh + yp

=
(
e(−1−i)xc1 + x e(−1−i)xc2 + e(−1+i)xc3 + x e(−1+i)xc4

)
+
(
−cos (x) ex

16 − sin (x) ex
16

)

Which simplifies to

y = (c2x+ c1) e(−1−i)x + e(−1+i)x(c4x+ c3)−
cos (x) ex

16 − sin (x) ex
16

Summary
The solution(s) found are the following

(1)y = (c2x+ c1) e(−1−i)x + e(−1+i)x(c4x+ c3)−
cos (x) ex

16 − sin (x) ex
16

Verification of solutions

y = (c2x+ c1) e(−1−i)x + e(−1+i)x(c4x+ c3)−
cos (x) ex

16 − sin (x) ex
16

Verified OK.

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �

7634



3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 36� �
dsolve(1*diff(y(x),x$4)+4*diff(y(x),x$3)+8*diff(y(x),x$2)+8*diff(y(x),x)+4*y(x)=-2*exp(x)*(cos(1*x)-sin(1*x)),y(x), singsol=all)� �

y(x) = ((c3x+ c1) cos (x) + sin (x) (c4x+ c2)) e−x − (sin (x) + cos (x)) ex
16

3 Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 54� �
DSolve[1*y''''[x]+4*y'''[x]+8*y''[x]+8*y'[x]+4*y[x]==-2*Exp[x]*(Cos[1*x]-Sin[1*x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
16e

−x
((
−e2x + 16(c4x+ c3)

)
cos(x)−

(
e2x − 16(c2x+ c1)

)
sin(x)

)
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19.46 problem section 9.3, problem 46
Internal problem ID [1543]
Internal file name [OUTPUT/1544_Sunday_June_05_2022_02_21_37_AM_81282288/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 46.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ − 8y′′′ + 32y′′ − 64y′ + 64y = e2x(cos (2x)− sin (2x))

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − 8y′′′ + 32y′′ − 64y′ + 64y = 0

The characteristic equation is

λ4 − 8λ3 + 32λ2 − 64λ+ 64 = 0

The roots of the above equation are

λ1 = 2− 2i
λ2 = 2 + 2i
λ3 = 2− 2i
λ4 = 2 + 2i
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Therefore the homogeneous solution is

yh(x) = e(2−2i)xc1 + x e(2−2i)xc2 + e(2+2i)xc3 + x e(2+2i)xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e(2−2i)x

y2 = x e(2−2i)x

y3 = e(2+2i)x

y4 = x e(2+2i)x

Now the particular solution to the given ODE is found

y′′′′ − 8y′′′ + 32y′′ − 64y′ + 64y = e2x(cos (2x)− sin (2x))

Let the particular solution be

yp = U1y1 + U2y2 + U3y3 + U4y4

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


e(2−2i)x x e(2−2i)x e(2+2i)x x e(2+2i)x

(2− 2i) e(2−2i)x −2
(
−1

2 + (−1 + i)x
)
e(2−2i)x (2 + 2i) e(2+2i)x (1 + (2 + 2i)x) e(2+2i)x

−8ie(2−2i)x (−8ix− 4i+ 4) e(2−2i)x 8ie(2+2i)x (8ix+ 4i+ 4) e(2+2i)x

(−16− 16i) e(2−2i)x −16
(3i

2 + (1 + i)x
)
e(2−2i)x (−16 + 16i) e(2+2i)x 16

(3i
2 + (−1 + i)x

)
e(2+2i)x


|W | = 256 e(4+4i)xe(4−4i)x
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The determinant simplifies to

|W | = 256 e8x

Now we determine Wi for each Ui.

W1(x) = det


x e(2−2i)x e(2+2i)x x e(2+2i)x

−2
(
−1

2 + (−1 + i)x
)
e(2−2i)x (2 + 2i) e(2+2i)x (1 + (2 + 2i)x) e(2+2i)x

(−8ix− 4i+ 4) e(2−2i)x 8ie(2+2i)x (8ix+ 4i+ 4) e(2+2i)x


= −8 e(6+2i)x(i+ 2x)

W2(x) = det


e(2−2i)x e(2+2i)x x e(2+2i)x

(2− 2i) e(2−2i)x (2 + 2i) e(2+2i)x (1 + (2 + 2i)x) e(2+2i)x

−8ie(2−2i)x 8ie(2+2i)x (8ix+ 4i+ 4) e(2+2i)x


= −16 e(6+2i)x

W3(x) = det


e(2−2i)x x e(2−2i)x x e(2+2i)x

(2− 2i) e(2−2i)x −2
(
−1

2 + (−1 + i)x
)
e(2−2i)x (1 + (2 + 2i)x) e(2+2i)x

−8ie(2−2i)x (−8ix− 4i+ 4) e(2−2i)x (8ix+ 4i+ 4) e(2+2i)x


= 8 e(6−2i)x(i− 2x)

W4(x) = det


e(2−2i)x x e(2−2i)x e(2+2i)x

(2− 2i) e(2−2i)x −2
(
−1

2 + (−1 + i)x
)
e(2−2i)x (2 + 2i) e(2+2i)x

−8ie(2−2i)x (−8ix− 4i+ 4) e(2−2i)x 8ie(2+2i)x


= −16 e(6−2i)x
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Now we are ready to evaluate each Ui(x).

U1 = (−1)4−1
∫

F (x)W1(x)
aW (x) dx

= (−1)3
∫ (e2x(cos (2x)− sin (2x)))

(
−8 e(6+2i)x(i+ 2x)

)
(1) (256 e8x) dx

= −
∫

−8 e2x(cos (2x)− sin (2x)) e(6+2i)x(i+ 2x)
256 e8x dx

= −
∫ (

−(i+ 2x) (cos (2x)− sin (2x)) e2ix
32

)
dx

= −
(∫

−(i+ 2x) (cos (2x)− sin (2x)) e2ix
32 dx

)
= −

(∫
−(i+ 2x) (cos (2x)− sin (2x)) e2ix

32 dx

)

U2 = (−1)4−2
∫

F (x)W2(x)
aW (x) dx

= (−1)2
∫ (e2x(cos (2x)− sin (2x)))

(
−16 e(6+2i)x)

(1) (256 e8x) dx

=
∫

−16 e2x(cos (2x)− sin (2x)) e(6+2i)x

256 e8x dx

=
∫ (

−(cos (2x)− sin (2x)) e2ix
16

)
dx

= − x

32 + ix

32 − e4ix
128 + ie4ix

128

= − x

32 + ix

32 − e4ix
128 + ie4ix

128
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U3 = (−1)4−3
∫

F (x)W3(x)
aW (x) dx

= (−1)1
∫ (e2x(cos (2x)− sin (2x)))

(
8 e(6−2i)x(i− 2x)

)
(1) (256 e8x) dx

= −
∫ 8 e2x(cos (2x)− sin (2x)) e(6−2i)x(i− 2x)

256 e8x dx

= −
∫ ((i− 2x) (cos (2x)− sin (2x)) e−2ix

32

)
dx

= −
(∫ (i− 2x) (cos (2x)− sin (2x)) e−2ix

32 dx

)
= −

(∫ (i− 2x) (cos (2x)− sin (2x)) e−2ix

32 dx

)

U4 = (−1)4−4
∫

F (x)W4(x)
aW (x) dx

= (−1)0
∫ (e2x(cos (2x)− sin (2x)))

(
−16 e(6−2i)x)

(1) (256 e8x) dx

=
∫

−16 e2x(cos (2x)− sin (2x)) e(6−2i)x

256 e8x dx

=
∫ (

−(cos (2x)− sin (2x)) e−2ix

16

)
dx

= − x

32 − ix

32 − e−4ix

128 − ie−4ix

128

= − x

32 − ix

32 − e−4ix

128 − ie−4ix

128

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3 + U4y4

Hence

yp =
(
−
(∫

−(i+ 2x) (cos (2x)− sin (2x)) e2ix
32 dx

))(
e(2−2i)x)

+
(
− x

32 + ix

32 − e4ix
128 + ie4ix

128

)(
x e(2−2i)x)

+
(
−
(∫ (i− 2x) (cos (2x)− sin (2x)) e−2ix

32 dx

))(
e(2+2i)x)

+
(
− x

32 − ix

32 − e−4ix

128 − ie−4ix

128

)(
x e(2+2i)x)
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Therefore the particular solution is

yp = −
(∫

(i− 2x) (cos (2x)− sin (2x)) e−2ixdx
)
e(2+2i)x

32 +
(∫

(i+ 2x) (cos (2x)− sin (2x)) e2ixdx
)
e(2−2i)x

32 +
x
((
−1

4 −
i
4 + (−1 + i)x

)
e(2−2i)x − e(2+2i)x(1

4 −
i
4 + (1 + i)x

))
32

Which simplifies to

yp = −
(
−
(∫

(cos (2x)− sin (2x)) (2x cos (2x)− sin (2x)) dx
)
cos (2x)−

(∫
(cos (2x)− sin (2x)) (cos (2x) + 2x sin (2x)) dx

)
sin (2x) + x

(
cos (2x)

(
x+ 1

4

)
−
(
x− 1

4

)
sin (2x)

))
e2x

16

Therefore the general solution is

y = yh + yp

=
(
e(2−2i)xc1 + x e(2−2i)xc2 + e(2+2i)xc3 + x e(2+2i)xc4

)
+
(
−
(
−
(∫

(cos (2x)− sin (2x)) (2x cos (2x)− sin (2x)) dx
)
cos (2x)−

(∫
(cos (2x)− sin (2x)) (cos (2x) + 2x sin (2x)) dx

)
sin (2x) + x

(
cos (2x)

(
x+ 1

4

)
−
(
x− 1

4

)
sin (2x)

))
e2x

16

)

Which simplifies to

y = (c2x+ c1) e(2−2i)x + e(2+2i)x(c4x+ c3)

−
(
−
(∫

(cos (2x)− sin (2x)) (2x cos (2x)− sin (2x)) dx
)
cos (2x)−

(∫
(cos (2x)− sin (2x)) (cos (2x) + 2x sin (2x)) dx

)
sin (2x) + x

(
cos (2x)

(
x+ 1

4

)
−
(
x− 1

4

)
sin (2x)

))
e2x

16

Summary
The solution(s) found are the following

(1)y = (c2x+ c1) e(2−2i)x + e(2+2i)x(c4x+ c3)

−
(
−
(∫

(cos (2x)− sin (2x)) (2x cos (2x)− sin (2x)) dx
)
cos (2x)−

(∫
(cos (2x)− sin (2x)) (cos (2x) + 2x sin (2x)) dx

)
sin (2x) + x

(
cos (2x)

(
x+ 1

4

)
−
(
x− 1

4

)
sin (2x)

))
e2x

16
Verification of solutions

y = (c2x+ c1) e(2−2i)x + e(2+2i)x(c4x+ c3)

−
(
−
(∫

(cos (2x)− sin (2x)) (2x cos (2x)− sin (2x)) dx
)
cos (2x)−

(∫
(cos (2x)− sin (2x)) (cos (2x) + 2x sin (2x)) dx

)
sin (2x) + x

(
cos (2x)

(
x+ 1

4

)
−
(
x− 1

4

)
sin (2x)

))
e2x

16

Verified OK.
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 52� �
dsolve(1*diff(y(x),x$4)-8*diff(y(x),x$3)+32*diff(y(x),x$2)-64*diff(y(x),x)+64*y(x)=exp(2*x)*(cos(2*x)-sin(2*x)),y(x), singsol=all)� �
y(x) =

−
e2x
((
x2 +

(
−32c3 − 3

2

)
x− 32c1 − 41

4

)
cos (2x)− sin (2x)

(
x2 +

(
32c4 + 1

2

)
x+ 32c2 − 517

18

))
32

3 Solution by Mathematica
Time used: 0.199 (sec). Leaf size: 65� �
DSolve[1*y''''[x]-8*y'''[x]+32*y''[x]-64*y'[x]+64*y[x]==Exp[2*x]*(Cos[2*x]-Sin[2*x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
256e

2x((−8x2 + 4(1 + 64c4)x+ 5 + 256c3
)
cos(2x)

+
(
8x2 + 8(1 + 32c2)x− 1 + 256c1

)
sin(2x)

)

7642



19.47 problem section 9.3, problem 47
Internal problem ID [1544]
Internal file name [OUTPUT/1545_Sunday_June_05_2022_02_21_41_AM_51848980/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 47.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ − 8y′′′ + 26y′′ − 40y′ + 25y = e2x(3 cos (x)− (3x+ 1) sin (x))

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − 8y′′′ + 26y′′ − 40y′ + 25y = 0

The characteristic equation is

λ4 − 8λ3 + 26λ2 − 40λ+ 25 = 0

The roots of the above equation are

λ1 = 2− i

λ2 = 2 + i

λ3 = 2− i

λ4 = 2 + i
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Therefore the homogeneous solution is

yh(x) = e(2+i)xc1 + x e(2+i)xc2 + e(2−i)xc3 + x e(2−i)xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e(2+i)x

y2 = x e(2+i)x

y3 = e(2−i)x

y4 = x e(2−i)x

Now the particular solution to the given ODE is found

y′′′′ − 8y′′′ + 26y′′ − 40y′ + 25y = e2x(3 cos (x)− (3x+ 1) sin (x))

Let the particular solution be

yp = U1y1 + U2y2 + U3y3 + U4y4

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


e(2+i)x x e(2+i)x e(2−i)x x e(2−i)x

(2 + i) e(2+i)x e(2+i)x(1 + (2 + i)x) (2− i) e(2−i)x −(−1 + (−2 + i)x) e(2−i)x

(3 + 4i) e(2+i)x (4 + 2i+ (3 + 4i)x) e(2+i)x (3− 4i) e(2−i)x −4 e(2−i)x(−1 + i
2 +

(
−3

4 + i
)
x
)

(2 + 11i) e(2+i)x (9 + 12i+ (2 + 11i)x) e(2+i)x (2− 11i) e(2−i)x (9− 12i+ (2− 11i)x) e(2−i)x


|W | = 16 e(4+2i)xe(4−2i)x
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The determinant simplifies to

|W | = 16 e8x

Now we determine Wi for each Ui.

W1(x) = det


x e(2+i)x e(2−i)x x e(2−i)x

e(2+i)x(1 + (2 + i)x) (2− i) e(2−i)x −(−1 + (−2 + i)x) e(2−i)x

(4 + 2i+ (3 + 4i)x) e(2+i)x (3− 4i) e(2−i)x −4 e(2−i)x(−1 + i
2 +

(
−3

4 + i
)
x
)


= −4 e(6−i)x(x− i)

W2(x) = det


e(2+i)x e(2−i)x x e(2−i)x

(2 + i) e(2+i)x (2− i) e(2−i)x −(−1 + (−2 + i)x) e(2−i)x

(3 + 4i) e(2+i)x (3− 4i) e(2−i)x −4 e(2−i)x(−1 + i
2 +

(
−3

4 + i
)
x
)


= −4 e(6−i)x

W3(x) = det


e(2+i)x x e(2+i)x x e(2−i)x

(2 + i) e(2+i)x e(2+i)x(1 + (2 + i)x) −(−1 + (−2 + i)x) e(2−i)x

(3 + 4i) e(2+i)x (4 + 2i+ (3 + 4i)x) e(2+i)x −4 e(2−i)x(−1 + i
2 +

(
−3

4 + i
)
x
)


= −4 e(6+i)x(x+ i)

W4(x) = det


e(2+i)x x e(2+i)x e(2−i)x

(2 + i) e(2+i)x e(2+i)x(1 + (2 + i)x) (2− i) e(2−i)x

(3 + 4i) e(2+i)x (4 + 2i+ (3 + 4i)x) e(2+i)x (3− 4i) e(2−i)x


= −4 e(6+i)x

Now we are ready to evaluate each Ui(x).

U1 = (−1)4−1
∫

F (x)W1(x)
aW (x) dx

= (−1)3
∫ (e2x(3 cos (x)− (3x+ 1) sin (x)))

(
−4 e(6−i)x(x− i)

)
(1) (16 e8x) dx

= −
∫

−4 e2x(3 cos (x)− (3x+ 1) sin (x)) e(6−i)x(x− i)
16 e8x dx

= −
∫ (

−(−x+ i) (3 sin (x)x+ sin (x)− 3 cos (x)) e−ix

4

)
dx

= −
(∫

−(−x+ i) (3 sin (x)x+ sin (x)− 3 cos (x)) e−ix

4 dx

)
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U2 = (−1)4−2
∫

F (x)W2(x)
aW (x) dx

= (−1)2
∫ (e2x(3 cos (x)− (3x+ 1) sin (x)))

(
−4 e(6−i)x)

(1) (16 e8x) dx

=
∫

−4 e2x(3 cos (x)− (3x+ 1) sin (x)) e(6−i)x

16 e8x dx

=
∫ (((3x+ 1) sin (x)− 3 cos (x)) e−ix

4

)
dx

=
∫ ((3x+ 1) sin (x)− 3 cos (x)) e−ix

4 dx

U3 = (−1)4−3
∫

F (x)W3(x)
aW (x) dx

= (−1)1
∫ (e2x(3 cos (x)− (3x+ 1) sin (x)))

(
−4 e(6+i)x(x+ i)

)
(1) (16 e8x) dx

= −
∫

−4 e2x(3 cos (x)− (3x+ 1) sin (x)) e(6+i)x(x+ i)
16 e8x dx

= −
∫ ((3 sin (x)x+ sin (x)− 3 cos (x)) eix(x+ i)

4

)
dx

= −
(∫ (3 sin (x)x+ sin (x)− 3 cos (x)) eix(x+ i)

4 dx

)

U4 = (−1)4−4
∫

F (x)W4(x)
aW (x) dx

= (−1)0
∫ (e2x(3 cos (x)− (3x+ 1) sin (x)))

(
−4 e(6+i)x)

(1) (16 e8x) dx

=
∫

−4 e2x(3 cos (x)− (3x+ 1) sin (x)) e(6+i)x

16 e8x dx

=
∫ (((3x+ 1) sin (x)− 3 cos (x)) eix

4

)
dx

= −3x
8 + 3ix2

16 + ix

8 +
(
−1

4 +
3i
8 − 3x

4

)
e2ix

4

= −3x
8 + 3ix2

16 + ix

8 +
(
−1

4 +
3i
8 − 3x

4

)
e2ix

4

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3 + U4y4
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Hence

yp =
(
−
(∫

−(−x+ i) (3 sin (x)x+ sin (x)− 3 cos (x)) e−ix

4 dx

))(
e(2+i)x)

+
(∫ ((3x+ 1) sin (x)− 3 cos (x)) e−ix

4 dx

)(
x e(2+i)x)

+
(
−
(∫ (3 sin (x)x+ sin (x)− 3 cos (x)) eix(x+ i)

4 dx

))(
e(2−i)x)

+
(
−3x

8 + 3ix2

16 + ix

8 +
(
−1

4 +
3i
8 − 3x

4

)
e2ix

4

)(
x e(2−i)x)

Therefore the particular solution is

yp = −
(∫

−(−x+ i) (3 sin (x)x+ sin (x)− 3 cos (x)) e−ixdx
)
e(2+i)x

4 +
(∫

−(3 sin (x)x+ sin (x)− 3 cos (x)) eix(x+ i) dx
)
e(2−i)x

4 −
3x
(
−
(
ix− 2 + 2

3i
)
x e(2−i)x +

(1
3 −

i
2 + x

)
e(2+i)x +

((
−x2 +

(
−2

3 + i
)
x+ 2− 2i

3

)
sin (x) +

(
ix2 +

(
3 + 2i

3

)
x− i

)
cos (x)

)
e2x
)

16
Which simplifies to

yp =
9
(
−

8
(∫ (

− sin(x)2+3
(
x2+ 1

3x+1
)
cos(x) sin(x)−3x

)
dx
)
(i sin(x)+cos(x))

9 + 8(−i sin(x)+cos(x))
(∫

(−3 sin(x)x−sin(x)+3 cos(x))(x cos(x)−sin(x))dx
)

9 + 16
(∫

−3
((
x+ 1

3
)
sin(x)−cos(x)

)
(sin(x)x+cos(x))dx

)
sin(x)

9 − x
( (

5− 2
3 i−4x2− 8

3x
)
sin(x)

3 + cos (x)
(2
9 − i+ 4x

)))
e2x

32
Therefore the general solution is

y = yh + yp

=
(
e(2+i)xc1 + x e(2+i)xc2 + e(2−i)xc3 + x e(2−i)xc4

)
+

9
(
−

8
(∫ (

− sin(x)2+3
(
x2+ 1

3x+1
)
cos(x) sin(x)−3x

)
dx
)
(i sin(x)+cos(x))

9 + 8(−i sin(x)+cos(x))
(∫

(−3 sin(x)x−sin(x)+3 cos(x))(x cos(x)−sin(x))dx
)

9 + 16
(∫

−3
((
x+ 1

3
)
sin(x)−cos(x)

)
(sin(x)x+cos(x))dx

)
sin(x)

9 − x
( (

5− 2
3 i−4x2− 8

3x
)
sin(x)

3 + cos (x)
(2
9 − i+ 4x

)))
e2x

32


Which simplifies to

y = (c4x+ c3) e(2−i)x + e(2+i)x(c2x+ c1)

+
9
(
−

8
(∫ (

− sin(x)2+3
(
x2+ 1

3x+1
)
cos(x) sin(x)−3x

)
dx
)
(i sin(x)+cos(x))

9 + 8(−i sin(x)+cos(x))
(∫

(−3 sin(x)x−sin(x)+3 cos(x))(x cos(x)−sin(x))dx
)

9 + 16
(∫

−3
((
x+ 1

3
)
sin(x)−cos(x)

)
(sin(x)x+cos(x))dx

)
sin(x)

9 − x
( (

5− 2
3 i−4x2− 8

3x
)
sin(x)

3 + cos (x)
(2
9 − i+ 4x

)))
e2x

32

Summary
The solution(s) found are the following

(1)y = (c4x+ c3) e(2−i)x + e(2+i)x(c2x+ c1)

+
9
(
−

8
(∫ (

− sin(x)2+3
(
x2+ 1

3x+1
)
cos(x) sin(x)−3x

)
dx
)
(i sin(x)+cos(x))

9 + 8(−i sin(x)+cos(x))
(∫

(−3 sin(x)x−sin(x)+3 cos(x))(x cos(x)−sin(x))dx
)

9 + 16
(∫

−3
((
x+ 1

3
)
sin(x)−cos(x)

)
(sin(x)x+cos(x))dx

)
sin(x)

9 − x
( (

5− 2
3 i−4x2− 8

3x
)
sin(x)

3 + cos (x)
(2
9 − i+ 4x

)))
e2x

32

7647



Verification of solutions

y = (c4x+ c3) e(2−i)x + e(2+i)x(c2x+ c1)

+
9
(
−

8
(∫ (

− sin(x)2+3
(
x2+ 1

3x+1
)
cos(x) sin(x)−3x

)
dx
)
(i sin(x)+cos(x))

9 + 8(−i sin(x)+cos(x))
(∫

(−3 sin(x)x−sin(x)+3 cos(x))(x cos(x)−sin(x))dx
)

9 + 16
(∫

−3
((
x+ 1

3
)
sin(x)−cos(x)

)
(sin(x)x+cos(x))dx

)
sin(x)

9 − x
( (

5− 2
3 i−4x2− 8

3x
)
sin(x)

3 + cos (x)
(2
9 − i+ 4x

)))
e2x

32

Verified OK.

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 44� �
dsolve(1*diff(y(x),x$4)-8*diff(y(x),x$3)+26*diff(y(x),x$2)-40*diff(y(x),x)+25*y(x)=exp(2*x)*(3*cos(1*x)-(1+3*x)*sin(1*x)),y(x), singsol=all)� �
y(x) =

e2x
(
(x3 + x2 + (8c4 + 3)x+ 8c2 − 2) sin (x) + 8 cos (x)

((
c3 + 1

4

)
x+ c1 + 9

16

))
8

3 Solution by Mathematica
Time used: 0.239 (sec). Leaf size: 60� �
DSolve[1*y''''[x]-8*y'''[x]+26*y''[x]-40*y'[x]+25*y[x]==Exp[2*x]*(3*Cos[1*x]-(1+3*x)*Sin[1*x]),y[x],x,IncludeSingularSolutions -> True]� �
y(x)→ 1

16e
2x((2x3+2x2+(9+16c2)x−1+16c1

)
sin(x)+(2(1+8c4)x+3+16c3) cos(x)

)

7648



19.48 problem section 9.3, problem 48
19.48.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7652

Internal problem ID [1545]
Internal file name [OUTPUT/1546_Sunday_June_05_2022_02_21_46_AM_7938600/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 48.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ − 4y′′ + 5y′ − 2y = e2x − 4 ex − 2 cos (x) + 4 sin (x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − 4y′′ + 5y′ − 2y = 0

The characteristic equation is

λ3 − 4λ2 + 5λ− 2 = 0

The roots of the above equation are

λ1 = 2
λ2 = 1
λ3 = 1
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Therefore the homogeneous solution is

yh(x) = c1ex + c2x ex + c3e2x

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = x ex

y3 = e2x

Now the particular solution to the given ODE is found

y′′′ − 4y′′ + 5y′ − 2y = e2x − 4 ex − 2 cos (x) + 4 sin (x)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

e2x − 4 ex − 2 cos (x) + 4 sin (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{ex}, {e2x}, {cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{x ex, ex, e2x}

Since ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x ex}, {e2x}, {cos (x) , sin (x)}]

Since x ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2ex}, {e2x}, {cos (x) , sin (x)}]

Since e2x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2ex}, {x e2x}, {cos (x) , sin (x)}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
2ex + A2x e2x + A3 cos (x) + A4 sin (x)
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The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

−2A1ex + A2e2x − 4A3 sin (x) + 4A4 cos (x) + 2A3 cos (x) + 2A4 sin (x)
= e2x − 4 ex − 2 cos (x) + 4 sin (x)

Solving for the unknowns by comparing coefficients results in

[A1 = 2, A2 = 1, A3 = −1, A4 = 0]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2x2ex + x e2x − cos (x)

Therefore the general solution is

y = yh + yp

=
(
c1ex + c2x ex + c3e2x

)
+
(
2x2ex + x e2x − cos (x)

)
Which simplifies to

y = c3e2x + ex(c2x+ c1) + 2x2ex + x e2x − cos (x)

Summary
The solution(s) found are the following

(1)y = c3e2x + ex(c2x+ c1) + 2x2ex + x e2x − cos (x)
Verification of solutions

y = c3e2x + ex(c2x+ c1) + 2x2ex + x e2x − cos (x)

Verified OK.
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19.48.1 Maple step by step solution

Let’s solve
y′′′ − 4y′′ + 5y′ − 2y = e2x − 4 ex − 2 cos (x) + 4 sin (x)

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = e2x − 4 ex − 2 cos (x) + 4 sin (x) + 4y3(x)− 5y2(x) + 2y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = e2x − 4 ex − 2 cos (x) + 4 sin (x) + 4y3(x)− 5y2(x) + 2y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
2 −5 4

 · →y (x) +


0
0

e2x − 4 ex − 2 cos (x) + 4 sin (x)


• Define the forcing function

→
f (x) =


0
0

e2x − 4 ex − 2 cos (x) + 4 sin (x)
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• Define the coefficient matrix

A =


0 1 0
0 0 1
2 −5 4


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

1,


1
1
1


 ,

1,


0
0
0


 ,

2,


1
4
1
2

1





• Consider eigenpair, with eigenvalue of algebraic multiplicity 21,


1
1
1




• First solution from eigenvalue 1

→
y 1(x) = ex ·


1
1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 1 is the eigenvalue, and →
v is the eigenvector

→
y 2(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 1

• Substitute →
y 2(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

7653



λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 2(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 1


0 1 0
0 0 1
2 −5 4

− 1 ·


1 0 0
0 1 0
0 0 1


 · →p =


1
1
1


• Choice of →

p

→
p =


−1
0
0


• Second solution from eigenvalue 1

→
y 2(x) = ex ·

x ·


1
1
1

+


−1
0
0




• Consider eigenpair2,


1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 3 = e2x ·


1
4
1
2

1


• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3 +

→
y p(x)

� Fundamental matrix

7654



◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


ex (x− 1) ex e2x

4

ex x ex e2x
2

ex x ex e2x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


ex (x− 1) ex e2x

4

ex x ex e2x
2

ex x ex e2x

 · 1
1 −1 1

4

1 0 1
2

1 0 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


−(x− 1) ex − e2x

2 + (3x+1)ex
2

e2x
2 + ex(−x−1)

2

−x ex 2 ex + 3x ex
2 − e2x −ex − x ex

2 + e2x

−x ex 2 ex + 3x ex
2 − 2 e2x −ex − x ex

2 + 2 e2x


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
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→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


(x−6)e2x

2 +
(
2x2+4x+7

)
ex

2 − cos(x)
2

(2x−11)e2x
2 +

(
2x2+8x+11

)
ex

2 + sin(x)
2

(4x−19)e2x
2 +

(
2x2+8x+19

)
ex

2 − 3 sin(x)
2


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3 +


(x−6)e2x

2 +
(
2x2+4x+7

)
ex

2 − cos(x)
2

(2x−11)e2x
2 +

(
2x2+8x+11

)
ex

2 + sin(x)
2

(4x−19)e2x
2 +

(
2x2+8x+19

)
ex

2 − 3 sin(x)
2


• First component of the vector is the solution to the ODE

y = (c3+2x−12)e2x
4 +

(
7+2x2+2(c2+2)x+2c1−2c2

)
ex

2 − cos(x)
2

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 34� �
dsolve(1*diff(y(x),x$3)-4*diff(y(x),x$2)+5*diff(y(x),x)-2*y(x)=exp(2*x)-4*exp(x)-2*cos(x)+4*sin(x),y(x), singsol=all)� �

y(x) = (x+ c2 − 2) e2x +
(
2x2 + (c3 + 4)x+ c1 + 4

)
ex − cos (x)

3 Solution by Mathematica
Time used: 0.373 (sec). Leaf size: 38� �
DSolve[1*y'''[x]-4*y''[x]+5*y'[x]-2*y[x]==Exp[2*x]-4*Exp[x]-2*Cos[x]+4*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − cos(x) + ex
(
2x2 + (4 + c2)x+ ex(x− 2 + c3) + 4 + c1

)
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19.49 problem section 9.3, problem 49
19.49.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7662

Internal problem ID [1546]
Internal file name [OUTPUT/1547_Sunday_June_05_2022_02_21_48_AM_59185175/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 49.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ − y′′ + y′ − y = 5 e2x + 2 ex − 4 cos (x) + 4 sin (x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − y′′ + y′ − y = 0

The characteristic equation is

λ3 − λ2 + λ− 1 = 0

The roots of the above equation are

λ1 = 1
λ2 = i

λ3 = −i
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Therefore the homogeneous solution is

yh(x) = c1ex + c2e−ix + eixc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = e−ix

y3 = eix

Now the particular solution to the given ODE is found

y′′′ − y′′ + y′ − y = 5 e2x + 2 ex − 4 cos (x) + 4 sin (x)

Let the particular solution be

yp = U1y1 + U2y2 + U3y3

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3

y′′1 y′′2 y′′3

∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


ex e−ix eix

ex −ie−ix ieix

ex −e−ix −eix


|W | = 4iexe−ixeix
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The determinant simplifies to

|W | = 4iex

Now we determine Wi for each Ui.

W1(x) = det

 e−ix eix

−ie−ix ieix


= 2i

W2(x) = det

 ex eix

ex ieix


= (−1 + i) e(1+i)x

W3(x) = det

 ex e−ix

ex −ie−ix


= (−1− i) e(1−i)x

Now we are ready to evaluate each Ui(x).

U1 = (−1)3−1
∫

F (x)W1(x)
aW (x) dx

= (−1)2
∫ (5 e2x + 2 ex − 4 cos (x) + 4 sin (x)) (2i)

(1) (4iex) dx

=
∫ 2i(5 e2x + 2 ex − 4 cos (x) + 4 sin (x))

4iex dx

=
∫ (

1 + 2 e−x(− cos (x) + sin (x)) + 5 ex
2

)
dx

= x− 2 sin (x) e−x + 5 ex
2
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U2 = (−1)3−2
∫

F (x)W2(x)
aW (x) dx

= (−1)1
∫ (5 e2x + 2 ex − 4 cos (x) + 4 sin (x))

(
(−1 + i) e(1+i)x)

(1) (4iex) dx

= −
∫ (−1 + i) (5 e2x + 2 ex − 4 cos (x) + 4 sin (x)) e(1+i)x

4iex dx

= −
∫ ((1

4 + i

4

)(
5 e2x + 2 ex − 4 cos (x) + 4 sin (x)

)
eix
)

dx

= x+ e2ix
2 − e(1+i)x

2 − 3 e(2+i)x

4 − ie(2+i)x

4

= x+ e2ix
2 − e(1+i)x

2 − 3 e(2+i)x

4 − ie(2+i)x

4

U3 = (−1)3−3
∫

F (x)W3(x)
aW (x) dx

= (−1)0
∫ (5 e2x + 2 ex − 4 cos (x) + 4 sin (x))

(
(−1− i) e(1−i)x)

(1) (4iex) dx

=
∫ (−1− i) (5 e2x + 2 ex − 4 cos (x) + 4 sin (x)) e(1−i)x

4iex dx

=
∫ ((

−1
4 + i

4

)(
5 e2x + 2 ex − 4 cos (x) + 4 sin (x)

)
e−ix

)
dx

=
∫ (

−1
4 + i

4

)(
5 e2x + 2 ex − 4 cos (x) + 4 sin (x)

)
e−ixdx

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3

Hence

yp =
(
x− 2 sin (x) e−x + 5 ex

2

)
(ex)

+
(
x+ e2ix

2 − e(1+i)x

2 − 3 e(2+i)x

4 − ie(2+i)x

4

)(
e−ix

)
+
(∫ (

−1
4 + i

4

)(
5 e2x + 2 ex − 4 cos (x) + 4 sin (x)

)
e−ixdx

)(
eix
)

Therefore the particular solution is

yp = e2x + (4x+ 1) cos (x)
2 + (x− 1) ex +

(
−2− i

2

)
sin (x)
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Which simplifies to

yp = e2x + (4x+ 1) cos (x)
2 + (x− 1) ex +

(
−2− i

2

)
sin (x)

Therefore the general solution is

y = yh + yp

=
(
c1ex + c2e−ix + eixc3

)
+
(
e2x + (4x+ 1) cos (x)

2 + (x− 1) ex +
(
−2− i

2

)
sin (x)

)

Summary
The solution(s) found are the following

(1)y = c1ex + c2e−ix + eixc3 + e2x + (4x+ 1) cos (x)
2 + (x− 1) ex +

(
−2− i

2

)
sin (x)

Verification of solutions

y = c1ex + c2e−ix + eixc3 + e2x + (4x+ 1) cos (x)
2 + (x− 1) ex +

(
−2− i

2

)
sin (x)

Verified OK.

19.49.1 Maple step by step solution

Let’s solve
y′′′ − y′′ + y′ − y = 5 e2x + 2 ex − 4 cos (x) + 4 sin (x)

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
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y′3(x) = 5 e2x + 2 ex − 4 cos (x) + 4 sin (x) + y3(x)− y2(x) + y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 5 e2x + 2 ex − 4 cos (x) + 4 sin (x) + y3(x)− y2(x) + y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
1 −1 1

 · →y (x) +


0
0

5 e2x + 2 ex − 4 cos (x) + 4 sin (x)


• Define the forcing function

→
f (x) =


0
0

5 e2x + 2 ex − 4 cos (x) + 4 sin (x)


• Define the coefficient matrix

A =


0 1 0
0 0 1
1 −1 1


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

1,


1
1
1


 ,

−I,


−1
I
1


 ,

I,


−1
−I
1





• Consider eigenpair
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1,


1
1
1




• Solution to homogeneous system from eigenpair

→
y 1 = ex ·


1
1
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−I,


−1
I
1




• Solution from eigenpair

e−Ix ·


−1
I
1


• Use Euler identity to write solution in terms of sin and cos

(−I sin (x) + cos (x)) ·


−1
I
1


• Simplify expression

I sin (x)− cos (x)
I(−I sin (x) + cos (x))
−I sin (x) + cos (x)


• Both real and imaginary parts are solutions to the homogeneous system→

y 2(x) =


− cos (x)
sin (x)
cos (x)

 ,
→
y 3(x) =


sin (x)
cos (x)
− sin (x)




• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)
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→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


ex − cos (x) sin (x)
ex sin (x) cos (x)
ex cos (x) − sin (x)


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


ex − cos (x) sin (x)
ex sin (x) cos (x)
ex cos (x) − sin (x)

 · 1
1 −1 0
1 0 1
1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


ex
2 + cos(x)

2 − sin(x)
2 sin (x) ex

2 − cos(x)
2 − sin(x)

2
ex
2 − cos(x)

2 − sin(x)
2 cos (x) ex

2 + sin(x)
2 − cos(x)

2
ex
2 + sin(x)

2 − cos(x)
2 − sin (x) ex

2 + cos(x)
2 + sin(x)

2


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms
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Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


−3 sin(x)

2 + e2x + x ex + 2x cos (x)− 7 ex
2 + 5 cos(x)

2

−5 sin(x)
2 − 2 sin (x)x+ 2 e2x + x ex − 5 ex

2 + cos(x)
2

−5 sin(x)
2 + 4 e2x + x ex − 2x cos (x)− 3 ex

2 − 5 cos(x)
2


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +


−3 sin(x)

2 + e2x + x ex + 2x cos (x)− 7 ex
2 + 5 cos(x)

2

−5 sin(x)
2 − 2 sin (x)x+ 2 e2x + x ex − 5 ex

2 + cos(x)
2

−5 sin(x)
2 + 4 e2x + x ex − 2x cos (x)− 3 ex

2 − 5 cos(x)
2


• First component of the vector is the solution to the ODE

y = e2x + (4x−2c2+5) cos(x)
2 + (2x+2c1−7)ex

2 + (2c3−3) sin(x)
2

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 31� �
dsolve(1*diff(y(x),x$3)-1*diff(y(x),x$2)+1*diff(y(x),x)-1*y(x)=5*exp(2*x)+2*exp(x)-4*cos(x)+4*sin(x),y(x), singsol=all)� �

y(x) = e2x + (2x+ c1 + 2) cos (x) + (c2 + x− 1) ex + (c3 − 2) sin (x)

3 Solution by Mathematica
Time used: 0.282 (sec). Leaf size: 35� �
DSolve[1*y'''[x]-1*y''[x]+1*y'[x]-1*y[x]==5*Exp[2*x]+2*Exp[x]-4*Cos[x]+4*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(x+ ex − 1 + c3) + (2x+ 1 + c1) cos(x) + (−2 + c2) sin(x)
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19.50 problem section 9.3, problem 50
19.50.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7670

Internal problem ID [1547]
Internal file name [OUTPUT/1548_Sunday_June_05_2022_02_21_52_AM_69407526/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 50.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_y ]]

y′′′ − y′ = −2− 2x+ 4 ex − 6 e−x + 96 e3x

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − y′ = 0

The characteristic equation is
λ3 − λ = 0

The roots of the above equation are

λ1 = 0
λ2 = 1
λ3 = −1
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Therefore the homogeneous solution is

yh(x) = c1e−x + c2 + c3ex

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = 1

y3 = ex

Now the particular solution to the given ODE is found

y′′′ − y′ = −2− 2x+ 4 ex − 6 e−x + 96 e3x

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

−2− 2x+ 4 ex − 6 e−x + 96 e3x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{ex}, {e−x}, {e3x}, {1, x}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, ex, e−x}

Since e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{ex}, {x e−x}, {e3x}, {1, x}]

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{ex}, {x e−x}, {e3x}, {x, x2}]

Since ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x ex}, {x e−x}, {e3x}, {x, x2}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x ex + A2x e−x + A3e3x + A4x+ A5x
2
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The unknowns {A1, A2, A3, A4, A5} are found by substituting the above trial solution
yp into the ODE and comparing coefficients. Substituting the trial solution into the
ODE and simplifying gives

2A1ex + 2A2e−x + 24A3e3x − A4 − 2A5x = −2− 2x+ 4 ex − 6 e−x + 96 e3x

Solving for the unknowns by comparing coefficients results in

[A1 = 2, A2 = −3, A3 = 4, A4 = 2, A5 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2x ex − 3x e−x + 4 e3x + 2x+ x2

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2 + c3ex

)
+
(
2x ex − 3x e−x + 4 e3x + 2x+ x2)

Summary
The solution(s) found are the following

(1)y = c1e−x + c2 + c3ex + 2x ex − 3x e−x + 4 e3x + 2x+ x2

Verification of solutions

y = c1e−x + c2 + c3ex + 2x ex − 3x e−x + 4 e3x + 2x+ x2

Verified OK.

19.50.1 Maple step by step solution

Let’s solve
y′′′ − y′ = −2− 2x+ 4 ex − 6 e−x + 96 e3x

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y
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◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = −2− 2x+ 4 ex − 6 e−x + 96 e3x + y2(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = −2− 2x+ 4 ex − 6 e−x + 96 e3x + y2(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
0 1 0

 · →y (x) +


0
0

−2− 2x+ 4 ex − 6 e−x + 96 e3x


• Define the forcing function

→
f (x) =


0
0

−2− 2x+ 4 ex − 6 e−x + 96 e3x


• Define the coefficient matrix

A =


0 1 0
0 0 1
0 1 0


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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−1,


1
−1
1


 ,

0,


1
0
0


 ,

1,


1
1
1





• Consider eigenpair−1,


1
−1
1




• Solution to homogeneous system from eigenpair

→
y 1 = e−x ·


1
−1
1


• Consider eigenpair0,


1
0
0




• Solution to homogeneous system from eigenpair

→
y 2 =


1
0
0


• Consider eigenpair1,


1
1
1




• Solution to homogeneous system from eigenpair

→
y 3 = ex ·


1
1
1


• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
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→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


e−x 1 ex

−e−x 0 ex

e−x 0 ex


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e−x 1 ex

−e−x 0 ex

e−x 0 ex

 · 1
1 1 1
−1 0 1
1 0 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


1 − e−x

2 + ex
2

e−x

2 − 1 + ex
2

0 ex
2 + e−x

2 − e−x

2 + ex
2

0 − e−x

2 + ex
2

ex
2 + e−x

2


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

7673



Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


−3x e−x + 2x+ 2x ex + 4 e3x + 44− 35 e−x

2 − 61 ex
2 + x2

3x e−x + 2x+ 2x ex + 12 e3x + 2 + 29 e−x

2 − 57 ex
2

−3x e−x + 2x ex + 36 e3x + 2− 23 e−x

2 − 53 ex
2


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +


−3x e−x + 2x+ 2x ex + 4 e3x + 44− 35 e−x

2 − 61 ex
2 + x2

3x e−x + 2x+ 2x ex + 12 e3x + 2 + 29 e−x

2 − 57 ex
2

−3x e−x + 2x ex + 36 e3x + 2− 23 e−x

2 − 53 ex
2


• First component of the vector is the solution to the ODE

y = (−6x+2c1−35)e−x

2 + 4 e3x + (4x+2c3−61)ex
2 + x2 + 2x+ c2 + 44

7674



Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = _b(_a)-2*_a-2+4*exp(_a)-6*exp(-_a)+96*exp(3*_a), _b(_a)` *** Sublev

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 41� �
dsolve(1*diff(y(x),x$3)-0*diff(y(x),x$2)-1*diff(y(x),x)-0*y(x)=-2*(1+x)+4*exp(x)-6*exp(-x)+96*exp(3*x),y(x), singsol=all)� �

y(x) = (−6x− 2c2 − 9) e−x

2 + 4 e3x + (2x− 3 + c1) ex + x2 + 2x+ c3

3 Solution by Mathematica
Time used: 1.399 (sec). Leaf size: 49� �
DSolve[1*y'''[x]-0*y''[x]-1*y'[x]-0*y[x]==-2*(1+x)+4*Exp[x]-6*Exp[-x]+96*Exp[3*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(x+ 2) + 4e3x + ex(2x− 3 + c1)−
1
2e

−x(6x+ 9 + 2c2) + c3
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19.51 problem section 9.3, problem 51
19.51.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7680

Internal problem ID [1548]
Internal file name [OUTPUT/1549_Sunday_June_05_2022_02_21_54_AM_74796529/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 51.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ − 4y′′ + 9y′ − 10y = 10 e2x + 20 ex sin (2x)− 10

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − 4y′′ + 9y′ − 10y = 0

The characteristic equation is

λ3 − 4λ2 + 9λ− 10 = 0

The roots of the above equation are

λ1 = 2
λ2 = 1− 2i
λ3 = 1 + 2i
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Therefore the homogeneous solution is

yh(x) = c1e2x + e(1+2i)xc2 + e(1−2i)xc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e2x

y2 = e(1+2i)x

y3 = e(1−2i)x

Now the particular solution to the given ODE is found

y′′′ − 4y′′ + 9y′ − 10y = 10 e2x + 20 ex sin (2x)− 10

Let the particular solution be

yp = U1y1 + U2y2 + U3y3

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3

y′′1 y′′2 y′′3

∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


e2x e(1+2i)x e(1−2i)x

2 e2x (1 + 2i) e(1+2i)x (1− 2i) e(1−2i)x

4 e2x (−3 + 4i) e(1+2i)x (−3− 4i) e(1−2i)x


|W | = −20ie2xe(1+2i)xe(1−2i)x
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The determinant simplifies to

|W | = −20ie4x

Now we determine Wi for each Ui.

W1(x) = det

 e(1+2i)x e(1−2i)x

(1 + 2i) e(1+2i)x (1− 2i) e(1−2i)x


= −4ie2x

W2(x) = det

 e2x e(1−2i)x

2 e2x (1− 2i) e(1−2i)x


= (−1− 2i) e(3−2i)x

W3(x) = det

 e2x e(1+2i)x

2 e2x (1 + 2i) e(1+2i)x


= (−1 + 2i) e(3+2i)x

Now we are ready to evaluate each Ui(x).

U1 = (−1)3−1
∫

F (x)W1(x)
aW (x) dx

= (−1)2
∫ (10 e2x + 20 ex sin (2x)− 10) (−4ie2x)

(1) (−20ie4x) dx

=
∫

−4i(10 e2x + 20 ex sin (2x)− 10) e2x
−20ie4x dx

=
∫ ((

4 ex sin (2x) + 2 e2x − 2
)
e−2x) dx

= 4 e−x(− sin (2x)− 2 cos (2x))
5 + 2x+ e−2x
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U2 = (−1)3−2
∫

F (x)W2(x)
aW (x) dx

= (−1)1
∫ (10 e2x + 20 ex sin (2x)− 10)

(
(−1− 2i) e(3−2i)x)

(1) (−20ie4x) dx

= −
∫ (−1− 2i) (10 e2x + 20 ex sin (2x)− 10) e(3−2i)x

−20ie4x dx

= −
∫ ((

1− i

2

)(
−1 + e2x + 2 ex sin (2x)

)
e(−1−2i)x

)
dx

= ie(−1−2i)x

2 − 2 e(1−2i)x

5 − 3ie(1−2i)x

10 + x

2 + ix+ e−4ix

4 − ie−4ix

8

= ie(−1−2i)x

2 − 2 e(1−2i)x

5 − 3ie(1−2i)x

10 + x

2 + ix+ e−4ix

4 − ie−4ix

8

U3 = (−1)3−3
∫

F (x)W3(x)
aW (x) dx

= (−1)0
∫ (10 e2x + 20 ex sin (2x)− 10)

(
(−1 + 2i) e(3+2i)x)

(1) (−20ie4x) dx

=
∫ (−1 + 2i) (10 e2x + 20 ex sin (2x)− 10) e(3+2i)x

−20ie4x dx

=
∫ ((

−1− i

2

)(
−1 + e2x + 2 ex sin (2x)

)
e(−1+2i)x

)
dx

= −ie(−1+2i)x

2 − 2 e(1+2i)x

5 + 3ie(1+2i)x

10 + e4ix
4 + ie4ix

8 + x

2 − ix

= −ie(−1+2i)x

2 − 2 e(1+2i)x

5 + 3ie(1+2i)x

10 + e4ix
4 + ie4ix

8 + x

2 − ix

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3

Hence

yp =
(
4 e−x(− sin (2x)− 2 cos (2x))

5 + 2x+ e−2x
)(

e2x
)

+
(
ie(−1−2i)x

2 − 2 e(1−2i)x

5 − 3ie(1−2i)x

10 + x

2 + ix+ e−4ix

4 − ie−4ix

8

)(
e(1+2i)x)

+
(
−ie(−1+2i)x

2 − 2 e(1+2i)x

5 + 3ie(1+2i)x

10 + e4ix
4 + ie4ix

8 + x

2 − ix

)(
e(1−2i)x)

Therefore the particular solution is

yp = 1 + (10x− 11) ex cos (2x)
10 + 2(−2 + 5x) e2x

5 + (−40x− 21) ex sin (2x)
20
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Therefore the general solution is

y = yh + yp

=
(
c1e2x + e(1+2i)xc2 + e(1−2i)xc3

)
+
(
1 + (10x− 11) ex cos (2x)

10 + 2(−2 + 5x) e2x
5 + (−40x− 21) ex sin (2x)

20

)

Summary
The solution(s) found are the following

(1)
y = c1e2x + e(1+2i)xc2 + e(1−2i)xc3 + 1 + (10x− 11) ex cos (2x)

10
+ 2(−2 + 5x) e2x

5 + (−40x− 21) ex sin (2x)
20

Verification of solutions

y = c1e2x + e(1+2i)xc2 + e(1−2i)xc3 + 1 + (10x− 11) ex cos (2x)
10

+ 2(−2 + 5x) e2x
5 + (−40x− 21) ex sin (2x)

20

Verified OK.

19.51.1 Maple step by step solution

Let’s solve
y′′′ − 4y′′ + 9y′ − 10y = 10 e2x + 20 ex sin (2x)− 10

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
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y′3(x) = 20 ex sin (2x) + 10 e2x + 4y3(x)− 9y2(x) + 10y1(x)− 10
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 20 ex sin (2x) + 10 e2x + 4y3(x)− 9y2(x) + 10y1(x)− 10]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
10 −9 4

 · →y (x) +


0
0

10 e2x + 20 ex sin (2x)− 10


• Define the forcing function

→
f (x) =


0
0

10 e2x + 20 ex sin (2x)− 10


• Define the coefficient matrix

A =


0 1 0
0 0 1
10 −9 4


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

2,


1
4
1
2

1


 ,

1− 2 I,


− 3

25 +
4 I
25

1
5 +

2 I
5

1


 ,

1 + 2 I,


− 3

25 −
4 I
25

1
5 −

2 I
5

1





• Consider eigenpair

7681



2,


1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e2x ·


1
4
1
2

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored1− 2 I,


− 3

25 +
4 I
25

1
5 +

2 I
5

1




• Solution from eigenpair

e(1−2 I)x ·


− 3

25 +
4 I
25

1
5 +

2 I
5

1


• Use Euler identity to write solution in terms of sin and cos

ex · (cos (2x)− I sin (2x)) ·


− 3

25 +
4 I
25

1
5 +

2 I
5

1


• Simplify expression

ex ·


(
− 3

25 +
4 I
25

)
(cos (2x)− I sin (2x))(1

5 +
2 I
5

)
(cos (2x)− I sin (2x))

cos (2x)− I sin (2x)


• Both real and imaginary parts are solutions to the homogeneous system→

y 2(x) = ex ·


−3 cos(2x)

25 + 4 sin(2x)
25

cos(2x)
5 + 2 sin(2x)

5

cos (2x)

 ,
→
y 3(x) = ex ·


3 sin(2x)

25 + 4 cos(2x)
25

− sin(2x)
5 + 2 cos(2x)

5

− sin (2x)
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• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


e2x
4 ex

(
−3 cos(2x)

25 + 4 sin(2x)
25

)
ex
(

3 sin(2x)
25 + 4 cos(2x)

25

)
e2x
2 ex

(
cos(2x)

5 + 2 sin(2x)
5

)
ex
(
− sin(2x)

5 + 2 cos(2x)
5

)
e2x ex cos (2x) −ex sin (2x)


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e2x
4 ex

(
−3 cos(2x)

25 + 4 sin(2x)
25

)
ex
(

3 sin(2x)
25 + 4 cos(2x)

25

)
e2x
2 ex

(
cos(2x)

5 + 2 sin(2x)
5

)
ex
(
− sin(2x)

5 + 2 cos(2x)
5

)
e2x ex cos (2x) −ex sin (2x)

 · 1

1
4 − 3

25
4
25

1
2

1
5

2
5

1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


−ex sin (2x) + e2x 7 ex sin(2x)

10 + 2 ex cos(2x)
5 − 2 e2x

5 − ex sin(2x)
10 − ex cos(2x)

5 + e2x
5

−ex sin (2x)− 2 ex cos (2x) + 2 e2x − ex sin(2x)
10 + 9 ex cos(2x)

5 − 4 e2x
5

2 e2x
5 − 2 ex cos(2x)

5 + 3 ex sin(2x)
10

4 e2x − 4 ex cos (2x) + 3 ex sin (2x) −8 e2x
5 + 8 ex cos(2x)

5 − 37 ex sin(2x)
10

4 e2x
5 + ex cos(2x)

5 + 11 ex sin(2x)
10


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system
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A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


1 + (5x−4)ex cos(2x)

5 + (10x−1)e2x
5 + (−20x−9)ex sin(2x)

10
ex(40x ex−40x sin(2x)−30x cos(2x)+16 ex−13 sin(2x)−16 cos(2x))

10
ex(80x ex+20x sin(2x)−110x cos(2x)+72 ex−21 sin(2x)−72 cos(2x))

10


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +


1 + (5x−4)ex cos(2x)

5 + (10x−1)e2x
5 + (−20x−9)ex sin(2x)

10
ex(40x ex−40x sin(2x)−30x cos(2x)+16 ex−13 sin(2x)−16 cos(2x))

10
ex(80x ex+20x sin(2x)−110x cos(2x)+72 ex−21 sin(2x)−72 cos(2x))

10


• First component of the vector is the solution to the ODE

y = 1 +
(
x− 3c2

25 + 4c3
25 − 4

5

)
ex cos (2x)− 2

(
x− 2c2

25 − 3c3
50 + 9

20

)
ex sin (2x) + (−4+40x+5c1)e2x

20
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 45� �
dsolve(1*diff(y(x),x$3)-4*diff(y(x),x$2)+9*diff(y(x),x)-10*y(x)=10*exp(2*x)+20*exp(x)*sin(2*x)-10,y(x), singsol=all)� �
y(x) = 1+ex

(
x− 8

5 + c2

)
cos (2x)+ (−4 + 10x+ 5c1) e2x

5 − 2
(
x− c3

2 + 13
20

)
ex sin (2x)

3 Solution by Mathematica
Time used: 0.992 (sec). Leaf size: 72� �
DSolve[1*y'''[x]-4*y''[x]+9*y'[x]-10*y[x]==10*Exp[2*x]+20*Exp[x]*Sin[2*x]-10,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2e2xx− 4e2x
5 + c3e

2x + 1
10e

x(10x− 11 + 10c2) cos(2x)

− 1
20e

x(40x+ 21− 20c1) sin(2x) + 1

7685



19.52 problem section 9.3, problem 52
Internal problem ID [1549]
Internal file name [OUTPUT/1550_Sunday_June_05_2022_02_21_57_AM_96974772/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 52.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ + 3y′′ + 3y′ + y = 12 e−x + 9 cos (2x)− 13 sin (2x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ + 3y′′ + 3y′ + y = 0

The characteristic equation is

λ3 + 3λ2 + 3λ+ 1 = 0

The roots of the above equation are

λ1 = −1
λ2 = −1
λ3 = −1
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Therefore the homogeneous solution is

yh(x) = c1e−x + x e−xc2 + x2e−xc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = x e−x

y3 = x2e−x

Now the particular solution to the given ODE is found

y′′′ + 3y′′ + 3y′ + y = 12 e−x + 9 cos (2x)− 13 sin (2x)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

12 e−x + 9 cos (2x)− 13 sin (2x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−x}, {cos (2x) , sin (2x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{x e−x, x2e−x, e−x}

Since e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e−x}, {cos (2x) , sin (2x)}]

Since x e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2e−x}, {cos (2x) , sin (2x)}]

Since x2e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{e−xx3}, {cos (2x) , sin (2x)}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1e−xx3 + A2 cos (2x) + A3 sin (2x)
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The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

6A1e−x + 2A2 sin (2x)− 2A3 cos (2x)− 11A2 cos (2x)− 11A3 sin (2x)
= 12 e−x + 9 cos (2x)− 13 sin (2x)

Solving for the unknowns by comparing coefficients results in

[A1 = 2, A2 = −1, A3 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2 e−xx3 − cos (2x) + sin (2x)

Therefore the general solution is

y = yh + yp

=
(
c1e−x + x e−xc2 + x2e−xc3

)
+
(
2 e−xx3 − cos (2x) + sin (2x)

)
Which simplifies to

y = e−x
(
c3x

2 + c2x+ c1
)
+ 2 e−xx3 − cos (2x) + sin (2x)

Summary
The solution(s) found are the following

(1)y = e−x
(
c3x

2 + c2x+ c1
)
+ 2 e−xx3 − cos (2x) + sin (2x)

Verification of solutions

y = e−x
(
c3x

2 + c2x+ c1
)
+ 2 e−xx3 − cos (2x) + sin (2x)

Verified OK.
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
dsolve(1*diff(y(x),x$3)+3*diff(y(x),x$2)+3*diff(y(x),x)+y(x)=12*exp(-x)+9*cos(2*x)-13*sin(2*x),y(x), singsol=all)� �

y(x) =
(
c3x

2 + 2x3 + c2x+ c1
)
e−x − cos (2x) + sin (2x)

3 Solution by Mathematica
Time used: 0.295 (sec). Leaf size: 46� �
DSolve[1*y'''[x]+3*y''[x]+3*y'[x]+1*y[x]==12*Exp[-x]+9*Cos[2*x]-13*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x
(
2x3 + c3x

2 + ex sin(2x)− ex cos(2x) + c2x+ c1
)
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19.53 problem section 9.3, problem 53
19.53.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7693

Internal problem ID [1550]
Internal file name [OUTPUT/1551_Sunday_June_05_2022_02_22_00_AM_73103628/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 53.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ + y′′ − y′ − y = 4 e−x(1− 6x)− 2x cos (x) + 2(x+ 1) sin (x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ + y′′ − y′ − y = 0

The characteristic equation is

λ3 + λ2 − λ− 1 = 0

The roots of the above equation are

λ1 = 1
λ2 = −1
λ3 = −1
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Therefore the homogeneous solution is

yh(x) = c1e−x + x e−xc2 + c3ex

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = x e−x

y3 = ex

Now the particular solution to the given ODE is found

y′′′ + y′′ − y′ − y = 4 e−x(1− 6x)− 2x cos (x) + 2(x+ 1) sin (x)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

4 e−x(1− 6x)− 2x cos (x) + 2(x+ 1) sin (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e−x, e−x}, {x cos (x) , sin (x)x, cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{x e−x, ex, e−x}

Since e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e−x, x2e−x}, {x cos (x) , sin (x)x, cos (x) , sin (x)}]

Since x e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2e−x, e−xx3}, {x cos (x) , sin (x)x, cos (x) , sin (x)}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
2e−x + A2e−xx3 + A3x cos (x) + A4 sin (x)x+ A5 cos (x) + A6 sin (x)
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The unknowns {A1, A2, A3, A4, A5, A6} are found by substituting the above trial solution
yp into the ODE and comparing coefficients. Substituting the trial solution into the
ODE and simplifying gives

−12A2e−xx− 4A4 sin (x)− 2A6 cos (x) + 2A3x sin (x)− 2A3 sin (x)− 2A5 cos (x)
− 2A6 sin (x)− 2A3x cos (x) + 2A4 cos (x)− 4A3 cos (x) + 2A5 sin (x)− 2A4 cos (x)x
+ 6A2e−x − 4A1e−x − 2A4 sin (x)x = 4 e−x(1− 6x)− 2x cos (x) + 2(x+ 1) sin (x)

Solving for the unknowns by comparing coefficients results in

[A1 = 2, A2 = 2, A3 = 1, A4 = 0, A5 = 0, A6 = −2]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2x2e−x + 2 e−xx3 + x cos (x)− 2 sin (x)

Therefore the general solution is

y = yh + yp

=
(
c1e−x + x e−xc2 + c3ex

)
+
(
2x2e−x + 2 e−xx3 + x cos (x)− 2 sin (x)

)
Which simplifies to

y = (c2x+ c1) e−x + c3ex + 2x2e−x + 2 e−xx3 + x cos (x)− 2 sin (x)

Summary
The solution(s) found are the following

(1)y = (c2x+ c1) e−x + c3ex + 2x2e−x + 2 e−xx3 + x cos (x)− 2 sin (x)
Verification of solutions

y = (c2x+ c1) e−x + c3ex + 2x2e−x + 2 e−xx3 + x cos (x)− 2 sin (x)

Verified OK.
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19.53.1 Maple step by step solution

Let’s solve
y′′′ + y′′ − y′ − y = 4 e−x(1− 6x)− 2x cos (x) + 2(x+ 1) sin (x)

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative
y′′′ = y − 24x e−x − 2x cos (x) + 2 sin (x)x+ 4 e−x + 2 sin (x)− y′′ + y′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ + y′′ − y′ − y = 2 sin (x)x− 2x cos (x)− 24x e−x + 2 sin (x) + 4 e−x

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = −24x e−x − 2x cos (x) + 2 sin (x)x+ 4 e−x + 2 sin (x)− y3(x) + y2(x) + y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = −24x e−x − 2x cos (x) + 2 sin (x)x+ 4 e−x + 2 sin (x)− y3(x) + y2(x) + y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
1 1 −1

 · →y (x) +


0
0

2 sin (x)x− 2x cos (x)− 24x e−x + 2 sin (x) + 4 e−x


• Define the forcing function
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→
f (x) =


0
0

2 sin (x)x− 2x cos (x)− 24x e−x + 2 sin (x) + 4 e−x


• Define the coefficient matrix

A =


0 1 0
0 0 1
1 1 −1


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


1
−1
1


 ,

−1,


0
0
0


 ,

1,


1
1
1





• Consider eigenpair, with eigenvalue of algebraic multiplicity 2−1,


1
−1
1




• First solution from eigenvalue − 1

→
y 1(x) = e−x ·


1
−1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = −1 is the eigenvalue, and →
v is the eigenvector

→
y 2(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = −1

• Substitute →
y 2(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)
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• Use the fact that →
v is an eigenvector of A

λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 2(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue − 1


0 1 0
0 0 1
1 1 −1

− (−1) ·


1 0 0
0 1 0
0 0 1


 · →p =


1
−1
1


• Choice of →

p

→
p =


1
0
0


• Second solution from eigenvalue − 1

→
y 2(x) = e−x ·

x ·


1
−1
1

+


1
0
0




• Consider eigenpair1,


1
1
1




• Solution to homogeneous system from eigenpair

→
y 3 = ex ·


1
1
1
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• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3 +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


e−x (x+ 1) e−x ex

−e−x −x e−x ex

e−x x e−x ex


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e−x (x+ 1) e−x ex

−e−x −x e−x ex

e−x x e−x ex

 · 1
1 1 1
−1 0 1
1 0 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


(x+ 1) e−x − e−x

2 + ex
2 − e−x

2 − x e−x + ex
2

−x e−x ex
2 + e−x

2 − e−x

2 + x e−x + ex
2

x e−x − e−x

2 + ex
2

e−x

2 − x e−x + ex
2


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)
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◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


(4x3 + 4x2 + 4x+ 1) e−x + 2x cos (x)− ex − 4 sin (x)
(−4x3 + 8x2 + 4x+ 3) e−x − 2 sin (x)x− 2 cos (x)− ex

(4x3 − 8x2 + 8x+ 1) e−x − ex − 2 sin (x)


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3 +


(4x3 + 4x2 + 4x+ 1) e−x + 2x cos (x)− ex − 4 sin (x)
(−4x3 + 8x2 + 4x+ 3) e−x − 2 sin (x)x− 2 cos (x)− ex

(4x3 − 8x2 + 8x+ 1) e−x − ex − 2 sin (x)


• First component of the vector is the solution to the ODE

y = (4x3 + 4x2 + (c2 + 4)x+ c1 + c2 + 1) e−x + (c3 − 1) ex + 2x cos (x)− 4 sin (x)

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 40� �
dsolve(1*diff(y(x),x$3)+1*diff(y(x),x$2)-1*diff(y(x),x)-1*y(x)=4*exp(-x)*(1-6*x)-2*x*cos(x)+2*(1+x)*sin(x),y(x), singsol=all)� �

y(x) =
(
2x3 + 2x2 + (c3 + 2)x+ c2 + 1

)
e−x + x cos (x) + exc1 − 2 sin (x)

3 Solution by Mathematica
Time used: 0.627 (sec). Leaf size: 54� �
DSolve[1*y'''[x]+1*y''[x]-1*y'[x]-1*y[x]==4*Exp[-x]*(1-6*x)-2*x*Cos[x]+2*(1+x)*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x
(
2x3 + 2x2 + 2x− 2ex sin(x) + exx cos(x) + c2x+ c3e

2x + 1 + c1
)
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19.54 problem section 9.3, problem 54
19.54.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7701

Internal problem ID [1551]
Internal file name [OUTPUT/1552_Sunday_June_05_2022_02_22_03_AM_53523338/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 54.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ − 5y′′ + 4y = −12 ex + 6 e−x + 10 cos (x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − 5y′′ + 4y = 0

The characteristic equation is
λ4 − 5λ2 + 4 = 0

The roots of the above equation are

λ1 = 2
λ2 = −2
λ3 = 1
λ4 = −1
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Therefore the homogeneous solution is

yh(x) = c1e−x + c2e−2x + c3ex + e2xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = e−2x

y3 = ex

y4 = e2x

Now the particular solution to the given ODE is found

y′′′′ − 5y′′ + 4y = −12 ex + 6 e−x + 10 cos (x)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

−12 ex + 6 e−x + 10 cos (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{ex}, {e−x}, {cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{ex, e−2x, e−x, e2x}

Since e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{ex}, {x e−x}, {cos (x) , sin (x)}]

Since ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x ex}, {x e−x}, {cos (x) , sin (x)}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x ex + A2x e−x + A3 cos (x) + A4 sin (x)
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The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

−6A1ex + 6A2e−x + 10A3 cos (x) + 10A4 sin (x) = −12 ex + 6 e−x + 10 cos (x)

Solving for the unknowns by comparing coefficients results in

[A1 = 2, A2 = 1, A3 = 1, A4 = 0]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2x ex + x e−x + cos (x)

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2e−2x + c3ex + e2xc4

)
+
(
2x ex + x e−x + cos (x)

)
Summary
The solution(s) found are the following

(1)y = c1e−x + c2e−2x + c3ex + e2xc4 + 2x ex + x e−x + cos (x)
Verification of solutions

y = c1e−x + c2e−2x + c3ex + e2xc4 + 2x ex + x e−x + cos (x)

Verified OK.

19.54.1 Maple step by step solution

Let’s solve
y′′′′ − 5y′′ + 4y = −12 ex + 6 e−x + 10 cos (x)

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y
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◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = −12 ex + 6 e−x + 10 cos (x) + 5y3(x)− 4y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = −12 ex + 6 e−x + 10 cos (x) + 5y3(x)− 4y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
−4 0 5 0

 · →y (x) +


0
0
0

−12 ex + 6 e−x + 10 cos (x)


• Define the forcing function

→
f (x) =


0
0
0

−12 ex + 6 e−x + 10 cos (x)


• Define the coefficient matrix
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A =


0 1 0 0
0 0 1 0
0 0 0 1
−4 0 5 0


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−2,


−1

8
1
4

−1
2

1



 ,

−1,


−1
1
−1
1



 ,

1,


1
1
1
1



 ,

2,


1
8
1
4
1
2

1






• Consider eigenpair−2,


−1

8
1
4

−1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−2x ·


−1

8
1
4

−1
2

1


• Consider eigenpair−1,


−1
1
−1
1




• Solution to homogeneous system from eigenpair
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→
y 2 = e−x ·


−1
1
−1
1


• Consider eigenpair1,


1
1
1
1




• Solution to homogeneous system from eigenpair

→
y 3 = ex ·


1
1
1
1


• Consider eigenpair2,


1
8
1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 4 = e2x ·


1
8
1
4
1
2

1


• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 + c4

→
y 4 +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.
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φ(x) =


− e−2x

8 −e−x ex e2x
8

e−2x

4 e−x ex e2x
4

− e−2x

2 −e−x ex e2x
2

e−2x e−x ex e2x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


− e−2x

8 −e−x ex e2x
8

e−2x

4 e−x ex e2x
4

− e−2x

2 −e−x ex e2x
2

e−2x e−x ex e2x

 · 1

−1
8 −1 1 1

8
1
4 1 1 1

4

−1
2 −1 1 1

2

1 1 1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =



(
−e4x+4 e3x+4 ex−1

)
e−2x

6 −
(
e4x−8 e3x+8 ex−1

)
e−2x

12 −
(
−e4x+e3x+ex−1

)
e−2x

6

(
e4x−2 e3x+2 ex−1

)
e−2x

12

−
(
e4x−2 e3x+2 ex−1

)
e−2x

3

(
−e4x+4 e3x+4 ex−1

)
e−2x

6

(
2 e4x−e3x+ex−2

)
e−2x

6 −
(
−e4x+e3x+ex−1

)
e−2x

6
2
(
−e4x+e3x+ex−1

)
e−2x

3 −
(
e4x−2 e3x+2 ex−1

)
e−2x

3 −
(
−4 e4x+e3x+ex−4

)
e−2x

6

(
2 e4x−e3x+ex−2

)
e−2x

6

−2
(
2 e4x−e3x+ex−2

)
e−2x

3
2
(
−e4x+e3x+ex−1

)
e−2x

3

(
8 e4x−e3x+ex−8

)
e−2x

6 −
(
−4 e4x+e3x+ex−4

)
e−2x

6


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)
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◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


e−2x(−e4x+4x e3x−2 e3x+2 e2x cos(x)+2x ex+1

)
2

−((−1− 2x) e3x + e2x sin (x) + e4x + 1 + (x− 1) ex) e−2x

((2x+ 3) e3x − e2x cos (x)− 2 e4x + 2 + (−2 + x) ex) e−2x

−((−2x− 5) e3x − e2x sin (x) + 4 e4x + 4 + (x− 3) ex) e−2x


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 + c4

→
y 4 +


e−2x(−e4x+4x e3x−2 e3x+2 e2x cos(x)+2x ex+1

)
2

−((−1− 2x) e3x + e2x sin (x) + e4x + 1 + (x− 1) ex) e−2x

((2x+ 3) e3x − e2x cos (x)− 2 e4x + 2 + (−2 + x) ex) e−2x

−((−2x− 5) e3x − e2x sin (x) + 4 e4x + 4 + (x− 3) ex) e−2x


• First component of the vector is the solution to the ODE

y = e−2x
(
(2x+ c3 − 1) e3x + x ex + c4e4x

8 − c2ex + e2x cos (x)− e4x
2 − c1

8 + 1
2

)
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 45� �
dsolve(diff(y(x),x$4)-0*diff(y(x),x$3)-5*diff(y(x),x$2)-0*diff(y(x),x)+4*y(x)=-12*exp(x)+6*exp(-x)+10*cos(x),y(x), singsol=all)� �

y(x) = e−2x
(
(6x+ 3c1 + 1) e3x

3 + cos (x) e2x + c4e4x +
(
x+ c3 −

1
6

)
ex + c2

)
3 Solution by Mathematica
Time used: 0.19 (sec). Leaf size: 58� �
DSolve[y''''[x]-0*y'''[x]-5*y''[x]-0*y'[x]+4*y[x]==-12*Exp[x]+6*Exp[-x]+10*Cos[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → cos(x) + c1e
−2x + 1

6e
−x(6x− 1 + 6c2) +

1
3e

x(6x+ 1 + 3c3) + c4e
2x
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19.55 problem section 9.3, problem 55
19.55.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7713

Internal problem ID [1552]
Internal file name [OUTPUT/1553_Sunday_June_05_2022_02_22_05_AM_61086094/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 55.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ − 4y′′′ + 11y′′ − 14y′ + 10y = −ex(sin (x) + 2 cos (2x))

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − 4y′′′ + 11y′′ − 14y′ + 10y = 0

The characteristic equation is

λ4 − 4λ3 + 11λ2 − 14λ+ 10 = 0

The roots of the above equation are

λ1 = 1− i

λ2 = 1 + i

λ3 = 1− 2i
λ4 = 1 + 2i
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Therefore the homogeneous solution is

yh(x) = e(1+2i)xc1 + e(1−i)xc2 + e(1+i)xc3 + e(1−2i)xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e(1+2i)x

y2 = e(1−i)x

y3 = e(1+i)x

y4 = e(1−2i)x

Now the particular solution to the given ODE is found

y′′′′ − 4y′′′ + 11y′′ − 14y′ + 10y = −ex(sin (x) + 2 cos (2x))

Let the particular solution be

yp = U1y1 + U2y2 + U3y3 + U4y4

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


e(1+2i)x e(1−i)x e(1+i)x e(1−2i)x

(1 + 2i) e(1+2i)x (1− i) e(1−i)x (1 + i) e(1+i)x (1− 2i) e(1−2i)x

(−3 + 4i) e(1+2i)x −2ie(1−i)x 2ie(1+i)x (−3− 4i) e(1−2i)x

(−11− 2i) e(1+2i)x (−2− 2i) e(1−i)x (−2 + 2i) e(1+i)x (−11 + 2i) e(1−2i)x


|W | = 72 e(1+2i)xe(1−i)xe(1+i)xe(1−2i)x
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The determinant simplifies to

|W | = 72 e4x

Now we determine Wi for each Ui.

W1(x) = det


e(1−i)x e(1+i)x e(1−2i)x

(1− i) e(1−i)x (1 + i) e(1+i)x (1− 2i) e(1−2i)x

−2ie(1−i)x 2ie(1+i)x (−3− 4i) e(1−2i)x


= −6ie(3−2i)x

W2(x) = det


e(1+2i)x e(1+i)x e(1−2i)x

(1 + 2i) e(1+2i)x (1 + i) e(1+i)x (1− 2i) e(1−2i)x

(−3 + 4i) e(1+2i)x 2ie(1+i)x (−3− 4i) e(1−2i)x


= 12ie(3+i)x

W3(x) = det


e(1+2i)x e(1−i)x e(1−2i)x

(1 + 2i) e(1+2i)x (1− i) e(1−i)x (1− 2i) e(1−2i)x

(−3 + 4i) e(1+2i)x −2ie(1−i)x (−3− 4i) e(1−2i)x


= 12ie(3−i)x

W4(x) = det


e(1+2i)x e(1−i)x e(1+i)x

(1 + 2i) e(1+2i)x (1− i) e(1−i)x (1 + i) e(1+i)x

(−3 + 4i) e(1+2i)x −2ie(1−i)x 2ie(1+i)x


= −6ie(3+2i)x

Now we are ready to evaluate each Ui(x).

U1 = (−1)4−1
∫

F (x)W1(x)
aW (x) dx

= (−1)3
∫ (−ex(sin (x) + 2 cos (2x)))

(
−6ie(3−2i)x)

(1) (72 e4x) dx

= −
∫ 6iex(sin (x) + 2 cos (2x)) e(3−2i)x

72 e4x dx

= −
∫ (

i(sin (x) + 2 cos (2x)) e−2ix

12

)
dx

= −
(∫

i(sin (x) + 2 cos (2x)) e−2ix

12 dx

)
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U2 = (−1)4−2
∫

F (x)W2(x)
aW (x) dx

= (−1)2
∫ (−ex(sin (x) + 2 cos (2x)))

(
12ie(3+i)x)

(1) (72 e4x) dx

=
∫

−12iex(sin (x) + 2 cos (2x)) e(3+i)x

72 e4x dx

=
∫ (

−i(sin (x) + 2 cos (2x)) eix
6

)
dx

=
∫

−i(sin (x) + 2 cos (2x)) eix
6 dx

U3 = (−1)4−3
∫

F (x)W3(x)
aW (x) dx

= (−1)1
∫ (−ex(sin (x) + 2 cos (2x)))

(
12ie(3−i)x)

(1) (72 e4x) dx

= −
∫

−12iex(sin (x) + 2 cos (2x)) e(3−i)x

72 e4x dx

= −
∫ (

−i(sin (x) + 2 cos (2x)) e−ix

6

)
dx

= −
(∫

−i(sin (x) + 2 cos (2x)) e−ix

6 dx

)

U4 = (−1)4−4
∫

F (x)W4(x)
aW (x) dx

= (−1)0
∫ (−ex(sin (x) + 2 cos (2x)))

(
−6ie(3+2i)x)

(1) (72 e4x) dx

=
∫ 6iex(sin (x) + 2 cos (2x)) e(3+2i)x

72 e4x dx

=
∫ (

i(sin (x) + 2 cos (2x)) e2ix
12

)
dx

=
∫

i(sin (x) + 2 cos (2x)) e2ix
12 dx

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3 + U4y4
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Hence

yp =
(
−
(∫

i(sin (x) + 2 cos (2x)) e−2ix

12 dx

))(
e(1+2i)x)

+
(∫

−i(sin (x) + 2 cos (2x)) eix
6 dx

)(
e(1−i)x)

+
(
−
(∫

−i(sin (x) + 2 cos (2x)) e−ix

6 dx

))(
e(1+i)x)

+
(∫

i(sin (x) + 2 cos (2x)) e2ix
12 dx

)(
e(1−2i)x)

Therefore the particular solution is

yp = −
i
(
2
(∫

(sin (x) + 2 cos (2x)) eixdx
)
e(1−i)x −

(∫
(sin (x) + 2 cos (2x)) e2ixdx

)
e(1−2i)x +

(∫
(sin (x) + 2 cos (2x)) e−2ixdx

)
e(1+2i)x − 2

(∫
(sin (x) + 2 cos (2x)) e−ixdx

)
e(1+i)x)

12

Which simplifies to

yp = −
ex
((∫

(sin (x) + 2 cos (2x)) sin (2x) dx
)
cos (2x) + 2

(∫
(sin (x) + 2 cos (2x)) cos (x) dx

)
sin (x)− 2

(∫ (
sin (x) + 4 cos (x)2 − 2

)
sin (x) dx

)
cos (x)−

(∫
(sin (x) + 2 cos (2x)) cos (2x) dx

)
sin (2x)

)
6

Therefore the general solution is

y = yh + yp

=
(
e(1+2i)xc1 + e(1−i)xc2 + e(1+i)xc3 + e(1−2i)xc4

)
+
(
−
ex
((∫

(sin (x) + 2 cos (2x)) sin (2x) dx
)
cos (2x) + 2

(∫
(sin (x) + 2 cos (2x)) cos (x) dx

)
sin (x)− 2

(∫ (
sin (x) + 4 cos (x)2 − 2

)
sin (x) dx

)
cos (x)−

(∫
(sin (x) + 2 cos (2x)) cos (2x) dx

)
sin (2x)

)
6

)

Summary
The solution(s) found are the following

(1)y = e(1+2i)xc1 + e(1−i)xc2 + e(1+i)xc3 + e(1−2i)xc4

−
ex
((∫

(sin (x) + 2 cos (2x)) sin (2x) dx
)
cos (2x) + 2

(∫
(sin (x) + 2 cos (2x)) cos (x) dx

)
sin (x)− 2

(∫ (
sin (x) + 4 cos (x)2 − 2

)
sin (x) dx

)
cos (x)−

(∫
(sin (x) + 2 cos (2x)) cos (2x) dx

)
sin (2x)

)
6

Verification of solutions

y = e(1+2i)xc1 + e(1−i)xc2 + e(1+i)xc3 + e(1−2i)xc4

−
ex
((∫

(sin (x) + 2 cos (2x)) sin (2x) dx
)
cos (2x) + 2

(∫
(sin (x) + 2 cos (2x)) cos (x) dx

)
sin (x)− 2

(∫ (
sin (x) + 4 cos (x)2 − 2

)
sin (x) dx

)
cos (x)−

(∫
(sin (x) + 2 cos (2x)) cos (2x) dx

)
sin (2x)

)
6

Verified OK.
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19.55.1 Maple step by step solution

Let’s solve
y′′′′ − 4y′′′ + 11y′′ − 14y′ + 10y = −ex(sin (x) + 2 cos (2x))

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = −2 ex cos (2x)− sin (x) ex + 4y4(x)− 11y3(x) + 14y2(x)− 10y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = −2 ex cos (2x)− sin (x) ex + 4y4(x)− 11y3(x) + 14y2(x)− 10y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1

−10 14 −11 4

 · →y (x) +


0
0
0

−2 ex cos (2x)− sin (x) ex


• Define the forcing function
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→
f (x) =


0
0
0

−2 ex cos (2x)− sin (x) ex


• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1

−10 14 −11 4


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

1− 2 I,


− 11

125 −
2 I
125

− 3
25 +

4 I
25

1
5 +

2 I
5

1



 ,

1− I,


−1

4 +
I
4

I
2

1
2 +

I
2

1



 ,

1 + I,


−1

4 −
I
4

− I
2

1
2 −

I
2

1



 ,

1 + 2 I,


− 11

125 +
2 I
125

− 3
25 −

4 I
25

1
5 −

2 I
5

1






• Consider complex eigenpair, complex conjugate eigenvalue can be ignored1− 2 I,


− 11

125 −
2 I
125

− 3
25 +

4 I
25

1
5 +

2 I
5

1




• Solution from eigenpair

e(1−2 I)x ·


− 11

125 −
2 I
125

− 3
25 +

4 I
25

1
5 +

2 I
5

1


• Use Euler identity to write solution in terms of sin and cos

7714



ex · (cos (2x)− I sin (2x)) ·


− 11

125 −
2 I
125

− 3
25 +

4 I
25

1
5 +

2 I
5

1


• Simplify expression

ex ·



(
− 11

125 −
2 I
125

)
(cos (2x)− I sin (2x))(

− 3
25 +

4 I
25

)
(cos (2x)− I sin (2x))(1

5 +
2 I
5

)
(cos (2x)− I sin (2x))

cos (2x)− I sin (2x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 1(x) = ex ·


−11 cos(2x)

125 − 2 sin(2x)
125

−3 cos(2x)
25 + 4 sin(2x)

25
cos(2x)

5 + 2 sin(2x)
5

cos (2x)

 ,
→
y 2(x) = ex ·



11 sin(2x)
125 − 2 cos(2x)

125
3 sin(2x)

25 + 4 cos(2x)
25

− sin(2x)
5 + 2 cos(2x)

5

− sin (2x)




• Consider complex eigenpair, complex conjugate eigenvalue can be ignored1− I,


−1

4 +
I
4

I
2

1
2 +

I
2

1




• Solution from eigenpair

e(1−I)x ·


−1

4 +
I
4

I
2

1
2 +

I
2

1


• Use Euler identity to write solution in terms of sin and cos
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ex · (−I sin (x) + cos (x)) ·


−1

4 +
I
4

I
2

1
2 +

I
2

1


• Simplify expression

ex ·



(
−1

4 +
I
4

)
(−I sin (x) + cos (x))

I
2(−I sin (x) + cos (x))(1

2 +
I
2

)
(−I sin (x) + cos (x))

−I sin (x) + cos (x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) = ex ·


− cos(x)

4 + sin(x)
4

sin(x)
2

cos(x)
2 + sin(x)

2

cos (x)

 ,
→
y 4(x) = ex ·



sin(x)
4 + cos(x)

4
cos(x)

2
cos(x)

2 − sin(x)
2

− sin (x)




• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =



ex
(
−11 cos(2x)

125 − 2 sin(2x)
125

)
ex
(

11 sin(2x)
125 − 2 cos(2x)

125

)
ex
(
− cos(x)

4 + sin(x)
4

)
ex
(

sin(x)
4 + cos(x)

4

)
ex
(
−3 cos(2x)

25 + 4 sin(2x)
25

)
ex
(

3 sin(2x)
25 + 4 cos(2x)

25

)
sin(x)ex

2
cos(x)ex

2

ex
(

cos(2x)
5 + 2 sin(2x)

5

)
ex
(
− sin(2x)

5 + 2 cos(2x)
5

)
ex
(

cos(x)
2 + sin(x)

2

) (
cos(x)

2 − sin(x)
2

)
ex

ex cos (2x) −ex sin (2x) cos (x) ex − sin (x) ex


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)
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Φ(x) =



ex
(
−11 cos(2x)

125 − 2 sin(2x)
125

)
ex
(

11 sin(2x)
125 − 2 cos(2x)

125

)
ex
(
− cos(x)

4 + sin(x)
4

)
ex
(

sin(x)
4 + cos(x)

4

)
ex
(
−3 cos(2x)

25 + 4 sin(2x)
25

)
ex
(

3 sin(2x)
25 + 4 cos(2x)

25

)
sin(x)ex

2
cos(x)ex

2

ex
(

cos(2x)
5 + 2 sin(2x)

5

)
ex
(
− sin(2x)

5 + 2 cos(2x)
5

)
ex
(

cos(x)
2 + sin(x)

2

) (
cos(x)

2 − sin(x)
2

)
ex

ex cos (2x) −ex sin (2x) cos (x) ex − sin (x) ex


· 1

− 11
125 − 2

125 −1
4

1
4

− 3
25

4
25 0 1

2
1
5

2
5

1
2

1
2

1 0 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =



ex(−2 cos(2x)−5 sin(x)+5 cos(x)+sin(2x))
3

ex(2 cos(2x)−2 sin(2x)−2 cos(x)+7 sin(x))
3

(−2 cos(x)+3 sin(x)−1)(cos(x)−1)ex
3 − (cos(x)−1) sin(x)ex

3

−5 ex(− sin(2x)+2 sin(x))
3 − ex(2 cos(2x)+6 sin(2x)−9 sin(x)−5 cos(x))

3
ex(4 cos(2x)+7 sin(2x)−8 sin(x)−4 cos(x))

6 − (cos(x)−1)(2 cos(x)+sin(x)+1)ex
3

10(cos(x)−1)(2 cos(x)+sin(x)+1)ex
3 −2(cos(x)−1)(14 cos(x)+2 sin(x)+7)ex

3 − ex(−18 cos(2x)+sin(2x)+12 cos(x)+4 sin(x))
6 − ex(4 cos(2x)−3 sin(2x)−4 cos(x))

6
5 ex(4 cos(2x)−3 sin(2x)−4 cos(x))

3 −2 ex(9 cos(2x)−13 sin(2x)−9 cos(x)+5 sin(x))
3

ex(16 cos(2x)−37 sin(2x)−16 cos(x)+8 sin(x))
6

ex(2 cos(2x)+11 sin(2x)+4 cos(x)−4 sin(x))
6


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution
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→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =



(
6x cos(x) sin(x)−2 cos(x) sin(x)+8 cos(x)2+3x cos(x)−sin(x)−4 cos(x)−4

)
ex

18
(12x+4)ex cos(x)2

18 + (6 sin(x)x+3x−12 sin(x)−2)ex cos(x)
18 + (−3 sin(x)x−6x+3 sin(x)−2)ex

18

(12x−4)ex cos(x)2
9 + ((−9x−7)ex sin(x)+2 ex) cos(x)

9 −
(
x− 1

3
)
(sin(x)+2)ex

3

ex
(
−2(x+1) cos(x)2− (33 sin(x)x+3x+8 sin(x)−3) cos(x)

3 −sin(x)x+x− 4 sin(x)
3 +1

)
3


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4(x) +



(
6x cos(x) sin(x)−2 cos(x) sin(x)+8 cos(x)2+3x cos(x)−sin(x)−4 cos(x)−4

)
ex

18
(12x+4)ex cos(x)2

18 + (6 sin(x)x+3x−12 sin(x)−2)ex cos(x)
18 + (−3 sin(x)x−6x+3 sin(x)−2)ex

18

(12x−4)ex cos(x)2
9 + ((−9x−7)ex sin(x)+2 ex) cos(x)

9 −
(
x− 1

3
)
(sin(x)+2)ex

3

ex
(
−2(x+1) cos(x)2− (33 sin(x)x+3x+8 sin(x)−3) cos(x)

3 −sin(x)x+x− 4 sin(x)
3 +1

)
3


• First component of the vector is the solution to the ODE

y =
ex
((

− 66c1
125 − 12c2

125 + 4
3

)
cos(x)2+

((
x− 12c1

125 + 66c2
125 − 1

3

)
sin(x)+x

2−
3c3
4 + 3c4

4 − 2
3

)
cos(x)+

(
3c3
4 + 3c4

4 − 1
6

)
sin(x)+ 33c1

125 + 6c2
125−

2
3

)
3

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 44� �
dsolve(diff(y(x),x$4)-4*diff(y(x),x$3)+11*diff(y(x),x$2)-14*diff(y(x),x)+10*y(x)=-exp(x)*(sin(x)+2*cos(2*x)),y(x), singsol=all)� �
y(x)=

ex
((
6c3 + 7

3

)
cos (2x) + (x+ 6c4) sin (2x) + (x+ 6c1) cos (x) + 6

(1
9 + c2

)
sin (x)

)
6

3 Solution by Mathematica
Time used: 0.151 (sec). Leaf size: 53� �
DSolve[y''''[x]-4*y'''[x]+11*y''[x]-14*y'[x]+10*y[x]==-Exp[x]*(Sin[x]+2*Cos[2*x]),y[x],x,IncludeSingularSolutions -> True]� �
y(x)→ 1

36e
x((11+36c2) cos(2x)+(1+36c3) sin(x)+6 cos(x)(x+2(x+6c1) sin(x)+6c4))
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19.56 problem section 9.3, problem 56
Internal problem ID [1553]
Internal file name [OUTPUT/1554_Sunday_June_05_2022_02_22_09_AM_77937519/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 56.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ + 2y′′′ − 3y′′ − 4y′ + 4y = 2(x+ 1) ex + e−2x

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ + 2y′′′ − 3y′′ − 4y′ + 4y = 0

The characteristic equation is

λ4 + 2λ3 − 3λ2 − 4λ+ 4 = 0

The roots of the above equation are

λ1 = −2
λ2 = −2
λ3 = 1
λ4 = 1
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Therefore the homogeneous solution is

yh(x) = c1e−2x + x e−2xc2 + c3ex + c4x ex

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−2x

y2 = e−2xx

y3 = ex

y4 = x ex

Now the particular solution to the given ODE is found

y′′′′ + 2y′′′ − 3y′′ − 4y′ + 4y = 2(x+ 1) ex + e−2x

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

2(x+ 1) ex + e−2x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−2x}, {x ex, ex}]

While the set of the basis functions for the homogeneous solution found earlier is

{x ex, e−2xx, ex, e−2x}

Since e−2x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{e−2xx}, {x ex, ex}]

Since e−2xx is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2e−2x}, {x ex, ex}]

Since ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2e−2x}, {x ex, x2ex}]

Since x ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2e−2x}, {x2ex, exx3}]
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Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
2e−2x + A2x

2ex + A3exx3

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

54A3exx+ 18A2ex + 36A3ex + 18A1e−2x = 2(x+ 1) ex + e−2x

Solving for the unknowns by comparing coefficients results in[
A1 =

1
18 , A2 =

1
27 , A3 =

1
27

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x2e−2x

18 + x2ex
27 + exx3

27

Therefore the general solution is

y = yh + yp

=
(
c1e−2x + x e−2xc2 + c3ex + c4x ex

)
+
(
x2e−2x

18 + x2ex
27 + exx3

27

)

Which simplifies to

y =
(
(c4x+ c3) e3x + c2x+ c1

)
e−2x + x2e−2x

18 + x2ex
27 + exx3

27

Summary
The solution(s) found are the following

(1)y =
(
(c4x+ c3) e3x + c2x+ c1

)
e−2x + x2e−2x

18 + x2ex
27 + exx3

27
Verification of solutions

y =
(
(c4x+ c3) e3x + c2x+ c1

)
e−2x + x2e−2x

18 + x2ex
27 + exx3

27

Verified OK.

7722



Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 50� �
dsolve(diff(y(x),x$4)+2*diff(y(x),x$3)-3*diff(y(x),x$2)-4*diff(y(x),x)+4*y(x)=2*exp(x)*(1+x)+exp(-2*x),y(x), singsol=all)� �
y(x) =

e−2x
((

x3 + x2 + (27c3 − 2)x+ 27c1 + 10
9

)
e3x + 3x2

2 + (27c4 + 2)x+ 27c2 + 1
)

27

3 Solution by Mathematica
Time used: 0.239 (sec). Leaf size: 66� �
DSolve[y''''[x]+2*y'''[x]-3*y''[x]-4*y'[x]+4*y[x]==2*Exp[x]*(1+x)+Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
54e

−2x(3x2 + (4 + 54c2)x+ 2 + 54c1
)

+ 1
243e

x
(
9x3 + 9x2 + 9(−2 + 27c4)x+ 10 + 243c3

)
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19.57 problem section 9.3, problem 57
19.57.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7729

Internal problem ID [1554]
Internal file name [OUTPUT/1555_Sunday_June_05_2022_02_22_11_AM_36190050/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 57.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ + 4y = sinh (x) cos (x)− cosh (x) sin (x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ + 4y = 0

The characteristic equation is
λ4 + 4 = 0

The roots of the above equation are

λ1 = 1− i

λ2 = 1 + i

λ3 = −1− i

λ4 = −1 + i
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Therefore the homogeneous solution is

yh(x) = e(−1−i)xc1 + e(−1+i)xc2 + e(1−i)xc3 + e(1+i)xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e(−1−i)x

y2 = e(−1+i)x

y3 = e(1−i)x

y4 = e(1+i)x

Now the particular solution to the given ODE is found

y′′′′ + 4y = sinh (x) cos (x)− cosh (x) sin (x)

Let the particular solution be

yp = U1y1 + U2y2 + U3y3 + U4y4

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


e(−1−i)x e(−1+i)x e(1−i)x e(1+i)x

(−1− i) e(−1−i)x (−1 + i) e(−1+i)x (1− i) e(1−i)x (1 + i) e(1+i)x

2ie(−1−i)x −2ie(−1+i)x −2ie(1−i)x 2ie(1+i)x

(2− 2i) e(−1−i)x (2 + 2i) e(−1+i)x (−2− 2i) e(1−i)x (−2 + 2i) e(1+i)x


|W | = −128 e(−1−i)xe(−1+i)xe(1+i)xe(1−i)x
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The determinant simplifies to

|W | = −128

Now we determine Wi for each Ui.

W1(x) = det


e(−1+i)x e(1−i)x e(1+i)x

(−1 + i) e(−1+i)x (1− i) e(1−i)x (1 + i) e(1+i)x

−2ie(−1+i)x −2ie(1−i)x 2ie(1+i)x


= (8 + 8i) e(1+i)x

W2(x) = det


e(−1−i)x e(1−i)x e(1+i)x

(−1− i) e(−1−i)x (1− i) e(1−i)x (1 + i) e(1+i)x

2ie(−1−i)x −2ie(1−i)x 2ie(1+i)x


= (−8 + 8i) e(1−i)x

W3(x) = det


e(−1−i)x e(−1+i)x e(1+i)x

(−1− i) e(−1−i)x (−1 + i) e(−1+i)x (1 + i) e(1+i)x

2ie(−1−i)x −2ie(−1+i)x 2ie(1+i)x


= (−8 + 8i) e(−1+i)x

W4(x) = det


e(−1−i)x e(−1+i)x e(1−i)x

(−1− i) e(−1−i)x (−1 + i) e(−1+i)x (1− i) e(1−i)x

2ie(−1−i)x −2ie(−1+i)x −2ie(1−i)x


= (8 + 8i) e(−1−i)x

Now we are ready to evaluate each Ui(x).

U1 = (−1)4−1
∫

F (x)W1(x)
aW (x) dx

= (−1)3
∫ (sinh (x) cos (x)− cosh (x) sin (x))

(
(8 + 8i) e(1+i)x)

(1) (−128) dx

= −
∫ (8 + 8i) (sinh (x) cos (x)− cosh (x) sin (x)) e(1+i)x

−128 dx

= −
∫ ((

− 1
16 − i

16

)
(sinh (x) cos (x)− cosh (x) sin (x)) e(1+i)x

)
dx

= ie2ix
64 + e(2+2i)x

128 + ie(2+2i)x

128 + e2x
64 − ix

32
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U2 = (−1)4−2
∫

F (x)W2(x)
aW (x) dx

= (−1)2
∫ (sinh (x) cos (x)− cosh (x) sin (x))

(
(−8 + 8i) e(1−i)x)

(1) (−128) dx

=
∫ (−8 + 8i) (sinh (x) cos (x)− cosh (x) sin (x)) e(1−i)x

−128 dx

=
∫ (( 1

16 − i

16

)
(sinh (x) cos (x)− cosh (x) sin (x)) e(1−i)x

)
dx

= e2x
64 + ix

32 − ie−2ix

64 + e(2−2i)x

128 − ie(2−2i)x

128

U3 = (−1)4−3
∫

F (x)W3(x)
aW (x) dx

= (−1)1
∫ (sinh (x) cos (x)− cosh (x) sin (x))

(
(−8 + 8i) e(−1+i)x)

(1) (−128) dx

= −
∫ (−8 + 8i) (sinh (x) cos (x)− cosh (x) sin (x)) e(−1+i)x

−128 dx

= −
∫ (( 1

16 − i

16

)
(sinh (x) cos (x)− cosh (x) sin (x)) e(−1+i)x

)
dx

= −e(−2+2i)x

128 + ie2ix
64 + ie(−2+2i)x

128 + ix

32 − e−2x

64

U4 = (−1)4−4
∫

F (x)W4(x)
aW (x) dx

= (−1)0
∫ (sinh (x) cos (x)− cosh (x) sin (x))

(
(8 + 8i) e(−1−i)x)

(1) (−128) dx

=
∫ (8 + 8i) (sinh (x) cos (x)− cosh (x) sin (x)) e(−1−i)x

−128 dx

=
∫ ((

− 1
16 − i

16

)
(sinh (x) cos (x)− cosh (x) sin (x)) e(−1−i)x

)
dx

= − ix

32 − e−2x

64 − e(−2−2i)x

128 − ie−2ix

64 − ie(−2−2i)x

128

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3 + U4y4
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Hence

yp =
(
ie2ix
64 + e(2+2i)x

128 + ie(2+2i)x

128 + e2x
64 − ix

32

)(
e(−1−i)x)

+
(
e2x
64 + ix

32 − ie−2ix

64 + e(2−2i)x

128 − ie(2−2i)x

128

)(
e(−1+i)x)

+
(
−e(−2+2i)x

128 + ie2ix
64 + ie(−2+2i)x

128 + ix

32 − e−2x

64

)(
e(1−i)x)

+
(
− ix

32 − e−2x

64 − e(−2−2i)x

128 − ie−2ix

64 − ie(−2−2i)x

128

)(
e(1+i)x)

Therefore the particular solution is

yp =
(−4ix− 3i− 3) e(−1−i)x

128 +(4ix− 3i+ 3) e(1−i)x

128 +(4ix+ 3i− 3) e(−1+i)x

128 −
(
ix− 3

4 −
3
4i
)
e(1+i)x

32
Which simplifies to

yp =
((−4x− 3) sin (x)− 3 cos (x)) e−x

64 +

((
x− 3

4

)
sin (x) + 3 cos(x)

4

)
ex

16
Therefore the general solution is

y = yh + yp

=
(
e(−1−i)xc1 + e(−1+i)xc2 + e(1−i)xc3 + e(1+i)xc4

)
+

((−4x− 3) sin (x)− 3 cos (x)) e−x

64 +

((
x− 3

4

)
sin (x) + 3 cos(x)

4

)
ex

16


Summary
The solution(s) found are the following

(1)
y = e(−1−i)xc1 + e(−1+i)xc2 + e(1−i)xc3 + e(1+i)xc4

+ ((−4x− 3) sin (x)− 3 cos (x)) e−x

64 +

((
x− 3

4

)
sin (x) + 3 cos(x)

4

)
ex

16
Verification of solutions

y = e(−1−i)xc1 + e(−1+i)xc2 + e(1−i)xc3 + e(1+i)xc4

+ ((−4x− 3) sin (x)− 3 cos (x)) e−x

64 +

((
x− 3

4

)
sin (x) + 3 cos(x)

4

)
ex

16

Verified OK.
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19.57.1 Maple step by step solution

Let’s solve
y′′′′ + 4y = sinh (x) cos (x)− cosh (x) sin (x)

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = − cosh (x) sin (x) + sinh (x) cos (x)− 4y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = − cosh (x) sin (x) + sinh (x) cos (x)− 4y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
−4 0 0 0

 · →y (x) +


0
0
0

sinh (x) cos (x)− cosh (x) sin (x)


• Define the forcing function
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→
f (x) =


0
0
0

sinh (x) cos (x)− cosh (x) sin (x)


• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
−4 0 0 0


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1− I,


1
4 +

I
4

− I
2

−1
2 +

I
2

1



 ,

−1 + I,


1
4 −

I
4

I
2

−1
2 −

I
2

1



 ,

1− I,


−1

4 +
I
4

I
2

1
2 +

I
2

1



 ,

1 + I,


−1

4 −
I
4

− I
2

1
2 −

I
2

1






• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−1− I,


1
4 +

I
4

− I
2

−1
2 +

I
2

1




• Solution from eigenpair

e(−1−I)x ·


1
4 +

I
4

− I
2

−1
2 +

I
2

1


• Use Euler identity to write solution in terms of sin and cos
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e−x · (−I sin (x) + cos (x)) ·


1
4 +

I
4

− I
2

−1
2 +

I
2

1


• Simplify expression

e−x ·



(1
4 +

I
4

)
(−I sin (x) + cos (x))

− I
2(−I sin (x) + cos (x))(

−1
2 +

I
2

)
(−I sin (x) + cos (x))

−I sin (x) + cos (x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 1(x) = e−x ·



sin(x)
4 + cos(x)

4

− sin(x)
2

− cos(x)
2 + sin(x)

2

cos (x)

 ,
→
y 2(x) = e−x ·



cos(x)
4 − sin(x)

4

− cos(x)
2

cos(x)
2 + sin(x)

2

− sin (x)




• Consider complex eigenpair, complex conjugate eigenvalue can be ignored1− I,


−1

4 +
I
4

I
2

1
2 +

I
2

1




• Solution from eigenpair

e(1−I)x ·


−1

4 +
I
4

I
2

1
2 +

I
2

1


• Use Euler identity to write solution in terms of sin and cos
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ex · (−I sin (x) + cos (x)) ·


−1

4 +
I
4

I
2

1
2 +

I
2

1


• Simplify expression

ex ·



(
−1

4 +
I
4

)
(−I sin (x) + cos (x))

I
2(−I sin (x) + cos (x))(1

2 +
I
2

)
(−I sin (x) + cos (x))

−I sin (x) + cos (x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) = ex ·


− cos(x)

4 + sin(x)
4

sin(x)
2

cos(x)
2 + sin(x)

2

cos (x)

 ,
→
y 4(x) = ex ·



sin(x)
4 + cos(x)

4
cos(x)

2
cos(x)

2 − sin(x)
2

− sin (x)




• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =



e−x
(

sin(x)
4 + cos(x)

4

)
e−x
(

cos(x)
4 − sin(x)

4

)
ex
(
− cos(x)

4 + sin(x)
4

)
ex
(

sin(x)
4 + cos(x)

4

)
− sin(x)e−x

2 − cos(x)e−x

2
sin(x)ex

2
cos(x)ex

2

e−x
(
− cos(x)

2 + sin(x)
2

)
e−x
(

cos(x)
2 + sin(x)

2

)
ex
(

cos(x)
2 + sin(x)

2

) (
cos(x)

2 − sin(x)
2

)
ex

cos (x) e−x − sin (x) e−x cos (x) ex − sin (x) ex


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)
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Φ(x) =



e−x
(

sin(x)
4 + cos(x)

4

)
e−x
(

cos(x)
4 − sin(x)

4

)
ex
(
− cos(x)

4 + sin(x)
4

)
ex
(

sin(x)
4 + cos(x)

4

)
− sin(x)e−x

2 − cos(x)e−x

2
sin(x)ex

2
cos(x)ex

2

e−x
(
− cos(x)

2 + sin(x)
2

)
e−x
(

cos(x)
2 + sin(x)

2

)
ex
(

cos(x)
2 + sin(x)

2

) (
cos(x)

2 − sin(x)
2

)
ex

cos (x) e−x − sin (x) e−x cos (x) ex − sin (x) ex


· 1

1
4

1
4 −1

4
1
4

0 −1
2 0 1

2

−1
2

1
2

1
2

1
2

1 0 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =



cos(x)
(
ex+e−x

)
2

e−x(− cos(x)+sin(x))
4 + ex(cos(x)+sin(x))

4
sin(x)

(
ex−e−x

)
4

e−x(cos(x)+sin(x))
8 − ex(cos(x)−sin(x))

8
(− cos(x)−sin(x))e−x

2 + ex(cos(x)−sin(x))
2

cos(x)
(
ex+e−x

)
2

e−x(− cos(x)+sin(x))
4 + ex(cos(x)+sin(x))

4
sin(x)

(
ex−e−x

)
4

− sin (x) (ex − e−x) (− cos(x)−sin(x))e−x

2 + ex(cos(x)−sin(x))
2

cos(x)
(
ex+e−x

)
2

e−x(− cos(x)+sin(x))
4 + ex(cos(x)+sin(x))

4

e−x(cos (x)− sin (x))− ex(cos (x) + sin (x)) − sin (x) (ex − e−x) (− cos(x)−sin(x))e−x

2 + ex(cos(x)−sin(x))
2

cos(x)
(
ex+e−x

)
2


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution
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→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =



((−3−2x) sin(x)−3 cos(x))e−x

32 +
((

x− 3
2
)
sin(x)+ 3 cos(x)

2

)
ex

16
((2+x) sin(x)−x cos(x))e−x

16 + ex((−2+x) sin(x)+x cos(x))
16

((1+2x) cos(x)−sin(x))e−x

16 +
((

x− 1
2
)
cos(x)− sin(x)

2

)
ex

8(
(− cos(x)−sin(x))e−x+ex(cos(x)−sin(x))

)
x

8


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4(x) +



((−3−2x) sin(x)−3 cos(x))e−x

32 +
((

x− 3
2
)
sin(x)+ 3 cos(x)

2

)
ex

16
((2+x) sin(x)−x cos(x))e−x

16 + ex((−2+x) sin(x)+x cos(x))
16

((1+2x) cos(x)−sin(x))e−x

16 +
((

x− 1
2
)
cos(x)− sin(x)

2

)
ex

8(
(− cos(x)−sin(x))e−x+ex(cos(x)−sin(x))

)
x

8


• First component of the vector is the solution to the ODE

y =
(
(−2x+8c1−8c2−3) sin(x)+8

(
c1+c2− 3

8
)
cos(x)

)
e−x

32 + ex
((
x+4c3+4c4− 3

2
)
sin(x)−4

(
c3−c4− 3

8
)
cos(x)

)
16

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 53� �
dsolve(diff(y(x),x$4)+0*diff(y(x),x$3)-0*diff(y(x),x$2)-0*diff(y(x),x)+4*y(x)=sinh(x)*cos(x)-cosh(x)*sin(x),y(x), singsol=all)� �

y(x) = ((−4x+ 64c4 − 3) sin (x) + cos (x) (64c3 − 3)) e−x

64

+
ex
((
x+ 16c2 − 3

4

)
sin (x) + cos (x)

(
16c1 + 3

4

))
16

3 Solution by Mathematica
Time used: 0.676 (sec). Leaf size: 63� �
DSolve[y''''[x]+0*y'''[x]-0*y''[x]-0*y'[x]+4*y[x]==Sinh[x]*Cos[x]-Cosh[x]*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
64e

−x
((
(3 + 64c4)e2x − 3 + 64c1

)
cos(x)

+
(
−4x+ e2x(4x− 3 + 64c3)− 3 + 64c2

)
sin(x)

)
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19.58 problem section 9.3, problem 58
Internal problem ID [1555]
Internal file name [OUTPUT/1556_Sunday_June_05_2022_02_22_15_AM_95328679/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 58.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ + 5y′′′ + 9y′′ + 7y′ + 2y = e−x(30 + 24x)− e−2x

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ + 5y′′′ + 9y′′ + 7y′ + 2y = 0

The characteristic equation is

λ4 + 5λ3 + 9λ2 + 7λ+ 2 = 0

The roots of the above equation are

λ1 = −2
λ2 = −1
λ3 = −1
λ4 = −1
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Therefore the homogeneous solution is

yh(x) = c1e−x + x e−xc2 + x2e−xc3 + e−2xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = x e−x

y3 = x2e−x

y4 = e−2x

Now the particular solution to the given ODE is found

y′′′′ + 5y′′′ + 9y′′ + 7y′ + 2y = e−x(30 + 24x)− e−2x

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

e−x(30 + 24x)− e−2x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−2x}, {x e−x, e−x}]

While the set of the basis functions for the homogeneous solution found earlier is

{x e−x, x2e−x, e−2x, e−x}

Since e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{e−2x}, {x e−x, x2e−x}]

Since x e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{e−2x}, {x2e−x, e−xx3}]

Since x2e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{e−2x}, {e−xx3, e−xx4}]

Since e−2x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{e−2xx}, {e−xx3, e−xx4}]
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Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1e−2xx+ A2e−xx3 + A3e−xx4

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

24A3e−xx− A1e−2x + 24A3e−x + 6A2e−x = e−x(30 + 24x)− e−2x

Solving for the unknowns by comparing coefficients results in

[A1 = 1, A2 = 1, A3 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = e−2xx+ e−xx3 + e−xx4

Therefore the general solution is

y = yh + yp

=
(
c1e−x + x e−xc2 + x2e−xc3 + e−2xc4

)
+
(
e−2xx+ e−xx3 + e−xx4)

Which simplifies to

y = e−x
(
c3x

2 + c2x+ c1
)
+ e−2xc4 + e−2xx+ e−xx3 + e−xx4

Summary
The solution(s) found are the following

(1)y = e−x
(
c3x

2 + c2x+ c1
)
+ e−2xc4 + e−2xx+ e−xx3 + e−xx4

Verification of solutions

y = e−x
(
c3x

2 + c2x+ c1
)
+ e−2xc4 + e−2xx+ e−xx3 + e−xx4

Verified OK.
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 40� �
dsolve(diff(y(x),x$4)+5*diff(y(x),x$3)+9*diff(y(x),x$2)+7*diff(y(x),x)+2*y(x)=exp(-x)*(30+24*x)-exp(-2*x),y(x), singsol=all)� �

y(x) =
(
x4 + x3 + (c4 − 3)x2 + (c3 + 6)x+ c2 − 6

)
e−x + e−2x(x+ c1 + 3)

3 Solution by Mathematica
Time used: 0.274 (sec). Leaf size: 44� �
DSolve[y''''[x]+5*y'''[x]+9*y''[x]+7*y'[x]+2*y[x]==Exp[-x]*(30+24*x)-Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(ex(x4 + x3 + (−3 + c4)x2 + (6 + c3)x− 6 + c2
)
+ x+ 3 + c1

)
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19.59 problem section 9.3, problem 59
19.59.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7745

Internal problem ID [1556]
Internal file name [OUTPUT/1557_Sunday_June_05_2022_02_22_18_AM_88952084/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 59.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ − 4y′′′ + 7y′′ − 6y′ + 2y = ex(12x− 2 cos (x) + 2 sin (x))

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − 4y′′′ + 7y′′ − 6y′ + 2y = 0

The characteristic equation is

λ4 − 4λ3 + 7λ2 − 6λ+ 2 = 0

The roots of the above equation are

λ1 = 1− i

λ2 = 1 + i

λ3 = 1
λ4 = 1
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Therefore the homogeneous solution is

yh(x) = c1ex + c2x ex + e(1−i)xc3 + e(1+i)xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = x ex

y3 = e(1−i)x

y4 = e(1+i)x

Now the particular solution to the given ODE is found

y′′′′ − 4y′′′ + 7y′′ − 6y′ + 2y = ex(12x− 2 cos (x) + 2 sin (x))

Let the particular solution be

yp = U1y1 + U2y2 + U3y3 + U4y4

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


ex x ex e(1−i)x e(1+i)x

ex (x+ 1) ex (1− i) e(1−i)x (1 + i) e(1+i)x

ex ex(2 + x) −2ie(1−i)x 2ie(1+i)x

ex ex(x+ 3) (−2− 2i) e(1−i)x (−2 + 2i) e(1+i)x


|W | = 2ie2xe(1+i)xe(1−i)x
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The determinant simplifies to

|W | = 2ie4x

Now we determine Wi for each Ui.

W1(x) = det


x ex e(1−i)x e(1+i)x

(x+ 1) ex (1− i) e(1−i)x (1 + i) e(1+i)x

ex(2 + x) −2ie(1−i)x 2ie(1+i)x


= 2ix e3x

W2(x) = det


ex e(1−i)x e(1+i)x

ex (1− i) e(1−i)x (1 + i) e(1+i)x

ex −2ie(1−i)x 2ie(1+i)x


= 2ie3x

W3(x) = det


ex x ex e(1+i)x

ex (x+ 1) ex (1 + i) e(1+i)x

ex ex(2 + x) 2ie(1+i)x


= −e(3+i)x

W4(x) = det


ex x ex e(1−i)x

ex (x+ 1) ex (1− i) e(1−i)x

ex ex(2 + x) −2ie(1−i)x


= −e(3−i)x

Now we are ready to evaluate each Ui(x).

U1 = (−1)4−1
∫

F (x)W1(x)
aW (x) dx

= (−1)3
∫ (ex(12x− 2 cos (x) + 2 sin (x))) (2ix e3x)

(1) (2ie4x) dx

= −
∫ 2iex(12x− 2 cos (x) + 2 sin (x))x e3x

2ie4x dx

= −
∫

(x(12x− 2 cos (x) + 2 sin (x))) dx

= −4x3 + 2 cos (x) + 2 sin (x)x− 2 sin (x) + 2x cos (x)
= −4x3 + 2 cos (x) + 2 sin (x)x− 2 sin (x) + 2x cos (x)
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U2 = (−1)4−2
∫

F (x)W2(x)
aW (x) dx

= (−1)2
∫ (ex(12x− 2 cos (x) + 2 sin (x))) (2ie3x)

(1) (2ie4x) dx

=
∫ 2iex(12x− 2 cos (x) + 2 sin (x)) e3x

2ie4x dx

=
∫

(12x− 2 cos (x) + 2 sin (x)) dx

= 6x2 − 2 sin (x)− 2 cos (x)

U3 = (−1)4−3
∫

F (x)W3(x)
aW (x) dx

= (−1)1
∫ (ex(12x− 2 cos (x) + 2 sin (x)))

(
−e(3+i)x)

(1) (2ie4x) dx

= −
∫

−ex(12x− 2 cos (x) + 2 sin (x)) e(3+i)x

2ie4x dx

= −
∫ (

i(6x− cos (x) + sin (x)) eix
)
dx

= −
12ieix +

(11
2 − i

2

)
x eix + (13− i) eix tan

(
x
2

)
+ (−1 + i)x eix tan

(
x
2

)
+
(13

2 + i
2

)
x eix tan

(
x
2

)2
1 + tan

(
x
2

)2
= −

12ieix +
(11

2 − i
2

)
x eix + (13− i) eix tan

(
x
2

)
+ (−1 + i)x eix tan

(
x
2

)
+
(13

2 + i
2

)
x eix tan

(
x
2

)2
1 + tan

(
x
2

)2
U4 = (−1)4−4

∫
F (x)W4(x)
aW (x) dx

= (−1)0
∫ (ex(12x− 2 cos (x) + 2 sin (x)))

(
−e(3−i)x)

(1) (2ie4x) dx

=
∫

−ex(12x− 2 cos (x) + 2 sin (x)) e(3−i)x

2ie4x dx

=
∫ (

i(6x− cos (x) + sin (x)) e−ix
)
dx

=
12ie−ix +

(
−11

2 − i
2

)
x e−ix + (−13− i) e−ix tan

(
x
2

)
+ (1 + i)x e−ix tan

(
x
2

)
+
(
−13

2 + i
2

)
x e−ix tan

(
x
2

)2
1 + tan

(
x
2

)2
=

12ie−ix +
(
−11

2 − i
2

)
x e−ix + (−13− i) e−ix tan

(
x
2

)
+ (1 + i)x e−ix tan

(
x
2

)
+
(
−13

2 + i
2

)
x e−ix tan

(
x
2

)2
1 + tan

(
x
2

)2
Now that all the Ui functions have been determined, the particular solution is found
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from
yp = U1y1 + U2y2 + U3y3 + U4y4

Hence

yp =
(
−4x3 + 2 cos (x) + 2 sin (x)x− 2 sin (x) + 2x cos (x)

)
(ex)

+
(
6x2 − 2 sin (x)− 2 cos (x)

)
(x ex)

+
(
−
12ieix +

(11
2 − i

2

)
x eix + (13− i) eix tan

(
x
2

)
+ (−1 + i)x eix tan

(
x
2

)
+
(13

2 + i
2

)
x eix tan

(
x
2

)2
1 + tan

(
x
2

)2
)(

e(1−i)x)
+
(
12ie−ix +

(
−11

2 − i
2

)
x e−ix + (−13− i) e−ix tan

(
x
2

)
+ (1 + i)x e−ix tan

(
x
2

)
+
(
−13

2 + i
2

)
x e−ix tan

(
x
2

)2
1 + tan

(
x
2

)2
)(

e(1+i)x)
Therefore the particular solution is

yp = ex
(
x cos (x)− 12x+ sin (x)x− 15 sin (x) + 2x3 + 2 cos (x)

)
Therefore the general solution is

y = yh + yp

=
(
c1ex + c2x ex + e(1−i)xc3 + e(1+i)xc4

)
+
(
ex
(
x cos (x)− 12x+ sin (x)x− 15 sin (x) + 2x3 + 2 cos (x)

))
Which simplifies to

y = e(1−i)xc3 + e(1+i)xc4 + ex(c2x+ c1)
+ ex

(
x cos (x)− 12x+ sin (x)x− 15 sin (x) + 2x3 + 2 cos (x)

)
Summary
The solution(s) found are the following

(1)y = e(1−i)xc3 + e(1+i)xc4 + ex(c2x+ c1)
+ ex

(
x cos (x)− 12x+ sin (x)x− 15 sin (x) + 2x3 + 2 cos (x)

)
Verification of solutions

y = e(1−i)xc3 + e(1+i)xc4 + ex(c2x+ c1)
+ ex

(
x cos (x)− 12x+ sin (x)x− 15 sin (x) + 2x3 + 2 cos (x)

)
Verified OK.
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19.59.1 Maple step by step solution

Let’s solve
y′′′′ − 4y′′′ + 7y′′ − 6y′ + 2y = ex(12x− 2 cos (x) + 2 sin (x))

• Highest derivative means the order of the ODE is 4
y′′′′

• Isolate 4th derivative
y′′′′ = −2y − 2 cos (x) ex + 2 sin (x) ex + 12x ex + 4y′′′ − 7y′′ + 6y′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′′ − 4y′′′ + 7y′′ − 6y′ + 2y = −2 ex(−6x+ cos (x)− sin (x))

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = −2 cos (x) ex + 2 sin (x) ex + 12x ex + 4y4(x)− 7y3(x) + 6y2(x)− 2y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = −2 cos (x) ex + 2 sin (x) ex + 12x ex + 4y4(x)− 7y3(x) + 6y2(x)− 2y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve
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→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
−2 6 −7 4

 · →y (x) +


0
0
0

2 sin (x) ex − 2 cos (x) ex + 12x ex


• Define the forcing function

→
f (x) =


0
0
0

2 sin (x) ex − 2 cos (x) ex + 12x ex


• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
−2 6 −7 4


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

1,


1
1
1
1



 ,

1,


0
0
0
0



 ,

1− I,


−1

4 +
I
4

I
2

1
2 +

I
2

1



 ,

1 + I,


−1

4 −
I
4

− I
2

1
2 −

I
2

1






• Consider eigenpair, with eigenvalue of algebraic multiplicity 21,


1
1
1
1




• First solution from eigenvalue 1
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→
y 1(x) = ex ·


1
1
1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 1 is the eigenvalue, and →
v is the eigenvector

→
y 2(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 1

• Substitute →
y 2(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 2(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 1


0 1 0 0
0 0 1 0
0 0 0 1
−2 6 −7 4

− 1 ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 · →p =


1
1
1
1


• Choice of →

p

→
p =


−1
0
0
0


• Second solution from eigenvalue 1

7747



→
y 2(x) = ex ·

x ·


1
1
1
1

+


−1
0
0
0




• Consider complex eigenpair, complex conjugate eigenvalue can be ignored1− I,


−1

4 +
I
4

I
2

1
2 +

I
2

1




• Solution from eigenpair

e(1−I)x ·


−1

4 +
I
4

I
2

1
2 +

I
2

1


• Use Euler identity to write solution in terms of sin and cos

ex · (−I sin (x) + cos (x)) ·


−1

4 +
I
4

I
2

1
2 +

I
2

1


• Simplify expression

ex ·



(
−1

4 +
I
4

)
(−I sin (x) + cos (x))

I
2(−I sin (x) + cos (x))(1

2 +
I
2

)
(−I sin (x) + cos (x))

−I sin (x) + cos (x)


• Both real and imaginary parts are solutions to the homogeneous system
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→
y 3(x) = ex ·


− cos(x)

4 + sin(x)
4

sin(x)
2

cos(x)
2 + sin(x)

2

cos (x)

 ,
→
y 4(x) = ex ·



sin(x)
4 + cos(x)

4
cos(x)

2
cos(x)

2 − sin(x)
2

− sin (x)




• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =



ex (x− 1) ex ex
(
− cos(x)

4 + sin(x)
4

)
ex
(

sin(x)
4 + cos(x)

4

)
ex x ex sin(x)ex

2
cos(x)ex

2

ex x ex ex
(

cos(x)
2 + sin(x)

2

) (
cos(x)

2 − sin(x)
2

)
ex

ex x ex cos (x) ex − sin (x) ex


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =



ex (x− 1) ex ex
(
− cos(x)

4 + sin(x)
4

)
ex
(

sin(x)
4 + cos(x)

4

)
ex x ex sin(x)ex

2
cos(x)ex

2

ex x ex ex
(

cos(x)
2 + sin(x)

2

) (
cos(x)

2 − sin(x)
2

)
ex

ex x ex cos (x) ex − sin (x) ex


· 1

1 −1 −1
4

1
4

1 0 0 1
2

1 0 1
2

1
2

1 0 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


−(x− 1) ex ex(2x− sin (x)) ex(−1−3x+cos(x)+3 sin(x))

2 − ex(−1−x+cos(x)+sin(x))
2

−x ex ex(2 + 2x− sin (x)− cos (x)) ex(−4−3x+2 sin(x)+4 cos(x))
2

ex(2+x−2 cos(x))
2

−x ex −2 ex(−1− x+ cos (x)) ex(−4−3x+6 cos(x)−2 sin(x))
2

ex(2+x−2 cos(x)+2 sin(x))
2

−x ex 2 ex(1 + x− cos (x) + sin (x)) ex(−4−3x+4 cos(x)−8 sin(x))
2

ex(2+x+4 sin(x))
2


� Find a particular solution of the system of ODEs using variation of parameters
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◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


((x+ 6) cos (x) + x3 + 3x2 − 5x+ 4 sin (x)− 6) ex

((x+ 11) cos (x) + (−x− 2) sin (x) + x3 + 6x2 + x− 11) ex

((−2x− 13) sin (x) + x3 + 6x2 + 11 cos (x) + 13x− 11) ex

((−1− 2x) cos (x) + (−2x− 25) sin (x) + x3 + 6x2 + 25x+ 1) ex


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4(x) +


((x+ 6) cos (x) + x3 + 3x2 − 5x+ 4 sin (x)− 6) ex

((x+ 11) cos (x) + (−x− 2) sin (x) + x3 + 6x2 + x− 11) ex

((−2x− 13) sin (x) + x3 + 6x2 + 11 cos (x) + 13x− 11) ex

((−1− 2x) cos (x) + (−2x− 25) sin (x) + x3 + 6x2 + 25x+ 1) ex


• First component of the vector is the solution to the ODE
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y =
((
− c3

4 + c4
4 + x+ 6

)
cos (x) +

(
c3
4 + c4

4 + 4
)
sin (x) + x3 + 3x2 + (−5 + c2)x+ c1 − c2 − 6

)
ex

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 33� �
dsolve(diff(y(x),x$4)-4*diff(y(x),x$3)+7*diff(y(x),x$2)-6*diff(y(x),x)+2*y(x)=exp(x)*(12*x-2*cos(x)+2*sin(x)),y(x), singsol=all)� �

y(x) = ex
(
(x+ c3 + 3) cos (x) + (c4 + x− 2) sin (x) + 2x3 + (c2 − 12)x+ c1

)
3 Solution by Mathematica
Time used: 0.142 (sec). Leaf size: 40� �
DSolve[y''''[x]-4*y'''[x]+7*y''[x]-6*y'[x]+2*y[x]==Exp[x]*(12*x-2*Cos[x]+2*Sin[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex
(
2x3 − 12x+ c4x+ (x+ 3 + c2) cos(x) + (x− 2 + c1) sin(x) + c3

)
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19.60 problem section 9.3, problem 60
19.60.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7754

Internal problem ID [1557]
Internal file name [OUTPUT/1558_Sunday_June_05_2022_02_22_21_AM_93531774/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 60.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ − y′′ − y′ + y = e2x(10 + 3x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − y′′ − y′ + y = 0

The characteristic equation is

λ3 − λ2 − λ+ 1 = 0

The roots of the above equation are

λ1 = −1
λ2 = 1
λ3 = 1
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Therefore the homogeneous solution is

yh(x) = c1e−x + c2ex + x exc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = ex

y3 = x ex

Now the particular solution to the given ODE is found

y′′′ − y′′ − y′ + y = e2x(10 + 3x)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

e2x(10 + 3x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e2x, e2x}]

While the set of the basis functions for the homogeneous solution found earlier is

{x ex, ex, e−x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1x e2x + A2e2x

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

7A1e2x + 3A1x e2x + 3A2e2x = e2x(10 + 3x)

Solving for the unknowns by comparing coefficients results in

[A1 = 1, A2 = 1]
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Substituting the above back in the above trial solution yp, gives the particular solution

yp = x e2x + e2x

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2ex + x exc3

)
+
(
x e2x + e2x

)
Which simplifies to

y = c1e−x + ex(c3x+ c2) + x e2x + e2x

Summary
The solution(s) found are the following

(1)y = c1e−x + ex(c3x+ c2) + x e2x + e2x

Verification of solutions

y = c1e−x + ex(c3x+ c2) + x e2x + e2x

Verified OK.

19.60.1 Maple step by step solution

Let’s solve
y′′′ − y′′ − y′ + y = e2x(10 + 3x)

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′
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◦ Isolate for y′3(x) using original ODE
y′3(x) = 3x e2x + y3(x) + y2(x)− y1(x) + 10 e2x

Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 3x e2x + y3(x) + y2(x)− y1(x) + 10 e2x]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
−1 1 1

 · →y (x) +


0
0

3x e2x + 10 e2x


• Define the forcing function

→
f (x) =


0
0

3x e2x + 10 e2x


• Define the coefficient matrix

A =


0 1 0
0 0 1
−1 1 1


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


1
−1
1


 ,

1,


1
1
1


 ,

1,


0
0
0





• Consider eigenpair
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−1,


1
−1
1




• Solution to homogeneous system from eigenpair

→
y 1 = e−x ·


1
−1
1


• Consider eigenpair, with eigenvalue of algebraic multiplicity 21,


1
1
1




• First solution from eigenvalue 1

→
y 2(x) = ex ·


1
1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 1 is the eigenvalue, and →
v is the eigenvector

→
y 3(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 1

• Substitute →
y 3(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 3(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v
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• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 1


0 1 0
0 0 1
−1 1 1

− 1 ·


1 0 0
0 1 0
0 0 1


 · →p =


1
1
1


• Choice of →

p

→
p =


−1
0
0


• Second solution from eigenvalue 1

→
y 3(x) = ex ·

x ·


1
1
1

+


−1
0
0




• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


e−x ex (x− 1) ex

−e−x ex x ex

e−x ex x ex


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e−x ex (x− 1) ex

−e−x ex x ex

e−x ex x ex

 · 1
1 1 −1
−1 1 0
1 1 0


◦ Evaluate and simplify to get the fundamental matrix
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Φ(x) =


−(x− 1) ex − e−x

2 + ex
2

e−x

2 − ex
2 + x ex

−x ex ex
2 + e−x

2 − e−x

2 + ex
2 + x ex

−x ex − e−x

2 + ex
2

e−x

2 + ex
2 + x ex


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


2 e2x(x+ 1)− 3 e−x

2 + (−14x−1)ex
2

6 e2x + 3 e−x

2 − 15 ex
2 − 7x ex + 4x e2x

(9 + 5x) e2x − 3 e−x

2 + (−14x−15)ex
2


• Plug particular solution back into general solution
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→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +


2 e2x(x+ 1)− 3 e−x

2 + (−14x−1)ex
2

6 e2x + 3 e−x

2 − 15 ex
2 − 7x ex + 4x e2x

(9 + 5x) e2x − 3 e−x

2 + (−14x−15)ex
2


• First component of the vector is the solution to the ODE

y = (2c1−3)e−x

2 + 2 e2x(x+ 1) +
(
(c3 − 7)x+ c2 − c3 − 1

2

)
ex

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 27� �
dsolve(diff(y(x),x$3)-1*diff(y(x),x$2)-1*diff(y(x),x)+1*y(x)=exp(2*x)*(10+3*x),y(x), singsol=all)� �

y(x) = (x+ 1) e2x + e−xc2 + ex(c3x+ c1)

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 34� �
DSolve[y'''[x]-1*y''[x]-1*y'[x]+1*y[x]==Exp[2*x]*(10+3*x),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e2x(x+ 1) + c1e
−x + ex(c3x+ c2)
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19.61 problem section 9.3, problem 61
19.61.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7762

Internal problem ID [1558]
Internal file name [OUTPUT/1559_Sunday_June_05_2022_02_22_23_AM_96200015/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 61.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ + y′′ − 2y = −e3x
(
17x2 + 67x+ 9

)
This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ + y′′ − 2y = 0

The characteristic equation is
λ3 + λ2 − 2 = 0

The roots of the above equation are

λ1 = 1
λ2 = −1− i

λ3 = −1 + i
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Therefore the homogeneous solution is

yh(x) = c1ex + e(−1−i)xc2 + e(−1+i)xc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = e(−1−i)x

y3 = e(−1+i)x

Now the particular solution to the given ODE is found

y′′′ + y′′ − 2y = −e3x
(
17x2 + 67x+ 9

)
The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

−e3x
(
17x2 + 67x+ 9

)
Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e3x, x2e3x, e3x}]

While the set of the basis functions for the homogeneous solution found earlier is

{ex, e(−1−i)x, e(−1+i)x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1x e3x + A2x
2e3x + A3e3x

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

33A1e3x + 34A1x e3x + 20A2e3x + 66A2x e3x + 34A2x
2e3x + 34A3e3x

= −e3x
(
17x2 + 67x+ 9

)
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Solving for the unknowns by comparing coefficients results in[
A1 = −1, A2 = −1

2 , A3 = 1
]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = −x e3x − x2e3x
2 + e3x

Therefore the general solution is

y = yh + yp

=
(
c1ex + e(−1−i)xc2 + e(−1+i)xc3

)
+
(
−x e3x − x2e3x

2 + e3x
)

Summary
The solution(s) found are the following

(1)y = c1ex + e(−1−i)xc2 + e(−1+i)xc3 − x e3x − x2e3x
2 + e3x

Verification of solutions

y = c1ex + e(−1−i)xc2 + e(−1+i)xc3 − x e3x − x2e3x
2 + e3x

Verified OK.

19.61.1 Maple step by step solution

Let’s solve
y′′′ + y′′ − 2y = −e3x(17x2 + 67x+ 9)

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′
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◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = −17x2e3x − 67x e3x − y3(x) + 2y1(x)− 9 e3x

Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = −17x2e3x − 67x e3x − y3(x) + 2y1(x)− 9 e3x]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
2 0 −1

 · →y (x) +


0
0

−17x2e3x − 67x e3x − 9 e3x


• Define the forcing function

→
f (x) =


0
0

−17x2e3x − 67x e3x − 9 e3x


• Define the coefficient matrix

A =


0 1 0
0 0 1
2 0 −1


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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1,


1
1
1


 ,

−1− I,


− I

2

−1
2 +

I
2

1


 ,

−1 + I,


I
2

−1
2 −

I
2

1





• Consider eigenpair1,


1
1
1




• Solution to homogeneous system from eigenpair

→
y 1 = ex ·


1
1
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−1− I,


− I

2

−1
2 +

I
2

1




• Solution from eigenpair

e(−1−I)x ·


− I

2

−1
2 +

I
2

1


• Use Euler identity to write solution in terms of sin and cos

e−x · (−I sin (x) + cos (x)) ·


− I

2

−1
2 +

I
2

1


• Simplify expression

e−x ·


− I

2(−I sin (x) + cos (x))(
−1

2 +
I
2

)
(−I sin (x) + cos (x))

−I sin (x) + cos (x)
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• Both real and imaginary parts are solutions to the homogeneous system→
y 2(x) = e−x ·


− sin(x)

2

− cos(x)
2 + sin(x)

2

cos (x)

 ,
→
y 3(x) = e−x ·


− cos(x)

2
cos(x)

2 + sin(x)
2

− sin (x)




• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


ex − sin(x)e−x

2 − cos(x)e−x

2

ex e−x
(
− cos(x)

2 + sin(x)
2

)
e−x
(

cos(x)
2 + sin(x)

2

)
ex cos (x) e−x − sin (x) e−x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


ex − sin(x)e−x

2 − cos(x)e−x

2

ex e−x
(
− cos(x)

2 + sin(x)
2

)
e−x
(

cos(x)
2 + sin(x)

2

)
ex cos (x) e−x − sin (x) e−x

 · 1
1 0 −1

2

1 −1
2

1
2

1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


(3 cos(x)+sin(x))e−x

5 + 2 ex
5

(−2 cos(x)+sin(x))e−x

5 + 2 ex
5

(− cos(x)−2 sin(x))e−x

5 + ex
5

(−4 sin(x)−2 cos(x))e−x

5 + 2 ex
5

(3 cos(x)+sin(x))e−x

5 + 2 ex
5

(− cos(x)+3 sin(x))e−x

5 + ex
5

(−2 cos(x)+6 sin(x))e−x

5 + 2 ex
5

(−4 sin(x)−2 cos(x))e−x

5 + 2 ex
5

(4 cos(x)−2 sin(x))e−x

5 + ex
5


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
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→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


(
−x2−2x+2

)
e3x

2 + (3 cos(x)+sin(x))e−x

5 − 8 ex
5(

−3x2−8x+4
)
e3x

2 + 2(− cos(x)−2 sin(x))e−x

5 − 8 ex
5(

−9x2−30x+4
)
e3x

2 + 2(− cos(x)+3 sin(x))e−x

5 − 8 ex
5


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +


(
−x2−2x+2

)
e3x

2 + (3 cos(x)+sin(x))e−x

5 − 8 ex
5(

−3x2−8x+4
)
e3x

2 + 2(− cos(x)−2 sin(x))e−x

5 − 8 ex
5(

−9x2−30x+4
)
e3x

2 + 2(− cos(x)+3 sin(x))e−x

5 − 8 ex
5


• First component of the vector is the solution to the ODE

y = ((−5c3+6) cos(x)+(−5c2+2) sin(x))e−x

10 +
(
−x2−2x+2

)
e3x

2 + ex(5c1−8)
5
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 41� �
dsolve(diff(y(x),x$3)+1*diff(y(x),x$2)-0*diff(y(x),x)-2*y(x)=-exp(3*x)*(9+67*x+17*x^2),y(x), singsol=all)� �

y(x) = −e−x((x2 + 2x− 2) e4x − 2c1e2x − 2c2 cos (x)− 2c3 sin (x))
2

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 49� �
DSolve[y'''[x]+1*y''[x]-0*y'[x]-2*y[x]==-Exp[3*x]*(9+67*x+17*x^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2e

3x(x2 + 2x− 2
)
+ c3e

x + c2e
−x cos(x) + c1e

−x sin(x)
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19.62 problem section 9.3, problem 62
19.62.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7770

Internal problem ID [1559]
Internal file name [OUTPUT/1560_Sunday_June_05_2022_02_22_26_AM_7042313/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 62.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ − 6y′′ + 11y′ − 6y = e2x
(
−3x2 − 4x+ 5

)
This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − 6y′′ + 11y′ − 6y = 0

The characteristic equation is

λ3 − 6λ2 + 11λ− 6 = 0

The roots of the above equation are

λ1 = 1
λ2 = 2
λ3 = 3
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Therefore the homogeneous solution is

yh(x) = c1ex + c2e2x + c3e3x

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = e2x

y3 = e3x

Now the particular solution to the given ODE is found

y′′′ − 6y′′ + 11y′ − 6y = e2x
(
−3x2 − 4x+ 5

)
The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

e2x
(
−3x2 − 4x+ 5

)
Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e2x, x2e2x, e2x}]

While the set of the basis functions for the homogeneous solution found earlier is

{ex, e2x, e3x}

Since e2x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e2x, x2e2x, e2xx3}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x e2x + A2x
2e2x + A3e2xx3

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−2A2x e2x − 3A3e2xx2 + 6A3e2x − A1e2x = e2x
(
−3x2 − 4x+ 5

)
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Solving for the unknowns by comparing coefficients results in

[A1 = 1, A2 = 2, A3 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x e2x + 2x2e2x + e2xx3

Therefore the general solution is

y = yh + yp

=
(
c1ex + c2e2x + c3e3x

)
+
(
x e2x + 2x2e2x + e2xx3)

Summary
The solution(s) found are the following

(1)y = c1ex + c2e2x + c3e3x + x e2x + 2x2e2x + e2xx3

Verification of solutions

y = c1ex + c2e2x + c3e3x + x e2x + 2x2e2x + e2xx3

Verified OK.

19.62.1 Maple step by step solution

Let’s solve
y′′′ − 6y′′ + 11y′ − 6y = e2x(−3x2 − 4x+ 5)

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative
y′′′ = 6y − 3x2e2x − 4x e2x + 5 e2x + 6y′′ − 11y′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ − 6y′′ + 11y′ − 6y = −e2x(3x2 + 4x− 5)

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y
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◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = −3x2e2x − 4x e2x + 5 e2x + 6y3(x)− 11y2(x) + 6y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = −3x2e2x − 4x e2x + 5 e2x + 6y3(x)− 11y2(x) + 6y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
6 −11 6

 · →y (x) +


0
0

−3x2e2x − 4x e2x + 5 e2x


• Define the forcing function

→
f (x) =


0
0

−3x2e2x − 4x e2x + 5 e2x


• Define the coefficient matrix

A =


0 1 0
0 0 1
6 −11 6


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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1,


1
1
1


 ,

2,


1
4
1
2

1


 ,

3,


1
9
1
3

1





• Consider eigenpair1,


1
1
1




• Solution to homogeneous system from eigenpair

→
y 1 = ex ·


1
1
1


• Consider eigenpair2,


1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 2 = e2x ·


1
4
1
2

1


• Consider eigenpair3,


1
9
1
3

1




• Solution to homogeneous system from eigenpair

→
y 3 = e3x ·


1
9
1
3

1
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• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


ex e2x

4
e3x
9

ex e2x
2

e3x
3

ex e2x e3x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


ex e2x

4
e3x
9

ex e2x
2

e3x
3

ex e2x e3x

 · 1
1 1

4
1
9

1 1
2

1
3

1 1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


3 ex − 3 e2x + e3x −5 ex

2 + 4 e2x − 3 e3x
2

ex
2 − e2x + e3x

2

3 ex − 6 e2x + 3 e3x −5 ex
2 + 8 e2x − 9 e3x

2
ex
2 − 2 e2x + 3 e3x

2

3 ex − 12 e2x + 9 e3x −5 ex
2 + 16 e2x − 27 e3x

2
ex
2 − 4 e2x + 9 e3x

2


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)
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◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


(x3 + 2x2 + x+ 4) e2x − 3 ex

2 − 5 e3x
2

(2x3 + 7x2 + 6x+ 9) e2x − 3 ex
2 − 15 e3x

2

2(2x3 + 10x2 + 13x+ 12) e2x − 3 ex
2 − 45 e3x

2


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +


(x3 + 2x2 + x+ 4) e2x − 3 ex

2 − 5 e3x
2

(2x3 + 7x2 + 6x+ 9) e2x − 3 ex
2 − 15 e3x

2

2(2x3 + 10x2 + 13x+ 12) e2x − 3 ex
2 − 45 e3x

2


• First component of the vector is the solution to the ODE

y =
(
4x3+8x2+c2+4x+16

)
e2x

4 + (−45+2c3)e3x
18 + ex(2c1−3)

2

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 29� �
dsolve(diff(y(x),x$3)-6*diff(y(x),x$2)+11*diff(y(x),x)-6*y(x)=exp(2*x)*(5-4*x-3*x^2),y(x), singsol=all)� �

y(x) = ex
(
c3e2x +

(
x3 + 2x2 + c2 + x

)
ex + c1

)
3 Solution by Mathematica
Time used: 0.072 (sec). Leaf size: 37� �
DSolve[y'''[x]-6*y''[x]+11*y'[x]-6*y[x]==Exp[2*x]*(5-4*x-3*x^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex
(
ex
(
x3 + 2x2 + x+ 4 + c2

)
+ c3e

2x + c1
)
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19.63 problem section 9.3, problem 63
Internal problem ID [1560]
Internal file name [OUTPUT/1561_Sunday_June_05_2022_02_22_28_AM_73161/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 63.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_y ]]

y′′′ + 2y′′ + y′ = −2 e−x
(
6x2 − 18x+ 7

)
This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ + 2y′′ + y′ = 0

The characteristic equation is
λ3 + 2λ2 + λ = 0

The roots of the above equation are

λ1 = 0
λ2 = −1
λ3 = −1

Therefore the homogeneous solution is

yh(x) = c1e−x + x e−xc2 + c3
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The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = x e−x

y3 = 1

Now the particular solution to the given ODE is found

y′′′ + 2y′′ + y′ = −2 e−x
(
6x2 − 18x+ 7

)
The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

−2 e−x
(
6x2 − 18x+ 7

)
Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e−x, x2e−x, e−x}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, x e−x, e−x}

Since e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e−x, x2e−x, e−xx3}]

Since x e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2e−x, e−xx3, e−xx4}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
2e−x + A2e−xx3 + A3e−xx4

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

24A3e−xx− 6A2e−xx− 12A3e−xx2 − 2A1e−x + 6A2e−x = −2 e−x
(
6x2 − 18x+ 7

)
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Solving for the unknowns by comparing coefficients results in

[A1 = 1, A2 = −2, A3 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x2e−x − 2 e−xx3 + e−xx4

Therefore the general solution is

y = yh + yp

=
(
c1e−x + x e−xc2 + c3

)
+
(
x2e−x − 2 e−xx3 + e−xx4)

Which simplifies to

y = (c2x+ c1) e−x + c3 + x2e−x − 2 e−xx3 + e−xx4

Summary
The solution(s) found are the following

(1)y = (c2x+ c1) e−x + c3 + x2e−x − 2 e−xx3 + e−xx4

Verification of solutions

y = (c2x+ c1) e−x + c3 + x2e−x − 2 e−xx3 + e−xx4

Verified OK.
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = -12*exp(-_a)*_a^2+36*_a*exp(-_a)-14*exp(-_a)-_b(_a)-2*(diff(_b(_a), _

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 37� �
dsolve(diff(y(x),x$3)+2*diff(y(x),x$2)+1*diff(y(x),x)-0*y(x)=-2*exp(-x)*(7-18*x+6*x^2),y(x), singsol=all)� �

y(x) =
(
x4 − 2x3 + x2 + (−c1 + 2)x− c1 − c2 + 2

)
e−x + c3

3 Solution by Mathematica
Time used: 0.101 (sec). Leaf size: 42� �
DSolve[y'''[x]+2*y''[x]+1*y'[x]-0*y[x]==-2*Exp[-x]*(7-18*x+6*x^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x
(
x4 − 2x3 + x2 − (−2 + c2)x+ 2− c1 − c2

)
+ c3
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19.64 problem section 9.3, problem 64
Internal problem ID [1561]
Internal file name [OUTPUT/1562_Sunday_June_05_2022_02_22_30_AM_22651286/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 64.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ − 3y′′ + 3y′ − y = (x+ 1) ex

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − 3y′′ + 3y′ − y = 0

The characteristic equation is

λ3 − 3λ2 + 3λ− 1 = 0

The roots of the above equation are

λ1 = 1
λ2 = 1
λ3 = 1
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Therefore the homogeneous solution is

yh(x) = c1ex + c2x ex + x2exc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = x ex

y3 = x2ex

Now the particular solution to the given ODE is found

y′′′ − 3y′′ + 3y′ − y = (x+ 1) ex

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

(x+ 1) ex

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x ex, ex}]

While the set of the basis functions for the homogeneous solution found earlier is

{x ex, x2ex, ex}

Since ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x ex, x2ex}]

Since x ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2ex, exx3}]

Since x2ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{exx3, exx4}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1exx3 + A2exx4
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The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

6A1ex + 24A2exx = (x+ 1) ex

Solving for the unknowns by comparing coefficients results in[
A1 =

1
6 , A2 =

1
24

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
exx3

6 + exx4

24

Therefore the general solution is

y = yh + yp

=
(
c1ex + c2x ex + x2exc3

)
+
(
exx3

6 + exx4

24

)

Which simplifies to

y = ex
(
c3x

2 + c2x+ c1
)
+ exx3

6 + exx4

24

Summary
The solution(s) found are the following

(1)y = ex
(
c3x

2 + c2x+ c1
)
+ exx3

6 + exx4

24
Verification of solutions

y = ex
(
c3x

2 + c2x+ c1
)
+ exx3

6 + exx4

24

Verified OK.
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 33� �
dsolve(diff(y(x),x$3)-3*diff(y(x),x$2)+3*diff(y(x),x)-y(x)=exp(x)*(1+x),y(x), singsol=all)� �

y(x) = ex(x4 + 4x3 + (24c3 + 3)x2 + 24c2x+ 24c1)
24

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 37� �
DSolve[y'''[x]-3*y''[x]+3*y'[x]-1*y[x]==Exp[x]*(1+x),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
24e

x
(
x4 + 4x3 + 24c3x2 + 24c2x+ 24c1

)
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19.65 problem section 9.3, problem 65
Internal problem ID [1562]
Internal file name [OUTPUT/1563_Sunday_June_05_2022_02_22_32_AM_42329436/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 65.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ − 2y′′ + y = −e−x
(
3x2 − 9x+ 4

)
This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − 2y′′ + y = 0

The characteristic equation is
λ4 − 2λ2 + 1 = 0

The roots of the above equation are

λ1 = 1
λ2 = 1
λ3 = −1
λ4 = −1
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Therefore the homogeneous solution is

yh(x) = c1e−x + x e−xc2 + c3ex + c4x ex

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = x e−x

y3 = ex

y4 = x ex

Now the particular solution to the given ODE is found

y′′′′ − 2y′′ + y = −e−x
(
3x2 − 9x+ 4

)
The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

−e−x
(
3x2 − 9x+ 4

)
Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e−x, x2e−x, e−x}]

While the set of the basis functions for the homogeneous solution found earlier is

{x ex, x e−x, ex, e−x}

Since e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e−x, x2e−x, e−xx3}]

Since x e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2e−x, e−xx3, e−xx4}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
2e−x + A2e−xx3 + A3e−xx4
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The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

8A1e−x + 24A2e−xx− 24A2e−x + 48A3e−xx2 − 96A3e−xx+ 24A3e−x

= −e−x
(
3x2 − 9x+ 4

)
Solving for the unknowns by comparing coefficients results in[

A1 =
1
16 , A2 =

1
8 , A3 = − 1

16

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
x2e−x

16 + e−xx3

8 − e−xx4

16

Therefore the general solution is

y = yh + yp

=
(
c1e−x + x e−xc2 + c3ex + c4x ex

)
+
(
x2e−x

16 + e−xx3

8 − e−xx4

16

)

Which simplifies to

y = (c2x+ c1) e−x + ex(c4x+ c3) +
x2e−x

16 + e−xx3

8 − e−xx4

16

Summary
The solution(s) found are the following

(1)y = (c2x+ c1) e−x + ex(c4x+ c3) +
x2e−x

16 + e−xx3

8 − e−xx4

16
Verification of solutions

y = (c2x+ c1) e−x + ex(c4x+ c3) +
x2e−x

16 + e−xx3

8 − e−xx4

16

Verified OK.
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 40� �
dsolve(diff(y(x),x$4)-0*diff(y(x),x$3)-2*diff(y(x),x$2)+0*diff(y(x),x)+y(x)=-exp(-x)*(4-9*x+3*x^2),y(x), singsol=all)� �

y(x) = (−x4 + 2x3 + 16c4x+ x2 + 16c2) e−x

16 + ex(c3x+ c1)

3 Solution by Mathematica
Time used: 0.113 (sec). Leaf size: 61� �
DSolve[y''''[x]-0*y'''[x]-2*y''[x]+0*y'[x]+1*y[x]==-Exp[-x]*(4-9*x+3*x^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
32e

−x
(
−2x4 + 4x3 + 2x2 + x

(
32c4e2x − 2 + 32c2

)
+ 32c3e2x − 3 + 32c1

)
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19.66 problem section 9.3, problem 66
19.66.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7790

Internal problem ID [1563]
Internal file name [OUTPUT/1564_Sunday_June_05_2022_02_22_34_AM_71224203/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 66.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ + 2y′′ − y′ − 2y = e−2x((23− 2x) cos (x) + (8− 9x) sin (x))

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ + 2y′′ − y′ − 2y = 0

The characteristic equation is

λ3 + 2λ2 − λ− 2 = 0

The roots of the above equation are

λ1 = 1
λ2 = −2
λ3 = −1
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Therefore the homogeneous solution is

yh(x) = c1e−x + c2e−2x + c3ex

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = e−2x

y3 = ex

Now the particular solution to the given ODE is found

y′′′ + 2y′′ − y′ − 2y = e−2x((23− 2x) cos (x) + (8− 9x) sin (x))

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

e−2x((23− 2x) cos (x) + (8− 9x) sin (x))

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−2x cos (x) , e−2x sin (x) , e−2x cos (x)x, e−2x sin (x)x}]

While the set of the basis functions for the homogeneous solution found earlier is

{ex, e−2x, e−x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1e−2x cos (x) + A2e−2x sin (x) + A3e−2x cos (x)x+ A4e−2x sin (x)x

The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

4A4e−2x sin (x)x+ 4A3e−2x cos (x)x− 8A4e−2x cos (x)− 2A3e−2x sin (x)x
+ 2A4e−2x cos (x)x+ 8A3e−2x sin (x) + 2A2e−2x cos (x)− 2A1e−2x sin (x)
+ 4A1e−2x cos (x) + 4A2e−2x sin (x) = e−2x((23− 2x) cos (x) + (8− 9x) sin (x))
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Solving for the unknowns by comparing coefficients results in[
A1 = 1, A2 =

3
2 , A3 =

1
2 , A4 = −2

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = e−2x cos (x) + 3 e−2x sin (x)
2 + e−2x cos (x)x

2 − 2 e−2x sin (x)x

Therefore the general solution is

y = yh + yp

=
(
c1e−x+c2e−2x+c3ex

)
+
(
e−2x cos (x)+3 e−2x sin (x)

2 + e−2x cos (x)x
2 −2 e−2x sin (x)x

)

Summary
The solution(s) found are the following

(1)
y = c1e−x + c2e−2x + c3ex + e−2x cos (x)

+ 3 e−2x sin (x)
2 + e−2x cos (x)x

2 − 2 e−2x sin (x)x

Verification of solutions

y = c1e−x + c2e−2x + c3ex +e−2x cos (x)+ 3 e−2x sin (x)
2 + e−2x cos (x)x

2 − 2 e−2x sin (x)x

Verified OK.

19.66.1 Maple step by step solution

Let’s solve
y′′′ + 2y′′ − y′ − 2y = e−2x((23− 2x) cos (x) + (8− 9x) sin (x))

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative
y′′′ = 2y − 2 e−2x cos (x)x− 9 e−2x sin (x)x+ 23 e−2x cos (x) + 8 e−2x sin (x)− 2y′′ + y′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ + 2y′′ − y′ − 2y = −e−2x(9 sin (x)x+ 2x cos (x)− 8 sin (x)− 23 cos (x))
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� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = −2 e−2x cos (x)x− 9 e−2x sin (x)x+ 23 e−2x cos (x) + 8 e−2x sin (x)− 2y3(x) + y2(x) + 2y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = −2 e−2x cos (x)x− 9 e−2x sin (x)x+ 23 e−2x cos (x) + 8 e−2x sin (x)− 2y3(x) + y2(x) + 2y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
2 1 −2

 · →y (x) +


0
0

−9 e−2x sin (x)x− 2 e−2x cos (x)x+ 8 e−2x sin (x) + 23 e−2x cos (x)


• Define the forcing function

→
f (x) =


0
0

−9 e−2x sin (x)x− 2 e−2x cos (x)x+ 8 e−2x sin (x) + 23 e−2x cos (x)


• Define the coefficient matrix

A =


0 1 0
0 0 1
2 1 −2


• Rewrite the system as
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→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−2,


1
4

−1
2

1


 ,

−1,


1
−1
1


 ,

1,


1
1
1





• Consider eigenpair−2,


1
4

−1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−2x ·


1
4

−1
2

1


• Consider eigenpair−1,


1
−1
1




• Solution to homogeneous system from eigenpair

→
y 2 = e−x ·


1
−1
1


• Consider eigenpair1,


1
1
1




• Solution to homogeneous system from eigenpair
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→
y 3 = ex ·


1
1
1


• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


e−2x

4 e−x ex

− e−2x

2 −e−x ex

e−2x e−x ex


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e−2x

4 e−x ex

− e−2x

2 −e−x ex

e−2x e−x ex

 · 1

1
4 1 1

−1
2 −1 1

1 1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


(
e3x+3 ex−1

)
e−2x

3 − e−x

2 + ex
2

(
e3x−3 ex+2

)
e−2x

6(
e3x−3 ex+2

)
e−2x

3
ex
2 + e−x

2

(
e3x+3 ex−4

)
e−2x

6(
e3x+3 ex−4

)
e−2x

3 − e−x

2 + ex
2

(
e3x−3 ex+8

)
e−2x

6


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs
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Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


(
7 e3x+(3x+6) cos(x)+(−12x+9) sin(x)−33 ex+20

)
e−2x

6(
7 e3x+(21x−36) sin(x)−18x cos(x)+33 ex−40

)
e−2x

6(
7 e3x+(57x−54) cos(x)+(−24x+93) sin(x)−33 ex+80

)
e−2x

6


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +


(
7 e3x+(3x+6) cos(x)+(−12x+9) sin(x)−33 ex+20

)
e−2x

6(
7 e3x+(21x−36) sin(x)−18x cos(x)+33 ex−40

)
e−2x

6(
7 e3x+(57x−54) cos(x)+(−24x+93) sin(x)−33 ex+80

)
e−2x

6


• First component of the vector is the solution to the ODE

y =
(
12c3e3x+14 e3x+6x cos(x)−24 sin(x)x+12c2ex+12 cos(x)+18 sin(x)−66 ex+3c1+40

)
e−2x

12
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 40� �
dsolve(diff(y(x),x$3)+2*diff(y(x),x$2)-diff(y(x),x)-2*y(x)=exp(-2*x)*((23-2*x)*cos(x)+(8-9*x)*sin(x)),y(x), singsol=all)� �

y(x) = (2c1e3x + (2 + x) cos (x) + (−4x+ 3) sin (x) + 2c3ex + 2c2) e−2x

2

3 Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 48� �
DSolve[y'''[x]+2*y''[x]-y'[x]-2*y[x]==Exp[-2*x]*((23-2*x)*Cos[x]+(8-9*x)*Sin[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

−2x((3− 4x) sin(x) + (x+ 2) cos(x) + 2
(
c2e

x + c3e
3x + c1

))
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19.67 problem section 9.3, problem 67
19.67.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7798

Internal problem ID [1564]
Internal file name [OUTPUT/1565_Sunday_June_05_2022_02_22_36_AM_67589364/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 67.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_y ]]

y′′′′ − 3y′′′ + 4y′′ − 2y′ = ex((28 + 6x) cos (2x) + (11− 12x) sin (2x))

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − 3y′′′ + 4y′′ − 2y′ = 0

The characteristic equation is

λ4 − 3λ3 + 4λ2 − 2λ = 0

The roots of the above equation are

λ1 = 0
λ2 = 1
λ3 = 1− i

λ4 = 1 + i
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Therefore the homogeneous solution is

yh(x) = c1 + c2ex + e(1−i)xc3 + e(1+i)xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = 1

y2 = ex

y3 = e(1−i)x

y4 = e(1+i)x

Now the particular solution to the given ODE is found

y′′′′ − 3y′′′ + 4y′′ − 2y′ = ex((28 + 6x) cos (2x) + (11− 12x) sin (2x))

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

ex((28 + 6x) cos (2x) + (11− 12x) sin (2x))

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{ex cos (2x) , ex sin (2x) , cos (2x) exx, sin (2x) exx}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, ex, e(1−i)x, e(1+i)x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1ex cos (2x) + A2ex sin (2x) + A3 cos (2x) exx+ A4 sin (2x) exx

The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

12A3 cos (2x) exx− 11A4 sin (2x) ex − 6A4 cos (2x) exx− 28A4 cos (2x) ex
− 11A3 cos (2x) ex + 6A3 sin (2x) exx+ 28A3 sin (2x) ex + 12A4 sin (2x) exx
− 6A2ex cos (2x) + 6A1ex sin (2x) + 12A1ex cos (2x) + 12A2ex sin (2x) = ex((28

+ 6x) cos (2x) + (11− 12x) sin (2x))
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Solving for the unknowns by comparing coefficients results in

[A1 = 0, A2 = 0, A3 = 0, A4 = −1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = − sin (2x) exx

Therefore the general solution is

y = yh + yp

=
(
c1 + c2ex + e(1−i)xc3 + e(1+i)xc4

)
+ (− sin (2x) exx)

Summary
The solution(s) found are the following

(1)y = c1 + c2ex + e(1−i)xc3 + e(1+i)xc4 − sin (2x) exx
Verification of solutions

y = c1 + c2ex + e(1−i)xc3 + e(1+i)xc4 − sin (2x) exx

Verified OK.

19.67.1 Maple step by step solution

Let’s solve
y′′′′ − 3y′′′ + 4y′′ − 2y′ = ex((28 + 6x) cos (2x) + (11− 12x) sin (2x))

• Highest derivative means the order of the ODE is 4
y′′′′

• Isolate 4th derivative
y′′′′ = 6 cos (2x) exx− 12 sin (2x) exx+ 28 ex cos (2x) + 11 ex sin (2x) + 3y′′′ − 4y′′ + 2y′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′′ − 3y′′′ + 4y′′ − 2y′ = ex(−12x sin (2x) + 6x cos (2x) + 11 sin (2x) + 28 cos (2x))

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y
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◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = 6 cos (2x) exx− 12 sin (2x) exx+ 28 ex cos (2x) + 11 ex sin (2x) + 3y4(x)− 4y3(x) + 2y2(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = 6 cos (2x) exx− 12 sin (2x) exx+ 28 ex cos (2x) + 11 ex sin (2x) + 3y4(x)− 4y3(x) + 2y2(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
0 2 −4 3

 · →y (x) +


0
0
0

−12 sin (2x) exx+ 6 cos (2x) exx+ 11 ex sin (2x) + 28 ex cos (2x)


• Define the forcing function

→
f (x) =


0
0
0

−12 sin (2x) exx+ 6 cos (2x) exx+ 11 ex sin (2x) + 28 ex cos (2x)


• Define the coefficient matrix
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A =


0 1 0 0
0 0 1 0
0 0 0 1
0 2 −4 3


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

0,


1
0
0
0



 ,

1,


1
1
1
1



 ,

1− I,


−1

4 +
I
4

I
2

1
2 +

I
2

1



 ,

1 + I,


−1

4 −
I
4

− I
2

1
2 −

I
2

1






• Consider eigenpair0,


1
0
0
0




• Solution to homogeneous system from eigenpair

→
y 1 =


1
0
0
0


• Consider eigenpair1,


1
1
1
1




• Solution to homogeneous system from eigenpair
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→
y 2 = ex ·


1
1
1
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored1− I,


−1

4 +
I
4

I
2

1
2 +

I
2

1




• Solution from eigenpair

e(1−I)x ·


−1

4 +
I
4

I
2

1
2 +

I
2

1


• Use Euler identity to write solution in terms of sin and cos

ex · (−I sin (x) + cos (x)) ·


−1

4 +
I
4

I
2

1
2 +

I
2

1


• Simplify expression

ex ·



(
−1

4 +
I
4

)
(−I sin (x) + cos (x))

I
2(−I sin (x) + cos (x))(1

2 +
I
2

)
(−I sin (x) + cos (x))

−I sin (x) + cos (x)


• Both real and imaginary parts are solutions to the homogeneous system
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→
y 3(x) = ex ·


− cos(x)

4 + sin(x)
4

sin(x)
2

cos(x)
2 + sin(x)

2

cos (x)

 ,
→
y 4(x) = ex ·



sin(x)
4 + cos(x)

4
cos(x)

2
cos(x)

2 − sin(x)
2

− sin (x)




• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =



1 ex ex
(
− cos(x)

4 + sin(x)
4

)
ex
(

sin(x)
4 + cos(x)

4

)
0 ex sin(x)ex

2
cos(x)ex

2

0 ex ex
(

cos(x)
2 + sin(x)

2

) (
cos(x)

2 − sin(x)
2

)
ex

0 ex cos (x) ex − sin (x) ex


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =



1 ex ex
(
− cos(x)

4 + sin(x)
4

)
ex
(

sin(x)
4 + cos(x)

4

)
0 ex sin(x)ex

2
cos(x)ex

2

0 ex ex
(

cos(x)
2 + sin(x)

2

) (
cos(x)

2 − sin(x)
2

)
ex

0 ex cos (x) ex − sin (x) ex


· 1

1 1 −1
4

1
4

0 1 0 1
2

0 1 1
2

1
2

0 1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


1 −2 + (− sin (x) + 2) ex 3

2 +
(−4+cos(x)+3 sin(x))ex

2 −1
2 +

ex(2−cos(x)−sin(x))
2

0 −ex(cos (x) + sin (x)− 2) ex(−2 + 2 cos (x) + sin (x)) −ex(cos (x)− 1)
0 −2 ex(cos (x)− 1) ex(−2 + 3 cos (x)− sin (x)) −ex(cos (x)− sin (x)− 1)
0 −2 ex(cos (x)− sin (x)− 1) 2 ex(−1− 2 sin (x) + cos (x)) ex(1 + 2 sin (x))


� Find a particular solution of the system of ODEs using variation of parameters
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◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =



−2(sin (x)x+ 2) ex cos (x) + 4 ex

−2
(
2 cos (x)2 x+ x cos (x) sin (x) + cos (x) sin (x) + 2 cos (x)− 2 sin (x)− x− 2

)
ex

−2
(
4 cos (x)2 x− 3x cos (x) sin (x) + 2 cos (x) sin (x)− 4 sin (x)2 − 4 sin (x)− 2x

)
ex

4
(
4 + (x− 6) cos (x)2 +

(
2 + (11x+9) sin(x)

2

)
cos (x)− x

2 + 2 sin (x)
)
ex


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) +



−2(sin (x)x+ 2) ex cos (x) + 4 ex

−2
(
2 cos (x)2 x+ x cos (x) sin (x) + cos (x) sin (x) + 2 cos (x)− 2 sin (x)− x− 2

)
ex

−2
(
4 cos (x)2 x− 3x cos (x) sin (x) + 2 cos (x) sin (x)− 4 sin (x)2 − 4 sin (x)− 2x

)
ex

4
(
4 + (x− 6) cos (x)2 +

(
2 + (11x+9) sin(x)

2

)
cos (x)− x

2 + 2 sin (x)
)
ex
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• First component of the vector is the solution to the ODE
y = ((−8 sin(x)x−c3+c4−16) cos(x)+(c3+c4) sin(x)+4c2+16)ex

4 + c1

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(diff(_b(_a), _a), _a), _a) = -12*sin(2*_a)*exp(_a)*_a+6*cos(2*_a)*exp(_a)*_a+11*exp(_a)*

Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful

<- differential order: 4; linear nonhomogeneous with symmetry [0,1] successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 34� �
dsolve(diff(y(x),x$4)-3*diff(y(x),x$3)+4*diff(y(x),x$2)-2*diff(y(x),x)-0*y(x)=exp(x)*((28+6*x)*cos(2*x)+(11-12*x)*sin(2*x)),y(x), singsol=all)� �

y(x) = ((−4x sin (x) + c2 − c3) cos (x) + (c2 + c3) sin (x) + 2c1 + 3) ex
2 + c4

3 Solution by Mathematica
Time used: 0.715 (sec). Leaf size: 43� �
DSolve[y''''[x]-3*y'''[x]+4*y''[x]-2*y'[x]-0*y[x]==Exp[x]*((28+6*x)*Cos[2*x]+(11-12*x)*Sin[2*x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

x((c1 + c2) sin(x) + cos(x)(−4x sin(x)− c1 + c2) + 2c3) + c4
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19.68 problem section 9.3, problem 68
Internal problem ID [1565]
Internal file name [OUTPUT/1566_Sunday_June_05_2022_02_22_39_AM_45324078/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 68.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ − 4y′′′ + 14y′′ − 20y′ + 25y = ex((6x+ 2) cos (2x) + 3 sin (2x))

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − 4y′′′ + 14y′′ − 20y′ + 25y = 0

The characteristic equation is

λ4 − 4λ3 + 14λ2 − 20λ+ 25 = 0

The roots of the above equation are

λ1 = 1− 2i
λ2 = 1 + 2i
λ3 = 1− 2i
λ4 = 1 + 2i
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Therefore the homogeneous solution is

yh(x) = e(1+2i)xc1 + x e(1+2i)xc2 + e(1−2i)xc3 + x e(1−2i)xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e(1+2i)x

y2 = x e(1+2i)x

y3 = e(1−2i)x

y4 = x e(1−2i)x

Now the particular solution to the given ODE is found

y′′′′ − 4y′′′ + 14y′′ − 20y′ + 25y = ex((6x+ 2) cos (2x) + 3 sin (2x))

Let the particular solution be

yp = U1y1 + U2y2 + U3y3 + U4y4

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


e(1+2i)x x e(1+2i)x e(1−2i)x x e(1−2i)x

(1 + 2i) e(1+2i)x (1 + (1 + 2i)x) e(1+2i)x (1− 2i) e(1−2i)x e(1−2i)x(−2ix+ x+ 1)
(−3 + 4i) e(1+2i)x (2 + 4i+ (−3 + 4i)x) e(1+2i)x (−3− 4i) e(1−2i)x −4 e(1−2i)x(−1

2 + i+
(3
4 + i

)
x
)

(−11− 2i) e(1+2i)x −2
(9
2 − 6i+

(11
2 + i

)
x
)
e(1+2i)x (−11 + 2i) e(1−2i)x (−9− 12i+ (−11 + 2i)x) e(1−2i)x


|W | = 256 e(2+4i)xe(2−4i)x
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The determinant simplifies to

|W | = 256 e4x

Now we determine Wi for each Ui.

W1(x) = det


x e(1+2i)x e(1−2i)x x e(1−2i)x

(1 + (1 + 2i)x) e(1+2i)x (1− 2i) e(1−2i)x e(1−2i)x(−2ix+ x+ 1)
(2 + 4i+ (−3 + 4i)x) e(1+2i)x (−3− 4i) e(1−2i)x −4 e(1−2i)x(−1

2 + i+
(3
4 + i

)
x
)


= 8 e(3−2i)x(i− 2x)

W2(x) = det


e(1+2i)x e(1−2i)x x e(1−2i)x

(1 + 2i) e(1+2i)x (1− 2i) e(1−2i)x e(1−2i)x(−2ix+ x+ 1)
(−3 + 4i) e(1+2i)x (−3− 4i) e(1−2i)x −4 e(1−2i)x(−1

2 + i+
(3
4 + i

)
x
)


= −16 e(3−2i)x

W3(x) = det


e(1+2i)x x e(1+2i)x x e(1−2i)x

(1 + 2i) e(1+2i)x (1 + (1 + 2i)x) e(1+2i)x e(1−2i)x(−2ix+ x+ 1)
(−3 + 4i) e(1+2i)x (2 + 4i+ (−3 + 4i)x) e(1+2i)x −4 e(1−2i)x(−1

2 + i+
(3
4 + i

)
x
)


= −8 e(3+2i)x(i+ 2x)

W4(x) = det


e(1+2i)x x e(1+2i)x e(1−2i)x

(1 + 2i) e(1+2i)x (1 + (1 + 2i)x) e(1+2i)x (1− 2i) e(1−2i)x

(−3 + 4i) e(1+2i)x (2 + 4i+ (−3 + 4i)x) e(1+2i)x (−3− 4i) e(1−2i)x


= −16 e(3+2i)x
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Now we are ready to evaluate each Ui(x).

U1 = (−1)4−1
∫

F (x)W1(x)
aW (x) dx

= (−1)3
∫ (ex((6x+ 2) cos (2x) + 3 sin (2x)))

(
8 e(3−2i)x(i− 2x)

)
(1) (256 e4x) dx

= −
∫ 8 ex((6x+ 2) cos (2x) + 3 sin (2x)) e(3−2i)x(i− 2x)

256 e4x dx

= −
∫ ((i− 2x) (6x cos (2x) + 3 sin (2x) + 2 cos (2x)) e−2ix

32

)
dx

= −
(∫ (i− 2x) (6x cos (2x) + 3 sin (2x) + 2 cos (2x)) e−2ix

32 dx

)
= −

(∫ (i− 2x) (6x cos (2x) + 3 sin (2x) + 2 cos (2x)) e−2ix

32 dx

)

U2 = (−1)4−2
∫

F (x)W2(x)
aW (x) dx

= (−1)2
∫ (ex((6x+ 2) cos (2x) + 3 sin (2x)))

(
−16 e(3−2i)x)

(1) (256 e4x) dx

=
∫

−16 ex((6x+ 2) cos (2x) + 3 sin (2x)) e(3−2i)x

256 e4x dx

=
∫ (((−6x− 2) cos (2x)− 3 sin (2x)) e−2ix

16

)
dx

= 3ix
32 − 3x2

32 − x

16 − i(4 + 3i+ 12x) e−4ix

256

= 3ix
32 − 3x2

32 − x

16 − i(4 + 3i+ 12x) e−4ix

256
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U3 = (−1)4−3
∫

F (x)W3(x)
aW (x) dx

= (−1)1
∫ (ex((6x+ 2) cos (2x) + 3 sin (2x)))

(
−8 e(3+2i)x(i+ 2x)

)
(1) (256 e4x) dx

= −
∫

−8 ex((6x+ 2) cos (2x) + 3 sin (2x)) e(3+2i)x(i+ 2x)
256 e4x dx

= −
∫ (

−(i+ 2x) (6x cos (2x) + 3 sin (2x) + 2 cos (2x)) e2ix
32

)
dx

= −
(∫

−(i+ 2x) (6x cos (2x) + 3 sin (2x) + 2 cos (2x)) e2ix
32 dx

)
= −

(∫
−(i+ 2x) (6x cos (2x) + 3 sin (2x) + 2 cos (2x)) e2ix

32 dx

)

U4 = (−1)4−4
∫

F (x)W4(x)
aW (x) dx

= (−1)0
∫ (ex((6x+ 2) cos (2x) + 3 sin (2x)))

(
−16 e(3+2i)x)

(1) (256 e4x) dx

=
∫

−16 ex((6x+ 2) cos (2x) + 3 sin (2x)) e(3+2i)x

256 e4x dx

=
∫ (((−6x− 2) cos (2x)− 3 sin (2x)) e2ix

16

)
dx

= −3ix
32 − 3x2

32 − x

16 + i(4− 3i+ 12x) e4ix
256

= −3ix
32 − 3x2

32 − x

16 + i(4− 3i+ 12x) e4ix
256

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3 + U4y4

Hence

yp =
(
−
(∫ (i− 2x) (6x cos (2x) + 3 sin (2x) + 2 cos (2x)) e−2ix

32 dx

))(
e(1+2i)x)

+
(
3ix
32 − 3x2

32 − x

16 − i(4 + 3i+ 12x) e−4ix

256

)(
x e(1+2i)x)

+
(
−
(∫

−(i+ 2x) (6x cos (2x) + 3 sin (2x) + 2 cos (2x)) e2ix
32 dx

))(
e(1−2i)x)

+
(
−3ix

32 − 3x2

32 − x

16 + i(4− 3i+ 12x) e4ix
256

)(
x e(1−2i)x)
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Therefore the particular solution is

yp = −
(∫

(i− 2x) (6x cos (2x) + 3 sin (2x) + 2 cos (2x)) e−2ixdx
)
e(1+2i)x

32 +
(∫

(i+ 2x) (6x cos (2x) + 3 sin (2x) + 2 cos (2x)) e2ixdx
)
e(1−2i)x

32 −
9x
((

2x2

3 +
(4
9 + i

)
x− 1

12 +
i
9

)
e(1−2i)x − e(1+2i)x

(
−2x2

3 +
(
−4

9 + i
)
x+ 1

12 +
i
9

))
64

Which simplifies to

yp = −
ex
(
24x3 cos (2x) + 16x2 cos (2x) + 4i

(∫ (
(−12x2 − 4x) cos (2x)2 + 2 cos (2x) sin (2x) + 3 sin (2x)2

)
dx
)
sin (2x) + 2i

(∫
((12x2 + 4x+ 3) cos (4x) + 12x2 + 4x− 2 sin (4x)− 3) dx

)
sin (2x) + 36 sin (2x)x2 + 4

(∫ (
(−12x2 − 4x) cos (2x)2 + 2 cos (2x) sin (2x) + 3 sin (2x)2

)
dx
)
cos (2x)− 2

(∫
((12x2 + 4x+ 3) cos (4x) + 12x2 + 4x− 2 sin (4x)− 3) dx

)
cos (2x)− 3x cos (2x)− 4

(∫
((12x2 + 4x+ 3) sin (4x) + 12x+ 2 cos (4x) + 2) dx

)
sin (2x) + 4x sin (2x)

)
128

Therefore the general solution is

y = yh + yp

=
(
e(1+2i)xc1 + x e(1+2i)xc2 + e(1−2i)xc3 + x e(1−2i)xc4

)
+
(
−
ex
(
24x3 cos (2x) + 16x2 cos (2x) + 4i

(∫ (
(−12x2 − 4x) cos (2x)2 + 2 cos (2x) sin (2x) + 3 sin (2x)2

)
dx
)
sin (2x) + 2i

(∫
((12x2 + 4x+ 3) cos (4x) + 12x2 + 4x− 2 sin (4x)− 3) dx

)
sin (2x) + 36 sin (2x)x2 + 4

(∫ (
(−12x2 − 4x) cos (2x)2 + 2 cos (2x) sin (2x) + 3 sin (2x)2

)
dx
)
cos (2x)− 2

(∫
((12x2 + 4x+ 3) cos (4x) + 12x2 + 4x− 2 sin (4x)− 3) dx

)
cos (2x)− 3x cos (2x)− 4

(∫
((12x2 + 4x+ 3) sin (4x) + 12x+ 2 cos (4x) + 2) dx

)
sin (2x) + 4x sin (2x)

)
128

)

Which simplifies to

y = (c4x+ c3) e(1−2i)x + e(1+2i)x(c2x+ c1)

−
ex
(
24x3 cos (2x) + 16x2 cos (2x) + 4i

(∫ (
(−12x2 − 4x) cos (2x)2 + 2 cos (2x) sin (2x) + 3 sin (2x)2

)
dx
)
sin (2x) + 2i

(∫
((12x2 + 4x+ 3) cos (4x) + 12x2 + 4x− 2 sin (4x)− 3) dx

)
sin (2x) + 36 sin (2x)x2 + 4

(∫ (
(−12x2 − 4x) cos (2x)2 + 2 cos (2x) sin (2x) + 3 sin (2x)2

)
dx
)
cos (2x)− 2

(∫
((12x2 + 4x+ 3) cos (4x) + 12x2 + 4x− 2 sin (4x)− 3) dx

)
cos (2x)− 3x cos (2x)− 4

(∫
((12x2 + 4x+ 3) sin (4x) + 12x+ 2 cos (4x) + 2) dx

)
sin (2x) + 4x sin (2x)

)
128

Summary
The solution(s) found are the following

(1)y = (c4x+ c3) e(1−2i)x + e(1+2i)x(c2x+ c1)

−
ex
(
24x3 cos (2x) + 16x2 cos (2x) + 4i

(∫ (
(−12x2 − 4x) cos (2x)2 + 2 cos (2x) sin (2x) + 3 sin (2x)2

)
dx
)
sin (2x) + 2i

(∫
((12x2 + 4x+ 3) cos (4x) + 12x2 + 4x− 2 sin (4x)− 3) dx

)
sin (2x) + 36 sin (2x)x2 + 4

(∫ (
(−12x2 − 4x) cos (2x)2 + 2 cos (2x) sin (2x) + 3 sin (2x)2

)
dx
)
cos (2x)− 2

(∫
((12x2 + 4x+ 3) cos (4x) + 12x2 + 4x− 2 sin (4x)− 3) dx

)
cos (2x)− 3x cos (2x)− 4

(∫
((12x2 + 4x+ 3) sin (4x) + 12x+ 2 cos (4x) + 2) dx

)
sin (2x) + 4x sin (2x)

)
128

Verification of solutions

y = (c4x+ c3) e(1−2i)x + e(1+2i)x(c2x+ c1)

−
ex
(
24x3 cos (2x) + 16x2 cos (2x) + 4i

(∫ (
(−12x2 − 4x) cos (2x)2 + 2 cos (2x) sin (2x) + 3 sin (2x)2

)
dx
)
sin (2x) + 2i

(∫
((12x2 + 4x+ 3) cos (4x) + 12x2 + 4x− 2 sin (4x)− 3) dx

)
sin (2x) + 36 sin (2x)x2 + 4

(∫ (
(−12x2 − 4x) cos (2x)2 + 2 cos (2x) sin (2x) + 3 sin (2x)2

)
dx
)
cos (2x)− 2

(∫
((12x2 + 4x+ 3) cos (4x) + 12x2 + 4x− 2 sin (4x)− 3) dx

)
cos (2x)− 3x cos (2x)− 4

(∫
((12x2 + 4x+ 3) sin (4x) + 12x+ 2 cos (4x) + 2) dx

)
sin (2x) + 4x sin (2x)

)
128

Verified OK.
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 46� �
dsolve(diff(y(x),x$4)-4*diff(y(x),x$3)+14*diff(y(x),x$2)-20*diff(y(x),x)+25*y(x)=exp(x)*((2+6*x)*cos(2*x)+3*sin(2*x)),y(x), singsol=all)� �
y(x) =

−
ex
((
x3 + x2 +

(
−16c3 + 63

2

)
x− 16c1 − 41

4

)
cos (2x)− 16

((
c4 + 1

32

)
x+ c2 + 1111

192

)
sin (2x)

)
16

3 Solution by Mathematica
Time used: 0.674 (sec). Leaf size: 62� �
DSolve[y''''[x]-4*y'''[x]+14*y''[x]-20*y'[x]+25*y[x]==Exp[x]*((2+6*x)*Cos[2*x]+3*Sin[2*x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
256e

x
((
−16x3 − 16x2 + (6 + 256c4)x+ 6 + 256c3

)
cos(2x)

+ (8(3 + 32c2)x+ 3 + 256c1) sin(2x)
)
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19.69 problem section 9.3, problem 69
19.69.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7816

Internal problem ID [1566]
Internal file name [OUTPUT/1567_Sunday_June_05_2022_02_22_44_AM_43420082/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 69.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ − 2y′′ − 5y′ + 6y = 2 ex(1− 6x)

With initial conditions

[y(0) = 2, y′(0) = 7, y′′(0) = 9]

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − 2y′′ − 5y′ + 6y = 0

The characteristic equation is

λ3 − 2λ2 − 5λ+ 6 = 0
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The roots of the above equation are

λ1 = 1
λ2 = 3
λ3 = −2

Therefore the homogeneous solution is

yh(x) = c1e−2x + c2ex + c3e3x

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−2x

y2 = ex

y3 = e3x

Now the particular solution to the given ODE is found

y′′′ − 2y′′ − 5y′ + 6y = 2 ex(1− 6x)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

2 ex(1− 6x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x ex, ex}]

While the set of the basis functions for the homogeneous solution found earlier is

{ex, e−2x, e3x}

Since ex is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x ex, x2ex}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x ex + A2x
2ex
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The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−6A1ex + 2A2ex − 12A2x ex = 2 ex(1− 6x)

Solving for the unknowns by comparing coefficients results in

[A1 = 0, A2 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x2ex

Therefore the general solution is

y = yh + yp

=
(
c1e−2x + c2ex + c3e3x

)
+
(
x2ex

)
Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e−2x + c2ex + c3e3x + x2ex (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 2 and x = 0
in the above gives

2 = c1 + c2 + c3 (1A)

Taking derivative of the solution gives

y′ = −2c1e−2x + c2ex + 3c3e3x + 2x ex + x2ex

substituting y′ = 7 and x = 0 in the above gives

7 = −2c1 + c2 + 3c3 (2A)

Taking two derivatives of the solution gives

y′′ = 4c1e−2x + c2ex + 9c3e3x + 4x ex + 2 ex + x2ex
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substituting y′′ = 9 and x = 0 in the above gives

9 = 4c1 + c2 + 9c3 + 2 (3A)

Equations {1A,2A,3A} are now solved for {c1, c2, c3}. Solving for the constants gives

c1 = −1
c2 = 2
c3 = 1

Substituting these values back in above solution results in

y = x2ex − e−2x + e3x + 2 ex

Summary
The solution(s) found are the following

(1)y = x2ex − e−2x + e3x + 2 ex

Figure 553: Solution plot

Verification of solutions

y = x2ex − e−2x + e3x + 2 ex

Verified OK.
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19.69.1 Maple step by step solution

Let’s solve[
y′′′ − 2y′′ − 5y′ + 6y = 2 ex(1− 6x) , y(0) = 2, y′

∣∣∣{x=0}
= 7, y′′

∣∣∣{x=0}
= 9
]

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative
y′′′ = −6y − 12x ex + 2y′′ + 5y′ + 2 ex

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ − 2y′′ − 5y′ + 6y = −2 ex(−1 + 6x)

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = −12x ex + 2y3(x) + 5y2(x)− 6y1(x) + 2 ex

Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = −12x ex + 2y3(x) + 5y2(x)− 6y1(x) + 2 ex]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
−6 5 2

 · →y (x) +


0
0

−12x ex + 2 ex
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• Define the forcing function

→
f (x) =


0
0

−12x ex + 2 ex


• Define the coefficient matrix

A =


0 1 0
0 0 1
−6 5 2


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−2,


1
4

−1
2

1


 ,

1,


1
1
1


 ,

3,


1
9
1
3

1





• Consider eigenpair−2,


1
4

−1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−2x ·


1
4

−1
2

1


• Consider eigenpair1,


1
1
1
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• Solution to homogeneous system from eigenpair

→
y 2 = ex ·


1
1
1


• Consider eigenpair3,


1
9
1
3

1




• Solution to homogeneous system from eigenpair

→
y 3 = e3x ·


1
9
1
3

1


• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


e−2x

4 ex e3x
9

− e−2x

2 ex e3x
3

e−2x ex e3x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e−2x

4 ex e3x
9

− e−2x

2 ex e3x
3

e−2x ex e3x

 · 1

1
4 1 1

9

−1
2 1 1

3

1 1 1


◦ Evaluate and simplify to get the fundamental matrix
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Φ(x) =


−
(
e5x−5 e3x−1

)
e−2x

5

(
3 e5x+5 e3x−8

)
e−2x

30

(
3 e5x−5 e3x+2

)
e−2x

30

−
(
3 e5x−5 e3x+2

)
e−2x

5

(
9 e5x+5 e3x+16

)
e−2x

30

(
9 e5x−5 e3x−4

)
e−2x

30

−
(
9 e5x−5 e3x−4

)
e−2x

5

(
27 e5x+5 e3x−32

)
e−2x

30

(
27 e5x−5 e3x+8

)
e−2x

30


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


(
−3 e5x+15x2e3x+5 e3x−2

)
e−2x

15(
15x2+30x+5

)
e−2xe3x

15 +
(
−9 e5x+4

)
e−2x

15(
15x2+60x+35

)
e−2xe3x

15 +
(
−27 e5x−8

)
e−2x

15


• Plug particular solution back into general solution
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→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +


(
−3 e5x+15x2e3x+5 e3x−2

)
e−2x

15(
15x2+30x+5

)
e−2xe3x

15 +
(
−9 e5x+4

)
e−2x

15(
15x2+60x+35

)
e−2xe3x

15 +
(
−27 e5x−8

)
e−2x

15


• First component of the vector is the solution to the ODE

y =
(
180x2+180c2+60

)
e−2xe3x

180 +
(
20c3e5x+45c1−36 e5x−24

)
e−2x

180

• Use the initial condition y(0) = 2
2 = c2 + c3

9 + c1
4

• Calculate the 1st derivative of the solution

y′ = 2x e−2xe3x +
(
180x2+180c2+60

)
e−2xe3x

180 +
(
100c3e5x−180 e5x

)
e−2x

180 −
(
20c3e5x+45c1−36 e5x−24

)
e−2x

90

• Use the initial condition y′
∣∣∣{x=0}

= 7

7 = c2 + c3
3 − c1

2

• Calculate the 2nd derivative of the solution

y′′ = 2 e−2xe3x + 4x e−2xe3x +
(
180x2+180c2+60

)
e−2xe3x

180 +
(
500c3e5x−900 e5x

)
e−2x

180 −
(
100c3e5x−180 e5x

)
e−2x

45 +
(
20c3e5x+45c1−36 e5x−24

)
e−2x

45

• Use the initial condition y′′
∣∣∣{x=0}

= 9

9 = c1 + c2 + c3

• Solve for the unknown coefficients{
c1 = −52

15 , c2 =
5
3 , c3 =

54
5

}
• Solution to the IVP

y = (e5x + x2e3x + 2 e3x − 1) e−2x
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 29� �
dsolve([diff(y(x),x$3)-2*diff(y(x),x$2)-5*diff(y(x),x)+6*y(x)=2*exp(x)*(1-6*x),y(0) = 2, D(y)(0) = 7, (D@@2)(y)(0) = 9],y(x), singsol=all)� �

y(x) =
(
e5x + x2e3x + 2 e3x − 1

)
e−2x

3 Solution by Mathematica
Time used: 0.061 (sec). Leaf size: 27� �
DSolve[{y'''[x]-2*y''[x]-5*y'[x]+6*y[x]==2*Exp[x]*(1-6*x),{y[0]==2,y'[0]==7,y''[0]==9}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex
(
x2 + 2

)
− e−2x + e3x
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19.70 problem section 9.3, problem 70
19.70.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7826

Internal problem ID [1567]
Internal file name [OUTPUT/1568_Sunday_June_05_2022_02_22_47_AM_66778376/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 70.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ − y′′ − y′ + y = −e−x(4− 8x)

With initial conditions

[y(0) = 2, y′(0) = 0, y′′(0) = 0]

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − y′′ − y′ + y = 0

The characteristic equation is

λ3 − λ2 − λ+ 1 = 0
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The roots of the above equation are

λ1 = −1
λ2 = 1
λ3 = 1

Therefore the homogeneous solution is

yh(x) = c1e−x + c2ex + x exc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = ex

y3 = x ex

Now the particular solution to the given ODE is found

y′′′ − y′′ − y′ + y = −e−x(4− 8x)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

−e−x(4− 8x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e−x, e−x}]

While the set of the basis functions for the homogeneous solution found earlier is

{x ex, ex, e−x}

Since e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e−x, x2e−x}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x e−x + A2x
2e−x
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The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

4A1e−x − 8A2e−x + 8A2x e−x = −e−x(4− 8x)

Solving for the unknowns by comparing coefficients results in

[A1 = 1, A2 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = x e−x + x2e−x

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2ex + x exc3

)
+
(
x e−x + x2e−x

)
Which simplifies to

y = c1e−x + ex(c3x+ c2) + x e−x + x2e−x

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e−x + ex(c3x+ c2) + x e−x + x2e−x (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 2 and x = 0
in the above gives

2 = c1 + c2 (1A)

Taking derivative of the solution gives

y′ = −c1e−x + ex(c3x+ c2) + c3ex + e−x + x e−x − x2e−x

substituting y′ = 0 and x = 0 in the above gives

0 = 1− c1 + c2 + c3 (2A)
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Taking two derivatives of the solution gives

y′′ = c1e−x + ex(c3x+ c2) + 2c3ex − 3x e−x + x2e−x

substituting y′′ = 0 and x = 0 in the above gives

0 = c1 + c2 + 2c3 (3A)

Equations {1A,2A,3A} are now solved for {c1, c2, c3}. Solving for the constants gives

c1 = 1
c2 = 1
c3 = −1

Substituting these values back in above solution results in

y = x2e−x + x e−x − x ex + e−x + ex

Which simplifies to
y =

(
x2 + x+ 1

)
e−x − (x− 1) ex

Summary
The solution(s) found are the following

(1)y =
(
x2 + x+ 1

)
e−x − (x− 1) ex

Figure 554: Solution plot
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Verification of solutions

y =
(
x2 + x+ 1

)
e−x − (x− 1) ex

Verified OK.

19.70.1 Maple step by step solution

Let’s solve[
y′′′ − y′′ − y′ + y = −e−x(4− 8x) , y(0) = 2, y′

∣∣∣{x=0}
= 0, y′′

∣∣∣{x=0}
= 0
]

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative
y′′′ = −y + 8x e−x − 4 e−x + y′′ + y′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′ − y′′ − y′ + y = 4 e−x(2x− 1)

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = 8x e−x − 4 e−x + y3(x) + y2(x)− y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 8x e−x − 4 e−x + y3(x) + y2(x)− y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve
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→
y
′
(x) =


0 1 0
0 0 1
−1 1 1

 · →y (x) +


0
0

8x e−x − 4 e−x


• Define the forcing function

→
f (x) =


0
0

8x e−x − 4 e−x


• Define the coefficient matrix

A =


0 1 0
0 0 1
−1 1 1


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


1
−1
1


 ,

1,


1
1
1


 ,

1,


0
0
0





• Consider eigenpair−1,


1
−1
1




• Solution to homogeneous system from eigenpair

→
y 1 = e−x ·


1
−1
1


• Consider eigenpair, with eigenvalue of algebraic multiplicity 2
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1,


1
1
1




• First solution from eigenvalue 1

→
y 2(x) = ex ·


1
1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 1 is the eigenvalue, and →
v is the eigenvector

→
y 3(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 1

• Substitute →
y 3(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 3(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 1


0 1 0
0 0 1
−1 1 1

− 1 ·


1 0 0
0 1 0
0 0 1


 · →p =


1
1
1


• Choice of →

p
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→
p =


−1
0
0


• Second solution from eigenvalue 1

→
y 3(x) = ex ·

x ·


1
1
1

+


−1
0
0




• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


e−x ex (x− 1) ex

−e−x ex x ex

e−x ex x ex


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e−x ex (x− 1) ex

−e−x ex x ex

e−x ex x ex

 · 1
1 1 −1
−1 1 0
1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


−(x− 1) ex − e−x

2 + ex
2

e−x

2 − ex
2 + x ex

−x ex ex
2 + e−x

2 − e−x

2 + ex
2 + x ex

−x ex − e−x

2 + ex
2

e−x

2 + ex
2 + x ex


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
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→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


(2x2 + 2x+ 1) e−x − ex

(−2x2 + 2x+ 1) e−x − ex

(2x2 − 2x+ 1) e−x − ex


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +


(2x2 + 2x+ 1) e−x − ex

(−2x2 + 2x+ 1) e−x − ex

(2x2 − 2x+ 1) e−x − ex


• First component of the vector is the solution to the ODE

y = (2x2 + c1 + 2x+ 1) e−x + ex(c3x+ c2 − c3 − 1)
• Use the initial condition y(0) = 2

2 = c1 + c2 − c3
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• Calculate the 1st derivative of the solution
y′ = (4x+ 2) e−x − (2x2 + c1 + 2x+ 1) e−x + ex(c3x+ c2 − c3 − 1) + c3ex

• Use the initial condition y′
∣∣∣{x=0}

= 0

0 = −c1 + c2

• Calculate the 2nd derivative of the solution
y′′ = 4 e−x − 2(4x+ 2) e−x + (2x2 + c1 + 2x+ 1) e−x + ex(c3x+ c2 − c3 − 1) + 2c3ex

• Use the initial condition y′′
∣∣∣{x=0}

= 0

0 = c1 + c2 + c3

• Solve for the unknown coefficients{
c1 = 1

2 , c2 =
1
2 , c3 = −1

}
• Solution to the IVP

y =
(
4x2+4x+3

)
e−x

2 + (1−2x)ex
2

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 23� �
dsolve([diff(y(x),x$3)-1*diff(y(x),x$2)-1*diff(y(x),x)+1*y(x)=-exp(-x)*(4-8*x),y(0) = 2, D(y)(0) = 0, (D@@2)(y)(0) = 0],y(x), singsol=all)� �

y(x) =
(
x2 + x+ 1

)
e−x − (x− 1) ex
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3 Solution by Mathematica
Time used: 0.093 (sec). Leaf size: 27� �
DSolve[{y'''[x]-1*y''[x]-1*y'[x]+1*y[x]==-Exp[-x]*(4-8*x),{y[0]==2,y'[0]==0,y''[0]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x
(
x2 + x− e2x(x− 1) + 1

)
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19.71 problem section 9.3, problem 71
19.71.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7837

Internal problem ID [1568]
Internal file name [OUTPUT/1569_Sunday_June_05_2022_02_22_49_AM_98419638/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 71.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

4y′′′ − 3y′ − y = e−x
2 (−3x+ 2)

With initial conditions

[y(0) = −1, y′(0) = 15, y′′(0) = −17]

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

4y′′′ − 3y′ − y = 0

The characteristic equation is
4λ3 − 3λ− 1 = 0
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The roots of the above equation are

λ1 = 1

λ2 = −1
2

λ3 = −1
2

Therefore the homogeneous solution is

yh(x) = c1ex + c2e−
x
2 + c3x e−

x
2

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = e−x
2

y3 = x e−x
2

Now the particular solution to the given ODE is found

4y′′′ − 3y′ − y = e−x
2 (−3x+ 2)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

e−x
2 (−3x+ 2)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is [{

x e−x
2 , e−x

2
}]

While the set of the basis functions for the homogeneous solution found earlier is{
x e−x

2 , ex, e−x
2
}

Since e−x
2 is duplicated in the UC_set, then this basis is multiplied by extra x. The

UC_set becomes [{
x e−x

2 , e−x
2x2}]

Since x e−x
2 is duplicated in the UC_set, then this basis is multiplied by extra x. The

UC_set becomes [{
e−x

2x2, e−x
2x3}]
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Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1e−
x
2x2 + A2e−

x
2x3

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−12A1e−
x
2 − 36A2e−

x
2x+ 24A2e−

x
2 = e−x

2 (−3x+ 2)

Solving for the unknowns by comparing coefficients results in[
A1 = 0, A2 =

1
12

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
e−x

2x3

12

Therefore the general solution is

y = yh + yp

=
(
c1ex + c2e−

x
2 + c3x e−

x
2
)
+
(
e−x

2x3

12

)

Which simplifies to

y = (c3x+ c2) e−
x
2 + c1ex +

e−x
2x3

12

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = (c3x+ c2) e−
x
2 + c1ex +

e−x
2x3

12 (1)
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Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −1 and
x = 0 in the above gives

−1 = c1 + c2 (1A)

Taking derivative of the solution gives

y′ = e−x
2 c3 −

(c3x+ c2) e−
x
2

2 + c1ex −
e−x

2x3

24 + e−x
2x2

4

substituting y′ = 15 and x = 0 in the above gives

15 = c3 −
c2
2 + c1 (2A)

Taking two derivatives of the solution gives

y′′ = −e−x
2 c3 +

(c3x+ c2) e−
x
2

4 + c1ex +
e−x

2x3

48 − e−x
2x2

4 + x e−x
2

2

substituting y′′ = −17 and x = 0 in the above gives

−17 = −c3 +
c2
4 + c1 (3A)

Equations {1A,2A,3A} are now solved for {c1, c2, c3}. Solving for the constants gives

c1 = −1
c2 = 0
c3 = 16

Substituting these values back in above solution results in

y = 16x e−x
2 − ex + e−x

2x3

12

Which simplifies to

y = (x3 + 192x) e−x
2

12 − ex

Summary
The solution(s) found are the following

(1)y = (x3 + 192x) e−x
2

12 − ex
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Figure 555: Solution plot

Verification of solutions

y = (x3 + 192x) e−x
2

12 − ex

Verified OK.

19.71.1 Maple step by step solution

Let’s solve[
4y′′′ − 3y′ − y = e−x

2 (−3x+ 2) , y(0) = −1, y′
∣∣∣{x=0}

= 15, y′′
∣∣∣{x=0}

= −17
]

• Highest derivative means the order of the ODE is 3
y′′′

• Isolate 3rd derivative

y′′′ = y
4 +

3y′
4 − 3x e−

x
2

4 + e−
x
2

2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′′ − 3y′
4 − y

4 = − e−
x
2 (3x−2)

4

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)
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y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE

y′3(x) = −3x e−
x
2

4 + e−
x
2

2 + 3y2(x)
4 + y1(x)

4

Convert linear ODE into a system of first order ODEs[
y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = −3x e−

x
2

4 + e−
x
2

2 + 3y2(x)
4 + y1(x)

4

]
• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
1
4

3
4 0

 · →y (x) +


0
0

−3x e−
x
2

4 + e−
x
2

2


• Define the forcing function

→
f (x) =


0
0

−3x e−
x
2

4 + e−
x
2

2


• Define the coefficient matrix

A =


0 1 0
0 0 1
1
4

3
4 0


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
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• Eigenpairs of A
−1

2 ,


4
−2
1


 ,

−1
2 ,


0
0
0


 ,

1,


1
1
1





• Consider eigenpair, with eigenvalue of algebraic multiplicity 2−1
2 ,


4
−2
1




• First solution from eigenvalue − 1
2

→
y 1(x) = e−x

2 ·


4
−2
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = −1
2 is the eigenvalue, and →

v is the eigenvector
→
y 2(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = −1

2

• Substitute →
y 2(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 2(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue − 1

2
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0 1 0
0 0 1
1
4

3
4 0

−−1
2 ·


1 0 0
0 1 0
0 0 1


 · →p =


4
−2
1


• Choice of →

p

→
p =


8
0
0


• Second solution from eigenvalue − 1

2

→
y 2(x) = e−x

2 ·

x ·


4
−2
1

+


8
0
0




• Consider eigenpair1,


1
1
1




• Solution to homogeneous system from eigenpair

→
y 3 = ex ·


1
1
1


• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3 +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


4 e−x

2 e−x
2 (8 + 4x) ex

−2 e−x
2 −2x e−x

2 ex

e−x
2 x e−x

2 ex


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)
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◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


4 e−x

2 e−x
2 (8 + 4x) ex

−2 e−x
2 −2x e−x

2 ex

e−x
2 x e−x

2 ex

 · 1
4 8 1
−2 0 1
1 0 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


e−

x
2 (2+x)
2

e−
x
2 (3x−2)

6 + ex
3 −2 e−

x
2

3 − x e−x
2 + 2 ex

3

−x e−
x
2

4
(−3x+8)e−

x
2

12 + ex
3

(3x−4)e−
x
2

6 + 2 ex
3

x e−
x
2

8
(3x−8)e−

x
2

24 + ex
3

(4−3x)e−
x
2

12 + 2 ex
3


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
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◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


e−

x
2 x3

8

− e−
x
2 x2(x−6)

16

e−
x
2 x
(
x2−6x+16

)
32


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3 +


e−

x
2 x3

8

− e−
x
2 x2(x−6)

16

e−
x
2 x
(
x2−6x+16

)
32


• First component of the vector is the solution to the ODE

y =
(
32(2+x)c2+x3+32c1

)
e−

x
2

8 + c3ex

• Use the initial condition y(0) = −1
−1 = 8c2 + 4c1 + c3

• Calculate the 1st derivative of the solution

y′ =
(
3x2+32c2

)
e−

x
2

8 −
(
32(2+x)c2+x3+32c1

)
e−

x
2

16 + c3ex

• Use the initial condition y′
∣∣∣{x=0}

= 15

15 = −2c1 + c3

• Calculate the 2nd derivative of the solution

y′′ = 3x e−
x
2

4 −
(
3x2+32c2

)
e−

x
2

8 +
(
32(2+x)c2+x3+32c1

)
e−

x
2

32 + c3ex

• Use the initial condition y′′
∣∣∣{x=0}

= −17

−17 = −2c2 + c1 + c3

• Solve for the unknown coefficients
{c1 = −8, c2 = 4, c3 = −1}

• Solution to the IVP

y =
(
x3+128x

)
e−

x
2

8 − ex
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 22� �
dsolve([4*diff(y(x),x$3)-0*diff(y(x),x$2)-3*diff(y(x),x)-1*y(x)=exp(-x/2)*(2-3*x),y(0) = -1, D(y)(0) = 15, (D@@2)(y)(0) = -17],y(x), singsol=all)� �

y(x) = (x3 + 192x) e−x
2

12 − ex

3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 35� �
DSolve[{4*y'''[x]-0*y''[x]-3*y'[x]-1*y[x]==Exp[-x/2]*(2-3*x),{y[0]==2,y'[0]==0,y''[0]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
36e

−x/2(3x3 + 24x+ 8e3x/2 + 64
)
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19.72 problem section 9.3, problem 72
19.72.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7848

Internal problem ID [1569]
Internal file name [OUTPUT/1570_Sunday_June_05_2022_02_22_52_AM_59473195/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 72.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ + 2y′′′ + 2y′′ + 2y′ + y = e−x(20− 12x)

With initial conditions

[y(0) = 3, y′(0) = −4, y′′(0) = 7, y′′′(0) = −22]

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ + 2y′′′ + 2y′′ + 2y′ + y = 0

The characteristic equation is

λ4 + 2λ3 + 2λ2 + 2λ+ 1 = 0
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The roots of the above equation are

λ1 = i

λ2 = −i

λ3 = −1
λ4 = −1

Therefore the homogeneous solution is

yh(x) = c1e−x + x e−xc2 + e−ixc3 + eixc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = x e−x

y3 = e−ix

y4 = eix

Now the particular solution to the given ODE is found

y′′′′ + 2y′′′ + 2y′′ + 2y′ + y = e−x(20− 12x)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

e−x(20− 12x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e−x, e−x}]

While the set of the basis functions for the homogeneous solution found earlier is

{x e−x, eix, e−x, e−ix}

Since e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e−x, x2e−x}]

Since x e−x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2e−x, e−xx3}]
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Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x
2e−x + A2e−xx3

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

12A2e−xx− 12A2e−x + 4A1e−x = e−x(20− 12x)

Solving for the unknowns by comparing coefficients results in

[A1 = 2, A2 = −1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2x2e−x − e−xx3

Therefore the general solution is

y = yh + yp

=
(
c1e−x + x e−xc2 + e−ixc3 + eixc4

)
+
(
2x2e−x − e−xx3)

Which simplifies to

y = e−ixc3 + eixc4 + (c2x+ c1) e−x + 2x2e−x − e−xx3

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = e−ixc3 + eixc4 + (c2x+ c1) e−x + 2x2e−x − e−xx3 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 3 and x = 0
in the above gives

3 = c3 + c4 + c1 (1A)
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Taking derivative of the solution gives

y′ = −ie−ixc3 + ieixc4 + c2e−x − (c2x+ c1) e−x + 4x e−x − 5x2e−x + e−xx3

substituting y′ = −4 and x = 0 in the above gives

−4 = −c3i+ c4i− c1 + c2 (2A)

Taking two derivatives of the solution gives

y′′ = −e−ixc3 − eixc4 − 2c2e−x + (c2x+ c1) e−x + 4 e−x − 14x e−x + 8x2e−x − e−xx3

substituting y′′ = 7 and x = 0 in the above gives

7 = −c3 − c4 − 2c2 + c1 + 4 (3A)

Taking three derivatives of the solution gives

y′′′ = ie−ixc3 − ieixc4 + 3c2e−x − (c2x+ c1) e−x − 18 e−x + 30x e−x − 11x2e−x + e−xx3

substituting y′′′ = −22 and x = 0 in the above gives

−22 = c3i− c4i− c1 + 3c2 − 18 (4A)

Equations {1A,2A,3A,4A} are now solved for {c1, c2, c3, c4}. Solving for the constants
gives

c1 = 2
c2 = −1

c3 =
1
2 − i

2
c4 =

1
2 + i

2
Substituting these values back in above solution results in

y = −e−xx3 + 2x2e−x − x e−x + 2 e−x + cos (x)− sin (x)

Which simplifies to

y =
(
−x3 + 2x2 − x+ 2

)
e−x + cos (x)− sin (x)

Summary
The solution(s) found are the following

(1)y =
(
−x3 + 2x2 − x+ 2

)
e−x + cos (x)− sin (x)
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Figure 556: Solution plot

Verification of solutions

y =
(
−x3 + 2x2 − x+ 2

)
e−x + cos (x)− sin (x)

Verified OK.

19.72.1 Maple step by step solution

Let’s solve[
y′′′′ + 2y′′′ + 2y′′ + 2y′ + y = e−x(20− 12x) , y(0) = 3, y′

∣∣∣{x=0}
= −4, y′′

∣∣∣{x=0}
= 7, y′′′

∣∣∣{x=0}
= −22

]
• Highest derivative means the order of the ODE is 4

y′′′′

• Isolate 4th derivative
y′′′′ = −y − 12x e−x + 20 e−x − 2y′′′ − 2y′′ − 2y′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′′′ + 2y′′′ + 2y′′ + 2y′ + y = −4 e−x(3x− 5)

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

7848



◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = −12x e−x + 20 e−x − 2y4(x)− 2y3(x)− 2y2(x)− y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = −12x e−x + 20 e−x − 2y4(x)− 2y3(x)− 2y2(x)− y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
−1 −2 −2 −2

 · →y (x) +


0
0
0

−12x e−x + 20 e−x


• Define the forcing function

→
f (x) =


0
0
0

−12x e−x + 20 e−x


• Define the coefficient matrix
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A =


0 1 0 0
0 0 1 0
0 0 0 1
−1 −2 −2 −2


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


−1
1
−1
1



 ,

−1,


0
0
0
0



 ,

−I,


−I
−1
I
1



 ,

I,


I
−1
−I
1






• Consider eigenpair, with eigenvalue of algebraic multiplicity 2−1,


−1
1
−1
1




• First solution from eigenvalue − 1

→
y 1(x) = e−x ·


−1
1
−1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = −1 is the eigenvalue, and →
v is the eigenvector

→
y 2(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = −1

• Substitute →
y 2(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A
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λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 2(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue − 1


0 1 0 0
0 0 1 0
0 0 0 1
−1 −2 −2 −2

− (−1) ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 · →p =


−1
1
−1
1


• Choice of →

p

→
p =


−1
0
0
0


• Second solution from eigenvalue − 1

→
y 2(x) = e−x ·

x ·


−1
1
−1
1

+


−1
0
0
0




• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−I,


−I
−1
I
1




• Solution from eigenpair
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e−Ix ·


−I
−1
I
1


• Use Euler identity to write solution in terms of sin and cos

(−I sin (x) + cos (x)) ·


−I
−1
I
1


• Simplify expression

−I(−I sin (x) + cos (x))
I sin (x)− cos (x)

I(−I sin (x) + cos (x))
−I sin (x) + cos (x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) =


− sin (x)
− cos (x)
sin (x)
cos (x)

 ,
→
y 4(x) =


− cos (x)
sin (x)
cos (x)
− sin (x)




• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


−e−x e−x(−x− 1) − sin (x) − cos (x)
e−x x e−x − cos (x) sin (x)
−e−x −x e−x sin (x) cos (x)
e−x x e−x cos (x) − sin (x)


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix
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Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


−e−x e−x(−x− 1) − sin (x) − cos (x)
e−x x e−x − cos (x) sin (x)
−e−x −x e−x sin (x) cos (x)
e−x x e−x cos (x) − sin (x)

 · 1

−1 −1 0 −1
1 0 −1 0
−1 0 0 1
1 0 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


(x+ 1) e−x x e−x − cos(x)

2 + sin(x)
2 + e−x

2 x e−x − cos (x) + e−x x e−x − cos(x)
2 − sin(x)

2 + e−x

2

−x e−x e−x

2 − x e−x + cos(x)
2 + sin(x)

2 −x e−x + sin (x) e−x

2 − x e−x − cos(x)
2 + sin(x)

2

x e−x − e−x

2 + x e−x − sin(x)
2 + cos(x)

2 x e−x + cos (x) − e−x

2 + x e−x + sin(x)
2 + cos(x)

2

−x e−x e−x

2 − x e−x − cos(x)
2 − sin(x)

2 −x e−x − sin (x) e−x

2 − x e−x + cos(x)
2 − sin(x)

2


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

7853



→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


(−2x3 + 7x2 + 10x+ 3) e−x − 3 cos (x)− 7 sin (x)
(2x3 − 13x2 + 4x+ 7) e−x − 7 cos (x) + 3 sin (x)

(−2x3 + 13x2 − 10x− 3) e−x + 3 cos (x) + 7 sin (x)
(2x3 − 13x2 + 16x− 7) e−x + 7 cos (x)− 3 sin (x)


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4(x) +


(−2x3 + 7x2 + 10x+ 3) e−x − 3 cos (x)− 7 sin (x)
(2x3 − 13x2 + 4x+ 7) e−x − 7 cos (x) + 3 sin (x)

(−2x3 + 13x2 − 10x− 3) e−x + 3 cos (x) + 7 sin (x)
(2x3 − 13x2 + 16x− 7) e−x + 7 cos (x)− 3 sin (x)


• First component of the vector is the solution to the ODE

y = (−2x3 + 7x2 + (−c2 + 10)x− c1 − c2 + 3) e−x + (−c4 − 3) cos (x)− sin (x) (c3 + 7)
• Use the initial condition y(0) = 3

3 = −c1 − c2 − c4

• Calculate the 1st derivative of the solution
y′ = (−6x2 − c2 + 14x+ 10) e−x − (−2x3 + 7x2 + (−c2 + 10)x− c1 − c2 + 3) e−x − (−c4 − 3) sin (x)− (c3 + 7) cos (x)

• Use the initial condition y′
∣∣∣{x=0}

= −4

−4 = c1 − c3

• Calculate the 2nd derivative of the solution
y′′ = (−12x+ 14) e−x − 2(−6x2 − c2 + 14x+ 10) e−x + (−2x3 + 7x2 + (−c2 + 10)x− c1 − c2 + 3) e−x − (−c4 − 3) cos (x) + sin (x) (c3 + 7)

• Use the initial condition y′′
∣∣∣{x=0}

= 7

7 = c2 − c1 + c4

• Calculate the 3rd derivative of the solution
y′′′ = −12 e−x − 3(−12x+ 14) e−x + 3(−6x2 − c2 + 14x+ 10) e−x − (−2x3 + 7x2 + (−c2 + 10)x− c1 − c2 + 3) e−x + (−c4 − 3) sin (x) + (c3 + 7) cos (x)
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• Use the initial condition y′′′
∣∣∣{x=0}

= −22

−22 = −20− 2c2 + c1 + c3

• Solve for the unknown coefficients
{c1 = −5, c2 = −2, c3 = −1, c4 = 4}

• Solution to the IVP
y = (−2x3 + 7x2 + 12x+ 10) e−x − 7 cos (x)− 6 sin (x)

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 31� �
dsolve([diff(y(x),x$4)+2*diff(y(x),x$3)+2*diff(y(x),x$2)+2*diff(y(x),x)+1*y(x)=exp(-x)*(20-12*x),y(0) = 3, D(y)(0) = -4, (D@@2)(y)(0) = 7, (D@@3)(y)(0) = -22],y(x), singsol=all)� �

y(x) =
(
−x3 + 2x2 − x+ 2

)
e−x + cos (x)− sin (x)

3 Solution by Mathematica
Time used: 0.085 (sec). Leaf size: 39� �
DSolve[{y''''[x]+2*y'''[x]+2*y''[x]+2*y'[x]+1*y[x]==Exp[-x]*(20-12*x),{y[0]==3,y'[0]==-4,y''[0]==7,y'''[0]==-22}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x
(
−x3 + 2x2 − x− ex sin(x) + ex cos(x) + 2

)
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19.73 problem section 9.3, problem 73
19.73.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7862

Internal problem ID [1570]
Internal file name [OUTPUT/1571_Sunday_June_05_2022_02_22_55_AM_60291558/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 73.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ + 2y′′ + y′ + 2y = 30 cos (x)− 10 sin (x)

With initial conditions

[y(0) = 3, y′(0) = −4, y′′(0) = 16]

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ + 2y′′ + y′ + 2y = 0

The characteristic equation is

λ3 + 2λ2 + λ+ 2 = 0
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The roots of the above equation are

λ1 = −2
λ2 = i

λ3 = −i

Therefore the homogeneous solution is

yh(x) = c1e−2x + c2e−ix + eixc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−2x

y2 = e−ix

y3 = eix

Now the particular solution to the given ODE is found

y′′′ + 2y′′ + y′ + 2y = 30 cos (x)− 10 sin (x)

Let the particular solution be

yp = U1y1 + U2y2 + U3y3

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3

y′′1 y′′2 y′′3

∣∣∣∣∣∣∣∣
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Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


e−2x e−ix eix

−2 e−2x −ie−ix ieix

4 e−2x −e−ix −eix


|W | = 10ie−2xe−ixeix

The determinant simplifies to

|W | = 10ie−2x

Now we determine Wi for each Ui.

W1(x) = det

 e−ix eix

−ie−ix ieix


= 2i

W2(x) = det

 e−2x eix

−2 e−2x ieix


= (2 + i) e(−2+i)x

W3(x) = det

 e−2x e−ix

−2 e−2x −ie−ix


= (2− i) e(−2−i)x

Now we are ready to evaluate each Ui(x).

U1 = (−1)3−1
∫

F (x)W1(x)
aW (x) dx

= (−1)2
∫ (30 cos (x)− 10 sin (x)) (2i)

(1) (10ie−2x) dx

=
∫ 2i(30 cos (x)− 10 sin (x))

10ie−2x dx

=
∫ (

(6 cos (x)− 2 sin (x)) e2x
)
dx

= 14 e2x cos (x)
5 + 2 e2x sin (x)

5

= 14 e2x cos (x)
5 + 2 e2x sin (x)

5
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U2 = (−1)3−2
∫

F (x)W2(x)
aW (x) dx

= (−1)1
∫ (30 cos (x)− 10 sin (x))

(
(2 + i) e(−2+i)x)

(1) (10ie−2x) dx

= −
∫ (2 + i) (30 cos (x)− 10 sin (x)) e(−2+i)x

10ie−2x dx

= −
∫ (

(−1 + 2i) (−3 cos (x) + sin (x)) eix
)
dx

= −
(1
2 −

7i
2

)
x eix + (5− 5i) eix tan

(
x
2

)
+ (−7− i)x eix tan

(
x
2

)
+
(
−1

2 +
7i
2

)
x eix tan

(
x
2

)2
1 + tan

(
x
2

)2
= −

(1
2 −

7i
2

)
x eix + (5− 5i) eix tan

(
x
2

)
+ (−7− i)x eix tan

(
x
2

)
+
(
−1

2 +
7i
2

)
x eix tan

(
x
2

)2
1 + tan

(
x
2

)2
U3 = (−1)3−3

∫
F (x)W3(x)
aW (x) dx

= (−1)0
∫ (30 cos (x)− 10 sin (x))

(
(2− i) e(−2−i)x)

(1) (10ie−2x) dx

=
∫ (2− i) (30 cos (x)− 10 sin (x)) e(−2−i)x

10ie−2x dx

=
∫ (

(1 + 2i) (−3 cos (x) + sin (x)) e−ix
)
dx

=
(
−1

2 −
7i
2

)
x e−ix + (−5− 5i) e−ix tan

(
x
2

)
+ (7− i)x e−ix tan

(
x
2

)
+
(1
2 +

7i
2

)
x e−ix tan

(
x
2

)2
1 + tan

(
x
2

)2
=
(
−1

2 −
7i
2

)
x e−ix + (−5− 5i) e−ix tan

(
x
2

)
+ (7− i)x e−ix tan

(
x
2

)
+
(1
2 +

7i
2

)
x e−ix tan

(
x
2

)2
1 + tan

(
x
2

)2
Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3

Hence

yp =
(
14 e2x cos (x)

5 + 2 e2x sin (x)
5

)(
e−2x)

+
(
−
(1
2 −

7i
2

)
x eix + (5− 5i) eix tan

(
x
2

)
+ (−7− i)x eix tan

(
x
2

)
+
(
−1

2 +
7i
2

)
x eix tan

(
x
2

)2
1 + tan

(
x
2

)2
)(

e−ix
)

+
((

−1
2 −

7i
2

)
x e−ix + (−5− 5i) e−ix tan

(
x
2

)
+ (7− i)x e−ix tan

(
x
2

)
+
(1
2 +

7i
2

)
x e−ix tan

(
x
2

)2
1 + tan

(
x
2

)2
)(

eix
)
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Therefore the particular solution is

yp =
(−5x+ 14) cos (x)

5 + sin (x) (35x− 23)
5

Therefore the general solution is

y = yh + yp

=
(
c1e−2x + c2e−ix + eixc3

)
+
(
(−5x+ 14) cos (x)

5 + sin (x) (35x− 23)
5

)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e−2x + c2e−ix + eixc3 +
(−5x+ 14) cos (x)

5 + sin (x) (35x− 23)
5 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 3 and x = 0
in the above gives

3 = c1 + c2 + c3 +
14
5 (1A)

Taking derivative of the solution gives

y′ = −2c1e−2x − ic2e−ix + ieixc3 − cos (x)− (−5x+ 14) sin (x)
5 + cos (x) (35x− 23)

5 + 7 sin (x)

substituting y′ = −4 and x = 0 in the above gives

−4 = ic3 − ic2 − 2c1 −
28
5 (2A)

Taking two derivatives of the solution gives

y′′ = 4c1e−2x − c2e−ix − eixc3 + 2 sin (x)− (−5x+ 14) cos (x)
5 − sin (x) (35x− 23)

5 + 14 cos (x)

substituting y′′ = 16 and x = 0 in the above gives

16 = −c3 − c2 + 4c1 +
56
5 (3A)

Equations {1A,2A,3A} are now solved for {c1, c2, c3}. Solving for the constants gives

c1 = 1

c2 = −2
5 + 9i

5
c3 = −2

5 − 9i
5
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Substituting these values back in above solution results in

y = e−2x − x cos (x) + 2 cos (x) + 7 sin (x)x− sin (x)

Which simplifies to

y = e−2x + (2− x) cos (x) + (7x− 1) sin (x)

Summary
The solution(s) found are the following

(1)y = e−2x + (2− x) cos (x) + (7x− 1) sin (x)

Figure 557: Solution plot

Verification of solutions

y = e−2x + (2− x) cos (x) + (7x− 1) sin (x)

Verified OK.
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19.73.1 Maple step by step solution

Let’s solve[
y′′′ + 2y′′ + y′ + 2y = 30 cos (x)− 10 sin (x) , y(0) = 3, y′

∣∣∣{x=0}
= −4, y′′

∣∣∣{x=0}
= 16

]
• Highest derivative means the order of the ODE is 3

y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = 30 cos (x)− 10 sin (x)− 2y3(x)− y2(x)− 2y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 30 cos (x)− 10 sin (x)− 2y3(x)− y2(x)− 2y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
−2 −1 −2

 · →y (x) +


0
0

30 cos (x)− 10 sin (x)


• Define the forcing function

→
f (x) =


0
0

30 cos (x)− 10 sin (x)
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• Define the coefficient matrix

A =


0 1 0
0 0 1
−2 −1 −2


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−2,


1
4

−1
2

1


 ,

−I,


−1
I
1


 ,

I,


−1
−I
1





• Consider eigenpair−2,


1
4

−1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−2x ·


1
4

−1
2

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−I,


−1
I
1




• Solution from eigenpair

e−Ix ·


−1
I
1
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• Use Euler identity to write solution in terms of sin and cos

(−I sin (x) + cos (x)) ·


−1
I
1


• Simplify expression

I sin (x)− cos (x)
I(−I sin (x) + cos (x))
−I sin (x) + cos (x)


• Both real and imaginary parts are solutions to the homogeneous system→

y 2(x) =


− cos (x)
sin (x)
cos (x)

 ,
→
y 3(x) =


sin (x)
cos (x)
− sin (x)




• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


e−2x

4 − cos (x) sin (x)

− e−2x

2 sin (x) cos (x)

e−2x cos (x) − sin (x)


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e−2x

4 − cos (x) sin (x)

− e−2x

2 sin (x) cos (x)

e−2x cos (x) − sin (x)

 · 1

1
4 −1 0

−1
2 0 1

1 1 0


◦ Evaluate and simplify to get the fundamental matrix
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Φ(x) =


e−2x

5 + 4 cos(x)
5 + 2 sin(x)

5 sin (x) e−2x

5 − cos(x)
5 + 2 sin(x)

5

−2 e−2x

5 − 4 sin(x)
5 + 2 cos(x)

5 cos (x) −2 e−2x

5 + sin(x)
5 + 2 cos(x)

5
4 e−2x

5 − 4 cos(x)
5 − 2 sin(x)

5 − sin (x) 4 e−2x

5 + cos(x)
5 − 2 sin(x)

5


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


−23 sin(x)

5 + 7 sin (x)x+ 14 cos(x)
5 − x cos (x)− 14 e−2x

5
28 e−2x

5 + 7(5x−4) cos(x)
5 + (5x+21) sin(x)

5
33 sin(x)

5 − 7 sin (x)x+ 56 cos(x)
5 + x cos (x)− 56 e−2x

5


• Plug particular solution back into general solution
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→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +


−23 sin(x)

5 + 7 sin (x)x+ 14 cos(x)
5 − x cos (x)− 14 e−2x

5
28 e−2x

5 + 7(5x−4) cos(x)
5 + (5x+21) sin(x)

5
33 sin(x)

5 − 7 sin (x)x+ 56 cos(x)
5 + x cos (x)− 56 e−2x

5


• First component of the vector is the solution to the ODE

y = (5c1−56)e−2x

20 + (14−5x−5c2) cos(x)
5 + 7

(
x+ c3

7 − 23
35

)
sin (x)

• Use the initial condition y(0) = 3
3 = c1

4 − c2

• Calculate the 1st derivative of the solution

y′ = − (5c1−56)e−2x

10 − cos (x)− (14−5x−5c2) sin(x)
5 + 7 sin (x) + 7

(
x+ c3

7 − 23
35

)
cos (x)

• Use the initial condition y′
∣∣∣{x=0}

= −4

−4 = − c1
2 + c3

• Calculate the 2nd derivative of the solution

y′′ = (5c1−56)e−2x

5 + 2 sin (x)− (14−5x−5c2) cos(x)
5 + 14 cos (x)− 7

(
x+ c3

7 − 23
35

)
sin (x)

• Use the initial condition y′′
∣∣∣{x=0}

= 16

16 = c1 + c2

• Solve for the unknown coefficients{
c1 = 76

5 , c2 =
4
5 , c3 =

18
5

}
• Solution to the IVP

y = e−2x + (2− x) cos (x) + (7x− 1) sin (x)
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 25� �
dsolve([0*diff(y(x),x$4)+1*diff(y(x),x$3)+2*diff(y(x),x$2)+1*diff(y(x),x)+2*y(x)=30*cos(x)-10*sin(x),y(0) = 3, D(y)(0) = -4, (D@@2)(y)(0) = 16],y(x), singsol=all)� �

y(x) = e−2x + (2− x) cos (x) + (7x− 1) sin (x)

3 Solution by Mathematica
Time used: 0.093 (sec). Leaf size: 26� �
DSolve[{0*y''''[x]+1*y'''[x]+2*y''[x]+1*y'[x]+2*y[x]==30*Cos[x]-10*Sin[x],{y[0]==3,y'[0]==-4,y''[0]==16}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x + (7x− 1) sin(x)− ((x− 2) cos(x))
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19.74 problem section 9.3, problem 74
Internal problem ID [1571]
Internal file name [OUTPUT/1572_Sunday_June_05_2022_02_22_59_AM_20540918/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undeter-
mined Coefficients for Higher Order Equations. Page 495
Problem number: section 9.3, problem 74.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_y ]]

y′′′′ − 3y′′′ + 5y′′ − 2y′ = −2 ex(cos (x)− sin (x))

With initial conditions

[y(0) = 2, y′(0) = 0, y′′(0) = −1, y′′′(0) = −5]

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − 3y′′′ + 5y′′ − 2y′ = 0

The characteristic equation is

λ4 − 3λ3 + 5λ2 − 2λ = 0
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The roots of the above equation are

λ1 = 0

λ2 = −
(
108 + 12

√
177
) 1

3

6 + 4(
108 + 12

√
177
) 1

3
+ 1

λ3 =
(
108 + 12

√
177
) 1

3

12 − 2(
108 + 12

√
177
) 1

3
+ 1 +

i
√
3
(
−
(
108+12

√
177
) 1

3

6 − 4(
108+12

√
177
) 1

3

)
2

λ4 =
(
108 + 12

√
177
) 1

3

12 − 2(
108 + 12

√
177
) 1

3
+ 1−

i
√
3
(
−
(
108+12

√
177
) 1

3

6 − 4(
108+12

√
177
) 1

3

)
2

Therefore the homogeneous solution is

yh(x) = c1+e


(
108+12

√
177

) 1
3

12 − 2(
108+12

√
177

) 1
3
+1+

i
√
3

−

(
108+12

√
177

) 1
3

6 − 4(
108+12

√
177

) 1
3


2

x

c2+e

−
(
108+12

√
177

) 1
3

6 + 4(
108+12

√
177

) 1
3
+1

x

c3+e


(
108+12

√
177

) 1
3

12 − 2(
108+12

√
177

) 1
3
+1−

i
√
3

−

(
108+12

√
177

) 1
3

6 − 4(
108+12

√
177

) 1
3


2

x

c4

The fundamental set of solutions for the homogeneous solution are the following

y1 = 1

y2 = e


(
108+12

√
177

) 1
3

12 − 2(
108+12

√
177

) 1
3
+1+

i
√
3

−

(
108+12

√
177

) 1
3

6 − 4(
108+12

√
177

) 1
3


2

x

y3 = e

−
(
108+12

√
177

) 1
3

6 + 4(
108+12

√
177

) 1
3
+1

x

y4 = e


(
108+12

√
177

) 1
3

12 − 2(
108+12

√
177

) 1
3
+1−

i
√
3

−

(
108+12

√
177

) 1
3

6 − 4(
108+12

√
177

) 1
3


2

x

Now the particular solution to the given ODE is found

y′′′′ − 3y′′′ + 5y′′ − 2y′ = −2 ex(cos (x)− sin (x))
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The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

−2 ex(cos (x)− sin (x))

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) ex, sin (x) ex}]

While the set of the basis functions for the homogeneous solution found earlier is
1, e

−
(
108+12

√
177

) 1
3

6 + 4(
108+12

√
177

) 1
3
+1

x

, e


(
108+12

√
177

) 1
3

12 − 2(
108+12

√
177

) 1
3
+1−

i
√
3

−

(
108+12

√
177

) 1
3

6 − 4(
108+12

√
177

) 1
3


2

x

, e


(
108+12

√
177

) 1
3

12 − 2(
108+12

√
177

) 1
3
+1+

i
√
3

−

(
108+12

√
177

) 1
3

6 − 4(
108+12

√
177

) 1
3


2

x


Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) ex + A2 sin (x) ex

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−2A1 sin (x) ex + 2A2 cos (x) ex = −2 ex(cos (x)− sin (x))

Solving for the unknowns by comparing coefficients results in

[A1 = −1, A2 = −1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = − cos (x) ex − sin (x) ex
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Therefore the general solution is

y = yh + yp

=


c1 + e


(
108+12

√
177

) 1
3

12 − 2(
108+12

√
177

) 1
3
+1+

i
√

3

−

(
108+12

√
177

) 1
3

6 − 4(
108+12

√
177

) 1
3


2

x

c2

+ e

−
(
108+12

√
177

) 1
3

6 + 4(
108+12

√
177

) 1
3
+1

x

c3

+ e


(
108+12

√
177

) 1
3

12 − 2(
108+12

√
177

) 1
3
+1−

i
√
3

−

(
108+12

√
177

) 1
3

6 − 4(
108+12

√
177

) 1
3


2

x

c4


+ (− cos (x) ex − sin (x) ex)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1 + e


(
108+12

√
177

) 1
3

12 − 2(
108+12

√
177

) 1
3
+1+

i
√
3

−

(
108+12

√
177

) 1
3

6 − 4(
108+12

√
177

) 1
3


2

x

c2 + e

−
(
108+12

√
177

) 1
3

6 + 4(
108+12

√
177

) 1
3
+1

x

c3 + e


(
108+12

√
177

) 1
3

12 − 2(
108+12

√
177

) 1
3
+1−

i
√

3

−

(
108+12

√
177

) 1
3

6 − 4(
108+12

√
177

) 1
3


2

x

c4 − cos (x) ex − sin (x) ex
(1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 2 and x = 0
in the above gives

2 = −1 + c1 + c2 + c3 + c4 (1A)
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Taking derivative of the solution gives

y′ =


(
108 + 12

√
177
) 1

3

12 − 2(
108 + 12

√
177
) 1

3
+ 1 +

i
√
3
(
−
(
108+12

√
177
) 1

3

6 − 4(
108+12

√
177
) 1

3

)
2

 e


(
108+12

√
177

) 1
3

12 − 2(
108+12

√
177

) 1
3
+1+

i
√

3

−

(
108+12

√
177

) 1
3

6 − 4(
108+12

√
177

) 1
3


2

x

c2 +

−
(
108 + 12

√
177
) 1

3

6 + 4(
108 + 12

√
177
) 1

3
+ 1

 e

−
(
108+12

√
177

) 1
3

6 + 4(
108+12

√
177

) 1
3
+1

x

c3 +


(
108 + 12

√
177
) 1

3

12 − 2(
108 + 12

√
177
) 1

3
+ 1−

i
√
3
(
−
(
108+12

√
177
) 1

3

6 − 4(
108+12

√
177
) 1

3

)
2

 e


(
108+12

√
177

) 1
3

12 − 2(
108+12

√
177

) 1
3
+1−

i
√

3

−

(
108+12

√
177

) 1
3

6 − 4(
108+12

√
177

) 1
3


2

x

c4 − 2 cos (x) ex

substituting y′ = 0 and x = 0 in the above gives

0 =
(
108 + 12

√
177
) 2

3
(
−i(c2 − c4)

√
3 + c2 − 2c3 + c4

)
− 12(2− c2 − c3 − c4)

(
108 + 12

√
177
) 1

3 − 24i(c2 − c4)
√
3− 24c2 + 48c3 − 24c4

12
(
108 + 12

√
177
) 1

3

(2A)

Taking two derivatives of the solution gives

y′′ =


(
108 + 12

√
177
) 1

3

12 − 2(
108 + 12

√
177
) 1

3
+ 1 +

i
√
3
(
−
(
108+12

√
177
) 1

3

6 − 4(
108+12

√
177
) 1

3

)
2


2

e


(
108+12

√
177

) 1
3

12 − 2(
108+12

√
177

) 1
3
+1+

i
√

3

−

(
108+12

√
177

) 1
3

6 − 4(
108+12

√
177

) 1
3


2

x

c2 +

−
(
108 + 12

√
177
) 1

3

6 + 4(
108 + 12

√
177
) 1

3
+ 1

2

e

−
(
108+12

√
177

) 1
3

6 + 4(
108+12

√
177

) 1
3
+1

x

c3 +


(
108 + 12

√
177
) 1

3

12 − 2(
108 + 12

√
177
) 1

3
+ 1−

i
√
3
(
−
(
108+12

√
177
) 1

3

6 − 4(
108+12

√
177
) 1

3

)
2


2

e


(
108+12

√
177

) 1
3

12 − 2(
108+12

√
177

) 1
3
+1−

i
√
3

−

(
108+12

√
177

) 1
3

6 − 4(
108+12

√
177

) 1
3


2

x

c4 + 2 sin (x) ex − 2 cos (x) ex

substituting y′′ = −1 and x = 0 in the above gives

−1 =
11
(
− (c2−2c3+c4)

√
177

33 − i(c2−c4)
√
59

11 −i(c2−c4)
√
3−c2+2c3−c4

)(
108+12

√
177
) 1

3

2 −
(
2 + c2

3 + c3
3 + c4

3

) (
108 + 12

√
177
) 2

3 − 2(−c2 + 2c3 − c4)
√
177− 6i(c2 − c4)

√
59− 10i(c2 − c4)

√
3 + 10c2 − 20c3 + 10c4(

108 + 12
√
177
) 2

3

(3A)

Taking three derivatives of the solution gives

y′′′ =


(
108 + 12

√
177
) 1

3

12 − 2(
108 + 12

√
177
) 1

3
+ 1 +

i
√
3
(
−
(
108+12

√
177
) 1

3

6 − 4(
108+12

√
177
) 1

3

)
2


3

e


(
108+12

√
177

) 1
3

12 − 2(
108+12

√
177

) 1
3
+1+

i
√

3

−

(
108+12

√
177

) 1
3

6 − 4(
108+12

√
177

) 1
3


2

x

c2 +

−
(
108 + 12

√
177
) 1

3

6 + 4(
108 + 12

√
177
) 1

3
+ 1

3

e

−
(
108+12

√
177

) 1
3

6 + 4(
108+12

√
177

) 1
3
+1

x

c3 +


(
108 + 12

√
177
) 1

3

12 − 2(
108 + 12

√
177
) 1

3
+ 1−

i
√
3
(
−
(
108+12

√
177
) 1

3

6 − 4(
108+12

√
177
) 1

3

)
2


3

e


(
108+12

√
177

) 1
3

12 − 2(
108+12

√
177

) 1
3
+1−

i
√
3

−

(
108+12

√
177

) 1
3

6 − 4(
108+12

√
177

) 1
3


2

x

c4 + 4 sin (x) ex

substituting y′′′ = −5 and x = 0 in the above gives

−5 =
2
(
108 + 12

√
177
) 1

3
(
(c2 − 2c3 + c4)

√
177 + 3i(−c2 + c4)

√
59 + 15i(c2 − c4)

√
3− 15c2 + 30c3 − 15c4

)
+
(
108 + 12

√
177
) 2

3
(
(−c2 + 2c3 − c4)

√
177 + 3i(−c2 + c4)

√
59 + 13i(−c2 + c4)

√
3− 13c2 + 26c3 − 13c4

)
− 96

(
9 +

√
177
)
(c2 + c3 + c4)

216 + 24
√
177

(4A)
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Equations {1A,2A,3A,4A} are now solved for {c1, c2, c3, c4}. Solving for the constants
gives

c1 = 2

c2 = −
144
(
−1067

(
108 + 12

√
177
) 2

3
√
177 + 1575

(
108 + 12

√
177
) 1

3
√
177 + 28362

√
177− 13971

(
108 + 12

√
177
) 2

3 + 430i
(
108 + 12

√
177
) 2

3
√
59 + 1770i

(
108 + 12

√
177
) 2

3
√
3 + 20655

(
108 + 12

√
177
) 1

3 − 10557i
√
59
(
108 + 12

√
177
) 1

3 − 47495i
√
3
(
108 + 12

√
177
) 1

3 + 372474 + 51630i
√
59 + 228330i

√
3
)

((
108 + 12

√
177
) 2

3 − 6
(
108 + 12

√
177
) 1

3 − 24
) (

43
√
59 + 177

√
3
) (

−3
(
108 + 12

√
177
) 2

3
√
59− 37

(
108 + 12

√
177
) 2

3
√
3 + 3i

(
108 + 12

√
177
) 2

3
√
177− 42

√
59
(
108 + 12

√
177
) 1

3 − 78
√
3
(
108 + 12

√
177
) 1

3 − 42i
(
108 + 12

√
177
) 1

3
√
177 + 111i

(
108 + 12

√
177
) 2

3 + 216
√
59 + 1416

√
3− 234i

(
108 + 12

√
177
) 1

3
)

c3 =
11895552

(
108 + 12

√
3
√
59
) 2

3
√
59 + 52607232

(
108 + 12

√
3
√
59
) 2

3
√
3− 361827648

√
59
(
108 + 12

√
3
√
59
) 1

3 − 1602583488
(
108 + 12

√
3
√
59
) 1

3
√
3 + 1828407168

√
59 + 8118029952

√
3(

96
(
108 + 12

√
3
√
59
) 1

3
√
3
√
59 +

(
108 + 12

√
3
√
59
) 2

3
√
3
√
59− 540

√
3
√
59 + 1248

(
108 + 12

√
3
√
59
) 1

3 + 57
(
108 + 12

√
3
√
59
) 2

3 − 7740
)((

108 + 12
√
3
√
59
) 2

3 − 6
(
108 + 12

√
3
√
59
) 1

3 − 24
)2 (

43
√
59 + 177

√
3
)

c4 =
10i
(
108 + 12

√
3
√
59
) 2

3
√
3
√
59− 153i

(
108 + 12

√
3
√
59
) 1

3
√
3
√
59 + 1050i

√
3
√
59 + 97

(
108 + 12

√
3
√
59
) 2

3
√
3 + 90i

(
108 + 12

√
3
√
59
) 2

3 + 27
(
108 + 12

√
3
√
59
) 2

3
√
59− 531

(
108 + 12

√
3
√
59
) 1

3
√
3− 2193i

(
108 + 12

√
3
√
59
) 1

3 − 129
√
59
(
108 + 12

√
3
√
59
) 1

3 − 7230
√
3 + 13770i− 1674

√
59

3
((

108 + 12
√
3
√
59
) 2

3 − 6
(
108 + 12

√
3
√
59
) 1

3 − 24
) (

43
√
59 + 177

√
3
)

Substituting these values back in above solution results in

y = Expression too large to display

Summary
The solution(s) found are the following

(1)Expression too large to display
Verification of solutions

Expression too large to display

Verified OK.
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(diff(_b(_a), _a), _a), _a) = -2*exp(_a)*cos(_a)+2*exp(_a)*sin(_a)+3*(diff(diff(_b(_a), _

Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful

<- differential order: 4; linear nonhomogeneous with symmetry [0,1] successful`� �
3 Solution by Maple
Time used: 4.203 (sec). Leaf size: 1300� �
dsolve([1*diff(y(x),x$4)-3*diff(y(x),x$3)+5*diff(y(x),x$2)-2*diff(y(x),x)+0*y(x)=-2*exp(x)*(cos(x)-sin(x)),y(0) = 2, D(y)(0) = 0, (D@@2)(y)(0) = -1, (D@@3)(y)(0) = -5],y(x), singsol=all)� �

Expression too large to display

3 Solution by Mathematica
Time used: 0.103 (sec). Leaf size: 3484� �
DSolve[{1*y''''[x]-3*y'''[x]+5*y''[x]-2*y'[x]+0*y[x]==-2*Exp[x]*(Cos[x]-Sin[x]),{y[0]==2,y'[0]==0,y''[0]==-1,y'''[0]==-5}},y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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20.16problem section 9.4, problem 39 . . . . . . . . . . . . . . . . . . . . . . . . 7992
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20.1 problem section 9.4, problem 3
20.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7881

Internal problem ID [1572]
Internal file name [OUTPUT/1573_Sunday_June_05_2022_02_23_07_AM_11611486/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.4. Variation
of Parameters for Higher Order Equations. Page 503
Problem number: section 9.4, problem 3.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_con-
stant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order , _with_linear_symmetries ]]

x3y′′′ − 3x2y′′ + 6y′x− 6y = 2x

This is higher order nonhomogeneous Euler type ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous Euler ODE And yp is a particular solution
to the nonhomogeneous Euler ODE. yh is the solution to

x3y′′′ − 3x2y′′ + 6y′x− 6y = 0

This is Euler ODE of higher order. Let y = xλ. Hence

y′ = λxλ−1

y′′ = λ(λ− 1)xλ−2

y′′′ = λ(λ− 1) (λ− 2)xλ−3

Substituting these back into

x3y′′′ − 3x2y′′ + 6y′x− 6y = 2x
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gives
6xλxλ−1 − 3x2λ(λ− 1)xλ−2 + x3λ(λ− 1) (λ− 2)xλ−3 − 6xλ = 0

Which simplifies to

6λxλ − 3λ(λ− 1)xλ + λ(λ− 1) (λ− 2)xλ − 6xλ = 0

And since xλ 6= 0 then dividing through by xλ, the above becomes

6λ− 3λ(λ− 1) + λ(λ− 1) (λ− 2)− 6 = 0

Simplifying gives the characteristic equation as

λ3 − 6λ2 + 11λ− 6 = 0

Solving the above gives the following roots

λ1 = 1
λ2 = 2
λ3 = 3

This table summarises the result

root multiplicity type of root

1 1 real root

2 1 real root

3 1 real root

The solution is generated by going over the above table. For each real root λ of multiplic-
ity one generates a c1x

λ basis solution. Each real root of multiplicty two, generates c1xλ

and c2x
λ ln (x) basis solutions. Each real root of multiplicty three, generates c1xλ and

c2x
λ ln (x) and c3x

λ ln (x)2 basis solutions, and so on. Each complex root α±iβ of multi-
plicity one generates xα(c1 cos(β ln (x)) + c2 sin(β ln (x))) basis solutions. And each com-
plex root α± iβ of multiplicity two generates ln (x)xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And each complex root α±iβ of multiplicity three generates ln (x)2 xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And so on. Using the above show that the solution is

y = c3x
3 + c2x

2 + c1x
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The fundamental set of solutions for the homogeneous solution are the following

y1 = x

y2 = x2

y3 = x3

Now the particular solution to the given ODE is found

x3y′′′ − 3x2y′′ + 6y′x− 6y = 2x

Let the particular solution be

yp = U1y1 + U2y2 + U3y3

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3

y′′1 y′′2 y′′3

∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


x x2 x3

1 2x 3x2

0 2 6x


|W | = 2x3

The determinant simplifies to

|W | = 2x3
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Now we determine Wi for each Ui.

W1(x) = det

 x2 x3

2x 3x2


= x4

W2(x) = det

 x x3

1 3x2


= 2x3

W3(x) = det

 x x2

1 2x


= x2

Now we are ready to evaluate each Ui(x).

U1 = (−1)3−1
∫

F (x)W1(x)
aW (x) dx

= (−1)2
∫ (2x) (x4)

(x3) (2x3) dx

=
∫ 2x5

2x6 dx

=
∫ (1

x

)
dx

= ln (x)

U2 = (−1)3−2
∫

F (x)W2(x)
aW (x) dx

= (−1)1
∫ (2x) (2x3)

(x3) (2x3) dx

= −
∫ 4x4

2x6 dx

= −
∫ ( 2

x2

)
dx

= 2
x
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U3 = (−1)3−3
∫

F (x)W3(x)
aW (x) dx

= (−1)0
∫ (2x) (x2)

(x3) (2x3) dx

=
∫ 2x3

2x6 dx

=
∫ ( 1

x3

)
dx

= − 1
2x2

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3

Hence

yp = (ln (x)) (x)

+
(
2
x

)(
x2)

+
(
− 1
2x2

)(
x3)

Therefore the particular solution is

yp =
(
ln (x) + 3

2

)
x

Therefore the general solution is

y = yh + yp

=
(
c3x

3 + c2x
2 + c1x

)
+
((

ln (x) + 3
2

)
x

)

Which simplifies to

y = x
(
c3x

2 + c2x+ c1
)
+
(
ln (x) + 3

2

)
x

Summary
The solution(s) found are the following

(1)y = x
(
c3x

2 + c2x+ c1
)
+
(
ln (x) + 3

2

)
x
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Verification of solutions

y = x
(
c3x

2 + c2x+ c1
)
+
(
ln (x) + 3

2

)
x

Verified OK.

20.1.1 Maple step by step solution

Let’s solve
x3y′′′ − 3x2y′′ + 6y′x− 6y = 2x

• Highest derivative means the order of the ODE is 3
y′′′

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE is of Euler type
<- LODE of Euler type successful
Euler equation successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 26� �
dsolve(x^3*diff(y(x),x$3)-3*x^2*diff(y(x),x$2)+6*x*diff(y(x),x)-6*y(x)=2*x,y(x), singsol=all)� �

y(x) = x(2c3x2 + 2c2x+ 2 ln (x) + 2c1 + 3)
2
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3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 25� �
DSolve[x^3*y'''[x]-3*x^2*y''[x]+6*x*y'[x]-6*y[x]==2*x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

(
c3x

2 + log(x) + c2x+ 3
2 + c1

)
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20.2 problem section 9.4, problem 8
20.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7888

Internal problem ID [1573]
Internal file name [OUTPUT/1574_Sunday_June_05_2022_02_23_09_AM_4417829/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.4. Variation
of Parameters for Higher Order Equations. Page 503
Problem number: section 9.4, problem 8.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_con-
stant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order , _with_linear_symmetries ]]

4x3y′′′ + 4x2y′′ − 5y′x+ 2y = 30x2

This is higher order nonhomogeneous Euler type ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous Euler ODE And yp is a particular solution
to the nonhomogeneous Euler ODE. yh is the solution to

4x3y′′′ + 4x2y′′ − 5y′x+ 2y = 0

This is Euler ODE of higher order. Let y = xλ. Hence

y′ = λxλ−1

y′′ = λ(λ− 1)xλ−2

y′′′ = λ(λ− 1) (λ− 2)xλ−3

Substituting these back into

4x3y′′′ + 4x2y′′ − 5y′x+ 2y = 30x2
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gives

−5xλxλ−1 + 4x2λ(λ− 1)xλ−2 + 4x3λ(λ− 1) (λ− 2)xλ−3 + 2xλ = 0

Which simplifies to

−5λxλ + 4λ(λ− 1)xλ + 4λ(λ− 1) (λ− 2)xλ + 2xλ = 0

And since xλ 6= 0 then dividing through by xλ, the above becomes

−5λ+ 4λ(λ− 1) + 4λ(λ− 1) (λ− 2) + 2 = 0

Simplifying gives the characteristic equation as

4λ3 − 8λ2 − λ+ 2 = 0

Solving the above gives the following roots

λ1 = 2

λ2 = −1
2

λ3 =
1
2

This table summarises the result

root multiplicity type of root

2 1 real root

−1
2 1 real root

1
2 1 real root

The solution is generated by going over the above table. For each real root λ of multiplic-
ity one generates a c1x

λ basis solution. Each real root of multiplicty two, generates c1xλ

and c2x
λ ln (x) basis solutions. Each real root of multiplicty three, generates c1xλ and

c2x
λ ln (x) and c3x

λ ln (x)2 basis solutions, and so on. Each complex root α±iβ of multi-
plicity one generates xα(c1 cos(β ln (x)) + c2 sin(β ln (x))) basis solutions. And each com-
plex root α± iβ of multiplicity two generates ln (x)xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And each complex root α±iβ of multiplicity three generates ln (x)2 xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And so on. Using the above show that the solution is

y = c1x
2 + c2√

x
+ c3

√
x
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The fundamental set of solutions for the homogeneous solution are the following

y1 = x2

y2 =
1√
x

y3 =
√
x

Now the particular solution to the given ODE is found

4x3y′′′ + 4x2y′′ − 5y′x+ 2y = 30x2

Let the particular solution be

yp = U1y1 + U2y2 + U3y3

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3

y′′1 y′′2 y′′3

∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


x2 1√

x

√
x

2x − 1
2x

3
2

1
2
√
x

2 3
4x

5
2

− 1
4x

3
2


|W | = 15

4x
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The determinant simplifies to

|W | = 15
4x

Now we determine Wi for each Ui.

W1(x) = det

 1√
x

√
x

− 1
2x

3
2

1
2
√
x


= 1

x

W2(x) = det

 x2 √
x

2x 1
2
√
x


= −3x 3

2

2

W3(x) = det

 x2 1√
x

2x − 1
2x

3
2


= −5

√
x

2

Now we are ready to evaluate each Ui(x).

U1 = (−1)3−1
∫

F (x)W1(x)
aW (x) dx

= (−1)2
∫ (30x2)

( 1
x

)
(4x3)

( 15
4x

) dx
=
∫ 30x

15x2 dx

=
∫ (2

x

)
dx

= 2 ln (x)
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U2 = (−1)3−2
∫

F (x)W2(x)
aW (x) dx

= (−1)1
∫ (30x2)

(
−3x

3
2

2

)
(4x3)

( 15
4x

) dx

= −
∫

−45x 7
2

15x2 dx

= −
∫ (

−3x 3
2

)
dx

= 6x 5
2

5

U3 = (−1)3−3
∫

F (x)W3(x)
aW (x) dx

= (−1)0
∫ (30x2)

(
−5

√
x

2

)
(4x3)

( 15
4x

) dx

=
∫

−75x 5
2

15x2 dx

=
∫ (

−5
√
x
)
dx

= −10x 3
2

3

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3

Hence

yp = (2 ln (x))
(
x2)

+
(
6x 5

2

5

)(
1√
x

)

+
(
−10x 3

2

3

)(√
x
)

Therefore the particular solution is

yp = 2x2
(
−16
15 + ln (x)

)

7887



Therefore the general solution is

y = yh + yp

=
(
c1x

2 + c2√
x
+ c3

√
x

)
+
(
2x2
(
−16
15 + ln (x)

))

Which simplifies to

y = c1x
5
2 + c3x+ c2√

x
+ 2x2

(
−16
15 + ln (x)

)

Summary
The solution(s) found are the following

(1)y = c1x
5
2 + c3x+ c2√

x
+ 2x2

(
−16
15 + ln (x)

)
Verification of solutions

y = c1x
5
2 + c3x+ c2√

x
+ 2x2

(
−16
15 + ln (x)

)
Verified OK.

20.2.1 Maple step by step solution

Let’s solve
4x3y′′′ + 4x2y′′ − 5y′x+ 2y = 30x2

• Highest derivative means the order of the ODE is 3
y′′′
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE is of Euler type
<- LODE of Euler type successful
Euler equation successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 24� �
dsolve(4*x^3*diff(y(x),x$3)+4*x^2*diff(y(x),x$2)-5*x*diff(y(x),x)+2*y(x)=30*x^2,y(x), singsol=all)� �

y(x) =
(
c1 + 2 ln (x)− 32

15

)
x

5
2 + c3x+ c2√

x

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 38� �
DSolve[4*x^3*y'''[x]+4*x^2*y''[x]-5*x*y'[x]+2*y[x]==30*x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x2 log(x) +
(
−32

15 + c3
)
x5/2 + c2x+ c1√
x
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20.3 problem section 9.4, problem 11
20.3.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7895

Internal problem ID [1574]
Internal file name [OUTPUT/1575_Sunday_June_05_2022_02_23_12_AM_68532501/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.4. Variation
of Parameters for Higher Order Equations. Page 503
Problem number: section 9.4, problem 11.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_con-
stant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order , _exact , _linear , _nonhomogeneous ]]

x3y′′′ + x2y′′ − 2y′x+ 2y = x2

This is higher order nonhomogeneous Euler type ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous Euler ODE And yp is a particular solution
to the nonhomogeneous Euler ODE. yh is the solution to

x3y′′′ + x2y′′ − 2y′x+ 2y = 0

This is Euler ODE of higher order. Let y = xλ. Hence

y′ = λxλ−1

y′′ = λ(λ− 1)xλ−2

y′′′ = λ(λ− 1) (λ− 2)xλ−3

Substituting these back into

x3y′′′ + x2y′′ − 2y′x+ 2y = x2
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gives
−2xλxλ−1 + x2λ(λ− 1)xλ−2 + x3λ(λ− 1) (λ− 2)xλ−3 + 2xλ = 0

Which simplifies to

−2λxλ + λ(λ− 1)xλ + λ(λ− 1) (λ− 2)xλ + 2xλ = 0

And since xλ 6= 0 then dividing through by xλ, the above becomes

−2λ+ λ(λ− 1) + λ(λ− 1) (λ− 2) + 2 = 0

Simplifying gives the characteristic equation as

λ3 − 2λ2 − λ+ 2 = 0

Solving the above gives the following roots

λ1 = 1
λ2 = 2
λ3 = −1

This table summarises the result

root multiplicity type of root

−1 1 real root

1 1 real root

2 1 real root

The solution is generated by going over the above table. For each real root λ of multiplic-
ity one generates a c1x

λ basis solution. Each real root of multiplicty two, generates c1xλ

and c2x
λ ln (x) basis solutions. Each real root of multiplicty three, generates c1xλ and

c2x
λ ln (x) and c3x

λ ln (x)2 basis solutions, and so on. Each complex root α±iβ of multi-
plicity one generates xα(c1 cos(β ln (x)) + c2 sin(β ln (x))) basis solutions. And each com-
plex root α± iβ of multiplicity two generates ln (x)xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And each complex root α±iβ of multiplicity three generates ln (x)2 xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And so on. Using the above show that the solution is

y = c1
x

+ c2x+ c3x
2
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The fundamental set of solutions for the homogeneous solution are the following

y1 =
1
x

y2 = x

y3 = x2

Now the particular solution to the given ODE is found

x3y′′′ + x2y′′ − 2y′x+ 2y = x2

Let the particular solution be

yp = U1y1 + U2y2 + U3y3

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3

y′′1 y′′2 y′′3

∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


1
x

x x2

− 1
x2 1 2x
2
x3 0 2


|W | = 6

x
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The determinant simplifies to

|W | = 6
x

Now we determine Wi for each Ui.

W1(x) = det

 x x2

1 2x


= x2

W2(x) = det

 1
x

x2

− 1
x2 2x


= 3

W3(x) = det

 1
x

x

− 1
x2 1


= 2

x

Now we are ready to evaluate each Ui(x).

U1 = (−1)3−1
∫

F (x)W1(x)
aW (x) dx

= (−1)2
∫ (x2) (x2)

(x3)
( 6
x

) dx

=
∫

x4

6x2 dx

=
∫ (

x2

6

)
dx

= x3

18
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U2 = (−1)3−2
∫

F (x)W2(x)
aW (x) dx

= (−1)1
∫ (x2) (3)

(x3)
( 6
x

) dx
= −

∫ 3x2

6x2 dx

= −
∫ (1

2

)
dx

= −x

2

U3 = (−1)3−3
∫

F (x)W3(x)
aW (x) dx

= (−1)0
∫ (x2)

( 2
x

)
(x3)

( 6
x

) dx
=
∫ 2x

6x2 dx

=
∫ ( 1

3x

)
dx

= ln (x)
3

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3

Hence

yp =
(
x3

18

)(
1
x

)
+
(
−x

2

)
(x)

+
(
ln (x)
3

)(
x2)

Therefore the particular solution is

yp =
x2(−4 + 3 ln (x))

9
Therefore the general solution is

y = yh + yp

=
(c1
x
+ c2x+ c3x

2
)
+
(
x2(−4 + 3 ln (x))

9

)
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Summary
The solution(s) found are the following

(1)y = c1
x
+ c2x+ c3x

2 + x2(−4 + 3 ln (x))
9

Verification of solutions

y = c1
x
+ c2x+ c3x

2 + x2(−4 + 3 ln (x))
9

Verified OK.

20.3.1 Maple step by step solution

Let’s solve
x3y′′′ + x2y′′ − 2y′x+ 2y = x2

• Highest derivative means the order of the ODE is 3
y′′′

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = (c__1-2*_a*_b(_a)+2*(diff(_b(_a), _a))*_a^2+(1/3)*_a^3)/_a^3, _b(_a)`

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful

<- high order exact_linear_nonhomogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 30� �
dsolve(x^3*diff(y(x),x$3)+x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=x^2,y(x), singsol=all)� �

y(x) = 2x3 ln (x) + 6c3x3 + 6c2x2 + c1
6x

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 35� �
DSolve[x^3*y'''[x]+x^2*y''[x]-2*x*y'[x]+2*y[x]==x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3x

2 log(x) +
(
−4
9 + c3

)
x2 + c2x+ c1

x
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20.4 problem section 9.4, problem 14
20.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7903

Internal problem ID [1575]
Internal file name [OUTPUT/1576_Sunday_June_05_2022_02_23_14_AM_15472858/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.4. Variation
of Parameters for Higher Order Equations. Page 503
Problem number: section 9.4, problem 14.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_con-
stant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[ _high_order , _with_linear_symmetries ]]

16x4y′′′′ + 96x3y′′′ + 72x2y′′ − 24y′x+ 9y = 96x 5
2

This is higher order nonhomogeneous Euler type ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous Euler ODE And yp is a particular solution
to the nonhomogeneous Euler ODE. yh is the solution to

16x4y′′′′ + 96x3y′′′ + 72x2y′′ − 24y′x+ 9y = 0

This is Euler ODE of higher order. Let y = xλ. Hence

y′ = λxλ−1

y′′ = λ(λ− 1)xλ−2

y′′′ = λ(λ− 1) (λ− 2)xλ−3

y′′′′ = λ(λ− 1) (λ− 2) (λ− 3)xλ−4

Substituting these back into

16x4y′′′′ + 96x3y′′′ + 72x2y′′ − 24y′x+ 9y = 96x 5
2
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gives
−24xλxλ−1 + 72x2λ(λ− 1)xλ−2 + 96x3λ(λ− 1) (λ− 2)xλ−3

+ 16x4λ(λ− 1) (λ− 2) (λ− 3)xλ−4 + 9xλ = 0

Which simplifies to

−24λxλ+72λ(λ−1)xλ+96λ(λ−1) (λ−2)xλ+16λ(λ−1) (λ−2) (λ−3)xλ+9xλ

= 0

And since xλ 6= 0 then dividing through by xλ, the above becomes

−24λ+ 72λ(λ− 1) + 96λ(λ− 1) (λ− 2) + 16λ(λ− 1) (λ− 2) (λ− 3) + 9 = 0

Simplifying gives the characteristic equation as

16λ4 − 40λ2 + 9 = 0

Solving the above gives the following roots

λ1 = −3
2

λ2 =
3
2

λ3 = −1
2

λ4 =
1
2

This table summarises the result

root multiplicity type of root

−1
2 1 real root

1
2 1 real root

−3
2 1 real root

3
2 1 real root

The solution is generated by going over the above table. For each real root λ of multiplic-
ity one generates a c1x

λ basis solution. Each real root of multiplicty two, generates c1xλ

and c2x
λ ln (x) basis solutions. Each real root of multiplicty three, generates c1xλ and
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c2x
λ ln (x) and c3x

λ ln (x)2 basis solutions, and so on. Each complex root α±iβ of multi-
plicity one generates xα(c1 cos(β ln (x)) + c2 sin(β ln (x))) basis solutions. And each com-
plex root α± iβ of multiplicity two generates ln (x)xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And each complex root α±iβ of multiplicity three generates ln (x)2 xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And so on. Using the above show that the solution is

y = c1√
x
+
√
x c2 +

c3

x
3
2
+ c4x

3
2

The fundamental set of solutions for the homogeneous solution are the following

y1 =
1√
x

y2 =
√
x

y3 =
1
x

3
2

y4 = x
3
2

Now the particular solution to the given ODE is found

16x4y′′′′ + 96x3y′′′ + 72x2y′′ − 24y′x+ 9y = 96x 5
2

Let the particular solution be

yp = U1y1 + U2y2 + U3y3 + U4y4

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣
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Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =



1√
x

√
x 1

x
3
2

x
3
2

− 1
2x

3
2

1
2
√
x

− 3
2x

5
2

3
√
x

2

3
4x

5
2

− 1
4x

3
2

15
4x

7
2

3
4
√
x

− 15
8x

7
2

3
8x

5
2

− 105
8x

9
2

− 3
8x

3
2


|W | = 12

x6

The determinant simplifies to

|W | = 12
x6

Now we determine Wi for each Ui.

W1(x) = det


√
x 1

x
3
2

x
3
2

1
2
√
x

− 3
2x

5
2

3
√
x

2

− 1
4x

3
2

15
4x

7
2

3
4
√
x


= − 6

x
5
2

W2(x) = det


1√
x

1
x
3
2

x
3
2

− 1
2x

3
2

− 3
2x

5
2

3
√
x

2

3
4x

5
2

15
4x

7
2

3
4
√
x


= − 6

x
7
2

W3(x) = det


1√
x

√
x x

3
2

− 1
2x

3
2

1
2
√
x

3
√
x

2

3
4x

5
2

− 1
4x

3
2

3
4
√
x


= 2

x
3
2
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W4(x) = det


1√
x

√
x 1

x
3
2

− 1
2x

3
2

1
2
√
x

− 3
2x

5
2

3
4x

5
2

− 1
4x

3
2

15
4x

7
2


= 2

x
9
2

Now we are ready to evaluate each Ui(x).

U1 = (−1)4−1
∫

F (x)W1(x)
aW (x) dx

= (−1)3
∫ (

96x 5
2

)(
− 6

x
5
2

)
(16x4)

( 12
x6

) dx

= −
∫

−576
192
x2

dx

= −
∫ (

−3x2) dx
= x3

U2 = (−1)4−2
∫

F (x)W2(x)
aW (x) dx

= (−1)2
∫ (

96x 5
2

)(
− 6

x
7
2

)
(16x4)

( 12
x6

) dx

=
∫ −576

x
192
x2

dx

=
∫

(−3x) dx

= −3x2

2
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U3 = (−1)4−3
∫

F (x)W3(x)
aW (x) dx

= (−1)1
∫ (

96x 5
2

)(
2
x
3
2

)
(16x4)

( 12
x6

) dx

= −
∫ 192x

192
x2

dx

= −
∫ (

x3) dx
= −x4

4

U4 = (−1)4−4
∫

F (x)W4(x)
aW (x) dx

= (−1)0
∫ (

96x 5
2

)(
2
x
9
2

)
(16x4)

( 12
x6

) dx

=
∫ 192

x2

192
x2

dx

=
∫

(1) dx

= x

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3 + U4y4

Hence

yp =
(
x3)( 1√

x

)
+
(
−3x2

2

)(√
x
)

+
(
−x4

4

)(
1
x

3
2

)
+ (x)

(
x

3
2

)
Therefore the particular solution is

yp =
x

5
2

4
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Therefore the general solution is

y = yh + yp

=
(

c1√
x
+
√
x c2 +

c3

x
3
2
+ c4x

3
2

)
+
(
x

5
2

4

)

Which simplifies to

y = c4x
3 + c2x

2 + c1x+ c3

x
3
2

+ x
5
2

4

Summary
The solution(s) found are the following

(1)y = c4x
3 + c2x

2 + c1x+ c3

x
3
2

+ x
5
2

4
Verification of solutions

y = c4x
3 + c2x

2 + c1x+ c3

x
3
2

+ x
5
2

4

Verified OK.

20.4.1 Maple step by step solution

Let’s solve
16x4y′′′′ + 96x3y′′′ + 72x2y′′ − 24y′x+ 9y = 96x 5

2

• Highest derivative means the order of the ODE is 4
y′′′′
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE is of Euler type
<- LODE of Euler type successful
Euler equation successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 32� �
dsolve(16*x^4*diff(y(x),x$4)+96*x^3*diff(y(x),x$3)+72*x^2*diff(y(x),x$2)-24*x*diff(y(x),x)+9*y(x)=96*x^(5/2),y(x), singsol=all)� �

y(x) = 4c4x3 + x4 + 4c3x2 + 4c2x+ 4c1
4x 3

2

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 41� �
DSolve[16*x^4*y''''[x]+96*x^3*y'''[x]+72*x^2*y''[x]-24*x*y'[x]+9*y[x]==96*x^(5/2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x4 + 4c4x3 + 4c3x2 + 4c2x+ 4c1
4x3/2
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20.5 problem section 9.4, problem 16
20.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7911

Internal problem ID [1576]
Internal file name [OUTPUT/1577_Sunday_June_05_2022_02_23_17_AM_73330081/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.4. Variation
of Parameters for Higher Order Equations. Page 503
Problem number: section 9.4, problem 16.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_con-
stant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[ _high_order , _with_linear_symmetries ]]

x4y′′′′ − 4x3y′′′ + 12x2y′′ − 24y′x+ 24y = x4

This is higher order nonhomogeneous Euler type ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous Euler ODE And yp is a particular solution
to the nonhomogeneous Euler ODE. yh is the solution to

x4y′′′′ − 4x3y′′′ + 12x2y′′ − 24y′x+ 24y = 0

This is Euler ODE of higher order. Let y = xλ. Hence

y′ = λxλ−1

y′′ = λ(λ− 1)xλ−2

y′′′ = λ(λ− 1) (λ− 2)xλ−3

y′′′′ = λ(λ− 1) (λ− 2) (λ− 3)xλ−4

Substituting these back into

x4y′′′′ − 4x3y′′′ + 12x2y′′ − 24y′x+ 24y = x4
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gives
−24xλxλ−1 + 12x2λ(λ− 1)xλ−2 − 4x3λ(λ− 1) (λ− 2)xλ−3

+ x4λ(λ− 1) (λ− 2) (λ− 3)xλ−4 + 24xλ = 0

Which simplifies to

−24λxλ +12λ(λ− 1)xλ − 4λ(λ− 1) (λ− 2)xλ + λ(λ− 1) (λ− 2) (λ− 3)xλ +24xλ = 0

And since xλ 6= 0 then dividing through by xλ, the above becomes

−24λ+ 12λ(λ− 1)− 4λ(λ− 1) (λ− 2) + λ(λ− 1) (λ− 2) (λ− 3) + 24 = 0

Simplifying gives the characteristic equation as

λ4 − 10λ3 + 35λ2 − 50λ+ 24 = 0

Solving the above gives the following roots

λ1 = 1
λ2 = 2
λ3 = 3
λ4 = 4

This table summarises the result

root multiplicity type of root

1 1 real root

2 1 real root

3 1 real root

4 1 real root

The solution is generated by going over the above table. For each real root λ of multiplic-
ity one generates a c1x

λ basis solution. Each real root of multiplicty two, generates c1xλ

and c2x
λ ln (x) basis solutions. Each real root of multiplicty three, generates c1xλ and

c2x
λ ln (x) and c3x

λ ln (x)2 basis solutions, and so on. Each complex root α±iβ of multi-
plicity one generates xα(c1 cos(β ln (x)) + c2 sin(β ln (x))) basis solutions. And each com-
plex root α± iβ of multiplicity two generates ln (x)xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And each complex root α±iβ of multiplicity three generates ln (x)2 xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And so on. Using the above show that the solution is
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y = c4x
4 + c3x

3 + c2x
2 + c1x

The fundamental set of solutions for the homogeneous solution are the following

y1 = x

y2 = x2

y3 = x3

y4 = x4

Now the particular solution to the given ODE is found

x4y′′′′ − 4x3y′′′ + 12x2y′′ − 24y′x+ 24y = x4

Let the particular solution be

yp = U1y1 + U2y2 + U3y3 + U4y4

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


x x2 x3 x4

1 2x 3x2 4x3

0 2 6x 12x2

0 0 6 24x


|W | = 12x4
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The determinant simplifies to

|W | = 12x4

Now we determine Wi for each Ui.

W1(x) = det


x2 x3 x4

2x 3x2 4x3

2 6x 12x2


= 2x6

W2(x) = det


x x3 x4

1 3x2 4x3

0 6x 12x2


= 6x5

W3(x) = det


x x2 x4

1 2x 4x3

0 2 12x2


= 6x4

W4(x) = det


x x2 x3

1 2x 3x2

0 2 6x


= 2x3

Now we are ready to evaluate each Ui(x).

U1 = (−1)4−1
∫

F (x)W1(x)
aW (x) dx

= (−1)3
∫ (x4) (2x6)

(x4) (12x4) dx

= −
∫ 2x10

12x8 dx

= −
∫ (

x2

6

)
dx

= −x3

18
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U2 = (−1)4−2
∫

F (x)W2(x)
aW (x) dx

= (−1)2
∫ (x4) (6x5)

(x4) (12x4) dx

=
∫ 6x9

12x8 dx

=
∫ (x

2

)
dx

= x2

4

U3 = (−1)4−3
∫

F (x)W3(x)
aW (x) dx

= (−1)1
∫ (x4) (6x4)

(x4) (12x4) dx

= −
∫ 6x8

12x8 dx

= −
∫ (1

2

)
dx

= −x

2

U4 = (−1)4−4
∫

F (x)W4(x)
aW (x) dx

= (−1)0
∫ (x4) (2x3)

(x4) (12x4) dx

=
∫ 2x7

12x8 dx

=
∫ ( 1

6x

)
dx

= ln (x)
6

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3 + U4y4
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Hence

yp =
(
−x3

18

)
(x)

+
(
x2

4

)(
x2)

+
(
−x

2

) (
x3)

+
(
ln (x)
6

)(
x4)

Therefore the particular solution is

yp =
x4(−11 + 6 ln (x))

36

Therefore the general solution is

y = yh + yp

=
(
c4x

4 + c3x
3 + c2x

2 + c1x
)
+
(
x4(−11 + 6 ln (x))

36

)

Which simplifies to

y = x
(
c4x

3 + c3x
2 + c2x+ c1

)
+ x4(−11 + 6 ln (x))

36

Summary
The solution(s) found are the following

(1)y = x
(
c4x

3 + c3x
2 + c2x+ c1

)
+ x4(−11 + 6 ln (x))

36
Verification of solutions

y = x
(
c4x

3 + c3x
2 + c2x+ c1

)
+ x4(−11 + 6 ln (x))

36

Verified OK.
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20.5.1 Maple step by step solution

Let’s solve
x4y′′′′ − 4x3y′′′ + 12x2y′′ − 24y′x+ 24y = x4

• Highest derivative means the order of the ODE is 4
y′′′′

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE is of Euler type
<- LODE of Euler type successful
Euler equation successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 30� �
dsolve(x^4*diff(y(x),x$4)-4*x^3*diff(y(x),x$3)+12*x^2*diff(y(x),x$2)-24*x*diff(y(x),x)+24*y(x)=x^4,y(x), singsol=all)� �

y(x) =
(
x3 ln (x)

6 +
(
c4 −

11
36

)
x3 + c3x

2 + c2x+ c1

)
x

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 40� �
DSolve[x^4*y''''[x]-4*x^3*y'''[x]+12*x^2*y''[x]-24*x*y'[x]+24*y[x]==x^4,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
6x

4 log(x) + x

((
−11
36 + c4

)
x3 + c3x

2 + c2x+ c1

)
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20.6 problem section 9.4, problem 18
20.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7918

Internal problem ID [1577]
Internal file name [OUTPUT/1578_Sunday_June_05_2022_02_23_19_AM_87539480/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.4. Variation
of Parameters for Higher Order Equations. Page 503
Problem number: section 9.4, problem 18.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_con-
stant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[ _high_order , _exact , _linear , _nonhomogeneous ]]

x4y′′′′ + 6x3y′′′ + 2x2y′′ − 4y′x+ 4y = 12x2

This is higher order nonhomogeneous Euler type ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous Euler ODE And yp is a particular solution
to the nonhomogeneous Euler ODE. yh is the solution to

x4y′′′′ + 6x3y′′′ + 2x2y′′ − 4y′x+ 4y = 0

This is Euler ODE of higher order. Let y = xλ. Hence

y′ = λxλ−1

y′′ = λ(λ− 1)xλ−2

y′′′ = λ(λ− 1) (λ− 2)xλ−3

y′′′′ = λ(λ− 1) (λ− 2) (λ− 3)xλ−4

Substituting these back into

x4y′′′′ + 6x3y′′′ + 2x2y′′ − 4y′x+ 4y = 12x2
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gives
−4xλxλ−1 + 2x2λ(λ− 1)xλ−2 + 6x3λ(λ− 1) (λ− 2)xλ−3

+ x4λ(λ− 1) (λ− 2) (λ− 3)xλ−4 + 4xλ = 0

Which simplifies to

−4λxλ + 2λ(λ− 1)xλ + 6λ(λ− 1) (λ− 2)xλ + λ(λ− 1) (λ− 2) (λ− 3)xλ + 4xλ = 0

And since xλ 6= 0 then dividing through by xλ, the above becomes

−4λ+ 2λ(λ− 1) + 6λ(λ− 1) (λ− 2) + λ(λ− 1) (λ− 2) (λ− 3) + 4 = 0

Simplifying gives the characteristic equation as

λ4 − 5λ2 + 4 = 0

Solving the above gives the following roots

λ1 = 2
λ2 = −2
λ3 = 1
λ4 = −1

This table summarises the result

root multiplicity type of root

−1 1 real root

−2 1 real root

1 1 real root

2 1 real root

The solution is generated by going over the above table. For each real root λ of multiplic-
ity one generates a c1x

λ basis solution. Each real root of multiplicty two, generates c1xλ

and c2x
λ ln (x) basis solutions. Each real root of multiplicty three, generates c1xλ and

c2x
λ ln (x) and c3x

λ ln (x)2 basis solutions, and so on. Each complex root α±iβ of multi-
plicity one generates xα(c1 cos(β ln (x)) + c2 sin(β ln (x))) basis solutions. And each com-
plex root α± iβ of multiplicity two generates ln (x)xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And each complex root α±iβ of multiplicity three generates ln (x)2 xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And so on. Using the above show that the solution is
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y = c1
x

+ c2
x2 + c3x+ c4x

2

The fundamental set of solutions for the homogeneous solution are the following

y1 =
1
x

y2 =
1
x2

y3 = x

y4 = x2

Now the particular solution to the given ODE is found

x4y′′′′ + 6x3y′′′ + 2x2y′′ − 4y′x+ 4y = 12x2

Let the particular solution be

yp = U1y1 + U2y2 + U3y3 + U4y4

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣
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Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


1
x

1
x2 x x2

− 1
x2 − 2

x3 1 2x
2
x3

6
x4 0 2

− 6
x4 − 24

x5 0 0


|W | = −72

x6

The determinant simplifies to

|W | = −72
x6

Now we determine Wi for each Ui.

W1(x) = det


1
x2 x x2

− 2
x3 1 2x
6
x4 0 2


= 12

x2

W2(x) = det


1
x

x x2

− 1
x2 1 2x
2
x3 0 2


= 6

x

W3(x) = det


1
x

1
x2 x2

− 1
x2 − 2

x3 2x
2
x3

6
x4 2


= −12

x4

W4(x) = det


1
x

1
x2 x

− 1
x2 − 2

x3 1
2
x3

6
x4 0


= − 6

x5
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Now we are ready to evaluate each Ui(x).

U1 = (−1)4−1
∫

F (x)W1(x)
aW (x) dx

= (−1)3
∫ (12x2)

( 12
x2

)
(x4)

(
− 72

x6

) dx

= −
∫ 144

− 72
x2

dx

= −
∫ (

−2x2) dx
= 2x3

3

U2 = (−1)4−2
∫

F (x)W2(x)
aW (x) dx

= (−1)2
∫ (12x2)

( 6
x

)
(x4)

(
− 72

x6

) dx
=
∫ 72x

− 72
x2

dx

=
∫ (

−x3) dx
= −x4

4

U3 = (−1)4−3
∫

F (x)W3(x)
aW (x) dx

= (−1)1
∫ (12x2)

(
− 12

x4

)
(x4)

(
− 72

x6

) dx

= −
∫ −144

x2

− 72
x2

dx

= −
∫

(2) dx

= −2x
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U4 = (−1)4−4
∫

F (x)W4(x)
aW (x) dx

= (−1)0
∫ (12x2)

(
− 6

x5

)
(x4)

(
− 72

x6

) dx

=
∫ − 72

x3

− 72
x2

dx

=
∫ (1

x

)
dx

= ln (x)

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3 + U4y4

Hence

yp =
(
2x3

3

)(
1
x

)
+
(
−x4

4

)(
1
x2

)
+ (−2x) (x)
+ (ln (x))

(
x2)

Therefore the particular solution is

yp = x2
(
−19
12 + ln (x)

)
Therefore the general solution is

y = yh + yp

=
(c1
x
+ c2

x2 + c3x+ c4x
2
)
+
(
x2
(
−19
12 + ln (x)

))
Summary
The solution(s) found are the following

(1)y = c1
x
+ c2

x2 + c3x+ c4x
2 + x2

(
−19
12 + ln (x)

)
Verification of solutions

y = c1
x
+ c2

x2 + c3x+ c4x
2 + x2

(
−19
12 + ln (x)

)
Verified OK.
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20.6.1 Maple step by step solution

Let’s solve
x4y′′′′ + 6x3y′′′ + 2x2y′′ − 4y′x+ 4y = 12x2

• Highest derivative means the order of the ODE is 4
y′′′′

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
-> Calling odsolve with the ODE`, diff(diff(diff(_b(_a), _a), _a), _a) = (c__1-4*_a*_b(_a)+4*(diff(_b(_a), _a))*_a^2-2*(diff(diff(_b

Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful

<- high order exact_linear_nonhomogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 39� �
dsolve(x^4*diff(y(x),x$4)+6*x^3*diff(y(x),x$3)+2*x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+4*y(x)=12*x^2,y(x), singsol=all)� �

y(x) = 12x4 ln (x) + (12c2 − 15)x4 + 12c3x3 + 2c1x+ 12c4
12x2

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 38� �
DSolve[x^4*y''''[x]+6*x^3*y'''[x]+2*x^2*y''[x]-4*x*y'[x]+4*y[x]==12*x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
x4 log(x) +

(
−19

12 + c4
)
x4 + c3x

3 + c2x+ c1

x2
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20.7 problem section 9.4, problem 22
20.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7925

Internal problem ID [1578]
Internal file name [OUTPUT/1579_Sunday_June_05_2022_02_23_21_AM_46587098/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.4. Variation
of Parameters for Higher Order Equations. Page 503
Problem number: section 9.4, problem 22.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_con-
stant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order , _with_linear_symmetries ]]

x3y′′′ − 2x2y′′ + 3y′x− 3y = 4x

With initial conditions

[y(1) = 4, y′(1) = 4, y′′(1) = 2]

This is higher order nonhomogeneous Euler type ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous Euler ODE And yp is a particular solution
to the nonhomogeneous Euler ODE. yh is the solution to

x3y′′′ − 2x2y′′ + 3y′x− 3y = 0

This is Euler ODE of higher order. Let y = xλ. Hence

y′ = λxλ−1

y′′ = λ(λ− 1)xλ−2

y′′′ = λ(λ− 1) (λ− 2)xλ−3
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Substituting these back into

x3y′′′ − 2x2y′′ + 3y′x− 3y = 4x

gives
3xλxλ−1 − 2x2λ(λ− 1)xλ−2 + x3λ(λ− 1) (λ− 2)xλ−3 − 3xλ = 0

Which simplifies to

3λxλ − 2λ(λ− 1)xλ + λ(λ− 1) (λ− 2)xλ − 3xλ = 0

And since xλ 6= 0 then dividing through by xλ, the above becomes

3λ− 2λ(λ− 1) + λ(λ− 1) (λ− 2)− 3 = 0

Simplifying gives the characteristic equation as

(λ− 3) (λ− 1)2 = 0

Solving the above gives the following roots

λ1 = 3
λ2 = 1
λ3 = 1

This table summarises the result

root multiplicity type of root

1 2 real root

3 1 real root

The solution is generated by going over the above table. For each real root λ of multiplic-
ity one generates a c1x

λ basis solution. Each real root of multiplicty two, generates c1xλ

and c2x
λ ln (x) basis solutions. Each real root of multiplicty three, generates c1xλ and

c2x
λ ln (x) and c3x

λ ln (x)2 basis solutions, and so on. Each complex root α±iβ of multi-
plicity one generates xα(c1 cos(β ln (x)) + c2 sin(β ln (x))) basis solutions. And each com-
plex root α± iβ of multiplicity two generates ln (x)xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And each complex root α±iβ of multiplicity three generates ln (x)2 xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And so on. Using the above show that the solution is

y = c1x+ ln (x) c2x+ c3x
3
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The fundamental set of solutions for the homogeneous solution are the following

y1 = x

y2 = x ln (x)

y3 = x3

Now the particular solution to the given ODE is found

x3y′′′ − 2x2y′′ + 3y′x− 3y = 4x

Let the particular solution be

yp = U1y1 + U2y2 + U3y3

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3

y′′1 y′′2 y′′3

∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


x x ln (x) x3

1 ln (x) + 1 3x2

0 1
x

6x


|W | = 4x2

The determinant simplifies to

|W | = 4x2
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Now we determine Wi for each Ui.

W1(x) = det

 x ln (x) x3

ln (x) + 1 3x2


= x3(2 ln (x)− 1)

W2(x) = det

 x x3

1 3x2


= 2x3

W3(x) = det

 x x ln (x)
1 ln (x) + 1


= x

Now we are ready to evaluate each Ui(x).

U1 = (−1)3−1
∫

F (x)W1(x)
aW (x) dx

= (−1)2
∫ (4x) (x3(2 ln (x)− 1))

(x3) (4x2) dx

=
∫ 4x4(2 ln (x)− 1)

4x5 dx

=
∫ (2 ln (x)− 1

x

)
dx

= ln (x)2 − ln (x)

U2 = (−1)3−2
∫

F (x)W2(x)
aW (x) dx

= (−1)1
∫ (4x) (2x3)

(x3) (4x2) dx

= −
∫ 8x4

4x5 dx

= −
∫ (2

x

)
dx

= −2 ln (x)
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U3 = (−1)3−3
∫

F (x)W3(x)
aW (x) dx

= (−1)0
∫ (4x) (x)

(x3) (4x2) dx

=
∫ 4x2

4x5 dx

=
∫ ( 1

x3

)
dx

= − 1
2x2

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3

Hence

yp =
(
ln (x)2 − ln (x)

)
(x)

+ (−2 ln (x)) (x ln (x))

+
(
− 1
2x2

)(
x3)

Therefore the particular solution is

yp = x

(
−1
2 − ln (x)2 − ln (x)

)
Therefore the general solution is

y = yh + yp

=
(
c1x+ ln (x) c2x+ c3x

3)+ (x(−1
2 − ln (x)2 − ln (x)

))

Which simplifies to

y = x
(
c3x

2 + c2 ln (x) + c1
)
+ x

(
−1
2 − ln (x)2 − ln (x)

)
Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = x
(
c3x

2 + c2 ln (x) + c1
)
+ x

(
−1
2 − ln (x)2 − ln (x)

)
(1)
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Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 4 and x = 1
in the above gives

4 = c3 + c1 −
1
2 (1A)

Taking derivative of the solution gives

y′ = c3x
2 + c2 ln (x) + c1 + x

(
2c3x+ c2

x

)
− 1

2 − ln (x)2 − ln (x) + x

(
−2 ln (x)

x
− 1

x

)
substituting y′ = 4 and x = 1 in the above gives

4 = c1 + c2 + 3c3 −
3
2 (2A)

Taking two derivatives of the solution gives

y′′ = 4c3x+ 2c2
x

+ x
(
2c3 −

c2
x2

)
− 4 ln (x)

x
− 2

x
+ x

(
− 1
x2 + 2 ln (x)

x2

)
substituting y′′ = 2 and x = 1 in the above gives

2 = c2 + 6c3 − 3 (3A)

Equations {1A,2A,3A} are now solved for {c1, c2, c3}. Solving for the constants gives

c1 =
7
2

c2 = −1
c3 = 1

Substituting these values back in above solution results in

y = −x ln (x)2 + x3 − 2x ln (x) + 3x

Which simplifies to
y =

(
x2 − ln (x)2 − 2 ln (x) + 3

)
x

Summary
The solution(s) found are the following

(1)y =
(
x2 − ln (x)2 − 2 ln (x) + 3

)
x
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Figure 558: Solution plot

Verification of solutions

y =
(
x2 − ln (x)2 − 2 ln (x) + 3

)
x

Verified OK.

20.7.1 Maple step by step solution

Let’s solve[
x3y′′′ − 2x2y′′ + 3y′x− 3y = 4x, y(1) = 4, y′

∣∣∣{x=1}
= 4, y′′

∣∣∣{x=1}
= 2
]

• Highest derivative means the order of the ODE is 3
y′′′
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE is of Euler type
<- LODE of Euler type successful
Euler equation successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 23� �
dsolve([x^3*diff(y(x),x$3)-2*x^2*diff(y(x),x$2)+3*x*diff(y(x),x)-3*y(x)=4*x,y(1) = 4, D(y)(1) = 4, (D@@2)(y)(1) = 2],y(x), singsol=all)� �

y(x) = x
(
− ln (x)2 + x2 − 2 ln (x) + 3

)
3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 22� �
DSolve[{x^3*y'''[x]-2*x^2*y''[x]+3*x*y'[x]-3*y[x]==4*x,{y[1]==4,y'[1]==4,y''[1]==2}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x
(
x2 − log2(x)− 2 log(x) + 3

)
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20.8 problem section 9.4, problem 23
20.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7933

Internal problem ID [1579]
Internal file name [OUTPUT/1580_Sunday_June_05_2022_02_23_24_AM_875933/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.4. Variation
of Parameters for Higher Order Equations. Page 503
Problem number: section 9.4, problem 23.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_con-
stant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order , _with_linear_symmetries ]]

x3y′′′ − 5x2y′′ + 14y′x− 18y = x3

With initial conditions

[y(1) = 0, y′(1) = 1, y′′(1) = 7]

This is higher order nonhomogeneous Euler type ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous Euler ODE And yp is a particular solution
to the nonhomogeneous Euler ODE. yh is the solution to

x3y′′′ − 5x2y′′ + 14y′x− 18y = 0

This is Euler ODE of higher order. Let y = xλ. Hence

y′ = λxλ−1

y′′ = λ(λ− 1)xλ−2

y′′′ = λ(λ− 1) (λ− 2)xλ−3
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Substituting these back into

x3y′′′ − 5x2y′′ + 14y′x− 18y = x3

gives

14xλxλ−1 − 5x2λ(λ− 1)xλ−2 + x3λ(λ− 1) (λ− 2)xλ−3 − 18xλ = 0

Which simplifies to

14λxλ − 5λ(λ− 1)xλ + λ(λ− 1) (λ− 2)xλ − 18xλ = 0

And since xλ 6= 0 then dividing through by xλ, the above becomes

14λ− 5λ(λ− 1) + λ(λ− 1) (λ− 2)− 18 = 0

Simplifying gives the characteristic equation as

(λ− 2) (λ− 3)2 = 0

Solving the above gives the following roots

λ1 = 2
λ2 = 3
λ3 = 3

This table summarises the result

root multiplicity type of root

2 1 real root

3 2 real root

The solution is generated by going over the above table. For each real root λ of multiplic-
ity one generates a c1x

λ basis solution. Each real root of multiplicty two, generates c1xλ

and c2x
λ ln (x) basis solutions. Each real root of multiplicty three, generates c1xλ and

c2x
λ ln (x) and c3x

λ ln (x)2 basis solutions, and so on. Each complex root α±iβ of multi-
plicity one generates xα(c1 cos(β ln (x)) + c2 sin(β ln (x))) basis solutions. And each com-
plex root α± iβ of multiplicity two generates ln (x)xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And each complex root α±iβ of multiplicity three generates ln (x)2 xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And so on. Using the above show that the solution is

7928



y = c2x
3 + c1x

2 + c3 ln (x)x3

The fundamental set of solutions for the homogeneous solution are the following

y1 = x2

y2 = x3

y3 = x3 ln (x)

Now the particular solution to the given ODE is found

x3y′′′ − 5x2y′′ + 14y′x− 18y = x3

Let the particular solution be

yp = U1y1 + U2y2 + U3y3

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3

y′′1 y′′2 y′′3

∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


x2 x3 x3 ln (x)
2x 3x2 x2(1 + 3 ln (x))
2 6x x(6 ln (x) + 5)


|W | = x5
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The determinant simplifies to

|W | = x5

Now we determine Wi for each Ui.

W1(x) = det

 x3 x3 ln (x)
3x2 x2(1 + 3 ln (x))


= x5

W2(x) = det

 x2 x3 ln (x)
2x x2(1 + 3 ln (x))


= x4(ln (x) + 1)

W3(x) = det

 x2 x3

2x 3x2


= x4

Now we are ready to evaluate each Ui(x).

U1 = (−1)3−1
∫

F (x)W1(x)
aW (x) dx

= (−1)2
∫ (x3) (x5)

(x3) (x5) dx

=
∫

x8

x8 dx

=
∫

(1) dx

= x

U2 = (−1)3−2
∫

F (x)W2(x)
aW (x) dx

= (−1)1
∫ (x3) (x4(ln (x) + 1))

(x3) (x5) dx

= −
∫

x7(ln (x) + 1)
x8 dx

= −
∫ ( ln (x) + 1

x

)
dx

= − ln (x)2

2 − ln (x)
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U3 = (−1)3−3
∫

F (x)W3(x)
aW (x) dx

= (−1)0
∫ (x3) (x4)

(x3) (x5) dx

=
∫

x7

x8 dx

=
∫ (1

x

)
dx

= ln (x)

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3

Hence

yp = (x)
(
x2)

+
(
− ln (x)2

2 − ln (x)
)(

x3)
+ (ln (x))

(
x3 ln (x)

)
Therefore the particular solution is

yp = x3

(
1 + ln (x)2

2 − ln (x)
)

Therefore the general solution is

y = yh + yp

=
(
c2x

3 + c1x
2 + c3 ln (x)x3)+(x3

(
1 + ln (x)2

2 − ln (x)
))

Which simplifies to

y = x2(ln (x) c3x+ c2x+ c1) + x3

(
1 + ln (x)2

2 − ln (x)
)

Initial conditions are used to solve for the constants of integration.
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Looking at the above solution

y = x2(ln (x) c3x+ c2x+ c1) + x3

(
1 + ln (x)2

2 − ln (x)
)

(1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 1
in the above gives

0 = c2 + c1 + 1 (1A)

Taking derivative of the solution gives

y′ = 2x(ln (x) c3x+ c2x+ c1) + x2(c3 + ln (x) c3 + c2) + 3x2

(
1 + ln (x)2

2 − ln (x)
)

+ x3
(
ln (x)
x

− 1
x

)
substituting y′ = 1 and x = 1 in the above gives

1 = 3c2 + 2c1 + c3 + 2 (2A)

Taking two derivatives of the solution gives

y′′ = 2 ln (x) c3x+ 2c2x+ 2c1 + 4x(c3 + ln (x) c3 + c2) + c3x+ 6x
(
1 + ln (x)2

2 − ln (x)
)

+ 6x2
(
ln (x)
x

− 1
x

)
+ x3

(
2
x2 − ln (x)

x2

)
substituting y′′ = 7 and x = 1 in the above gives

7 = 6c2 + 2c1 + 5c3 + 2 (3A)

Equations {1A,2A,3A} are now solved for {c1, c2, c3}. Solving for the constants gives

c1 = 1
c2 = −2
c3 = 3

Substituting these values back in above solution results in

y = ln (x)2 x3

2 + 2x3 ln (x)− x3 + x2

Which simplifies to

y =
(
x ln (x)2 + 4x ln (x)− 2x+ 2

)
x2

2
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Summary
The solution(s) found are the following

(1)y =
(
x ln (x)2 + 4x ln (x)− 2x+ 2

)
x2

2

Figure 559: Solution plot

Verification of solutions

y =
(
x ln (x)2 + 4x ln (x)− 2x+ 2

)
x2

2

Verified OK.

20.8.1 Maple step by step solution

Let’s solve[
x3y′′′ − 5x2y′′ + 14y′x− 18y = x3, y(1) = 0, y′

∣∣∣{x=1}
= 1, y′′

∣∣∣{x=1}
= 7
]

• Highest derivative means the order of the ODE is 3
y′′′
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE is of Euler type
<- LODE of Euler type successful
Euler equation successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 25� �
dsolve([x^3*diff(y(x),x$3)-5*x^2*diff(y(x),x$2)+14*x*diff(y(x),x)-18*y(x)=x^3,y(1) = 0, D(y)(1) = 1, (D@@2)(y)(1) = 7],y(x), singsol=all)� �

y(x) =
x2(ln (x)2 x+ 4x ln (x)− 2x+ 2

)
2

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 28� �
DSolve[{x^3*y'''[x]-5*x^2*y''[x]+14*x*y'[x]-18*y[x]==x^3,{y[1]==0,y'[1]==1,y''[1]==7}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2x

2(−2x+ x log2(x) + 4x log(x) + 2
)
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20.9 problem section 9.4, problem 25
20.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7941

Internal problem ID [1580]
Internal file name [OUTPUT/1581_Sunday_June_05_2022_02_23_27_AM_91236329/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.4. Variation
of Parameters for Higher Order Equations. Page 503
Problem number: section 9.4, problem 25.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_con-
stant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order , _with_linear_symmetries ]]

x3y′′′ − 6x2y′′ + 16y′x− 16y = 9x4

With initial conditions

[y(1) = 2, y′(1) = 1, y′′(1) = 5]

This is higher order nonhomogeneous Euler type ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous Euler ODE And yp is a particular solution
to the nonhomogeneous Euler ODE. yh is the solution to

x3y′′′ − 6x2y′′ + 16y′x− 16y = 0

This is Euler ODE of higher order. Let y = xλ. Hence

y′ = λxλ−1

y′′ = λ(λ− 1)xλ−2

y′′′ = λ(λ− 1) (λ− 2)xλ−3
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Substituting these back into

x3y′′′ − 6x2y′′ + 16y′x− 16y = 9x4

gives

16xλxλ−1 − 6x2λ(λ− 1)xλ−2 + x3λ(λ− 1) (λ− 2)xλ−3 − 16xλ = 0

Which simplifies to

16λxλ − 6λ(λ− 1)xλ + λ(λ− 1) (λ− 2)xλ − 16xλ = 0

And since xλ 6= 0 then dividing through by xλ, the above becomes

16λ− 6λ(λ− 1) + λ(λ− 1) (λ− 2)− 16 = 0

Simplifying gives the characteristic equation as

(λ− 1) (λ− 4)2 = 0

Solving the above gives the following roots

λ1 = 1
λ2 = 4
λ3 = 4

This table summarises the result

root multiplicity type of root

1 1 real root

4 2 real root

The solution is generated by going over the above table. For each real root λ of multiplic-
ity one generates a c1x

λ basis solution. Each real root of multiplicty two, generates c1xλ

and c2x
λ ln (x) basis solutions. Each real root of multiplicty three, generates c1xλ and

c2x
λ ln (x) and c3x

λ ln (x)2 basis solutions, and so on. Each complex root α±iβ of multi-
plicity one generates xα(c1 cos(β ln (x)) + c2 sin(β ln (x))) basis solutions. And each com-
plex root α± iβ of multiplicity two generates ln (x)xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And each complex root α±iβ of multiplicity three generates ln (x)2 xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And so on. Using the above show that the solution is
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y = c2x
4 + c1x+ c3 ln (x)x4

The fundamental set of solutions for the homogeneous solution are the following

y1 = x

y2 = x4

y3 = ln (x)x4

Now the particular solution to the given ODE is found

x3y′′′ − 6x2y′′ + 16y′x− 16y = 9x4

Let the particular solution be

yp = U1y1 + U2y2 + U3y3

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3

y′′1 y′′2 y′′3

∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


x x4 ln (x)x4

1 4x3 x3(1 + 4 ln (x))
0 12x2 x2(7 + 12 ln (x))


|W | = 9x6
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The determinant simplifies to

|W | = 9x6

Now we determine Wi for each Ui.

W1(x) = det

 x4 ln (x)x4

4x3 x3(1 + 4 ln (x))


= x7

W2(x) = det

 x ln (x)x4

1 x3(1 + 4 ln (x))


= x4(1 + 3 ln (x))

W3(x) = det

 x x4

1 4x3


= 3x4

Now we are ready to evaluate each Ui(x).

U1 = (−1)3−1
∫

F (x)W1(x)
aW (x) dx

= (−1)2
∫ (9x4) (x7)

(x3) (9x6) dx

=
∫ 9x11

9x9 dx

=
∫ (

x2) dx
= x3

3

U2 = (−1)3−2
∫

F (x)W2(x)
aW (x) dx

= (−1)1
∫ (9x4) (x4(1 + 3 ln (x)))

(x3) (9x6) dx

= −
∫ 9x8(1 + 3 ln (x))

9x9 dx

= −
∫ (1 + 3 ln (x)

x

)
dx

= −3 ln (x)2

2 − ln (x)
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U3 = (−1)3−3
∫

F (x)W3(x)
aW (x) dx

= (−1)0
∫ (9x4) (3x4)

(x3) (9x6) dx

=
∫ 27x8

9x9 dx

=
∫ (3

x

)
dx

= 3 ln (x)

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3

Hence

yp =
(
x3

3

)
(x)

+
(
−3 ln (x)2

2 − ln (x)
)(

x4)
+ (3 ln (x))

(
ln (x)x4)

Therefore the particular solution is

yp =
x4(9 ln (x)2 − 6 ln (x) + 2

)
6

Therefore the general solution is

y = yh + yp

=
(
c2x

4 + c1x+ c3 ln (x)x4)+(x4(9 ln (x)2 − 6 ln (x) + 2
)

6

)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c2x
4 + c1x+ c3 ln (x)x4 +

x4(9 ln (x)2 − 6 ln (x) + 2
)

6 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 2 and x = 1
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in the above gives

2 = c2 + c1 +
1
3 (1A)

Taking derivative of the solution gives

y′ = 4c2x3 + c1 + c3x
3 + 4c3 ln (x)x3 +

2x3(9 ln (x)2 − 6 ln (x) + 2
)

3 +
x4
(

18 ln(x)
x

− 6
x

)
6

substituting y′ = 1 and x = 1 in the above gives

1 = 4c2 + c1 + c3 +
1
3 (2A)

Taking two derivatives of the solution gives

y′′ = 12c2x2 + 7c3x2 + 12c3 ln (x)x2 + 2x2(9 ln (x)2 − 6 ln (x) + 2
)
+

4x3
(

18 ln(x)
x

− 6
x

)
3 +

x4
(

24
x2 − 18 ln(x)

x2

)
6

substituting y′′ = 5 and x = 1 in the above gives

5 = 12c2 + 7c3 (3A)

Equations {1A,2A,3A} are now solved for {c1, c2, c3}. Solving for the constants gives

c1 = 3

c2 = −4
3

c3 = 3

Substituting these values back in above solution results in

y = 3 ln (x)2 x4

2 + 2 ln (x)x4 − x4 + 3x

Summary
The solution(s) found are the following

(1)y = 3 ln (x)2 x4

2 + 2 ln (x)x4 − x4 + 3x
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Figure 560: Solution plot

Verification of solutions

y = 3 ln (x)2 x4

2 + 2 ln (x)x4 − x4 + 3x

Verified OK.

20.9.1 Maple step by step solution

Let’s solve[
x3y′′′ − 6x2y′′ + 16y′x− 16y = 9x4, y(1) = 2, y′

∣∣∣{x=1}
= 1, y′′

∣∣∣{x=1}
= 5
]

• Highest derivative means the order of the ODE is 3
y′′′
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE is of Euler type
<- LODE of Euler type successful
Euler equation successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 29� �
dsolve([x^3*diff(y(x),x$3)-6*x^2*diff(y(x),x$2)+16*x*diff(y(x),x)-16*y(x)=9*x^4,y(1) = 2, D(y)(1) = 1, (D@@2)(y)(1) = 5],y(x), singsol=all)� �

y(x) = −x4 + 3 ln (x)2 x4

2 + 2x4 ln (x) + 3x

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 32� �
DSolve[{x^3*y'''[x]-6*x^2*y''[x]+16*x*y'[x]-16*y[x]==9*x^4,{y[1]==2,y'[1]==1,y''[1]==5}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x4 + 3
2x

4 log2(x) + 2x4 log(x) + 3x
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20.10 problem section 9.4, problem 27
20.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7949

Internal problem ID [1581]
Internal file name [OUTPUT/1582_Sunday_June_05_2022_02_23_30_AM_91497692/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.4. Variation
of Parameters for Higher Order Equations. Page 503
Problem number: section 9.4, problem 27.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_con-
stant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order , _exact , _linear , _nonhomogeneous ]]

x3y′′′ + x2y′′ − 2y′x+ 2y = x(x+ 1)

With initial conditions[
y(−1) = −6, y′(−1) = 43

6 , y′′(−1) = −5
2

]
This is higher order nonhomogeneous Euler type ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous Euler ODE And yp is a particular solution
to the nonhomogeneous Euler ODE. yh is the solution to

x3y′′′ + x2y′′ − 2y′x+ 2y = 0

This is Euler ODE of higher order. Let y = xλ. Hence

y′ = λxλ−1

y′′ = λ(λ− 1)xλ−2

y′′′ = λ(λ− 1) (λ− 2)xλ−3
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Substituting these back into

x3y′′′ + x2y′′ − 2y′x+ 2y = x(x+ 1)

gives
−2xλxλ−1 + x2λ(λ− 1)xλ−2 + x3λ(λ− 1) (λ− 2)xλ−3 + 2xλ = 0

Which simplifies to

−2λxλ + λ(λ− 1)xλ + λ(λ− 1) (λ− 2)xλ + 2xλ = 0

And since xλ 6= 0 then dividing through by xλ, the above becomes

−2λ+ λ(λ− 1) + λ(λ− 1) (λ− 2) + 2 = 0

Simplifying gives the characteristic equation as

λ3 − 2λ2 − λ+ 2 = 0

Solving the above gives the following roots

λ1 = 1
λ2 = 2
λ3 = −1

This table summarises the result

root multiplicity type of root

−1 1 real root

1 1 real root

2 1 real root

The solution is generated by going over the above table. For each real root λ of multiplic-
ity one generates a c1x

λ basis solution. Each real root of multiplicty two, generates c1xλ

and c2x
λ ln (x) basis solutions. Each real root of multiplicty three, generates c1xλ and

c2x
λ ln (x) and c3x

λ ln (x)2 basis solutions, and so on. Each complex root α±iβ of multi-
plicity one generates xα(c1 cos(β ln (x)) + c2 sin(β ln (x))) basis solutions. And each com-
plex root α± iβ of multiplicity two generates ln (x)xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And each complex root α±iβ of multiplicity three generates ln (x)2 xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And so on. Using the above show that the solution is
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y = c1
x

+ c2x+ c3x
2

The fundamental set of solutions for the homogeneous solution are the following

y1 =
1
x

y2 = x

y3 = x2

Now the particular solution to the given ODE is found

x3y′′′ + x2y′′ − 2y′x+ 2y = x(x+ 1)

Let the particular solution be

yp = U1y1 + U2y2 + U3y3

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3

y′′1 y′′2 y′′3

∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


1
x

x x2

− 1
x2 1 2x
2
x3 0 2


|W | = 6

x
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The determinant simplifies to

|W | = 6
x

Now we determine Wi for each Ui.

W1(x) = det

 x x2

1 2x


= x2

W2(x) = det

 1
x

x2

− 1
x2 2x


= 3

W3(x) = det

 1
x

x

− 1
x2 1


= 2

x

Now we are ready to evaluate each Ui(x).

U1 = (−1)3−1
∫

F (x)W1(x)
aW (x) dx

= (−1)2
∫ (x(x+ 1)) (x2)

(x3)
( 6
x

) dx

=
∫

x3(x+ 1)
6x2 dx

=
∫ (

x(x+ 1)
6

)
dx

= 1
18x

3 + 1
12x

2
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U2 = (−1)3−2
∫

F (x)W2(x)
aW (x) dx

= (−1)1
∫ (x(x+ 1)) (3)

(x3)
( 6
x

) dx

= −
∫ 3x(x+ 1)

6x2 dx

= −
∫ (

x+ 1
2x

)
dx

= −x

2 − ln (x)
2

U3 = (−1)3−3
∫

F (x)W3(x)
aW (x) dx

= (−1)0
∫ (x(x+ 1))

( 2
x

)
(x3)

( 6
x

) dx

=
∫ 2 + 2x

6x2 dx

=
∫ (

x+ 1
3x2

)
dx

= ln (x)
3 − 1

3x
Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3

Hence

yp =
(

1
18x

3 + 1
12x

2
)(

1
x

)
+
(
−x

2 − ln (x)
2

)
(x)

+
(
ln (x)
3 − 1

3x

)(
x2)

Therefore the particular solution is

yp =
x(12x ln (x)− 18 ln (x)− 16x− 9)

36
Therefore the general solution is

y = yh + yp

=
(c1
x
+ c2x+ c3x

2
)
+
(
x(12x ln (x)− 18 ln (x)− 16x− 9)

36

)
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Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1
x

+ c2x+ c3x
2 + x(12x ln (x)− 18 ln (x)− 16x− 9)

36 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −6 and
x = −1 in the above gives

−6 = 5iπ
6 − c1 − c2 + c3 −

7
36 (1A)

Taking derivative of the solution gives

y′ = − c1
x2 + c2 + 2c3x+ x ln (x)

3 − ln (x)
2 − 4x

9 − 1
4 +

x
(
12 ln (x)− 4− 18

x

)
36

substituting y′ = 43
6 and x = −1 in the above gives

43
6 = −7iπ

6 − c1 + c2 − 2c3 −
7
36 (2A)

Taking two derivatives of the solution gives

y′′ = 2c1
x3 + 2c3 +

2 ln (x)
3 − 2

9 − 1
x
+

x
(12

x
+ 18

x2

)
36

substituting y′′ = −5
2 and x = −1 in the above gives

−5
2 = 2iπ

3 − 2c1 + 2c3 +
11
18 (3A)

Equations {1A,2A,3A} are now solved for {c1, c2, c3}. Solving for the constants gives

c1 = 0

c2 =
iπ

2 + 17
4

c3 = −iπ

3 − 14
9

Substituting these values back in above solution results in

y = −ix2π

3 + ln (x)x2

3 + ixπ

2 − x ln (x)
2 − 2x2 + 4x

Summary
The solution(s) found are the following

(1)y = (−2ixπ + 2x ln (x) + 3iπ − 3 ln (x)− 12x+ 24)x
6
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Verification of solutions

y = (−2ixπ + 2x ln (x) + 3iπ − 3 ln (x)− 12x+ 24)x
6

Verified OK.

20.10.1 Maple step by step solution

Let’s solve[
x3y′′′ + x2y′′ − 2y′x+ 2y = x(x+ 1) , y(−1) = −6, y′

∣∣∣{x=−1}
= 43

6 , y
′′∣∣∣{x=−1}

= −5
2

]
• Highest derivative means the order of the ODE is 3

y′′′

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = (c__1-2*_a*_b(_a)+2*(diff(_b(_a), _a))*_a^2+(1/3)*_a^3+(1/2)*_a^2)/_a

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful

<- high order exact_linear_nonhomogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 30� �
dsolve([x^3*diff(y(x),x$3)+x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=x*(x+1),y(-1) = -6, D(y)(-1) = 43/6, (D@@2)(y)(-1) = -5/2],y(x), singsol=all)� �

y(x) = x(−2iπx+ 2x ln (x) + 3iπ − 3 ln (x)− 12x+ 24)
6
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3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 34� �
DSolve[{x^3*y'''[x]+x^2*y''[x]-2*x*y'[x]+2*y[x]==x*(x+1),{y[-1]==-6,y'[-1]==43/6,y''[-1]==-5/2}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
6x(−2iπx− 12x+ (2x− 3) log(x) + 3iπ + 24)

7950



20.11 problem section 9.4, problem 30
20.11.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7958

Internal problem ID [1582]
Internal file name [OUTPUT/1583_Sunday_June_05_2022_02_23_33_AM_87938238/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.4. Variation
of Parameters for Higher Order Equations. Page 503
Problem number: section 9.4, problem 30.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_con-
stant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[ _high_order , _exact , _linear , _nonhomogeneous ]]

x4y′′′′ + 3x3y′′′ − x2y′′ + 2y′x− 2y = 9x2

With initial conditions

[y(1) = −7, y′(1) = −11, y′′(1) = −5, y′′′(1) = 6]

This is higher order nonhomogeneous Euler type ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous Euler ODE And yp is a particular solution
to the nonhomogeneous Euler ODE. yh is the solution to

x4y′′′′ + 3x3y′′′ − x2y′′ + 2y′x− 2y = 0

This is Euler ODE of higher order. Let y = xλ. Hence

y′ = λxλ−1

y′′ = λ(λ− 1)xλ−2

y′′′ = λ(λ− 1) (λ− 2)xλ−3

y′′′′ = λ(λ− 1) (λ− 2) (λ− 3)xλ−4
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Substituting these back into

x4y′′′′ + 3x3y′′′ − x2y′′ + 2y′x− 2y = 9x2

gives
2xλxλ−1 − x2λ(λ− 1)xλ−2 + 3x3λ(λ− 1) (λ− 2)xλ−3

+ x4λ(λ− 1) (λ− 2) (λ− 3)xλ−4 − 2xλ = 0

Which simplifies to

2λxλ − λ(λ− 1)xλ + 3λ(λ− 1) (λ− 2)xλ + λ(λ− 1) (λ− 2) (λ− 3)xλ − 2xλ = 0

And since xλ 6= 0 then dividing through by xλ, the above becomes

2λ− λ(λ− 1) + 3λ(λ− 1) (λ− 2) + λ(λ− 1) (λ− 2) (λ− 3)− 2 = 0

Simplifying gives the characteristic equation as

(λ+ 1) (λ− 2) (λ− 1)2 = 0

Solving the above gives the following roots

λ1 = −1
λ2 = 2
λ3 = 1
λ4 = 1

This table summarises the result

root multiplicity type of root

−1 1 real root

1 2 real root

2 1 real root

The solution is generated by going over the above table. For each real root λ of multiplic-
ity one generates a c1x

λ basis solution. Each real root of multiplicty two, generates c1xλ

and c2x
λ ln (x) basis solutions. Each real root of multiplicty three, generates c1xλ and

c2x
λ ln (x) and c3x

λ ln (x)2 basis solutions, and so on. Each complex root α±iβ of multi-
plicity one generates xα(c1 cos(β ln (x)) + c2 sin(β ln (x))) basis solutions. And each com-
plex root α± iβ of multiplicity two generates ln (x)xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
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basis solutions. And each complex root α±iβ of multiplicity three generates ln (x)2 xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And so on. Using the above show that the solution is

y = c1
x

+ c2x+ ln (x) c3x+ c4x
2

The fundamental set of solutions for the homogeneous solution are the following

y1 =
1
x

y2 = x

y3 = x ln (x)

y4 = x2

Now the particular solution to the given ODE is found

x4y′′′′ + 3x3y′′′ − x2y′′ + 2y′x− 2y = 9x2

Let the particular solution be

yp = U1y1 + U2y2 + U3y3 + U4y4

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣
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Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


1
x

x x ln (x) x2

− 1
x2 1 ln (x) + 1 2x
2
x3 0 1

x
2

− 6
x4 0 − 1

x2 0


|W | = 12

x3

The determinant simplifies to

|W | = 12
x3

Now we determine Wi for each Ui.

W1(x) = det


x x ln (x) x2

1 ln (x) + 1 2x
0 1

x
2


= x

W2(x) = det


1
x

x ln (x) x2

− 1
x2 ln (x) + 1 2x
2
x3

1
x

2


= 6 ln (x)− 3

x

W3(x) = det


1
x

x x2

− 1
x2 1 2x
2
x3 0 2


= 6

x

W4(x) = det


1
x

x x ln (x)

− 1
x2 1 ln (x) + 1
2
x3 0 1

x


= 4

x2
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Now we are ready to evaluate each Ui(x).

U1 = (−1)4−1
∫

F (x)W1(x)
aW (x) dx

= (−1)3
∫ (9x2) (x)

(x4)
( 12
x3

) dx
= −

∫ 9x3

12x dx

= −
∫ (3x2

4

)
dx

= −x3

4

U2 = (−1)4−2
∫

F (x)W2(x)
aW (x) dx

= (−1)2
∫ (9x2)

(
6 ln(x)−3

x

)
(x4)

( 12
x3

) dx

=
∫ 9x(6 ln (x)− 3)

12x dx

=
∫ (9 ln (x)

2 − 9
4

)
dx

= −27x
4 + 9x ln (x)

2

U3 = (−1)4−3
∫

F (x)W3(x)
aW (x) dx

= (−1)1
∫ (9x2)

( 6
x

)
(x4)

( 12
x3

) dx
= −

∫ 54x
12x dx

= −
∫ (9

2

)
dx

= −9x
2

7955



U4 = (−1)4−4
∫

F (x)W4(x)
aW (x) dx

= (−1)0
∫ (9x2)

( 4
x2

)
(x4)

( 12
x3

) dx

=
∫ 36

12x dx

=
∫ (3

x

)
dx

= 3 ln (x)

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3 + U4y4

Hence

yp =
(
−x3

4

)(
1
x

)
+
(
−27x

4 + 9x ln (x)
2

)
(x)

+
(
−9x

2

)
(x ln (x))

+ (3 ln (x))
(
x2)

Therefore the particular solution is

yp = x2(−7 + 3 ln (x))

Therefore the general solution is

y = yh + yp

=
(c1
x
+ c2x+ ln (x) c3x+ c4x

2
)
+
(
x2(−7 + 3 ln (x))

)
Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1
x

+ c2x+ ln (x) c3x+ c4x
2 + x2(−7 + 3 ln (x)) (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −7 and x = 1
in the above gives

−7 = c1 + c2 + c4 − 7 (1A)
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Taking derivative of the solution gives

y′ = − c1
x2 + c2 + c3 + ln (x) c3 + 2c4x+ 2x(−7 + 3 ln (x)) + 3x

substituting y′ = −11 and x = 1 in the above gives

−11 = −c1 + c2 + c3 + 2c4 − 11 (2A)

Taking two derivatives of the solution gives

y′′ = 2c1
x3 + c3

x
+ 2c4 − 5 + 6 ln (x)

substituting y′′ = −5 and x = 1 in the above gives

−5 = 2c1 + c3 + 2c4 − 5 (3A)

Taking three derivatives of the solution gives

y′′′ = −6c1
x4 − c3

x2 + 6
x

substituting y′′′ = 6 and x = 1 in the above gives

6 = −6c1 − c3 + 6 (4A)

Equations {1A,2A,3A,4A} are now solved for {c1, c2, c3, c4}. Solving for the constants
gives

c1 = 0
c2 = 0
c3 = 0
c4 = 0

Substituting these values back in above solution results in

y = 3 ln (x)x2 − 7x2

Which simplifies to
y = x2(−7 + 3 ln (x))

Summary
The solution(s) found are the following

(1)y = x2(−7 + 3 ln (x))
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Figure 561: Solution plot

Verification of solutions

y = x2(−7 + 3 ln (x))

Verified OK.

20.11.1 Maple step by step solution

Let’s solve[
x4y′′′′ + 3x3y′′′ − x2y′′ + 2y′x− 2y = 9x2, y(1) = −7, y′

∣∣∣{x=1}
= −11, y′′

∣∣∣{x=1}
= −5, y′′′

∣∣∣{x=1}
= 6
]

• Highest derivative means the order of the ODE is 4
y′′′′
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
-> Calling odsolve with the ODE`, diff(diff(diff(_b(_a), _a), _a), _a) = (c__1+2*_a*_b(_a)-2*(diff(_b(_a), _a))*_a^2+(diff(diff(_b(_

Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful

<- high order exact_linear_nonhomogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 14� �
dsolve([x^4*diff(y(x),x$4)+3*x^3*diff(y(x),x$3)-x^2*diff(y(x),x$2)+2*x*diff(y(x),x)-2*y(x)=9*x^2,y(1) = -7, D(y)(1) = -11, (D@@2)(y)(1) = -5, (D@@3)(y)(1) = 6],y(x), singsol=all)� �

y(x) = x2(−7 + 3 ln (x))

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 15� �
DSolve[{x^4*y''''[x]+3*x^3*y'''[x]-x^2*y''[x]+2*x*y'[x]-2*y[x]==9*x^2,{y[1]==-7,y'[1]==-11,y''[1]==-5,y'''[1]==6}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2(3 log(x)− 7)
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20.12 problem section 9.4, problem 32
20.12.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7968

Internal problem ID [1583]
Internal file name [OUTPUT/1584_Sunday_June_05_2022_02_23_36_AM_54639454/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.4. Variation
of Parameters for Higher Order Equations. Page 503
Problem number: section 9.4, problem 32.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_con-
stant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[ _high_order , _exact , _linear , _nonhomogeneous ]]

4x4y′′′′ + 24x3y′′′ + 23x2y′′ − y′x+ y = 6x

With initial conditions[
y(1) = 2, y′(1) = 0, y′′(1) = 4, y′′′(1) = −37

4

]
This is higher order nonhomogeneous Euler type ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous Euler ODE And yp is a particular solution
to the nonhomogeneous Euler ODE. yh is the solution to

4x4y′′′′ + 24x3y′′′ + 23x2y′′ − y′x+ y = 0

This is Euler ODE of higher order. Let y = xλ. Hence

y′ = λxλ−1

y′′ = λ(λ− 1)xλ−2

y′′′ = λ(λ− 1) (λ− 2)xλ−3

y′′′′ = λ(λ− 1) (λ− 2) (λ− 3)xλ−4
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Substituting these back into

4x4y′′′′ + 24x3y′′′ + 23x2y′′ − y′x+ y = 6x

gives
−xλxλ−1 + 23x2λ(λ− 1)xλ−2 + 24x3λ(λ− 1) (λ− 2)xλ−3

+ 4x4λ(λ− 1) (λ− 2) (λ− 3)xλ−4 + xλ = 0

Which simplifies to

−λxλ + 23λ(λ− 1)xλ + 24λ(λ− 1) (λ− 2)xλ + 4λ(λ− 1) (λ− 2) (λ− 3)xλ + xλ = 0

And since xλ 6= 0 then dividing through by xλ, the above becomes

−λ+ 23λ(λ− 1) + 24λ(λ− 1) (λ− 2) + 4λ(λ− 1) (λ− 2) (λ− 3) + 1 = 0

Simplifying gives the characteristic equation as

4λ4 − 5λ2 + 1 = 0

Solving the above gives the following roots

λ1 = 1
λ2 = −1

λ3 = −1
2

λ4 =
1
2

This table summarises the result

root multiplicity type of root

−1 1 real root

1 1 real root

−1
2 1 real root

1
2 1 real root

The solution is generated by going over the above table. For each real root λ of multiplic-
ity one generates a c1x

λ basis solution. Each real root of multiplicty two, generates c1xλ

and c2x
λ ln (x) basis solutions. Each real root of multiplicty three, generates c1xλ and
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c2x
λ ln (x) and c3x

λ ln (x)2 basis solutions, and so on. Each complex root α±iβ of multi-
plicity one generates xα(c1 cos(β ln (x)) + c2 sin(β ln (x))) basis solutions. And each com-
plex root α± iβ of multiplicity two generates ln (x)xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And each complex root α±iβ of multiplicity three generates ln (x)2 xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And so on. Using the above show that the solution is

y = c1
x

+ c2x+ c3√
x
+ c4

√
x

The fundamental set of solutions for the homogeneous solution are the following

y1 =
1
x

y2 = x

y3 =
1√
x

y4 =
√
x

Now the particular solution to the given ODE is found

4x4y′′′′ + 24x3y′′′ + 23x2y′′ − y′x+ y = 6x

Let the particular solution be

yp = U1y1 + U2y2 + U3y3 + U4y4

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣
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Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =



1
x

x 1√
x

√
x

− 1
x2 1 − 1

2x
3
2

1
2
√
x

2
x3 0 3

4x
5
2

− 1
4x

3
2

− 6
x4 0 − 15

8x
7
2

3
8x

5
2


|W | = 9

8x6

The determinant simplifies to

|W | = 9
8x6

Now we determine Wi for each Ui.

W1(x) = det


x 1√

x

√
x

1 − 1
2x

3
2

1
2
√
x

0 3
4x

5
2

− 1
4x

3
2


= 3

4x2

W2(x) = det


1
x

1√
x

√
x

− 1
x2 − 1

2x
3
2

1
2
√
x

2
x3

3
4x

5
2

− 1
4x

3
2


= 3

4x4

W3(x) = det


1
x

x
√
x

− 1
x2 1 1

2
√
x

2
x3 0 − 1

4x
3
2


= − 3

2x 5
2
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W4(x) = det


1
x

x 1√
x

− 1
x2 1 − 1

2x
3
2

2
x3 0 3

4x
5
2


= − 3

2x 7
2

Now we are ready to evaluate each Ui(x).

U1 = (−1)4−1
∫

F (x)W1(x)
aW (x) dx

= (−1)3
∫ (6x)

( 3
4x2

)
(4x4)

( 9
8x6

) dx
= −

∫ 9
2x
9

2x2

dx

= −
∫

(x) dx

= −x2

2

U2 = (−1)4−2
∫

F (x)W2(x)
aW (x) dx

= (−1)2
∫ (6x)

( 3
4x4

)
(4x4)

( 9
8x6

) dx
=
∫ 9

2x3

9
2x2

dx

=
∫ (1

x

)
dx

= ln (x)
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U3 = (−1)4−3
∫

F (x)W3(x)
aW (x) dx

= (−1)1
∫ (6x)

(
− 3

2x
5
2

)
(4x4)

( 9
8x6

) dx

= −
∫ − 9

x
3
2

9
2x2

dx

= −
∫ (

−2
√
x
)
dx

= 4x 3
2

3

U4 = (−1)4−4
∫

F (x)W4(x)
aW (x) dx

= (−1)0
∫ (6x)

(
− 3

2x
7
2

)
(4x4)

( 9
8x6

) dx

=
∫ − 9

x
5
2

9
2x2

dx

=
∫ (

− 2√
x

)
dx

= −4
√
x

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3 + U4y4

Hence

yp =
(
−x2

2

)(
1
x

)
+ (ln (x)) (x)

+
(
4x 3

2

3

)(
1√
x

)
+
(
−4

√
x
) (√

x
)

Therefore the particular solution is

yp = x

(
−19

6 + ln (x)
)
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Therefore the general solution is

y = yh + yp

=
(
c1
x
+ c2x+ c3√

x
+ c4

√
x

)
+
(
x

(
−19

6 + ln (x)
))

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1
x

+ c2x+ c3√
x
+ c4

√
x+ x

(
−19

6 + ln (x)
)

(1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 2 and x = 1
in the above gives

2 = c1 + c2 −
19
6 + c3 + c4 (1A)

Taking derivative of the solution gives

y′ = − c1
x2 + c2 −

c3

2x 3
2
+ c4

2
√
x
− 13

6 + ln (x)

substituting y′ = 0 and x = 1 in the above gives

0 = −c1 + c2 −
13
6 − c3

2 + c4
2 (2A)

Taking two derivatives of the solution gives

y′′ = 2c1
x3 + 3c3

4x 5
2
− c4

4x 3
2
+ 1

x

substituting y′′ = 4 and x = 1 in the above gives

4 = 2c1 + 1 + 3c3
4 − c4

4 (3A)

Taking three derivatives of the solution gives

y′′′ = −6c1
x4 − 15c3

8x 7
2
+ 3c4

8x 5
2
− 1

x2

substituting y′′′ = −37
4 and x = 1 in the above gives

−37
4 = −6c1 − 1− 15c3

8 + 3c4
8 (4A)
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Equations {1A,2A,3A,4A} are now solved for {c1, c2, c3, c4}. Solving for the constants
gives

c1 = 1

c2 =
25
6

c3 = 1
c4 = −1

Substituting these values back in above solution results in

y = x
5
2 ln (x)− x2 + x

5
2 +

√
x+ x

x
3
2

Summary
The solution(s) found are the following

(1)y = x
5
2 ln (x)− x2 + x

5
2 +

√
x+ x

x
3
2

Figure 562: Solution plot

Verification of solutions

y = x
5
2 ln (x)− x2 + x

5
2 +

√
x+ x

x
3
2

Verified OK.
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20.12.1 Maple step by step solution

Let’s solve[
4x4y′′′′ + 24x3y′′′ + 23x2y′′ − y′x+ y = 6x, y(1) = 2, y′

∣∣∣{x=1}
= 0, y′′

∣∣∣{x=1}
= 4, y′′′

∣∣∣{x=1}
= −37

4

]
• Highest derivative means the order of the ODE is 4

y′′′′

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
-> Calling odsolve with the ODE`, diff(diff(diff(_b(_a), _a), _a), _a) = (1/4)*(c__1-_a*_b(_a)+(diff(_b(_a), _a))*_a^2-8*(diff(diff(

Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE is of Euler type
<- LODE of Euler type successful
Euler equation successful

<- high order exact_linear_nonhomogeneous successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 27� �
dsolve([4*x^4*diff(y(x),x$4)+24*x^3*diff(y(x),x$3)+23*x^2*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=6*x,y(1) = 2, D(y)(1) = 0, (D@@2)(y)(1) = 4, (D@@3)(y)(1) = -37/4],y(x), singsol=all)� �

y(x) = ln (x)x 5
2 − x2 + x

5
2 +

√
x+ x

x
3
2
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3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 26� �
DSolve[{4*x^4*y''''[x]+24*x^3*y'''[x]+23*x^2*y''[x]-x*y'[x]+y[x]==6*x,{y[1]==2,y'[1]==0,y''[1]==4,y'''[1]==-37/4}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x−
√
x+ 1√

x
+ 1

x
+ x log(x)
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20.13 problem section 9.4, problem 33
20.13.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7977

Internal problem ID [1584]
Internal file name [OUTPUT/1585_Sunday_June_05_2022_02_23_39_AM_65608186/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.4. Variation
of Parameters for Higher Order Equations. Page 503
Problem number: section 9.4, problem 33.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_con-
stant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[ _high_order , _exact , _linear , _nonhomogeneous ]]

x4y′′′′ + 5x3y′′′ − 3x2y′′ − 6y′x+ 6y = 40x3

With initial conditions

[y(−1) = −1, y′(−1) = −7, y′′(−1) = −1, y′′′(−1) = −31]

This is higher order nonhomogeneous Euler type ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous Euler ODE And yp is a particular solution
to the nonhomogeneous Euler ODE. yh is the solution to

x4y′′′′ + 5x3y′′′ − 3x2y′′ − 6y′x+ 6y = 0

This is Euler ODE of higher order. Let y = xλ. Hence

y′ = λxλ−1

y′′ = λ(λ− 1)xλ−2

y′′′ = λ(λ− 1) (λ− 2)xλ−3

y′′′′ = λ(λ− 1) (λ− 2) (λ− 3)xλ−4
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Substituting these back into

x4y′′′′ + 5x3y′′′ − 3x2y′′ − 6y′x+ 6y = 40x3

gives
−6xλxλ−1 − 3x2λ(λ− 1)xλ−2 + 5x3λ(λ− 1) (λ− 2)xλ−3

+ x4λ(λ− 1) (λ− 2) (λ− 3)xλ−4 + 6xλ = 0

Which simplifies to

−6λxλ − 3λ(λ− 1)xλ + 5λ(λ− 1) (λ− 2)xλ + λ(λ− 1) (λ− 2) (λ− 3)xλ + 6xλ = 0

And since xλ 6= 0 then dividing through by xλ, the above becomes

−6λ− 3λ(λ− 1) + 5λ(λ− 1) (λ− 2) + λ(λ− 1) (λ− 2) (λ− 3) + 6 = 0

Simplifying gives the characteristic equation as

λ4 − λ3 − 7λ2 + λ+ 6 = 0

Solving the above gives the following roots

λ1 = 1
λ2 = 3
λ3 = −2
λ4 = −1

This table summarises the result

root multiplicity type of root

−1 1 real root

−2 1 real root

1 1 real root

3 1 real root

The solution is generated by going over the above table. For each real root λ of multiplic-
ity one generates a c1x

λ basis solution. Each real root of multiplicty two, generates c1xλ

and c2x
λ ln (x) basis solutions. Each real root of multiplicty three, generates c1xλ and

c2x
λ ln (x) and c3x

λ ln (x)2 basis solutions, and so on. Each complex root α±iβ of multi-
plicity one generates xα(c1 cos(β ln (x)) + c2 sin(β ln (x))) basis solutions. And each com-
plex root α± iβ of multiplicity two generates ln (x)xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
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basis solutions. And each complex root α±iβ of multiplicity three generates ln (x)2 xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And so on. Using the above show that the solution is

y = c1
x

+ c2
x2 + c3x+ c4x

3

The fundamental set of solutions for the homogeneous solution are the following

y1 =
1
x

y2 =
1
x2

y3 = x

y4 = x3

Now the particular solution to the given ODE is found

x4y′′′′ + 5x3y′′′ − 3x2y′′ − 6y′x+ 6y = 40x3

Let the particular solution be

yp = U1y1 + U2y2 + U3y3 + U4y4

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣
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Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


1
x

1
x2 x x3

− 1
x2 − 2

x3 1 3x2

2
x3

6
x4 0 6x

− 6
x4 − 24

x5 0 6


|W | = −240

x5

The determinant simplifies to

|W | = −240
x5

Now we determine Wi for each Ui.

W1(x) = det


1
x2 x x3

− 2
x3 1 3x2

6
x4 0 6x


= 30

x

W2(x) = det


1
x

x x3

− 1
x2 1 3x2

2
x3 0 6x


= 16

W3(x) = det


1
x

1
x2 x3

− 1
x2 − 2

x3 3x2

2
x3

6
x4 6x


= −20

x3

W4(x) = det


1
x

1
x2 x

− 1
x2 − 2

x3 1
2
x3

6
x4 0


= − 6

x5
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Now we are ready to evaluate each Ui(x).

U1 = (−1)4−1
∫

F (x)W1(x)
aW (x) dx

= (−1)3
∫ (40x3)

(30
x

)
(x4)

(
−240

x5

) dx
= −

∫ 1200x2

−240
x

dx

= −
∫ (

−5x3) dx
= 5x4

4

U2 = (−1)4−2
∫

F (x)W2(x)
aW (x) dx

= (−1)2
∫ (40x3) (16)

(x4)
(
−240

x5

) dx
=
∫ 640x3

−240
x

dx

=
∫ (

−8x4

3

)
dx

= −8x5

15

U3 = (−1)4−3
∫

F (x)W3(x)
aW (x) dx

= (−1)1
∫ (40x3)

(
− 20

x3

)
(x4)

(
−240

x5

) dx

= −
∫

−800
−240

x

dx

= −
∫ (10x

3

)
dx

= −5x2

3
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U4 = (−1)4−4
∫

F (x)W4(x)
aW (x) dx

= (−1)0
∫ (40x3)

(
− 6

x5

)
(x4)

(
−240

x5

) dx

=
∫ −240

x2

−240
x

dx

=
∫ (1

x

)
dx

= ln (x)

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3 + U4y4

Hence

yp =
(
5x4

4

)(
1
x

)
+
(
−8x5

15

)(
1
x2

)
+
(
−5x2

3

)
(x)

+ (ln (x))
(
x3)

Therefore the particular solution is

yp = x3
(
−19
20 + ln (x)

)
Therefore the general solution is

y = yh + yp

=
(c1
x
+ c2

x2 + c3x+ c4x
3
)
+
(
x3
(
−19
20 + ln (x)

))

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1
x

+ c2
x2 + c3x+ c4x

3 + x3
(
−19
20 + ln (x)

)
(1)
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Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −1 and
x = −1 in the above gives

−1 = 19
20 − c1 + c2 − c3 − c4 − iπ (1A)

Taking derivative of the solution gives

y′ = − c1
x2 − 2c2

x3 + c3 + 3c4x2 + 3x2
(
−19
20 + ln (x)

)
+ x2

substituting y′ = −7 and x = −1 in the above gives

−7 = −37
20 − c1 + 2c2 + c3 + 3c4 + 3iπ (2A)

Taking two derivatives of the solution gives

y′′ = 2c1
x3 + 6c2

x4 + 6c4x+ 6x
(
−19
20 + ln (x)

)
+ 5x

substituting y′′ = −1 and x = −1 in the above gives

−1 = −6iπ − 2c1 + 6c2 − 6c4 +
7
10 (3A)

Taking three derivatives of the solution gives

y′′′ = −6c1
x4 − 24c2

x5 + 6c4 +
53
10 + 6 ln (x)

substituting y′′′ = −31 and x = −1 in the above gives

−31 = 6iπ − 6c1 + 24c2 + 6c4 +
53
10 (4A)

Equations {1A,2A,3A,4A} are now solved for {c1, c2, c3, c4}. Solving for the constants
gives

c1 = 1
c2 = −1
c3 = 1

c4 = −iπ − 21
20

Substituting these values back in above solution results in

y = x5 ln (x)− ix5π − 2x5 + x3 + x− 1
x2
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Summary
The solution(s) found are the following

(1)y = x5 ln (x)− 1 + (−iπ − 2)x5 + x3 + x

x2

Verification of solutions

y = x5 ln (x)− 1 + (−iπ − 2)x5 + x3 + x

x2

Verified OK.

20.13.1 Maple step by step solution

Let’s solve[
x4y′′′′ + 5x3y′′′ − 3x2y′′ − 6y′x+ 6y = 40x3, y(−1) = −1, y′

∣∣∣{x=−1}
= −7, y′′

∣∣∣{x=−1}
= −1, y′′′

∣∣∣{x=−1}
= −31

]
• Highest derivative means the order of the ODE is 4

y′′′′

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
-> Calling odsolve with the ODE`, diff(diff(diff(_b(_a), _a), _a), _a) = (c__1-6*_a*_b(_a)+6*(diff(_b(_a), _a))*_a^2-(diff(diff(_b(_

Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE is of Euler type
<- LODE of Euler type successful
Euler equation successful

<- high order exact_linear_nonhomogeneous successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 30� �
dsolve([x^4*diff(y(x),x$4)+5*x^3*diff(y(x),x$3)-3*x^2*diff(y(x),x$2)-6*x*diff(y(x),x)+6*y(x)=40*x^3,y(-1) = -1, D(y)(-1) = -7, (D@@2)(y)(-1) = -1, (D@@3)(y)(-1) = -31],y(x), singsol=all)� �

y(x) = x5 ln (x)− 1 + (−iπ − 2)x5 + x3 + x

x2

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 32� �
DSolve[{x^4*y''''[x]+5*x^3*y'''[x]-3*x^2*y''[x]-6*x*y'[x]+6*y[x]==40*x^3,{y[-1]==-1,y'[-1]==-7,y''[-1]==-1,y'''[-1]==-31}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (−2− iπ)x5 + x5 log(x) + x3 + x− 1
x2
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20.14 problem section 9.4, problem 35
Internal problem ID [1585]
Internal file name [OUTPUT/1586_Sunday_June_05_2022_02_23_42_AM_43286464/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.4. Variation
of Parameters for Higher Order Equations. Page 503
Problem number: section 9.4, problem 35.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ + 2y′′ − y′ − 2y = F (x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ + 2y′′ − y′ − 2y = 0

The characteristic equation is

λ3 + 2λ2 − λ− 2 = 0

The roots of the above equation are

λ1 = 1
λ2 = −2
λ3 = −1
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Therefore the homogeneous solution is

yh(x) = c1e−x + c2e−2x + c3ex

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = e−2x

y3 = ex

Now the particular solution to the given ODE is found

y′′′ + 2y′′ − y′ − 2y = F (x)

Let the particular solution be

yp = U1y1 + U2y2 + U3y3

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3

y′′1 y′′2 y′′3

∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


e−x e−2x ex

−e−x −2 e−2x ex

e−x 4 e−2x ex


|W | = −6 e−xe−2xex
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The determinant simplifies to

|W | = −6 e−2x

Now we determine Wi for each Ui.

W1(x) = det

 e−2x ex

−2 e−2x ex


= 3 e−x

W2(x) = det

 e−x ex

−e−x ex


= 2

W3(x) = det

 e−x e−2x

−e−x −2 e−2x


= −e−3x

Now we are ready to evaluate each Ui(x).

U1 = (−1)3−1
∫

F (x)W1(x)
aW (x) dx

= (−1)2
∫ (F (x)) (3 e−x)

(1) (−6 e−2x) dx

=
∫ 3F (x) e−x

−6 e−2x dx

=
∫ (

−F (x) ex
2

)
dx

=
∫

−F (x) ex
2 dx
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U2 = (−1)3−2
∫

F (x)W2(x)
aW (x) dx

= (−1)1
∫ (F (x)) (2)

(1) (−6 e−2x) dx

= −
∫ 2F (x)

−6 e−2x dx

= −
∫ (

−F (x) e2x
3

)
dx

= −
(∫

−F (x) e2x
3 dx

)

U3 = (−1)3−3
∫

F (x)W3(x)
aW (x) dx

= (−1)0
∫ (F (x)) (−e−3x)

(1) (−6 e−2x) dx

=
∫

−F (x) e−3x

−6 e−2x dx

=
∫ (

F (x) e−x

6

)
dx

=
∫

F (x) e−x

6 dx

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3

Hence

yp =
(∫

−F (x) ex
2 dx

)(
e−x
)

+
(
−
(∫

−F (x) e2x
3 dx

))(
e−2x)

+
(∫

F (x) e−x

6 dx

)
(ex)

Therefore the particular solution is

yp =
((∫

F (x) e−xdx
)
e3x − 3

(∫
F (x) exdx

)
ex + 2

(∫
F (x) e2xdx

))
e−2x

6
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Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2e−2x + c3ex

)
+
(((∫

F (x) e−xdx
)
e3x − 3

(∫
F (x) exdx

)
ex + 2

(∫
F (x) e2xdx

))
e−2x

6

)

Summary
The solution(s) found are the following

(1)
y = c1e−x + c2e−2x + c3ex

+
((∫

F (x) e−xdx
)
e3x − 3

(∫
F (x) exdx

)
ex + 2

(∫
F (x) e2xdx

))
e−2x

6
Verification of solutions

y = c1e−x + c2e−2x + c3ex

+
((∫

F (x) e−xdx
)
e3x − 3

(∫
F (x) exdx

)
ex + 2

(∫
F (x) e2xdx

))
e−2x

6

Verified OK.

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 62� �
dsolve(diff(y(x),x$3)+2*diff(y(x),x$2)-diff(y(x),x)-2*y(x)=F(x),y(x), singsol=all)� �
y(x)

=
((∫

e−xF (x) dx
)
e3x + 6c1e3x − 3

(∫
exF (x) dx

)
ex + 6c3ex + 2

(∫
F (x) e2xdx

)
+ 6c2

)
e−2x

6

7983



3 Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 96� �
DSolve[y'''[x]+2*y''[x]-y'[x]-2*y[x]==f[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x
(∫ x

1

1
3e

2K[1]f(K[1])dK[1] + ex
∫ x

1
−1
2e

K[2]f(K[2])dK[2]

+ e3x
∫ x

1

1
6e

−K[3]f(K[3])dK[3] + c2e
x + c3e

3x + c1

)
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20.15 problem section 9.4, problem 36
20.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7990

Internal problem ID [1586]
Internal file name [OUTPUT/1587_Sunday_June_05_2022_02_23_44_AM_23991318/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.4. Variation
of Parameters for Higher Order Equations. Page 503
Problem number: section 9.4, problem 36.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_con-
stant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order , _exact , _linear , _nonhomogeneous ]]

x3y′′′ + x2y′′ − 2y′x+ 2y = F (x)

This is higher order nonhomogeneous Euler type ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous Euler ODE And yp is a particular solution
to the nonhomogeneous Euler ODE. yh is the solution to

x3y′′′ + x2y′′ − 2y′x+ 2y = 0

This is Euler ODE of higher order. Let y = xλ. Hence

y′ = λxλ−1

y′′ = λ(λ− 1)xλ−2

y′′′ = λ(λ− 1) (λ− 2)xλ−3

Substituting these back into

x3y′′′ + x2y′′ − 2y′x+ 2y = F (x)
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gives
−2xλxλ−1 + x2λ(λ− 1)xλ−2 + x3λ(λ− 1) (λ− 2)xλ−3 + 2xλ = 0

Which simplifies to

−2λxλ + λ(λ− 1)xλ + λ(λ− 1) (λ− 2)xλ + 2xλ = 0

And since xλ 6= 0 then dividing through by xλ, the above becomes

−2λ+ λ(λ− 1) + λ(λ− 1) (λ− 2) + 2 = 0

Simplifying gives the characteristic equation as

λ3 − 2λ2 − λ+ 2 = 0

Solving the above gives the following roots

λ1 = 1
λ2 = 2
λ3 = −1

This table summarises the result

root multiplicity type of root

−1 1 real root

1 1 real root

2 1 real root

The solution is generated by going over the above table. For each real root λ of multiplic-
ity one generates a c1x

λ basis solution. Each real root of multiplicty two, generates c1xλ

and c2x
λ ln (x) basis solutions. Each real root of multiplicty three, generates c1xλ and

c2x
λ ln (x) and c3x

λ ln (x)2 basis solutions, and so on. Each complex root α±iβ of multi-
plicity one generates xα(c1 cos(β ln (x)) + c2 sin(β ln (x))) basis solutions. And each com-
plex root α± iβ of multiplicity two generates ln (x)xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And each complex root α±iβ of multiplicity three generates ln (x)2 xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And so on. Using the above show that the solution is

y = c1
x

+ c2x+ c3x
2
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The fundamental set of solutions for the homogeneous solution are the following

y1 =
1
x

y2 = x

y3 = x2

Now the particular solution to the given ODE is found

x3y′′′ + x2y′′ − 2y′x+ 2y = F (x)

Let the particular solution be

yp = U1y1 + U2y2 + U3y3

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3

y′′1 y′′2 y′′3

∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


1
x

x x2

− 1
x2 1 2x
2
x3 0 2


|W | = 6

x
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The determinant simplifies to

|W | = 6
x

Now we determine Wi for each Ui.

W1(x) = det

 x x2

1 2x


= x2

W2(x) = det

 1
x

x2

− 1
x2 2x


= 3

W3(x) = det

 1
x

x

− 1
x2 1


= 2

x

Now we are ready to evaluate each Ui(x).

U1 = (−1)3−1
∫

F (x)W1(x)
aW (x) dx

= (−1)2
∫ (F (x)) (x2)

(x3)
( 6
x

) dx

=
∫

F (x)x2

6x2 dx

=
∫ (

F (x)
6

)
dx

=
∫

F (x)
6 dx
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U2 = (−1)3−2
∫

F (x)W2(x)
aW (x) dx

= (−1)1
∫ (F (x)) (3)

(x3)
( 6
x

) dx

= −
∫ 3F (x)

6x2 dx

= −
∫ (

F (x)
2x2

)
dx

= −
(∫

F (x)
2x2 dx

)

U3 = (−1)3−3
∫

F (x)W3(x)
aW (x) dx

= (−1)0
∫ (F (x))

( 2
x

)
(x3)

( 6
x

) dx

=
∫ 2F (x)

x

6x2 dx

=
∫ (

F (x)
3x3

)
dx

=
∫

F (x)
3x3 dx

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3

Hence

yp =
(∫

F (x)
6 dx

)(
1
x

)
+
(
−
(∫

F (x)
2x2 dx

))
(x)

+
(∫

F (x)
3x3 dx

)(
x2)

Therefore the particular solution is

yp =
2
(∫ F (x)

x3 dx
)
x3 − 3

(∫ F (x)
x2 dx

)
x2 +

∫
F (x) dx

6x
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Therefore the general solution is

y = yh + yp

=
(c1
x
+ c2x+ c3x

2
)
+

2
(∫ F (x)

x3 dx
)
x3 − 3

(∫ F (x)
x2 dx

)
x2 +

∫
F (x) dx

6x


Summary
The solution(s) found are the following

(1)y = c1
x
+ c2x+ c3x

2 +
2
(∫ F (x)

x3 dx
)
x3 − 3

(∫ F (x)
x2 dx

)
x2 +

∫
F (x) dx

6x
Verification of solutions

y = c1
x
+ c2x+ c3x

2 +
2
(∫ F (x)

x3 dx
)
x3 − 3

(∫ F (x)
x2 dx

)
x2 +

∫
F (x) dx

6x

Verified OK.

20.15.1 Maple step by step solution

Let’s solve
x3y′′′ + x2y′′ − 2y′x+ 2y = F (x)

• Highest derivative means the order of the ODE is 3
y′′′
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = (c__1-2*_a*_b(_a)+2*(diff(_b(_a), _a))*_a^2-(Int(-F(_a), _a)))/_a^3,

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful

<- high order exact_linear_nonhomogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 30� �
dsolve(x^3*diff(y(x),x$3)+x^2*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=F(x),y(x), singsol=all)� �

y(x) =
(
c3 +

∫
c2 +

∫ c1+
∫
F (x)dx
x3 dx

x2 dx

)
x2

3 Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 82� �
DSolve[x^3*y'''[x]+x^2*y''[x]-2*x*y'[x]+2*y[x]==f[x],y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
x3 ∫ x

1
f(K[3])
3K[3]3 dK[3] + x2 ∫ x

1 −f(K[2])
2K[2]2 dK[2] +

∫ x

1
1
6f(K[1])dK[1] + c3x

3 + c2x
2 + c1

x
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20.16 problem section 9.4, problem 39
Internal problem ID [1587]
Internal file name [OUTPUT/1588_Sunday_June_05_2022_02_23_47_AM_30120502/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.4. Variation
of Parameters for Higher Order Equations. Page 503
Problem number: section 9.4, problem 39.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ − 5y′′ + 4y = F (x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ − 5y′′ + 4y = 0

The characteristic equation is
λ4 − 5λ2 + 4 = 0

The roots of the above equation are

λ1 = 2
λ2 = −2
λ3 = 1
λ4 = −1
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Therefore the homogeneous solution is

yh(x) = c1e−x + c2e−2x + c3ex + e2xc4
The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = e−2x

y3 = ex

y4 = e2x

Now the particular solution to the given ODE is found

y′′′′ − 5y′′ + 4y = F (x)

Let the particular solution be

yp = U1y1 + U2y2 + U3y3 + U4y4

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


e−x e−2x ex e2x

−e−x −2 e−2x ex 2 e2x

e−x 4 e−2x ex 4 e2x

−e−x −8 e−2x ex 8 e2x


|W | = −72 e−xe−2xexe2x
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The determinant simplifies to

|W | = −72

Now we determine Wi for each Ui.

W1(x) = det


e−2x ex e2x

−2 e−2x ex 2 e2x

4 e−2x ex 4 e2x


= 12 ex

W2(x) = det


e−x ex e2x

−e−x ex 2 e2x

e−x ex 4 e2x


= 6 e2x

W3(x) = det


e−x e−2x e2x

−e−x −2 e−2x 2 e2x

e−x 4 e−2x 4 e2x


= −12 e−x

W4(x) = det


e−x e−2x ex

−e−x −2 e−2x ex

e−x 4 e−2x ex


= −6 e−2x

Now we are ready to evaluate each Ui(x).

U1 = (−1)4−1
∫

F (x)W1(x)
aW (x) dx

= (−1)3
∫ (F (x)) (12 ex)

(1) (−72) dx

= −
∫ 12F (x) ex

−72 dx

= −
∫ (

−F (x) ex
6

)
dx

= −
(∫

−F (x) ex
6 dx

)
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U2 = (−1)4−2
∫

F (x)W2(x)
aW (x) dx

= (−1)2
∫ (F (x)) (6 e2x)

(1) (−72) dx

=
∫ 6F (x) e2x

−72 dx

=
∫ (

−F (x) e2x
12

)
dx

=
∫

−F (x) e2x
12 dx

U3 = (−1)4−3
∫

F (x)W3(x)
aW (x) dx

= (−1)1
∫ (F (x)) (−12 e−x)

(1) (−72) dx

= −
∫

−12F (x) e−x

−72 dx

= −
∫ (

F (x) e−x

6

)
dx

= −
(∫

F (x) e−x

6 dx

)

U4 = (−1)4−4
∫

F (x)W4(x)
aW (x) dx

= (−1)0
∫ (F (x)) (−6 e−2x)

(1) (−72) dx

=
∫

−6F (x) e−2x

−72 dx

=
∫ (

F (x) e−2x

12

)
dx

=
∫

F (x) e−2x

12 dx

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3 + U4y4
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Hence

yp =
(
−
(∫

−F (x) ex
6 dx

))(
e−x
)

+
(∫

−F (x) e2x
12 dx

)(
e−2x)

+
(
−
(∫

F (x) e−x

6 dx

))
(ex)

+
(∫

F (x) e−2x

12 dx

)(
e2x
)

Therefore the particular solution is

yp =
((∫

F (x) e−2xdx
)
e4x − 2

(∫
F (x) e−xdx

)
e3x + 2

(∫
F (x) exdx

)
ex −

(∫
F (x) e2xdx

))
e−2x

12

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2e−2x + c3ex + e2xc4

)
+
(((∫

F (x) e−2xdx
)
e4x − 2

(∫
F (x) e−xdx

)
e3x + 2

(∫
F (x) exdx

)
ex −

(∫
F (x) e2xdx

))
e−2x

12

)

Summary
The solution(s) found are the following

(1)y = c1e−x + c2e−2x + c3ex + e2xc4

+
((∫

F (x) e−2xdx
)
e4x − 2

(∫
F (x) e−xdx

)
e3x + 2

(∫
F (x) exdx

)
ex −

(∫
F (x) e2xdx

))
e−2x

12
Verification of solutions

y = c1e−x + c2e−2x + c3ex + e2xc4

+
((∫

F (x) e−2xdx
)
e4x − 2

(∫
F (x) e−xdx

)
e3x + 2

(∫
F (x) exdx

)
ex −

(∫
F (x) e2xdx

))
e−2x

12

Verified OK.
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 84� �
dsolve(diff(y(x),x$4)-5*diff(y(x),x$2)+4*y(x)=F(x),y(x), singsol=all)� �
y(x) =

−

((∫
e−xF (x) dx

)
e3x − 6c1e3x −

(∫
F (x)e−2xdx

)
e4x

2 − 6c4e4x −
(∫

exF (x) dx
)
ex − 6c3ex +

(∫
F (x)e2xdx

)
2 − 6c2

)
e−2x

6

3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 130� �
DSolve[y''''[x]-5*y''[x]+4*y[x]==f[x],y[x],x,IncludeSingularSolutions -> True]� �
y(x) → e−2x

(∫ x

1
− 1
12e

2K[1]f(K[1])dK[1] + ex
∫ x

1

1
6e

K[2]f(K[2])dK[2] + e3x
∫ x

1

−1
6e

−K[3]f(K[3])dK[3] + e4x
∫ x

1

1
12e

−2K[4]f(K[4])dK[4] + c2e
x + c3e

3x + c4e
4x

+ c1

)
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20.17 problem section 9.4, problem 41
20.17.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8004

Internal problem ID [1588]
Internal file name [OUTPUT/1589_Sunday_June_05_2022_02_23_49_AM_85162777/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 9 Introduction to Linear Higher Order Equations. Section 9.4. Variation
of Parameters for Higher Order Equations. Page 503
Problem number: section 9.4, problem 41.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_con-
stant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[ _high_order , _exact , _linear , _nonhomogeneous ]]

x4y′′′′ + 6x3y′′′ + 2x2y′′ − 4y′x+ 4y = F (x)

This is higher order nonhomogeneous Euler type ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous Euler ODE And yp is a particular solution
to the nonhomogeneous Euler ODE. yh is the solution to

x4y′′′′ + 6x3y′′′ + 2x2y′′ − 4y′x+ 4y = 0

This is Euler ODE of higher order. Let y = xλ. Hence

y′ = λxλ−1

y′′ = λ(λ− 1)xλ−2

y′′′ = λ(λ− 1) (λ− 2)xλ−3

y′′′′ = λ(λ− 1) (λ− 2) (λ− 3)xλ−4

Substituting these back into

x4y′′′′ + 6x3y′′′ + 2x2y′′ − 4y′x+ 4y = F (x)

7998



gives
−4xλxλ−1 + 2x2λ(λ− 1)xλ−2 + 6x3λ(λ− 1) (λ− 2)xλ−3

+ x4λ(λ− 1) (λ− 2) (λ− 3)xλ−4 + 4xλ = 0

Which simplifies to

−4λxλ + 2λ(λ− 1)xλ + 6λ(λ− 1) (λ− 2)xλ + λ(λ− 1) (λ− 2) (λ− 3)xλ + 4xλ = 0

And since xλ 6= 0 then dividing through by xλ, the above becomes

−4λ+ 2λ(λ− 1) + 6λ(λ− 1) (λ− 2) + λ(λ− 1) (λ− 2) (λ− 3) + 4 = 0

Simplifying gives the characteristic equation as

λ4 − 5λ2 + 4 = 0

Solving the above gives the following roots

λ1 = 2
λ2 = −2
λ3 = 1
λ4 = −1

This table summarises the result

root multiplicity type of root

−1 1 real root

−2 1 real root

1 1 real root

2 1 real root

The solution is generated by going over the above table. For each real root λ of multiplic-
ity one generates a c1x

λ basis solution. Each real root of multiplicty two, generates c1xλ

and c2x
λ ln (x) basis solutions. Each real root of multiplicty three, generates c1xλ and

c2x
λ ln (x) and c3x

λ ln (x)2 basis solutions, and so on. Each complex root α±iβ of multi-
plicity one generates xα(c1 cos(β ln (x)) + c2 sin(β ln (x))) basis solutions. And each com-
plex root α± iβ of multiplicity two generates ln (x)xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And each complex root α±iβ of multiplicity three generates ln (x)2 xα(c1 cos(β ln (x)) + c2 sin(β ln (x)))
basis solutions. And so on. Using the above show that the solution is
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y = c1
x

+ c2
x2 + c3x+ c4x

2

The fundamental set of solutions for the homogeneous solution are the following

y1 =
1
x

y2 =
1
x2

y3 = x

y4 = x2

Now the particular solution to the given ODE is found

x4y′′′′ + 6x3y′′′ + 2x2y′′ − 4y′x+ 4y = F (x)

Let the particular solution be

yp = U1y1 + U2y2 + U3y3 + U4y4

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣
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Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


1
x

1
x2 x x2

− 1
x2 − 2

x3 1 2x
2
x3

6
x4 0 2

− 6
x4 − 24

x5 0 0


|W | = −72

x6

The determinant simplifies to

|W | = −72
x6

Now we determine Wi for each Ui.

W1(x) = det


1
x2 x x2

− 2
x3 1 2x
6
x4 0 2


= 12

x2

W2(x) = det


1
x

x x2

− 1
x2 1 2x
2
x3 0 2


= 6

x

W3(x) = det


1
x

1
x2 x2

− 1
x2 − 2

x3 2x
2
x3

6
x4 2


= −12

x4

W4(x) = det


1
x

1
x2 x

− 1
x2 − 2

x3 1
2
x3

6
x4 0


= − 6

x5
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Now we are ready to evaluate each Ui(x).

U1 = (−1)4−1
∫

F (x)W1(x)
aW (x) dx

= (−1)3
∫ (F (x))

( 12
x2

)
(x4)

(
− 72

x6

) dx

= −
∫ 12F (x)

x2

− 72
x2

dx

= −
∫ (

−F (x)
6

)
dx

= −
(∫

−F (x)
6 dx

)

U2 = (−1)4−2
∫

F (x)W2(x)
aW (x) dx

= (−1)2
∫ (F (x))

( 6
x

)
(x4)

(
− 72

x6

) dx
=
∫ 6F (x)

x

− 72
x2

dx

=
∫ (

−F (x)x
12

)
dx

=
∫

−F (x)x
12 dx

U3 = (−1)4−3
∫

F (x)W3(x)
aW (x) dx

= (−1)1
∫ (F (x))

(
− 12

x4

)
(x4)

(
− 72

x6

) dx

= −
∫ −12F (x)

x4

− 72
x2

dx

= −
∫ (

F (x)
6x2

)
dx

= −
(∫

F (x)
6x2 dx

)
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U4 = (−1)4−4
∫

F (x)W4(x)
aW (x) dx

= (−1)0
∫ (F (x))

(
− 6

x5

)
(x4)

(
− 72

x6

) dx

=
∫ −6F (x)

x5

− 72
x2

dx

=
∫ (

F (x)
12x3

)
dx

=
∫

F (x)
12x3 dx

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3 + U4y4

Hence

yp =
(
−
(∫

−F (x)
6 dx

))(
1
x

)
+
(∫

−F (x)x
12 dx

)(
1
x2

)
+
(
−
(∫

F (x)
6x2 dx

))
(x)

+
(∫

F (x)
12x3 dx

)(
x2)

Therefore the particular solution is

yp =

(∫ F (x)
x3 dx

)
x4 − 2

(∫ F (x)
x2 dx

)
x3 + 2

(∫
F (x) dx

)
x−

(∫
F (x)xdx

)
12x2

Therefore the general solution is

y = yh + yp

=
(c1
x
+ c2

x2 + c3x+ c4x
2
)

+


(∫ F (x)

x3 dx
)
x4 − 2

(∫ F (x)
x2 dx

)
x3 + 2

(∫
F (x) dx

)
x−

(∫
F (x)xdx

)
12x2
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Summary
The solution(s) found are the following

(1)
y = c1

x
+ c2

x2 + c3x+ c4x
2

+

(∫ F (x)
x3 dx

)
x4 − 2

(∫ F (x)
x2 dx

)
x3 + 2

(∫
F (x) dx

)
x−

(∫
F (x)xdx

)
12x2

Verification of solutions

y = c1
x
+ c2

x2 + c3x+ c4x
2

+

(∫ F (x)
x3 dx

)
x4 − 2

(∫ F (x)
x2 dx

)
x3 + 2

(∫
F (x) dx

)
x−

(∫
F (x)xdx

)
12x2

Verified OK.

20.17.1 Maple step by step solution

Let’s solve
x4y′′′′ + 6x3y′′′ + 2x2y′′ − 4y′x+ 4y = F (x)

• Highest derivative means the order of the ODE is 4
y′′′′

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
-> Calling odsolve with the ODE`, diff(diff(diff(_b(_a), _a), _a), _a) = (c__1-4*_a*_b(_a)+4*(diff(_b(_a), _a))*_a^2-2*(diff(diff(_b

Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful

<- high order exact_linear_nonhomogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 36� �
dsolve(x^4*diff(y(x),x$4)+6*x^3*diff(y(x),x$3)+2*x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+4*y(x)=F(x),y(x), singsol=all)� �

y(x) =
c4 +

∫ (
2c2x+ c3 +

∫ ∫ c1+
∫
F (x)dx
x4 dxdx

)
x2dx

x2

3 Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 104� �
DSolve[x^4*y''''[x]+6*x^3*y'''[x]+2*x^2*y''[x]-4*x*y'[x]+4*y[x]==f[x],y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
x4 ∫ x

1
f(K[4])
12K[4]3dK[4] + x3 ∫ x

1 −f(K[3])
6K[3]2 dK[3] + x

∫ x

1
1
6f(K[2])dK[2] +

∫ x

1 − 1
12f(K[1])K[1]dK[1] + c4x

4 + c3x
3 + c2x+ c1

x2
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21 Chapter 10 Linear system of Differential
equations. Section 10.4, constant coefficient
homogeneous system. Page 540

21.1 problem section 10.4, problem 1 . . . . . . . . . . . . . . . . . . . . . . . . 8007
21.2 problem section 10.4, problem 2 . . . . . . . . . . . . . . . . . . . . . . . . 8016
21.3 problem section 10.4, problem 3 . . . . . . . . . . . . . . . . . . . . . . . . 8025
21.4 problem section 10.4, problem 4 . . . . . . . . . . . . . . . . . . . . . . . . 8034
21.5 problem section 10.4, problem 5 . . . . . . . . . . . . . . . . . . . . . . . . 8043
21.6 problem section 10.4, problem 6 . . . . . . . . . . . . . . . . . . . . . . . . 8052
21.7 problem section 10.4, problem 7 . . . . . . . . . . . . . . . . . . . . . . . . 8061
21.8 problem section 10.4, problem 8 . . . . . . . . . . . . . . . . . . . . . . . . 8070
21.9 problem section 10.4, problem 9 . . . . . . . . . . . . . . . . . . . . . . . . 8083
21.10problem section 10.4, problem 10 . . . . . . . . . . . . . . . . . . . . . . . 8095
21.11problem section 10.4, problem 11 . . . . . . . . . . . . . . . . . . . . . . . 8108
21.12problem section 10.4, problem 12 . . . . . . . . . . . . . . . . . . . . . . . 8120
21.13problem section 10.4, problem 13 . . . . . . . . . . . . . . . . . . . . . . . 8132
21.14problem section 10.4, problem 14 . . . . . . . . . . . . . . . . . . . . . . . 8145
21.15problem section 10.4, problem 15 . . . . . . . . . . . . . . . . . . . . . . . 8158
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21.1 problem section 10.4, problem 1
21.1.1 Solution using Matrix exponential method . . . . . . . . . . . . 8007
21.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8008
21.1.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8013

Internal problem ID [1589]
Internal file name [OUTPUT/1590_Sunday_June_05_2022_02_23_52_AM_91386351/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.4, constant coeffi-
cient homogeneous system. Page 540
Problem number: section 10.4, problem 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = y1(t) + 2y2(t)
y′2(t) = 2y1(t) + y2(t)

21.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 1 2
2 1

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e−t

2 + e3t
2

e3t
2 − e−t

2
e3t
2 − e−t

2
e−t

2 + e3t
2
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 e−t

2 + e3t
2

e3t
2 − e−t

2
e3t
2 − e−t

2
e−t

2 + e3t
2

 c1

c2


=


(

e−t

2 + e3t
2

)
c1 +

(
e3t
2 − e−t

2

)
c2(

e3t
2 − e−t

2

)
c1 +

(
e−t

2 + e3t
2

)
c2


=

 (c1−c2)e−t

2 + e3t(c1+c2)
2

(−c1+c2)e−t

2 + e3t(c1+c2)
2


Since no forcing function is given, then the final solution is ~xh(t) above.

21.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 1 2
2 1

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 1 2
2 1

− λ

 1 0
0 1

 = 0

Therefore

det

 1− λ 2
2 1− λ

 = 0
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Which gives the characteristic equation

λ2 − 2λ− 3 = 0

The roots of the above are the eigenvalues.

λ1 = 3
λ2 = −1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 2
2 1

− (−1)

 1 0
0 1

 v1

v2

 =

 0
0


 2 2

2 2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 2 2 0

2 2 0



R2 = R2 −R1 =⇒

2 2 0
0 0 0


Therefore the system in Echelon form is 2 2

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −t}

Hence the solution is  −t

t

 =

 −t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −t

t

 = t

 −1
1


Let t = 1 the eigenvector becomes −t

t

 =

 −1
1


Considering the eigenvalue λ2 = 3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 2
2 1

− (3)

 1 0
0 1

 v1

v2

 =

 0
0


 −2 2

2 −2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −2 2 0

2 −2 0



R2 = R2 +R1 =⇒

−2 2 0
0 0 0


Therefore the system in Echelon form is −2 2

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


Let t = 1 the eigenvector becomes  t

t

 =

 1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

3 1 1 No

 1
1



−1 1 1 No

 −1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 3 is real and distinct then the
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corresponding eigenvector solution is

~x1(t) = ~v1e
3t

=

 1
1

 e3t

Since eigenvalue −1 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
−t

=

 −1
1

 e−t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  y1(t)
y2(t)

 = c1

 e3t

e3t

+ c2

 −e−t

e−t


Which becomes  y1(t)

y2(t)

 =

 c1e3t − c2e−t

c1e3t + c2e−t


The following is the phase plot of the system.
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Figure 563: Phase plot

21.1.3 Maple step by step solution

Let’s solve
[y′1(t) = y1(t) + 2y2(t) , y′2(t) = 2y1(t) + y2(t)]

• Define vector

→y__(t) =

 y1(t)
y2(t)


• Convert system into a vector equation

→y__
′
(t) =

 1 2
2 1

 · →y__(t) +

 0
0


• System to solve

→y__
′
(t) =

 1 2
2 1

 · →y__(t)

• Define the coefficient matrix
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A =

 1 2
2 1


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−1,

 −1
1

 ,

3,
 1

1


• Consider eigenpair−1,

 −1
1


• Solution to homogeneous system from eigenpair

→y__1 = e−t ·

 −1
1


• Consider eigenpair3,

 1
1


• Solution to homogeneous system from eigenpair

→y__2 = e3t ·

 1
1


• General solution to the system of ODEs

→y__ = c1
→y__1 + c2

→y__2

• Substitute solutions into the general solution

→y__ = c1e−t ·

 −1
1

+ c2e3t ·

 1
1


• Substitute in vector of dependent variables
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 y1(t)
y2(t)

 =

 −c1e−t + c2e3t

c1e−t + c2e3t


• Solution to the system of ODEs

{y1(t) = −c1e−t + c2e3t, y2(t) = c1e−t + c2e3t}

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 35� �
dsolve([diff(y__1(t),t)=y__1(t)+2*y__2(t),diff(y__2(t),t)=2*y__1(t)+1*y__2(t)],singsol=all)� �

y1(t) = c1e3t + c2e−t

y2(t) = c1e3t − c2e−t

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 68� �
DSolve[{y1'[t]==y1[t]+2*y2[t],y2'[t]==2*y1[t]+y2[t]},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → 1
2e

−t
(
c1
(
e4t + 1

)
+ c2

(
e4t − 1

))
y2(t) → 1

2e
−t
(
c1
(
e4t − 1

)
+ c2

(
e4t + 1

))
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21.2 problem section 10.4, problem 2
21.2.1 Solution using Matrix exponential method . . . . . . . . . . . . 8016
21.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8017
21.2.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8022

Internal problem ID [1590]
Internal file name [OUTPUT/1591_Sunday_June_05_2022_02_23_53_AM_12529775/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.4, constant coeffi-
cient homogeneous system. Page 540
Problem number: section 10.4, problem 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −5y1(t)
4 + 3y2(t)

4

y′2(t) =
3y1(t)
4 − 5y2(t)

4

21.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −5
4

3
4

3
4 −5

4

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e−2t

2 + e−
t
2

2
e−

t
2

2 − e−2t

2

e−
t
2

2 − e−2t

2
e−2t

2 + e−
t
2

2
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 e−2t

2 + e−
t
2

2
e−

t
2

2 − e−2t

2

e−
t
2

2 − e−2t

2
e−2t

2 + e−
t
2

2


 c1

c2



=


(

e−2t

2 + e−
t
2

2

)
c1 +

(
e−

t
2

2 − e−2t

2

)
c2(

e−
t
2

2 − e−2t

2

)
c1 +

(
e−2t

2 + e−
t
2

2

)
c2


=

 (c1−c2)e−2t

2 + e−
t
2 (c1+c2)

2

e−
t
2 (c1+c2)

2 − (c1−c2)e−2t

2


Since no forcing function is given, then the final solution is ~xh(t) above.

21.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −5
4

3
4

3
4 −5

4

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −5
4

3
4

3
4 −5

4

− λ

 1 0
0 1

 = 0

Therefore

det

 −5
4 − λ 3

4
3
4 −5

4 − λ

 = 0
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Which gives the characteristic equation

λ2 + 5
2λ+ 1 = 0

The roots of the above are the eigenvalues.

λ1 = −1
2

λ2 = −2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−2 1 real eigenvalue

−1
2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −5
4

3
4

3
4 −5

4

− (−2)

 1 0
0 1

 v1

v2

 =

 0
0


 3

4
3
4

3
4

3
4

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 3

4
3
4 0

3
4

3
4 0



R2 = R2 −R1 =⇒

3
4

3
4 0

0 0 0


Therefore the system in Echelon form is 3

4
3
4

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −t}

Hence the solution is  −t

t

 =

 −t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −t

t

 = t

 −1
1


Let t = 1 the eigenvector becomes −t

t

 =

 −1
1


Considering the eigenvalue λ2 = −1

2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −5
4

3
4

3
4 −5

4

−
(
−1
2

) 1 0
0 1

 v1

v2

 =

 0
0


 −3

4
3
4

3
4 −3

4

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −3

4
3
4 0

3
4 −3

4 0



R2 = R2 +R1 =⇒

−3
4

3
4 0

0 0 0


Therefore the system in Echelon form is −3

4
3
4

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


Let t = 1 the eigenvector becomes  t

t

 =

 1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−1
2 1 1 No

 1
1



−2 1 1 No

 −1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −1

2 is real and distinct then the
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corresponding eigenvector solution is

~x1(t) = ~v1e
− t

2

=

 1
1

 e−
t
2

Since eigenvalue −2 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
−2t

=

 −1
1

 e−2t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  y1(t)
y2(t)

 = c1

 e− t
2

e− t
2

+ c2

 −e−2t

e−2t


Which becomes  y1(t)

y2(t)

 =

 c1e−
t
2 − c2e−2t

c1e−
t
2 + c2e−2t


The following is the phase plot of the system.
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Figure 564: Phase plot

21.2.3 Maple step by step solution

Let’s solve[
y′1(t) = −5y1(t)

4 + 3y2(t)
4 , y′2(t) =

3y1(t)
4 − 5y2(t)

4

]
• Define vector

→y__(t) =

 y1(t)
y2(t)


• Convert system into a vector equation

→y__
′
(t) =

 −5
4

3
4

3
4 −5

4

 · →y__(t) +

 0
0


• System to solve

→y__
′
(t) =

 −5
4

3
4

3
4 −5

4

 · →y__(t)

• Define the coefficient matrix
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A =

 −5
4

3
4

3
4 −5

4


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−2,

 −1
1

 ,

−1
2 ,

 1
1


• Consider eigenpair−2,

 −1
1


• Solution to homogeneous system from eigenpair

→y__1 = e−2t ·

 −1
1


• Consider eigenpair−1

2 ,

 1
1


• Solution to homogeneous system from eigenpair

→y__2 = e− t
2 ·

 1
1


• General solution to the system of ODEs

→y__ = c1
→y__1 + c2

→y__2

• Substitute solutions into the general solution

→y__ = c1e−2t ·

 −1
1

+ c2e−
t
2 ·

 1
1


• Substitute in vector of dependent variables
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 y1(t)
y2(t)

 =

 −c1e−2t + c2e−
t
2

c1e−2t + c2e−
t
2


• Solution to the system of ODEs{

y1(t) = −c1e−2t + c2e−
t
2 , y2(t) = c1e−2t + c2e−

t
2

}

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
dsolve([diff(y__1(t),t)=-5/4*y__1(t)+3/4*y__2(t),diff(y__2(t),t)=3/4*y__1(t)-5/4*y__2(t)],singsol=all)� �

y1(t) = c1e−2t + c2e−
t
2

y2(t) = −c1e−2t + c2e−
t
2

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 76� �
DSolve[{y1'[t]==-5/4*y1[t]+3/4*y2[t],y2'[t]==3/4*y1[t]-5/4*y2[t]},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → 1
2e

−2t(c1(e3t/2 + 1
)
+ c2

(
e3t/2 − 1

))
y2(t) → 1

2e
−2t(c1(e3t/2 − 1

)
+ c2

(
e3t/2 + 1

))
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21.3 problem section 10.4, problem 3
21.3.1 Solution using Matrix exponential method . . . . . . . . . . . . 8025
21.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8026
21.3.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8031

Internal problem ID [1591]
Internal file name [OUTPUT/1592_Sunday_June_05_2022_02_23_55_AM_37212796/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.4, constant coeffi-
cient homogeneous system. Page 540
Problem number: section 10.4, problem 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −4y1(t)
5 + 3y2(t)

5

y′2(t) = −2y1(t)
5 − 11y2(t)

5

21.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −4
5

3
5

−2
5 −11

5

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 − e−2t

5 + 6 e−t

5
3 e−t

5 − 3 e−2t

5

−2 e−t

5 + 2 e−2t

5
6 e−2t

5 − e−t

5
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 − e−2t

5 + 6 e−t

5
3 e−t

5 − 3 e−2t

5

−2 e−t

5 + 2 e−2t

5
6 e−2t

5 − e−t

5

 c1

c2


=


(
− e−2t

5 + 6 e−t

5

)
c1 +

(
3 e−t

5 − 3 e−2t

5

)
c2(

−2 e−t

5 + 2 e−2t

5

)
c1 +

(
6 e−2t

5 − e−t

5

)
c2


=

 (−c1−3c2)e−2t

5 + 6
(
c1+ c2

2
)
e−t

5

(2c1+6c2)e−2t

5 − 2
(
c1+ c2

2
)
e−t

5


Since no forcing function is given, then the final solution is ~xh(t) above.

21.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −4
5

3
5

−2
5 −11

5

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −4
5

3
5

−2
5 −11

5

− λ

 1 0
0 1

 = 0

Therefore

det

 −4
5 − λ 3

5

−2
5 −11

5 − λ

 = 0
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Which gives the characteristic equation

λ2 + 3λ+ 2 = 0

The roots of the above are the eigenvalues.

λ1 = −2
λ2 = −1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

−2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −4
5

3
5

−2
5 −11

5

− (−2)

 1 0
0 1

 v1

v2

 =

 0
0


 6

5
3
5

−2
5 −1

5

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is  6

5
3
5 0

−2
5 −1

5 0



R2 = R2 +
R1

3 =⇒

6
5

3
5 0

0 0 0


Therefore the system in Echelon form is 6

5
3
5

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = − t

2

}
Hence the solution is  − t

2

t

 =

 − t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as − t

2

t

 = t

 −1
2

1


Let t = 1 the eigenvector becomes − t

2

t

 =

 −1
2

1


Which is normalized to  − t

2

t

 =

 −1
2


Considering the eigenvalue λ2 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −4
5

3
5

−2
5 −11

5

− (−1)

 1 0
0 1

 v1

v2

 =

 0
0


 1

5
3
5

−2
5 −6

5

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is  1

5
3
5 0

−2
5 −6

5 0



R2 = R2 + 2R1 =⇒

1
5

3
5 0

0 0 0
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Therefore the system in Echelon form is 1
5

3
5

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −3t}

Hence the solution is  −3t
t

 =

 −3t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −3t

t

 = t

 −3
1


Let t = 1 the eigenvector becomes −3t

t

 =

 −3
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−2 1 1 No

 −1
2

1



−1 1 1 No

 −3
1
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Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −2 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
−2t

=

 −1
2

1

 e−2t

Since eigenvalue −1 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
−t

=

 −3
1

 e−t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  y1(t)
y2(t)

 = c1

 − e−2t

2

e−2t

+ c2

 −3 e−t

e−t


Which becomes  y1(t)

y2(t)

 =

 − c1e−2t

2 − 3c2e−t

c1e−2t + c2e−t


The following is the phase plot of the system.

8030



Figure 565: Phase plot

21.3.3 Maple step by step solution

Let’s solve[
y′1(t) = −4y1(t)

5 + 3y2(t)
5 , y′2(t) = −2y1(t)

5 − 11y2(t)
5

]
• Define vector

→y__(t) =

 y1(t)
y2(t)


• Convert system into a vector equation

→y__
′
(t) =

 −4
5

3
5

−2
5 −11

5

 · →y__(t) +

 0
0


• System to solve

→y__
′
(t) =

 −4
5

3
5

−2
5 −11

5

 · →y__(t)

• Define the coefficient matrix
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A =

 −4
5

3
5

−2
5 −11

5


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−2,

 −1
2

1

 ,

−1,

 −3
1


• Consider eigenpair−2,

 −1
2

1


• Solution to homogeneous system from eigenpair

→y__1 = e−2t ·

 −1
2

1


• Consider eigenpair−1,

 −3
1


• Solution to homogeneous system from eigenpair

→y__2 = e−t ·

 −3
1


• General solution to the system of ODEs

→y__ = c1
→y__1 + c2

→y__2

• Substitute solutions into the general solution

→y__ = c1e−2t ·

 −1
2

1

+ c2e−t ·

 −3
1


• Substitute in vector of dependent variables
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 y1(t)
y2(t)

 =

 − c1e−2t

2 − 3c2e−t

c1e−2t + c2e−t


• Solution to the system of ODEs{

y1(t) = − c1e−2t

2 − 3c2e−t, y2(t) = c1e−2t + c2e−t
}

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 36� �
dsolve([diff(y__1(t),t)=-4/5*y__1(t)+3/5*y__2(t),diff(y__2(t),t)=-2/5*y__1(t)-11/5*y__2(t)],singsol=all)� �

y1(t) = e−tc1 + c2e−2t

y2(t) = −e−tc1
3 − 2c2e−2t

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 65� �
DSolve[{y1'[t]==-4/5*y1[t]+3/5*y2[t],y2'[t]==-2/5*y1[t]-11/5*y2[t]},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → 1
5e

−2t(c1(6et − 1
)
+ 3c2

(
et − 1

))
y2(t) → 1

5e
−2t(−2c1

(
et − 1

)
− c2

(
et − 6

))
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21.4 problem section 10.4, problem 4
21.4.1 Solution using Matrix exponential method . . . . . . . . . . . . 8034
21.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8035
21.4.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8040

Internal problem ID [1592]
Internal file name [OUTPUT/1593_Sunday_June_05_2022_02_23_56_AM_1394617/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.4, constant coeffi-
cient homogeneous system. Page 540
Problem number: section 10.4, problem 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −y1(t)− 4y2(t)
y′2(t) = −y1(t)− y2(t)

21.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −1 −4
−1 −1

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 (
e4t+1

)
e−3t

2 −(e4t − 1) e−3t

−
(
e4t−1

)
e−3t

4

(
e4t+1

)
e−3t

2
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 (
e4t+1

)
e−3t

2 −(e4t − 1) e−3t

−
(
e4t−1

)
e−3t

4

(
e4t+1

)
e−3t

2

 c1

c2


=

 (
e4t+1

)
e−3tc1

2 − (e4t − 1) e−3tc2

−
(
e4t−1

)
e−3tc1

4 +
(
e4t+1

)
e−3tc2

2


=

 (
(c1−2c2)e4t+c1+2c2

)
e−3t

2

−
(
(c1−2c2)e4t−c1−2c2

)
e−3t

4


Since no forcing function is given, then the final solution is ~xh(t) above.

21.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −1 −4
−1 −1

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −1 −4
−1 −1

− λ

 1 0
0 1

 = 0

Therefore

det

 −1− λ −4
−1 −1− λ

 = 0
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Which gives the characteristic equation

λ2 + 2λ− 3 = 0

The roots of the above are the eigenvalues.

λ1 = 1
λ2 = −3

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

−3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −1 −4
−1 −1

− (−3)

 1 0
0 1

 v1

v2

 =

 0
0


 2 −4

−1 2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is  2 −4 0

−1 2 0



R2 = R2 +
R1

2 =⇒

2 −4 0
0 0 0


Therefore the system in Echelon form is 2 −4

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 2t}

Hence the solution is  2t
t

 =

 2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

t

 = t

 2
1


Let t = 1 the eigenvector becomes  2t

t

 =

 2
1


Considering the eigenvalue λ2 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −1 −4
−1 −1

− (1)

 1 0
0 1

 v1

v2

 =

 0
0


 −2 −4

−1 −2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −2 −4 0

−1 −2 0



R2 = R2 −
R1

2 =⇒

−2 −4 0
0 0 0


Therefore the system in Echelon form is −2 −4

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −2t}

Hence the solution is  −2t
t

 =

 −2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −2t

t

 = t

 −2
1


Let t = 1 the eigenvector becomes −2t

t

 =

 −2
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

1 1 1 No

 −2
1



−3 1 1 No

 2
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the
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corresponding eigenvector solution is

~x1(t) = ~v1e
t

=

 −2
1

 et

Since eigenvalue −3 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
−3t

=

 2
1

 e−3t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  y1(t)
y2(t)

 = c1

 −2 et

et

+ c2

 2 e−3t

e−3t


Which becomes  y1(t)

y2(t)

 =

 −2(c1e4t − c2) e−3t

(c1e4t + c2) e−3t


The following is the phase plot of the system.
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Figure 566: Phase plot

21.4.3 Maple step by step solution

Let’s solve
[y′1(t) = −y1(t)− 4y2(t) , y′2(t) = −y1(t)− y2(t)]

• Define vector

→y__(t) =

 y1(t)
y2(t)


• Convert system into a vector equation

→y__
′
(t) =

 −1 −4
−1 −1

 · →y__(t) +

 0
0


• System to solve

→y__
′
(t) =

 −1 −4
−1 −1

 · →y__(t)

• Define the coefficient matrix
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A =

 −1 −4
−1 −1


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−3,

 2
1

 ,

1,
 −2

1


• Consider eigenpair−3,

 2
1


• Solution to homogeneous system from eigenpair

→y__1 = e−3t ·

 2
1


• Consider eigenpair1,

 −2
1


• Solution to homogeneous system from eigenpair

→y__2 = et ·

 −2
1


• General solution to the system of ODEs

→y__ = c1
→y__1 + c2

→y__2

• Substitute solutions into the general solution

→y__ = c1e−3t ·

 2
1

+ c2et ·

 −2
1


• Substitute in vector of dependent variables
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 y1(t)
y2(t)

 =

 2(−c2e4t + c1) e−3t

(c2e4t + c1) e−3t


• Solution to the system of ODEs

{y1(t) = 2(−c2e4t + c1) e−3t, y2(t) = (c2e4t + c1) e−3t}

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 32� �
dsolve([diff(y__1(t),t)=-1*y__1(t)-4*y__2(t),diff(y__2(t),t)=-1*y__1(t)-1*y__2(t)],singsol=all)� �

y1(t) = c1et + c2e−3t

y2(t) = −c1et
2 + c2e−3t

2

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 71� �
DSolve[{y1'[t]==-1*y1[t]-4*y2[t],y2'[t]==-1*y1[t]-1*y2[t]},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → 1
2e

−3t(c1(e4t + 1
)
− 2c2

(
e4t − 1

))
y2(t) → 1

4e
−3t(2c2(e4t + 1

)
− c1

(
e4t − 1

))
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21.5 problem section 10.4, problem 5
21.5.1 Solution using Matrix exponential method . . . . . . . . . . . . 8043
21.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8044
21.5.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8049

Internal problem ID [1593]
Internal file name [OUTPUT/1594_Sunday_June_05_2022_02_23_58_AM_28622100/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.4, constant coeffi-
cient homogeneous system. Page 540
Problem number: section 10.4, problem 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = 2y1(t)− 4y2(t)
y′2(t) = −y1(t)− y2(t)

21.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 2 −4
−1 −1

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 (
4 e5t+1

)
e−2t

5 −4
(
e5t−1

)
e−2t

5

−
(
e5t−1

)
e−2t

5

(
e5t+4

)
e−2t

5
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 (
4 e5t+1

)
e−2t

5 −4
(
e5t−1

)
e−2t

5

−
(
e5t−1

)
e−2t

5

(
e5t+4

)
e−2t

5

 c1

c2


=

 (
4 e5t+1

)
e−2tc1

5 − 4
(
e5t−1

)
e−2tc2

5

−
(
e5t−1

)
e−2tc1

5 +
(
e5t+4

)
e−2tc2

5


=

 4
(
(c1−c2)e5t+ c1

4 +c2
)
e−2t

5

− e−2t((c1−c2)e5t−c1−4c2
)

5


Since no forcing function is given, then the final solution is ~xh(t) above.

21.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 2 −4
−1 −1

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 2 −4
−1 −1

− λ

 1 0
0 1

 = 0

Therefore

det

 2− λ −4
−1 −1− λ

 = 0
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Which gives the characteristic equation

λ2 − λ− 6 = 0

The roots of the above are the eigenvalues.

λ1 = 3
λ2 = −2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−2 1 real eigenvalue

3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 2 −4
−1 −1

− (−2)

 1 0
0 1

 v1

v2

 =

 0
0


 4 −4

−1 1

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is  4 −4 0

−1 1 0



R2 = R2 +
R1

4 =⇒

4 −4 0
0 0 0


Therefore the system in Echelon form is 4 −4

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


Let t = 1 the eigenvector becomes  t

t

 =

 1
1


Considering the eigenvalue λ2 = 3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 2 −4
−1 −1

− (3)

 1 0
0 1

 v1

v2

 =

 0
0


 −1 −4

−1 −4

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −1 −4 0

−1 −4 0



R2 = R2 −R1 =⇒

−1 −4 0
0 0 0


Therefore the system in Echelon form is −1 −4

0 0

 v1

v2

 =

 0
0



8046



The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −4t}

Hence the solution is  −4t
t

 =

 −4t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −4t

t

 = t

 −4
1


Let t = 1 the eigenvector becomes −4t

t

 =

 −4
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

3 1 1 No

 −4
1



−2 1 1 No

 1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 3 is real and distinct then the
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corresponding eigenvector solution is

~x1(t) = ~v1e
3t

=

 −4
1

 e3t

Since eigenvalue −2 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
−2t

=

 1
1

 e−2t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  y1(t)
y2(t)

 = c1

 −4 e3t

e3t

+ c2

 e−2t

e−2t


Which becomes  y1(t)

y2(t)

 =

 (−4c1e5t + c2) e−2t

(c1e5t + c2) e−2t


The following is the phase plot of the system.
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Figure 567: Phase plot

21.5.3 Maple step by step solution

Let’s solve
[y′1(t) = 2y1(t)− 4y2(t) , y′2(t) = −y1(t)− y2(t)]

• Define vector

→y__(t) =

 y1(t)
y2(t)


• Convert system into a vector equation

→y__
′
(t) =

 2 −4
−1 −1

 · →y__(t) +

 0
0


• System to solve

→y__
′
(t) =

 2 −4
−1 −1

 · →y__(t)

• Define the coefficient matrix
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A =

 2 −4
−1 −1


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−2,

 1
1

 ,

3,
 −4

1


• Consider eigenpair−2,

 1
1


• Solution to homogeneous system from eigenpair

→y__1 = e−2t ·

 1
1


• Consider eigenpair3,

 −4
1


• Solution to homogeneous system from eigenpair

→y__2 = e3t ·

 −4
1


• General solution to the system of ODEs

→y__ = c1
→y__1 + c2

→y__2

• Substitute solutions into the general solution

→y__ = c1e−2t ·

 1
1

+ c2e3t ·

 −4
1


• Substitute in vector of dependent variables

8050



 y1(t)
y2(t)

 =

 (−4c2e5t + c1) e−2t

(c2e5t + c1) e−2t


• Solution to the system of ODEs

{y1(t) = (−4c2e5t + c1) e−2t, y2(t) = (c2e5t + c1) e−2t}

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 35� �
dsolve([diff(y__1(t),t)=2*y__1(t)-4*y__2(t),diff(y__2(t),t)=-1*y__1(t)-1*y__2(t)],singsol=all)� �

y1(t) = c1e3t + c2e−2t

y2(t) = −c1e3t
4 + c2e−2t

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 72� �
DSolve[{y1'[t]==2*y1[t]-4*y2[t],y2'[t]==-1*y1[t]-1*y2[t]},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → 1
5e

−2t(c1(4e5t + 1
)
− 4c2

(
e5t − 1

))
y2(t) → 1

5e
−2t(c2(e5t + 4

)
− c1

(
e5t − 1

))
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21.6 problem section 10.4, problem 6
21.6.1 Solution using Matrix exponential method . . . . . . . . . . . . 8052
21.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8053
21.6.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8058

Internal problem ID [1594]
Internal file name [OUTPUT/1595_Sunday_June_05_2022_02_24_00_AM_97349432/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.4, constant coeffi-
cient homogeneous system. Page 540
Problem number: section 10.4, problem 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = 4y1(t)− 3y2(t)
y′2(t) = 2y1(t)− y2(t)

21.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 4 −3
2 −1

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 −2 et + 3 e2t −3 e2t + 3 et

2 e2t − 2 et 3 et − 2 e2t
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 −2 et + 3 e2t −3 e2t + 3 et

2 e2t − 2 et 3 et − 2 e2t

 c1

c2


=

 (−2 et + 3 e2t) c1 + (−3 e2t + 3 et) c2
(2 e2t − 2 et) c1 + (3 et − 2 e2t) c2


=

 (−3c2 + 3c1) e2t − 2
(
c1 − 3c2

2

)
et

(2c1 − 2c2) e2t − 2
(
c1 − 3c2

2

)
et


Since no forcing function is given, then the final solution is ~xh(t) above.

21.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 4 −3
2 −1

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 4 −3
2 −1

− λ

 1 0
0 1

 = 0

Therefore

det

 4− λ −3
2 −1− λ

 = 0
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Which gives the characteristic equation

λ2 − 3λ+ 2 = 0

The roots of the above are the eigenvalues.

λ1 = 2
λ2 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 4 −3
2 −1

− (1)

 1 0
0 1

 v1

v2

 =

 0
0


 3 −3

2 −2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 3 −3 0

2 −2 0



R2 = R2 −
2R1

3 =⇒

3 −3 0
0 0 0


Therefore the system in Echelon form is 3 −3

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


Let t = 1 the eigenvector becomes  t

t

 =

 1
1


Considering the eigenvalue λ2 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 4 −3
2 −1

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 2 −3

2 −3

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 2 −3 0

2 −3 0



R2 = R2 −R1 =⇒

2 −3 0
0 0 0


Therefore the system in Echelon form is 2 −3

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 3t

2

}
Hence the solution is  3t

2

t

 =

 3t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 3t

2

t

 = t

 3
2

1


Let t = 1 the eigenvector becomes  3t

2

t

 =

 3
2

1


Which is normalized to  3t

2

t

 =

 3
2


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 1 1 No

 3
2

1



1 1 1 No

 1
1
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Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
2t

=

 3
2

1

 e2t

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
t

=

 1
1

 et

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  y1(t)
y2(t)

 = c1

 3 e2t
2

e2t

+ c2

 et

et


Which becomes  y1(t)

y2(t)

 =

 3c1e2t
2 + c2et

c1e2t + c2et


The following is the phase plot of the system.
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Figure 568: Phase plot

21.6.3 Maple step by step solution

Let’s solve
[y′1(t) = 4y1(t)− 3y2(t) , y′2(t) = 2y1(t)− y2(t)]

• Define vector

→y__(t) =

 y1(t)
y2(t)


• Convert system into a vector equation

→y__
′
(t) =

 4 −3
2 −1

 · →y__(t) +

 0
0


• System to solve

→y__
′
(t) =

 4 −3
2 −1

 · →y__(t)

• Define the coefficient matrix
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A =

 4 −3
2 −1


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A1,

 1
1

 ,

2,
 3

2

1


• Consider eigenpair1,

 1
1


• Solution to homogeneous system from eigenpair

→y__1 = et ·

 1
1


• Consider eigenpair2,

 3
2

1


• Solution to homogeneous system from eigenpair

→y__2 = e2t ·

 3
2

1


• General solution to the system of ODEs

→y__ = c1
→y__1 + c2

→y__2

• Substitute solutions into the general solution

→y__ = c1et ·

 1
1

+ c2e2t ·

 3
2

1


• Substitute in vector of dependent variables
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 y1(t)
y2(t)

 =

 c1et + 3c2e2t
2

c1et + c2e2t


• Solution to the system of ODEs{

y1(t) = c1et + 3c2e2t
2 , y2(t) = c1et + c2e2t

}

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 31� �
dsolve([diff(y__1(t),t)=4*y__1(t)-3*y__2(t),diff(y__2(t),t)=2*y__1(t)-1*y__2(t)],singsol=all)� �

y1(t) = c1et + c2e2t

y2(t) = c1et +
2c2e2t
3

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 56� �
DSolve[{y1'[t]==4*y1[t]-3*y2[t],y2'[t]==2*y1[t]-1*y2[t]},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → et
(
c1
(
3et − 2

)
− 3c2

(
et − 1

))
y2(t) → et

(
2c1
(
et − 1

)
+ c2

(
3− 2et

))
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21.7 problem section 10.4, problem 7
21.7.1 Solution using Matrix exponential method . . . . . . . . . . . . 8061
21.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8062
21.7.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8067

Internal problem ID [1595]
Internal file name [OUTPUT/1596_Sunday_June_05_2022_02_24_02_AM_64170985/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.4, constant coeffi-
cient homogeneous system. Page 540
Problem number: section 10.4, problem 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −6y1(t)− 3y2(t)
y′2(t) = y1(t)− 2y2(t)

21.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −6 −3
1 −2

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 3 e−5t

2 − e−3t

2 −3 e−3t

2 + 3 e−5t

2
e−3t

2 − e−5t

2 − e−5t

2 + 3 e−3t

2
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 3 e−5t

2 − e−3t

2 −3 e−3t

2 + 3 e−5t

2
e−3t

2 − e−5t

2 − e−5t

2 + 3 e−3t

2

 c1

c2


=


(

3 e−5t

2 − e−3t

2

)
c1 +

(
−3 e−3t

2 + 3 e−5t

2

)
c2(

e−3t

2 − e−5t

2

)
c1 +

(
− e−5t

2 + 3 e−3t

2

)
c2


=

 (3c1+3c2)e−5t

2 − e−3t(c1+3c2)
2

(−c1−c2)e−5t

2 + e−3t(c1+3c2)
2


Since no forcing function is given, then the final solution is ~xh(t) above.

21.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −6 −3
1 −2

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −6 −3
1 −2

− λ

 1 0
0 1

 = 0

Therefore

det

 −6− λ −3
1 −2− λ

 = 0
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Which gives the characteristic equation

λ2 + 8λ+ 15 = 0

The roots of the above are the eigenvalues.

λ1 = −3
λ2 = −5

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−3 1 real eigenvalue

−5 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −5

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −6 −3
1 −2

− (−5)

 1 0
0 1

 v1

v2

 =

 0
0


 −1 −3

1 3

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −1 −3 0

1 3 0



R2 = R2 +R1 =⇒

−1 −3 0
0 0 0


Therefore the system in Echelon form is −1 −3

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −3t}

Hence the solution is  −3t
t

 =

 −3t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −3t

t

 = t

 −3
1


Let t = 1 the eigenvector becomes −3t

t

 =

 −3
1


Considering the eigenvalue λ2 = −3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −6 −3
1 −2

− (−3)

 1 0
0 1

 v1

v2

 =

 0
0


 −3 −3

1 1

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −3 −3 0

1 1 0



R2 = R2 +
R1

3 =⇒

−3 −3 0
0 0 0


Therefore the system in Echelon form is −3 −3

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −t}

Hence the solution is  −t

t

 =

 −t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −t

t

 = t

 −1
1


Let t = 1 the eigenvector becomes −t

t

 =

 −1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−3 1 1 No

 −1
1



−5 1 1 No

 −3
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −3 is real and distinct then the
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corresponding eigenvector solution is

~x1(t) = ~v1e
−3t

=

 −1
1

 e−3t

Since eigenvalue −5 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
−5t

=

 −3
1

 e−5t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  y1(t)
y2(t)

 = c1

 −e−3t

e−3t

+ c2

 −3 e−5t

e−5t


Which becomes  y1(t)

y2(t)

 =

 −c1e−3t − 3c2e−5t

c1e−3t + c2e−5t


The following is the phase plot of the system.
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Figure 569: Phase plot

21.7.3 Maple step by step solution

Let’s solve
[y′1(t) = −6y1(t)− 3y2(t) , y′2(t) = y1(t)− 2y2(t)]

• Define vector

→y__(t) =

 y1(t)
y2(t)


• Convert system into a vector equation

→y__
′
(t) =

 −6 −3
1 −2

 · →y__(t) +

 0
0


• System to solve

→y__
′
(t) =

 −6 −3
1 −2

 · →y__(t)

• Define the coefficient matrix
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A =

 −6 −3
1 −2


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−5,

 −3
1

 ,

−3,

 −1
1


• Consider eigenpair−5,

 −3
1


• Solution to homogeneous system from eigenpair

→y__1 = e−5t ·

 −3
1


• Consider eigenpair−3,

 −1
1


• Solution to homogeneous system from eigenpair

→y__2 = e−3t ·

 −1
1


• General solution to the system of ODEs

→y__ = c1
→y__1 + c2

→y__2

• Substitute solutions into the general solution

→y__ = c1e−5t ·

 −3
1

+ e−3tc2 ·

 −1
1


• Substitute in vector of dependent variables
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 y1(t)
y2(t)

 =

 −3c1e−5t − e−3tc2

c1e−5t + e−3tc2


• Solution to the system of ODEs

{y1(t) = −3c1e−5t − e−3tc2, y2(t) = c1e−5t + e−3tc2}

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 36� �
dsolve([diff(y__1(t),t)=-6*y__1(t)-3*y__2(t),diff(y__2(t),t)=1*y__1(t)-2*y__2(t)],singsol=all)� �

y1(t) = c1e−3t + c2e−5t

y2(t) = −c1e−3t − c2e−5t

3

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 72� �
DSolve[{y1'[t]==-6*y1[t]-3*y2[t],y2'[t]==1*y1[t]-2*y2[t]},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → 1
2e

−5t(−(c1(e2t − 3
))

− 3c2
(
e2t − 1

))
y2(t) → 1

2e
−5t(c1(e2t − 1

)
+ c2

(
3e2t − 1

))
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21.8 problem section 10.4, problem 8
21.8.1 Solution using Matrix exponential method . . . . . . . . . . . . 8070
21.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8071
21.8.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8079

Internal problem ID [1596]
Internal file name [OUTPUT/1597_Sunday_June_05_2022_02_24_03_AM_23896703/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.4, constant coeffi-
cient homogeneous system. Page 540
Problem number: section 10.4, problem 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = y1(t)− y2(t)− 2y3(t)
y′2(t) = y1(t)− 2y2(t)− 3y3(t)
y′3(t) = −4y1(t) + y2(t)− y3(t)

21.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


1 −1 −2
1 −2 −3
−4 1 −1




y1(t)
y2(t)
y3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


−
(
−2 e5t+e2t−1

)
e−3t

2 − e2t
3 + e−t

3 −
(
2 e5t+e2t−3

)
e−3t

6

(e5t − 2 e2t + 1) e−3t 4 e−t

3 − e2t
3 −

(
e5t+2 e2t−3

)
e−3t

3(
−2 e5t+e2t+1

)
e−3t

2
e2t
3 − e−t

3

(
2 e5t+e2t+3

)
e−3t

6


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


−
(
−2 e5t+e2t−1

)
e−3t

2 − e2t
3 + e−t

3 −
(
2 e5t+e2t−3

)
e−3t

6

(e5t − 2 e2t + 1) e−3t 4 e−t

3 − e2t
3 −

(
e5t+2 e2t−3

)
e−3t

3(
−2 e5t+e2t+1

)
e−3t

2
e2t
3 − e−t

3

(
2 e5t+e2t+3

)
e−3t

6




c1

c2

c3



=


−
(
−2 e5t+e2t−1

)
e−3tc1

2 +
(
− e2t

3 + e−t

3

)
c2 −

(
2 e5t+e2t−3

)
e−3tc3

6

(e5t − 2 e2t + 1) e−3tc1 +
(

4 e−t

3 − e2t
3

)
c2 −

(
e5t+2 e2t−3

)
e−3tc3

3(
−2 e5t+e2t+1

)
e−3tc1

2 +
(

e2t
3 − e−t

3

)
c2 +

(
2 e5t+e2t+3

)
e−3tc3

6



=


−
((

c1− 2c2
3 + c3

3

)
e2t+

(
−2c1+ 2c2

3 + 2c3
3

)
e5t−c1−c3

)
e−3t

2

−2
((
c1 − 2c2

3 + c3
3

)
e2t +

(
− c1

2 + c2
6 + c3

6

)
e5t − c1

2 − c3
2

)
e−3t

((
c1− 2c2

3 + c3
3

)
e2t+

(
−2c1+ 2c2

3 + 2c3
3

)
e5t+c1+c3

)
e−3t

2


Since no forcing function is given, then the final solution is ~xh(t) above.

21.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


1 −1 −2
1 −2 −3
−4 1 −1




y1(t)
y2(t)
y3(t)
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The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




1 −1 −2
1 −2 −3
−4 1 −1

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




1− λ −1 −2
1 −2− λ −3
−4 1 −1− λ


 = 0

Which gives the characteristic equation

λ3 + 2λ2 − 5λ− 6 = 0

The roots of the above are the eigenvalues.

λ1 = −1
λ2 = −3
λ3 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

−3 1 real eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −3
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 −1 −2
1 −2 −3
−4 1 −1

− (−3)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




4 −1 −2
1 1 −3
−4 1 2




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

4 −1 −2 0
1 1 −3 0
−4 1 2 0



R2 = R2 −
R1

4 =⇒


4 −1 −2 0
0 5

4 −5
2 0

−4 1 2 0



R3 = R3 +R1 =⇒


4 −1 −2 0
0 5

4 −5
2 0

0 0 0 0


Therefore the system in Echelon form is

4 −1 −2
0 5

4 −5
2

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = 2t}

Hence the solution is 
t

2t
t

 =


t

2t
t
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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

2t
t

 = t


1
2
1


Let t = 1 the eigenvector becomes 

t

2t
t

 =


1
2
1


Considering the eigenvalue λ2 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 −1 −2
1 −2 −3
−4 1 −1

− (−1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




2 −1 −2
1 −1 −3
−4 1 0




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

2 −1 −2 0
1 −1 −3 0
−4 1 0 0



R2 = R2 −
R1

2 =⇒


2 −1 −2 0
0 −1

2 −2 0

−4 1 0 0



R3 = R3 + 2R1 =⇒


2 −1 −2 0
0 −1

2 −2 0

0 −1 −4 0
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R3 = R3 − 2R2 =⇒


2 −1 −2 0
0 −1

2 −2 0

0 0 0 0


Therefore the system in Echelon form is

2 −1 −2
0 −1

2 −2

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −t, v2 = −4t}

Hence the solution is 
−t

−4t
t

 =


−t

−4t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

−4t
t

 = t


−1
−4
1


Let t = 1 the eigenvector becomes

−t

−4t
t

 =


−1
−4
1


Considering the eigenvalue λ3 = 2
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 −1 −2
1 −2 −3
−4 1 −1

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−1 −1 −2
1 −4 −3
−4 1 −3




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−1 −1 −2 0
1 −4 −3 0
−4 1 −3 0



R2 = R2 +R1 =⇒


−1 −1 −2 0
0 −5 −5 0
−4 1 −3 0



R3 = R3 − 4R1 =⇒


−1 −1 −2 0
0 −5 −5 0
0 5 5 0



R3 = R3 +R2 =⇒


−1 −1 −2 0
0 −5 −5 0
0 0 0 0


Therefore the system in Echelon form is

−1 −1 −2
0 −5 −5
0 0 0




v1

v2

v3

 =


0
0
0
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The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −t, v2 = −t}

Hence the solution is 
−t

−t

t

 =


−t

−t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

−t

t

 = t


−1
−1
1


Let t = 1 the eigenvector becomes

−t

−t

t

 =


−1
−1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−1 1 1 No


−1
−4
1



−3 1 1 No


1
2
1



2 1 1 No


−1
−1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
−t

=


−1
−4
1

 e−t

Since eigenvalue −3 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
−3t

=


1
2
1

 e−3t
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Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
2t

=


−1
−1
1

 e2t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


−e−t

−4 e−t

e−t

+ c2


e−3t

2 e−3t

e−3t

+ c3


−e2t

−e2t

e2t


Which becomes 

y1(t)
y2(t)
y3(t)

 =


−(c3e5t + c1e2t − c2) e−3t

(−c3e5t − 4c1e2t + 2c2) e−3t

(c3e5t + c1e2t + c2) e−3t


21.8.3 Maple step by step solution

Let’s solve
[y′1(t) = y1(t)− y2(t)− 2y3(t) , y′2(t) = y1(t)− 2y2(t)− 3y3(t) , y′3(t) = −4y1(t) + y2(t)− y3(t)]

• Define vector

→y__(t) =


y1(t)
y2(t)
y3(t)


• Convert system into a vector equation

8079



→y__
′
(t) =


1 −1 −2
1 −2 −3
−4 1 −1

 · →y__(t) +


0
0
0


• System to solve

→y__
′
(t) =


1 −1 −2
1 −2 −3
−4 1 −1

 · →y__(t)

• Define the coefficient matrix

A =


1 −1 −2
1 −2 −3
−4 1 −1


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−3,


1
2
1


 ,

−1,


−1
−4
1


 ,

2,


−1
−1
1





• Consider eigenpair−3,


1
2
1




• Solution to homogeneous system from eigenpair

→y__1 = e−3t ·


1
2
1


• Consider eigenpair
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−1,


−1
−4
1




• Solution to homogeneous system from eigenpair

→y__2 = e−t ·


−1
−4
1


• Consider eigenpair2,


−1
−1
1




• Solution to homogeneous system from eigenpair

→y__3 = e2t ·


−1
−1
1


• General solution to the system of ODEs

→y__ = c1
→y__1 + c2

→y__2 + c3
→y__3

• Substitute solutions into the general solution

→y__ = c1e−3t ·


1
2
1

+ c2e−t ·


−1
−4
1

+ c3e2t ·


−1
−1
1


• Substitute in vector of dependent variables

y1(t)
y2(t)
y3(t)

 =


(−c3e5t − c2e2t + c1) e−3t

(−c3e5t − 4c2e2t + 2c1) e−3t

(c1 + c2e2t + c3e5t) e−3t


• Solution to the system of ODEs

{y1(t) = (−c3e5t − c2e2t + c1) e−3t, y2(t) = (−c3e5t − 4c2e2t + 2c1) e−3t, y3(t) = (c1 + c2e2t + c3e5t) e−3t}
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 72� �
dsolve([diff(y__1(t),t)=1*y__1(t)-1*y__2(t)-2*y__3(t),diff(y__2(t),t)=1*y__1(t)-2*y__2(t)-3*y__3(t),diff(y__3(t),t)=-4*y__1(t)+1*y__2(t)-1*y__3(t)],singsol=all)� �

y1(t) = e−tc1 + c2e2t + c3e−3t

y2(t) = 4 e−tc1 + c2e2t + 2c3e−3t

y3(t) = −e−tc1 − c2e2t + c3e−3t

3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 102� �
DSolve[{y1'[t]==1*y1[t]-1*y2[t]-2*y3[t],y2'[t]==1*y1[t]-2*y2[t]-3*y3[t],y1'[t]==-4*y1[t]+1*y2[t]-1*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → 1
576e

−3t(c1(63− 128et
)
+ c2

(
64et − 27

))
y2(t) → 1

864e
−3t(c2(224et − 81

)
− 7c1

(
64et − 27

))
y3(t) → e−3t(c1(189− 128et) + c2(64et − 81))

1728
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21.9 problem section 10.4, problem 9
21.9.1 Solution using Matrix exponential method . . . . . . . . . . . . 8083
21.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8084
21.9.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8091

Internal problem ID [1597]
Internal file name [OUTPUT/1598_Sunday_June_05_2022_02_24_05_AM_1459569/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.4, constant coeffi-
cient homogeneous system. Page 540
Problem number: section 10.4, problem 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −6y1(t)− 4y2(t)− 8y3(t)
y′2(t) = −4y1(t)− 4y3(t)
y′3(t) = −8y1(t)− 4y2(t)− 6y3(t)

21.9.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−6 −4 −8
−4 0 −4
−8 −4 −6




y1(t)
y2(t)
y3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


(
5 e18t+4

)
e−16t

9 −2
(
e18t−1

)
e−16t

9 −4
(
e18t−1

)
e−16t

9

−2
(
e18t−1

)
e−16t

9

(
8 e18t+1

)
e−16t

9 −2
(
e18t−1

)
e−16t

9

−4
(
e18t−1

)
e−16t

9 −2
(
e18t−1

)
e−16t

9

(
5 e18t+4

)
e−16t

9


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


(
5 e18t+4

)
e−16t

9 −2
(
e18t−1

)
e−16t

9 −4
(
e18t−1

)
e−16t

9

−2
(
e18t−1

)
e−16t

9

(
8 e18t+1

)
e−16t

9 −2
(
e18t−1

)
e−16t

9

−4
(
e18t−1

)
e−16t

9 −2
(
e18t−1

)
e−16t

9

(
5 e18t+4

)
e−16t

9




c1

c2

c3



=


(
5 e18t+4

)
e−16tc1

9 − 2
(
e18t−1

)
e−16tc2

9 − 4
(
e18t−1

)
e−16tc3

9

−2
(
e18t−1

)
e−16tc1

9 +
(
8 e18t+1

)
e−16tc2

9 − 2
(
e18t−1

)
e−16tc3

9

−4
(
e18t−1

)
e−16tc1

9 − 2
(
e18t−1

)
e−16tc2

9 +
(
5 e18t+4

)
e−16tc3

9



=


e−16t((5c1−2c2−4c3)e18t+4c1+2c2+4c3

)
9

−2
(
(c1−4c2+c3)e18t−c1− c2

2 −c3
)
e−16t

9

−
4
((

c1+ c2
2 − 5c3

4

)
e18t−c1− c2

2 −c3
)
e−16t

9


Since no forcing function is given, then the final solution is ~xh(t) above.

21.9.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−6 −4 −8
−4 0 −4
−8 −4 −6




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0
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Expanding gives

det




−6 −4 −8
−4 0 −4
−8 −4 −6

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




−6− λ −4 −8
−4 −λ −4
−8 −4 −6− λ


 = 0

Which gives the characteristic equation

λ3 + 12λ2 − 60λ+ 64 = 0

The roots of the above are the eigenvalues.

λ1 = −16
λ2 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

−16 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −16

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−6 −4 −8
−4 0 −4
−8 −4 −6

− (−16)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




10 −4 −8
−4 16 −4
−8 −4 10




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

10 −4 −8 0
−4 16 −4 0
−8 −4 10 0



R2 = R2 +
2R1

5 =⇒


10 −4 −8 0
0 72

5 −36
5 0

−8 −4 10 0



R3 = R3 +
4R1

5 =⇒


10 −4 −8 0
0 72

5 −36
5 0

0 −36
5

18
5 0



R3 = R3 +
R2

2 =⇒


10 −4 −8 0
0 72

5 −36
5 0

0 0 0 0


Therefore the system in Echelon form is

10 −4 −8
0 72

5 −36
5

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = t, v2 = t

2

}
Hence the solution is 

t

t
2

t

 =


t

t
2

t
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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t
2

t

 = t


1
1
2

1


Let t = 1 the eigenvector becomes 

t

t
2

t

 =


1
1
2

1


Which is normalized to 

t

t
2

t

 =


2
1
2


Considering the eigenvalue λ2 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−6 −4 −8
−4 0 −4
−8 −4 −6

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−8 −4 −8
−4 −2 −4
−8 −4 −8




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−8 −4 −8 0
−4 −2 −4 0
−8 −4 −8 0



R2 = R2 −
R1

2 =⇒


−8 −4 −8 0
0 0 0 0
−8 −4 −8 0
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R3 = R3 −R1 =⇒


−8 −4 −8 0
0 0 0 0
0 0 0 0


Therefore the system in Echelon form is

−8 −4 −8
0 0 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2, v3} and the leading variables are {v1}. Let v2 = t. Let v3 = s.
Now we start back substitution. Solving the above equation for the leading variables
in terms of free variables gives equation

{
v1 = − t

2 − s
}

Hence the solution is 
− t

2 − s

t

s

 =


− t

2 − s

t

s


Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

− t
2 − s

t

s

 =


− t

2

t

0

+


−s

0
s



= t


−1

2

1
0

+ s


−1
0
1


By letting t = 1 and s = 1 then the above becomes

− t
2 − s

t

s

 =


−1

2

1
0

+


−1
0
1
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Hence the two eigenvectors associated with this eigenvalue are


−1
2

1
0

 ,


−1
0
1




Which are normalized to 


−1
2
0

 ,


−1
0
1




The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−16 1 1 No


1
1
2

1



2 2 2 No


−1 −1

2

0 1
1 0


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −16 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
−16t

=


1
1
2

1

 e−16t
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eigenvalue 2 is real and repated eigenvalue of multiplicity 2.There are two possible cases
that can happen. This is illustrated in this diagram

λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 570: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric
multiplicity 2, then it is complete eigenvalue and this falls into case 1 shown above.
Hence the corresponding eigenvector basis are

~x2(t) = ~v2e
2t

=


−1
0
1

 e2t

~x3(t) = ~v3e
2t

=


−1

2

1
0

 e2t
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Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


e−16t

e−16t

2

e−16t

+ c2


−e2t

0
e2t

+ c3


− e2t

2

e2t

0


Which becomes 

y1(t)
y2(t)
y3(t)

 =


((
−c2 − c3

2

)
e18t + c1

)
e−16t

(
2c3e18t+c1

)
e−16t

2

(c2e18t + c1) e−16t


21.9.3 Maple step by step solution

Let’s solve
[y′1(t) = −6y1(t)− 4y2(t)− 8y3(t) , y′2(t) = −4y1(t)− 4y3(t) , y′3(t) = −8y1(t)− 4y2(t)− 6y3(t)]

• Define vector

→y__(t) =


y1(t)
y2(t)
y3(t)


• Convert system into a vector equation

→y__
′
(t) =


−6 −4 −8
−4 0 −4
−8 −4 −6

 · →y__(t) +


0
0
0


• System to solve

→y__
′
(t) =


−6 −4 −8
−4 0 −4
−8 −4 −6

 · →y__(t)

• Define the coefficient matrix
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A =


−6 −4 −8
−4 0 −4
−8 −4 −6


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−16,


1
1
2

1


 ,

2,


−1
0
1


 ,

2,


−1
2

1
0





• Consider eigenpair−16,


1
1
2

1




• Solution to homogeneous system from eigenpair

→y__1 = e−16t ·


1
1
2

1


• Consider eigenpair, with eigenvalue of algebraic multiplicity 22,


−1
0
1




• First solution from eigenvalue 2

→y__2(t) = e2t ·


−1
0
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 2 is the eigenvalue, and →
v is the eigenvector
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→y__3(t) = eλt
(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 2

• Substitute →y__3(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →y__3(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 2


−6 −4 −8
−4 0 −4
−8 −4 −6

− 2 ·


1 0 0
0 1 0
0 0 1


 · →p =


−1
0
1


• Choice of →

p

→
p =


1
8

0
0


• Second solution from eigenvalue 2

→y__3(t) = e2t ·

t ·


−1
0
1

+


1
8

0
0




• General solution to the system of ODEs
→y__ = c1

→y__1 + c2
→y__2(t) + c3

→y__3(t)
• Substitute solutions into the general solution
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→y__ = c1e−16t ·


1
1
2

1

+ c2e2t ·


−1
0
1

+ c3e2t ·

t ·


−1
0
1

+


1
8

0
0




• Substitute in vector of dependent variables
y1(t)
y2(t)
y3(t)

 =


−
(((

t− 1
8

)
c3 + c2

)
e18t − c1

)
e−16t

c1e−16t

2

((c3t+ c2) e18t + c1) e−16t


• Solution to the system of ODEs{

y1(t) = −
(((

t− 1
8

)
c3 + c2

)
e18t − c1

)
e−16t, y2(t) = c1e−16t

2 , y3(t) = ((c3t+ c2) e18t + c1) e−16t
}

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 67� �
dsolve([diff(y__1(t),t)=-6*y__1(t)-4*y__2(t)-8*y__3(t),diff(y__2(t),t)=-4*y__1(t)-0*y__2(t)-4*y__3(t),diff(y__3(t),t)=-8*y__1(t)-4*y__2(t)-6*y__3(t)],singsol=all)� �

y1(t) = 2c2e−16t + 2c3e2t + c1e2t

y2(t) = c2e−16t + c3e2t

y3(t) = 2c2e−16t − 5c3e2t
2 − c1e2t

3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 116� �
DSolve[{y1'[t]==-6*y1[t]-4*y2[t]-8*y3[t],y2'[t]==-4*y1[t]-0*y2[t]-4*y3[t],y1'[t]==-8*y1[t]-4*y2[t]-6*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e−16t(c1(8− 4913e18t) + 2c2(4913e18t + 1))
44217

y2(t) → e−16t(4c1(4913e18t + 1) + c2(1− 39304e18t))
44217

y3(t) → e−16t(c1(8− 4913e18t) + 2c2(4913e18t + 1))
44217
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21.10 problem section 10.4, problem 10
21.10.1 Solution using Matrix exponential method . . . . . . . . . . . . 8095
21.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8096
21.10.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8104

Internal problem ID [1598]
Internal file name [OUTPUT/1599_Sunday_June_05_2022_02_24_08_AM_41318160/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.4, constant coeffi-
cient homogeneous system. Page 540
Problem number: section 10.4, problem 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = 3y1(t) + 5y2(t) + 8y3(t)
y′2(t) = y1(t)− y2(t)− 2y3(t)
y′3(t) = −y1(t)− y2(t)− y3(t)

21.10.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


3 5 8
1 −1 −2
−1 −1 −1




y1(t)
y2(t)
y3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


(
21 e4t−8 e3t−1

)
e−2t

12

(
21 e4t−8 e3t−13

)
e−2t

12

(
7 e4t−4 e3t−3

)
e−2t

2(
15 e4t−16 e3t+1

)
e−2t

12

(
15 e4t−16 e3t+13

)
e−2t

12

(
5 e4t−8 e3t+3

)
e−2t

2

−e2t + et −e2t + et 3 et − 2 e2t


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


(
21 e4t−8 e3t−1

)
e−2t

12

(
21 e4t−8 e3t−13

)
e−2t

12

(
7 e4t−4 e3t−3

)
e−2t

2(
15 e4t−16 e3t+1

)
e−2t

12

(
15 e4t−16 e3t+13

)
e−2t

12

(
5 e4t−8 e3t+3

)
e−2t

2

−e2t + et −e2t + et 3 et − 2 e2t




c1

c2

c3



=


(
21 e4t−8 e3t−1

)
e−2tc1

12 +
(
21 e4t−8 e3t−13

)
e−2tc2

12 +
(
7 e4t−4 e3t−3

)
e−2tc3

2(
15 e4t−16 e3t+1

)
e−2tc1

12 +
(
15 e4t−16 e3t+13

)
e−2tc2

12 +
(
5 e4t−8 e3t+3

)
e−2tc3

2

(−e2t + et) c1 + (−e2t + et) c2 + (3 et − 2 e2t) c3



=


−

2
(
(c1+c2+3c3)e3t+

(
− 21c1

8 − 21c2
8 − 21c3

4

)
e4t+ c1

8 + 13c2
8 + 9c3

4

)
e−2t

3

−
4
(
(c1+c2+3c3)e3t+

(
− 15c1

16 − 15c2
16 − 15c3

8

)
e4t− c1

16−
13c2
16 − 9c3

8

)
e−2t

3

(−c1 − c2 − 2c3) e2t + et(c1 + c2 + 3c3)


Since no forcing function is given, then the final solution is ~xh(t) above.

21.10.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


3 5 8
1 −1 −2
−1 −1 −1




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0
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Expanding gives

det




3 5 8
1 −1 −2
−1 −1 −1

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




3− λ 5 8
1 −1− λ −2
−1 −1 −1− λ


 = 0

Which gives the characteristic equation

λ3 − λ2 − 4λ+ 4 = 0

The roots of the above are the eigenvalues.

λ1 = −2
λ2 = 1
λ3 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−2 1 real eigenvalue

1 1 real eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


3 5 8
1 −1 −2
−1 −1 −1

− (−2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




5 5 8
1 1 −2
−1 −1 1




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

5 5 8 0
1 1 −2 0
−1 −1 1 0



R2 = R2 −
R1

5 =⇒


5 5 8 0
0 0 −18

5 0

−1 −1 1 0



R3 = R3 +
R1

5 =⇒


5 5 8 0
0 0 −18

5 0

0 0 13
5 0



R3 = R3 +
13R2

18 =⇒


5 5 8 0
0 0 −18

5 0

0 0 0 0


Therefore the system in Echelon form is

5 5 8
0 0 −18

5

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2} and the leading variables are {v1, v3}. Let v2 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −t, v3 = 0}

Hence the solution is 
−t

t

0

 =


−t

t

0
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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

t

0

 = t


−1
1
0


Let t = 1 the eigenvector becomes

−t

t

0

 =


−1
1
0


Considering the eigenvalue λ2 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


3 5 8
1 −1 −2
−1 −1 −1

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




2 5 8
1 −2 −2
−1 −1 −2




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

2 5 8 0
1 −2 −2 0
−1 −1 −2 0



R2 = R2 −
R1

2 =⇒


2 5 8 0
0 −9

2 −6 0

−1 −1 −2 0



R3 = R3 +
R1

2 =⇒


2 5 8 0
0 −9

2 −6 0

0 3
2 2 0
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R3 = R3 +
R2

3 =⇒


2 5 8 0
0 −9

2 −6 0

0 0 0 0


Therefore the system in Echelon form is

2 5 8
0 −9

2 −6

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = −2t

3 , v2 = −4t
3

}
Hence the solution is 

−2t
3

−4t
3

t

 =


−2t

3

−4t
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−2t
3

−4t
3

t

 = t


−2

3

−4
3

1


Let t = 1 the eigenvector becomes

−2t
3

−4t
3

t

 =


−2

3

−4
3

1


Which is normalized to 

−2t
3

−4t
3

t

 =


−2
−4
3


Considering the eigenvalue λ3 = 2
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


3 5 8
1 −1 −2
−1 −1 −1

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




1 5 8
1 −3 −2
−1 −1 −3




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

1 5 8 0
1 −3 −2 0
−1 −1 −3 0



R2 = R2 −R1 =⇒


1 5 8 0
0 −8 −10 0
−1 −1 −3 0



R3 = R3 +R1 =⇒


1 5 8 0
0 −8 −10 0
0 4 5 0



R3 = R3 +
R2

2 =⇒


1 5 8 0
0 −8 −10 0
0 0 0 0


Therefore the system in Echelon form is

1 5 8
0 −8 −10
0 0 0




v1

v2

v3

 =


0
0
0
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The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = −7t

4 , v2 = −5t
4

}
Hence the solution is 

−7t
4

−5t
4

t

 =


−7t

4

−5t
4

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−7t
4

−5t
4

t

 = t


−7

4

−5
4

1


Let t = 1 the eigenvector becomes

−7t
4

−5t
4

t

 =


−7

4

−5
4

1


Which is normalized to 

−7t
4

−5t
4

t

 =


−7
−5
4


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−2 1 1 No


−1
1
0



1 1 1 No


−2

3

−4
3

1



2 1 1 No


−7

4

−5
4

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −2 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
−2t

=


−1
1
0

 e−2t

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
t

=


−2

3

−4
3

1

 et
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Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
2t

=


−7

4

−5
4

1

 e2t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


−e−2t

e−2t

0

+ c2


−2 et

3

−4 et
3

et

+ c3


−7 e2t

4

−5 e2t
4

e2t


Which becomes 

y1(t)
y2(t)
y3(t)

 =


−
(
21c3e4t+8c2e3t+12c1

)
e−2t

12

−
(
15c3e4t+16c2e3t−12c1

)
e−2t

12

c2et + c3e2t


21.10.3 Maple step by step solution

Let’s solve
[y′1(t) = 3y1(t) + 5y2(t) + 8y3(t) , y′2(t) = y1(t)− y2(t)− 2y3(t) , y′3(t) = −y1(t)− y2(t)− y3(t)]

• Define vector

→y__(t) =


y1(t)
y2(t)
y3(t)


• Convert system into a vector equation
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→y__
′
(t) =


3 5 8
1 −1 −2
−1 −1 −1

 · →y__(t) +


0
0
0


• System to solve

→y__
′
(t) =


3 5 8
1 −1 −2
−1 −1 −1

 · →y__(t)

• Define the coefficient matrix

A =


3 5 8
1 −1 −2
−1 −1 −1


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−2,


−1
1
0


 ,

1,


−2
3

−4
3

1


 ,

2,


−7
4

−5
4

1





• Consider eigenpair−2,


−1
1
0




• Solution to homogeneous system from eigenpair

→y__1 = e−2t ·


−1
1
0


• Consider eigenpair
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1,


−2
3

−4
3

1




• Solution to homogeneous system from eigenpair

→y__2 = et ·


−2

3

−4
3

1


• Consider eigenpair2,


−7

4

−5
4

1




• Solution to homogeneous system from eigenpair

→y__3 = e2t ·


−7

4

−5
4

1


• General solution to the system of ODEs

→y__ = c1
→y__1 + c2

→y__2 + c3
→y__3

• Substitute solutions into the general solution

→y__ = c1e−2t ·


−1
1
0

+ c2et ·


−2

3

−4
3

1

+ c3e2t ·


−7

4

−5
4

1


• Substitute in vector of dependent variables

y1(t)
y2(t)
y3(t)

 =


−
(
21c3e4t+8c2e3t+12c1

)
e−2t

12

−
(
15c3e4t+16c2e3t−12c1

)
e−2t

12

c2et + c3e2t


• Solution to the system of ODEs{

y1(t) = −
(
21c3e4t+8c2e3t+12c1

)
e−2t

12 , y2(t) = −
(
15c3e4t+16c2e3t−12c1

)
e−2t

12 , y3(t) = c2et + c3e2t
}
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 61� �
dsolve([diff(y__1(t),t)=3*y__1(t)+5*y__2(t)+8*y__3(t),diff(y__2(t),t)=1*y__1(t)-1*y__2(t)-2*y__3(t),diff(y__3(t),t)=-1*y__1(t)-1*y__2(t)-1*y__3(t)],singsol=all)� �

y1(t) = c1et + c2e−2t + c3e2t

y2(t) = 2c1et − c2e−2t + 5c3e2t
7

y3(t) = −3c1et
2 − 4c3e2t

7

3 Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 193� �
DSolve[{y1'[t]==3*y1[t]+5*y2[t]+8*y3[t],y2'[t]==1*y1[t]-1*y2[t]-2*y3[t],y1'[t]==-1*y1[t]-1*y2[t]-1*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) →
e−t/9

(√
35(2c2 − 121c1) sin

(√
35t
9

)
− 7(74c1 + 53c2) cos

(√
35t
9

))
1575

y2(t) →
e−t/9

(
7(901c1 + 202c2) cos

(√
35t
9

)
−
√
35(34c1 + 379c2) sin

(√
35t
9

))
4725

y3(t) →
e−t/9

(
2
√
35(92c1 + 125c2) sin

(√
35t
9

)
− 14(251c1 + 32c2) cos

(√
35t
9

))
4725
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21.11 problem section 10.4, problem 11
21.11.1 Solution using Matrix exponential method . . . . . . . . . . . . 8108
21.11.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8109
21.11.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8116

Internal problem ID [1599]
Internal file name [OUTPUT/1600_Sunday_June_05_2022_02_24_10_AM_9599456/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.4, constant coeffi-
cient homogeneous system. Page 540
Problem number: section 10.4, problem 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = y1(t)− y2(t) + 2y3(t)
y′2(t) = 12y1(t)− 4y2(t) + 10y3(t)
y′3(t) = −6y1(t) + y2(t)− 7y3(t)

21.11.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


1 −1 2
12 −4 10
−6 1 −7




y1(t)
y2(t)
y3(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


3 e−3t − 2 e−5t −e−2t + e−3t −2 e−2t + 4 e−3t − 2 e−5t

6 e−3t − 6 e−5t −e−2t + 2 e−3t −2 e−2t + 8 e−3t − 6 e−5t

−3 e−3t + 3 e−5t e−2t − e−3t 3 e−5t + 2 e−2t − 4 e−3t
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=


3 e−3t − 2 e−5t −e−2t + e−3t −2 e−2t + 4 e−3t − 2 e−5t

6 e−3t − 6 e−5t −e−2t + 2 e−3t −2 e−2t + 8 e−3t − 6 e−5t

−3 e−3t + 3 e−5t e−2t − e−3t 3 e−5t + 2 e−2t − 4 e−3t




c1

c2

c3



=


(3 e−3t − 2 e−5t) c1 + (−e−2t + e−3t) c2 + (−2 e−2t + 4 e−3t − 2 e−5t) c3
(6 e−3t − 6 e−5t) c1 + (−e−2t + 2 e−3t) c2 + (−2 e−2t + 8 e−3t − 6 e−5t) c3
(−3 e−3t + 3 e−5t) c1 + (e−2t − e−3t) c2 + (3 e−5t + 2 e−2t − 4 e−3t) c3



=


(3c1 + c2 + 4c3) e−3t + (−2c1 − 2c3) e−5t − e−2t(c2 + 2c3)
(6c1 + 2c2 + 8c3) e−3t + (−6c1 − 6c3) e−5t − e−2t(c2 + 2c3)
(−3c1 − c2 − 4c3) e−3t + (3c1 + 3c3) e−5t + e−2t(c2 + 2c3)


Since no forcing function is given, then the final solution is ~xh(t) above.

21.11.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


1 −1 2
12 −4 10
−6 1 −7




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




1 −1 2
12 −4 10
−6 1 −7

− λ


1 0 0
0 1 0
0 0 1


 = 0

8109



Therefore

det




1− λ −1 2
12 −4− λ 10
−6 1 −7− λ


 = 0

Which gives the characteristic equation

λ3 + 10λ2 + 31λ+ 30 = 0

The roots of the above are the eigenvalues.

λ1 = −3
λ2 = −2
λ3 = −5

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−2 1 real eigenvalue

−3 1 real eigenvalue

−5 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −5

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 −1 2
12 −4 10
−6 1 −7

− (−5)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




6 −1 2
12 1 10
−6 1 −2




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

6 −1 2 0
12 1 10 0
−6 1 −2 0
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R2 = R2 − 2R1 =⇒


6 −1 2 0
0 3 6 0
−6 1 −2 0



R3 = R3 +R1 =⇒


6 −1 2 0
0 3 6 0
0 0 0 0


Therefore the system in Echelon form is

6 −1 2
0 3 6
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = −2t

3 , v2 = −2t
}

Hence the solution is 
−2t

3

−2t
t

 =


−2t

3

−2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−2t
3

−2t
t

 = t


−2

3

−2
1


Let t = 1 the eigenvector becomes

−2t
3

−2t
t

 =


−2

3

−2
1
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Which is normalized to 
−2t

3

−2t
t

 =


−2
−6
3


Considering the eigenvalue λ2 = −3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 −1 2
12 −4 10
−6 1 −7

− (−3)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




4 −1 2
12 −1 10
−6 1 −4




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

4 −1 2 0
12 −1 10 0
−6 1 −4 0



R2 = R2 − 3R1 =⇒


4 −1 2 0
0 2 4 0
−6 1 −4 0



R3 = R3 +
3R1

2 =⇒


4 −1 2 0
0 2 4 0
0 −1

2 −1 0



R3 = R3 +
R2

4 =⇒


4 −1 2 0
0 2 4 0
0 0 0 0
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Therefore the system in Echelon form is
4 −1 2
0 2 4
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −t, v2 = −2t}

Hence the solution is 
−t

−2t
t

 =


−t

−2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

−2t
t

 = t


−1
−2
1


Let t = 1 the eigenvector becomes

−t

−2t
t

 =


−1
−2
1


Considering the eigenvalue λ3 = −2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 −1 2
12 −4 10
−6 1 −7

− (−2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




3 −1 2
12 −2 10
−6 1 −5




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

3 −1 2 0
12 −2 10 0
−6 1 −5 0



R2 = R2 − 4R1 =⇒


3 −1 2 0
0 2 2 0
−6 1 −5 0



R3 = R3 + 2R1 =⇒


3 −1 2 0
0 2 2 0
0 −1 −1 0



R3 = R3 +
R2

2 =⇒


3 −1 2 0
0 2 2 0
0 0 0 0


Therefore the system in Echelon form is

3 −1 2
0 2 2
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −t, v2 = −t}

Hence the solution is 
−t

−t

t

 =


−t

−t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

−t

t

 = t


−1
−1
1
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Let t = 1 the eigenvector becomes
−t

−t

t

 =


−1
−1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−3 1 1 No


−1
−2
1



−2 1 1 No


−1
−1
1



−5 1 1 No


−2

3

−2
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −3 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
−3t

=


−1
−2
1

 e−3t
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Since eigenvalue −2 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
−2t

=


−1
−1
1

 e−2t

Since eigenvalue −5 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
−5t

=


−2

3

−2
1

 e−5t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


−e−3t

−2 e−3t

e−3t

+ c2


−e−2t

−e−2t

e−2t

+ c3


−2 e−5t

3

−2 e−5t

e−5t


Which becomes 

y1(t)
y2(t)
y3(t)

 =


−c1e−3t − c2e−2t − 2c3e−5t

3

−2c1e−3t − c2e−2t − 2c3e−5t

c1e−3t + c2e−2t + c3e−5t


21.11.3 Maple step by step solution

Let’s solve
[y′1(t) = y1(t)− y2(t) + 2y3(t) , y′2(t) = 12y1(t)− 4y2(t) + 10y3(t) , y′3(t) = −6y1(t) + y2(t)− 7y3(t)]

• Define vector
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→y__(t) =


y1(t)
y2(t)
y3(t)


• Convert system into a vector equation

→y__
′
(t) =


1 −1 2
12 −4 10
−6 1 −7

 · →y__(t) +


0
0
0


• System to solve

→y__
′
(t) =


1 −1 2
12 −4 10
−6 1 −7

 · →y__(t)

• Define the coefficient matrix

A =


1 −1 2
12 −4 10
−6 1 −7


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−5,


−2

3

−2
1


 ,

−3,


−1
−2
1


 ,

−2,


−1
−1
1





• Consider eigenpair−5,


−2

3

−2
1




• Solution to homogeneous system from eigenpair
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→y__1 = e−5t ·


−2

3

−2
1


• Consider eigenpair−3,


−1
−2
1




• Solution to homogeneous system from eigenpair

→y__2 = e−3t ·


−1
−2
1


• Consider eigenpair−2,


−1
−1
1




• Solution to homogeneous system from eigenpair

→y__3 = e−2t ·


−1
−1
1


• General solution to the system of ODEs

→y__ = c1
→y__1 + c2

→y__2 + c3
→y__3

• Substitute solutions into the general solution

→y__ = c1e−5t ·


−2

3

−2
1

+ e−3tc2 ·


−1
−2
1

+ c3e−2t ·


−1
−1
1


• Substitute in vector of dependent variables
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y1(t)
y2(t)
y3(t)

 =


−2c1e−5t

3 − e−3tc2 − c3e−2t

−2c1e−5t − 2 e−3tc2 − c3e−2t

c1e−5t + e−3tc2 + c3e−2t


• Solution to the system of ODEs{

y1(t) = −2c1e−5t

3 − e−3tc2 − c3e−2t, y2(t) = −2c1e−5t − 2 e−3tc2 − c3e−2t, y3(t) = c1e−5t + e−3tc2 + c3e−2t
}

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 73� �
dsolve([diff(y__1(t),t)=1*y__1(t)-1*y__2(t)+2*y__3(t),diff(y__2(t),t)=12*y__1(t)-4*y__2(t)+10*y__3(t),diff(y__3(t),t)=-6*y__1(t)+1*y__2(t)-7*y__3(t)],singsol=all)� �

y1(t) = c1e−2t + c2e−3t + c3e−5t

y2(t) = c1e−2t + 2c2e−3t + 3c3e−5t

y3(t) = −c1e−2t − c2e−3t − 3c3e−5t

2

3 Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 193� �
DSolve[{y1'[t]==1*y1[t]-1*y2[t]+2*y3[t],y2'[t]==12*y1[t]-4*y2[t]+10*y3[t],y1'[t]==-6*y1[t]+1*y2[t]-7*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �
y1(t) →

e−7t/6
(
71(77c1 − 109c2) cos

(√
71t
6

)
+
√
71(143c2 − 2479c1) sin

(√
71t
6

))
340800

y2(t) →
e−7t/6

(
71(2071c1 − 407c2) cos

(√
71t
6

)
−
√
71(2717c1 + 5411c2) sin

(√
71t
6

))
852000

y3(t) →
e−7t/6

(
639(23c1 + 9c2) cos

(√
71t
6

)
+ 3

√
71(937c1 − 329c2) sin

(√
71t
6

))
568000
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21.12 problem section 10.4, problem 12
21.12.1 Solution using Matrix exponential method . . . . . . . . . . . . 8120
21.12.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8121
21.12.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8129

Internal problem ID [1600]
Internal file name [OUTPUT/1601_Sunday_June_05_2022_02_24_12_AM_85778873/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.4, constant coeffi-
cient homogeneous system. Page 540
Problem number: section 10.4, problem 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = 4y1(t)− y2(t)− 4y3(t)
y′2(t) = 4y1(t)− 3y2(t)− 2y3(t)
y′3(t) = y1(t)− y2(t)− y3(t)

21.12.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


4 −1 −4
4 −3 −2
1 −1 −1




y1(t)
y2(t)
y3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


(
11 e5t+5 et−6

)
e−2t

10 −e−t + e−2t −
(
11 e5t−15 et+4

)
e−2t

10(
7 e5t+5 et−12

)
e−2t

10 −e−t + 2 e−2t −
(
7 e5t−15 et+8

)
e−2t

10(
e5t+5 et−6

)
e−2t

10 −e−t + e−2t −
(
e5t−15 et+4

)
e−2t

10


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


(
11 e5t+5 et−6

)
e−2t

10 −e−t + e−2t −
(
11 e5t−15 et+4

)
e−2t

10(
7 e5t+5 et−12

)
e−2t

10 −e−t + 2 e−2t −
(
7 e5t−15 et+8

)
e−2t

10(
e5t+5 et−6

)
e−2t

10 −e−t + e−2t −
(
e5t−15 et+4

)
e−2t

10




c1

c2

c3



=


(
11 e5t+5 et−6

)
e−2tc1

10 + (−e−t + e−2t) c2 −
(
11 e5t−15 et+4

)
e−2tc3

10(
7 e5t+5 et−12

)
e−2tc1

10 + (−e−t + 2 e−2t) c2 −
(
7 e5t−15 et+8

)
e−2tc3

10(
e5t+5 et−6

)
e−2tc1

10 + (−e−t + e−2t) c2 −
(
e5t−15 et+4

)
e−2tc3

10



=



(
11(c1−c3)e

5t
5 +(c1−2c2+3c3)et− 6c1

5 +2c2− 4c3
5

)
e−2t

2(
7(c1−c3)e

5t
5 +(c1−2c2+3c3)et− 12c1

5 +4c2− 8c3
5

)
e−2t

2(
(c1−c3)e

5t
5 +(c1−2c2+3c3)et− 6c1

5 +2c2− 4c3
5

)
e−2t

2


Since no forcing function is given, then the final solution is ~xh(t) above.

21.12.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


4 −1 −4
4 −3 −2
1 −1 −1




y1(t)
y2(t)
y3(t)
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The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




4 −1 −4
4 −3 −2
1 −1 −1

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




4− λ −1 −4
4 −3− λ −2
1 −1 −1− λ


 = 0

Which gives the characteristic equation

λ3 − 7λ− 6 = 0

The roots of the above are the eigenvalues.

λ1 = −1
λ2 = −2
λ3 = 3

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

−2 1 real eigenvalue

3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


4 −1 −4
4 −3 −2
1 −1 −1

− (−2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




6 −1 −4
4 −1 −2
1 −1 1




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

6 −1 −4 0
4 −1 −2 0
1 −1 1 0



R2 = R2 −
2R1

3 =⇒


6 −1 −4 0
0 −1

3
2
3 0

1 −1 1 0



R3 = R3 −
R1

6 =⇒


6 −1 −4 0
0 −1

3
2
3 0

0 −5
6

5
3 0



R3 = R3 −
5R2

2 =⇒


6 −1 −4 0
0 −1

3
2
3 0

0 0 0 0


Therefore the system in Echelon form is

6 −1 −4
0 −1

3
2
3

0 0 0




v1

v2

v3

 =


0
0
0
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The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = 2t}

Hence the solution is 
t

2t
t

 =


t

2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

2t
t

 = t


1
2
1


Let t = 1 the eigenvector becomes 

t

2t
t

 =


1
2
1


Considering the eigenvalue λ2 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


4 −1 −4
4 −3 −2
1 −1 −1

− (−1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




5 −1 −4
4 −2 −2
1 −1 0




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

5 −1 −4 0
4 −2 −2 0
1 −1 0 0
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R2 = R2 −
4R1

5 =⇒


5 −1 −4 0
0 −6

5
6
5 0

1 −1 0 0



R3 = R3 −
R1

5 =⇒


5 −1 −4 0
0 −6

5
6
5 0

0 −4
5

4
5 0



R3 = R3 −
2R2

3 =⇒


5 −1 −4 0
0 −6

5
6
5 0

0 0 0 0


Therefore the system in Echelon form is

5 −1 −4
0 −6

5
6
5

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = t}

Hence the solution is 
t

t

t

 =


t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

t

 = t


1
1
1


Let t = 1 the eigenvector becomes 

t

t

t

 =


1
1
1
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Considering the eigenvalue λ3 = 3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


4 −1 −4
4 −3 −2
1 −1 −1

− (3)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




1 −1 −4
4 −6 −2
1 −1 −4




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

1 −1 −4 0
4 −6 −2 0
1 −1 −4 0



R2 = R2 − 4R1 =⇒


1 −1 −4 0
0 −2 14 0
1 −1 −4 0



R3 = R3 −R1 =⇒


1 −1 −4 0
0 −2 14 0
0 0 0 0


Therefore the system in Echelon form is

1 −1 −4
0 −2 14
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 11t, v2 = 7t}
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Hence the solution is 
11t
7t
t

 =


11t
7t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

11t
7t
t

 = t


11
7
1


Let t = 1 the eigenvector becomes

11t
7t
t

 =


11
7
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−1 1 1 No


1
1
1



−2 1 1 No


1
2
1



3 1 1 No


11
7
1
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Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
−t

=


1
1
1

 e−t

Since eigenvalue −2 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
−2t

=


1
2
1

 e−2t

Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
3t

=


11
7
1

 e3t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


e−t

e−t

e−t

+ c2


e−2t

2 e−2t

e−2t

+ c3


11 e3t

7 e3t

e3t


Which becomes 

y1(t)
y2(t)
y3(t)

 =


(11c3e5t + c1et + c2) e−2t

(7c3e5t + c1et + 2c2) e−2t

(c3e5t + c1et + c2) e−2t
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21.12.3 Maple step by step solution

Let’s solve
[y′1(t) = 4y1(t)− y2(t)− 4y3(t) , y′2(t) = 4y1(t)− 3y2(t)− 2y3(t) , y′3(t) = y1(t)− y2(t)− y3(t)]

• Define vector

→y__(t) =


y1(t)
y2(t)
y3(t)


• Convert system into a vector equation

→y__
′
(t) =


4 −1 −4
4 −3 −2
1 −1 −1

 · →y__(t) +


0
0
0


• System to solve

→y__
′
(t) =


4 −1 −4
4 −3 −2
1 −1 −1

 · →y__(t)

• Define the coefficient matrix

A =


4 −1 −4
4 −3 −2
1 −1 −1


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−2,


1
2
1


 ,

−1,


1
1
1


 ,

3,


11
7
1





• Consider eigenpair
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−2,


1
2
1




• Solution to homogeneous system from eigenpair

→y__1 = e−2t ·


1
2
1


• Consider eigenpair−1,


1
1
1




• Solution to homogeneous system from eigenpair

→y__2 = e−t ·


1
1
1


• Consider eigenpair3,


11
7
1




• Solution to homogeneous system from eigenpair

→y__3 = e3t ·


11
7
1


• General solution to the system of ODEs

→y__ = c1
→y__1 + c2

→y__2 + c3
→y__3

• Substitute solutions into the general solution
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→y__ = c1e−2t ·


1
2
1

+ c2e−t ·


1
1
1

+ c3e3t ·


11
7
1


• Substitute in vector of dependent variables

y1(t)
y2(t)
y3(t)

 =


(11c3e5t + c2et + c1) e−2t

(7c3e5t + c2et + 2c1) e−2t

(c3e5t + c2et + c1) e−2t


• Solution to the system of ODEs

{y1(t) = (11c3e5t + c2et + c1) e−2t, y2(t) = (7c3e5t + c2et + 2c1) e−2t, y3(t) = (c3e5t + c2et + c1) e−2t}

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 71� �
dsolve([diff(y__1(t),t)=4*y__1(t)-1*y__2(t)-4*y__3(t),diff(y__2(t),t)=4*y__1(t)-3*y__2(t)-2*y__3(t),diff(y__3(t),t)=1*y__1(t)-1*y__2(t)-1*y__3(t)],singsol=all)� �

y1(t) = c1e3t + c2e−t + c3e−2t

y2(t) =
7c1e3t
11 + c2e−t + 2c3e−2t

y3(t) =
c1e3t
11 + c2e−t + c3e−2t

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 102� �
DSolve[{y1'[t]==4*y1[t]-1*y2[t]-4*y3[t],y2'[t]==4*y1[t]-3*y2[t]-2*y3[t],y1'[t]==1*y1[t]-1*y2[t]-1*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → 1
216e

−2t(c1(54et − 8
)
+ c2

(
8− 27et

))
y2(t) → 1

216e
−2t(2c1(27et − 8

)
+ c2

(
16− 27et

))
y3(t) → 1

216e
−2t(c1(54et − 8

)
+ c2

(
8− 27et

))
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21.13 problem section 10.4, problem 13
21.13.1 Solution using Matrix exponential method . . . . . . . . . . . . 8132
21.13.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8133
21.13.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8141

Internal problem ID [1601]
Internal file name [OUTPUT/1602_Sunday_June_05_2022_02_24_15_AM_69405403/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.4, constant coeffi-
cient homogeneous system. Page 540
Problem number: section 10.4, problem 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −2y1(t) + 2y2(t)− 6y3(t)
y′2(t) = 2y1(t) + 6y2(t) + 2y3(t)
y′3(t) = −2y1(t)− 2y2(t) + 2y3(t)

21.13.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−2 2 −6
2 6 2
−2 −2 2




y1(t)
y2(t)
y3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


(
e10t+4

)
e−4t

5 e6t − e4t
(
e10t−5 e8t+4

)
e−4t

5(
e10t−1

)
e−4t

5 e6t
(
e10t−1

)
e−4t

5

−
(
e10t−1

)
e−4t

5 −e6t + e4t −
(
e10t−5 e8t−1

)
e−4t

5


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


(
e10t+4

)
e−4t

5 e6t − e4t
(
e10t−5 e8t+4

)
e−4t

5(
e10t−1

)
e−4t

5 e6t
(
e10t−1

)
e−4t

5

−
(
e10t−1

)
e−4t

5 −e6t + e4t −
(
e10t−5 e8t−1

)
e−4t

5




c1

c2

c3



=


(
e10t+4

)
e−4tc1

5 + (e6t − e4t) c2 +
(
e10t−5 e8t+4

)
e−4tc3

5(
e10t−1

)
e−4tc1

5 + e6tc2 +
(
e10t−1

)
e−4tc3

5

−
(
e10t−1

)
e−4tc1

5 + (−e6t + e4t) c2 −
(
e10t−5 e8t−1

)
e−4tc3

5



=


(
(c1+5c2+c3)e10t+(−5c2−5c3)e8t+4c1+4c3

)
e−4t

5(
(c1+5c2+c3)e10t−c1−c3

)
e−4t

5

−
(
(c1+5c2+c3)e10t+(−5c2−5c3)e8t−c1−c3

)
e−4t

5


Since no forcing function is given, then the final solution is ~xh(t) above.

21.13.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−2 2 −6
2 6 2
−2 −2 2




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0
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Expanding gives

det




−2 2 −6
2 6 2
−2 −2 2

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




−2− λ 2 −6
2 6− λ 2
−2 −2 2− λ


 = 0

Which gives the characteristic equation

λ3 − 6λ2 − 16λ+ 96 = 0

The roots of the above are the eigenvalues.

λ1 = −4
λ2 = 4
λ3 = 6

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−4 1 real eigenvalue

4 1 real eigenvalue

6 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −4

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−2 2 −6
2 6 2
−2 −2 2

− (−4)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




2 2 −6
2 10 2
−2 −2 6




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

2 2 −6 0
2 10 2 0
−2 −2 6 0



R2 = R2 −R1 =⇒


2 2 −6 0
0 8 8 0
−2 −2 6 0



R3 = R3 +R1 =⇒


2 2 −6 0
0 8 8 0
0 0 0 0


Therefore the system in Echelon form is

2 2 −6
0 8 8
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 4t, v2 = −t}

Hence the solution is 
4t
−t

t

 =


4t
−t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

4t
−t

t

 = t


4
−1
1
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Let t = 1 the eigenvector becomes
4t
−t

t

 =


4
−1
1


Considering the eigenvalue λ2 = 4

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−2 2 −6
2 6 2
−2 −2 2

− (4)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−6 2 −6
2 2 2
−2 −2 −2




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−6 2 −6 0
2 2 2 0
−2 −2 −2 0



R2 = R2 +
R1

3 =⇒


−6 2 −6 0
0 8

3 0 0

−2 −2 −2 0



R3 = R3 −
R1

3 =⇒


−6 2 −6 0
0 8

3 0 0

0 −8
3 0 0



R3 = R3 +R2 =⇒


−6 2 −6 0
0 8

3 0 0

0 0 0 0
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Therefore the system in Echelon form is
−6 2 −6
0 8

3 0

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −t, v2 = 0}

Hence the solution is 
−t

0
t

 =


−t

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

0
t

 = t


−1
0
1


Let t = 1 the eigenvector becomes

−t

0
t

 =


−1
0
1


Considering the eigenvalue λ3 = 6

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−2 2 −6
2 6 2
−2 −2 2

− (6)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−8 2 −6
2 0 2
−2 −2 −4




v1

v2

v3

 =


0
0
0



8137



Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−8 2 −6 0
2 0 2 0
−2 −2 −4 0



R2 = R2 +
R1

4 =⇒


−8 2 −6 0
0 1

2
1
2 0

−2 −2 −4 0



R3 = R3 −
R1

4 =⇒


−8 2 −6 0
0 1

2
1
2 0

0 −5
2 −5

2 0



R3 = R3 + 5R2 =⇒


−8 2 −6 0
0 1

2
1
2 0

0 0 0 0


Therefore the system in Echelon form is

−8 2 −6
0 1

2
1
2

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −t, v2 = −t}

Hence the solution is 
−t

−t

t

 =


−t

−t

t
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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

−t

t

 = t


−1
−1
1


Let t = 1 the eigenvector becomes

−t

−t

t

 =


−1
−1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−4 1 1 No


4
−1
1



4 1 1 No


−1
0
1



6 1 1 No


−1
−1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
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of is if the eigenvalue is defective. Since eigenvalue −4 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
−4t

=


4
−1
1

 e−4t

Since eigenvalue 4 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
4t

=


−1
0
1

 e4t

Since eigenvalue 6 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
6t

=


−1
−1
1

 e6t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


4 e−4t

−e−4t

e−4t

+ c2


−e4t

0
e4t

+ c3


−e6t

−e6t

e6t


Which becomes 

y1(t)
y2(t)
y3(t)

 =


(−c3e10t − c2e8t + 4c1) e−4t

−(c3e10t + c1) e−4t

(c3e10t + c2e8t + c1) e−4t
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21.13.3 Maple step by step solution

Let’s solve
[y′1(t) = −2y1(t) + 2y2(t)− 6y3(t) , y′2(t) = 2y1(t) + 6y2(t) + 2y3(t) , y′3(t) = −2y1(t)− 2y2(t) + 2y3(t)]

• Define vector

→y__(t) =


y1(t)
y2(t)
y3(t)


• Convert system into a vector equation

→y__
′
(t) =


−2 2 −6
2 6 2
−2 −2 2

 · →y__(t) +


0
0
0


• System to solve

→y__
′
(t) =


−2 2 −6
2 6 2
−2 −2 2

 · →y__(t)

• Define the coefficient matrix

A =


−2 2 −6
2 6 2
−2 −2 2


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−4,


4
−1
1


 ,

4,


−1
0
1


 ,

6,


−1
−1
1





• Consider eigenpair
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−4,


4
−1
1




• Solution to homogeneous system from eigenpair

→y__1 = e−4t ·


4
−1
1


• Consider eigenpair4,


−1
0
1




• Solution to homogeneous system from eigenpair

→y__2 = e4t ·


−1
0
1


• Consider eigenpair6,


−1
−1
1




• Solution to homogeneous system from eigenpair

→y__3 = e6t ·


−1
−1
1


• General solution to the system of ODEs

→y__ = c1
→y__1 + c2

→y__2 + c3
→y__3

• Substitute solutions into the general solution
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→y__ = c1e−4t ·


4
−1
1

+ c2e4t ·


−1
0
1

+ c3e6t ·


−1
−1
1


• Substitute in vector of dependent variables

y1(t)
y2(t)
y3(t)

 =


(−c3e10t − c2e8t + 4c1) e−4t

−(c3e10t + c1) e−4t

(c3e10t + c2e8t + c1) e−4t


• Solution to the system of ODEs

{y1(t) = (−c3e10t − c2e8t + 4c1) e−4t, y2(t) = −(c3e10t + c1) e−4t, y3(t) = (c3e10t + c2e8t + c1) e−4t}

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 66� �
dsolve([diff(y__1(t),t)=-2*y__1(t)+2*y__2(t)-6*y__3(t),diff(y__2(t),t)=2*y__1(t)+6*y__2(t)+2*y__3(t),diff(y__3(t),t)=-2*y__1(t)-2*y__2(t)+2*y__3(t)],singsol=all)� �

y1(t) = c1e4t + c2e−4t + c3e6t

y2(t) = −c2e−4t

4 + c3e6t

y3(t) = −c1e4t +
c2e−4t

4 − c3e6t
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3 Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 257� �
DSolve[{y1'[t]==-2*y1[t]+2*y2[t]-6*y3[t],y2'[t]==2*y1[t]+6*y2[t]+2*y3[t],y1'[t]==-2*y1[t]-2*y2[t]+2*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �
y1(t) →

−
e
− 1

2

(√
73−5

)
t
(
2c1
((

841
√
73− 7227

)
e
√
73t − 7227− 841

√
73
)
+ c2

((
171

√
73− 1825

)
e
√
73t − 1825− 171

√
73
))

598016
y2(t)

→
e
− 1

2

(√
73−5

)
t
(
c1
((

342
√
73− 3650

)
e
√
73t − 3650− 342

√
73
)
− c2

((
1971 + 143

√
73
)
e
√
73t + 1971− 143

√
73
))

598016
y3(t)

→
e
− 1

2

(√
73−5

)
t
(
c1
((

342
√
73− 3650

)
e
√
73t − 3650− 342

√
73
)
− c2

((
1971 + 143

√
73
)
e
√
73t + 1971− 143

√
73
))

1196032
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Internal problem ID [1602]
Internal file name [OUTPUT/1603_Sunday_June_05_2022_02_24_17_AM_90430065/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.4, constant coeffi-
cient homogeneous system. Page 540
Problem number: section 10.4, problem 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = 3y1(t) + 2y2(t)− 2y3(t)
y′2(t) = −2y1(t) + 7y2(t)− 2y3(t)
y′3(t) = −10y1(t) + 10y2(t)− 5y3(t)

21.14.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


3 2 −2
−2 7 −2
−10 10 −5




y1(t)
y2(t)
y3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


4 e5t
5 + e−5t

5
e5t
5 − e−5t

5 − e5t
5 + e−5t

5

− e5t
5 + e−5t

5
6 e5t
5 − e−5t

5 − e5t
5 + e−5t

5

−e5t + e−5t e5t − e−5t e−5t


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


4 e5t
5 + e−5t

5
e5t
5 − e−5t

5 − e5t
5 + e−5t

5

− e5t
5 + e−5t

5
6 e5t
5 − e−5t

5 − e5t
5 + e−5t

5

−e5t + e−5t e5t − e−5t e−5t




c1

c2

c3



=


(

4 e5t
5 + e−5t

5

)
c1 +

(
e5t
5 − e−5t

5

)
c2 +

(
− e5t

5 + e−5t

5

)
c3(

− e5t
5 + e−5t

5

)
c1 +

(
6 e5t
5 − e−5t

5

)
c2 +

(
− e5t

5 + e−5t

5

)
c3

(−e5t + e−5t) c1 + (e5t − e−5t) c2 + e−5tc3



=


(c1−c2+c3)e−5t

5 + 4
(
c1+ c2

4 − c3
4
)
e5t

5
(c1−c2+c3)e−5t

5 − e5t(c1−6c2+c3)
5

(c1 − c2 + c3) e−5t − e5t(c1 − c2)


Since no forcing function is given, then the final solution is ~xh(t) above.

21.14.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


3 2 −2
−2 7 −2
−10 10 −5




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0
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Expanding gives

det




3 2 −2
−2 7 −2
−10 10 −5

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




3− λ 2 −2
−2 7− λ −2
−10 10 −5− λ


 = 0

Which gives the characteristic equation

λ3 − 5λ2 − 25λ+ 125 = 0

The roots of the above are the eigenvalues.

λ1 = 5
λ2 = −5

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−5 1 real eigenvalue

5 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −5

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


3 2 −2
−2 7 −2
−10 10 −5

− (−5)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




8 2 −2
−2 12 −2
−10 10 0




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

8 2 −2 0
−2 12 −2 0
−10 10 0 0



R2 = R2 +
R1

4 =⇒


8 2 −2 0
0 25

2 −5
2 0

−10 10 0 0



R3 = R3 +
5R1

4 =⇒


8 2 −2 0
0 25

2 −5
2 0

0 25
2 −5

2 0



R3 = R3 −R2 =⇒


8 2 −2 0
0 25

2 −5
2 0

0 0 0 0


Therefore the system in Echelon form is

8 2 −2
0 25

2 −5
2

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = t

5 , v2 =
t
5

}
Hence the solution is 

t
5
t
5

t

 =


t
5
t
5

t
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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t
5
t
5

t

 = t


1
5
1
5

1


Let t = 1 the eigenvector becomes 

t
5
t
5

t

 =


1
5
1
5

1


Which is normalized to 

t
5
t
5

t

 =


1
1
5


Considering the eigenvalue λ2 = 5

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


3 2 −2
−2 7 −2
−10 10 −5

− (5)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−2 2 −2
−2 2 −2
−10 10 −10




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−2 2 −2 0
−2 2 −2 0
−10 10 −10 0



R2 = R2 −R1 =⇒


−2 2 −2 0
0 0 0 0

−10 10 −10 0
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R3 = R3 − 5R1 =⇒


−2 2 −2 0
0 0 0 0
0 0 0 0


Therefore the system in Echelon form is

−2 2 −2
0 0 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2, v3} and the leading variables are {v1}. Let v2 = t. Let v3 = s.
Now we start back substitution. Solving the above equation for the leading variables
in terms of free variables gives equation {v1 = t− s}

Hence the solution is 
t− s

t

s

 =


t− s

t

s


Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

t− s

t

s

 =


t

t

0

+


−s

0
s



= t


1
1
0

+ s


−1
0
1


By letting t = 1 and s = 1 then the above becomes

t− s

t

s

 =


1
1
0

+


−1
0
1


Hence the two eigenvectors associated with this eigenvalue are


1
1
0

 ,


−1
0
1
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The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

5 2 2 No


−1 1
0 1
1 0



−5 1 1 No


1
5

1
5

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 5 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 571: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric
multiplicity 2, then it is complete eigenvalue and this falls into case 1 shown above.
Hence the corresponding eigenvector basis are

~x1(t) = ~v1e
5t

=


−1
0
1

 e5t

~x2(t) = ~v2e
5t

=


1
1
0

 e5t
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Since eigenvalue −5 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
−5t

=


1
5
1
5

1

 e−5t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


−e5t

0
e5t

+ c2


e5t

e5t

0

+ c3


e−5t

5
e−5t

5

e−5t


Which becomes 

y1(t)
y2(t)
y3(t)

 =


(−c1 + c2) e5t + c3e−5t

5

c2e5t + c3e−5t

5

c1e5t + c3e−5t


21.14.3 Maple step by step solution

Let’s solve
[y′1(t) = 3y1(t) + 2y2(t)− 2y3(t) , y′2(t) = −2y1(t) + 7y2(t)− 2y3(t) , y′3(t) = −10y1(t) + 10y2(t)− 5y3(t)]

• Define vector

→y__(t) =


y1(t)
y2(t)
y3(t)


• Convert system into a vector equation
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→y__
′
(t) =


3 2 −2
−2 7 −2
−10 10 −5

 · →y__(t) +


0
0
0


• System to solve

→y__
′
(t) =


3 2 −2
−2 7 −2
−10 10 −5

 · →y__(t)

• Define the coefficient matrix

A =


3 2 −2
−2 7 −2
−10 10 −5


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−5,


1
5
1
5

1


 ,

5,


−1
0
1


 ,

5,


1
1
0





• Consider eigenpair−5,


1
5
1
5

1




• Solution to homogeneous system from eigenpair

→y__1 = e−5t ·


1
5
1
5

1


• Consider eigenpair, with eigenvalue of algebraic multiplicity 2
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5,


−1
0
1




• First solution from eigenvalue 5

→y__2(t) = e5t ·


−1
0
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 5 is the eigenvalue, and →
v is the eigenvector

→y__3(t) = eλt
(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 5

• Substitute →y__3(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →y__3(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 5


3 2 −2
−2 7 −2
−10 10 −5

− 5 ·


1 0 0
0 1 0
0 0 1


 · →p =


−1
0
1


• Choice of →

p
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→
p =


1
2

0
0


• Second solution from eigenvalue 5

→y__3(t) = e5t ·

t ·


−1
0
1

+


1
2

0
0




• General solution to the system of ODEs
→y__ = c1

→y__1 + c2
→y__2(t) + c3

→y__3(t)
• Substitute solutions into the general solution

→y__ = c1e−5t ·


1
5
1
5

1

+ c2e5t ·


−1
0
1

+ c3e5t ·

t ·


−1
0
1

+


1
2

0
0




• Substitute in vector of dependent variables
y1(t)
y2(t)
y3(t)

 =


((1−2t)c3−2c2)e5t

2 + c1e−5t

5
c1e−5t

5

(c3t+ c2) e5t + c1e−5t


• Solution to the system of ODEs{

y1(t) = ((1−2t)c3−2c2)e5t
2 + c1e−5t

5 , y2(t) = c1e−5t

5 , y3(t) = (c3t+ c2) e5t + c1e−5t
}

3 Solution by Maple
Time used: 0.046 (sec). Leaf size: 57� �
dsolve([diff(y__1(t),t)=3*y__1(t)+2*y__2(t)-2*y__3(t),diff(y__2(t),t)=-2*y__1(t)+7*y__2(t)-2*y__3(t),diff(y__3(t),t)=-10*y__1(t)+10*y__2(t)-5*y__3(t)],singsol=all)� �

y1(t) = c2e5t + c3e−5t

y2(t) = c2e5t + c3e−5t + e5tc1
y3(t) = 5c3e−5t + e5tc1
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3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 126� �
DSolve[{y1'[t]==3*y1[t]+2*y2[t]-2*y3[t],y2'[t]==-2*y1[t]+7*y2[t]-2*y3[t],y1'[t]==-10*y1[t]+10*y2[t]-5*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → −
e5t
(
c1
(
432e10t/3 − 1331

)
+ c2

(
1331− 216e10t/3

))
85184

y2(t) → −
e5t
(
c1
(
216e10t/3 − 1331

)
+ c2

(
1331− 108e10t/3

))
42592

y3(t) →
e5t
(
c1
(
720e10t/3 + 1331

)
− c2

(
360e10t/3 + 1331

))
85184
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Internal file name [OUTPUT/1604_Sunday_June_05_2022_02_24_19_AM_66657072/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.4, constant coeffi-
cient homogeneous system. Page 540
Problem number: section 10.4, problem 15.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = 3y1(t) + y2(t)− y3(t)
y′2(t) = 3y1(t) + 5y2(t) + y3(t)
y′3(t) = −6y1(t) + 2y2(t) + 4y3(t)

21.15.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


3 1 −1
3 5 1
−6 2 4




y1(t)
y2(t)
y3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


1
2 +

e6t
2

e6t
6 − 1

6
1
6 −

e6t
6

−1
2 +

e6t
2

1
6 +

5 e6t
6

e6t
6 − 1

6

1− e6t −1
3 +

e6t
3

1
3 +

2 e6t
3


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


1
2 +

e6t
2

e6t
6 − 1

6
1
6 −

e6t
6

−1
2 +

e6t
2

1
6 +

5 e6t
6

e6t
6 − 1

6

1− e6t −1
3 +

e6t
3

1
3 +

2 e6t
3




c1

c2

c3



=



(
1
2 +

e6t
2

)
c1 +

(
e6t
6 − 1

6

)
c2 +

(
1
6 −

e6t
6

)
c3(

−1
2 +

e6t
2

)
c1 +

(
1
6 +

5 e6t
6

)
c2 +

(
e6t
6 − 1

6

)
c3

(1− e6t) c1 +
(
−1

3 +
e6t
3

)
c2 +

(
1
3 +

2 e6t
3

)
c3



=


(3c1+c2−c3)e6t

6 + c1
2 − c2

6 + c3
6

(3c1+5c2+c3)e6t
6 − c1

2 + c2
6 − c3

6
(−3c1+c2+2c3)e6t

3 + c1 − c2
3 + c3

3


Since no forcing function is given, then the final solution is ~xh(t) above.

21.15.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


3 1 −1
3 5 1
−6 2 4




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0
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Expanding gives

det




3 1 −1
3 5 1
−6 2 4

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




3− λ 1 −1
3 5− λ 1
−6 2 4− λ


 = 0

Which gives the characteristic equation

λ3 − 12λ2 + 36λ = 0

The roots of the above are the eigenvalues.

λ1 = 0
λ2 = 6

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

0 1 real eigenvalue

6 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 0

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


3 1 −1
3 5 1
−6 2 4

− (0)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




3 1 −1
3 5 1
−6 2 4




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

3 1 −1 0
3 5 1 0
−6 2 4 0



R2 = R2 −R1 =⇒


3 1 −1 0
0 4 2 0
−6 2 4 0



R3 = R3 + 2R1 =⇒


3 1 −1 0
0 4 2 0
0 4 2 0



R3 = R3 −R2 =⇒


3 1 −1 0
0 4 2 0
0 0 0 0


Therefore the system in Echelon form is

3 1 −1
0 4 2
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = t

2 , v2 = − t
2

}
Hence the solution is 

t
2

− t
2

t

 =


t
2

− t
2

t
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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t
2

− t
2

t

 = t


1
2

−1
2

1


Let t = 1 the eigenvector becomes

t
2

− t
2

t

 =


1
2

−1
2

1


Which is normalized to 

t
2

− t
2

t

 =


1
−1
2


Considering the eigenvalue λ2 = 6

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


3 1 −1
3 5 1
−6 2 4

− (6)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−3 1 −1
3 −1 1
−6 2 −2




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−3 1 −1 0
3 −1 1 0
−6 2 −2 0



R2 = R2 +R1 =⇒


−3 1 −1 0
0 0 0 0
−6 2 −2 0
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R3 = R3 − 2R1 =⇒


−3 1 −1 0
0 0 0 0
0 0 0 0


Therefore the system in Echelon form is

−3 1 −1
0 0 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2, v3} and the leading variables are {v1}. Let v2 = t. Let v3 = s.
Now we start back substitution. Solving the above equation for the leading variables
in terms of free variables gives equation

{
v1 = t

3 −
s
3

}
Hence the solution is 

t
3 −

s
3

t

s

 =


t
3 −

s
3

t

s


Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

t
3 −

s
3

t

s

 =


t
3

t

0

+


− s

3

0
s



= t


1
3

1
0

+ s


−1

3

0
1


By letting t = 1 and s = 1 then the above becomes

t
3 −

s
3

t

s

 =


1
3

1
0

+


−1

3

0
1
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Hence the two eigenvectors associated with this eigenvalue are


1
3

1
0

 ,


−1

3

0
1




Which are normalized to 


1
3
0

 ,


−1
0
3




The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

0 1 1 No


1
2

−1
2

1



6 2 2 No


1
3 −1

3

1 0
0 1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 0 is real and distinct then the
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corresponding eigenvector solution is

~x1(t) = ~v1e
0

=


1
2

−1
2

1

 e0

eigenvalue 6 is real and repated eigenvalue of multiplicity 2.There are two possible cases
that can happen. This is illustrated in this diagram

λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 572: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric
multiplicity 2, then it is complete eigenvalue and this falls into case 1 shown above.
Hence the corresponding eigenvector basis are

~x2(t) = ~v2e
6t

=


1
3

1
0

 e6t
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~x3(t) = ~v3e
6t

=


−1

3

0
1

 e6t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


1
2

−1
2

1

+ c2


e6t
3

e6t

0

+ c3


− e6t

3

0
e6t


Which becomes 

y1(t)
y2(t)
y3(t)

 =


(2c2−2c3)e6t

6 + c1
2

− c1
2 + c2e6t

c1 + c3e6t


21.15.3 Maple step by step solution

Let’s solve
[y′1(t) = 3y1(t) + y2(t)− y3(t) , y′2(t) = 3y1(t) + 5y2(t) + y3(t) , y′3(t) = −6y1(t) + 2y2(t) + 4y3(t)]

• Define vector

→y__(t) =


y1(t)
y2(t)
y3(t)


• Convert system into a vector equation

→y__
′
(t) =


3 1 −1
3 5 1
−6 2 4

 · →y__(t) +


0
0
0
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• System to solve

→y__
′
(t) =


3 1 −1
3 5 1
−6 2 4

 · →y__(t)

• Define the coefficient matrix

A =


3 1 −1
3 5 1
−6 2 4


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

0,


1
2

−1
2

1


 ,

6,


−1
3

0
1


 ,

6,


1
3

1
0





• Consider eigenpair0,


1
2

−1
2

1




• Solution to homogeneous system from eigenpair

→y__1 =


1
2

−1
2

1


• Consider eigenpair, with eigenvalue of algebraic multiplicity 26,


−1

3

0
1
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• First solution from eigenvalue 6

→y__2(t) = e6t ·


−1

3

0
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 6 is the eigenvalue, and →
v is the eigenvector

→y__3(t) = eλt
(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 6

• Substitute →y__3(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →y__3(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 6


3 1 −1
3 5 1
−6 2 4

− 6 ·


1 0 0
0 1 0
0 0 1


 · →p =


−1

3

0
1


• Choice of →

p

→
p =


1
9

0
0


• Second solution from eigenvalue 6
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→y__3(t) = e6t ·

t ·


−1

3

0
1

+


1
9

0
0




• General solution to the system of ODEs
→y__ = c1

→y__1 + c2
→y__2(t) + c3

→y__3(t)
• Substitute solutions into the general solution

→y__ = c2e6t ·


−1

3

0
1

+ c3e6t ·

t ·


−1

3

0
1

+


1
9

0
0


+


c1
2

− c1
2

c1


• Substitute in vector of dependent variables

y1(t)
y2(t)
y3(t)

 =


((1−3t)c3−3c2)e6t

9 + c1
2

− c1
2

(c3t+ c2) e6t + c1


• Solution to the system of ODEs{

y1(t) = ((1−3t)c3−3c2)e6t
9 + c1

2 , y2(t) = − c1
2 , y3(t) = (c3t+ c2) e6t + c1

}

3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 53� �
dsolve([diff(y__1(t),t)=3*y__1(t)+1*y__2(t)-1*y__3(t),diff(y__2(t),t)=3*y__1(t)+5*y__2(t)+1*y__3(t),diff(y__3(t),t)=-6*y__1(t)+2*y__2(t)+4*y__3(t)],singsol=all)� �

y1(t) = c2 + c3e6t

y2(t) = −c2 − c3e6t + e6tc1
y3(t) = −4c3e6t + 2c2 + e6tc1
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3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 93� �
DSolve[{y1'[t]==3*y1[t]+1*y2[t]-1*y3[t],y2'[t]==3*y1[t]+5*y2[t]+1*y3[t],y1'[t]==-6*y1[t]+2*y2[t]+4*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → 1
625
(
−
(
c1
(
e6t − 500

))
− c2

(
e6t + 125

))
y2(t) → 1

625
(
c2
(
125− 4e6t

)
− 4c1

(
e6t + 125

))
y3(t) → 1

625
(
−
(
c1
(
e6t − 1000

))
− c2

(
e6t + 250

))
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Internal problem ID [1604]
Internal file name [OUTPUT/1605_Sunday_June_05_2022_02_24_21_AM_69324230/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = 3y1(t) + 4y2(t)
y′2(t) = −y1(t) + 7y2(t)

22.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 3 4
−1 7

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e5t(1− 2t) 4t e5t

−t e5t e5t(1 + 2t)
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 e5t(1− 2t) 4t e5t

−t e5t e5t(1 + 2t)

 c1

c2


=

 e5t(1− 2t) c1 + 4t e5tc2
−t e5tc1 + e5t(1 + 2t) c2


=

 (c1(1− 2t) + 4c2t) e5t

e5t(−tc1 + 2c2t+ c2)


Since no forcing function is given, then the final solution is ~xh(t) above.

22.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 3 4
−1 7

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 3 4
−1 7

− λ

 1 0
0 1

 = 0

Therefore

det

 3− λ 4
−1 7− λ

 = 0
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Which gives the characteristic equation

λ2 − 10λ+ 25 = 0

The roots of the above are the eigenvalues.

λ1 = 5

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

5 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 5

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 3 4
−1 7

− (5)

 1 0
0 1

 v1

v2

 =

 0
0


 −2 4

−1 2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −2 4 0

−1 2 0



R2 = R2 −
R1

2 =⇒

−2 4 0
0 0 0


Therefore the system in Echelon form is −2 4

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 2t}
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Hence the solution is  2t
t

 =

 2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

t

 = t

 2
1


Let t = 1 the eigenvector becomes  2t

t

 =

 2
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

5 2 1 Yes

 2
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 5 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 573: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve 3 4
−1 7

− (5)

 1 0
0 1

 v1

v2

 =

 2
1


 −2 4

−1 2

 v1

v2

 =

 2
1


Solving for ~v2 gives

~v2 =

 1
1
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We have found two generalized eigenvectors for eigenvalue 5. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 2
1

 e5t

=

 2 e5t

e5t


And

~x2(t) = (~v1t+ ~v2) eλt

=

 2
1

 t+

 1
1

 e5t

=

 e5t(1 + 2t)
e5t(t+ 1)


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  y1(t)
y2(t)

 = c1

 2 e5t

e5t

+ c2

 e5t(1 + 2t)
e5t(t+ 1)


Which becomes  y1(t)

y2(t)

 =

 e5t(2c2t+ 2c1 + c2)
e5t(c2t+ c1 + c2)


The following is the phase plot of the system.
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Figure 574: Phase plot

22.1.3 Maple step by step solution

Let’s solve
[y′1(t) = 3y1(t) + 4y2(t) , y′2(t) = −y1(t) + 7y2(t)]

• Define vector

→y__(t) =

 y1(t)
y2(t)


• Convert system into a vector equation

→y__
′
(t) =

 3 4
−1 7

 · →y__(t) +

 0
0


• System to solve

→y__
′
(t) =

 3 4
−1 7

 · →y__(t)

• Define the coefficient matrix
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A =

 3 4
−1 7


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A5,

 2
1

 ,

5,
 0

0


• Consider eigenpair, with eigenvalue of algebraic multiplicity 25,

 2
1


• First solution from eigenvalue 5

→y__1(t) = e5t ·

 2
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 5 is the eigenvalue, and →
v is the eigenvector

→y__2(t) = eλt
(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 5

• Substitute →y__2(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →y__2(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v
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• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 5 3 4

−1 7

− 5 ·

 1 0
0 1

 · →p =

 2
1


• Choice of →

p

→
p =

 −1
0


• Second solution from eigenvalue 5

→y__2(t) = e5t ·

t ·

 2
1

+

 −1
0


• General solution to the system of ODEs

→y__ = c1
→y__1(t) + c2

→y__2(t)
• Substitute solutions into the general solution

→y__ = c1e5t ·

 2
1

+ c2e5t ·

t ·

 2
1

+

 −1
0


• Substitute in vector of dependent variables y1(t)

y2(t)

 =

 ((2t− 1) c2 + 2c1) e5t

e5t(c2t+ c1)


• Solution to the system of ODEs

{y1(t) = ((2t− 1) c2 + 2c1) e5t, y2(t) = e5t(c2t+ c1)}

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 33� �
dsolve([diff(y__1(t),t)=3*y__1(t)+4*y__2(t),diff(y__2(t),t)=-1*y__1(t)+7*y__2(t)],singsol=all)� �

y1(t) = e5t(c2t+ c1)

y2(t) =
e5t(2c2t+ 2c1 + c2)

4
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3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 46� �
DSolve[{y1'[t]==3*y1[t]+4*y2[t],y2'[t]==-1*y1[t]+7*y2[t]},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e5t(−2c1t+ 4c2t+ c1)
y2(t) → e5t(c1(−t) + 2c2t+ c2)
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22.2 problem section 10.5, problem 2
22.2.1 Solution using Matrix exponential method . . . . . . . . . . . . 8182
22.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8183
22.2.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8188

Internal problem ID [1605]
Internal file name [OUTPUT/1606_Sunday_June_05_2022_02_24_23_AM_23986191/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −y2(t)
y′2(t) = y1(t)− 2y2(t)

22.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 0 −1
1 −2

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e−t(t+ 1) −t e−t

t e−t e−t(1− t)
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 e−t(t+ 1) −t e−t

t e−t e−t(1− t)

 c1

c2


=

 e−t(t+ 1) c1 − t e−tc2

t e−tc1 + e−t(1− t) c2


=

 e−t(tc1 − c2t+ c1)
e−t(tc1 − c2t+ c2)


Since no forcing function is given, then the final solution is ~xh(t) above.

22.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 0 −1
1 −2

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 0 −1
1 −2

− λ

 1 0
0 1

 = 0

Therefore

det

 −λ −1
1 −2− λ

 = 0
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Which gives the characteristic equation

λ2 + 2λ+ 1 = 0

The roots of the above are the eigenvalues.

λ1 = −1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 0 −1
1 −2

− (−1)

 1 0
0 1

 v1

v2

 =

 0
0


 1 −1

1 −1

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 1 −1 0

1 −1 0



R2 = R2 −R1 =⇒

1 −1 0
0 0 0


Therefore the system in Echelon form is 1 −1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}
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Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


Let t = 1 the eigenvector becomes  t

t

 =

 1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−1 2 1 Yes

 1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue −1 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 575: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve 0 −1
1 −2

− (−1)

 1 0
0 1

 v1

v2

 =

 1
1


 1 −1

1 −1

 v1

v2

 =

 1
1


Solving for ~v2 gives

~v2 =

 2
1
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We have found two generalized eigenvectors for eigenvalue −1. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 1
1

 e−t

=

 e−t

e−t


And

~x2(t) = (~v1t+ ~v2) eλt

=

 1
1

 t+

 2
1

 e−t

=

 e−t(2 + t)
e−t(t+ 1)


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  y1(t)
y2(t)

 = c1

 e−t

e−t

+ c2

 e−t(2 + t)
e−t(t+ 1)


Which becomes  y1(t)

y2(t)

 =

 ((2 + t) c2 + c1) e−t

e−t(c2t+ c1 + c2)


The following is the phase plot of the system.
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Figure 576: Phase plot

22.2.3 Maple step by step solution

Let’s solve
[y′1(t) = −y2(t) , y′2(t) = y1(t)− 2y2(t)]

• Define vector

→y__(t) =

 y1(t)
y2(t)


• Convert system into a vector equation

→y__
′
(t) =

 0 −1
1 −2

 · →y__(t) +

 0
0


• System to solve

→y__
′
(t) =

 0 −1
1 −2

 · →y__(t)

• Define the coefficient matrix
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A =

 0 −1
1 −2


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−1,

 1
1

 ,

−1,

 0
0


• Consider eigenpair, with eigenvalue of algebraic multiplicity 2−1,

 1
1


• First solution from eigenvalue − 1

→y__1(t) = e−t ·

 1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = −1 is the eigenvalue, and →
v is the eigenvector

→y__2(t) = eλt
(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = −1

• Substitute →y__2(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →y__2(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v
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• Choose →
p to use in the second solution to the homogeneous system from eigenvalue − 1 0 −1

1 −2

− (−1) ·

 1 0
0 1

 · →p =

 1
1


• Choice of →

p

→
p =

 1
0


• Second solution from eigenvalue − 1

→y__2(t) = e−t ·

t ·

 1
1

+

 1
0


• General solution to the system of ODEs

→y__ = c1
→y__1(t) + c2

→y__2(t)
• Substitute solutions into the general solution

→y__ = c1e−t ·

 1
1

+ c2e−t ·

t ·

 1
1

+

 1
0


• Substitute in vector of dependent variables y1(t)

y2(t)

 =

 e−t(c2t+ c1 + c2)
(c2t+ c1) e−t


• Solution to the system of ODEs

{y1(t) = e−t(c2t+ c1 + c2) , y2(t) = (c2t+ c1) e−t}

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 31� �
dsolve([diff(y__1(t),t)=0*y__1(t)-1*y__2(t),diff(y__2(t),t)=1*y__1(t)-2*y__2(t)],singsol=all)� �

y1(t) = e−t(c2t+ c1)
y2(t) = e−t(c2t+ c1 − c2)
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3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 44� �
DSolve[{y1'[t]==0*y1[t]-1*y2[t],y2'[t]==1*y1[t]-2*y2[t]},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e−t(c1(t+ 1)− c2t)
y2(t) → e−t((c1 − c2)t+ c2)
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22.3 problem section 10.5, problem 3
22.3.1 Solution using Matrix exponential method . . . . . . . . . . . . 8192
22.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8193
22.3.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8198

Internal problem ID [1606]
Internal file name [OUTPUT/1607_Sunday_June_05_2022_02_24_24_AM_75763991/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −7y1(t) + 4y2(t)
y′2(t) = −y1(t)− 11y2(t)

22.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −7 4
−1 −11

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e−9t(1 + 2t) 4t e−9t

−t e−9t e−9t(1− 2t)
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 e−9t(1 + 2t) 4t e−9t

−t e−9t e−9t(1− 2t)

 c1

c2


=

 e−9t(1 + 2t) c1 + 4t e−9tc2

−t e−9tc1 + e−9t(1− 2t) c2


=

 e−9t(2tc1 + 4c2t+ c1)
e−9t(−tc1 − 2c2t+ c2)


Since no forcing function is given, then the final solution is ~xh(t) above.

22.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −7 4
−1 −11

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −7 4
−1 −11

− λ

 1 0
0 1

 = 0

Therefore

det

 −7− λ 4
−1 −11− λ

 = 0
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Which gives the characteristic equation

λ2 + 18λ+ 81 = 0

The roots of the above are the eigenvalues.

λ1 = −9

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−9 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −9

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −7 4
−1 −11

− (−9)

 1 0
0 1

 v1

v2

 =

 0
0


 2 4

−1 −2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is  2 4 0

−1 −2 0



R2 = R2 +
R1

2 =⇒

2 4 0
0 0 0


Therefore the system in Echelon form is 2 4

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −2t}
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Hence the solution is  −2t
t

 =

 −2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −2t

t

 = t

 −2
1


Let t = 1 the eigenvector becomes −2t

t

 =

 −2
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−9 2 1 Yes

 −2
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue −9 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 577: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve −7 4
−1 −11

− (−9)

 1 0
0 1

 v1

v2

 =

 −2
1


 2 4

−1 −2

 v1

v2

 =

 −2
1


Solving for ~v2 gives

~v2 =

 −3
1
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We have found two generalized eigenvectors for eigenvalue −9. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 −2
1

 e−9t

=

 −2 e−9t

e−9t


And

~x2(t) = (~v1t+ ~v2) eλt

=

 −2
1

 t+

 −3
1

 e−9t

=

 e−9t(−2t− 3)
e−9t(t+ 1)


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as y1(t)
y2(t)

 = c1

 −2 e−9t

e−9t

+ c2

 e−9t(−2t− 3)
e−9t(t+ 1)


Which becomes  y1(t)

y2(t)

 =

 e−9t(−2c2t− 2c1 − 3c2)
e−9t(c2t+ c1 + c2)


The following is the phase plot of the system.
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Figure 578: Phase plot

22.3.3 Maple step by step solution

Let’s solve
[y′1(t) = −7y1(t) + 4y2(t) , y′2(t) = −y1(t)− 11y2(t)]

• Define vector

→y__(t) =

 y1(t)
y2(t)


• Convert system into a vector equation

→y__
′
(t) =

 −7 4
−1 −11

 · →y__(t) +

 0
0


• System to solve

→y__
′
(t) =

 −7 4
−1 −11

 · →y__(t)

• Define the coefficient matrix
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A =

 −7 4
−1 −11


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−9,

 −2
1

 ,

−9,

 0
0


• Consider eigenpair, with eigenvalue of algebraic multiplicity 2−9,

 −2
1


• First solution from eigenvalue − 9

→y__1(t) = e−9t ·

 −2
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = −9 is the eigenvalue, and →
v is the eigenvector

→y__2(t) = eλt
(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = −9

• Substitute →y__2(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →y__2(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v
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• Choose →
p to use in the second solution to the homogeneous system from eigenvalue − 9 −7 4

−1 −11

− (−9) ·

 1 0
0 1

 · →p =

 −2
1


• Choice of →

p

→
p =

 −1
0


• Second solution from eigenvalue − 9

→y__2(t) = e−9t ·

t ·

 −2
1

+

 −1
0


• General solution to the system of ODEs

→y__ = c1
→y__1(t) + c2

→y__2(t)
• Substitute solutions into the general solution

→y__ = c1e−9t ·

 −2
1

+ c2e−9t ·

t ·

 −2
1

+

 −1
0


• Substitute in vector of dependent variables y1(t)

y2(t)

 =

 e−9t(−2c2t− 2c1 − c2)
e−9t(c2t+ c1)


• Solution to the system of ODEs

{y1(t) = e−9t(−2c2t− 2c1 − c2) , y2(t) = e−9t(c2t+ c1)}

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
dsolve([diff(y__1(t),t)=-7*y__1(t)+4*y__2(t),diff(y__2(t),t)=-1*y__1(t)-11*y__2(t)],singsol=all)� �

y1(t) = e−9t(c2t+ c1)

y2(t) = −e−9t(2c2t+ 2c1 − c2)
4
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3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 46� �
DSolve[{y1'[t]==-7*y1[t]+4*y2[t],y2'[t]==-1*y1[t]-11*y2[t]},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e−9t(2c1t+ 4c2t+ c1)
y2(t) → e−9t(c2 − (c1 + 2c2)t)
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22.4 problem section 10.5, problem 4
22.4.1 Solution using Matrix exponential method . . . . . . . . . . . . 8202
22.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8203
22.4.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8208

Internal problem ID [1607]
Internal file name [OUTPUT/1608_Sunday_June_05_2022_02_24_26_AM_61519766/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = 3y1(t) + y2(t)
y′2(t) = −y1(t) + y2(t)

22.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 3 1
−1 1

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e2t(t+ 1) e2tt
−e2tt e2t(1− t)
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 e2t(t+ 1) e2tt
−e2tt e2t(1− t)

 c1

c2


=

 e2t(t+ 1) c1 + e2ttc2
−e2ttc1 + e2t(1− t) c2


=

 e2t(tc1 + c2t+ c1)
−((−1 + t) c2 + tc1) e2t


Since no forcing function is given, then the final solution is ~xh(t) above.

22.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 3 1
−1 1

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 3 1
−1 1

− λ

 1 0
0 1

 = 0

Therefore

det

 3− λ 1
−1 1− λ

 = 0
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Which gives the characteristic equation

λ2 − 4λ+ 4 = 0

The roots of the above are the eigenvalues.

λ1 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 3 1
−1 1

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 1 1

−1 −1

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is  1 1 0

−1 −1 0



R2 = R2 +R1 =⇒

1 1 0
0 0 0


Therefore the system in Echelon form is 1 1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −t}
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Hence the solution is  −t

t

 =

 −t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −t

t

 = t

 −1
1


Let t = 1 the eigenvector becomes −t

t

 =

 −1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 2 1 Yes

 −1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 579: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve 3 1
−1 1

− (2)

 1 0
0 1

 v1

v2

 =

 −1
1


 1 1

−1 −1

 v1

v2

 =

 −1
1


Solving for ~v2 gives

~v2 =

 −2
1



8206



We have found two generalized eigenvectors for eigenvalue 2. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 −1
1

 e2t

=

 −e2t

e2t


And

~x2(t) = (~v1t+ ~v2) eλt

=

 −1
1

 t+

 −2
1

 e2t

=

 −e2t(2 + t)
e2t(t+ 1)


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  y1(t)
y2(t)

 = c1

 −e2t

e2t

+ c2

 e2t(−t− 2)
e2t(t+ 1)


Which becomes  y1(t)

y2(t)

 =

 −((2 + t) c2 + c1) e2t

e2t(c2t+ c1 + c2)


The following is the phase plot of the system.
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Figure 580: Phase plot

22.4.3 Maple step by step solution

Let’s solve
[y′1(t) = 3y1(t) + y2(t) , y′2(t) = −y1(t) + y2(t)]

• Define vector

→y__(t) =

 y1(t)
y2(t)


• Convert system into a vector equation

→y__
′
(t) =

 3 1
−1 1

 · →y__(t) +

 0
0


• System to solve

→y__
′
(t) =

 3 1
−1 1

 · →y__(t)

• Define the coefficient matrix
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A =

 3 1
−1 1


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A2,

 −1
1

 ,

2,
 0

0


• Consider eigenpair, with eigenvalue of algebraic multiplicity 22,

 −1
1


• First solution from eigenvalue 2

→y__1(t) = e2t ·

 −1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 2 is the eigenvalue, and →
v is the eigenvector

→y__2(t) = eλt
(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 2

• Substitute →y__2(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →y__2(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v
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• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 2 3 1

−1 1

− 2 ·

 1 0
0 1

 · →p =

 −1
1


• Choice of →

p

→
p =

 −1
0


• Second solution from eigenvalue 2

→y__2(t) = e2t ·

t ·

 −1
1

+

 −1
0


• General solution to the system of ODEs

→y__ = c1
→y__1(t) + c2

→y__2(t)
• Substitute solutions into the general solution

→y__ = c1e2t ·

 −1
1

+ c2e2t ·

t ·

 −1
1

+

 −1
0


• Substitute in vector of dependent variables y1(t)

y2(t)

 =

 e2t(−c2t− c1 − c2)
e2t(c2t+ c1)


• Solution to the system of ODEs

{y1(t) = e2t(−c2t− c1 − c2) , y2(t) = e2t(c2t+ c1)}

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 32� �
dsolve([diff(y__1(t),t)=3*y__1(t)+1*y__2(t),diff(y__2(t),t)=-1*y__1(t)+1*y__2(t)],singsol=all)� �

y1(t) = e2t(c2t+ c1)
y2(t) = −e2t(c2t+ c1 − c2)
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3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 42� �
DSolve[{y1'[t]==3*y1[t]+1*y2[t],y2'[t]==-1*y1[t]+1*y2[t]},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e2t(c1(t+ 1) + c2t)
y2(t) → e2t(c2 − (c1 + c2)t)
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22.5 problem section 10.5, problem 5
22.5.1 Solution using Matrix exponential method . . . . . . . . . . . . 8212
22.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8213
22.5.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8218

Internal problem ID [1608]
Internal file name [OUTPUT/1609_Sunday_June_05_2022_02_24_27_AM_13734712/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = 4y1(t) + 12y2(t)
y′2(t) = −3y1(t)− 8y2(t)

22.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 4 12
−3 −8

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e−2t(1 + 6t) 12t e−2t

−3t e−2t e−2t(1− 6t)
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 e−2t(1 + 6t) 12t e−2t

−3t e−2t e−2t(1− 6t)

 c1

c2


=

 e−2t(1 + 6t) c1 + 12t e−2tc2

−3t e−2tc1 + e−2t(1− 6t) c2


=

 e−2t(6tc1 + 12c2t+ c1)
(c2(1− 6t)− 3tc1) e−2t


Since no forcing function is given, then the final solution is ~xh(t) above.

22.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 4 12
−3 −8

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 4 12
−3 −8

− λ

 1 0
0 1

 = 0

Therefore

det

 4− λ 12
−3 −8− λ

 = 0
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Which gives the characteristic equation

λ2 + 4λ+ 4 = 0

The roots of the above are the eigenvalues.

λ1 = −2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 4 12
−3 −8

− (−2)

 1 0
0 1

 v1

v2

 =

 0
0


 6 12

−3 −6

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is  6 12 0

−3 −6 0



R2 = R2 +
R1

2 =⇒

6 12 0
0 0 0


Therefore the system in Echelon form is 6 12

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −2t}
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Hence the solution is  −2t
t

 =

 −2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −2t

t

 = t

 −2
1


Let t = 1 the eigenvector becomes −2t

t

 =

 −2
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−2 2 1 Yes

 −2
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue −2 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 581: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve 4 12
−3 −8

− (−2)

 1 0
0 1

 v1

v2

 =

 −2
1


 6 12

−3 −6

 v1

v2

 =

 −2
1


Solving for ~v2 gives

~v2 =

 −7
3

1
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We have found two generalized eigenvectors for eigenvalue −2. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 −2
1

 e−2t

=

 −2 e−2t

e−2t


And

~x2(t) = (~v1t+ ~v2) eλt

=

 −2
1

 t+

 −7
3

1

 e−2t

=

 − e−2t(7+6t)
3

e−2t(t+ 1)


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as y1(t)
y2(t)

 = c1

 −2 e−2t

e−2t

+ c2

 e−2t(−2t− 7
3

)
e−2t(t+ 1)


Which becomes  y1(t)

y2(t)

 =

 e−2t(−2c1 − 2c2t− 7
3c2
)

e−2t(c2t+ c1 + c2)


The following is the phase plot of the system.
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Figure 582: Phase plot

22.5.3 Maple step by step solution

Let’s solve
[y′1(t) = 4y1(t) + 12y2(t) , y′2(t) = −3y1(t)− 8y2(t)]

• Define vector

→y__(t) =

 y1(t)
y2(t)


• Convert system into a vector equation

→y__
′
(t) =

 4 12
−3 −8

 · →y__(t) +

 0
0


• System to solve

→y__
′
(t) =

 4 12
−3 −8

 · →y__(t)

• Define the coefficient matrix

8218



A =

 4 12
−3 −8


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−2,

 −2
1

 ,

−2,

 0
0


• Consider eigenpair, with eigenvalue of algebraic multiplicity 2−2,

 −2
1


• First solution from eigenvalue − 2

→y__1(t) = e−2t ·

 −2
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = −2 is the eigenvalue, and →
v is the eigenvector

→y__2(t) = eλt
(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = −2

• Substitute →y__2(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →y__2(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v
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• Choose →
p to use in the second solution to the homogeneous system from eigenvalue − 2 4 12

−3 −8

− (−2) ·

 1 0
0 1

 · →p =

 −2
1


• Choice of →

p

→
p =

 −1
3

0


• Second solution from eigenvalue − 2

→y__2(t) = e−2t ·

t ·

 −2
1

+

 −1
3

0


• General solution to the system of ODEs

→y__ = c1
→y__1(t) + c2

→y__2(t)
• Substitute solutions into the general solution

→y__ = c1e−2t ·

 −2
1

+ e−2tc2 ·

t ·

 −2
1

+

 −1
3

0


• Substitute in vector of dependent variables y1(t)

y2(t)

 =

 e−2t(−2c1 − 2c2t− 1
3c2
)

e−2t(c2t+ c1)


• Solution to the system of ODEs{

y1(t) = e−2t(−2c1 − 2c2t− 1
3c2
)
, y2(t) = e−2t(c2t+ c1)

}
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 35� �
dsolve([diff(y__1(t),t)=4*y__1(t)+12*y__2(t),diff(y__2(t),t)=-3*y__1(t)-8*y__2(t)],singsol=all)� �

y1(t) = e−2t(c2t+ c1)

y2(t) = −e−2t(6c2t+ 6c1 − c2)
12

8220



3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 46� �
DSolve[{y1'[t]==4*y1[t]+12*y2[t],y2'[t]==-3*y1[t]-8*y2[t]},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e−2t(6c1t+ 12c2t+ c1)
y2(t) → e−2t(c2 − 3(c1 + 2c2)t)
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22.6 problem section 10.5, problem 6
22.6.1 Solution using Matrix exponential method . . . . . . . . . . . . 8222
22.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8223
22.6.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8228

Internal problem ID [1609]
Internal file name [OUTPUT/1610_Sunday_June_05_2022_02_24_29_AM_78869279/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −10y1(t) + 9y2(t)
y′2(t) = −4y1(t) + 2y2(t)

22.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −10 9
−4 2

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e−4t(1− 6t) 9t e−4t

−4t e−4t e−4t(1 + 6t)
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 e−4t(1− 6t) 9t e−4t

−4t e−4t e−4t(1 + 6t)

 c1

c2


=

 e−4t(1− 6t) c1 + 9t e−4tc2

−4t e−4tc1 + e−4t(1 + 6t) c2


=

 (c1(1− 6t) + 9c2t) e−4t

(c2(1 + 6t)− 4tc1) e−4t


Since no forcing function is given, then the final solution is ~xh(t) above.

22.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −10 9
−4 2

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −10 9
−4 2

− λ

 1 0
0 1

 = 0

Therefore

det

 −10− λ 9
−4 2− λ

 = 0
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Which gives the characteristic equation

λ2 + 8λ+ 16 = 0

The roots of the above are the eigenvalues.

λ1 = −4

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−4 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −4

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −10 9
−4 2

− (−4)

 1 0
0 1

 v1

v2

 =

 0
0


 −6 9

−4 6

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −6 9 0

−4 6 0



R2 = R2 −
2R1

3 =⇒

−6 9 0
0 0 0


Therefore the system in Echelon form is −6 9

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 3t

2

}
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Hence the solution is  3t
2

t

 =

 3t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 3t

2

t

 = t

 3
2

1


Let t = 1 the eigenvector becomes  3t

2

t

 =

 3
2

1


Which is normalized to  3t

2

t

 =

 3
2


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−4 2 1 Yes

 3
2

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue −4 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 583: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve −10 9
−4 2

− (−4)

 1 0
0 1

 v1

v2

 =

 3
2

1


 −6 9

−4 6

 v1

v2

 =

 3
2

1


Solving for ~v2 gives

~v2 =

 5
4

1
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We have found two generalized eigenvectors for eigenvalue −4. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 3
2

1

 e−4t

=

 3 e−4t

2

e−4t


And

~x2(t) = (~v1t+ ~v2) eλt

=

 3
2

1

 t+

 5
4

1

 e−4t

=

 e−4t(6t+5)
4

e−4t(t+ 1)


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as y1(t)
y2(t)

 = c1

 3 e−4t

2

e−4t

+ c2

 e−4t(3t
2 + 5

4

)
e−4t(t+ 1)


Which becomes  y1(t)

y2(t)

 =

 ((6t+5)c2+6c1)e−4t

4

e−4t(c2t+ c1 + c2)


The following is the phase plot of the system.
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Figure 584: Phase plot

22.6.3 Maple step by step solution

Let’s solve
[y′1(t) = −10y1(t) + 9y2(t) , y′2(t) = −4y1(t) + 2y2(t)]

• Define vector

→y__(t) =

 y1(t)
y2(t)


• Convert system into a vector equation

→y__
′
(t) =

 −10 9
−4 2

 · →y__(t) +

 0
0


• System to solve

→y__
′
(t) =

 −10 9
−4 2

 · →y__(t)

• Define the coefficient matrix
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A =

 −10 9
−4 2


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−4,

 3
2

1

 ,

−4,

 0
0


• Consider eigenpair, with eigenvalue of algebraic multiplicity 2−4,

 3
2

1


• First solution from eigenvalue − 4

→y__1(t) = e−4t ·

 3
2

1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = −4 is the eigenvalue, and →
v is the eigenvector

→y__2(t) = eλt
(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = −4

• Substitute →y__2(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →y__2(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

8229



• Choose →
p to use in the second solution to the homogeneous system from eigenvalue − 4 −10 9

−4 2

− (−4) ·

 1 0
0 1

 · →p =

 3
2

1


• Choice of →

p

→
p =

 −1
4

0


• Second solution from eigenvalue − 4

→y__2(t) = e−4t ·

t ·

 3
2

1

+

 −1
4

0


• General solution to the system of ODEs

→y__ = c1
→y__1(t) + c2

→y__2(t)
• Substitute solutions into the general solution

→y__ = c1e−4t ·

 3
2

1

+ c2e−4t ·

t ·

 3
2

1

+

 −1
4

0


• Substitute in vector of dependent variables y1(t)

y2(t)

 =

 ((6t−1)c2+6c1)e−4t

4

e−4t(c2t+ c1)


• Solution to the system of ODEs{

y1(t) = ((6t−1)c2+6c1)e−4t

4 , y2(t) = e−4t(c2t+ c1)
}

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 33� �
dsolve([diff(y__1(t),t)=-10*y__1(t)+9*y__2(t),diff(y__2(t),t)=-4*y__1(t)+2*y__2(t)],singsol=all)� �

y1(t) = e−4t(c2t+ c1)

y2(t) =
e−4t(6c2t+ 6c1 + c2)

9
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3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 46� �
DSolve[{y1'[t]==-10*y1[t]+9*y2[t],y2'[t]==-4*y1[t]+2*y2[t]},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e−4t(−6c1t+ 9c2t+ c1)
y2(t) → e−4t(−4c1t+ 6c2t+ c2)
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22.7 problem section 10.5, problem 7
22.7.1 Solution using Matrix exponential method . . . . . . . . . . . . 8232
22.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8233
22.7.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8238

Internal problem ID [1610]
Internal file name [OUTPUT/1611_Sunday_June_05_2022_02_24_31_AM_80051039/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −13y1(t) + 16y2(t)
y′2(t) = −9y1(t) + 11y2(t)

22.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −13 16
−9 11

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e−t(1− 12t) 16t e−t

−9t e−t e−t(1 + 12t)
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 e−t(1− 12t) 16t e−t

−9t e−t e−t(1 + 12t)

 c1

c2


=

 e−t(1− 12t) c1 + 16t e−tc2

−9t e−tc1 + e−t(1 + 12t) c2


=

 (c1(1− 12t) + 16c2t) e−t

(c2(1 + 12t)− 9tc1) e−t


Since no forcing function is given, then the final solution is ~xh(t) above.

22.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −13 16
−9 11

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −13 16
−9 11

− λ

 1 0
0 1

 = 0

Therefore

det

 −13− λ 16
−9 11− λ

 = 0
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Which gives the characteristic equation

λ2 + 2λ+ 1 = 0

The roots of the above are the eigenvalues.

λ1 = −1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −13 16
−9 11

− (−1)

 1 0
0 1

 v1

v2

 =

 0
0


 −12 16

−9 12

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −12 16 0

−9 12 0



R2 = R2 −
3R1

4 =⇒

−12 16 0
0 0 0


Therefore the system in Echelon form is −12 16

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 4t

3

}
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Hence the solution is  4t
3

t

 =

 4t
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 4t

3

t

 = t

 4
3

1


Let t = 1 the eigenvector becomes  4t

3

t

 =

 4
3

1


Which is normalized to  4t

3

t

 =

 4
3


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−1 2 1 Yes

 4
3

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue −1 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 585: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve −13 16
−9 11

− (−1)

 1 0
0 1

 v1

v2

 =

 4
3

1


 −12 16

−9 12

 v1

v2

 =

 4
3

1


Solving for ~v2 gives

~v2 =

 11
9

1
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We have found two generalized eigenvectors for eigenvalue −1. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 4
3

1

 e−t

=

 4 e−t

3

e−t


And

~x2(t) = (~v1t+ ~v2) eλt

=

 4
3

1

 t+

 11
9

1

 e−t

=

 e−t(12t+11)
9

e−t(t+ 1)


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  y1(t)
y2(t)

 = c1

 4 e−t

3

e−t

+ c2

 e−t
(4t

3 + 11
9

)
e−t(t+ 1)


Which becomes  y1(t)

y2(t)

 =

 ((12t+11)c2+12c1)e−t

9

e−t(c2t+ c1 + c2)


The following is the phase plot of the system.
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Figure 586: Phase plot

22.7.3 Maple step by step solution

Let’s solve
[y′1(t) = −13y1(t) + 16y2(t) , y′2(t) = −9y1(t) + 11y2(t)]

• Define vector

→y__(t) =

 y1(t)
y2(t)


• Convert system into a vector equation

→y__
′
(t) =

 −13 16
−9 11

 · →y__(t) +

 0
0


• System to solve

→y__
′
(t) =

 −13 16
−9 11

 · →y__(t)

• Define the coefficient matrix
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A =

 −13 16
−9 11


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−1,

 4
3

1

 ,

−1,

 0
0


• Consider eigenpair, with eigenvalue of algebraic multiplicity 2−1,

 4
3

1


• First solution from eigenvalue − 1

→y__1(t) = e−t ·

 4
3

1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = −1 is the eigenvalue, and →
v is the eigenvector

→y__2(t) = eλt
(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = −1

• Substitute →y__2(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →y__2(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v
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• Choose →
p to use in the second solution to the homogeneous system from eigenvalue − 1 −13 16

−9 11

− (−1) ·

 1 0
0 1

 · →p =

 4
3

1


• Choice of →

p

→
p =

 −1
9

0


• Second solution from eigenvalue − 1

→y__2(t) = e−t ·

t ·

 4
3

1

+

 −1
9

0


• General solution to the system of ODEs

→y__ = c1
→y__1(t) + c2

→y__2(t)
• Substitute solutions into the general solution

→y__ = c1e−t ·

 4
3

1

+ c2e−t ·

t ·

 4
3

1

+

 −1
9

0


• Substitute in vector of dependent variables y1(t)

y2(t)

 =

 ((−1+12t)c2+12c1)e−t

9

(c2t+ c1) e−t


• Solution to the system of ODEs{

y1(t) = ((−1+12t)c2+12c1)e−t

9 , y2(t) = (c2t+ c1) e−t
}

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 33� �
dsolve([diff(y__1(t),t)=-13*y__1(t)+16*y__2(t),diff(y__2(t),t)=-9*y__1(t)+11*y__2(t)],singsol=all)� �

y1(t) = e−t(c2t+ c1)

y2(t) =
e−t(12c2t+ 12c1 + c2)

16
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3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 46� �
DSolve[{y1'[t]==-13*y1[t]+16*y2[t],y2'[t]==-9*y1[t]+11*y2[t]},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e−t(−12c1t+ 16c2t+ c1)
y2(t) → e−t(−9c1t+ 12c2t+ c2)
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22.8 problem section 10.5, problem 8
22.8.1 Solution using Matrix exponential method . . . . . . . . . . . . 8242
22.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8243
22.8.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8251

Internal problem ID [1611]
Internal file name [OUTPUT/1612_Sunday_June_05_2022_02_24_32_AM_82817633/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = 2y2(t) + y3(t)
y′2(t) = −4y1(t) + 6y2(t) + y3(t)
y′3(t) = 4y2(t) + 2y3(t)

22.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


0 2 1
−4 6 1
0 4 2




y1(t)
y2(t)
y3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


1
2 − 2t e4t + e4t

2 2t e4t e4t
4 − 1

4

− e4t
2 + 1

2 − 2t e4t e4t(1 + 2t) e4t
4 − 1

4

−4t e4t + e4t − 1 4t e4t 1
2 +

e4t
2


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


1
2 − 2t e4t + e4t

2 2t e4t e4t
4 − 1

4

− e4t
2 + 1

2 − 2t e4t e4t(1 + 2t) e4t
4 − 1

4

−4t e4t + e4t − 1 4t e4t 1
2 +

e4t
2




c1

c2

c3



=



(
1
2 − 2t e4t + e4t

2

)
c1 + 2t e4tc2 +

(
e4t
4 − 1

4

)
c3(

− e4t
2 + 1

2 − 2t e4t
)
c1 + e4t(1 + 2t) c2 +

(
e4t
4 − 1

4

)
c3

(−4t e4t + e4t − 1) c1 + 4t e4tc2 +
(

1
2 +

e4t
2

)
c3



=


((2−8t)c1+8c2t+c3)e4t

4 + c1
2 − c3

4
((−8t−2)c1+(8t+4)c2+c3)e4t

4 + c1
2 − c3

4
((2−8t)c1+8c2t+c3)e4t

2 − c1 + c3
2


Since no forcing function is given, then the final solution is ~xh(t) above.

22.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


0 2 1
−4 6 1
0 4 2




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0
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Expanding gives

det




0 2 1
−4 6 1
0 4 2

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




−λ 2 1
−4 6− λ 1
0 4 2− λ


 = 0

Which gives the characteristic equation

λ3 − 8λ2 + 16λ = 0

The roots of the above are the eigenvalues.

λ1 = 0
λ2 = 4

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

0 1 real eigenvalue

4 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 0

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


0 2 1
−4 6 1
0 4 2

− (0)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




0 2 1
−4 6 1
0 4 2




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

0 2 1 0
−4 6 1 0
0 4 2 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives

−4 6 1 0
0 2 1 0
0 4 2 0



R3 = R3 − 2R2 =⇒


−4 6 1 0
0 2 1 0
0 0 0 0


Therefore the system in Echelon form is

−4 6 1
0 2 1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = − t

2 , v2 = − t
2

}
Hence the solution is 

− t
2

− t
2

t

 =


− t

2

− t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

− t
2

− t
2

t

 = t


−1

2

−1
2

1
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Let t = 1 the eigenvector becomes
− t

2

− t
2

t

 =


−1

2

−1
2

1


Which is normalized to 

− t
2

− t
2

t

 =


−1
−1
2


Considering the eigenvalue λ2 = 4

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


0 2 1
−4 6 1
0 4 2

− (4)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−4 2 1
−4 2 1
0 4 −2




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−4 2 1 0
−4 2 1 0
0 4 −2 0



R2 = R2 −R1 =⇒


−4 2 1 0
0 0 0 0
0 4 −2 0


Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

−4 2 1 0
0 4 −2 0
0 0 0 0
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Therefore the system in Echelon form is
−4 2 1
0 4 −2
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = t

2 , v2 =
t
2

}
Hence the solution is 

t
2
t
2

t

 =


t
2
t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t
2
t
2

t

 = t


1
2
1
2

1


Let t = 1 the eigenvector becomes 

t
2
t
2

t

 =


1
2
1
2

1


Which is normalized to 

t
2
t
2

t

 =


1
1
2


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

0 1 1 No


−1

2

−1
2

1



4 2 1 Yes


1
2

1
2

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 0 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
0

=


−1

2

−1
2

1

 e0

eigenvalue 4 is real and repated eigenvalue of multiplicity 2.There are two possible cases
that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 587: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve


0 2 1
−4 6 1
0 4 2

− (4)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


1
2
1
2

1




−4 2 1
−4 2 1
0 4 −2




v1

v2

v3

 =


1
2
1
2

1



8249



Solving for ~v2 gives

~v2 =


3
4

1
3
2


We have found two generalized eigenvectors for eigenvalue 4. Therefore the two basis
solution associated with this eigenvalue are

~x2(t) = ~v1e
λt

=


1
2
1
2

1

 e4t

=


e4t
2
e4t
2

e4t


And

~x3(t) = (~v1t+ ~v2) eλt

=




1
2
1
2

1

 t+


3
4

1
3
2


 e4t

=


e4t(2t+3)

4
e4t(2+t)

2
e4t(2t+3)

2


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


−1

2

−1
2

1

+ c2


e4t
2
e4t
2

e4t

+ c3


e4t
(
t
2 +

3
4

)
e4t
(
t
2 + 1

)
e4t
(
t+ 3

2

)
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Which becomes 
y1(t)
y2(t)
y3(t)

 =


((2t+3)c3+2c2)e4t

4 − c1
2

((2+t)c3+c2)e4t
2 − c1

2
((2t+3)c3+2c2)e4t

2 + c1


22.8.3 Maple step by step solution

Let’s solve
[y′1(t) = 2y2(t) + y3(t) , y′2(t) = −4y1(t) + 6y2(t) + y3(t) , y′3(t) = 4y2(t) + 2y3(t)]

• Define vector

→y__(t) =


y1(t)
y2(t)
y3(t)


• Convert system into a vector equation

→y__
′
(t) =


0 2 1
−4 6 1
0 4 2

 · →y__(t) +


0
0
0


• System to solve

→y__
′
(t) =


0 2 1
−4 6 1
0 4 2

 · →y__(t)

• Define the coefficient matrix

A =


0 2 1
−4 6 1
0 4 2


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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0,


−1

2

−1
2

1


 ,

4,


1
2
1
2

1


 ,

4,


0
0
0





• Consider eigenpair0,


−1
2

−1
2

1




• Solution to homogeneous system from eigenpair

→y__1 =


−1

2

−1
2

1


• Consider eigenpair, with eigenvalue of algebraic multiplicity 24,


1
2
1
2

1




• First solution from eigenvalue 4

→y__2(t) = e4t ·


1
2
1
2

1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 4 is the eigenvalue, and →
v is the eigenvector

→y__3(t) = eλt
(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 4

• Substitute →y__3(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation
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λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →y__3(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 4


0 2 1
−4 6 1
0 4 2

− 4 ·


1 0 0
0 1 0
0 0 1


 · →p =


1
2
1
2

1


• Choice of →

p

→
p =


−1

8

0
0


• Second solution from eigenvalue 4

→y__3(t) = e4t ·

t ·


1
2
1
2

1

+


−1

8

0
0




• General solution to the system of ODEs
→y__ = c1

→y__1 + c2
→y__2(t) + c3

→y__3(t)
• Substitute solutions into the general solution

→y__ = c2e4t ·


1
2
1
2

1

+ c3e4t ·

t ·


1
2
1
2

1

+


−1

8

0
0


+


− c1

2

− c1
2

c1


• Substitute in vector of dependent variables

y1(t)
y2(t)
y3(t)

 =


((−1+4t)c3+4c2)e4t

8 − c1
2

(c3t+c2)e4t
2 − c1

2

(c3t+ c2) e4t + c1


• Solution to the system of ODEs

8253



{
y1(t) = ((−1+4t)c3+4c2)e4t

8 − c1
2 , y2(t) =

(c3t+c2)e4t
2 − c1

2 , y3(t) = (c3t+ c2) e4t + c1
}

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 71� �
dsolve([diff(y__1(t),t)=0*y__1(t)+2*y__2(t)+1*y__3(t),diff(y__2(t),t)=-4*y__1(t)+6*y__2(t)+1*y__3(t),diff(y__3(t),t)=0*y__1(t)+4*y__2(t)+2*y__3(t)],singsol=all)� �

y1(t) =
c2e4t
2 + c3e4tt

2 − c1
2

y2(t) =
c2e4t
2 + c3e4tt

2 + c3e4t
4 − c1

2
y3(t) = c1 + c2e4t + c3e4tt

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 131� �
DSolve[{y1'[t]==0*y1[t]+2*y2[t]+1*y3[t],y2'[t]==-4*y1[t]+6*y2[t]+1*y3[t],y3'[t]==0*y1[t]+4*y2[t]+2*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → 1
4
(
c1
(
e4t(2− 8t) + 2

)
+ e4t(8c2t+ c3)− c3

)
y2(t) → 1

4
(
−2c1

(
e4t(4t+ 1)− 1

)
+ e4t(c2(8t+ 4) + c3)− c3

)
y3(t) → c1

(
e4t(1− 4t)− 1

)
+ 1

2
(
e4t(8c2t+ c3) + c3

)
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22.9 problem section 10.5, problem 9
22.9.1 Solution using Matrix exponential method . . . . . . . . . . . . 8255
22.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8256
22.9.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8264

Internal problem ID [1612]
Internal file name [OUTPUT/1613_Sunday_June_05_2022_02_24_34_AM_13780462/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) =
y1(t)
3 + y2(t)

3 − y3(t)

y′2(t) = −4y1(t)
3 − 4y2(t)

3 + y3(t)

y′3(t) = −2y1(t)
3 + y2(t)

3

22.9.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


1
3

1
3 −1

−4
3 −4

3 1

−2
3

1
3 0




y1(t)
y2(t)
y3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


e−t(2t+3)

6 + et
2

t e−t

3 − et
2 + e−t

2
(−2t+3)e−t

6 − et
2 e−t

(
1− t

3

) et
2 − e−t

2
e−t(2t+3)

6 − et
2

t e−t

3
e−t

2 + et
2


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e−t(2t+3)

6 + et
2

t e−t

3 − et
2 + e−t

2
(−2t+3)e−t

6 − et
2 e−t

(
1− t

3

) et
2 − e−t

2
e−t(2t+3)

6 − et
2

t e−t

3
e−t

2 + et
2




c1

c2

c3



=



(
e−t(2t+3)

6 + et
2

)
c1 + t e−tc2

3 +
(
− et

2 + e−t

2

)
c3(

(−2t+3)e−t

6 − et
2

)
c1 + e−t

(
1− t

3

)
c2 +

(
et
2 − e−t

2

)
c3(

e−t(2t+3)
6 − et

2

)
c1 + t e−tc2

3 +
(

e−t

2 + et
2

)
c3



=


(c1(2t+3)+2c2t+3c3)e−t

6 + et(c1−c3)
2

((−2t+3)c1+(6−2t)c2−3c3)e−t

6 − et(c1−c3)
2

(c1(2t+3)+2c2t+3c3)e−t

6 − et(c1−c3)
2


Since no forcing function is given, then the final solution is ~xh(t) above.

22.9.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


1
3

1
3 −1

−4
3 −4

3 1

−2
3

1
3 0




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0
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Expanding gives

det




1
3

1
3 −1

−4
3 −4

3 1

−2
3

1
3 0

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




1
3 − λ 1

3 −1

−4
3 −4

3 − λ 1

−2
3

1
3 −λ


 = 0

Which gives the characteristic equation

λ3 + λ2 − λ− 1 = 0

The roots of the above are the eigenvalues.

λ1 = −1
λ2 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

1 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1
3

1
3 −1

−4
3 −4

3 1

−2
3

1
3 0

− (−1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




4
3

1
3 −1

−4
3 −1

3 1

−2
3

1
3 1




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

4
3

1
3 −1 0

−4
3 −1

3 1 0

−2
3

1
3 1 0



R2 = R2 +R1 =⇒


4
3

1
3 −1 0

0 0 0 0
−2

3
1
3 1 0



R3 = R3 +
R1

2 =⇒


4
3

1
3 −1 0

0 0 0 0
0 1

2
1
2 0


Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

4
3

1
3 −1 0

0 1
2

1
2 0

0 0 0 0


Therefore the system in Echelon form is

4
3

1
3 −1

0 1
2

1
2

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = −t}

Hence the solution is 
t

−t

t

 =


t

−t

t
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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

−t

t

 = t


1
−1
1


Let t = 1 the eigenvector becomes

t

−t

t

 =


1
−1
1


Considering the eigenvalue λ2 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1
3

1
3 −1

−4
3 −4

3 1

−2
3

1
3 0

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−2
3

1
3 −1

−4
3 −7

3 1

−2
3

1
3 −1




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−2
3

1
3 −1 0

−4
3 −7

3 1 0

−2
3

1
3 −1 0



R2 = R2 − 2R1 =⇒


−2

3
1
3 −1 0

0 −3 3 0
−2

3
1
3 −1 0



R3 = R3 −R1 =⇒


−2

3
1
3 −1 0

0 −3 3 0
0 0 0 0
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Therefore the system in Echelon form is
−2

3
1
3 −1

0 −3 3
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −t, v2 = t}

Hence the solution is 
−t

t

t

 =


−t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

t

t

 = t


−1
1
1


Let t = 1 the eigenvector becomes

−t

t

t

 =


−1
1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−1 2 1 Yes


1
−1
1



1 1 1 No


−1
1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue −1 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram

λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 588: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
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this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve


1
3

1
3 −1

−4
3 −4

3 1

−2
3

1
3 0

− (−1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


1
−1
1




4
3

1
3 −1

−4
3 −1

3 1

−2
3

1
3 1




v1

v2

v3

 =


1
−1
1


Solving for ~v2 gives

~v2 =


1
2
1


We have found two generalized eigenvectors for eigenvalue −1. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=


1
−1
1

 e−t

=


e−t

−e−t

e−t
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And

~x2(t) = (~v1t+ ~v2) eλt

=




1
−1
1

 t+


1
2
1


 e−t

=


e−t(t+ 1)
−e−t(t− 2)
e−t(t+ 1)


Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
t

=


−1
1
1

 et

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


e−t

−e−t

e−t

+ c2


e−t(t+ 1)
e−t(−t+ 2)
e−t(t+ 1)

+ c3


−et

et

et


Which becomes 

y1(t)
y2(t)
y3(t)

 =


((t+ 1) c2 + c1) e−t − c3et

((−t+ 2) c2 − c1) e−t + c3et

((t+ 1) c2 + c1) e−t + c3et
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22.9.3 Maple step by step solution

Let’s solve[
y′1(t) =

y1(t)
3 + y2(t)

3 − y3(t) , y′2(t) = −4y1(t)
3 − 4y2(t)

3 + y3(t) , y′3(t) = −2y1(t)
3 + y2(t)

3

]
• Define vector

→y__(t) =


y1(t)
y2(t)
y3(t)


• Convert system into a vector equation

→y__
′
(t) =


1
3

1
3 −1

−4
3 −4

3 1

−2
3

1
3 0

 · →y__(t) +


0
0
0


• System to solve

→y__
′
(t) =


1
3

1
3 −1

−4
3 −4

3 1

−2
3

1
3 0

 · →y__(t)

• Define the coefficient matrix

A =


1
3

1
3 −1

−4
3 −4

3 1

−2
3

1
3 0


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


1
−1
1


 ,

−1,


0
0
0


 ,

1,


−1
1
1





• Consider eigenpair, with eigenvalue of algebraic multiplicity 2
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−1,


1
−1
1




• First solution from eigenvalue − 1

→y__1(t) = e−t ·


1
−1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = −1 is the eigenvalue, and →
v is the eigenvector

→y__2(t) = eλt
(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = −1

• Substitute →y__2(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →y__2(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue − 1


1
3

1
3 −1

−4
3 −4

3 1

−2
3

1
3 0

− (−1) ·


1 0 0
0 1 0
0 0 1


 · →p =


1
−1
1


• Choice of →

p

8265



→
p =


3
4

0
0


• Second solution from eigenvalue − 1

→y__2(t) = e−t ·

t ·


1
−1
1

+


3
4

0
0




• Consider eigenpair1,


−1
1
1




• Solution to homogeneous system from eigenpair

→y__3 = et ·


−1
1
1


• General solution to the system of ODEs

→y__ = c1
→y__1(t) + c2

→y__2(t) + c3
→y__3

• Substitute solutions into the general solution

→y__ = c1e−t ·


1
−1
1

+ c2e−t ·

t ·


1
−1
1

+


3
4

0
0


+ c3et ·


−1
1
1


• Substitute in vector of dependent variables

y1(t)
y2(t)
y3(t)

 =


(c2(4t+3)+4c1)e−t

4 − c3et

(−c2t− c1) e−t + c3et

(c2t+ c1) e−t + c3et


• Solution to the system of ODEs{

y1(t) = (c2(4t+3)+4c1)e−t

4 − c3et, y2(t) = (−c2t− c1) e−t + c3et, y3(t) = (c2t+ c1) e−t + c3et
}
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 75� �
dsolve([diff(y__1(t),t)=1/3*y__1(t)+1/3*y__2(t)-1*y__3(t),diff(y__2(t),t)=-4/3*y__1(t)-4/3*y__2(t)+1*y__3(t),diff(y__3(t),t)=-2/3*y__1(t)+1/3*y__2(t)+0*y__3(t)],singsol=all)� �

y1(t) = −c1et + c2e−t + c3e−tt

y2(t) = c1et − c2e−t − c3e−tt+ 3c3e−t

y3(t) = c1et + c2e−t + c3e−tt

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 136� �
DSolve[{y1'[t]==1/3*y1[t]+1/3*y2[t]-1*y3[t],y2'[t]==-4/3*y1[t]-4/3*y2[t]+1*y3[t],y3'[t]==-2/3*y1[t]+1/3*y2[t]+0*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → 1
6e

−t
(
c1
(
2t+ 3e2t + 3

)
+ 2c2t− 3c3

(
e2t − 1

))
y2(t) → 1

6e
−t
(
c1
(
−2t− 3e2t + 3

)
− 2c2(t− 3) + 3c3

(
e2t − 1

))
y3(t) → 1

6e
−t
(
c1
(
2t− 3e2t + 3

)
+ 2c2t+ 3c3

(
e2t + 1

))
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22.10 problem section 10.5, problem 10
22.10.1 Solution using Matrix exponential method . . . . . . . . . . . . 8268
22.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8269
22.10.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8277

Internal problem ID [1613]
Internal file name [OUTPUT/1614_Sunday_June_05_2022_02_24_36_AM_49790449/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −y1(t) + y2(t)− y3(t)
y′2(t) = −2y1(t) + 2y3(t)
y′3(t) = −y1(t) + 3y2(t)− y3(t)

22.10.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−1 1 −1
−2 0 2
−1 3 −1




y1(t)
y2(t)
y3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


e−2t(t+ 1) t e−2t −t e−2t

e−2t

2 − e2t
2

e−2t

2 + e2t
2 − e−2t

2 + e2t
2

t e−2t + e−2t

2 − e2t
2 t e−2t − e−2t

2 + e2t
2

e−2t

2 − t e−2t + e2t
2


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e−2t(t+ 1) t e−2t −t e−2t

e−2t

2 − e2t
2

e−2t

2 + e2t
2 − e−2t

2 + e2t
2

t e−2t + e−2t

2 − e2t
2 t e−2t − e−2t

2 + e2t
2

e−2t

2 − t e−2t + e2t
2




c1

c2

c3



=


e−2t(t+ 1) c1 + t e−2tc2 − t e−2tc3(

e−2t

2 − e2t
2

)
c1 +

(
e−2t

2 + e2t
2

)
c2 +

(
− e−2t

2 + e2t
2

)
c3(

t e−2t + e−2t

2 − e2t
2

)
c1 +

(
t e−2t − e−2t

2 + e2t
2

)
c2 +

(
e−2t

2 − t e−2t + e2t
2

)
c3



=


((c1 + c2 − c3) t+ c1) e−2t

(c1+c2−c3)e−2t

2 − e2t(c1−c2−c3)
2(

c1(1+2t)+2
(
t− 1

2
)
(c2−c3)

)
e−2t

2 − e2t(c1−c2−c3)
2


Since no forcing function is given, then the final solution is ~xh(t) above.

22.10.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−1 1 −1
−2 0 2
−1 3 −1




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0
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Expanding gives

det




−1 1 −1
−2 0 2
−1 3 −1

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




−1− λ 1 −1
−2 −λ 2
−1 3 −1− λ


 = 0

Which gives the characteristic equation

λ3 + 2λ2 − 4λ− 8 = 0

The roots of the above are the eigenvalues.

λ1 = −2
λ2 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−2 1 real eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−1 1 −1
−2 0 2
−1 3 −1

− (−2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




1 1 −1
−2 2 2
−1 3 1




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

1 1 −1 0
−2 2 2 0
−1 3 1 0



R2 = R2 + 2R1 =⇒


1 1 −1 0
0 4 0 0
−1 3 1 0



R3 = R3 +R1 =⇒


1 1 −1 0
0 4 0 0
0 4 0 0



R3 = R3 −R2 =⇒


1 1 −1 0
0 4 0 0
0 0 0 0


Therefore the system in Echelon form is

1 1 −1
0 4 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = 0}

Hence the solution is 
t

0
t

 =


t

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

0
t

 = t


1
0
1
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Let t = 1 the eigenvector becomes 
t

0
t

 =


1
0
1


Considering the eigenvalue λ2 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−1 1 −1
−2 0 2
−1 3 −1

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−3 1 −1
−2 −2 2
−1 3 −3




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−3 1 −1 0
−2 −2 2 0
−1 3 −3 0



R2 = R2 −
2R1

3 =⇒


−3 1 −1 0
0 −8

3
8
3 0

−1 3 −3 0



R3 = R3 −
R1

3 =⇒


−3 1 −1 0
0 −8

3
8
3 0

0 8
3 −8

3 0



R3 = R3 +R2 =⇒


−3 1 −1 0
0 −8

3
8
3 0

0 0 0 0
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Therefore the system in Echelon form is
−3 1 −1
0 −8

3
8
3

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 0, v2 = t}

Hence the solution is 
0
t

t

 =


0
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
t

t

 = t


0
1
1


Let t = 1 the eigenvector becomes 

0
t

t

 =


0
1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−2 2 1 Yes


1
0
1



2 1 1 No


0
1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue −2 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram

λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 589: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
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this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve


−1 1 −1
−2 0 2
−1 3 −1

− (−2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


1
0
1




1 1 −1
−2 2 2
−1 3 1




v1

v2

v3

 =


1
0
1


Solving for ~v2 gives

~v2 =


3
2
1
2

1


We have found two generalized eigenvectors for eigenvalue −2. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=


1
0
1

 e−2t

=


e−2t

0
e−2t
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And

~x2(t) = (~v1t+ ~v2) eλt

=




1
0
1

 t+


3
2
1
2

1


 e−2t

=


e−2t(2t+3)

2
e−2t

2

e−2t(t+ 1)


Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
2t

=


0
1
1

 e2t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


e−2t

0
e−2t

+ c2


e−2t(t+ 3

2

)
e−2t

2

e−2t(t+ 1)

+ c3


0
e2t

e2t


Which becomes 

y1(t)
y2(t)
y3(t)

 =


e−2t(c1 + c2t+ 3

2c2
)

c2e−2t

2 + c3e2t

((t+ 1) c2 + c1) e−2t + c3e2t
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22.10.3 Maple step by step solution

Let’s solve
[y′1(t) = −y1(t) + y2(t)− y3(t) , y′2(t) = −2y1(t) + 2y3(t) , y′3(t) = −y1(t) + 3y2(t)− y3(t)]

• Define vector

→y__(t) =


y1(t)
y2(t)
y3(t)


• Convert system into a vector equation

→y__
′
(t) =


−1 1 −1
−2 0 2
−1 3 −1

 · →y__(t) +


0
0
0


• System to solve

→y__
′
(t) =


−1 1 −1
−2 0 2
−1 3 −1

 · →y__(t)

• Define the coefficient matrix

A =


−1 1 −1
−2 0 2
−1 3 −1


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−2,


1
0
1


 ,

−2,


0
0
0


 ,

2,


0
1
1





• Consider eigenpair, with eigenvalue of algebraic multiplicity 2

8277



−2,


1
0
1




• First solution from eigenvalue − 2

→y__1(t) = e−2t ·


1
0
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = −2 is the eigenvalue, and →
v is the eigenvector

→y__2(t) = eλt
(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = −2

• Substitute →y__2(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →y__2(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue − 2


−1 1 −1
−2 0 2
−1 3 −1

− (−2) ·


1 0 0
0 1 0
0 0 1


 · →p =


1
0
1


• Choice of →

p
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→
p =


1
0
0


• Second solution from eigenvalue − 2

→y__2(t) = e−2t ·

t ·


1
0
1

+


1
0
0




• Consider eigenpair2,


0
1
1




• Solution to homogeneous system from eigenpair

→y__3 = e2t ·


0
1
1


• General solution to the system of ODEs

→y__ = c1
→y__1(t) + c2

→y__2(t) + c3
→y__3

• Substitute solutions into the general solution

→y__ = c1e−2t ·


1
0
1

+ e−2tc2 ·

t ·


1
0
1

+


1
0
0


+ c3e2t ·


0
1
1


• Substitute in vector of dependent variables

y1(t)
y2(t)
y3(t)

 =


e−2t(c2t+ c1 + c2)

c3e2t

e−2t(c2t+ c1) + c3e2t


• Solution to the system of ODEs

{y1(t) = e−2t(c2t+ c1 + c2) , y2(t) = c3e2t, y3(t) = e−2t(c2t+ c1) + c3e2t}
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 63� �
dsolve([diff(y__1(t),t)=-1*y__1(t)+1*y__2(t)-1*y__3(t),diff(y__2(t),t)=-2*y__1(t)+0*y__2(t)+2*y__3(t),diff(y__3(t),t)=-1*y__1(t)+3*y__2(t)-1*y__3(t)],singsol=all)� �

y1(t) = (2c2t+ c1) e−2t

y2(t) = c2e−2t + c3e2t

y3(t) = 2c2e−2tt+ c3e2t + c1e−2t − c2e−2t

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 125� �
DSolve[{y1'[t]==-1*y1[t]+1*y2[t]-1*y3[t],y2'[t]==-2*y1[t]+0*y2[t]+2*y3[t],y3'[t]==-1*y1[t]+3*y2[t]-1*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e−2t(c1(t+ 1) + (c2 − c3)t)

y2(t) → 1
2e

−2t(−(c1(e4t − 1
))

+ c2
(
e4t + 1

)
+ c3

(
e4t − 1

))
y3(t) → 1

2e
−2t(c1(2t− e4t + 1

)
+ c2

(
2t+ e4t − 1

)
+ c3

(
−2t+ e4t + 1

))
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22.11 problem section 10.5, problem 11
22.11.1 Solution using Matrix exponential method . . . . . . . . . . . . 8281
22.11.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8282
22.11.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8290

Internal problem ID [1614]
Internal file name [OUTPUT/1615_Sunday_June_05_2022_02_24_38_AM_32416070/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = 4y1(t)− 2y2(t)− 2y3(t)
y′2(t) = −2y1(t) + 3y2(t)− y3(t)
y′3(t) = 2y1(t)− y2(t) + 3y3(t)

22.11.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


4 −2 −2
−2 3 −1
2 −1 3




y1(t)
y2(t)
y3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


e4t −e4t + e2t −e4t + e2t

−2t e4t 3 e2t
2 + 2t e4t − e4t

2 2t e4t − 3 e4t
2 + 3 e2t

2

2t e4t −2t e4t + e4t
2 − e2t

2 −2t e4t + 3 e4t
2 − e2t

2


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e4t −e4t + e2t −e4t + e2t

−2t e4t 3 e2t
2 + 2t e4t − e4t

2 2t e4t − 3 e4t
2 + 3 e2t

2

2t e4t −2t e4t + e4t
2 − e2t

2 −2t e4t + 3 e4t
2 − e2t

2




c1

c2

c3



=


e4tc1 + (−e4t + e2t) c2 + (−e4t + e2t) c3

−2t e4tc1 +
(

3 e2t
2 + 2t e4t − e4t

2

)
c2 +

(
2t e4t − 3 e4t

2 + 3 e2t
2

)
c3

2t e4tc1 +
(
−2t e4t + e4t

2 − e2t
2

)
c2 +

(
−2t e4t + 3 e4t

2 − e2t
2

)
c3



=


e4t(c1 − c2 − c3) + e2t(c2 + c3)

((−1+4t)c2+(−3+4t)c3−4c1t)e4t
2 + 3 e2t(c2+c3)

2
((1−4t)c2+(−4t+3)c3+4c1t)e4t

2 − e2t(c2+c3)
2


Since no forcing function is given, then the final solution is ~xh(t) above.

22.11.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


4 −2 −2
−2 3 −1
2 −1 3




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0
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Expanding gives

det




4 −2 −2
−2 3 −1
2 −1 3

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




4− λ −2 −2
−2 3− λ −1
2 −1 3− λ


 = 0

Which gives the characteristic equation

λ3 − 10λ2 + 32λ− 32 = 0

The roots of the above are the eigenvalues.

λ1 = 4
λ2 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

4 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


4 −2 −2
−2 3 −1
2 −1 3

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




2 −2 −2
−2 1 −1
2 −1 1




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

2 −2 −2 0
−2 1 −1 0
2 −1 1 0



R2 = R2 +R1 =⇒


2 −2 −2 0
0 −1 −3 0
2 −1 1 0



R3 = R3 −R1 =⇒


2 −2 −2 0
0 −1 −3 0
0 1 3 0



R3 = R3 +R2 =⇒


2 −2 −2 0
0 −1 −3 0
0 0 0 0


Therefore the system in Echelon form is

2 −2 −2
0 −1 −3
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −2t, v2 = −3t}

Hence the solution is 
−2t
−3t
t

 =


−2t
−3t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−2t
−3t
t

 = t


−2
−3
1
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Let t = 1 the eigenvector becomes
−2t
−3t
t

 =


−2
−3
1


Considering the eigenvalue λ2 = 4

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


4 −2 −2
−2 3 −1
2 −1 3

− (4)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




0 −2 −2
−2 −1 −1
2 −1 −1




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

0 −2 −2 0
−2 −1 −1 0
2 −1 −1 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives

−2 −1 −1 0
0 −2 −2 0
2 −1 −1 0



R3 = R3 +R1 =⇒


−2 −1 −1 0
0 −2 −2 0
0 −2 −2 0



R3 = R3 −R2 =⇒


−2 −1 −1 0
0 −2 −2 0
0 0 0 0



8285



Therefore the system in Echelon form is
−2 −1 −1
0 −2 −2
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 0, v2 = −t}

Hence the solution is 
0
−t

t

 =


0
−t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
−t

t

 = t


0
−1
1


Let t = 1 the eigenvector becomes

0
−t

t

 =


0
−1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

4 2 1 Yes


0
−1
1



2 1 1 No


−2
−3
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 4 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram

λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 590: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
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this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve


4 −2 −2
−2 3 −1
2 −1 3

− (4)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
−1
1




0 −2 −2
−2 −1 −1
2 −1 −1




v1

v2

v3

 =


0
−1
1


Solving for ~v2 gives

~v2 =


1
2

−1
1


We have found two generalized eigenvectors for eigenvalue 4. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=


0
−1
1

 e4t

=


0

−e4t

e4t



8288



And

~x2(t) = (~v1t+ ~v2) eλt

=




0
−1
1

 t+


1
2

−1
1


 e4t

=


e4t
2

−e4t(t+ 1)
e4t(t+ 1)


Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
2t

=


−2
−3
1

 e2t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


0

−e4t

e4t

+ c2


e4t
2

e4t(−t− 1)
e4t(t+ 1)

+ c3


−2 e2t

−3 e2t

e2t


Which becomes 

y1(t)
y2(t)
y3(t)

 =


c2e4t
2 − 2c3e2t

((−t− 1) c2 − c1) e4t − 3c3e2t

((t+ 1) c2 + c1) e4t + c3e2t
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22.11.3 Maple step by step solution

Let’s solve
[y′1(t) = 4y1(t)− 2y2(t)− 2y3(t) , y′2(t) = −2y1(t) + 3y2(t)− y3(t) , y′3(t) = 2y1(t)− y2(t) + 3y3(t)]

• Define vector

→y__(t) =


y1(t)
y2(t)
y3(t)


• Convert system into a vector equation

→y__
′
(t) =


4 −2 −2
−2 3 −1
2 −1 3

 · →y__(t) +


0
0
0


• System to solve

→y__
′
(t) =


4 −2 −2
−2 3 −1
2 −1 3

 · →y__(t)

• Define the coefficient matrix

A =


4 −2 −2
−2 3 −1
2 −1 3


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

2,


−2
−3
1


 ,

4,


0
−1
1


 ,

4,


0
0
0





• Consider eigenpair
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2,


−2
−3
1




• Solution to homogeneous system from eigenpair

→y__1 = e2t ·


−2
−3
1


• Consider eigenpair, with eigenvalue of algebraic multiplicity 24,


0
−1
1




• First solution from eigenvalue 4

→y__2(t) = e4t ·


0
−1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 4 is the eigenvalue, and →
v is the eigenvector

→y__3(t) = eλt
(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 4

• Substitute →y__3(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →y__3(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v
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• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 4


4 −2 −2
−2 3 −1
2 −1 3

− 4 ·


1 0 0
0 1 0
0 0 1


 · →p =


0
−1
1


• Choice of →

p

→
p =


0
0
0


• Second solution from eigenvalue 4

→y__3(t) = e4t ·

t ·


0
−1
1

+


0
0
0




• General solution to the system of ODEs
→y__ = c1

→y__1 + c2
→y__2(t) + c3

→y__3(t)
• Substitute solutions into the general solution

→y__ = c1e2t ·


−2
−3
1

+ c2e4t ·


0
−1
1

+ c3e4t ·

t ·


0
−1
1

+


0
0
0




• Substitute in vector of dependent variables
y1(t)
y2(t)
y3(t)

 =


−2c1e2t

(−c3t− c2) e4t − 3c1e2t

(c3t+ c2) e4t + c1e2t


• Solution to the system of ODEs

{y1(t) = −2c1e2t, y2(t) = (−c3t− c2) e4t − 3c1e2t, y3(t) = (c3t+ c2) e4t + c1e2t}
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 69� �
dsolve([diff(y__1(t),t)=4*y__1(t)-2*y__2(t)-2*y__3(t),diff(y__2(t),t)=-2*y__1(t)+3*y__2(t)-1*y__3(t),diff(y__3(t),t)=2*y__1(t)-1*y__2(t)+3*y__3(t)],singsol=all)� �

y1(t) = c2e4t + c3e2t

y2(t) = −2c2e4tt+ c1e4t +
3c3e2t
2

y3(t) = 2c2e4tt− c1e4t −
c3e2t
2

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 126� �
DSolve[{y1'[t]==4*y1[t]-2*y2[t]-2*y3[t],y2'[t]==-2*y1[t]+3*y2[t]-1*y3[t],y3'[t]==2*y1[t]-1*y2[t]+3*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e2t
(
(c1 − c2 − c3)e2t + c2 + c3

)
y2(t) → 1

2
(
3(c2 + c3)e2t − e4t(4(c1 − c2 − c3)t+ c2 + 3c3)

)
y3(t) → −1

2e
2t(−e2t(4(c1 − c2 − c3)t+ c2 + 3c3) + c2 + c3

)
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22.12 problem section 10.5, problem 12
22.12.1 Solution using Matrix exponential method . . . . . . . . . . . . 8294
22.12.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8295
22.12.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8303

Internal problem ID [1615]
Internal file name [OUTPUT/1616_Sunday_June_05_2022_02_24_40_AM_88006293/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = 6y1(t)− 5y2(t) + 3y3(t)
y′2(t) = 2y1(t)− y2(t) + 3y3(t)
y′3(t) = 2y1(t) + y2(t) + y3(t)

22.12.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


6 −5 3
2 −1 3
2 1 1




y1(t)
y2(t)
y3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


e4t(1 + 2t) −2t e4t − e4t

2 + e−2t

2
e4t
2 − e−2t

2

2t e4t e−2t

2 − 2t e4t + e4t
2

e4t
2 − e−2t

2

2t e4t −2t e4t + e4t
2 − e−2t

2
e−2t

2 + e4t
2


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e4t(1 + 2t) −2t e4t − e4t

2 + e−2t

2
e4t
2 − e−2t

2

2t e4t e−2t

2 − 2t e4t + e4t
2

e4t
2 − e−2t

2

2t e4t −2t e4t + e4t
2 − e−2t

2
e−2t

2 + e4t
2




c1

c2

c3



=


e4t(1 + 2t) c1 +

(
−2t e4t − e4t

2 + e−2t

2

)
c2 +

(
e4t
2 − e−2t

2

)
c3

2t e4tc1 +
(

e−2t

2 − 2t e4t + e4t
2

)
c2 +

(
e4t
2 − e−2t

2

)
c3

2t e4tc1 +
(
−2t e4t + e4t

2 − e−2t

2

)
c2 +

(
e−2t

2 + e4t
2

)
c3



=


((−4t−1)c2+(4t+2)c1+c3)e4t

2 + e−2t(c2−c3)
2

((1−4t)c2+4c1t+c3)e4t
2 + e−2t(c2−c3)

2
((1−4t)c2+4c1t+c3)e4t

2 − e−2t(c2−c3)
2


Since no forcing function is given, then the final solution is ~xh(t) above.

22.12.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


6 −5 3
2 −1 3
2 1 1




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0
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Expanding gives

det




6 −5 3
2 −1 3
2 1 1

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




6− λ −5 3
2 −1− λ 3
2 1 1− λ


 = 0

Which gives the characteristic equation

λ3 − 6λ2 + 32 = 0

The roots of the above are the eigenvalues.

λ1 = 4
λ2 = −2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−2 1 real eigenvalue

4 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


6 −5 3
2 −1 3
2 1 1

− (−2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




8 −5 3
2 1 3
2 1 3




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

8 −5 3 0
2 1 3 0
2 1 3 0



R2 = R2 −
R1

4 =⇒


8 −5 3 0
0 9

4
9
4 0

2 1 3 0



R3 = R3 −
R1

4 =⇒


8 −5 3 0
0 9

4
9
4 0

0 9
4

9
4 0



R3 = R3 −R2 =⇒


8 −5 3 0
0 9

4
9
4 0

0 0 0 0


Therefore the system in Echelon form is

8 −5 3
0 9

4
9
4

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −t, v2 = −t}

Hence the solution is 
−t

−t

t

 =


−t

−t

t
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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

−t

t

 = t


−1
−1
1


Let t = 1 the eigenvector becomes

−t

−t

t

 =


−1
−1
1


Considering the eigenvalue λ2 = 4

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


6 −5 3
2 −1 3
2 1 1

− (4)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




2 −5 3
2 −5 3
2 1 −3




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

2 −5 3 0
2 −5 3 0
2 1 −3 0



R2 = R2 −R1 =⇒


2 −5 3 0
0 0 0 0
2 1 −3 0



R3 = R3 −R1 =⇒


2 −5 3 0
0 0 0 0
0 6 −6 0
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Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

2 −5 3 0
0 6 −6 0
0 0 0 0


Therefore the system in Echelon form is

2 −5 3
0 6 −6
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = t}

Hence the solution is 
t

t

t

 =


t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

t

 = t


1
1
1


Let t = 1 the eigenvector becomes 

t

t

t

 =


1
1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

4 2 1 Yes


1
1
1



−2 1 1 No


−1
−1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 4 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram

λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 591: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
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this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve


6 −5 3
2 −1 3
2 1 1

− (4)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


1
1
1




2 −5 3
2 −5 3
2 1 −3




v1

v2

v3

 =


1
1
1


Solving for ~v2 gives

~v2 =


3
2

1
1


We have found two generalized eigenvectors for eigenvalue 4. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=


1
1
1

 e4t

=


e4t

e4t

e4t
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And

~x2(t) = (~v1t+ ~v2) eλt

=




1
1
1

 t+


3
2

1
1


 e4t

=


e4t(2t+3)

2

e4t(t+ 1)
e4t(t+ 1)


Since eigenvalue −2 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
−2t

=


−1
−1
1

 e−2t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


e4t

e4t

e4t

+ c2


e4t
(
t+ 3

2

)
e4t(t+ 1)
e4t(t+ 1)

+ c3


−e−2t

−e−2t

e−2t


Which becomes 

y1(t)
y2(t)
y3(t)

 =


((2t+3)c2+2c1)e4t

2 − c3e−2t

((t+ 1) c2 + c1) e4t − c3e−2t

((t+ 1) c2 + c1) e4t + c3e−2t
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22.12.3 Maple step by step solution

Let’s solve
[y′1(t) = 6y1(t)− 5y2(t) + 3y3(t) , y′2(t) = 2y1(t)− y2(t) + 3y3(t) , y′3(t) = 2y1(t) + y2(t) + y3(t)]

• Define vector

→y__(t) =


y1(t)
y2(t)
y3(t)


• Convert system into a vector equation

→y__
′
(t) =


6 −5 3
2 −1 3
2 1 1

 · →y__(t) +


0
0
0


• System to solve

→y__
′
(t) =


6 −5 3
2 −1 3
2 1 1

 · →y__(t)

• Define the coefficient matrix

A =


6 −5 3
2 −1 3
2 1 1


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−2,


−1
−1
1


 ,

4,


1
1
1


 ,

4,


0
0
0





• Consider eigenpair
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−2,


−1
−1
1




• Solution to homogeneous system from eigenpair

→y__1 = e−2t ·


−1
−1
1


• Consider eigenpair, with eigenvalue of algebraic multiplicity 24,


1
1
1




• First solution from eigenvalue 4

→y__2(t) = e4t ·


1
1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 4 is the eigenvalue, and →
v is the eigenvector

→y__3(t) = eλt
(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 4

• Substitute →y__3(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →y__3(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v
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• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 4


6 −5 3
2 −1 3
2 1 1

− 4 ·


1 0 0
0 1 0
0 0 1


 · →p =


1
1
1


• Choice of →

p

→
p =


1
2

0
0


• Second solution from eigenvalue 4

→y__3(t) = e4t ·

t ·


1
1
1

+


1
2

0
0




• General solution to the system of ODEs
→y__ = c1

→y__1 + c2
→y__2(t) + c3

→y__3(t)
• Substitute solutions into the general solution

→y__ = c1e−2t ·


−1
−1
1

+ c2e4t ·


1
1
1

+ c3e4t ·

t ·


1
1
1

+


1
2

0
0




• Substitute in vector of dependent variables
y1(t)
y2(t)
y3(t)

 =


((1+2t)c3+2c2)e4t

2 − c1e−2t

(c3t+ c2) e4t − c1e−2t

(c3t+ c2) e4t + c1e−2t


• Solution to the system of ODEs{

y1(t) = ((1+2t)c3+2c2)e4t
2 − c1e−2t, y2(t) = (c3t+ c2) e4t − c1e−2t, y3(t) = (c3t+ c2) e4t + c1e−2t

}
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 86� �
dsolve([diff(y__1(t),t)=6*y__1(t)-5*y__2(t)+3*y__3(t),diff(y__2(t),t)=2*y__1(t)-1*y__2(t)+3*y__3(t),diff(y__3(t),t)=2*y__1(t)+1*y__2(t)+1*y__3(t)],singsol=all)� �

y1(t) = c1e−2t + c2e4t + c3e4tt

y2(t) = c1e−2t + c2e4t + c3e4tt−
c3e4t
2

y3(t) = −c1e−2t + c2e4t + c3e4tt−
c3e4t
2

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 127� �
DSolve[{y1'[t]==6*y1[t]-5*y2[t]+3*y3[t],y2'[t]==2*y1[t]-1*y2[t]+3*y3[t],y3'[t]==2*y1[t]+1*y2[t]+1*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → 1
2e

−2t(e6t(c1(4t+ 2)− c2(4t+ 1) + c3) + c2 − c3
)

y2(t) → 1
2e

−2t(e6t(4(c1 − c2)t+ c2 + c3) + c2 − c3
)

y3(t) → 1
2e

−2t(e6t(4(c1 − c2)t+ c2 + c3)− c2 + c3
)
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22.13 problem section 10.5, problem 13
22.13.1 Solution using Matrix exponential method . . . . . . . . . . . . 8307
22.13.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8308

Internal problem ID [1616]
Internal file name [OUTPUT/1617_Sunday_June_05_2022_02_24_42_AM_36547832/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −11y1(t) + 8y2(t)
y′2(t) = −2y1(t)− 3y2(t)

With initial conditions
[y1(0) = 6, y2(0) = 2]

22.13.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −11 8
−2 −3

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e−7t(1− 4t) 8t e−7t

−2t e−7t e−7t(4t+ 1)
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Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 e−7t(1− 4t) 8t e−7t

−2t e−7t e−7t(4t+ 1)

 6
2


=

 6 e−7t(1− 4t) + 16t e−7t

−12t e−7t + 2 e−7t(4t+ 1)


=

 (−8t+ 6) e−7t

(−4t+ 2) e−7t


Since no forcing function is given, then the final solution is ~xh(t) above.

22.13.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −11 8
−2 −3

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −11 8
−2 −3

− λ

 1 0
0 1

 = 0

Therefore

det

 −11− λ 8
−2 −3− λ

 = 0
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Which gives the characteristic equation

λ2 + 14λ+ 49 = 0

The roots of the above are the eigenvalues.

λ1 = −7

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−7 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −7

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −11 8
−2 −3

− (−7)

 1 0
0 1

 v1

v2

 =

 0
0


 −4 8

−2 4

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −4 8 0

−2 4 0



R2 = R2 −
R1

2 =⇒

−4 8 0
0 0 0


Therefore the system in Echelon form is −4 8

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 2t}
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Hence the solution is  2t
t

 =

 2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

t

 = t

 2
1


Let t = 1 the eigenvector becomes  2t

t

 =

 2
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−7 2 1 Yes

 2
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue −7 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 592: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve −11 8
−2 −3

− (−7)

 1 0
0 1

 v1

v2

 =

 2
1


 −4 8

−2 4

 v1

v2

 =

 2
1


Solving for ~v2 gives

~v2 =

 3
2

1
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We have found two generalized eigenvectors for eigenvalue −7. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 2
1

 e−7t

=

 2 e−7t

e−7t


And

~x2(t) = (~v1t+ ~v2) eλt

=

 2
1

 t+

 3
2

1

 e−7t

=

 e−7t(4t+3)
2

e−7t(t+ 1)


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as y1(t)
y2(t)

 = c1

 2 e−7t

e−7t

+ c2

 e−7t(2t+ 3
2

)
e−7t(t+ 1)


Which becomes  y1(t)

y2(t)

 =

 e−7t(2c1 + 2c2t+ 3
2c2
)

e−7t(c2t+ c1 + c2)


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions y1(0) = 6

y2(0) = 2

 (1)
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Substituting initial conditions into the above solution at t = 0 gives 6
2

 =

 2c1 + 3c2
2

c1 + c2


Solving for the constants of integrations gives c1 = 6

c2 = −4


Substituting these constants back in original solution in Eq. (1) gives

 y1(t)
y2(t)

 =

 (−8t+ 6) e−7t

(−4t+ 2) e−7t


The following is the phase plot of the system.

Figure 593: Phase plot

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 29� �
dsolve([diff(y__1(t),t) = -11*y__1(t)+8*y__2(t), diff(y__2(t),t) = -2*y__1(t)-3*y__2(t), y__1(0) = 6, y__2(0) = 2], singsol=all)� �

y1(t) = e−7t(−8t+ 6)

y2(t) =
e−7t(−32t+ 16)

8

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30� �
DSolve[{y1'[t]==-11*y1[t]+8*y2[t],y2'[t]==-2*y1[t]-3*y2[t]},{y1[0]==6,y2[0]==2},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e−7t(6− 8t)
y2(t) → e−7t(2− 4t)
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22.14 problem section 10.5, problem 14
22.14.1 Solution using Matrix exponential method . . . . . . . . . . . . 8315
22.14.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8316

Internal problem ID [1617]
Internal file name [OUTPUT/1618_Sunday_June_05_2022_02_24_43_AM_42943667/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = 15y1(t)− 9y2(t)
y′2(t) = 16y1(t)− 9y2(t)

With initial conditions
[y1(0) = 5, y2(0) = 8]

22.14.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 15 −9
16 −9

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e3t(1 + 12t) −9 e3tt
16 e3tt e3t(1− 12t)
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Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 e3t(1 + 12t) −9 e3tt
16 e3tt e3t(1− 12t)

 5
8


=

 5 e3t(1 + 12t)− 72 e3tt
80 e3tt+ 8 e3t(1− 12t)


=

 e3t(−12t+ 5)
(−16t+ 8) e3t


Since no forcing function is given, then the final solution is ~xh(t) above.

22.14.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 15 −9
16 −9

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 15 −9
16 −9

− λ

 1 0
0 1

 = 0

Therefore

det

 15− λ −9
16 −9− λ

 = 0
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Which gives the characteristic equation

λ2 − 6λ+ 9 = 0

The roots of the above are the eigenvalues.

λ1 = 3

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 15 −9
16 −9

− (3)

 1 0
0 1

 v1

v2

 =

 0
0


 12 −9

16 −12

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 12 −9 0

16 −12 0



R2 = R2 −
4R1

3 =⇒

12 −9 0
0 0 0


Therefore the system in Echelon form is 12 −9

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 3t

4

}
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Hence the solution is  3t
4

t

 =

 3t
4

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 3t

4

t

 = t

 3
4

1


Let t = 1 the eigenvector becomes  3t

4

t

 =

 3
4

1


Which is normalized to  3t

4

t

 =

 3
4


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

3 2 1 Yes

 3
4

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 3 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 594: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve 15 −9
16 −9

− (3)

 1 0
0 1

 v1

v2

 =

 3
4

1


 12 −9

16 −12

 v1

v2

 =

 3
4

1


Solving for ~v2 gives

~v2 =

 1
5
4
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We have found two generalized eigenvectors for eigenvalue 3. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 3
4

1

 e3t

=

 3 e3t
4

e3t


And

~x2(t) = (~v1t+ ~v2) eλt

=

 3
4

1

 t+

 1
5
4

 e3t

=

 e3t(3t+4)
4

e3t(4t+5)
4


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  y1(t)
y2(t)

 = c1

 3 e3t
4

e3t

+ c2

 e3t
(3t

4 + 1
)

e3t
(
t+ 5

4

)


Which becomes  y1(t)
y2(t)

 =

 ((3t+4)c2+3c1)e3t
4

e3t
(
c1 + c2t+ 5

4c2
)


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions y1(0) = 5

y2(0) = 8

 (1)
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Substituting initial conditions into the above solution at t = 0 gives 5
8

 =

 c2 + 3c1
4

c1 + 5c2
4


Solving for the constants of integrations gives c1 = 28

c2 = −16


Substituting these constants back in original solution in Eq. (1) gives

 y1(t)
y2(t)

 =

 (−48t+20)e3t
4

(−16t+ 8) e3t


The following is the phase plot of the system.

Figure 595: Phase plot

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 29� �
dsolve([diff(y__1(t),t) = 15*y__1(t)-9*y__2(t), diff(y__2(t),t) = 16*y__1(t)-9*y__2(t), y__1(0) = 5, y__2(0) = 8], singsol=all)� �

y1(t) = e3t(−12t+ 5)

y2(t) =
e3t(−144t+ 72)

9

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 31� �
DSolve[{y1'[t]==15*y1[t]-9*y2[t],y2'[t]==16*y1[t]-9*y2[t]},{y1[0]==5,y2[0]==8},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e3t(5− 12t)
y2(t) → −8e3t(2t− 1)
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22.15 problem section 10.5, problem 15
22.15.1 Solution using Matrix exponential method . . . . . . . . . . . . 8323
22.15.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8324

Internal problem ID [1618]
Internal file name [OUTPUT/1619_Sunday_June_05_2022_02_24_45_AM_66646725/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 15.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −3y1(t)− 4y2(t)
y′2(t) = y1(t)− 7y2(t)

With initial conditions
[y1(0) = 2, y2(0) = 3]

22.15.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −3 −4
1 −7

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e−5t(1 + 2t) −4t e−5t

t e−5t e−5t(1− 2t)
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Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 e−5t(1 + 2t) −4t e−5t

t e−5t e−5t(1− 2t)

 2
3


=

 2 e−5t(1 + 2t)− 12t e−5t

2t e−5t + 3 e−5t(1− 2t)


=

 (2− 8t) e−5t

e−5t(−4t+ 3)


Since no forcing function is given, then the final solution is ~xh(t) above.

22.15.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −3 −4
1 −7

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −3 −4
1 −7

− λ

 1 0
0 1

 = 0

Therefore

det

 −3− λ −4
1 −7− λ

 = 0
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Which gives the characteristic equation

λ2 + 10λ+ 25 = 0

The roots of the above are the eigenvalues.

λ1 = −5

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−5 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −5

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −3 −4
1 −7

− (−5)

 1 0
0 1

 v1

v2

 =

 0
0


 2 −4

1 −2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 2 −4 0

1 −2 0



R2 = R2 −
R1

2 =⇒

2 −4 0
0 0 0


Therefore the system in Echelon form is 2 −4

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 2t}
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Hence the solution is  2t
t

 =

 2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

t

 = t

 2
1


Let t = 1 the eigenvector becomes  2t

t

 =

 2
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−5 2 1 Yes

 2
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue −5 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 596: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve −3 −4
1 −7

− (−5)

 1 0
0 1

 v1

v2

 =

 2
1


 2 −4

1 −2

 v1

v2

 =

 2
1


Solving for ~v2 gives

~v2 =

 3
1
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We have found two generalized eigenvectors for eigenvalue −5. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 2
1

 e−5t

=

 2 e−5t

e−5t


And

~x2(t) = (~v1t+ ~v2) eλt

=

 2
1

 t+

 3
1

 e−5t

=

 e−5t(2t+ 3)
e−5t(t+ 1)


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as y1(t)
y2(t)

 = c1

 2 e−5t

e−5t

+ c2

 e−5t(2t+ 3)
e−5t(t+ 1)


Which becomes  y1(t)

y2(t)

 =

 ((2t+ 3) c2 + 2c1) e−5t

e−5t(c2t+ c1 + c2)


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions y1(0) = 2

y2(0) = 3

 (1)
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Substituting initial conditions into the above solution at t = 0 gives 2
3

 =

 3c2 + 2c1
c1 + c2


Solving for the constants of integrations gives c1 = 7

c2 = −4


Substituting these constants back in original solution in Eq. (1) gives

 y1(t)
y2(t)

 =

 (2− 8t) e−5t

e−5t(−4t+ 3)


The following is the phase plot of the system.

Figure 597: Phase plot

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 29� �
dsolve([diff(y__1(t),t) = -3*y__1(t)-4*y__2(t), diff(y__2(t),t) = y__1(t)-7*y__2(t), y__1(0) = 2, y__2(0) = 3], singsol=all)� �

y1(t) = e−5t(−8t+ 2)

y2(t) =
e−5t(−16t+ 12)

4

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30� �
DSolve[{y1'[t]==-3*y1[t]-4*y2[t],y2'[t]==1*y1[t]-7*y2[t]},{y1[0]==2,y2[0]==3},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e−5t(2− 8t)
y2(t) → e−5t(3− 4t)
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22.16 problem section 10.5, problem 16
22.16.1 Solution using Matrix exponential method . . . . . . . . . . . . 8331
22.16.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8332

Internal problem ID [1619]
Internal file name [OUTPUT/1620_Sunday_June_05_2022_02_24_46_AM_32482012/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −7y1(t) + 24y2(t)
y′2(t) = −6y1(t) + 17y2(t)

With initial conditions
[y1(0) = 3, y2(0) = 1]

22.16.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −7 24
−6 17

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e5t(1− 12t) 24t e5t

−6t e5t e5t(1 + 12t)
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Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 e5t(1− 12t) 24t e5t

−6t e5t e5t(1 + 12t)

 3
1


=

 3 e5t(1− 12t) + 24t e5t

−18t e5t + e5t(1 + 12t)


=

 (−12t+ 3) e5t

e5t(1− 6t)


Since no forcing function is given, then the final solution is ~xh(t) above.

22.16.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −7 24
−6 17

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −7 24
−6 17

− λ

 1 0
0 1

 = 0

Therefore

det

 −7− λ 24
−6 17− λ

 = 0
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Which gives the characteristic equation

λ2 − 10λ+ 25 = 0

The roots of the above are the eigenvalues.

λ1 = 5

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

5 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 5

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −7 24
−6 17

− (5)

 1 0
0 1

 v1

v2

 =

 0
0


 −12 24

−6 12

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −12 24 0

−6 12 0



R2 = R2 −
R1

2 =⇒

−12 24 0
0 0 0


Therefore the system in Echelon form is −12 24

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 2t}
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Hence the solution is  2t
t

 =

 2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

t

 = t

 2
1


Let t = 1 the eigenvector becomes  2t

t

 =

 2
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

5 2 1 Yes

 2
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 5 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram

8334



λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 598: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve −7 24
−6 17

− (5)

 1 0
0 1

 v1

v2

 =

 2
1


 −12 24

−6 12

 v1

v2

 =

 2
1


Solving for ~v2 gives

~v2 =

 11
6

1
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We have found two generalized eigenvectors for eigenvalue 5. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 2
1

 e5t

=

 2 e5t

e5t


And

~x2(t) = (~v1t+ ~v2) eλt

=

 2
1

 t+

 11
6

1

 e5t

=

 e5t(12t+11)
6

e5t(t+ 1)


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  y1(t)
y2(t)

 = c1

 2 e5t

e5t

+ c2

 e5t
(
2t+ 11

6

)
e5t(t+ 1)


Which becomes  y1(t)

y2(t)

 =

 e5t
(
2c1 + 2c2t+ 11

6 c2
)

e5t(c2t+ c1 + c2)


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions y1(0) = 3

y2(0) = 1

 (1)
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Substituting initial conditions into the above solution at t = 0 gives 3
1

 =

 2c1 + 11c2
6

c1 + c2


Solving for the constants of integrations gives c1 = 7

c2 = −6


Substituting these constants back in original solution in Eq. (1) gives

 y1(t)
y2(t)

 =

 (−12t+ 3) e5t

e5t(1− 6t)


The following is the phase plot of the system.

Figure 599: Phase plot

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 29� �
dsolve([diff(y__1(t),t) = -7*y__1(t)+24*y__2(t), diff(y__2(t),t) = -6*y__1(t)+17*y__2(t), y__1(0) = 3, y__2(0) = 1], singsol=all)� �

y1(t) = e5t(−12t+ 3)

y2(t) =
e5t(−144t+ 24)

24

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 31� �
DSolve[{y1'[t]==-7*y1[t]+24*y2[t],y2'[t]==-6*y1[t]+17*y2[t]},{y1[0]==3,y2[0]==1},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → −3e5t(4t− 1)
y2(t) → e5t(1− 6t)
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22.17 problem section 10.5, problem 17
22.17.1 Solution using Matrix exponential method . . . . . . . . . . . . 8339
22.17.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8340

Internal problem ID [1620]
Internal file name [OUTPUT/1621_Sunday_June_05_2022_02_24_48_AM_26617334/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 17.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −7y1(t) + 3y2(t)
y′2(t) = −3y1(t)− y2(t)

With initial conditions
[y1(0) = 0, y2(0) = 2]

22.17.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −7 3
−3 −1

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e−4t(1− 3t) 3t e−4t

−3t e−4t e−4t(1 + 3t)
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Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 e−4t(1− 3t) 3t e−4t

−3t e−4t e−4t(1 + 3t)

 0
2


=

 6t e−4t

2 e−4t(1 + 3t)


=

 6t e−4t

(6t+ 2) e−4t


Since no forcing function is given, then the final solution is ~xh(t) above.

22.17.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −7 3
−3 −1

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −7 3
−3 −1

− λ

 1 0
0 1

 = 0

Therefore

det

 −7− λ 3
−3 −1− λ

 = 0
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Which gives the characteristic equation

λ2 + 8λ+ 16 = 0

The roots of the above are the eigenvalues.

λ1 = −4

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−4 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −4

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −7 3
−3 −1

− (−4)

 1 0
0 1

 v1

v2

 =

 0
0


 −3 3

−3 3

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −3 3 0

−3 3 0



R2 = R2 −R1 =⇒

−3 3 0
0 0 0


Therefore the system in Echelon form is −3 3

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}
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Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


Let t = 1 the eigenvector becomes  t

t

 =

 1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−4 2 1 Yes

 1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue −4 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 600: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve −7 3
−3 −1

− (−4)

 1 0
0 1

 v1

v2

 =

 1
1


 −3 3

−3 3

 v1

v2

 =

 1
1


Solving for ~v2 gives

~v2 =

 2
3

1
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We have found two generalized eigenvectors for eigenvalue −4. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 1
1

 e−4t

=

 e−4t

e−4t


And

~x2(t) = (~v1t+ ~v2) eλt

=

 1
1

 t+

 2
3

1

 e−4t

=

 e−4t(3t+2)
3

e−4t(t+ 1)


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  y1(t)
y2(t)

 = c1

 e−4t

e−4t

+ c2

 e−4t(t+ 2
3

)
e−4t(t+ 1)


Which becomes  y1(t)

y2(t)

 =

 e−4t(c1 + c2t+ 2
3c2
)

e−4t(c2t+ c1 + c2)


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions y1(0) = 0

y2(0) = 2

 (1)
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Substituting initial conditions into the above solution at t = 0 gives 0
2

 =

 c1 + 2c2
3

c1 + c2


Solving for the constants of integrations gives c1 = −4

c2 = 6


Substituting these constants back in original solution in Eq. (1) gives

 y1(t)
y2(t)

 =

 6t e−4t

(6t+ 2) e−4t


The following is the phase plot of the system.

Figure 601: Phase plot

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve([diff(y__1(t),t) = -7*y__1(t)+3*y__2(t), diff(y__2(t),t) = -3*y__1(t)-y__2(t), y__1(0) = 0, y__2(0) = 2], singsol=all)� �

y1(t) = 6 e−4tt

y2(t) =
e−4t(18t+ 6)

3

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 27� �
DSolve[{y1'[t]==-7*y1[t]+3*y2[t],y2'[t]==-3*y1[t]-1*y2[t]},{y1[0]==0,y2[0]==2},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → 6e−4tt

y2(t) → e−4t(6t+ 2)
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22.18 problem section 10.5, problem 18
22.18.1 Solution using Matrix exponential method . . . . . . . . . . . . 8347
22.18.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8348

Internal problem ID [1621]
Internal file name [OUTPUT/1622_Sunday_June_05_2022_02_24_50_AM_89919339/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 18.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −y1(t) + y2(t)
y′2(t) = y1(t)− y2(t)− 2y3(t)
y′3(t) = −y1(t)− y2(t)− y3(t)

With initial conditions

[y1(0) = 6, y2(0) = 5, y3(0) = −7]

22.18.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−1 1 0
1 −1 −2
−1 −1 −1




y1(t)
y2(t)
y3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


(
2 e3t+3t+7

)
e−2t

9

(
2 e3t+3t−2

)
e−2t

9 −2
(
e3t−3t−1

)
e−2t

9(
4 e3t−3t−4

)
e−2t

9

(
4 e3t−3t+5

)
e−2t

9 −2
(
2 e3t+3t−2

)
e−2t

9

−
(
e3t−1

)
e−2t

3 −
(
e3t−1

)
e−2t

3

(
e3t+2

)
e−2t

3


Therefore the homogeneous solution is

~xh(t) = eAt~x0

=


(
2 e3t+3t+7

)
e−2t

9

(
2 e3t+3t−2

)
e−2t

9 −2
(
e3t−3t−1

)
e−2t

9(
4 e3t−3t−4

)
e−2t

9

(
4 e3t−3t+5

)
e−2t

9 −2
(
2 e3t+3t−2

)
e−2t

9

−
(
e3t−1

)
e−2t

3 −
(
e3t−1

)
e−2t

3

(
e3t+2

)
e−2t

3




6
5
−7



=


2
(
2 e3t+3t+7

)
e−2t

3 + 5
(
2 e3t+3t−2

)
e−2t

9 + 14
(
e3t−3t−1

)
e−2t

9
2
(
4 e3t−3t−4

)
e−2t

3 + 5
(
4 e3t−3t+5

)
e−2t

9 + 14
(
2 e3t+3t−2

)
e−2t

9

−11
(
e3t−1

)
e−2t

3 − 7
(
e3t+2

)
e−2t

3



=


−(−4 e3t + t− 2) e−2t

(8 e3t + t− 3) e−2t

(−6 e3t − 1) e−2t


Since no forcing function is given, then the final solution is ~xh(t) above.

22.18.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−1 1 0
1 −1 −2
−1 −1 −1




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0
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Expanding gives

det




−1 1 0
1 −1 −2
−1 −1 −1

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




−1− λ 1 0
1 −1− λ −2
−1 −1 −1− λ


 = 0

Which gives the characteristic equation

λ3 + 3λ2 − 4 = 0

The roots of the above are the eigenvalues.

λ1 = −2
λ2 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−2 1 real eigenvalue

1 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−1 1 0
1 −1 −2
−1 −1 −1

− (−2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




1 1 0
1 1 −2
−1 −1 1




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

1 1 0 0
1 1 −2 0
−1 −1 1 0



R2 = R2 −R1 =⇒


1 1 0 0
0 0 −2 0
−1 −1 1 0



R3 = R3 +R1 =⇒


1 1 0 0
0 0 −2 0
0 0 1 0



R3 = R3 +
R2

2 =⇒


1 1 0 0
0 0 −2 0
0 0 0 0


Therefore the system in Echelon form is

1 1 0
0 0 −2
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2} and the leading variables are {v1, v3}. Let v2 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −t, v3 = 0}

Hence the solution is 
−t

t

0

 =


−t

t

0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

t

0

 = t


−1
1
0



8350



Let t = 1 the eigenvector becomes
−t

t

0

 =


−1
1
0


Considering the eigenvalue λ2 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−1 1 0
1 −1 −2
−1 −1 −1

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−2 1 0
1 −2 −2
−1 −1 −2




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−2 1 0 0
1 −2 −2 0
−1 −1 −2 0



R2 = R2 +
R1

2 =⇒


−2 1 0 0
0 −3

2 −2 0

−1 −1 −2 0



R3 = R3 −
R1

2 =⇒


−2 1 0 0
0 −3

2 −2 0

0 −3
2 −2 0



R3 = R3 −R2 =⇒


−2 1 0 0
0 −3

2 −2 0

0 0 0 0
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Therefore the system in Echelon form is
−2 1 0
0 −3

2 −2

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = −2t

3 , v2 = −4t
3

}
Hence the solution is 

−2t
3

−4t
3

t

 =


−2t

3

−4t
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−2t
3

−4t
3

t

 = t


−2

3

−4
3

1


Let t = 1 the eigenvector becomes

−2t
3

−4t
3

t

 =


−2

3

−4
3

1


Which is normalized to 

−2t
3

−4t
3

t

 =


−2
−4
3


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−2 2 1 Yes


−1
1
0



1 1 1 No


−2

3

−4
3

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue −2 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram

λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 602: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
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this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve


−1 1 0
1 −1 −2
−1 −1 −1

− (−2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


−1
1
0




1 1 0
1 1 −2
−1 −1 1




v1

v2

v3

 =


−1
1
0


Solving for ~v2 gives

~v2 =


−2
1
−1


We have found two generalized eigenvectors for eigenvalue −2. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=


−1
1
0

 e−2t

=


−e−2t

e−2t

0
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And

~x2(t) = (~v1t+ ~v2) eλt

=




−1
1
0

 t+


−2
1
−1


 e−2t

=


−e−2t(2 + t)
e−2t(t+ 1)

−e−2t


Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
t

=


−2

3

−4
3

1

 et

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


−e−2t

e−2t

0

+ c2


e−2t(−t− 2)
e−2t(t+ 1)

−e−2t

+ c3


−2 et

3

−4 et
3

et


Which becomes 

y1(t)
y2(t)
y3(t)

 =


(
−2c3e3t+(−3t−6)c2−3c1

)
e−2t

3(
−4c3e3t+(3t+3)c2+3c1

)
e−2t

3

−(−c3e3t + c2) e−2t


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions

y1(0) = 6
y2(0) = 5
y3(0) = −7

 (1)
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Substituting initial conditions into the above solution at t = 0 gives
6
5
−7

 =


−2c3

3 − 2c2 − c1

−4c3
3 + c2 + c1

c3 − c2


Solving for the constants of integrations gives

c1 = −4
c2 = 1
c3 = −6


Substituting these constants back in original solution in Eq. (1) gives


y1(t)
y2(t)
y3(t)

 =


(
12 e3t−3t+6

)
e−2t

3(
24 e3t+3t−9

)
e−2t

3

−(6 e3t + 1) e−2t


The following are plots of each solution against another.
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The following are plots of each solution.
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 57� �
dsolve([diff(y__1(t),t) = -y__1(t)+y__2(t), diff(y__2(t),t) = y__1(t)-y__2(t)-2*y__3(t), diff(y__3(t),t) = -y__1(t)-y__2(t)-y__3(t), y__1(0) = 6, y__2(0) = 5, y__3(0) = -7], singsol=all)� �

y1(t) = 4 et + 2 e−2t − e−2tt

y2(t) = 8 et − 3 e−2t + e−2tt

y3(t) = −6 et − e−2t

3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 58� �
DSolve[{y1'[t]==-1*y1[t]+1*y2[t]+0*y3[t],y2'[t]==1*y1[t]-1*y2[t]-2*y3[t],y3'[t]==-1*y1[t]-1*y2[t]-1*y3[t]},{y1[0]==6,y2[0]==5,y3[0]==-7},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e−2t(−t+ 4e3t + 2
)

y2(t) → e−2t(t+ 8e3t − 3
)

y3(t) → −e−2t − 6et
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22.19 problem section 10.5, problem 19
22.19.1 Solution using Matrix exponential method . . . . . . . . . . . . 8359
22.19.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8360

Internal problem ID [1622]
Internal file name [OUTPUT/1623_Sunday_June_05_2022_02_24_51_AM_64767384/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −2y1(t) + 2y2(t) + y3(t)
y′2(t) = −2y1(t) + 2y2(t) + y3(t)
y′3(t) = −3y1(t) + 3y2(t) + 2y3(t)

With initial conditions

[y1(0) = −6, y2(0) = −2, y3(0) = 0]

22.19.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−2 2 1
−2 2 1
−3 3 2




y1(t)
y2(t)
y3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


7
4 −

t
2 −

3 e2t
4

t
2 +

3 e2t
4 − 3

4
e2t
2 − 1

2

− t
2 −

3 e2t
4 + 3

4
1
4 +

t
2 +

3 e2t
4

e2t
2 − 1

2

−3 e2t
2 + 3

2
3 e2t
2 − 3

2 e2t


Therefore the homogeneous solution is

~xh(t) = eAt~x0

=


7
4 −

t
2 −

3 e2t
4

t
2 +

3 e2t
4 − 3

4
e2t
2 − 1

2

− t
2 −

3 e2t
4 + 3

4
1
4 +

t
2 +

3 e2t
4

e2t
2 − 1

2

−3 e2t
2 + 3

2
3 e2t
2 − 3

2 e2t




−6
−2
0



=


−9 + 2t+ 3 e2t

2t+ 3 e2t − 5
6 e2t − 6


Since no forcing function is given, then the final solution is ~xh(t) above.

22.19.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−2 2 1
−2 2 1
−3 3 2




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




−2 2 1
−2 2 1
−3 3 2

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




−2− λ 2 1
−2 2− λ 1
−3 3 2− λ


 = 0

Which gives the characteristic equation

λ3 − 2λ2 = 0

The roots of the above are the eigenvalues.

λ1 = 0
λ2 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

0 1 real eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 0

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−2 2 1
−2 2 1
−3 3 2

− (0)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−2 2 1
−2 2 1
−3 3 2




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−2 2 1 0
−2 2 1 0
−3 3 2 0
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R2 = R2 −R1 =⇒


−2 2 1 0
0 0 0 0
−3 3 2 0



R3 = R3 −
3R1

2 =⇒


−2 2 1 0
0 0 0 0
0 0 1

2 0


Since the current pivot A(2, 3) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

−2 2 1 0
0 0 1

2 0

0 0 0 0


Therefore the system in Echelon form is

−2 2 1
0 0 1

2

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2} and the leading variables are {v1, v3}. Let v2 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v3 = 0}

Hence the solution is 
t

t

0

 =


t

t

0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

0

 = t


1
1
0



8362



Let t = 1 the eigenvector becomes 
t

t

0

 =


1
1
0


Considering the eigenvalue λ2 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−2 2 1
−2 2 1
−3 3 2

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−4 2 1
−2 0 1
−3 3 0




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−4 2 1 0
−2 0 1 0
−3 3 0 0



R2 = R2 −
R1

2 =⇒


−4 2 1 0
0 −1 1

2 0

−3 3 0 0



R3 = R3 −
3R1

4 =⇒


−4 2 1 0
0 −1 1

2 0

0 3
2 −3

4 0



R3 = R3 +
3R2

2 =⇒


−4 2 1 0
0 −1 1

2 0

0 0 0 0



8363



Therefore the system in Echelon form is
−4 2 1
0 −1 1

2

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = t

2 , v2 =
t
2

}
Hence the solution is 

t
2
t
2

t

 =


t
2
t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t
2
t
2

t

 = t


1
2
1
2

1


Let t = 1 the eigenvector becomes 

t
2
t
2

t

 =


1
2
1
2

1


Which is normalized to 

t
2
t
2

t

 =


1
1
2


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

0 2 1 Yes


1
1
0



2 1 1 No


1
2

1
2

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 0 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram

λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 603: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
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this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve


−2 2 1
−2 2 1
−3 3 2

− (0)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


1
1
0




−2 2 1
−2 2 1
−3 3 2




v1

v2

v3

 =


1
1
0


Solving for ~v2 gives

~v2 =


−1
1
−3


We have found two generalized eigenvectors for eigenvalue 0. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=


1
1
0

 1

=


1
1
0
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And

~x2(t) = (~v1t+ ~v2) eλt

=




1
1
0

 t+


−1
1
−3


 1

=


−1 + t

t+ 1
−3


Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
2t

=


1
2
1
2

1

 e2t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


1
1
0

+ c2


−1 + t

t+ 1
−3

+ c3


e2t
2
e2t
2

e2t


Which becomes 

y1(t)
y2(t)
y3(t)

 =


c1 + c2(−1 + t) + c3e2t

2

c1 + c2t+ c2 + c3e2t
2

−3c2 + c3e2t


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions

y1(0) = −6
y2(0) = −2
y3(0) = 0

 (1)
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Substituting initial conditions into the above solution at t = 0 gives
−6
−2
0

 =


c1 − c2 + c3

2

c1 + c2 + c3
2

−3c2 + c3


Solving for the constants of integrations gives

c1 = −7
c2 = 2
c3 = 6


Substituting these constants back in original solution in Eq. (1) gives


y1(t)
y2(t)
y3(t)

 =


−9 + 2t+ 3 e2t

2t+ 3 e2t − 5
6 e2t − 6


The following are plots of each solution against another.
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The following are plots of each solution.
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 41� �
dsolve([diff(y__1(t),t) = -2*y__1(t)+2*y__2(t)+y__3(t), diff(y__2(t),t) = -2*y__1(t)+2*y__2(t)+y__3(t), diff(y__3(t),t) = -3*y__1(t)+3*y__2(t)+2*y__3(t), y__1(0) = -6, y__2(0) = -2, y__3(0) = 0], singsol=all)� �

y1(t) = −9 + 2t+ 3 e2t

y2(t) = 3 e2t − 5 + 2t
y3(t) = −6 + 6 e2t

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 44� �
DSolve[{y1'[t]==-2*y1[t]+2*y2[t]+1*y3[t],y2'[t]==-2*y1[t]+2*y2[t]+1*y3[t],y3'[t]==-3*y1[t]+3*y2[t]+2*y3[t]},{y1[0]==-6,y2[0]==-2,y3[0]==0},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → 2t+ 3e2t − 9
y2(t) → 2t+ 3e2t − 5
y3(t) → 6

(
e2t − 1

)
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22.20 problem section 10.5, problem 20
22.20.1 Solution using Matrix exponential method . . . . . . . . . . . . 8371
22.20.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8372

Internal problem ID [1623]
Internal file name [OUTPUT/1624_Sunday_June_05_2022_02_24_53_AM_17576291/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 20.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −7y1(t)− 4y2(t) + 4y3(t)
y′2(t) = y1(t) + y3(t)
y′3(t) = −9y1(t)− 5y2(t) + 6y3(t)

With initial conditions

[y1(0) = −6, y2(0) = 9, y3(0) = −1]

22.20.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−7 −4 4
1 0 1
−9 −5 6




y1(t)
y2(t)
y3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


e−t cos (2t)− 3 e−t sin (2t) −2 e−t sin (2t) 2 e−t sin (2t)
7 e−t cos(2t)

4 + 9 e−t sin(2t)
4 − 7 et

4 − et
2 + 3 e−t cos(2t)

2 + e−t sin (2t) −3 e−t cos(2t)
2 − e−t sin (2t) + 3 et

2
7 e−t cos(2t)

4 − 11 e−t sin(2t)
4 − 7 et

4
e−t cos(2t)

2 − 2 e−t sin (2t)− et
2

3 et
2 − e−t cos(2t)

2 + 2 e−t sin (2t)



=


e−t(cos (2t)− 3 sin (2t)) −2 e−t sin (2t) 2 e−t sin (2t)
(7 cos(2t)+9 sin(2t))e−t

4 − 7 et
4

(3 cos(2t)+2 sin(2t))e−t

2 − et
2

(−3 cos(2t)−2 sin(2t))e−t

2 + 3 et
2

(7 cos(2t)−11 sin(2t))e−t

4 − 7 et
4

(cos(2t)−4 sin(2t))e−t

2 − et
2

(− cos(2t)+4 sin(2t))e−t

2 + 3 et
2


Therefore the homogeneous solution is

~xh(t) = eAt~x0

=


e−t(cos (2t)− 3 sin (2t)) −2 e−t sin (2t) 2 e−t sin (2t)
(7 cos(2t)+9 sin(2t))e−t

4 − 7 et
4

(3 cos(2t)+2 sin(2t))e−t

2 − et
2

(−3 cos(2t)−2 sin(2t))e−t

2 + 3 et
2

(7 cos(2t)−11 sin(2t))e−t

4 − 7 et
4

(cos(2t)−4 sin(2t))e−t

2 − et
2

(− cos(2t)+4 sin(2t))e−t

2 + 3 et
2




−6
9
−1



=


−6 e−t(cos (2t)− 3 sin (2t))− 20 e−t sin (2t)

−3(7 cos(2t)+9 sin(2t))e−t

2 + 9 et
2 + 9(3 cos(2t)+2 sin(2t))e−t

2 − (−3 cos(2t)−2 sin(2t))e−t

2

−3(7 cos(2t)−11 sin(2t))e−t

2 + 9 et
2 + 9(cos(2t)−4 sin(2t))e−t

2 − (− cos(2t)+4 sin(2t))e−t

2



=


−2 e−t(3 cos (2t) + sin (2t))

(9 cos(2t)−7 sin(2t))e−t

2 + 9 et
2

(−11 cos(2t)−7 sin(2t))e−t

2 + 9 et
2


Since no forcing function is given, then the final solution is ~xh(t) above.

22.20.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−7 −4 4
1 0 1
−9 −5 6




y1(t)
y2(t)
y3(t)
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The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




−7 −4 4
1 0 1
−9 −5 6

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




−7− λ −4 4
1 −λ 1
−9 −5 6− λ


 = 0

Which gives the characteristic equation

λ3 + λ2 + 3λ− 5 = 0

The roots of the above are the eigenvalues.

λ1 = 1
λ2 = −1 + 2i
λ3 = −1− 2i

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1− 2i 1 complex eigenvalue

1 1 real eigenvalue

−1 + 2i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 1
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−7 −4 4
1 0 1
−9 −5 6

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−8 −4 4
1 −1 1
−9 −5 5




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−8 −4 4 0
1 −1 1 0
−9 −5 5 0



R2 = R2 +
R1

8 =⇒


−8 −4 4 0
0 −3

2
3
2 0

−9 −5 5 0



R3 = R3 −
9R1

8 =⇒


−8 −4 4 0
0 −3

2
3
2 0

0 −1
2

1
2 0



R3 = R3 −
R2

3 =⇒


−8 −4 4 0
0 −3

2
3
2 0

0 0 0 0


Therefore the system in Echelon form is

−8 −4 4
0 −3

2
3
2

0 0 0




v1

v2

v3

 =


0
0
0
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The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 0, v2 = t}

Hence the solution is 
0
t

t

 =


0
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
t

t

 = t


0
1
1


Let t = 1 the eigenvector becomes 

0
t

t

 =


0
1
1


Considering the eigenvalue λ2 = −1− 2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−7 −4 4
1 0 1
−9 −5 6

− (−1− 2i)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−6 + 2i −4 4
1 1 + 2i 1
−9 −5 7 + 2i




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−6 + 2i −4 4 0
1 1 + 2i 1 0
−9 −5 7 + 2i 0
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R2 = R2 +
(

3
20 + i

20

)
R1 =⇒


−6 + 2i −4 4 0

0 2
5 +

9i
5

8
5 +

i
5 0

−9 −5 7 + 2i 0



R3 = R3 +
(
−27
20 − 9i

20

)
R1 =⇒


−6 + 2i −4 4 0

0 2
5 +

9i
5

8
5 +

i
5 0

0 2
5 +

9i
5

8
5 +

i
5 0



R3 = R3 −R2 =⇒


−6 + 2i −4 4 0

0 2
5 +

9i
5

8
5 +

i
5 0

0 0 0 0


Therefore the system in Echelon form is

−6 + 2i −4 4
0 2

5 +
9i
5

8
5 +

i
5

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 =

(16
17 −

4i
17

)
t, v2 = − 5

17t+
14
17it
}

Hence the solution is 
(16
17 −

4 I
17

)
t

− 5t
17 +

14 I t
17

t

 =


(16
17 −

4i
17

)
t

− 5
17t+

14
17it

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

(16
17 −

4 I
17

)
t

− 5t
17 +

14 I t
17

t

 = t


16
17 −

4i
17

− 5
17 t+

14
17 it

t

1
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Let t = 1 the eigenvector becomes
(16
17 −

4 I
17

)
t

− 5t
17 +

14 I t
17

t

 =


16
17 −

4i
17

− 5
17 +

14i
17

1


Which is normalized to 

(16
17 −

4 I
17

)
t

− 5t
17 +

14 I t
17

t

 =


16− 4i
−5 + 14i

17


Considering the eigenvalue λ3 = −1 + 2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−7 −4 4
1 0 1
−9 −5 6

− (−1 + 2i)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−6− 2i −4 4
1 1− 2i 1
−9 −5 7− 2i




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−6− 2i −4 4 0
1 1− 2i 1 0
−9 −5 7− 2i 0



R2 = R2 +
(

3
20 − i

20

)
R1 =⇒


−6− 2i −4 4 0

0 2
5 −

9i
5

8
5 −

i
5 0

−9 −5 7− 2i 0



R3 = R3 +
(
−27
20 + 9i

20

)
R1 =⇒


−6− 2i −4 4 0

0 2
5 −

9i
5

8
5 −

i
5 0

0 2
5 −

9i
5

8
5 −

i
5 0
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R3 = R3 −R2 =⇒


−6− 2i −4 4 0

0 2
5 −

9i
5

8
5 −

i
5 0

0 0 0 0


Therefore the system in Echelon form is

−6− 2i −4 4
0 2

5 −
9i
5

8
5 −

i
5

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 =

(16
17 +

4i
17

)
t, v2 = − 5

17t−
14
17it
}

Hence the solution is 
(16
17 +

4 I
17

)
t

− 5t
17 −

14 I t
17

t

 =


(16
17 +

4i
17

)
t

− 5
17t−

14
17it

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

(16
17 +

4 I
17

)
t

− 5t
17 −

14 I t
17

t

 = t


16
17 +

4i
17

− 5
17 t−

14
17 it

t

1


Let t = 1 the eigenvector becomes

(16
17 +

4 I
17

)
t

− 5t
17 −

14 I t
17

t

 =


16
17 +

4i
17

− 5
17 −

14i
17

1


Which is normalized to 

(16
17 +

4 I
17

)
t

− 5t
17 −

14 I t
17

t

 =


16 + 4i
−5− 14i

17
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The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

1 1 1 No


0
1
1



−1 + 2i 1 1 No


16
17 +

4i
17

− 5
17 −

14i
17

1



−1− 2i 1 1 No


16
17 −

4i
17

− 5
17 +

14i
17

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
t

=


0
1
1

 et

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)
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Which is written as
y1(t)
y2(t)
y3(t)

 = c1


0
et

et

+ c2


(16
17 +

4i
17

)
e(−1+2i)t(

− 5
17 −

14i
17

)
e(−1+2i)t

e(−1+2i)t

+ c3


(16
17 −

4i
17

)
e(−1−2i)t(

− 5
17 +

14i
17

)
e(−1−2i)t

e(−1−2i)t


Which becomes

y1(t)
y2(t)
y3(t)

 =


(16
17 +

4i
17

)
c2e(−1+2i)t +

(16
17 −

4i
17

)
c3e(−1−2i)t

c1et +
(
− 5

17 −
14i
17

)
c2e(−1+2i)t +

(
− 5

17 +
14i
17

)
c3e(−1−2i)t

c1et + c2e(−1+2i)t + c3e(−1−2i)t


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions

y1(0) = −6
y2(0) = 9
y3(0) = −1

 (1)

Substituting initial conditions into the above solution at t = 0 gives
−6
9
−1

 =


(16
17 +

4i
17

)
c2 +

(16
17 −

4i
17

)
c3(

− 5
17 −

14i
17

)
c2 +

(
− 5

17 +
14i
17

)
c3 + c1

c1 + c2 + c3


Solving for the constants of integrations gives

c1 = 9
2

c2 = −11
4 + 7i

4

c3 = −11
4 − 7i

4


Substituting these constants back in original solution in Eq. (1) gives


y1(t)
y2(t)
y3(t)

 =


(−3 + i) e(−1+2i)t + (−3− i) e(−1−2i)t

9 et
2 +

(9
4 +

7i
4

)
e(−1+2i)t +

(9
4 −

7i
4

)
e(−1−2i)t

9 et
2 +

(
−11

4 + 7i
4

)
e(−1+2i)t +

(
−11

4 − 7i
4

)
e(−1−2i)t
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The following are plots of each solution against another.

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 80� �
dsolve([diff(y__1(t),t) = -7*y__1(t)-4*y__2(t)+4*y__3(t), diff(y__2(t),t) = y__1(t)+y__3(t), diff(y__3(t),t) = -9*y__1(t)-5*y__2(t)+6*y__3(t), y__1(0) = -6, y__2(0) = 9, y__3(0) = -1], singsol=all)� �

y1(t) = −
4 e−t

(
13 sin(2t)

2 + 39 cos(2t)
2

)
13

y2(t) =
9 et
2 − 7 e−t sin (2t)

2 + 9 e−t cos (2t)
2

y3(t) =
9 et
2 − 7 e−t sin (2t)

2 − 11 e−t cos (2t)
2

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 50� �
DSolve[{y1'[t]==-7*y1[t]-4*y2[t]+4*y3[t],y2'[t]==-1*y1[t]-0*y2[t]+1*y3[t],y3'[t]==-9*y1[t]-5*y2[t]+6*y3[t]},{y1[0]==-6,y2[0]==9,y3[0]==-1},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → −2e−3t − 4et
y2(t) → et(9− 4t)
y3(t) → et(1− 4t)− 2e−3t
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22.21 problem section 10.5, problem 21
22.21.1 Solution using Matrix exponential method . . . . . . . . . . . . 8383
22.21.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8384

Internal problem ID [1624]
Internal file name [OUTPUT/1625_Sunday_June_05_2022_02_24_56_AM_17935540/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 21.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −y1(t)− 4y2(t)− y3(t)
y′2(t) = 3y1(t) + 6y2(t) + y3(t)
y′3(t) = −3y1(t)− 2y2(t) + 3y3(t)

With initial conditions

[y1(0) = −2, y2(0) = 1, y3(0) = 3]

22.21.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−1 −4 −1
3 6 1
−3 −2 3




y1(t)
y2(t)
y3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


e2t(1− 3t) −3 e2tt+ e2t

2 − e4t
2 − e4t

2 + e2t
2

3 e2tt e2t
2 + 3 e2tt+ e4t

2
e4t
2 − e2t

2

−3 e2tt −3 e2tt− e2t
2 + e4t

2
e2t
2 + e4t

2


Therefore the homogeneous solution is

~xh(t) = eAt~x0

=


e2t(1− 3t) −3 e2tt+ e2t

2 − e4t
2 − e4t

2 + e2t
2

3 e2tt e2t
2 + 3 e2tt+ e4t

2
e4t
2 − e2t

2

−3 e2tt −3 e2tt− e2t
2 + e4t

2
e2t
2 + e4t

2




−2
1
3



=


−2 e2t(1− 3t)− 3 e2tt+ 2 e2t − 2 e4t

−3 e2tt− e2t + 2 e4t

3 e2tt+ e2t + 2 e4t



=


3 e2tt− 2 e4t

(−3t− 1) e2t + 2 e4t

3 e2tt+ e2t + 2 e4t


Since no forcing function is given, then the final solution is ~xh(t) above.

22.21.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−1 −4 −1
3 6 1
−3 −2 3




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0
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Expanding gives

det




−1 −4 −1
3 6 1
−3 −2 3

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




−1− λ −4 −1
3 6− λ 1
−3 −2 3− λ


 = 0

Which gives the characteristic equation

λ3 − 8λ2 + 20λ− 16 = 0

The roots of the above are the eigenvalues.

λ1 = 2
λ2 = 4

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

4 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−1 −4 −1
3 6 1
−3 −2 3

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−3 −4 −1
3 4 1
−3 −2 1




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−3 −4 −1 0
3 4 1 0
−3 −2 1 0



R2 = R2 +R1 =⇒


−3 −4 −1 0
0 0 0 0
−3 −2 1 0



R3 = R3 −R1 =⇒


−3 −4 −1 0
0 0 0 0
0 2 2 0


Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

−3 −4 −1 0
0 2 2 0
0 0 0 0


Therefore the system in Echelon form is

−3 −4 −1
0 2 2
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = −t}

Hence the solution is 
t

−t

t

 =


t

−t

t
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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

−t

t

 = t


1
−1
1


Let t = 1 the eigenvector becomes

t

−t

t

 =


1
−1
1


Considering the eigenvalue λ2 = 4

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−1 −4 −1
3 6 1
−3 −2 3

− (4)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−5 −4 −1
3 2 1
−3 −2 −1




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−5 −4 −1 0
3 2 1 0
−3 −2 −1 0



R2 = R2 +
3R1

5 =⇒


−5 −4 −1 0
0 −2

5
2
5 0

−3 −2 −1 0



R3 = R3 −
3R1

5 =⇒


−5 −4 −1 0
0 −2

5
2
5 0

0 2
5 −2

5 0
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R3 = R3 +R2 =⇒


−5 −4 −1 0
0 −2

5
2
5 0

0 0 0 0


Therefore the system in Echelon form is

−5 −4 −1
0 −2

5
2
5

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −t, v2 = t}

Hence the solution is 
−t

t

t

 =


−t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

t

t

 = t


−1
1
1


Let t = 1 the eigenvector becomes

−t

t

t

 =


−1
1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 2 1 Yes


1
−1
1



4 1 1 No


−1
1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram

λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 604: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
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this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve


−1 −4 −1
3 6 1
−3 −2 3

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


1
−1
1




−3 −4 −1
3 4 1
−3 −2 1




v1

v2

v3

 =


1
−1
1


Solving for ~v2 gives

~v2 =


−4

3

1
−1


We have found two generalized eigenvectors for eigenvalue 2. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=


1
−1
1

 e2t

=


e2t

−e2t

e2t
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And

~x2(t) = (~v1t+ ~v2) eλt

=




1
−1
1

 t+


−4

3

1
−1


 e2t

=


e2t(3t−4)

3

−e2t(−1 + t)
e2t(−1 + t)


Since eigenvalue 4 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
4t

=


−1
1
1

 e4t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


e2t

−e2t

e2t

+ c2


e2t
(
t− 4

3

)
e2t(1− t)
e2t(−1 + t)

+ c3


−e4t

e4t

e4t


Which becomes 

y1(t)
y2(t)
y3(t)

 =


((3t−4)c2+3c1)e2t

3 − c3e4t

((1− t) c2 − c1) e2t + c3e4t

((−1 + t) c2 + c1) e2t + c3e4t


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions

y1(0) = −2
y2(0) = 1
y3(0) = 3

 (1)
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Substituting initial conditions into the above solution at t = 0 gives
−2
1
3

 =


−4c2

3 + c1 − c3

c2 − c1 + c3

−c2 + c1 + c3


Solving for the constants of integrations gives

c1 = 4
c2 = 3
c3 = 2


Substituting these constants back in original solution in Eq. (1) gives


y1(t)
y2(t)
y3(t)

 =


3 e2tt− 2 e4t

(−3t− 1) e2t + 2 e4t

e2t(1 + 3t) + 2 e4t


The following are plots of each solution against another.
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The following are plots of each solution.

8393



3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 63� �
dsolve([diff(y__1(t),t) = -y__1(t)-4*y__2(t)-y__3(t), diff(y__2(t),t) = 3*y__1(t)+6*y__2(t)+y__3(t), diff(y__3(t),t) = -3*y__1(t)-2*y__2(t)+3*y__3(t), y__1(0) = -2, y__2(0) = 1, y__3(0) = 3], singsol=all)� �

y1(t) = −2 e4t + 3 e2tt
y2(t) = 2 e4t − 3 e2tt− e2t

y3(t) = 2 e4t + 3 e2tt+ e2t

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 63� �
DSolve[{y1'[t]==-1*y1[t]-4*y2[t]-1*y3[t],y2'[t]==3*y1[t]+6*y2[t]+1*y3[t],y3'[t]==-3*y1[t]-2*y2[t]+3*y3[t]},{y1[0]==-2,y2[0]==1,y3[0]==3},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → 3e2tt− 2e4t

y2(t) → e2t
(
−3t+ 2e2t − 1

)
y3(t) → e2t

(
3t+ 2e2t + 1

)
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22.22 problem section 10.5, problem 22
22.22.1 Solution using Matrix exponential method . . . . . . . . . . . . 8395
22.22.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8396

Internal problem ID [1625]
Internal file name [OUTPUT/1626_Sunday_June_05_2022_02_24_58_AM_90731928/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 22.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = 4y1(t)− 8y2(t)− 4y3(t)
y′2(t) = −3y1(t)− y2(t)− 4y3(t)
y′3(t) = y1(t)− y2(t) + 9y3(t)

With initial conditions

[y1(0) = −4, y2(0) = 1, y3(0) = −3]

22.22.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


4 −8 −4
−3 −1 −4
1 −1 9




y1(t)
y2(t)
y3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


−
(
22 e13t−130 e11t−35

)
e−4t

143
2
(
11 e13t−65 e11t+54

)
e−4t

143 −4
(
e13t−1

)
e−4t

13

−
(
22 e13t+13 e11t−35

)
e−4t

143

(
22 e13t+13 e11t+108

)
e−4t

143 −4
(
e13t−1

)
e−4t

13
e9t
2 − e7t

2 − e9t
2 + e7t

2 e9t


Therefore the homogeneous solution is

~xh(t) = eAt~x0

=


−
(
22 e13t−130 e11t−35

)
e−4t

143
2
(
11 e13t−65 e11t+54

)
e−4t

143 −4
(
e13t−1

)
e−4t

13

−
(
22 e13t+13 e11t−35

)
e−4t

143

(
22 e13t+13 e11t+108

)
e−4t

143 −4
(
e13t−1

)
e−4t

13
e9t
2 − e7t

2 − e9t
2 + e7t

2 e9t




−4
1
−3



=


4
(
22 e13t−130 e11t−35

)
e−4t

143 + 2
(
11 e13t−65 e11t+54

)
e−4t

143 + 12
(
e13t−1

)
e−4t

13
4
(
22 e13t+13 e11t−35

)
e−4t

143 +
(
22 e13t+13 e11t+108

)
e−4t

143 + 12
(
e13t−1

)
e−4t

13

−11 e9t
2 + 5 e7t

2



=


2
(
121 e13t−325 e11t−82

)
e−4t

143(
242 e13t+65 e11t−164

)
e−4t

143

−11 e9t
2 + 5 e7t

2


Since no forcing function is given, then the final solution is ~xh(t) above.

22.22.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


4 −8 −4
−3 −1 −4
1 −1 9




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0
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Expanding gives

det




4 −8 −4
−3 −1 −4
1 −1 9

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




4− λ −8 −4
−3 −1− λ −4
1 −1 9− λ


 = 0

Which gives the characteristic equation

λ3 − 12λ2 − λ+ 252 = 0

The roots of the above are the eigenvalues.

λ1 = 7
λ2 = −4
λ3 = 9

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−4 1 real eigenvalue

7 1 real eigenvalue

9 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −4

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


4 −8 −4
−3 −1 −4
1 −1 9

− (−4)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




8 −8 −4
−3 3 −4
1 −1 13




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

8 −8 −4 0
−3 3 −4 0
1 −1 13 0



R2 = R2 +
3R1

8 =⇒


8 −8 −4 0
0 0 −11

2 0

1 −1 13 0



R3 = R3 −
R1

8 =⇒


8 −8 −4 0
0 0 −11

2 0

0 0 27
2 0



R3 = R3 +
27R2

11 =⇒


8 −8 −4 0
0 0 −11

2 0

0 0 0 0


Therefore the system in Echelon form is

8 −8 −4
0 0 −11

2

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2} and the leading variables are {v1, v3}. Let v2 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v3 = 0}

Hence the solution is 
t

t

0

 =


t

t

0
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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

0

 = t


1
1
0


Let t = 1 the eigenvector becomes 

t

t

0

 =


1
1
0


Considering the eigenvalue λ2 = 7

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


4 −8 −4
−3 −1 −4
1 −1 9

− (7)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−3 −8 −4
−3 −8 −4
1 −1 2




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−3 −8 −4 0
−3 −8 −4 0
1 −1 2 0



R2 = R2 −R1 =⇒


−3 −8 −4 0
0 0 0 0
1 −1 2 0



R3 = R3 +
R1

3 =⇒


−3 −8 −4 0
0 0 0 0
0 −11

3
2
3 0
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Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

−3 −8 −4 0
0 −11

3
2
3 0

0 0 0 0


Therefore the system in Echelon form is

−3 −8 −4
0 −11

3
2
3

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = −20t

11 , v2 =
2t
11

}
Hence the solution is 

−20t
11

2t
11

t

 =


−20t

11
2t
11

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−20t
11

2t
11

t

 = t


−20

11
2
11

1


Let t = 1 the eigenvector becomes

−20t
11

2t
11

t

 =


−20

11
2
11

1


Which is normalized to 

−20t
11

2t
11

t

 =


−20
2
11
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Considering the eigenvalue λ3 = 9

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


4 −8 −4
−3 −1 −4
1 −1 9

− (9)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−5 −8 −4
−3 −10 −4
1 −1 0




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−5 −8 −4 0
−3 −10 −4 0
1 −1 0 0



R2 = R2 −
3R1

5 =⇒


−5 −8 −4 0
0 −26

5 −8
5 0

1 −1 0 0



R3 = R3 +
R1

5 =⇒


−5 −8 −4 0
0 −26

5 −8
5 0

0 −13
5 −4

5 0



R3 = R3 −
R2

2 =⇒


−5 −8 −4 0
0 −26

5 −8
5 0

0 0 0 0


Therefore the system in Echelon form is

−5 −8 −4
0 −26

5 −8
5

0 0 0




v1

v2

v3

 =


0
0
0
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The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = − 4t

13 , v2 = − 4t
13

}
Hence the solution is 

− 4t
13

− 4t
13

t

 =


− 4t

13

− 4t
13

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

− 4t
13

− 4t
13

t

 = t


− 4

13

− 4
13

1


Let t = 1 the eigenvector becomes

− 4t
13

− 4t
13

t

 =


− 4

13

− 4
13

1


Which is normalized to 

− 4t
13

− 4t
13

t

 =


−4
−4
13


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

8402



multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

7 1 1 No


−20

11

2
11

1



−4 1 1 No


1
1
0



9 1 1 No


− 4

13

− 4
13

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 7 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
7t

=


−20

11
2
11

1

 e7t

Since eigenvalue −4 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
−4t

=


1
1
0

 e−4t

8403



Since eigenvalue 9 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
9t

=


− 4

13

− 4
13

1

 e9t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


−20 e7t

11
2 e7t
11

e7t

+ c2


e−4t

e−4t

0

+ c3


−4 e9t

13

−4 e9t
13

e9t


Which becomes 

y1(t)
y2(t)
y3(t)

 =


−
(
44c3e13t+260c1e11t−143c2

)
e−4t

143

−
(
44c3e13t−26c1e11t−143c2

)
e−4t

143

c1e7t + c3e9t


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions

y1(0) = −4
y2(0) = 1
y3(0) = −3

 (1)

Substituting initial conditions into the above solution at t = 0 gives
−4
1
−3

 =


−4c3

13 − 20c1
11 + c2

−4c3
13 + 2c1

11 + c2

c1 + c3


Solving for the constants of integrations gives

c1 = 5
2

c2 = −164
143

c3 = −11
2
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Substituting these constants back in original solution in Eq. (1) gives


y1(t)
y2(t)
y3(t)

 =


−
(
−242 e13t+650 e11t+164

)
e−4t

143

−
(
−242 e13t−65 e11t+164

)
e−4t

143

−11 e9t
2 + 5 e7t

2


The following are plots of each solution against another.

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 62� �
dsolve([diff(y__1(t),t) = 4*y__1(t)-8*y__2(t)-4*y__3(t), diff(y__2(t),t) = -3*y__1(t)-y__2(t)-4*y__3(t), diff(y__3(t),t) = y__1(t)-y__2(t)+9*y__3(t), y__1(0) = -4, y__2(0) = 1, y__3(0) = -3], singsol=all)� �

y1(t) = −50 e7t
11 − 164 e−4t

143 + 22 e9t
13

y2(t) =
5 e7t
11 − 164 e−4t

143 + 22 e9t
13

y3(t) =
5 e7t
2 − 11 e9t

2
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3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 57� �
DSolve[{y1'[t]==4*y1[t]-8*y2[t]-4*y3[t],y2'[t]==-3*y1[t]-1*y2[t]-3*y3[t],y3'[t]==1*y1[t]-1*y2[t]+9*y3[t]},{y1[0]==-4,y2[0]==1,y3[0]==-3},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e8t(8t− 3)− e−4t

y2(t) → 2e8t − e−4t

y3(t) → −e8t(8t+ 3)
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22.23 problem section 10.5, problem 23
22.23.1 Solution using Matrix exponential method . . . . . . . . . . . . 8408
22.23.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8409

Internal problem ID [1626]
Internal file name [OUTPUT/1627_Sunday_June_05_2022_02_25_01_AM_85775010/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 23.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −5y1(t)− y2(t) + 11y3(t)
y′2(t) = −7y1(t) + y2(t) + 13y3(t)
y′3(t) = −4y1(t) + 8y3(t)

With initial conditions
[y1(0) = 0, y2(0) = 2, y3(0) = 2]

22.23.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−5 −1 11
−7 1 13
−4 0 8




y1(t)
y2(t)
y3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


7
4 − 2t− 3 e4t

4
e4t
4 − 1

4 − 2t 5 e4t
4 − 5

4 + 6t

−t− 3 e4t
2 + 3

2
1
2 +

e4t
2 − t 5 e4t

2 − 5
2 + 3t

−t− 3 e4t
4 + 3

4
e4t
4 − 1

4 − t −1
4 +

5 e4t
4 + 3t


Therefore the homogeneous solution is

~xh(t) = eAt~x0

=


7
4 − 2t− 3 e4t

4
e4t
4 − 1

4 − 2t 5 e4t
4 − 5

4 + 6t

−t− 3 e4t
2 + 3

2
1
2 +

e4t
2 − t 5 e4t

2 − 5
2 + 3t

−t− 3 e4t
4 + 3

4
e4t
4 − 1

4 − t −1
4 +

5 e4t
4 + 3t




0
2
2



=


−3 + 3 e4t + 8t
−4 + 6 e4t + 4t
−1 + 3 e4t + 4t


Since no forcing function is given, then the final solution is ~xh(t) above.

22.23.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−5 −1 11
−7 1 13
−4 0 8




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




−5 −1 11
−7 1 13
−4 0 8

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




−5− λ −1 11
−7 1− λ 13
−4 0 8− λ


 = 0

Which gives the characteristic equation

λ3 − 4λ2 = 0

The roots of the above are the eigenvalues.

λ1 = 0
λ2 = 4

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

0 1 real eigenvalue

4 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 0

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−5 −1 11
−7 1 13
−4 0 8

− (0)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−5 −1 11
−7 1 13
−4 0 8




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−5 −1 11 0
−7 1 13 0
−4 0 8 0



8410



R2 = R2 −
7R1

5 =⇒


−5 −1 11 0
0 12

5 −12
5 0

−4 0 8 0



R3 = R3 −
4R1

5 =⇒


−5 −1 11 0
0 12

5 −12
5 0

0 4
5 −4

5 0



R3 = R3 −
R2

3 =⇒


−5 −1 11 0
0 12

5 −12
5 0

0 0 0 0


Therefore the system in Echelon form is

−5 −1 11
0 12

5 −12
5

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 2t, v2 = t}

Hence the solution is 
2t
t

t

 =


2t
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

2t
t

t

 = t


2
1
1


Let t = 1 the eigenvector becomes 

2t
t

t

 =


2
1
1



8411



Considering the eigenvalue λ2 = 4

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−5 −1 11
−7 1 13
−4 0 8

− (4)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−9 −1 11
−7 −3 13
−4 0 4




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−9 −1 11 0
−7 −3 13 0
−4 0 4 0



R2 = R2 −
7R1

9 =⇒


−9 −1 11 0
0 −20

9
40
9 0

−4 0 4 0



R3 = R3 −
4R1

9 =⇒


−9 −1 11 0
0 −20

9
40
9 0

0 4
9 −8

9 0



R3 = R3 +
R2

5 =⇒


−9 −1 11 0
0 −20

9
40
9 0

0 0 0 0


Therefore the system in Echelon form is

−9 −1 11
0 −20

9
40
9

0 0 0




v1

v2

v3

 =


0
0
0
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The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = 2t}

Hence the solution is 
t

2t
t

 =


t

2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

2t
t

 = t


1
2
1


Let t = 1 the eigenvector becomes 

t

2t
t

 =


1
2
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

0 2 1 Yes


2
1
1



4 1 1 No


1
2
1
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Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 0 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram

λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 605: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1
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Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve


−5 −1 11
−7 1 13
−4 0 8

− (0)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


2
1
1




−5 −1 11
−7 1 13
−4 0 8




v1

v2

v3

 =


2
1
1


Solving for ~v2 gives

~v2 =


7
4
1
4

1


We have found two generalized eigenvectors for eigenvalue 0. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=


2
1
1

 1

=


2
1
1


And

~x2(t) = (~v1t+ ~v2) eλt

=




2
1
1

 t+


7
4
1
4

1


 1

=


2t+ 7

4

t+ 1
4

t+ 1
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Since eigenvalue 4 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
4t

=


1
2
1

 e4t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


2
1
1

+ c2


2t+ 7

4

t+ 1
4

t+ 1

+ c3


e4t

2 e4t

e4t


Which becomes 

y1(t)
y2(t)
y3(t)

 =


2c1 + 2c2t+ 7c2

4 + c3e4t

c1 + c2t+ c2
4 + 2c3e4t

c3e4t + c2t+ c1 + c2


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions

y1(0) = 0
y2(0) = 2
y3(0) = 2

 (1)

Substituting initial conditions into the above solution at t = 0 gives
0
2
2

 =


2c1 + 7c2

4 + c3

c1 + c2
4 + 2c3

c3 + c1 + c2


Solving for the constants of integrations gives

c1 = −5
c2 = 4
c3 = 3
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Substituting these constants back in original solution in Eq. (1) gives


y1(t)
y2(t)
y3(t)

 =


−3 + 3 e4t + 8t
−4 + 6 e4t + 4t
−1 + 3 e4t + 4t


The following are plots of each solution against another.

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 44� �
dsolve([diff(y__1(t),t) = -5*y__1(t)-y__2(t)+11*y__3(t), diff(y__2(t),t) = -7*y__1(t)+y__2(t)+13*y__3(t), diff(y__3(t),t) = -4*y__1(t)+8*y__3(t), y__1(0) = 0, y__2(0) = 2, y__3(0) = 2], singsol=all)� �

y1(t) = −3 + 3 e4t + 8t
y2(t) = 6 e4t − 4 + 4t
y3(t) = −1 + 4t+ 3 e4t
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3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 47� �
DSolve[{y1'[t]==-5*y1[t]-1*y2[t]+11*y3[t],y2'[t]==-7*y1[t]+1*y2[t]+13*y3[t],y3'[t]==-4*y1[t]-0*y2[t]+8*y3[t]},{y1[0]==0,y2[0]==2,y3[0]==2},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → 8t+ 3e4t − 3
y2(t) → 4t+ 6e4t − 4
y3(t) → 4t+ 3e4t − 1
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22.24 problem section 10.5, problem 24
22.24.1 Solution using Matrix exponential method . . . . . . . . . . . . 8420
22.24.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8421

Internal problem ID [1627]
Internal file name [OUTPUT/1628_Sunday_June_05_2022_02_25_03_AM_9188363/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 24.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = 5y1(t)− y2(t) + y3(t)
y′2(t) = −y1(t) + 9y2(t)− 3y3(t)
y′3(t) = −2y1(t) + 2y2(t) + 4y3(t)

22.24.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


5 −1 1
−1 9 −3
−2 2 4




y1(t)
y2(t)
y3(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


e6t(1− t) −t e6t t e6t

e6tt(2t− 1) e6t(2t2 + 3t+ 1) e6t(−2t2 − 3t)
2 e6tt(−1 + t) 2 e6tt(t+ 1) e6t(−2t2 − 2t+ 1)
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e6t(1− t) −t e6t t e6t

e6tt(2t− 1) e6t(2t2 + 3t+ 1) e6t(−2t2 − 3t)
2 e6tt(−1 + t) 2 e6tt(t+ 1) e6t(−2t2 − 2t+ 1)




c1

c2

c3



=


e6t(1− t) c1 − t e6tc2 + t e6tc3

e6tt(2t− 1) c1 + e6t(2t2 + 3t+ 1) c2 + e6t(−2t2 − 3t) c3
2 e6tt(−1 + t) c1 + 2 e6tt(t+ 1) c2 + e6t(−2t2 − 2t+ 1) c3



=


−((c1 + c2 − c3) t− c1) e6t

2
(
(c1 + c2 − c3) t2 + (−c1+3c2−3c3)t

2 + c2
2

)
e6t

2
(
(c1 + c2 − c3) t2 + (−c1 + c2 − c3) t+ c3

2

)
e6t


Since no forcing function is given, then the final solution is ~xh(t) above.

22.24.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


5 −1 1
−1 9 −3
−2 2 4




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




5 −1 1
−1 9 −3
−2 2 4

− λ


1 0 0
0 1 0
0 0 1


 = 0

8421



Therefore

det




5− λ −1 1
−1 9− λ −3
−2 2 4− λ


 = 0

Which gives the characteristic equation

λ3 − 18λ2 + 108λ− 216 = 0

The roots of the above are the eigenvalues.

λ1 = 6

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

6 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 6

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


5 −1 1
−1 9 −3
−2 2 4

− (6)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−1 −1 1
−1 3 −3
−2 2 −2




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−1 −1 1 0
−1 3 −3 0
−2 2 −2 0



R2 = R2 −R1 =⇒


−1 −1 1 0
0 4 −4 0
−2 2 −2 0
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R3 = R3 − 2R1 =⇒


−1 −1 1 0
0 4 −4 0
0 4 −4 0



R3 = R3 −R2 =⇒


−1 −1 1 0
0 4 −4 0
0 0 0 0


Therefore the system in Echelon form is

−1 −1 1
0 4 −4
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 0, v2 = t}

Hence the solution is 
0
t

t

 =


0
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
t

t

 = t


0
1
1


Let t = 1 the eigenvector becomes 

0
t

t

 =


0
1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
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with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

6 3 1 Yes


0
1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 6 is real and repated eigenvalue of multiplicity
3.There are three possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 3

case 1

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 2

x1 = eλtv1

x2 = eλtv2

x3 = eλtv3

The solution is

x = c1x1 + c2x2 + c3x3

The three possible cases for repeated eigenvalue of multiplicity 3

v3

✓

normal
eigenvector

Incomplete eigenvalue.
defect is 1

v3

?

generalized
eigenvector

v2

✓

normal
eigenvector

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 3

x1 = eλtv1

x2 = eλt (v1t+ v2)

x3 = eλt
(
v1

t2

2
+ v2t+ v1

)
Where we first solve for v2 from

(A− λI)v2 = v1

And next we solve for v3 from

(A− λI)v3 = v2

Hence the solution is

x = c1x1 + c2x2 + c3x3

Incomplete eigenvalue.
defect is 2

v3

?

generalized
eigenvector

v2

?

generalized
eigenvector

A− λI

zero vector
v1

A− λI

v2v3
rank 1 vectorrank 2 vectorrank 3 vector

A− λI

A− λI

zero vector
v1

A− λI
v2

v3

rank 2 vector

In this case, we need to solve for v3 from linear combination of
v1,v2.

(A− λ)v3 = αv1 + βv2

Where α, β ̸= 0 are any scalars.

u = αv1 + βv2

A− λI

x1 = eλtv1

x2 = eλtv2

x2 = eλt (ut+ v3)

Where u = αv1 +βv2 for nonzero α, β and
Solve for v3 from

(A− λI)v3 = u

Hence the solution is

x = c1x1 + c2x2 + c3x3

Figure 606: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 2. This falls into case 3 shown above. First we
find generalized eigenvector ~v2 of rank 2 and then use this to find generalized eigenvector
~v3 of rank 3.~v2 is found by solving

(A− λI)~v2 = ~v1
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Where ~v1 is the normal (rank 1) eigenvector found above. Hence


5 −1 1
−1 9 −3
−2 2 4

− (6)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
1
1




−1 −1 1
−1 3 −3
−2 2 −2




v1

v2

v3

 =


0
1
1


Solving for ~v2 gives

~v2 =


−1

4
5
4

1


Now ~v3 is found by solving

(A− λI)~v3 = ~v2

Where ~v2 is the (rank 2) generalized eigenvector found above. Hence


5 −1 1
−1 9 −3
−2 2 4

− (6)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


−1

4
5
4

1




−1 −1 1
−1 3 −3
−2 2 −2




v1

v2

v3

 =


−1

4
5
4

1


Solving for ~v3 gives

~v3 =


−1

8
11
8

1


We have found three generalized eigenvectors for eigenvalue 6. Therefore the three basis
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solutions associated with this eigenvalue are

~x1(t) = ~v1e
λt

=


0
1
1

 e6t

=


0
e6t

e6t


And

~x2(t) = eλt(~v1t+ ~v2)

= e6t




0
1
1

 t+


−1

4
5
4

1




=


− e6t

4
e6t(4t+5)

4

e6t(t+ 1)


And

~x3(t) =
(
~v1

t2

2 + ~v2t+ ~v3

)
eλt

=




0
1
1

 t2

2 +


−1

4
5
4

1

 t+


−1

8
11
8

1


 e6t

=


− e6t(1+2t)

8
e6t
(
4t2+10t+11

)
8

e6t
(
t2+2t+2

)
2


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)
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Which is written as
y1(t)
y2(t)
y3(t)

 = c1


0
e6t

e6t

+ c2


− e6t

4

e6t
(
t+ 5

4

)
e6t(t+ 1)

+ c3


e6t
(
− t

4 −
1
8

)
e6t
(1
2t

2 + 5
4t+

11
8

)
e6t
(
t+ 1

2t
2 + 1

)


Which becomes 
y1(t)
y2(t)
y3(t)

 =


− e6t(2c3t+2c2+c3)

8((
4t2+10t+11

)
c3+8c2t+8c1+10c2

)
e6t

8((
t2+2t+2

)
c3+2c2t+2c1+2c2

)
e6t

2


3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 65� �
dsolve([diff(y__1(t),t)=5*y__1(t)-1*y__2(t)+1*y__3(t),diff(y__2(t),t)=-1*y__1(t)+9*y__2(t)-3*y__3(t),diff(y__3(t),t)=-2*y__1(t)+2*y__2(t)+4*y__3(t)],singsol=all)� �

y1(t) = e6t(c3t+ c2)
y2(t) =

(
−2c3t2 − 4c2t− 3c3t+ c1

)
e6t

y3(t) = e6t
(
−2c3t2 − 4c2t− 2c3t+ c1 + c2 + c3

)
3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 106� �
DSolve[{y1'[t]==5*y1[t]-1*y2[t]+1*y3[t],y2'[t]==-1*y1[t]+9*y2[t]-3*y3[t],y3'[t]==-2*y1[t]+2*y2[t]+4*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → −e6t(c1(t− 1) + (c2 − c3)t)
y2(t) → e6t

(
2(c1 + c2 − c3)t2 − (c1 − 3c2 + 3c3)t+ c2

)
y3(t) → e6t

(
2(c1 + c2 − c3)t2 − 2(c1 − c2 + c3)t+ c3

)
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22.25 problem section 10.5, problem 25
22.25.1 Solution using Matrix exponential method . . . . . . . . . . . . 8429
22.25.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8430

Internal problem ID [1628]
Internal file name [OUTPUT/1629_Sunday_June_05_2022_02_25_04_AM_7451132/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 25.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = y1(t) + 10y2(t)− 12y3(t)
y′2(t) = 2y1(t) + 2y2(t) + 3y3(t)
y′3(t) = 2y1(t)− y2(t) + 6y3(t)

22.25.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


1 10 −12
2 2 3
2 −1 6




y1(t)
y2(t)
y3(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


e3t(1− 2t) e3t(−9t2 + 10t) (9t2 − 12t) e3t

2 e3tt e3t(9t2 − t+ 1) (−9t2 + 3t) e3t

2 e3tt e3tt(9t− 1) e3t(−9t2 + 3t+ 1)
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e3t(1− 2t) e3t(−9t2 + 10t) (9t2 − 12t) e3t

2 e3tt e3t(9t2 − t+ 1) (−9t2 + 3t) e3t

2 e3tt e3tt(9t− 1) e3t(−9t2 + 3t+ 1)




c1

c2

c3



=


e3t(1− 2t) c1 + e3t(−9t2 + 10t) c2 + (9t2 − 12t) e3tc3

2 e3ttc1 + e3t(9t2 − t+ 1) c2 + (−9t2 + 3t) e3tc3
2 e3ttc1 + e3tt(9t− 1) c2 + e3t(−9t2 + 3t+ 1) c3



=


−9 e3t

(
(c2 − c3) t2 +

(2c1
9 − 10c2

9 + 4c3
3

)
t− c1

9

)
9
(
(c2 − c3) t2 +

(2c1
9 − c2

9 + c3
3

)
t+ c2

9

)
e3t

9 e3t
(
(c2 − c3) t2 +

(2c1
9 − c2

9 + c3
3

)
t+ c3

9

)


Since no forcing function is given, then the final solution is ~xh(t) above.

22.25.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


1 10 −12
2 2 3
2 −1 6




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




1 10 −12
2 2 3
2 −1 6

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




1− λ 10 −12
2 2− λ 3
2 −1 6− λ


 = 0

Which gives the characteristic equation

λ3 − 9λ2 + 27λ− 27 = 0

The roots of the above are the eigenvalues.

λ1 = 3

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 10 −12
2 2 3
2 −1 6

− (3)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−2 10 −12
2 −1 3
2 −1 3




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−2 10 −12 0
2 −1 3 0
2 −1 3 0



R2 = R2 +R1 =⇒


−2 10 −12 0
0 9 −9 0
2 −1 3 0
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R3 = R3 +R1 =⇒


−2 10 −12 0
0 9 −9 0
0 9 −9 0



R3 = R3 −R2 =⇒


−2 10 −12 0
0 9 −9 0
0 0 0 0


Therefore the system in Echelon form is

−2 10 −12
0 9 −9
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −t, v2 = t}

Hence the solution is 
−t

t

t

 =


−t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

t

t

 = t


−1
1
1


Let t = 1 the eigenvector becomes

−t

t

t

 =


−1
1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
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with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

3 3 1 Yes


−1
1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 3 is real and repated eigenvalue of multiplicity
3.There are three possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 3

case 1

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 2

x1 = eλtv1

x2 = eλtv2

x3 = eλtv3

The solution is

x = c1x1 + c2x2 + c3x3

The three possible cases for repeated eigenvalue of multiplicity 3

v3

✓

normal
eigenvector

Incomplete eigenvalue.
defect is 1

v3

?

generalized
eigenvector

v2

✓

normal
eigenvector

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 3

x1 = eλtv1

x2 = eλt (v1t+ v2)

x3 = eλt
(
v1

t2

2
+ v2t+ v1

)
Where we first solve for v2 from

(A− λI)v2 = v1

And next we solve for v3 from

(A− λI)v3 = v2

Hence the solution is

x = c1x1 + c2x2 + c3x3

Incomplete eigenvalue.
defect is 2

v3

?

generalized
eigenvector

v2

?

generalized
eigenvector

A− λI

zero vector
v1

A− λI

v2v3
rank 1 vectorrank 2 vectorrank 3 vector

A− λI

A− λI

zero vector
v1

A− λI
v2

v3

rank 2 vector

In this case, we need to solve for v3 from linear combination of
v1,v2.

(A− λ)v3 = αv1 + βv2

Where α, β ̸= 0 are any scalars.

u = αv1 + βv2

A− λI

x1 = eλtv1

x2 = eλtv2

x2 = eλt (ut+ v3)

Where u = αv1 +βv2 for nonzero α, β and
Solve for v3 from

(A− λI)v3 = u

Hence the solution is

x = c1x1 + c2x2 + c3x3

Figure 607: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 2. This falls into case 3 shown above. First we
find generalized eigenvector ~v2 of rank 2 and then use this to find generalized eigenvector
~v3 of rank 3.~v2 is found by solving

(A− λI)~v2 = ~v1
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Where ~v1 is the normal (rank 1) eigenvector found above. Hence


1 10 −12
2 2 3
2 −1 6

− (3)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


−1
1
1




−2 10 −12
2 −1 3
2 −1 3




v1

v2

v3

 =


−1
1
1


Solving for ~v2 gives

~v2 =


−1

2

1
1


Now ~v3 is found by solving

(A− λI)~v3 = ~v2

Where ~v2 is the (rank 2) generalized eigenvector found above. Hence


1 10 −12
2 2 3
2 −1 6

− (3)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


−1

2

1
1




−2 10 −12
2 −1 3
2 −1 3




v1

v2

v3

 =


−1

2

1
1


Solving for ~v3 gives

~v3 =


−17

36
19
18

1


We have found three generalized eigenvectors for eigenvalue 3. Therefore the three basis
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solutions associated with this eigenvalue are

~x1(t) = ~v1e
λt

=


−1
1
1

 e3t

=


−e3t

e3t

e3t


And

~x2(t) = eλt(~v1t+ ~v2)

= e3t




−1
1
1

 t+


−1

2

1
1




=


− e3t(1+2t)

2

e3t(t+ 1)
e3t(t+ 1)


And

~x3(t) =
(
~v1

t2

2 + ~v2t+ ~v3

)
eλt

=




−1
1
1

 t2

2 +


−1

2

1
1

 t+


−17

36
19
18

1


 e3t

=


− e3t

(
18t2+18t+17

)
36

e3t
(
9t2+18t+19

)
18

e3t
(
t2+2t+2

)
2


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)
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Which is written as
y1(t)
y2(t)
y3(t)

 = c1


−e3t

e3t

e3t

+ c2


e3t
(
−t− 1

2

)
e3t(t+ 1)
e3t(t+ 1)

+ c3


e3t
(
−1

2t
2 − 1

2t−
17
36

)
e3t
(1
2t

2 + t+ 19
18

)
e3t
(
t+ 1

2t
2 + 1

)


Which becomes 
y1(t)
y2(t)
y3(t)

 =


−
((
t2+t+ 17

18
)
c3+2c2t+2c1+c2

)
e3t

2
e3t
((
t2+2t+ 19

9
)
c3+2c2t+2c1+2c2

)
2((

t2+2t+2
)
c3+2c2t+2c1+2c2

)
e3t

2


3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 86� �
dsolve([diff(y__1(t),t)=1*y__1(t)+10*y__2(t)-12*y__3(t),diff(y__2(t),t)=2*y__1(t)+2*y__2(t)+3*y__3(t),diff(y__3(t),t)=2*y__1(t)-1*y__2(t)+6*y__3(t)],singsol=all)� �

y1(t) = e3t
(
c3t

2 + c2t+ c1
)

y2(t) = −e3t(6c3t2 + 6c2t+ 6c3t+ 6c1 + 3c2 + 4c3)
6

y3(t) = −e3t(18c3t2 + 18c2t+ 18c3t+ 18c1 + 9c2 + 10c3)
18

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 118� �
DSolve[{y1'[t]==1*y1[t]+10*y2[t]-12*y3[t],y2'[t]==2*y1[t]+2*y2[t]+3*y3[t],y3'[t]==2*y1[t]-1*y2[t]+6*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → −e3t(c1(2t− 1) + c2t(9t− 10) + 3c3(4− 3t)t)
y2(t) → e3t

(
9(c2 − c3)t2 + (2c1 − c2 + 3c3)t+ c2

)
y3(t) → e3t

(
9(c2 − c3)t2 + (2c1 − c2 + 3c3)t+ c3

)
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22.26 problem section 10.5, problem 26
22.26.1 Solution using Matrix exponential method . . . . . . . . . . . . 8438
22.26.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8439

Internal problem ID [1629]
Internal file name [OUTPUT/1630_Sunday_June_05_2022_02_25_06_AM_41661909/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 26.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −6y1(t)− 4y2(t)− 4y3(t)
y′2(t) = 2y1(t)− y2(t) + y3(t)
y′3(t) = 2y1(t) + 3y2(t) + y3(t)

22.26.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−6 −4 −4
2 −1 1
2 3 1




y1(t)
y2(t)
y3(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


e−2t(1− 4t) −4t e−2t −4t e−2t

−2 e−2tt(−1 + t) e−2t(−2t2 + t+ 1) e−2t(−2t2 + t)
2 e−2tt(t+ 1) e−2tt(2t+ 3) e−2t(2t2 + 3t+ 1)
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e−2t(1− 4t) −4t e−2t −4t e−2t

−2 e−2tt(−1 + t) e−2t(−2t2 + t+ 1) e−2t(−2t2 + t)
2 e−2tt(t+ 1) e−2tt(2t+ 3) e−2t(2t2 + 3t+ 1)




c1

c2

c3



=


e−2t(1− 4t) c1 − 4t e−2tc2 − 4t e−2tc3

−2 e−2tt(−1 + t) c1 + e−2t(−2t2 + t+ 1) c2 + e−2t(−2t2 + t) c3
2 e−2tt(t+ 1) c1 + e−2tt(2t+ 3) c2 + e−2t(2t2 + 3t+ 1) c3



=


−4
(
(c1 + c2 + c3) t− c1

4

)
e−2t

−2
(
(c1 + c2 + c3) t2 +

(
−c1 − c2

2 − c3
2

)
t− c2

2

)
e−2t

2
(
(c1 + c2 + c3) t2 +

(
c1 + 3c2

2 + 3c3
2

)
t+ c3

2

)
e−2t


Since no forcing function is given, then the final solution is ~xh(t) above.

22.26.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−6 −4 −4
2 −1 1
2 3 1




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




−6 −4 −4
2 −1 1
2 3 1

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




−6− λ −4 −4
2 −1− λ 1
2 3 1− λ


 = 0

Which gives the characteristic equation

λ3 + 6λ2 + 12λ+ 8 = 0

The roots of the above are the eigenvalues.

λ1 = −2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−6 −4 −4
2 −1 1
2 3 1

− (−2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−4 −4 −4
2 1 1
2 3 3




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−4 −4 −4 0
2 1 1 0
2 3 3 0



R2 = R2 +
R1

2 =⇒


−4 −4 −4 0
0 −1 −1 0
2 3 3 0
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R3 = R3 +
R1

2 =⇒


−4 −4 −4 0
0 −1 −1 0
0 1 1 0



R3 = R3 +R2 =⇒


−4 −4 −4 0
0 −1 −1 0
0 0 0 0


Therefore the system in Echelon form is

−4 −4 −4
0 −1 −1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 0, v2 = −t}

Hence the solution is 
0
−t

t

 =


0
−t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
−t

t

 = t


0
−1
1


Let t = 1 the eigenvector becomes

0
−t

t

 =


0
−1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
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with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−2 3 1 Yes


0
−1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue −2 is real and repated eigenvalue of multiplicity
3.There are three possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 3

case 1

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 2

x1 = eλtv1

x2 = eλtv2

x3 = eλtv3

The solution is

x = c1x1 + c2x2 + c3x3

The three possible cases for repeated eigenvalue of multiplicity 3

v3

✓

normal
eigenvector

Incomplete eigenvalue.
defect is 1

v3

?

generalized
eigenvector

v2

✓

normal
eigenvector

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 3

x1 = eλtv1

x2 = eλt (v1t+ v2)

x3 = eλt
(
v1

t2

2
+ v2t+ v1

)
Where we first solve for v2 from

(A− λI)v2 = v1

And next we solve for v3 from

(A− λI)v3 = v2

Hence the solution is

x = c1x1 + c2x2 + c3x3

Incomplete eigenvalue.
defect is 2

v3

?

generalized
eigenvector

v2

?

generalized
eigenvector

A− λI

zero vector
v1

A− λI

v2v3
rank 1 vectorrank 2 vectorrank 3 vector

A− λI

A− λI

zero vector
v1

A− λI
v2

v3

rank 2 vector

In this case, we need to solve for v3 from linear combination of
v1,v2.

(A− λ)v3 = αv1 + βv2

Where α, β ̸= 0 are any scalars.

u = αv1 + βv2

A− λI

x1 = eλtv1

x2 = eλtv2

x2 = eλt (ut+ v3)

Where u = αv1 +βv2 for nonzero α, β and
Solve for v3 from

(A− λI)v3 = u

Hence the solution is

x = c1x1 + c2x2 + c3x3

Figure 608: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 2. This falls into case 3 shown above. First we
find generalized eigenvector ~v2 of rank 2 and then use this to find generalized eigenvector
~v3 of rank 3.~v2 is found by solving

(A− λI)~v2 = ~v1
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Where ~v1 is the normal (rank 1) eigenvector found above. Hence


−6 −4 −4
2 −1 1
2 3 1

− (−2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
−1
1




−4 −4 −4
2 1 1
2 3 3




v1

v2

v3

 =


0
−1
1


Solving for ~v2 gives

~v2 =


−1
0
1


Now ~v3 is found by solving

(A− λI)~v3 = ~v2

Where ~v2 is the (rank 2) generalized eigenvector found above. Hence


−6 −4 −4
2 −1 1
2 3 1

− (−2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


−1
0
1




−4 −4 −4
2 1 1
2 3 3




v1

v2

v3

 =


−1
0
1


Solving for ~v3 gives

~v3 =


−1

4

−1
2

1


We have found three generalized eigenvectors for eigenvalue −2. Therefore the three
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basis solutions associated with this eigenvalue are

~x1(t) = ~v1e
λt

=


0
−1
1

 e−2t

=


0

−e−2t

e−2t


And

~x2(t) = eλt(~v1t+ ~v2)

= e−2t




0
−1
1

 t+


−1
0
1




=


−e−2t

−t e−2t

e−2t(t+ 1)


And

~x3(t) =
(
~v1

t2

2 + ~v2t+ ~v3

)
eλt

=




0
−1
1

 t2

2 +


−1
0
1

 t+


−1

4

−1
2

1


 e−2t

=


− e−2t(4t+1)

4

− e−2t(t2+1
)

2
e−2t(t2+2t+2

)
2


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)
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Which is written as
y1(t)
y2(t)
y3(t)

 = c1


0

−e−2t

e−2t

+ c2


−e−2t

−t e−2t

e−2t(t+ 1)

+ c3


e−2t(−t− 1

4

)
e−2t

(
− t2

2 − 1
2

)
e−2t(t+ 1

2t
2 + 1

)


Which becomes 
y1(t)
y2(t)
y3(t)

 =


e−2t(−c2 − c3t− 1

4c3
)

− e−2t(c3t2+2tc2+2c1+c3
)

2((
t2+2t+2

)
c3+2tc2+2c1+2c2

)
e−2t

2


3 Solution by Maple
Time used: 0.046 (sec). Leaf size: 73� �
dsolve([diff(y__1(t),t)=-6*y__1(t)-4*y__2(t)-4*y__3(t),diff(y__2(t),t)=2*y__1(t)-1*y__2(t)+1*y__3(t),diff(y__3(t),t)=2*y__1(t)+3*y__2(t)+1*y__3(t)],singsol=all)� �

y1(t) = e−2t(c3t+ c2)

y2(t) =
(2c3t2 + 4c2t− c3t+ 4c1) e−2t

4
y3(t) = −e−2t(2c3t2 + 4c2t+ 3c3t+ 4c1 + 4c2 + c3)

4

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 100� �
DSolve[{y1'[t]==-6*y1[t]-4*y2[t]-4*y3[t],y2'[t]==2*y1[t]-1*y2[t]+1*y3[t],y3'[t]==2*y1[t]+3*y2[t]+1*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e−2t(c1(1− 4t)− 4(c2 + c3)t)
y2(t) → e−2t(−2(c1 + c2 + c3)t2 + (2c1 + c2 + c3)t+ c2

)
y3(t) → e−2t(2(c1 + c2 + c3)t2 + 2c1t+ 3(c2 + c3)t+ c3

)

8446



22.27 problem section 10.5, problem 27
22.27.1 Solution using Matrix exponential method . . . . . . . . . . . . 8447
22.27.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8448

Internal problem ID [1630]
Internal file name [OUTPUT/1631_Sunday_June_05_2022_02_25_08_AM_57956600/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 27.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = 2y2(t)− 2y3(t)
y′2(t) = −y1(t) + 5y2(t)− 3y3(t)
y′3(t) = y1(t) + y2(t) + y3(t)

22.27.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


0 2 −2
−1 5 −3
1 1 1




y1(t)
y2(t)
y3(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


(1− 2t) e2t 2 e2tt −2 e2tt
e2t(−2t2 − t) e2t(2t2 + 3t+ 1) e2t(−2t2 − 3t)
e2t(−2t2 + t) e2t(2t2 + t) e2t(−2t2 − t+ 1)
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=


(1− 2t) e2t 2 e2tt −2 e2tt
e2t(−2t2 − t) e2t(2t2 + 3t+ 1) e2t(−2t2 − 3t)
e2t(−2t2 + t) e2t(2t2 + t) e2t(−2t2 − t+ 1)




c1

c2

c3



=


(1− 2t) e2tc1 + 2 e2ttc2 − 2 e2ttc3

e2t(−2t2 − t) c1 + e2t(2t2 + 3t+ 1) c2 + e2t(−2t2 − 3t) c3
e2t(−2t2 + t) c1 + e2t(2t2 + t) c2 + e2t(−2t2 − t+ 1) c3



=


−2
(
(c1 − c2 + c3) t− c1

2

)
e2t

−2
(
(c1 − c2 + c3) t2 + (c1−3c2+3c3)t

2 − c2
2

)
e2t

−2 e2t
(
(c1 − c2 + c3) t2 + (−c1−c2+c3)t

2 − c3
2

)


Since no forcing function is given, then the final solution is ~xh(t) above.

22.27.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


0 2 −2
−1 5 −3
1 1 1




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




0 2 −2
−1 5 −3
1 1 1

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




−λ 2 −2
−1 5− λ −3
1 1 1− λ


 = 0

Which gives the characteristic equation

λ3 − 6λ2 + 12λ− 8 = 0

The roots of the above are the eigenvalues.

λ1 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


0 2 −2
−1 5 −3
1 1 1

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−2 2 −2
−1 3 −3
1 1 −1




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−2 2 −2 0
−1 3 −3 0
1 1 −1 0



R2 = R2 −
R1

2 =⇒


−2 2 −2 0
0 2 −2 0
1 1 −1 0
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R3 = R3 +
R1

2 =⇒


−2 2 −2 0
0 2 −2 0
0 2 −2 0



R3 = R3 −R2 =⇒


−2 2 −2 0
0 2 −2 0
0 0 0 0


Therefore the system in Echelon form is

−2 2 −2
0 2 −2
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 0, v2 = t}

Hence the solution is 
0
t

t

 =


0
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
t

t

 = t


0
1
1


Let t = 1 the eigenvector becomes 

0
t

t

 =


0
1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
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with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 3 1 Yes


0
1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity
3.There are three possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 3

case 1

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 2

x1 = eλtv1

x2 = eλtv2

x3 = eλtv3

The solution is

x = c1x1 + c2x2 + c3x3

The three possible cases for repeated eigenvalue of multiplicity 3

v3

✓

normal
eigenvector

Incomplete eigenvalue.
defect is 1

v3

?

generalized
eigenvector

v2

✓

normal
eigenvector

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 3

x1 = eλtv1

x2 = eλt (v1t+ v2)

x3 = eλt
(
v1

t2

2
+ v2t+ v1

)
Where we first solve for v2 from

(A− λI)v2 = v1

And next we solve for v3 from

(A− λI)v3 = v2

Hence the solution is

x = c1x1 + c2x2 + c3x3

Incomplete eigenvalue.
defect is 2

v3

?

generalized
eigenvector

v2

?

generalized
eigenvector

A− λI

zero vector
v1

A− λI

v2v3
rank 1 vectorrank 2 vectorrank 3 vector

A− λI

A− λI

zero vector
v1

A− λI
v2

v3

rank 2 vector

In this case, we need to solve for v3 from linear combination of
v1,v2.

(A− λ)v3 = αv1 + βv2

Where α, β ̸= 0 are any scalars.

u = αv1 + βv2

A− λI

x1 = eλtv1

x2 = eλtv2

x2 = eλt (ut+ v3)

Where u = αv1 +βv2 for nonzero α, β and
Solve for v3 from

(A− λI)v3 = u

Hence the solution is

x = c1x1 + c2x2 + c3x3

Figure 609: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 2. This falls into case 3 shown above. First we
find generalized eigenvector ~v2 of rank 2 and then use this to find generalized eigenvector
~v3 of rank 3.~v2 is found by solving

(A− λI)~v2 = ~v1
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Where ~v1 is the normal (rank 1) eigenvector found above. Hence


0 2 −2
−1 5 −3
1 1 1

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
1
1




−2 2 −2
−1 3 −3
1 1 −1




v1

v2

v3

 =


0
1
1


Solving for ~v2 gives

~v2 =


1
2
3
2

1


Now ~v3 is found by solving

(A− λI)~v3 = ~v2

Where ~v2 is the (rank 2) generalized eigenvector found above. Hence


0 2 −2
−1 5 −3
1 1 1

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


1
2
3
2

1




−2 2 −2
−1 3 −3
1 1 −1




v1

v2

v3

 =


1
2
3
2

1


Solving for ~v3 gives

~v3 =


3
8
13
8

1


We have found three generalized eigenvectors for eigenvalue 2. Therefore the three basis
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solutions associated with this eigenvalue are

~x1(t) = ~v1e
λt

=


0
1
1

 e2t

=


0
e2t

e2t


And

~x2(t) = eλt(~v1t+ ~v2)

= e2t




0
1
1

 t+


1
2
3
2

1




=


e2t
2

e2t(2t+3)
2

e2t(t+ 1)


And

~x3(t) =
(
~v1

t2

2 + ~v2t+ ~v3

)
eλt

=




0
1
1

 t2

2 +


1
2
3
2

1

 t+


3
8
13
8

1


 e2t

=


e2t(4t+3)

8
e2t
(
4t2+12t+13

)
8

e2t
(
t2+2t+2

)
2


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)
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Which is written as
y1(t)
y2(t)
y3(t)

 = c1


0
e2t

e2t

+ c2


e2t
2

e2t
(
t+ 3

2

)
e2t(t+ 1)

+ c3


e2t
(
t
2 +

3
8

)
e2t
(1
2t

2 + 3
2t+

13
8

)
e2t
(
t+ 1

2t
2 + 1

)


Which becomes 
y1(t)
y2(t)
y3(t)

 =


((4t+3)c3+4c2)e2t

8((
t2+3t+ 13

4
)
c3+2c2t+2c1+3c2

)
e2t

2((
t2+2t+2

)
c3+2c2t+2c1+2c2

)
e2t

2


3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 74� �
dsolve([diff(y__1(t),t)=0*y__1(t)+2*y__2(t)-2*y__3(t),diff(y__2(t),t)=-1*y__1(t)+5*y__2(t)-3*y__3(t),diff(y__3(t),t)=1*y__1(t)+1*y__2(t)+1*y__3(t)],singsol=all)� �

y1(t) = e2t(c3t+ c2)

y2(t) =
(2c3t2 + 4c2t+ 3c3t+ 2c1) e2t

2
y3(t) =

e2t(2c3t2 + 4c2t+ c3t+ 2c1 − 2c2 − c3)
2

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 108� �
DSolve[{y1'[t]==0*y1[t]+2*y2[t]-2*y3[t],y2'[t]==-1*y1[t]+5*y2[t]-3*y3[t],y3'[t]==1*y1[t]+1*y2[t]+1*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → −e2t(c1(2t− 1) + 2(c3 − c2)t)
y2(t) → e2t

(
−2(c1 − c2 + c3)t2 − (c1 − 3c2 + 3c3)t+ c2

)
y3(t) → e2t

(
−2(c1 − c2 + c3)t2 + (c1 + c2 − c3)t+ c3

)
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22.28 problem section 10.5, problem 28
22.28.1 Solution using Matrix exponential method . . . . . . . . . . . . 8456
22.28.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8457

Internal problem ID [1631]
Internal file name [OUTPUT/1632_Sunday_June_05_2022_02_25_10_AM_77355816/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 28.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −2y1(t)− 12y2(t) + 10y3(t)
y′2(t) = 2y1(t)− 24y2(t) + 11y3(t)
y′3(t) = 2y1(t)− 24y2(t) + 8y3(t)

22.28.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−2 −12 10
2 −24 11
2 −24 8




y1(t)
y2(t)
y3(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


e−6t(6t2 + 4t+ 1) (−36t2 − 12t) e−6t (24t2 + 10t) e−6t

e−6t(−3t2 + 2t) e−6t(18t2 − 18t+ 1) e−6t(−12t2 + 11t)
(−6t2 + 2t) e−6t (36t2 − 24t) e−6t e−6t(−24t2 + 14t+ 1)



8456



Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e−6t(6t2 + 4t+ 1) (−36t2 − 12t) e−6t (24t2 + 10t) e−6t

e−6t(−3t2 + 2t) e−6t(18t2 − 18t+ 1) e−6t(−12t2 + 11t)
(−6t2 + 2t) e−6t (36t2 − 24t) e−6t e−6t(−24t2 + 14t+ 1)




c1

c2

c3



=


e−6t(6t2 + 4t+ 1) c1 + (−36t2 − 12t) e−6tc2 + (24t2 + 10t) e−6tc3

e−6t(−3t2 + 2t) c1 + e−6t(18t2 − 18t+ 1) c2 + e−6t(−12t2 + 11t) c3
(−6t2 + 2t) e−6tc1 + (36t2 − 24t) e−6tc2 + e−6t(−24t2 + 14t+ 1) c3



=


6
(
(c1 − 6c2 + 4c3) t2 +

(2c1
3 − 2c2 + 5c3

3

)
t+ c1

6

)
e−6t

−3
(
(c1 − 6c2 + 4c3) t2 +

(
−2c1

3 + 6c2 − 11c3
3

)
t− c2

3

)
e−6t

−6
(
(c1 − 6c2 + 4c3) t2 +

(
− c1

3 + 4c2 − 7c3
3

)
t− c3

6

)
e−6t


Since no forcing function is given, then the final solution is ~xh(t) above.

22.28.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−2 −12 10
2 −24 11
2 −24 8




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




−2 −12 10
2 −24 11
2 −24 8

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




−2− λ −12 10
2 −24− λ 11
2 −24 8− λ


 = 0

Which gives the characteristic equation

λ3 + 18λ2 + 108λ+ 216 = 0

The roots of the above are the eigenvalues.

λ1 = −6

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−6 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −6

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−2 −12 10
2 −24 11
2 −24 8

− (−6)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




4 −12 10
2 −18 11
2 −24 14




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

4 −12 10 0
2 −18 11 0
2 −24 14 0



R2 = R2 −
R1

2 =⇒


4 −12 10 0
0 −12 6 0
2 −24 14 0
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R3 = R3 −
R1

2 =⇒


4 −12 10 0
0 −12 6 0
0 −18 9 0



R3 = R3 −
3R2

2 =⇒


4 −12 10 0
0 −12 6 0
0 0 0 0


Therefore the system in Echelon form is

4 −12 10
0 −12 6
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = −t, v2 = t

2

}
Hence the solution is 

−t

t
2

t

 =


−t

t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

t
2

t

 = t


−1
1
2

1


Let t = 1 the eigenvector becomes

−t

t
2

t

 =


−1
1
2

1
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Which is normalized to 
−t

t
2

t

 =


−2
1
2


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−6 3 1 Yes


−1
1
2

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue −6 is real and repated eigenvalue of multiplicity
3.There are three possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 3

case 1

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 2

x1 = eλtv1

x2 = eλtv2

x3 = eλtv3

The solution is

x = c1x1 + c2x2 + c3x3

The three possible cases for repeated eigenvalue of multiplicity 3

v3

✓

normal
eigenvector

Incomplete eigenvalue.
defect is 1

v3

?

generalized
eigenvector

v2

✓

normal
eigenvector

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 3

x1 = eλtv1

x2 = eλt (v1t+ v2)

x3 = eλt
(
v1

t2

2
+ v2t+ v1

)
Where we first solve for v2 from

(A− λI)v2 = v1

And next we solve for v3 from

(A− λI)v3 = v2

Hence the solution is

x = c1x1 + c2x2 + c3x3

Incomplete eigenvalue.
defect is 2

v3

?

generalized
eigenvector

v2

?

generalized
eigenvector

A− λI

zero vector
v1

A− λI

v2v3
rank 1 vectorrank 2 vectorrank 3 vector

A− λI

A− λI

zero vector
v1

A− λI
v2

v3

rank 2 vector

In this case, we need to solve for v3 from linear combination of
v1,v2.

(A− λ)v3 = αv1 + βv2

Where α, β ̸= 0 are any scalars.

u = αv1 + βv2

A− λI

x1 = eλtv1

x2 = eλtv2

x2 = eλt (ut+ v3)

Where u = αv1 +βv2 for nonzero α, β and
Solve for v3 from

(A− λI)v3 = u

Hence the solution is

x = c1x1 + c2x2 + c3x3

Figure 610: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 2. This falls into case 3 shown above. First we
find generalized eigenvector ~v2 of rank 2 and then use this to find generalized eigenvector
~v3 of rank 3.~v2 is found by solving

(A− λI)~v2 = ~v1
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Where ~v1 is the normal (rank 1) eigenvector found above. Hence


−2 −12 10
2 −24 11
2 −24 8

− (−6)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


−1
1
2

1




4 −12 10
2 −18 11
2 −24 14




v1

v2

v3

 =


−1
1
2

1


Solving for ~v2 gives

~v2 =


−8

3

1
13
6


Now ~v3 is found by solving

(A− λI)~v3 = ~v2

Where ~v2 is the (rank 2) generalized eigenvector found above. Hence


−2 −12 10
2 −24 11
2 −24 8

− (−6)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


−8

3

1
13
6




4 −12 10
2 −18 11
2 −24 14




v1

v2

v3

 =


−8

3

1
13
6


Solving for ~v3 gives

~v3 =


−131

36

1
43
18


We have found three generalized eigenvectors for eigenvalue −6. Therefore the three
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basis solutions associated with this eigenvalue are

~x1(t) = ~v1e
λt

=


−1
1
2

1

 e−6t

=


−e−6t

e−6t

2

e−6t


And

~x2(t) = eλt(~v1t+ ~v2)

= e−6t




−1
1
2

1

 t+


−8

3

1
13
6




=


− e−6t(3t+8)

3
e−6t(2+t)

2
e−6t(6t+13)

6


And

~x3(t) =
(
~v1

t2

2 + ~v2t+ ~v3

)
eλt

=




−1
1
2

1

 t2

2 +


−8

3

1
13
6

 t+


−131

36

1
43
18


 e−6t

=


− e−6t(18t2+96t+131

)
36

e−6t(2+t)2
4

e−6t(9t2+39t+43
)

18


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)
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Which is written as
y1(t)
y2(t)
y3(t)

 = c1


−e−6t

e−6t

2

e−6t

+ c2


e−6t(−t− 8

3

)
e−6t( t

2 + 1
)

e−6t(t+ 13
6

)
+ c3


e−6t(−1

2t
2 − 8

3t−
131
36

)
e−6t(1

4t
2 + t+ 1

)
e−6t(1

2t
2 + 13

6 t+
43
18

)


Which becomes


y1(t)
y2(t)
y3(t)

 =


−
((

t2+ 16
3 t+ 131

18
)
c3+2c2t+2c1+ 16c2

3

)
e−6t

2(
(2+t)2c3+2c2t+2c1+4c2

)
e−6t

4((
9t2+39t+43

)
c3+18c2t+18c1+39c2

)
e−6t

18


3 Solution by Maple
Time used: 0.141 (sec). Leaf size: 84� �
dsolve([diff(y__1(t),t)=-2*y__1(t)-12*y__2(t)+10*y__3(t),diff(y__2(t),t)=2*y__1(t)-24*y__2(t)+11*y__3(t),diff(y__3(t),t)=2*y__1(t)-24*y__2(t)+8*y__3(t)],singsol=all)� �

y1(t) = e−6t(c3t2 + c2t+ c1
)

y2(t) = −e−6t(18c3t2 + 18c2t− 24c3t+ 18c1 − 12c2 + 5c3)
36

y3(t) = −e−6t(6c3t2 + 6c2t− 6c3t+ 6c1 − 3c2 + c3)
6

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 131� �
DSolve[{y1'[t]==-2*y1[t]-12*y2[t]+10*y3[t],y2'[t]==2*y1[t]-24*y2[t]+11*y3[t],y3'[t]==2*y1[t]-24*y2[t]+8*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e−6t(c1(6t2 + 4t+ 1
)
+ 2t(c3(12t+ 5)− 6c2(3t+ 1))

)
y2(t) → e−6t(−3(c1 − 6c2 + 4c3)t2 + (2c1 − 18c2 + 11c3)t+ c2

)
y3(t) → e−6t(−6(c1 − 6c2 + 4c3)t2 + 2(c1 − 12c2 + 7c3)t+ c3

)
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22.29 problem section 10.5, problem 29
22.29.1 Solution using Matrix exponential method . . . . . . . . . . . . 8465
22.29.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8466

Internal problem ID [1632]
Internal file name [OUTPUT/1633_Sunday_June_05_2022_02_25_12_AM_42281549/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 29.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −y1(t)− 12y2(t) + 8y3(t)
y′2(t) = y1(t)− 9y2(t) + 4y3(t)
y′3(t) = y1(t)− 6y2(t) + y3(t)

22.29.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−1 −12 8
1 −9 4
1 −6 1




y1(t)
y2(t)
y3(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


e−3t(1 + 2t) −12t e−3t 8t e−3t

t e−3t e−3t(1− 6t) 4t e−3t

t e−3t −6t e−3t e−3t(4t+ 1)
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e−3t(1 + 2t) −12t e−3t 8t e−3t

t e−3t e−3t(1− 6t) 4t e−3t

t e−3t −6t e−3t e−3t(4t+ 1)




c1

c2

c3



=


e−3t(1 + 2t) c1 − 12t e−3tc2 + 8t e−3tc3

t e−3tc1 + e−3t(1− 6t) c2 + 4t e−3tc3

t e−3tc1 − 6t e−3tc2 + e−3t(4t+ 1) c3



=


2
(
(c1 − 6c2 + 4c3) t+ c1

2

)
e−3t

((c1 − 6c2 + 4c3) t+ c2) e−3t

((c1 − 6c2 + 4c3) t+ c3) e−3t


Since no forcing function is given, then the final solution is ~xh(t) above.

22.29.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−1 −12 8
1 −9 4
1 −6 1




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




−1 −12 8
1 −9 4
1 −6 1

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




−1− λ −12 8
1 −9− λ 4
1 −6 1− λ


 = 0

Which gives the characteristic equation

λ3 + 9λ2 + 27λ+ 27 = 0

The roots of the above are the eigenvalues.

λ1 = −3

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−1 −12 8
1 −9 4
1 −6 1

− (−3)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




2 −12 8
1 −6 4
1 −6 4




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

2 −12 8 0
1 −6 4 0
1 −6 4 0



R2 = R2 −
R1

2 =⇒


2 −12 8 0
0 0 0 0
1 −6 4 0
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R3 = R3 −
R1

2 =⇒


2 −12 8 0
0 0 0 0
0 0 0 0


Therefore the system in Echelon form is

2 −12 8
0 0 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2, v3} and the leading variables are {v1}. Let v2 = t. Let v3 = s.
Now we start back substitution. Solving the above equation for the leading variables
in terms of free variables gives equation {v1 = 6t− 4s}

Hence the solution is 
6t− 4s

t

s

 =


6t− 4s

t

s


Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

6t− 4s
t

s

 =


6t
t

0

+


−4s
0
s



= t


6
1
0

+ s


−4
0
1


By letting t = 1 and s = 1 then the above becomes

6t− 4s
t

s

 =


6
1
0

+


−4
0
1


Hence the two eigenvectors associated with this eigenvalue are


6
1
0

 ,


−4
0
1
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The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−3 3 2 Yes


−4 6
0 1
1 0


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue −3 is real and repated eigenvalue of multiplicity
3.There are three possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 3

case 1

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 2

x1 = eλtv1

x2 = eλtv2

x3 = eλtv3

The solution is

x = c1x1 + c2x2 + c3x3

The three possible cases for repeated eigenvalue of multiplicity 3

v3

✓

normal
eigenvector

Incomplete eigenvalue.
defect is 1

v3

?

generalized
eigenvector

v2

✓

normal
eigenvector

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 3

x1 = eλtv1

x2 = eλt (v1t+ v2)

x3 = eλt
(
v1

t2

2
+ v2t+ v1

)
Where we first solve for v2 from

(A− λI)v2 = v1

And next we solve for v3 from

(A− λI)v3 = v2

Hence the solution is

x = c1x1 + c2x2 + c3x3

Incomplete eigenvalue.
defect is 2

v3

?

generalized
eigenvector

v2

?

generalized
eigenvector

A− λI

zero vector
v1

A− λI

v2v3
rank 1 vectorrank 2 vectorrank 3 vector

A− λI

A− λI

zero vector
v1

A− λI
v2

v3

rank 2 vector

In this case, we need to solve for v3 from linear combination of
v1,v2.

(A− λ)v3 = αv1 + βv2

Where α, β ̸= 0 are any scalars.

u = αv1 + βv2

A− λI

x1 = eλtv1

x2 = eλtv2

x2 = eλt (ut+ v3)

Where u = αv1 +βv2 for nonzero α, β and
Solve for v3 from

(A− λI)v3 = u

Hence the solution is

x = c1x1 + c2x2 + c3x3

Figure 611: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3, and geometric multiplicity 2, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to find rank-2 eigenvector ~v3. This eigenvector must therefore satisfy (A− λI)2 ~v3 = ~0.
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But

(A− λI)2 =




−1 −12 8
1 −9 4
1 −6 1

−−3


1 0 0
0 1 0
0 0 1




2

=


0 0 0
0 0 0
0 0 0


Therefore ~v3 could be any eigenvector vector we want (but not the zero vector). Let

~v3 =


η1

η2

η3


To determine the actual ~v3 we need now to enforce the condition that ~v3 satisfies

(A− λI)~v3 = ~u (1)

Where ~u is linear combination of ~v1, ~v2. Hence

~u = α~v1 + β~v2

Where α, β are arbitrary constants (not both zero). Eq. (1) becomes

(A− λI)


η1

η2

η3

 = α


−4
0
1

+ β


6
1
0




2 −12 8
1 −6 4
1 −6 4




η1

η2

η3

 = α


−4
0
1

+ β


6
1
0




2η1 − 12η2 + 8η3
η1 − 6η2 + 4η3
η1 − 6η2 + 4η3

 =


−4α + 6β

β

α



8471



Expanding the above gives the following equations equations

2η1 − 12η2 + 8η3 = −4α + 6β
η1 − 6η2 + 4η3 = β

η1 − 6η2 + 4η3 = α

solving for α, β from the above gives

2η1 − 12η2 + 8η3 = −4α + 6β
η1 − 6η2 + 4η3 = β

Since α, β are not both zero, then we just need to determine ηi values, not all zero,
which satisfy the above equations for α, β not both zero. By inspection we see that the
following values satisfy this condition

[η1 = 0, η2 = 1, η3 = 0]

Hence we found the missing generalized eigenvector

~v3 =


0
1
0


Which implies that

α = −6
β = −6

Therefore

~u = α~v1 + β~v2

= −6


−4
0
1

+ (−6)


6
1
0



=


−12
−6
−6
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Therefore the missing generalized eigenvector is now found. We have found three
generalized eigenvectors for eigenvalue−3. Therefore the three basis solutions associated
with this eigenvalue are

~x1(t) = ~v1e
λt

=


−4
0
1

 e−3t

=


−4 e−3t

0
e−3t


And

~x2(t) = ~v2e
λt

=


6
1
0

 e−3t

=


6 e−3t

e−3t

0


And

~x3(t) = (~ut+ ~v3) eλt

=




−12
−6
−6

 t+


0
1
0


 e−3t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


−4 e−3t

0
e−3t

+ c2


6 e−3t

e−3t

0

+ c3


−12t e−3t

e−3t(1− 6t)
−6t e−3t
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Which becomes 
y1(t)
y2(t)
y3(t)

 =


(−12tc3 − 4c1 + 6c2) e−3t

e−3t(−6tc3 + c2 + c3)
e−3t(−6tc3 + c1)


3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 53� �
dsolve([diff(y__1(t),t)=-1*y__1(t)-12*y__2(t)+8*y__3(t),diff(y__2(t),t)=1*y__1(t)-9*y__2(t)+4*y__3(t),diff(y__3(t),t)=1*y__1(t)-6*y__2(t)+1*y__3(t)],singsol=all)� �

y1(t) = e−3t(c3t+ c2)

y2(t) =
e−3t(c3t+ 2c1 + c2)

2
y3(t) =

e−3t(4c3t+ 12c1 + 4c2 + c3)
8

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 79� �
DSolve[{y1'[t]==-1*y1[t]-12*y2[t]+8*y3[t],y2'[t]==1*y1[t]-9*y2[t]+4*y3[t],y3'[t]==1*y1[t]-6*y2[t]+1*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e−3t(2c1t− 12c2t+ 8c3t+ c1)
y2(t) → e−3t((c1 − 6c2 + 4c3)t+ c2)
y3(t) → e−3t((c1 − 6c2 + 4c3)t+ c3)
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22.30 problem section 10.5, problem 30
22.30.1 Solution using Matrix exponential method . . . . . . . . . . . . 8475
22.30.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8476

Internal problem ID [1633]
Internal file name [OUTPUT/1634_Sunday_June_05_2022_02_25_14_AM_43649733/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 30.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −4y1(t)− y3(t)
y′2(t) = −y1(t)− 3y2(t)− y3(t)
y′3(t) = y1(t)− 2y3(t)

22.30.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−4 0 −1
−1 −3 −1
1 0 −2




y1(t)
y2(t)
y3(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


e−3t(1− t) 0 −t e−3t

−t e−3t e−3t −t e−3t

t e−3t 0 e−3t(t+ 1)
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e−3t(1− t) 0 −t e−3t

−t e−3t e−3t −t e−3t

t e−3t 0 e−3t(t+ 1)




c1

c2

c3



=


e−3t(1− t) c1 − t e−3tc3

−t e−3tc1 + e−3tc2 − t e−3tc3

t e−3tc1 + e−3t(t+ 1) c3



=


−(c1(−1 + t) + c3t) e−3t

−((c1 + c3) t− c2) e−3t

e−3t(tc1 + c3t+ c3)


Since no forcing function is given, then the final solution is ~xh(t) above.

22.30.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−4 0 −1
−1 −3 −1
1 0 −2




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




−4 0 −1
−1 −3 −1
1 0 −2

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




−4− λ 0 −1
−1 −3− λ −1
1 0 −2− λ


 = 0

Which gives the characteristic equation

λ3 + 9λ2 + 27λ+ 27 = 0

The roots of the above are the eigenvalues.

λ1 = −3

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−4 0 −1
−1 −3 −1
1 0 −2

− (−3)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−1 0 −1
−1 0 −1
1 0 1




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−1 0 −1 0
−1 0 −1 0
1 0 1 0



R2 = R2 −R1 =⇒


−1 0 −1 0
0 0 0 0
1 0 1 0
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R3 = R3 +R1 =⇒


−1 0 −1 0
0 0 0 0
0 0 0 0


Therefore the system in Echelon form is

−1 0 −1
0 0 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2, v3} and the leading variables are {v1}. Let v2 = t. Let v3 = s.
Now we start back substitution. Solving the above equation for the leading variables
in terms of free variables gives equation {v1 = −s}

Hence the solution is 
−s

t

s

 =


−s

t

s


Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

−s

t

s

 =


0
t

0

+


−s

0
s



= t


0
1
0

+ s


−1
0
1


By letting t = 1 and s = 1 then the above becomes

−s

t

s

 =


0
1
0

+


−1
0
1


Hence the two eigenvectors associated with this eigenvalue are


0
1
0

 ,


−1
0
1
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The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−3 3 2 Yes


−1 0
0 1
1 0


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue −3 is real and repated eigenvalue of multiplicity
3.There are three possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 3

case 1

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 2

x1 = eλtv1

x2 = eλtv2

x3 = eλtv3

The solution is

x = c1x1 + c2x2 + c3x3

The three possible cases for repeated eigenvalue of multiplicity 3

v3

✓

normal
eigenvector

Incomplete eigenvalue.
defect is 1

v3

?

generalized
eigenvector

v2

✓

normal
eigenvector

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 3

x1 = eλtv1

x2 = eλt (v1t+ v2)

x3 = eλt
(
v1

t2

2
+ v2t+ v1

)
Where we first solve for v2 from

(A− λI)v2 = v1

And next we solve for v3 from

(A− λI)v3 = v2

Hence the solution is

x = c1x1 + c2x2 + c3x3

Incomplete eigenvalue.
defect is 2

v3

?

generalized
eigenvector

v2

?

generalized
eigenvector

A− λI

zero vector
v1

A− λI

v2v3
rank 1 vectorrank 2 vectorrank 3 vector

A− λI

A− λI

zero vector
v1

A− λI
v2

v3

rank 2 vector

In this case, we need to solve for v3 from linear combination of
v1,v2.

(A− λ)v3 = αv1 + βv2

Where α, β ̸= 0 are any scalars.

u = αv1 + βv2

A− λI

x1 = eλtv1

x2 = eλtv2

x2 = eλt (ut+ v3)

Where u = αv1 +βv2 for nonzero α, β and
Solve for v3 from

(A− λI)v3 = u

Hence the solution is

x = c1x1 + c2x2 + c3x3

Figure 612: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3, and geometric multiplicity 2, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to find rank-2 eigenvector ~v3. This eigenvector must therefore satisfy (A− λI)2 ~v3 = ~0.
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But

(A− λI)2 =




−4 0 −1
−1 −3 −1
1 0 −2

−−3


1 0 0
0 1 0
0 0 1




2

=


0 0 0
0 0 0
0 0 0


Therefore ~v3 could be any eigenvector vector we want (but not the zero vector). Let

~v3 =


η1

η2

η3


To determine the actual ~v3 we need now to enforce the condition that ~v3 satisfies

(A− λI)~v3 = ~u (1)

Where ~u is linear combination of ~v1, ~v2. Hence

~u = α~v1 + β~v2

Where α, β are arbitrary constants (not both zero). Eq. (1) becomes

(A− λI)


η1

η2

η3

 = α


−1
0
1

+ β


0
1
0




−1 0 −1
−1 0 −1
1 0 1




η1

η2

η3

 = α


−1
0
1

+ β


0
1
0




−η1 − η3

−η1 − η3

η1 + η3

 =


−α

β

α
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Expanding the above gives the following equations equations

−η1 − η3 = −α

−η1 − η3 = β

η1 + η3 = α

solving for α, β from the above gives

−η1 − η3 = −α

−η1 − η3 = β

Since α, β are not both zero, then we just need to determine ηi values, not all zero,
which satisfy the above equations for α, β not both zero. By inspection we see that the
following values satisfy this condition

[η1 = −1, η3 = 0]

Hence we found the missing generalized eigenvector

~v3 =


−1
0
0


Which implies that

α = −1
β = 1

Therefore

~u = α~v1 + β~v2

= −1


−1
0
1

+ (1)


0
1
0



=


1
1
−1
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Therefore the missing generalized eigenvector is now found. We have found three
generalized eigenvectors for eigenvalue−3. Therefore the three basis solutions associated
with this eigenvalue are

~x1(t) = ~v1e
λt

=


−1
0
1

 e−3t

=


−e−3t

0
e−3t


And

~x2(t) = ~v2e
λt

=


0
1
0

 e−3t

=


0

e−3t

0


And

~x3(t) = (~ut+ ~v3) eλt

=




1
1
−1

 t+


−1
0
0


 e−3t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


−e−3t

0
e−3t

+ c2


0

e−3t

0

+ c3


e−3t(−1 + t)

t e−3t

−t e−3t
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Which becomes 
y1(t)
y2(t)
y3(t)

 =


((−1 + t) c3 − c1) e−3t

e−3t(c3t+ c2)
e−3t(−c3t+ c1)


3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 44� �
dsolve([diff(y__1(t),t)=-4*y__1(t)-0*y__2(t)-1*y__3(t),diff(y__2(t),t)=-1*y__1(t)-3*y__2(t)-1*y__3(t),diff(y__3(t),t)=1*y__1(t)-0*y__2(t)-2*y__3(t)],singsol=all)� �

y1(t) = e−3t(c3t+ c2)
y2(t) = e−3t(c3t+ c1 + c2)
y3(t) = −e−3t(c3t+ c2 + c3)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 63� �
DSolve[{y1'[t]==-4*y1[t]-0*y2[t]-1*y3[t],y2'[t]==-1*y1[t]-3*y2[t]-1*y3[t],y3'[t]==1*y1[t]-0*y2[t]-2*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e−3t(c1(−t)− c3t+ c1)
y2(t) → e−3t(c2 − (c1 + c3)t)
y3(t) → e−3t((c1 + c3)t+ c3)

8484



22.31 problem section 10.5, problem 31
22.31.1 Solution using Matrix exponential method . . . . . . . . . . . . 8485
22.31.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8486

Internal problem ID [1634]
Internal file name [OUTPUT/1635_Sunday_June_05_2022_02_25_16_AM_27684398/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 31.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −3y1(t)− 3y2(t) + 4y3(t)
y′2(t) = 4y1(t) + 5y2(t)− 8y3(t)
y′3(t) = 2y1(t) + 3y2(t)− 5y3(t)

22.31.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−3 −3 4
4 5 −8
2 3 −5




y1(t)
y2(t)
y3(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


e−t(1− 2t) −3t e−t 4t e−t

4t e−t e−t(1 + 6t) −8t e−t

2t e−t 3t e−t e−t(1− 4t)
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e−t(1− 2t) −3t e−t 4t e−t

4t e−t e−t(1 + 6t) −8t e−t

2t e−t 3t e−t e−t(1− 4t)




c1

c2

c3



=


e−t(1− 2t) c1 − 3t e−tc2 + 4t e−tc3

4t e−tc1 + e−t(1 + 6t) c2 − 8t e−tc3

2t e−tc1 + 3t e−tc2 + e−t(1− 4t) c3



=


−2
((
c1 + 3c2

2 − 2c3
)
t− c1

2

)
e−t

4
((
c1 + 3c2

2 − 2c3
)
t+ c2

4

)
e−t

2
((
c1 + 3c2

2 − 2c3
)
t+ c3

2

)
e−t


Since no forcing function is given, then the final solution is ~xh(t) above.

22.31.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−3 −3 4
4 5 −8
2 3 −5




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




−3 −3 4
4 5 −8
2 3 −5

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




−3− λ −3 4
4 5− λ −8
2 3 −5− λ


 = 0

Which gives the characteristic equation

λ3 + 3λ2 + 3λ+ 1 = 0

The roots of the above are the eigenvalues.

λ1 = −1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−3 −3 4
4 5 −8
2 3 −5

− (−1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−2 −3 4
4 6 −8
2 3 −4




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−2 −3 4 0
4 6 −8 0
2 3 −4 0



R2 = R2 + 2R1 =⇒


−2 −3 4 0
0 0 0 0
2 3 −4 0
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R3 = R3 +R1 =⇒


−2 −3 4 0
0 0 0 0
0 0 0 0


Therefore the system in Echelon form is

−2 −3 4
0 0 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2, v3} and the leading variables are {v1}. Let v2 = t. Let v3 = s.
Now we start back substitution. Solving the above equation for the leading variables
in terms of free variables gives equation

{
v1 = −3t

2 + 2s
}

Hence the solution is 
−3t

2 + 2s

t

s

 =


−3t

2 + 2s

t

s


Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

−3t
2 + 2s

t

s

 =


−3t

2

t

0

+


2s
0
s



= t


−3

2

1
0

+ s


2
0
1


By letting t = 1 and s = 1 then the above becomes

−3t
2 + 2s

t

s

 =


−3

2

1
0

+


2
0
1
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Hence the two eigenvectors associated with this eigenvalue are


−3
2

1
0

 ,


2
0
1




Which are normalized to 


−3
2
0

 ,


2
0
1




The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−1 3 2 Yes


2 −3

2

0 1
1 0


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue −1 is real and repated eigenvalue of multiplicity
3.There are three possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 3

case 1

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 2

x1 = eλtv1

x2 = eλtv2

x3 = eλtv3

The solution is

x = c1x1 + c2x2 + c3x3

The three possible cases for repeated eigenvalue of multiplicity 3

v3

✓

normal
eigenvector

Incomplete eigenvalue.
defect is 1

v3

?

generalized
eigenvector

v2

✓

normal
eigenvector

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 3

x1 = eλtv1

x2 = eλt (v1t+ v2)

x3 = eλt
(
v1

t2

2
+ v2t+ v1

)
Where we first solve for v2 from

(A− λI)v2 = v1

And next we solve for v3 from

(A− λI)v3 = v2

Hence the solution is

x = c1x1 + c2x2 + c3x3

Incomplete eigenvalue.
defect is 2

v3

?

generalized
eigenvector

v2

?

generalized
eigenvector

A− λI

zero vector
v1

A− λI

v2v3
rank 1 vectorrank 2 vectorrank 3 vector

A− λI

A− λI

zero vector
v1

A− λI
v2

v3

rank 2 vector

In this case, we need to solve for v3 from linear combination of
v1,v2.

(A− λ)v3 = αv1 + βv2

Where α, β ̸= 0 are any scalars.

u = αv1 + βv2

A− λI

x1 = eλtv1

x2 = eλtv2

x2 = eλt (ut+ v3)

Where u = αv1 +βv2 for nonzero α, β and
Solve for v3 from

(A− λI)v3 = u

Hence the solution is

x = c1x1 + c2x2 + c3x3

Figure 613: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3, and geometric multiplicity 2, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to find rank-2 eigenvector ~v3. This eigenvector must therefore satisfy (A− λI)2 ~v3 = ~0.
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But

(A− λI)2 =




−3 −3 4
4 5 −8
2 3 −5

−−1


1 0 0
0 1 0
0 0 1




2

=


0 0 0
0 0 0
0 0 0


Therefore ~v3 could be any eigenvector vector we want (but not the zero vector). Let

~v3 =


η1

η2

η3


To determine the actual ~v3 we need now to enforce the condition that ~v3 satisfies

(A− λI)~v3 = ~u (1)

Where ~u is linear combination of ~v1, ~v2. Hence

~u = α~v1 + β~v2

Where α, β are arbitrary constants (not both zero). Eq. (1) becomes

(A− λI)


η1

η2

η3

 = α


2
0
1

+ β


−3

2

1
0




−2 −3 4
4 6 −8
2 3 −4




η1

η2

η3

 = α


2
0
1

+ β


−3

2

1
0




−2η1 − 3η2 + 4η3
4η1 + 6η2 − 8η3
2η1 + 3η2 − 4η3

 =


2α− 3β

2

β

α
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Expanding the above gives the following equations equations

−2η1 − 3η2 + 4η3 = 2α− 3β
2

4η1 + 6η2 − 8η3 = β

2η1 + 3η2 − 4η3 = α

solving for α, β from the above gives

−2η1 − 3η2 + 4η3 = 2α− 3β
2

4η1 + 6η2 − 8η3 = β

Since α, β are not both zero, then we just need to determine ηi values, not all zero,
which satisfy the above equations for α, β not both zero. By inspection we see that the
following values satisfy this condition

[η1 = 0, η2 = 0, η3 = 1]

Hence we found the missing generalized eigenvector

~v3 =


0
0
1


Which implies that

α = −4
β = −8

Therefore

~u = α~v1 + β~v2

= −4


2
0
1

+ (−8)


−3

2

1
0



=


4
−8
−4
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Therefore the missing generalized eigenvector is now found. We have found three
generalized eigenvectors for eigenvalue−1. Therefore the three basis solutions associated
with this eigenvalue are

~x1(t) = ~v1e
λt

=


2
0
1

 e−t

=


2 e−t

0
e−t


And

~x2(t) = ~v2e
λt

=


−3

2

1
0

 e−t

=


−3 e−t

2

e−t

0


And

~x3(t) = (~ut+ ~v3) eλt

=




4
−8
−4

 t+


0
0
1


 e−t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


2 e−t

0
e−t

+ c2


−3 e−t

2

e−t

0

+ c3


4t e−t

−8t e−t

e−t(1− 4t)
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Which becomes 
y1(t)
y2(t)
y3(t)

 =


e−t
(
2c1 − 3c2

2 + 4tc3
)

e−t(−8tc3 + c2)
e−t(−4tc3 + c1 + c3)


3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 53� �
dsolve([diff(y__1(t),t)=-3*y__1(t)-3*y__2(t)+4*y__3(t),diff(y__2(t),t)=4*y__1(t)+5*y__2(t)-8*y__3(t),diff(y__3(t),t)=2*y__1(t)+3*y__2(t)-5*y__3(t)],singsol=all)� �

y1(t) = e−t(c3t+ c2)
y2(t) = e−t(−2c3t+ c1 − 2c2)

y3(t) =
e−t(−4c3t+ 3c1 − 4c2 + c3)

4

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 83� �
DSolve[{y1'[t]==-3*y1[t]-3*y2[t]+4*y3[t],y2'[t]==4*y1[t]+5*y2[t]-8*y3[t],y3'[t]==2*y1[t]+3*y2[t]-5*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e−t(−2c1t− 3c2t+ 4c3t+ c1)
y2(t) → e−t((4c1 + 6c2 − 8c3)t+ c2)
y3(t) → e−t((2c1 + 3c2 − 4c3)t+ c3)
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22.32 problem section 10.5, problem 32
22.32.1 Solution using Matrix exponential method . . . . . . . . . . . . 8495
22.32.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8496

Internal problem ID [1635]
Internal file name [OUTPUT/1636_Sunday_June_05_2022_02_25_17_AM_304506/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.5, constant coeffi-
cient homogeneous system II. Page 555
Problem number: section 10.5, problem 32.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −3y1(t)− y2(t)
y′2(t) = y1(t)− y2(t)
y′3(t) = −y1(t)− y2(t)− 2y3(t)

22.32.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−3 −1 0
1 −1 0
−1 −1 −2




y1(t)
y2(t)
y3(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


e−2t(1− t) −t e−2t 0

t e−2t e−2t(t+ 1) 0
−t e−2t −t e−2t e−2t
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e−2t(1− t) −t e−2t 0

t e−2t e−2t(t+ 1) 0
−t e−2t −t e−2t e−2t




c1

c2

c3



=


e−2t(1− t) c1 − t e−2tc2

t e−2tc1 + e−2t(t+ 1) c2
−t e−2tc1 − t e−2tc2 + e−2tc3



=


−(c1(−1 + t) + c2t) e−2t

e−2t(tc1 + c2t+ c2)
−((c1 + c2) t− c3) e−2t


Since no forcing function is given, then the final solution is ~xh(t) above.

22.32.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−3 −1 0
1 −1 0
−1 −1 −2




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




−3 −1 0
1 −1 0
−1 −1 −2

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




−3− λ −1 0
1 −1− λ 0
−1 −1 −2− λ


 = 0

Which gives the characteristic equation

λ3 + 6λ2 + 12λ+ 8 = 0

The roots of the above are the eigenvalues.

λ1 = −2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−3 −1 0
1 −1 0
−1 −1 −2

− (−2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−1 −1 0
1 1 0
−1 −1 0




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−1 −1 0 0
1 1 0 0
−1 −1 0 0



R2 = R2 +R1 =⇒


−1 −1 0 0
0 0 0 0
−1 −1 0 0
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R3 = R3 −R1 =⇒


−1 −1 0 0
0 0 0 0
0 0 0 0


Therefore the system in Echelon form is

−1 −1 0
0 0 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2, v3} and the leading variables are {v1}. Let v2 = t. Let v3 = s.
Now we start back substitution. Solving the above equation for the leading variables
in terms of free variables gives equation {v1 = −t}

Hence the solution is 
−t

t

s

 =


−t

t

s


Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

−t

t

s

 =


−t

t

0

+


0
0
s



= t


−1
1
0

+ s


0
0
1


By letting t = 1 and s = 1 then the above becomes

−t

t

s

 =


−1
1
0

+


0
0
1


Hence the two eigenvectors associated with this eigenvalue are


−1
1
0

 ,


0
0
1
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The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−2 3 2 Yes


0 −1
0 1
1 0


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue −2 is real and repated eigenvalue of multiplicity
3.There are three possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 3

case 1

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 2

x1 = eλtv1

x2 = eλtv2

x3 = eλtv3

The solution is

x = c1x1 + c2x2 + c3x3

The three possible cases for repeated eigenvalue of multiplicity 3

v3

✓

normal
eigenvector

Incomplete eigenvalue.
defect is 1

v3

?

generalized
eigenvector

v2

✓

normal
eigenvector

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 3

x1 = eλtv1

x2 = eλt (v1t+ v2)

x3 = eλt
(
v1

t2

2
+ v2t+ v1

)
Where we first solve for v2 from

(A− λI)v2 = v1

And next we solve for v3 from

(A− λI)v3 = v2

Hence the solution is

x = c1x1 + c2x2 + c3x3

Incomplete eigenvalue.
defect is 2

v3

?

generalized
eigenvector

v2

?

generalized
eigenvector

A− λI

zero vector
v1

A− λI

v2v3
rank 1 vectorrank 2 vectorrank 3 vector

A− λI

A− λI

zero vector
v1

A− λI
v2

v3

rank 2 vector

In this case, we need to solve for v3 from linear combination of
v1,v2.

(A− λ)v3 = αv1 + βv2

Where α, β ̸= 0 are any scalars.

u = αv1 + βv2

A− λI

x1 = eλtv1

x2 = eλtv2

x2 = eλt (ut+ v3)

Where u = αv1 +βv2 for nonzero α, β and
Solve for v3 from

(A− λI)v3 = u

Hence the solution is

x = c1x1 + c2x2 + c3x3

Figure 614: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3, and geometric multiplicity 2, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to find rank-2 eigenvector ~v3. This eigenvector must therefore satisfy (A− λI)2 ~v3 = ~0.
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But

(A− λI)2 =




−3 −1 0
1 −1 0
−1 −1 −2

−−2


1 0 0
0 1 0
0 0 1




2

=


0 0 0
0 0 0
0 0 0


Therefore ~v3 could be any eigenvector vector we want (but not the zero vector). Let

~v3 =


η1

η2

η3


To determine the actual ~v3 we need now to enforce the condition that ~v3 satisfies

(A− λI)~v3 = ~u (1)

Where ~u is linear combination of ~v1, ~v2. Hence

~u = α~v1 + β~v2

Where α, β are arbitrary constants (not both zero). Eq. (1) becomes

(A− λI)


η1

η2

η3

 = α


0
0
1

+ β


−1
1
0




−1 −1 0
1 1 0
−1 −1 0




η1

η2

η3

 = α


0
0
1

+ β


−1
1
0




−η1 − η2

η1 + η2

−η1 − η2

 =


−β

β

α
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Expanding the above gives the following equations equations

−η1 − η2 = −β

η1 + η2 = β

−η1 − η2 = α

solving for α, β from the above gives

−η1 − η2 = −β

η1 + η2 = β

Since α, β are not both zero, then we just need to determine ηi values, not all zero,
which satisfy the above equations for α, β not both zero. By inspection we see that the
following values satisfy this condition

[η1 = −1, η2 = 0]

Hence we found the missing generalized eigenvector

~v3 =


−1
0
0


Which implies that

α = 1
β = −1

Therefore

~u = α~v1 + β~v2

= 1


0
0
1

+ (−1)


−1
1
0



=


1
−1
1
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Therefore the missing generalized eigenvector is now found. We have found three
generalized eigenvectors for eigenvalue−2. Therefore the three basis solutions associated
with this eigenvalue are

~x1(t) = ~v1e
λt

=


0
0
1

 e−2t

=


0
0

e−2t


And

~x2(t) = ~v2e
λt

=


−1
1
0

 e−2t

=


−e−2t

e−2t

0


And

~x3(t) = (~ut+ ~v3) eλt

=




1
−1
1

 t+


−1
0
0


 e−2t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


0
0

e−2t

+ c2


−e−2t

e−2t

0

+ c3


e−2t(−1 + t)

−t e−2t

t e−2t
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Which becomes 
y1(t)
y2(t)
y3(t)

 =


((−1 + t) c3 − c2) e−2t

e−2t(−c3t+ c2)
e−2t(c3t+ c1)


3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 44� �
dsolve([diff(y__1(t),t)=-3*y__1(t)-1*y__2(t)+0*y__3(t),diff(y__2(t),t)=1*y__1(t)-1*y__2(t)+0*y__3(t),diff(y__3(t),t)=-1*y__1(t)-1*y__2(t)-2*y__3(t)],singsol=all)� �

y1(t) = e−2t(c3t+ c2)
y2(t) = −e−2t(c3t+ c2 + c3)
y3(t) = e−2t(c3t+ c1 + c2)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 63� �
DSolve[{y1'[t]==-3*y1[t]-1*y2[t]+0*y3[t],y2'[t]==1*y1[t]-1*y2[t]+0*y3[t],y3'[t]==-1*y1[t]-1*y2[t]-2*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e−2t(c1(−t)− c2t+ c1)
y2(t) → e−2t((c1 + c2)t+ c2)
y3(t) → e−2t(c3 − (c1 + c2)t)
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23 Chapter 10 Linear system of Differential
equations. Section 10.6, constant coefficient
homogeneous system III. Page 566

23.1 problem section 10.6, problem 1 . . . . . . . . . . . . . . . . . . . . . . . . 8506
23.2 problem section 10.6, problem 2 . . . . . . . . . . . . . . . . . . . . . . . . 8515
23.3 problem section 10.6, problem 3 . . . . . . . . . . . . . . . . . . . . . . . . 8524
23.4 problem section 10.6, problem 4 . . . . . . . . . . . . . . . . . . . . . . . . 8533
23.5 problem section 10.6, problem 5 . . . . . . . . . . . . . . . . . . . . . . . . 8541
23.6 problem section 10.6, problem 6 . . . . . . . . . . . . . . . . . . . . . . . . 8563
23.7 problem section 10.6, problem 7 . . . . . . . . . . . . . . . . . . . . . . . . 8576
23.8 problem section 10.6, problem 8 . . . . . . . . . . . . . . . . . . . . . . . . 8588
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23.1 problem section 10.6, problem 1
23.1.1 Solution using Matrix exponential method . . . . . . . . . . . . 8506
23.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8507
23.1.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8512

Internal problem ID [1636]
Internal file name [OUTPUT/1637_Sunday_June_05_2022_02_25_19_AM_86847735/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.6, constant coeffi-
cient homogeneous system III. Page 566
Problem number: section 10.6, problem 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −y1(t) + 2y2(t)
y′2(t) = −5y1(t) + 5y2(t)

23.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −1 2
−5 5

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e2t cos (t)− 3 e2t sin (t) 2 e2t sin (t)
−5 e2t sin (t) e2t cos (t) + 3 e2t sin (t)


=

 e2t(−3 sin (t) + cos (t)) 2 e2t sin (t)
−5 e2t sin (t) e2t(cos (t) + 3 sin (t))
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 e2t(−3 sin (t) + cos (t)) 2 e2t sin (t)
−5 e2t sin (t) e2t(cos (t) + 3 sin (t))

 c1

c2


=

 e2t(−3 sin (t) + cos (t)) c1 + 2 e2t sin (t) c2
−5 e2t sin (t) c1 + e2t(cos (t) + 3 sin (t)) c2


=

 ((−3c1 + 2c2) sin (t) + c1 cos (t)) e2t

e2t(c2 cos (t)− 5c1 sin (t) + 3 sin (t) c2)


Since no forcing function is given, then the final solution is ~xh(t) above.

23.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −1 2
−5 5

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −1 2
−5 5

− λ

 1 0
0 1

 = 0

Therefore

det

 −1− λ 2
−5 5− λ

 = 0
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Which gives the characteristic equation

λ2 − 4λ+ 5 = 0

The roots of the above are the eigenvalues.

λ1 = 2 + i

λ2 = 2− i

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 + i 1 complex eigenvalue

2− i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 2− i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −1 2
−5 5

− (2− i)

 1 0
0 1

 v1

v2

 =

 0
0


 −3 + i 2

−5 3 + i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −3 + i 2 0

−5 3 + i 0



R2 = R2 +
(
−3
2 − i

2

)
R1 =⇒

−3 + i 2 0
0 0 0


Therefore the system in Echelon form is −3 + i 2

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 =

(3
5 +

i
5

)
t
}

Hence the solution is  (35 + I
5

)
t

t

 =

 (35 + i
5

)
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as (35 + I

5

)
t

t

 = t

 3
5 +

i
5

1


Let t = 1 the eigenvector becomes (35 + I

5

)
t

t

 =

 3
5 +

i
5

1


Which is normalized to  (35 + I

5

)
t

t

 =

 3 + i

5


Considering the eigenvalue λ2 = 2 + i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −1 2
−5 5

− (2 + i)

 1 0
0 1

 v1

v2

 =

 0
0


 −3− i 2

−5 3− i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −3− i 2 0

−5 3− i 0



R2 = R2 +
(
−3
2 + i

2

)
R1 =⇒

−3− i 2 0
0 0 0
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Therefore the system in Echelon form is −3− i 2
0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 =

(3
5 −

i
5

)
t
}

Hence the solution is  (35 − I
5

)
t

t

 =

 (35 − i
5

)
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as (35 − I

5

)
t

t

 = t

 3
5 −

i
5

1


Let t = 1 the eigenvector becomes (35 − I

5

)
t

t

 =

 3
5 −

i
5

1


Which is normalized to  (35 − I

5

)
t

t

 =

 3− i

5


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 + i 1 1 No

 3
5 −

i
5

1



2− i 1 1 No

 3
5 +

i
5

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as y1(t)
y2(t)

 = c1

 (35 − i
5

)
e(2+i)t

e(2+i)t

+ c2

 (35 + i
5

)
e(2−i)t

e(2−i)t


Which becomes  y1(t)

y2(t)

 =

 (35 − i
5

)
c1e(2+i)t +

(3
5 +

i
5

)
c2e(2−i)t

c1e(2+i)t + c2e(2−i)t


The following is the phase plot of the system.
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Figure 615: Phase plot

23.1.3 Maple step by step solution

Let’s solve
[y′1(t) = −y1(t) + 2y2(t) , y′2(t) = −5y1(t) + 5y2(t)]

• Define vector

→y__(t) =

 y1(t)
y2(t)


• Convert system into a vector equation

→y__
′
(t) =

 −1 2
−5 5

 · →y__(t) +

 0
0


• System to solve

→y__
′
(t) =

 −1 2
−5 5

 · →y__(t)

• Define the coefficient matrix
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A =

 −1 2
−5 5


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A2− I,

 3
5 +

I
5

1

 ,

2 + I,

 3
5 −

I
5

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored2− I,

 3
5 +

I
5

1


• Solution from eigenpair

e(2−I)t ·

 3
5 +

I
5

1


• Use Euler identity to write solution in terms of sin and cos

e2t · (cos (t)− I sin (t)) ·

 3
5 +

I
5

1


• Simplify expression

e2t ·

 (35 + I
5

)
(cos (t)− I sin (t))

cos (t)− I sin (t)


• Both real and imaginary parts are solutions to the homogeneous system →y__1(t) = e2t ·

 3 cos(t)
5 + sin(t)

5

cos (t)

 ,
→y__2(t) = e2t ·

 −3 sin(t)
5 + cos(t)

5

− sin (t)


• General solution to the system of ODEs

→y__ = c1
→y__1(t) + c2

→y__2(t)
• Substitute solutions into the general solution

8513



→y__ = c1e2t ·

 3 cos(t)
5 + sin(t)

5

cos (t)

+ c2e2t ·

 −3 sin(t)
5 + cos(t)

5

− sin (t)


• Substitute in vector of dependent variables y1(t)

y2(t)

 =

 3
((

c1+ c2
3
)
cos(t)+ sin(t)(c1−3c2)

3

)
e2t

5

e2t(−c2 sin (t) + c1 cos (t))


• Solution to the system of ODEs{

y1(t) =
3
((

c1+ c2
3
)
cos(t)+ sin(t)(c1−3c2)

3

)
e2t

5 , y2(t) = e2t(−c2 sin (t) + c1 cos (t))
}

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 48� �
dsolve([diff(y__1(t),t)=-1*y__1(t)+2*y__2(t),diff(y__2(t),t)=-5*y__1(t)+5*y__2(t)],singsol=all)� �

y1(t) = e2t(c1 sin (t) + c2 cos (t))

y2(t) =
e2t(3c1 sin (t)− c2 sin (t) + c1 cos (t) + 3c2 cos (t))

2

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 55� �
DSolve[{y1'[t]==-1*y1[t]+2*y2[t],y2'[t]==-5*y1[t]+5*y2[t]},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e2t(c1 cos(t) + (2c2 − 3c1) sin(t))
y2(t) → e2t(c2(3 sin(t) + cos(t))− 5c1 sin(t))
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23.2 problem section 10.6, problem 2
23.2.1 Solution using Matrix exponential method . . . . . . . . . . . . 8515
23.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8516
23.2.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8521

Internal problem ID [1637]
Internal file name [OUTPUT/1638_Sunday_June_05_2022_02_25_21_AM_82160191/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.6, constant coeffi-
cient homogeneous system III. Page 566
Problem number: section 10.6, problem 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −11y1(t) + 4y2(t)
y′2(t) = −26y1(t) + 9y2(t)

23.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −11 4
−26 9

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e−t cos (2t)− 5 e−t sin (2t) 2 e−t sin (2t)
−13 e−t sin (2t) e−t cos (2t) + 5 e−t sin (2t)


=

 e−t(cos (2t)− 5 sin (2t)) 2 e−t sin (2t)
−13 e−t sin (2t) e−t(cos (2t) + 5 sin (2t))
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 e−t(cos (2t)− 5 sin (2t)) 2 e−t sin (2t)
−13 e−t sin (2t) e−t(cos (2t) + 5 sin (2t))

 c1

c2


=

 e−t(cos (2t)− 5 sin (2t)) c1 + 2 e−t sin (2t) c2
−13 e−t sin (2t) c1 + e−t(cos (2t) + 5 sin (2t)) c2


=

 ((−5c1 + 2c2) sin (2t) + c1 cos (2t)) e−t

e−t(c2 cos (2t)− 13c1 sin (2t) + 5 sin (2t) c2)


Since no forcing function is given, then the final solution is ~xh(t) above.

23.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 −11 4
−26 9

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −11 4
−26 9

− λ

 1 0
0 1

 = 0

Therefore

det

 −11− λ 4
−26 9− λ

 = 0
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Which gives the characteristic equation

λ2 + 2λ+ 5 = 0

The roots of the above are the eigenvalues.

λ1 = −1 + 2i
λ2 = −1− 2i

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1− 2i 1 complex eigenvalue

−1 + 2i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −1− 2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −11 4
−26 9

− (−1− 2i)

 1 0
0 1

 v1

v2

 =

 0
0


 −10 + 2i 4

−26 10 + 2i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −10 + 2i 4 0

−26 10 + 2i 0



R2 = R2 +
(
−5
2 − i

2

)
R1 =⇒

−10 + 2i 4 0
0 0 0


Therefore the system in Echelon form is −10 + 2i 4

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 =

( 5
13 +

i
13

)
t
}

Hence the solution is  ( 5
13 +

I
13

)
t

t

 =

 ( 5
13 +

i
13

)
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as ( 5

13 +
I
13

)
t

t

 = t

 5
13 +

i
13

1


Let t = 1 the eigenvector becomes ( 5

13 +
I
13

)
t

t

 =

 5
13 +

i
13

1


Which is normalized to  ( 5

13 +
I
13

)
t

t

 =

 5 + i

13


Considering the eigenvalue λ2 = −1 + 2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −11 4
−26 9

− (−1 + 2i)

 1 0
0 1

 v1

v2

 =

 0
0


 −10− 2i 4

−26 10− 2i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −10− 2i 4 0

−26 10− 2i 0



R2 = R2 +
(
−5
2 + i

2

)
R1 =⇒

−10− 2i 4 0
0 0 0
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Therefore the system in Echelon form is −10− 2i 4
0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 =

( 5
13 −

i
13

)
t
}

Hence the solution is  ( 5
13 −

I
13

)
t

t

 =

 ( 5
13 −

i
13

)
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as ( 5

13 −
I
13

)
t

t

 = t

 5
13 −

i
13

1


Let t = 1 the eigenvector becomes ( 5

13 −
I
13

)
t

t

 =

 5
13 −

i
13

1


Which is normalized to  ( 5

13 −
I
13

)
t

t

 =

 5− i

13


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−1 + 2i 1 1 No

 5
13 −

i
13

1



−1− 2i 1 1 No

 5
13 +

i
13

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as y1(t)
y2(t)

 = c1

 ( 5
13 −

i
13

)
e(−1+2i)t

e(−1+2i)t

+ c2

 ( 5
13 +

i
13

)
e(−1−2i)t

e(−1−2i)t


Which becomes y1(t)

y2(t)

 =

 ( 5
13 −

i
13

)
c1e(−1+2i)t +

( 5
13 +

i
13

)
c2e(−1−2i)t

c1e(−1+2i)t + c2e(−1−2i)t


The following is the phase plot of the system.
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Figure 616: Phase plot

23.2.3 Maple step by step solution

Let’s solve
[y′1(t) = −11y1(t) + 4y2(t) , y′2(t) = −26y1(t) + 9y2(t)]

• Define vector

→y__(t) =

 y1(t)
y2(t)


• Convert system into a vector equation

→y__
′
(t) =

 −11 4
−26 9

 · →y__(t) +

 0
0


• System to solve

→y__
′
(t) =

 −11 4
−26 9

 · →y__(t)

• Define the coefficient matrix
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A =

 −11 4
−26 9


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−1− 2 I,

 5
13 +

I
13

1

 ,

−1 + 2 I,

 5
13 −

I
13

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−1− 2 I,

 5
13 +

I
13

1


• Solution from eigenpair

e(−1−2 I)t ·

 5
13 +

I
13

1


• Use Euler identity to write solution in terms of sin and cos

e−t · (cos (2t)− I sin (2t)) ·

 5
13 +

I
13

1


• Simplify expression

e−t ·

 ( 5
13 +

I
13

)
(cos (2t)− I sin (2t))

cos (2t)− I sin (2t)


• Both real and imaginary parts are solutions to the homogeneous system →y__1(t) = e−t ·

 5 cos(2t)
13 + sin(2t)

13

cos (2t)

 ,
→y__2(t) = e−t ·

 −5 sin(2t)
13 + cos(2t)

13

− sin (2t)


• General solution to the system of ODEs

→y__ = c1
→y__1(t) + c2

→y__2(t)
• Substitute solutions into the general solution
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→y__ = c1e−t ·

 5 cos(2t)
13 + sin(2t)

13

cos (2t)

+ c2e−t ·

 −5 sin(2t)
13 + cos(2t)

13

− sin (2t)


• Substitute in vector of dependent variables y1(t)

y2(t)

 =

 5
((

c1+ c2
5
)
cos(2t)+ sin(2t)(c1−5c2)

5

)
e−t

13

e−t(−c2 sin (2t) + c1 cos (2t))


• Solution to the system of ODEs{

y1(t) =
5
((

c1+ c2
5
)
cos(2t)+ sin(2t)(c1−5c2)

5

)
e−t

13 , y2(t) = e−t(−c2 sin (2t) + c1 cos (2t))
}

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 60� �
dsolve([diff(y__1(t),t)=-11*y__1(t)+4*y__2(t),diff(y__2(t),t)=-26*y__1(t)+9*y__2(t)],singsol=all)� �

y1(t) = e−t(c1 sin (2t) + c2 cos (2t))

y2(t) =
e−t(5c1 sin (2t)− c2 sin (2t) + c1 cos (2t) + 5c2 cos (2t))

2

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 64� �
DSolve[{y1'[t]==-11*y1[t]+4*y2[t],y2'[t]==-26*y1[t]+9*y2[t]},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e−t(c1 cos(2t) + (2c2 − 5c1) sin(2t))
y2(t) → e−t(c2 cos(2t) + (5c2 − 13c1) sin(2t))
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23.3 problem section 10.6, problem 3
23.3.1 Solution using Matrix exponential method . . . . . . . . . . . . 8524
23.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8525
23.3.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8530

Internal problem ID [1638]
Internal file name [OUTPUT/1639_Sunday_June_05_2022_02_25_23_AM_44078137/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.6, constant coeffi-
cient homogeneous system III. Page 566
Problem number: section 10.6, problem 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = y1(t) + 2y2(t)
y′2(t) = −4y1(t) + 5y2(t)

23.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 1 2
−4 5

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e3t cos (2t)− e3t sin (2t) e3t sin (2t)
−2 e3t sin (2t) e3t cos (2t) + e3t sin (2t)


=

 e3t(cos (2t)− sin (2t)) e3t sin (2t)
−2 e3t sin (2t) e3t(cos (2t) + sin (2t))
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 e3t(cos (2t)− sin (2t)) e3t sin (2t)
−2 e3t sin (2t) e3t(cos (2t) + sin (2t))

 c1

c2


=

 e3t(cos (2t)− sin (2t)) c1 + e3t sin (2t) c2
−2 e3t sin (2t) c1 + e3t(cos (2t) + sin (2t)) c2


=

 ((c2 − c1) sin (2t) + c1 cos (2t)) e3t

e3t(c2 cos (2t)− 2c1 sin (2t) + sin (2t) c2)


Since no forcing function is given, then the final solution is ~xh(t) above.

23.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 1 2
−4 5

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 1 2
−4 5

− λ

 1 0
0 1

 = 0

Therefore

det

 1− λ 2
−4 5− λ

 = 0
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Which gives the characteristic equation

λ2 − 6λ+ 13 = 0

The roots of the above are the eigenvalues.

λ1 = 3 + 2i
λ2 = 3− 2i

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

3− 2i 1 complex eigenvalue

3 + 2i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 3− 2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 2
−4 5

− (3− 2i)

 1 0
0 1

 v1

v2

 =

 0
0


 −2 + 2i 2

−4 2 + 2i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −2 + 2i 2 0

−4 2 + 2i 0



R2 = R2 + (−1− i)R1 =⇒

−2 + 2i 2 0
0 0 0


Therefore the system in Echelon form is −2 + 2i 2

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 =

(1
2 +

i
2

)
t
}

Hence the solution is  (12 + I
2

)
t

t

 =

 (12 + i
2

)
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as (12 + I

2

)
t

t

 = t

 1
2 +

i
2

1


Let t = 1 the eigenvector becomes (12 + I

2

)
t

t

 =

 1
2 +

i
2

1


Which is normalized to  (12 + I

2

)
t

t

 =

 1 + i

2


Considering the eigenvalue λ2 = 3 + 2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 2
−4 5

− (3 + 2i)

 1 0
0 1

 v1

v2

 =

 0
0


 −2− 2i 2

−4 2− 2i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −2− 2i 2 0

−4 2− 2i 0



R2 = R2 + (−1 + i)R1 =⇒

−2− 2i 2 0
0 0 0
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Therefore the system in Echelon form is −2− 2i 2
0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 =

(1
2 −

i
2

)
t
}

Hence the solution is  (12 − I
2

)
t

t

 =

 (12 − i
2

)
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as (12 − I

2

)
t

t

 = t

 1
2 −

i
2

1


Let t = 1 the eigenvector becomes (12 − I

2

)
t

t

 =

 1
2 −

i
2

1


Which is normalized to  (12 − I

2

)
t

t

 =

 1− i

2


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

3 + 2i 1 1 No

 1
2 −

i
2

1



3− 2i 1 1 No

 1
2 +

i
2

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as y1(t)
y2(t)

 = c1

 (12 − i
2

)
e(3+2i)t

e(3+2i)t

+ c2

 (12 + i
2

)
e(3−2i)t

e(3−2i)t


Which becomes  y1(t)

y2(t)

 =

 (12 − i
2

)
c1e(3+2i)t +

(1
2 +

i
2

)
c2e(3−2i)t

c1e(3+2i)t + c2e(3−2i)t


The following is the phase plot of the system.
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Figure 617: Phase plot

23.3.3 Maple step by step solution

Let’s solve
[y′1(t) = y1(t) + 2y2(t) , y′2(t) = −4y1(t) + 5y2(t)]

• Define vector

→y__(t) =

 y1(t)
y2(t)


• Convert system into a vector equation

→y__
′
(t) =

 1 2
−4 5

 · →y__(t) +

 0
0


• System to solve

→y__
′
(t) =

 1 2
−4 5

 · →y__(t)

• Define the coefficient matrix
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A =

 1 2
−4 5


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A3− 2 I,

 1
2 +

I
2

1

 ,

3 + 2 I,

 1
2 −

I
2

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored3− 2 I,

 1
2 +

I
2

1


• Solution from eigenpair

e(3−2 I)t ·

 1
2 +

I
2

1


• Use Euler identity to write solution in terms of sin and cos

e3t · (cos (2t)− I sin (2t)) ·

 1
2 +

I
2

1


• Simplify expression

e3t ·

 (12 + I
2

)
(cos (2t)− I sin (2t))

cos (2t)− I sin (2t)


• Both real and imaginary parts are solutions to the homogeneous system →y__1(t) = e3t ·

 cos(2t)
2 + sin(2t)

2

cos (2t)

 ,
→y__2(t) = e3t ·

 cos(2t)
2 − sin(2t)

2

− sin (2t)


• General solution to the system of ODEs

→y__ = c1
→y__1(t) + c2

→y__2(t)
• Substitute solutions into the general solution
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→y__ = c1e3t ·

 cos(2t)
2 + sin(2t)

2

cos (2t)

+ c2e3t ·

 cos(2t)
2 − sin(2t)

2

− sin (2t)


• Substitute in vector of dependent variables y1(t)

y2(t)

 =

 ((c1+c2) cos(2t)+sin(2t)(c1−c2))e3t
2

e3t(−c2 sin (2t) + c1 cos (2t))


• Solution to the system of ODEs{

y1(t) = ((c1+c2) cos(2t)+sin(2t)(c1−c2))e3t
2 , y2(t) = e3t(−c2 sin (2t) + c1 cos (2t))

}

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 57� �
dsolve([diff(y__1(t),t)=1*y__1(t)+2*y__2(t),diff(y__2(t),t)=-4*y__1(t)+5*y__2(t)],singsol=all)� �

y1(t) = e3t(c1 sin (2t) + c2 cos (2t))
y2(t) = e3t(c1 sin (2t)− c2 sin (2t) + c1 cos (2t) + c2 cos (2t))

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 60� �
DSolve[{y1'[t]==1*y1[t]+2*y2[t],y2'[t]==-4*y1[t]+5*y2[t]},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e3t(c1 cos(2t) + (c2 − c1) sin(2t))
y2(t) → e3t(c2 cos(2t) + (c2 − 2c1) sin(2t))
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23.4 problem section 10.6, problem 4
23.4.1 Solution using Matrix exponential method . . . . . . . . . . . . 8533
23.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8534
23.4.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8538

Internal problem ID [1639]
Internal file name [OUTPUT/1640_Sunday_June_05_2022_02_25_25_AM_17172965/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.6, constant coeffi-
cient homogeneous system III. Page 566
Problem number: section 10.6, problem 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = 5y1(t)− 6y2(t)
y′2(t) = 3y1(t)− y2(t)

23.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 5 −6
3 −1

  y1(t)
y2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e2t cos (3t) + e2t sin (3t) −2 e2t sin (3t)
e2t sin (3t) e2t cos (3t)− e2t sin (3t)


=

 e2t(sin (3t) + cos (3t)) −2 e2t sin (3t)
e2t sin (3t) e2t(cos (3t)− sin (3t))
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 e2t(sin (3t) + cos (3t)) −2 e2t sin (3t)
e2t sin (3t) e2t(cos (3t)− sin (3t))

 c1

c2


=

 e2t(sin (3t) + cos (3t)) c1 − 2 e2t sin (3t) c2
e2t sin (3t) c1 + e2t(cos (3t)− sin (3t)) c2


=

 ((c1 − 2c2) sin (3t) + c1 cos (3t)) e2t

(sin (3t) (−c2 + c1) + c2 cos (3t)) e2t


Since no forcing function is given, then the final solution is ~xh(t) above.

23.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  y′1(t)
y′2(t)

 =

 5 −6
3 −1

  y1(t)
y2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 5 −6
3 −1

− λ

 1 0
0 1

 = 0

Therefore

det

 5− λ −6
3 −1− λ

 = 0
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Which gives the characteristic equation

λ2 − 4λ+ 13 = 0

The roots of the above are the eigenvalues.

λ1 = 2 + 3i
λ2 = 2− 3i

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 + 3i 1 complex eigenvalue

2− 3i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 2− 3i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 5 −6
3 −1

− (2− 3i)

 1 0
0 1

 v1

v2

 =

 0
0


 3 + 3i −6

3 −3 + 3i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 3 + 3i −6 0

3 −3 + 3i 0



R2 = R2 +
(
−1
2 + i

2

)
R1 =⇒

3 + 3i −6 0
0 0 0


Therefore the system in Echelon form is 3 + 3i −6

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = (1− i) t}

Hence the solution is  (1− I) t
t

 =

 (1− i) t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as (1− I) t

t

 = t

 1− i

1


Let t = 1 the eigenvector becomes (1− I) t

t

 =

 1− i

1


Considering the eigenvalue λ2 = 2 + 3i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 5 −6
3 −1

− (2 + 3i)

 1 0
0 1

 v1

v2

 =

 0
0


 3− 3i −6

3 −3− 3i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 3− 3i −6 0

3 −3− 3i 0



R2 = R2 +
(
−1
2 − i

2

)
R1 =⇒

3− 3i −6 0
0 0 0


Therefore the system in Echelon form is 3− 3i −6

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = (1 + i) t}

Hence the solution is  (1 + I) t
t

 =

 (1 + i) t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as (1 + I) t

t

 = t

 1 + i

1


Let t = 1 the eigenvector becomes (1 + I) t

t

 =

 1 + i

1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 + 3i 1 1 No

 1 + i

1



2− 3i 1 1 No

 1− i

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)
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Which is written as y1(t)
y2(t)

 = c1

 (1 + i) e(2+3i)t

e(2+3i)t

+ c2

 (1− i) e(2−3i)t

e(2−3i)t


Which becomes  y1(t)

y2(t)

 =

 (1 + i) c1e(2+3i)t + (1− i) c2e(2−3i)t

c1e(2+3i)t + c2e(2−3i)t


The following is the phase plot of the system.

Figure 618: Phase plot

23.4.3 Maple step by step solution

Let’s solve
[y′1(t) = 5y1(t)− 6y2(t) , y′2(t) = 3y1(t)− y2(t)]

• Define vector
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→y__(t) =

 y1(t)
y2(t)


• Convert system into a vector equation

→y__
′
(t) =

 5 −6
3 −1

 · →y__(t) +

 0
0


• System to solve

→y__
′
(t) =

 5 −6
3 −1

 · →y__(t)

• Define the coefficient matrix

A =

 5 −6
3 −1


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A2− 3 I,

 1− I
1

 ,

2 + 3 I,

 1 + I
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored2− 3 I,

 1− I
1


• Solution from eigenpair

e(2−3 I)t ·

 1− I
1


• Use Euler identity to write solution in terms of sin and cos

e2t · (cos (3t)− I sin (3t)) ·

 1− I
1


• Simplify expression
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e2t ·

 (1− I) (cos (3t)− I sin (3t))
cos (3t)− I sin (3t)


• Both real and imaginary parts are solutions to the homogeneous system →y__1(t) = e2t ·

 cos (3t)− sin (3t)
cos (3t)

 ,
→y__2(t) = e2t ·

 − sin (3t)− cos (3t)
− sin (3t)


• General solution to the system of ODEs

→y__ = c1
→y__1(t) + c2

→y__2(t)
• Substitute solutions into the general solution

→y__ = c1e2t ·

 cos (3t)− sin (3t)
cos (3t)

+ c2e2t ·

 − sin (3t)− cos (3t)
− sin (3t)


• Substitute in vector of dependent variables y1(t)

y2(t)

 =

 e2t((c1 − c2) cos (3t)− sin (3t) (c1 + c2))
e2t(−c2 sin (3t) + c1 cos (3t))


• Solution to the system of ODEs

{y1(t) = e2t((c1 − c2) cos (3t)− sin (3t) (c1 + c2)) , y2(t) = e2t(−c2 sin (3t) + c1 cos (3t))}

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 58� �
dsolve([diff(y__1(t),t)=5*y__1(t)-6*y__2(t),diff(y__2(t),t)=3*y__1(t)-1*y__2(t)],singsol=all)� �

y1(t) = e2t(c1 sin (3t) + c2 cos (3t))

y2(t) =
e2t(c1 sin (3t) + c2 sin (3t)− c1 cos (3t) + c2 cos (3t))

2

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 60� �
DSolve[{y1'[t]==5*y1[t]-6*y2[t],y2'[t]==3*y1[t]-1*y2[t]},{y1[t],y2[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e2t(c1 cos(3t) + (c1 − 2c2) sin(3t))
y2(t) → e2t(c2 cos(3t) + (c1 − c2) sin(3t))

8540



23.5 problem section 10.6, problem 5
23.5.1 Solution using Matrix exponential method . . . . . . . . . . . . 8541
23.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8542
23.5.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8555

Internal problem ID [1640]
Internal file name [OUTPUT/1641_Sunday_June_05_2022_02_25_27_AM_40857027/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.6, constant coeffi-
cient homogeneous system III. Page 566
Problem number: section 10.6, problem 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −3y1(t)− 3y2(t) + y3(t)
y′2(t) = 2y2(t) + 2y3(t)
y′3(t) = 5y1(t) + y2(t) + y3(t)

23.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−3 −3 1
0 2 2
5 1 1




y1(t)
y2(t)
y3(t)


For the above matrix A, the matrix exponential can be found to be

eAt = Expression too large to display
= Expression too large to display
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Therefore the homogeneous solution is

~xh(t) = eAt~c

= Expression too large to display


c1

c2

c3


= Expression too large to display
= Expression too large to display

Since no forcing function is given, then the final solution is ~xh(t) above.

23.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−3 −3 1
0 2 2
5 1 1




y1(t)
y2(t)
y3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




−3 −3 1
0 2 2
5 1 1

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




−3− λ −3 1
0 2− λ 2
5 1 1− λ


 = 0
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Which gives the characteristic equation

λ3 − 14λ+ 40 = 0

The roots of the above are the eigenvalues.

λ1 = −
(
540 + 6

√
6042

) 1
3

3 − 14(
540 + 6

√
6042

) 1
3

λ2 =
(
540 + 6

√
6042

) 1
3

6 + 7(
540 + 6

√
6042

) 1
3
+

i
√
3
(
−
(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3

)
2

λ3 =
(
540 + 6

√
6042

) 1
3

6 + 7(
540 + 6

√
6042

) 1
3
−

i
√
3
(
−
(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3

)
2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

(
540+6

√
6042

) 1
3

6 + 7(
540+6

√
6042

) 1
3
−

i
√
3

−
(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3


2 1 complex eigenvalue

−
(
540+6

√
6042

) 1
3

3 − 14(
540+6

√
6042

) 1
3

1 real eigenvalue

(
540+6

√
6042

) 1
3

6 + 7(
540+6

√
6042

) 1
3
+

i
√
3

−
(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3


2 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −
(
540+6

√
6042

) 1
3

3 − 14(
540+6

√
6042

) 1
3
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−3 −3 1
0 2 2
5 1 1

−

−
(
540 + 6

√
6042

) 1
3

3 − 14(
540 + 6

√
6042

) 1
3




1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




(
540+6

√
6042

) 2
3−9

(
540+6

√
6042

) 1
3+42

3
(
540+6

√
6042

) 1
3

−3 1

0
(
540+6

√
6042

) 2
3+6

(
540+6

√
6042

) 1
3+42

3
(
540+6

√
6042

) 1
3

2

5 1
(
540+6

√
6042

) 2
3+3

(
540+6

√
6042

) 1
3+42

3
(
540+6

√
6042

) 1
3




v1

v2

v3

 =


0
0
0



Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is

−3 +
(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3

−3 1 0

0 2 +
(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3

2 0

5 1 1 +
(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3

0



R3 = R3 −
5R1

−3 +
(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3

=⇒



(
540+6

√
6042

) 2
3−9

(
540+6

√
6042

) 1
3+42

3
(
540+6

√
6042

) 1
3

−3 1 0

0
(
540+6

√
6042

) 2
3+6

(
540+6

√
6042

) 1
3+42

3
(
540+6

√
6042

) 1
3

2 0

0
(
540+6

√
6042

) 2
3+36

(
540+6

√
6042

) 1
3+42(

540+6
√
6042

) 2
3−9

(
540+6

√
6042

) 1
3+42

−
2
((√

6042+48
)(

540+6
√
6042

) 1
3−6

√
6042+2

(
540+6

√
6042

) 2
3−246

)
(
540+6

√
6042

) 1
3
(
−
(
540+6

√
6042

) 2
3+9

(
540+6

√
6042

) 1
3−42

) 0
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R3 = R3 −
3
((

540 + 6
√
6042

) 2
3 + 36

(
540 + 6

√
6042

) 1
3 + 42

) (
540 + 6

√
6042

) 1
3 R2((

540 + 6
√
6042

) 2
3 − 9

(
540 + 6

√
6042

) 1
3 + 42

)((
540 + 6

√
6042

) 2
3 + 6

(
540 + 6

√
6042

) 1
3 + 42

) =⇒



(
540+6

√
6042

) 2
3−9

(
540+6

√
6042

) 1
3+42

3
(
540+6

√
6042

) 1
3

−3 1 0

0
(
540+6

√
6042

) 2
3+6

(
540+6

√
6042

) 1
3+42

3
(
540+6

√
6042

) 1
3

2 0

0 0 0 0


Therefore the system in Echelon form is

(
540+6

√
6042

) 2
3−9

(
540+6

√
6042

) 1
3+42

3
(
540+6

√
6042

) 1
3

−3 1

0
(
540+6

√
6042

) 2
3+6

(
540+6

√
6042

) 1
3+42

3
(
540+6

√
6042

) 1
3

2

0 0 0




v1

v2

v3

 =


0
0
0



The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms of

free variables gives equation

v1 = −
3t
(
4
(
540+6

√
6042

) 2
3+

√
6042+7

(
540+6

√
6042

) 1
3+90

)

5
(
540+6

√
6042

) 2
3+

√
6042

(
540+6

√
6042

) 1
3+69

(
540+6

√
6042

) 1
3−3

√
6042+24

, v2 = −
6t
(
540+6

√
6042

) 1
3(

540+6
√
6042

) 2
3+6

(
540+6

√
6042

) 1
3+42


Hence the solution is

−
3t
(
4
(
540+6

√
6042

) 2
3+

√
6042+7

(
540+6

√
6042

) 1
3+90

)

5
(
540+6

√
6042

) 2
3+

√
6042

(
540+6

√
6042

) 1
3+69

(
540+6

√
6042

) 1
3−3

√
6042+24

−
6t
(
540+6

√
6042

) 1
3(

540+6
√
6042

) 2
3+6

(
540+6

√
6042

) 1
3+42

t


=



−
3t
(
4
(
540+6

√
6042

) 2
3+

√
6042+7

(
540+6

√
6042

) 1
3+90

)

5
(
540+6

√
6042

) 2
3+

√
6042

(
540+6

√
6042

) 1
3+69

(
540+6

√
6042

) 1
3−3

√
6042+24

−
6t
(
540+6

√
6042

) 1
3(

540+6
√
6042

) 2
3+6

(
540+6

√
6042

) 1
3+42

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−
3t
(
4
(
540+6

√
6042

) 2
3+

√
6042+7

(
540+6

√
6042

) 1
3+90

)

5
(
540+6

√
6042

) 2
3+

√
6042

(
540+6

√
6042

) 1
3+69

(
540+6

√
6042

) 1
3−3

√
6042+24

−
6t
(
540+6

√
6042

) 1
3(

540+6
√
6042

) 2
3+6

(
540+6

√
6042

) 1
3+42

t


= t



−
3
(
4
(
540+6

√
6042

) 2
3+

√
6042+7

(
540+6

√
6042

) 1
3+90

)

5
(
540+6

√
6042

) 2
3+

√
6042

(
540+6

√
6042

) 1
3+69

(
540+6

√
6042

) 1
3−3

√
6042+24

−
6
(
540+6

√
6042

) 1
3(

540+6
√
6042

) 2
3+6

(
540+6

√
6042

) 1
3+42

1
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Let t = 1 the eigenvector becomes

−
3t
(
4
(
540+6

√
6042

) 2
3+

√
6042+7

(
540+6

√
6042

) 1
3+90

)

5
(
540+6

√
6042

) 2
3+

√
6042

(
540+6

√
6042

) 1
3+69

(
540+6

√
6042

) 1
3−3

√
6042+24

−
6t
(
540+6

√
6042

) 1
3(

540+6
√
6042

) 2
3+6

(
540+6

√
6042

) 1
3+42

t


=



−
3
(
4
(
540+6

√
6042

) 2
3+

√
6042+7

(
540+6

√
6042

) 1
3+90

)

5
(
540+6

√
6042

) 2
3+

√
6042

(
540+6

√
6042

) 1
3+69

(
540+6

√
6042

) 1
3−3

√
6042+24

−
6
(
540+6

√
6042

) 1
3(

540+6
√
6042

) 2
3+6

(
540+6

√
6042

) 1
3+42

1


Which is normalized to

−
3t
(
4
(
540+6

√
6042

) 2
3+

√
6042+7

(
540+6

√
6042

) 1
3+90

)

5
(
540+6

√
6042

) 2
3+

√
6042

(
540+6

√
6042

) 1
3+69

(
540+6

√
6042

) 1
3−3

√
6042+24

−
6t
(
540+6

√
6042

) 1
3(

540+6
√
6042

) 2
3+6

(
540+6

√
6042

) 1
3+42

t


=



−
3
(
4
(
540+6

√
6042

) 2
3+

√
6042+7

(
540+6

√
6042

) 1
3+90

)

5
(
540+6

√
6042

) 2
3+

√
6042

(
540+6

√
6042

) 1
3+69

(
540+6

√
6042

) 1
3−3

√
6042+24

−
6
(
540+6

√
6042

) 1
3(

540+6
√
6042

) 2
3+6

(
540+6

√
6042

) 1
3+42

1



Considering the eigenvalue λ2 =
(
540+6

√
6042

) 1
3

6 + 7(
540+6

√
6042

) 1
3
−

i
√
3

−
(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3


2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 


−3 −3 1
0 2 2
5 1 1

−


(
540 + 6

√
6042

) 1
3

6 + 7(
540 + 6

√
6042

) 1
3
−

i
√
3
(
−
(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3

)
2




1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−
42+18

(
540+6

√
3
√
2014

) 1
3+i

((
540+6

√
3
√
2014

) 2
3−42

)
√
3+
(
540+6

√
3
√
2014

) 2
3

6
(
540+6

√
3
√
2014

) 1
3

−3 1

0
−42+12

(
540+6

√
3
√
2014

) 1
3−i

((
540+6

√
3
√
2014

) 2
3−42

)
√
3−
(
540+6

√
3
√
2014

) 2
3

6
(
540+6

√
3
√
2014

) 1
3

2

5 1
−42+6

(
540+6

√
3
√
2014

) 1
3−i

((
540+6

√
3
√
2014

) 2
3−42

)
√
3−
(
540+6

√
3
√
2014

) 2
3

6
(
540+6

√
3
√
2014

) 1
3




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is

−3−
(
540+6

√
6042

) 1
3

6 − 7(
540+6

√
6042

) 1
3
+

i
√
3

−
(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3


2 −3 1 0

0 2−
(
540+6

√
6042

) 1
3

6 − 7(
540+6

√
6042

) 1
3
+

i
√
3

−
(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3


2 2 0

5 1 1−
(
540+6

√
6042

) 1
3

6 − 7(
540+6

√
6042

) 1
3
+

i
√
3

−
(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3


2 0



R3 = R3 −
5R1

−3−
(
540+6

√
6042

) 1
3

6 − 7(
540+6

√
6042

) 1
3
+

i
√
3

−
(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3


2

=⇒



−
42+18

(
540+6

√
3
√
2014

) 1
3+i

((
540+6

√
3
√
2014

) 2
3−42

)
√
3+
(
540+6

√
3
√
2014

) 2
3

6
(
540+6

√
3
√
2014

) 1
3

−3 1 0

0
−42+12

(
540+6

√
3
√
2014

) 1
3−i

((
540+6

√
3
√
2014

) 2
3−42

)
√
3−
(
540+6

√
3
√
2014

) 2
3

6
(
540+6

√
3
√
2014

) 1
3

2 0

0
i
(
540+6

√
3
√
2014

) 2
3√3+

(
540+6

√
3
√
2014

) 2
3−42i

√
3−72

(
540+6

√
3
√
2014

) 1
3+42

i
(
540+6

√
3
√
2014

) 2
3√3+

(
540+6

√
3
√
2014

) 2
3−42i

√
3+18

(
540+6

√
3
√
2014

) 1
3+42

2
(
48−48i

√
3−3i

√
2014+

√
6042

)(
540+6

√
6042

) 1
3−492−492i

√
3−36i

√
2014−12

√
6042−8

(
540+6

√
6042

) 2
3

(
540+6

√
6042

) 1
3
(
42+18

(
540+6

√
6042

) 1
3+i

((
540+6

√
6042

) 2
3−42

)
√
3+
(
540+6

√
6042

) 2
3
) 0



R3 = R3 −
6
(
i
(
540 + 6

√
3
√
2014

) 2
3
√
3 +

(
540 + 6

√
3
√
2014

) 2
3 − 42i

√
3− 72

(
540 + 6

√
3
√
2014

) 1
3 + 42

) (
540 + 6

√
3
√
2014

) 1
3 R2(

i
(
540 + 6

√
3
√
2014

) 2
3
√
3 +

(
540 + 6

√
3
√
2014

) 2
3 − 42i

√
3 + 18

(
540 + 6

√
3
√
2014

) 1
3 + 42

)(
−42 + 12

(
540 + 6

√
3
√
2014

) 1
3 − i

((
540 + 6

√
3
√
2014

) 2
3 − 42

)√
3−

(
540 + 6

√
3
√
2014

) 2
3
) =⇒



−
42+18

(
540+6

√
3
√
2014

) 1
3+i

((
540+6

√
3
√
2014

) 2
3−42

)
√
3+
(
540+6

√
3
√
2014

) 2
3

6
(
540+6

√
3
√
2014

) 1
3

−3 1 0

0
−42+12

(
540+6

√
3
√
2014

) 1
3−i

((
540+6

√
3
√
2014

) 2
3−42

)
√
3−
(
540+6

√
3
√
2014

) 2
3

6
(
540+6

√
3
√
2014

) 1
3

2 0

0 0 0 0
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Therefore the system in Echelon form is

−
42+18

(
540+6

√
3
√
2014

) 1
3+i

((
540+6

√
3
√
2014

) 2
3−42

)
√
3+
(
540+6

√
3
√
2014

) 2
3

6
(
540+6

√
3
√
2014

) 1
3

−3 1

0
−42+12

(
540+6

√
3
√
2014

) 1
3−i

((
540+6

√
3
√
2014

) 2
3−42

)
√
3−
(
540+6

√
3
√
2014

) 2
3

6
(
540+6

√
3
√
2014

) 1
3

2

0 0 0




v1

v2

v3

 =


0
0
0



The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms of

free variables gives equation

v1 =
3t
(
3i
√
2014−7i

√
3
(
540+6

√
3
√
2014

) 1
3+90i

√
3+

√
3
√
2014−8

(
540+6

√
3
√
2014

) 2
3+7

(
540+6

√
3
√
2014

) 1
3+90

)

3i
(
540+6

√
3
√
2014

) 1
3√2014−

(
540+6

√
3
√
2014

) 1
3√3

√
2014+69i

√
3
(
540+6

√
3
√
2014

) 1
3+9i

√
2014+3

√
3
√
2014+10

(
540+6

√
3
√
2014

) 2
3−24i

√
3−69

(
540+6

√
3
√
2014

) 1
3−24

, v2 =
12t
(
540+6

√
3
√
2014

) 1
3

i
(
540+6

√
3
√
2014

) 2
3√3+

(
540+6

√
3
√
2014

) 2
3−42i

√
3−12

(
540+6

√
3
√
2014

) 1
3+42


Hence the solution is

3t
(
3 I

√
2014−7 I

√
3
(
540+6

√
3
√
2014

) 1
3+90 I

√
3+

√
3
√
2014−8

(
540+6

√
3
√
2014

) 2
3+7

(
540+6

√
3
√
2014

) 1
3+90

)

3 I
(
540+6

√
3
√
2014

) 1
3√2014−

(
540+6

√
3
√
2014

) 1
3√3

√
2014+69 I

(
540+6

√
3
√
2014

) 1
3√3+9 I

√
2014+3

√
3
√
2014+10

(
540+6

√
3
√
2014

) 2
3−24 I

√
3−69

(
540+6

√
3
√
2014

) 1
3−24

12t
(
540+6

√
3
√
2014

) 1
3

I
(
540+6

√
3
√
2014

) 2
3√3+

(
540+6

√
3
√
2014

) 2
3−42 I

√
3−12

(
540+6

√
3
√
2014

) 1
3+42

t


=



3t
(
3i
√
2014−7i

√
3
(
540+6

√
3
√
2014

) 1
3+90i

√
3+

√
3
√
2014−8

(
540+6

√
3
√
2014

) 2
3+7

(
540+6

√
3
√
2014

) 1
3+90

)

3i
(
540+6

√
3
√
2014

) 1
3√2014−

(
540+6

√
3
√
2014

) 1
3√3

√
2014+69i

√
3
(
540+6

√
3
√
2014

) 1
3+9i

√
2014+3

√
3
√
2014+10

(
540+6

√
3
√
2014

) 2
3−24i

√
3−69

(
540+6

√
3
√
2014

) 1
3−24

12t
(
540+6

√
3
√
2014

) 1
3

i
(
540+6

√
3
√
2014

) 2
3√3+

(
540+6

√
3
√
2014

) 2
3−42i

√
3−12

(
540+6

√
3
√
2014

) 1
3+42

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

3t
(
3 I

√
2014−7 I

√
3
(
540+6

√
3
√
2014

) 1
3+90 I

√
3+

√
3
√
2014−8

(
540+6

√
3
√
2014

) 2
3+7

(
540+6

√
3
√
2014

) 1
3+90

)

3 I
(
540+6

√
3
√
2014

) 1
3√2014−

(
540+6

√
3
√
2014

) 1
3√3

√
2014+69 I

(
540+6

√
3
√
2014

) 1
3√3+9 I

√
2014+3

√
3
√
2014+10

(
540+6

√
3
√
2014

) 2
3−24 I

√
3−69

(
540+6

√
3
√
2014

) 1
3−24

12t
(
540+6

√
3
√
2014

) 1
3

I
(
540+6

√
3
√
2014

) 2
3√3+

(
540+6

√
3
√
2014

) 2
3−42 I

√
3−12

(
540+6

√
3
√
2014

) 1
3+42

t


= t



9i
√
2014−21i

√
3
(
540+6

√
3
√
2014

) 1
3+270i

√
3+3

√
3
√
2014−24

(
540+6

√
3
√
2014

) 2
3+21

(
540+6

√
3
√
2014

) 1
3+270

3i
(
540+6

√
3
√
2014

) 1
3√2014−

(
540+6

√
3
√
2014

) 1
3√3

√
2014+69i

√
3
(
540+6

√
3
√
2014

) 1
3+9i

√
2014+3

√
3
√
2014+10

(
540+6

√
3
√
2014

) 2
3−24i

√
3−69

(
540+6

√
3
√
2014

) 1
3−24

12
(
540+6

√
3
√
2014

) 1
3

i
(
540+6

√
3
√
2014

) 2
3√3+

(
540+6

√
3
√
2014

) 2
3−42i

√
3−12

(
540+6

√
3
√
2014

) 1
3+42

1
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Let t = 1 the eigenvector becomes

3t
(
3 I

√
2014−7 I

√
3
(
540+6

√
3
√
2014

) 1
3+90 I

√
3+

√
3
√
2014−8

(
540+6

√
3
√
2014

) 2
3+7

(
540+6

√
3
√
2014

) 1
3+90

)

3 I
(
540+6

√
3
√
2014

) 1
3√2014−

(
540+6

√
3
√
2014

) 1
3√3

√
2014+69 I

(
540+6

√
3
√
2014

) 1
3√3+9 I

√
2014+3

√
3
√
2014+10

(
540+6

√
3
√
2014

) 2
3−24 I

√
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√
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√
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√
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Which is normalized to
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Considering the eigenvalue λ3 =
(
540+6

√
6042

) 1
3

6 + 7(
540+6

√
6042

) 1
3
+

i
√
3

−
(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3


2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 


−3 −3 1
0 2 2
5 1 1

−


(
540 + 6

√
6042

) 1
3

6 + 7(
540 + 6

√
6042

) 1
3
+

i
√
3
(
−
(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3

)
2




1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−42−18
(
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√
3
√
2014

) 1
3+i

((
540+6

√
3
√
2014

) 2
3−42

)
√
3−
(
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√
3
√
2014

) 2
3

6
(
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√
3
√
2014

) 1
3

−3 1

0
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√
3
√
2014
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((
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√
3
√
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3−42

)
√
3−
(
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√
3
√
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) 2
3

6
(
540+6

√
3
√
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) 1
3

2

5 1
−42+6

(
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√
3
√
2014

) 1
3+i

((
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√
3
√
2014

) 2
3−42

)
√
3−
(
540+6

√
3
√
2014

) 2
3

6
(
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√
3
√
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) 1
3




v1

v2

v3

 =


0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is

−3−
(
540+6

√
6042

) 1
3

6 − 7(
540+6

√
6042

) 1
3
−

i
√
3

−
(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3


2 −3 1 0

0 2−
(
540+6

√
6042

) 1
3

6 − 7(
540+6

√
6042

) 1
3
−

i
√
3

−
(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3


2 2 0

5 1 1−
(
540+6

√
6042

) 1
3

6 − 7(
540+6

√
6042

) 1
3
−

i
√
3

−
(
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√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3


2 0



R3 = R3 −
5R1
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(
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√
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) 1
3

6 − 7(
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√
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) 1
3
−

i
√
3

−
(
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√
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) 1
3

3 + 14(
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√
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3


2

=⇒
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(
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√
3
√
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√
3
√
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) 2
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)
√
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(
540+6

√
3
√
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3

6
(
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√
3
√
2014

) 1
3
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0
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(
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√
3
√
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√
3
√
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)
√
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(
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√
3
√
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3

6
(
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√
3
√
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3

2 0

0
i
(
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√
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(
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√
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√
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√
6042

) 1
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√
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√
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√
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(
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√
6042

) 1
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√
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√
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√
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)(
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√
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√
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√
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√
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(
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√
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3(

−42−18
(
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√
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√
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(
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√
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√
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3

0



R3 = R3 −
6
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(
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√
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3
√
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(
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√
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√
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√
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√
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√
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(
540 + 6

√
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3
√
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(
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√
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√
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(
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√
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(
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√
3
√
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540 + 6

√
3
√
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)√
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(
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√
3
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√
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√
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√
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√
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Therefore the system in Echelon form is

−42−18
(
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√
3
√
2014

) 1
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√
3
√
2014
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3−42

)
√
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(
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√
3
√
2014
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3

6
(
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√
3
√
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(
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√
3
√
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√
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√
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√
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√
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3

6
(
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√
3
√
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2

0 0 0




v1

v2

v3

 =


0
0
0



The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms of

free variables gives equation

v1 =
3t
(
3i
√
2014−7i

√
3
(
540+6

√
3
√
2014

) 1
3+90i

√
3−

√
3
√
2014+8

(
540+6

√
3
√
2014

) 2
3−7

(
540+6

√
3
√
2014

) 1
3−90

)

3i
(
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√
3
√
2014
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3√2014+

(
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√
3
√
2014

) 1
3√3

√
2014+69i

√
3
(
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√
3
√
2014
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3+9i

√
2014−3

√
3
√
2014−10

(
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√
3
√
2014

) 2
3−24i

√
3+69

(
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√
3
√
2014

) 1
3+24

, v2 = −
12t
(
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√
6042
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3

i
(
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√
6042

) 2
3√3−

(
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√
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3−42i

√
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(
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√
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) 1
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Hence the solution is
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(
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√
2014−7 I

√
3
(
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√
3
√
2014
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3+90 I

√
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√
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√
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(
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√
3
√
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√
3
√
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√
3
√
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(
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√
3
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√
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(
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√
3
√
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√
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√
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√
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√
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√
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√
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√
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√
6042

) 1
3

I
(
540+6

√
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√
6042

) 2
3−42 I

√
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√
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=
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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Let t = 1 the eigenvector becomes

3t
(
3 I

√
2014−7 I

√
3
(
540+6

√
3
√
2014

) 1
3+90 I

√
3−

√
3
√
2014+8

(
540+6

√
3
√
2014

) 2
3−7

(
540+6

√
3
√
2014

) 1
3−90

)

3 I
(
540+6

√
3
√
2014

) 1
3√2014+

(
540+6

√
3
√
2014

) 1
3√3

√
2014+69 I

(
540+6

√
3
√
2014

) 1
3√3+9 I

√
2014−3

√
3
√
2014−10

(
540+6

√
3
√
2014

) 2
3−24 I

√
3+69

(
540+6

√
3
√
2014

) 1
3+24

−
12t
(
540+6

√
6042

) 1
3

I
(
540+6

√
6042

) 2
3√3−

(
540+6

√
6042

) 2
3−42 I

√
3+12

(
540+6

√
6042

) 1
3−42

t


=



9i
√
2014−21i

√
3
(
540+6

√
3
√
2014

) 1
3+270i

√
3−3

√
3
√
2014+24

(
540+6

√
3
√
2014

) 2
3−21

(
540+6

√
3
√
2014

) 1
3−270

3i
(
540+6

√
3
√
2014

) 1
3√2014+

(
540+6

√
3
√
2014

) 1
3√3

√
2014+69i

√
3
(
540+6

√
3
√
2014

) 1
3+9i

√
2014−3

√
3
√
2014−10

(
540+6

√
3
√
2014

) 2
3−24i

√
3+69

(
540+6

√
3
√
2014

) 1
3+24

−
12
(
540+6

√
6042

) 1
3

i
(
540+6

√
6042

) 2
3√3−

(
540+6

√
6042

) 2
3−42i

√
3+12

(
540+6

√
6042

) 1
3−42

1


Which is normalized to
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The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of

is if the eigenvalue is defective. Since eigenvalue −
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Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)
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Which is written as
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Which becomes

Expression too large to display

23.5.3 Maple step by step solution

Let’s solve
[y′1(t) = −3y1(t)− 3y2(t) + y3(t) , y′2(t) = 2y2(t) + 2y3(t) , y′3(t) = 5y1(t) + y2(t) + y3(t)]

• Define vector

→y__(t) =


y1(t)
y2(t)
y3(t)


• Convert system into a vector equation
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→y__
′
(t) =


−3 −3 1
0 2 2
5 1 1

 · →y__(t) +


0
0
0


• System to solve

→y__
′
(t) =


−3 −3 1
0 2 2
5 1 1

 · →y__(t)

• Define the coefficient matrix

A =


−3 −3 1
0 2 2
5 1 1


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
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• Consider eigenpair
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• Solution to homogeneous system from eigenpair

→y__1 = e
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• Consider complex eigenpair, complex conjugate eigenvalue can be ignored
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• Solution from eigenpair

8557



e


(
540+6

√
6042

) 1
3

6 + 7(
540+6

√
6042

) 1
3
−

I
√
3

−

(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3


2

t

·



−8+
(
540+6

√
6042

) 1
3

6 + 7(
540+6

√
6042

) 1
3
−

I
√

3

−

(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3


2

(
540+6

√
6042

) 1
3

6 + 7(
540+6

√
6042

) 1
3
−

I
√
3

−

(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3


2 −2




(
540+6

√
6042

) 1
3

6 + 7(
540+6

√
6042

) 1
3
−

I
√
3

−

(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3


2 +3


2

(
540+6

√
6042

) 1
3

6 + 7(
540+6

√
6042

) 1
3
−

I
√

3

−

(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3


2 −2

1


• Use Euler identity to write solution in terms of sin and cos
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• Simplify expression
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) 1
3

3 + 14(
540+6

√
6042

) 1
3


2 +3



2

cos


√
3

−

(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3

t

2

−I sin


√
3

−

(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3

t

2




(
540+6

√
6042

) 1
3

6 + 7(
540+6

√
6042

) 1
3
−

I
√
3

−

(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3


2 −2

cos


√
3

−
(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3

t

2

− I sin


√
3

−
(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3

t

2




• Both real and imaginary parts are solutions to the homogeneous system

→y__2(t) = e

(
540+6

√
6042

) 1
3

6 + 7(
540+6

√
6042

) 1
3

t

·



−

9
(
540+6

√
6042

) 1
3

4
√
3
(
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√
6042

) 5
3 sin


√
3
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√

6042
) 2
3 −42

)
t

6
(
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√
6042
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3

+17
√
3
(
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√
6042
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3 sin


√
3
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√

6042
) 2
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)
t

6
(
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√
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) 1
3

−5
(
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√
6042

) 5
3 cos


√
3
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540+6
√
6042

) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

+21
(
540+6

√
6042

) 4
3 cos


√
3
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540+6
√
6042

) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

−714
√
3
(
540+6

√
6042

) 2
3 sin


√
3
((

540+6
√

6042
) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

−72504 sin


√

3
((

540+6
√
6042

) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

√
3−7056

√
3
(
540+6

√
6042

) 1
3 sin


√

3
((

540+6
√

6042
) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

−1080
√
3
√
6042 sin


√

3
((

540+6
√
6042

) 2
3 −42

)
t

6
(
540+6

√
6042
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3

+882
(
540+6

√
6042

) 2
3 cos


√
3
((

540+6
√

6042
) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

+55080 cos


√

3
((

540+6
√
6042

) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

−8820
(
540+6

√
6042

) 1
3 cos


√
3
((

540+6
√

6042
) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

+612 cos


√
3
((

540+6
√

6042
) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

√
6042


((

540+6
√
6042

) 4
3−6

(
540+6

√
6042

) 2
3−252

(
540+6

√
6042

) 1
3−36

√
6042−1476

)((
540+6

√
6042

) 4
3+39

(
540+6

√
6042

) 2
3+378

(
540+6

√
6042

) 1
3+54

√
6042+6624

)

3
(
540+6

√
6042

) 1
3

√
3
(
540+6

√
6042

) 2
3 sin


√
3
((

540+6
√

6042
) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

+
(
540+6

√
6042

) 2
3 cos


√
3
((

540+6
√
6042

) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

−42 sin


√

3
((

540+6
√
6042

) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

√
3−12

(
540+6

√
6042

) 1
3 cos


√
3
((

540+6
√

6042
) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

+42 cos


√
3
((

540+6
√

6042
) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3




(
540+6

√
6042

) 4
3−6

(
540+6

√
6042

) 2
3−252

(
540+6

√
6042

) 1
3−36

√
6042−1476

cos


√
3

−
(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3

t

2





,
→y__3(t) = e

(
540+6

√
6042

) 1
3

6 + 7(
540+6

√
6042

) 1
3

t

·



9
(
540+6

√
6042

) 1
3

4
√
3
(
540+6

√
6042

) 5
3 cos


√
3
((

540+6
√

6042
) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

+17
√
3
(
540+6

√
6042

) 4
3 cos


√
3
((

540+6
√

6042
) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

+5
(
540+6

√
6042

) 5
3 sin


√
3
((

540+6
√
6042

) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

−21
(
540+6

√
6042

) 4
3 sin


√

3
((

540+6
√
6042

) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

−714
√
3
(
540+6

√
6042

) 2
3 cos


√

3
((

540+6
√

6042
) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

−72504 cos


√

3
((

540+6
√
6042

) 2
3 −42

)
t

6
(
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√
6042

) 1
3

√
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√
3
(
540+6

√
6042

) 1
3 cos


√

3
((

540+6
√

6042
) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

−1080
√
3
√
6042 cos


√

3
((

540+6
√
6042

) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

−882
(
540+6

√
6042

) 2
3 sin


√
3
((

540+6
√

6042
) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

−55080 sin


√

3
((

540+6
√
6042

) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

+8820
(
540+6

√
6042

) 1
3 sin


√
3
((

540+6
√
6042

) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

−612 sin


√

3
((

540+6
√
6042

) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

√
6042


((

540+6
√
6042

) 4
3−6

(
540+6

√
6042

) 2
3−252

(
540+6

√
6042

) 1
3−36

√
6042−1476

)((
540+6

√
6042

) 4
3+39

(
540+6

√
6042

) 2
3+378

(
540+6

√
6042

) 1
3+54

√
6042+6624

)

−

3
(
540+6

√
6042

) 1
3

√
3
(
540+6

√
6042

) 2
3 cos


√
3
((

540+6
√

6042
) 2
3 −42

)
t

6
(
540+6

√
6042

) 1
3

−
(
540+6

√
6042

) 2
3 sin


√

3
((

540+6
√
6042

) 2
3 −42

)
t

6
(
540+6

√
6042
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3

−42 cos


√

3
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√
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3 −42

)
t

6
(
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√
6042
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3

√
3+12

(
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√
6042
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3 sin


√
3
((

540+6
√

6042
) 2
3 −42

)
t

6
(
540+6

√
6042
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3

−42 sin


√
3
((
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√
6042

) 2
3 −42

)
t

6
(
540+6

√
6042
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3




(
540+6

√
6042

) 4
3−6

(
540+6

√
6042

) 2
3−252

(
540+6

√
6042

) 1
3−36

√
6042−1476

− sin


√
3

−
(
540+6

√
6042

) 1
3

3 + 14(
540+6

√
6042

) 1
3

t

2






• General solution to the system of ODEs

→y__ = c1
→y__1 + c2

→y__2(t) + c3
→y__3(t)

• Substitute solutions into the general solution

8559



→y__ = c1e

−
(
540+6

√
6042

) 1
3

3 − 14(
540+6

√
6042

) 1
3

t

·



−8−
(
540+6

√
6042

) 1
3

3 − 14(
540+6

√
6042

) 1
3−

(
540+6

√
6042

) 1
3

3 − 14(
540+6

√
6042

) 1
3
−2

−
(
540+6

√
6042

) 1
3

3 − 14(
540+6

√
6042

) 1
3
+3


2

−
(
540+6

√
6042

) 1
3

3 − 14(
540+6

√
6042

) 1
3
−2

1


+ c2e

(
540+6

√
6042

) 1
3

6 + 7(
540+6

√
6042

) 1
3

t

·



−

9
(
540+6

√
6042

) 1
3

4
√
3
(
540+6

√
6042

) 5
3 sin


√

3
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√
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) 2
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)
t

6
(
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√
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3
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√
3
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√
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3 sin
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√
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)
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√
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3
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(
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√
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3 cos


√

3
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√
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) 2
3 −42

)
t

6
(
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√
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3

+21
(
540+6

√
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3 cos


√
3
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√
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) 2
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)
t
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√
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3
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√
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3 sin


√
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√
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√
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√
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√
3
(
540+6

√
6042

) 1
3 sin


√
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√
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√
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√
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√
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3
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540+6
√
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√
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√
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√
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√
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√
6042

) 2
3 −42
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√
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√
6042

) 4
3−6

(
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√
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) 2
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(
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√
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) 1
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√
6042−1476
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√
6042

) 4
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(
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√
6042

) 2
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(
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√
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) 1
3+54

√
6042+6624

)

3
(
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√
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√
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(
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√
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)
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√
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√
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√
6042

) 2
3 −42

)
t

6
(
540+6

√
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√
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√
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√
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√
3

−
(
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√
6042
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3

t
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+ c3e

(
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√
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3

6 + 7(
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√
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) 1
3

t

·
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√
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4
√
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√
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) 5
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√
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√
3
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√
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√
6042

) 1
3

+5
(
540+6

√
6042

) 5
3 sin


√
3
((

540+6
√
6042

) 2
3 −42
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3 sin


√

3
((

540+6
√
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t
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3
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√

3
((

540+6
√
6042

) 2
3 −42

)
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√
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3

−882
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√
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)
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√
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√
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√
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3
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√
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√
6042

) 2
3 −42

)
t

6
(
540+6

√
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3

−612 sin


√
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√
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3 −42

)
t

6
(
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√
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) 1
3

√
6042
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540+6
√
6042

) 4
3−6

(
540+6

√
6042

) 2
3−252

(
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√
6042

) 1
3−36

√
6042−1476

)((
540+6

√
6042

) 4
3+39

(
540+6

√
6042

) 2
3+378

(
540+6

√
6042

) 1
3+54

√
6042+6624

)

−

3
(
540+6

√
6042

) 1
3

√
3
(
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√
6042

) 2
3 cos


√
3
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540+6
√
6042

) 2
3 −42

)
t

6
(
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√
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3

−
(
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√
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) 2
3 sin


√
3
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√
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3 −42

)
t

6
(
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√
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3

−42 cos


√

3
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√
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) 2
3 −42

)
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(
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√
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) 1
3

√
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√
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√
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3 −42

)
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√
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3

−42 sin
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√
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3 −42

)
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(
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√
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(
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√
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) 4
3−6

(
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√
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) 2
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(
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√
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) 1
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√
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√
3
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(
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√
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3
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√
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3
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• Substitute in vector of dependent variables


y1(t)
y2(t)
y3(t)

 =



1031



((√3 c2+3c3
)√

2014+ 80442c3
√
3

1031 + 80442c2
1031

)(
540+6

√
3
√
2014

) 1
3+

(
12
(√

3 c2−3c3
)√

2014−1423c3
√
3+1423c2

)(
540+6

√
3
√
2014

) 2
3

1031 −
5760

(√
3
√
2014+2357

30
)
c2

1031

e

((
540+6

√
6042

) 2
3 +42

)
t

2
(
540+6

√
6042

) 1
3

cos


√
3
((

540+6
√

3
√
2014

) 2
3 −42

)
t

6
(
540+6

√
3
√
2014

) 1
3

−

80442


 1031

(
− c3

√
3

3 +c2
)√

2014

26814 +
√
3 c2−c3

(540+6
√

3
√
2014

) 1
3 +

(
2
(
− c3

√
3

3 −c2
)√

2014− 1423
√

3 c2
18 − 1423c3

18

)(
540+6

√
3
√
2014

) 2
3

4469 +
320c3

(√
3
√
2014+2357

30
)

4469

e

((
540+6

√
6042

) 2
3 +42

)
t

2
(
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• Solution to the system of ODEs
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3 Solution by Maple
Time used: 0.282 (sec). Leaf size: 1975� �
dsolve([diff(y__1(t),t)=-3*y__1(t)-3*y__2(t)+1*y__3(t),diff(y__2(t),t)=0*y__1(t)+2*y__2(t)+2*y__3(t),diff(y__3(t),t)=5*y__1(t)+1*y__2(t)+1*y__3(t)],singsol=all)� �
Expression too large to display
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3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 187� �
DSolve[{y1'[t]==3*y1[t]-3*y2[t]+1*y3[t],y2'[t]==0*y1[t]+2*y2[t]+2*y3[t],y3'[t]==5*y1[t]+1*y2[t]+1*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �
y1(t) → 1

4e
−2t((3c1 − c2 + c3)e6t cos(2t) + (c1 − 3c2 − c3)e6t sin(2t) + c1 + c2 − c3

)
y2(t) → 1

4e
−2t(−(c1 − 3c2 − c3)e6t cos(2t) + (3c1 − c2 + c3)e6t sin(2t) + c1 + c2 − c3

)
y3(t) → 1

2e
−2t((c1 + c2 + c3)e6t cos(2t) + 2(c1 − c2)e6t sin(2t)− c1 − c2 + c3

)
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23.6 problem section 10.6, problem 6
23.6.1 Solution using Matrix exponential method . . . . . . . . . . . . 8563
23.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8564
23.6.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8572

Internal problem ID [1641]
Internal file name [OUTPUT/1642_Sunday_June_05_2022_02_25_36_AM_76040409/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.6, constant coeffi-
cient homogeneous system III. Page 566
Problem number: section 10.6, problem 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −3y1(t) + 3y2(t) + y3(t)
y′2(t) = y1(t)− 5y2(t)− 3y3(t)
y′3(t) = −3y1(t) + 7y2(t) + 3y3(t)

23.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−3 3 1
1 −5 −3
−3 7 3




y1(t)
y2(t)
y3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


e−t − e−2t sin (2t) e−2t cos (2t) + 2 e−2t sin (2t)− e−t e−2t cos (2t) + e−2t sin (2t)− e−t

−e−2t cos (2t) + e−t −e−t + 2 e−2t cos (2t)− e−2t sin (2t) e−2t cos (2t)− e−2t sin (2t)− e−t

e−2t cos (2t)− e−2t sin (2t)− e−t −e−2t cos (2t) + 3 e−2t sin (2t) + e−t e−t + 2 e−2t sin (2t)



=


e−t − e−2t sin (2t) −e−t + (cos (2t) + 2 sin (2t)) e−2t −e−t + (cos (2t) + sin (2t)) e−2t

−e−2t cos (2t) + e−t −e−t + (2 cos (2t)− sin (2t)) e−2t −e−t + (cos (2t)− sin (2t)) e−2t

−e−t + (cos (2t)− sin (2t)) e−2t e−t + (− cos (2t) + 3 sin (2t)) e−2t e−t + 2 e−2t sin (2t)


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e−t − e−2t sin (2t) −e−t + (cos (2t) + 2 sin (2t)) e−2t −e−t + (cos (2t) + sin (2t)) e−2t

−e−2t cos (2t) + e−t −e−t + (2 cos (2t)− sin (2t)) e−2t −e−t + (cos (2t)− sin (2t)) e−2t

−e−t + (cos (2t)− sin (2t)) e−2t e−t + (− cos (2t) + 3 sin (2t)) e−2t e−t + 2 e−2t sin (2t)




c1

c2

c3



=


(e−t − e−2t sin (2t)) c1 + (−e−t + (cos (2t) + 2 sin (2t)) e−2t) c2 + (−e−t + (cos (2t) + sin (2t)) e−2t) c3
(−e−2t cos (2t) + e−t) c1 + (−e−t + (2 cos (2t)− sin (2t)) e−2t) c2 + (−e−t + (cos (2t)− sin (2t)) e−2t) c3
(−e−t + (cos (2t)− sin (2t)) e−2t) c1 + (e−t + (− cos (2t) + 3 sin (2t)) e−2t) c2 + (e−t + 2 e−2t sin (2t)) c3



=


((−c1 + 2c2 + c3) sin (2t) + cos (2t) (c2 + c3)) e−2t + e−t(c1 − c2 − c3)
((−c1 + 2c2 + c3) cos (2t)− sin (2t) (c2 + c3)) e−2t + e−t(c1 − c2 − c3)

((−c1 + 3c2 + 2c3) sin (2t) + cos (2t) (−c2 + c1)) e−2t − e−t(c1 − c2 − c3)


Since no forcing function is given, then the final solution is ~xh(t) above.

23.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−3 3 1
1 −5 −3
−3 7 3




y1(t)
y2(t)
y3(t)
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The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




−3 3 1
1 −5 −3
−3 7 3

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




−3− λ 3 1
1 −5− λ −3
−3 7 3− λ


 = 0

Which gives the characteristic equation

λ3 + 5λ2 + 12λ+ 8 = 0

The roots of the above are the eigenvalues.

λ1 = −2 + 2i
λ2 = −2− 2i
λ3 = −1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

−2 + 2i 1 complex eigenvalue

−2− 2i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −1
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−3 3 1
1 −5 −3
−3 7 3

− (−1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−2 3 1
1 −4 −3
−3 7 4




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−2 3 1 0
1 −4 −3 0
−3 7 4 0



R2 = R2 +
R1

2 =⇒


−2 3 1 0
0 −5

2 −5
2 0

−3 7 4 0



R3 = R3 −
3R1

2 =⇒


−2 3 1 0
0 −5

2 −5
2 0

0 5
2

5
2 0



R3 = R3 +R2 =⇒


−2 3 1 0
0 −5

2 −5
2 0

0 0 0 0


Therefore the system in Echelon form is

−2 3 1
0 −5

2 −5
2

0 0 0




v1

v2

v3

 =


0
0
0
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The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −t, v2 = −t}

Hence the solution is 
−t

−t

t

 =


−t

−t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

−t

t

 = t


−1
−1
1


Let t = 1 the eigenvector becomes

−t

−t

t

 =


−1
−1
1


Considering the eigenvalue λ2 = −2− 2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−3 3 1
1 −5 −3
−3 7 3

− (−2− 2i)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−1 + 2i 3 1
1 −3 + 2i −3
−3 7 5 + 2i




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−1 + 2i 3 1 0
1 −3 + 2i −3 0
−3 7 5 + 2i 0
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R2 = R2 +
(
1
5 + 2i

5

)
R1 =⇒


−1 + 2i 3 1 0

0 −12
5 + 16i

5 −14
5 + 2i

5 0

−3 7 5 + 2i 0



R3 = R3 +
(
−3
5 − 6i

5

)
R1 =⇒


−1 + 2i 3 1 0

0 −12
5 + 16i

5 −14
5 + 2i

5 0

0 26
5 − 18i

5
22
5 + 4i

5 0



R3 = R3 +
(
3
2 + i

2

)
R2 =⇒


−1 + 2i 3 1 0

0 −12
5 + 16i

5 −14
5 + 2i

5 0

0 0 0 0


Therefore the system in Echelon form is

−1 + 2i 3 1
0 −12

5 + 16i
5 −14

5 + 2i
5

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 =

(1
2 −

i
2

)
t, v2 = −1

2t−
1
2it
}

Hence the solution is 
(1
2 −

I
2

)
t

− t
2 −

I t
2

t

 =


(1
2 −

i
2

)
t

−1
2t−

1
2it

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

(1
2 −

I
2

)
t

− t
2 −

I t
2

t

 = t


1
2 −

i
2

− 1
2 t−

1
2 it

t

1
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Let t = 1 the eigenvector becomes
(1
2 −

I
2

)
t

− t
2 −

I t
2

t

 =


1
2 −

i
2

−1
2 −

i
2

1


Which is normalized to 

(1
2 −

I
2

)
t

− t
2 −

I t
2

t

 =


1− i

−1− i

2


Considering the eigenvalue λ3 = −2 + 2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−3 3 1
1 −5 −3
−3 7 3

− (−2 + 2i)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−1− 2i 3 1
1 −3− 2i −3
−3 7 5− 2i




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−1− 2i 3 1 0
1 −3− 2i −3 0
−3 7 5− 2i 0



R2 = R2 +
(
1
5 − 2i

5

)
R1 =⇒


−1− 2i 3 1 0

0 −12
5 − 16i

5 −14
5 − 2i

5 0

−3 7 5− 2i 0



R3 = R3 +
(
−3
5 + 6i

5

)
R1 =⇒


−1− 2i 3 1 0

0 −12
5 − 16i

5 −14
5 − 2i

5 0

0 26
5 + 18i

5
22
5 − 4i

5 0
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R3 = R3 +
(
3
2 − i

2

)
R2 =⇒


−1− 2i 3 1 0

0 −12
5 − 16i

5 −14
5 − 2i

5 0

0 0 0 0


Therefore the system in Echelon form is

−1− 2i 3 1
0 −12

5 − 16i
5 −14

5 − 2i
5

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 =

(1
2 +

i
2

)
t, v2 = −1

2t+
1
2it
}

Hence the solution is 
(1
2 +

I
2

)
t

− t
2 +

I t
2

t

 =


(1
2 +

i
2

)
t

−1
2t+

1
2it

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

(1
2 +

I
2

)
t

− t
2 +

I t
2

t

 = t


1
2 +

i
2

− 1
2 t+

1
2 it

t

1


Let t = 1 the eigenvector becomes

(1
2 +

I
2

)
t

− t
2 +

I t
2

t

 =


1
2 +

i
2

−1
2 +

i
2

1


Which is normalized to 

(1
2 +

I
2

)
t

− t
2 +

I t
2

t

 =


1 + i

−1 + i

2


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
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with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−2 + 2i 1 1 No


1
2 +

i
2

−1
2 +

i
2

1



−2− 2i 1 1 No


1
2 −

i
2

−1
2 −

i
2

1



−1 1 1 No


−1
−1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
−t

=


−1
−1
1

 e−t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)
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Which is written as
y1(t)
y2(t)
y3(t)

 = c1


(1
2 +

i
2

)
e(−2+2i)t(

−1
2 +

i
2

)
e(−2+2i)t

e(−2+2i)t

+ c2


(1
2 −

i
2

)
e(−2−2i)t(

−1
2 −

i
2

)
e(−2−2i)t

e(−2−2i)t

+ c3


−e−t

−e−t

e−t


Which becomes

y1(t)
y2(t)
y3(t)

 =


(1
2 +

i
2

)
c1e(−2+2i)t +

(1
2 −

i
2

)
c2e(−2−2i)t − c3e−t(

−1
2 +

i
2

)
c1e(−2+2i)t +

(
−1

2 −
i
2

)
c2e(−2−2i)t − c3e−t

c1e(−2+2i)t + c2e(−2−2i)t + c3e−t


23.6.3 Maple step by step solution

Let’s solve
[y′1(t) = −3y1(t) + 3y2(t) + y3(t) , y′2(t) = y1(t)− 5y2(t)− 3y3(t) , y′3(t) = −3y1(t) + 7y2(t) + 3y3(t)]

• Define vector

→y__(t) =


y1(t)
y2(t)
y3(t)


• Convert system into a vector equation

→y__
′
(t) =


−3 3 1
1 −5 −3
−3 7 3

 · →y__(t) +


0
0
0


• System to solve

→y__
′
(t) =


−3 3 1
1 −5 −3
−3 7 3

 · →y__(t)

• Define the coefficient matrix
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A =


−3 3 1
1 −5 −3
−3 7 3


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


−1
−1
1


 ,

−2− 2 I,


1
2 −

I
2

−1
2 −

I
2

1


 ,

−2 + 2 I,


1
2 +

I
2

−1
2 +

I
2

1





• Consider eigenpair−1,


−1
−1
1




• Solution to homogeneous system from eigenpair

→y__1 = e−t ·


−1
−1
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−2− 2 I,


1
2 −

I
2

−1
2 −

I
2

1




• Solution from eigenpair

e(−2−2 I)t ·


1
2 −

I
2

−1
2 −

I
2

1


• Use Euler identity to write solution in terms of sin and cos
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e−2t · (cos (2t)− I sin (2t)) ·


1
2 −

I
2

−1
2 −

I
2

1


• Simplify expression

e−2t ·


(1
2 −

I
2

)
(cos (2t)− I sin (2t))(

−1
2 −

I
2

)
(cos (2t)− I sin (2t))

cos (2t)− I sin (2t)


• Both real and imaginary parts are solutions to the homogeneous system →y__2(t) = e−2t ·


cos(2t)

2 − sin(2t)
2

− sin(2t)
2 − cos(2t)

2

cos (2t)

 ,
→y__3(t) = e−2t ·


− sin(2t)

2 − cos(2t)
2

− cos(2t)
2 + sin(2t)

2

− sin (2t)




• General solution to the system of ODEs
→y__ = c1

→y__1 + c2
→y__2(t) + c3

→y__3(t)
• Substitute solutions into the general solution

→y__ = c1e−t ·


−1
−1
1

+ e−2tc2 ·


cos(2t)

2 − sin(2t)
2

− sin(2t)
2 − cos(2t)

2

cos (2t)

+ c3e−2t ·


− sin(2t)

2 − cos(2t)
2

− cos(2t)
2 + sin(2t)

2

− sin (2t)


• Substitute in vector of dependent variables

y1(t)
y2(t)
y3(t)

 =


((c2−c3) cos(2t)−sin(2t)(c2+c3))e−2t

2 − c1e−t

((−c2−c3) cos(2t)−sin(2t)(c2−c3))e−2t

2 − c1e−t

c1e−t + e−2tc2 cos (2t)− c3e−2t sin (2t)


• Solution to the system of ODEs{

y1(t) = ((c2−c3) cos(2t)−sin(2t)(c2+c3))e−2t

2 − c1e−t, y2(t) = ((−c2−c3) cos(2t)−sin(2t)(c2−c3))e−2t

2 − c1e−t, y3(t) = c1e−t + e−2tc2 cos (2t)− c3e−2t sin (2t)
}
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 115� �
dsolve([diff(y__1(t),t)=-3*y__1(t)+3*y__2(t)+1*y__3(t),diff(y__2(t),t)=1*y__1(t)-5*y__2(t)-3*y__3(t),diff(y__3(t),t)=-3*y__1(t)+7*y__2(t)+3*y__3(t)],singsol=all)� �

y1(t) = e−tc1 + c2e−2t sin (2t) + c3e−2t cos (2t)
y2(t) = e−tc1 + c2e−2t cos (2t)− c3e−2t sin (2t)
y3(t) = −e−tc1 + c2e−2t sin (2t)− c2e−2t cos (2t) + c3e−2t cos (2t) + c3e−2t sin (2t)

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 158� �
DSolve[{y1'[t]==-3*y1[t]+3*y2[t]+1*y3[t],y2'[t]==1*y1[t]-5*y2[t]-3*y3[t],y3'[t]==-3*y1[t]+7*y2[t]+3*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → e−2t((c1 − c2 − c3)et + (c2 + c3) cos(2t) + (−c1 + 2c2 + c3) sin(2t)
)

y2(t) → e−2t((c1 − c2 − c3)et + (−c1 + 2c2 + c3) cos(2t)− (c2 + c3) sin(2t)
)

y3(t) → e−2t((−c1 + c2 + c3)et + (c1 − c2) cos(2t) + (−c1 + 3c2 + 2c3) sin(2t)
)
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23.7 problem section 10.6, problem 7
23.7.1 Solution using Matrix exponential method . . . . . . . . . . . . 8576
23.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8577
23.7.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8584

Internal problem ID [1642]
Internal file name [OUTPUT/1643_Sunday_June_05_2022_02_25_38_AM_33724522/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.6, constant coeffi-
cient homogeneous system III. Page 566
Problem number: section 10.6, problem 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = 2y1(t) + y2(t)− y3(t)
y′2(t) = y2(t) + y3(t)
y′3(t) = y1(t) + y3(t)

23.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


2 1 −1
0 1 1
1 0 1




y1(t)
y2(t)
y3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


e2t
2 + et cos(t)

2 + sin(t)et
2 − et cos(t)

2 + sin(t)et
2 + e2t

2 − sin (t) et

− et cos(t)
2 − sin(t)et

2 + e2t
2

e2t
2 + et cos(t)

2 − sin(t)et
2 sin (t) et

− et cos(t)
2 + sin(t)et

2 + e2t
2 − et cos(t)

2 − sin(t)et
2 + e2t

2 et cos (t)



=


e2t
2 + (cos(t)+sin(t))et

2
e2t
2 + (sin(t)−cos(t))et

2 − sin (t) et

e2t
2 + (− cos(t)−sin(t))et

2
e2t
2 + (− sin(t)+cos(t))et

2 sin (t) et

e2t
2 + (sin(t)−cos(t))et

2
e2t
2 + (− cos(t)−sin(t))et

2 et cos (t)


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e2t
2 + (cos(t)+sin(t))et

2
e2t
2 + (sin(t)−cos(t))et

2 − sin (t) et

e2t
2 + (− cos(t)−sin(t))et

2
e2t
2 + (− sin(t)+cos(t))et

2 sin (t) et

e2t
2 + (sin(t)−cos(t))et

2
e2t
2 + (− cos(t)−sin(t))et

2 et cos (t)




c1

c2

c3



=



(
e2t
2 + (cos(t)+sin(t))et

2

)
c1 +

(
e2t
2 + (sin(t)−cos(t))et

2

)
c2 − sin (t) etc3(

e2t
2 + (− cos(t)−sin(t))et

2

)
c1 +

(
e2t
2 + (− sin(t)+cos(t))et

2

)
c2 + sin (t) etc3(

e2t
2 + (sin(t)−cos(t))et

2

)
c1 +

(
e2t
2 + (− cos(t)−sin(t))et

2

)
c2 + et cos (t) c3



=


(c1+c2)e2t

2 + ((c1+c2−2c3) sin(t)+cos(t)(−c2+c1))et
2

(c1+c2)e2t
2 − ((c1+c2−2c3) sin(t)+cos(t)(−c2+c1))et

2
(c1+c2)e2t

2 − ((c1+c2−2c3) cos(t)−sin(t)(−c2+c1))et
2


Since no forcing function is given, then the final solution is ~xh(t) above.

23.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


2 1 −1
0 1 1
1 0 1




y1(t)
y2(t)
y3(t)
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The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




2 1 −1
0 1 1
1 0 1

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




2− λ 1 −1
0 1− λ 1
1 0 1− λ


 = 0

Which gives the characteristic equation

λ3 − 4λ2 + 6λ− 4 = 0

The roots of the above are the eigenvalues.

λ1 = 2
λ2 = 1 + i

λ3 = 1− i

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

1− i 1 complex eigenvalue

1 + i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 2
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


2 1 −1
0 1 1
1 0 1

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




0 1 −1
0 −1 1
1 0 −1




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

0 1 −1 0
0 −1 1 0
1 0 −1 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 3 gives

1 0 −1 0
0 −1 1 0
0 1 −1 0



R3 = R3 +R2 =⇒


1 0 −1 0
0 −1 1 0
0 0 0 0


Therefore the system in Echelon form is

1 0 −1
0 −1 1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = t}
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Hence the solution is 
t

t

t

 =


t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

t

 = t


1
1
1


Let t = 1 the eigenvector becomes 

t

t

t

 =


1
1
1


Considering the eigenvalue λ2 = 1− i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


2 1 −1
0 1 1
1 0 1

− (1− i)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




1 + i 1 −1
0 i 1
1 0 i




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

1 + i 1 −1 0
0 i 1 0
1 0 i 0



R3 = R3 +
(
−1
2 + i

2

)
R1 =⇒


1 + i 1 −1 0
0 i 1 0
0 −1

2 +
i
2

1
2 +

i
2 0
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R3 = R3 +
(
−1
2 − i

2

)
R2 =⇒


1 + i 1 −1 0
0 i 1 0
0 0 0 0


Therefore the system in Echelon form is

1 + i 1 −1
0 i 1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −it, v2 = it}

Hence the solution is 
-I t
I t
t

 =


−it

it

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

-I t
I t
t

 = t


−i

i

1


Let t = 1 the eigenvector becomes

-I t
I t
t

 =


−i

i

1


Considering the eigenvalue λ3 = 1 + i
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


2 1 −1
0 1 1
1 0 1

− (1 + i)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




1− i 1 −1
0 −i 1
1 0 −i




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

1− i 1 −1 0
0 −i 1 0
1 0 −i 0



R3 = R3 +
(
−1
2 − i

2

)
R1 =⇒


1− i 1 −1 0
0 −i 1 0
0 −1

2 −
i
2

1
2 −

i
2 0



R3 = R3 +
(
−1
2 + i

2

)
R2 =⇒


1− i 1 −1 0
0 −i 1 0
0 0 0 0


Therefore the system in Echelon form is

1− i 1 −1
0 −i 1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = it, v2 = −it}

Hence the solution is 
I t
-I t
t

 =


it

−it

t
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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

I t
-I t
t

 = t


i

−i

1


Let t = 1 the eigenvector becomes

I t
-I t
t

 =


i

−i

1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 1 1 No


1
1
1



1 + i 1 1 No


i

−i

1



1− i 1 1 No


−i

i

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
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of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
2t

=


1
1
1

 e2t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


e2t

e2t

e2t

+ c2


ie(1+i)t

−ie(1+i)t

e(1+i)t

+ c3


−ie(1−i)t

ie(1−i)t

e(1−i)t


Which becomes 

y1(t)
y2(t)
y3(t)

 =


c1e2t + ic2e(1+i)t − ic3e(1−i)t

c1e2t − ic2e(1+i)t + ic3e(1−i)t

c1e2t + c2e(1+i)t + c3e(1−i)t


23.7.3 Maple step by step solution

Let’s solve
[y′1(t) = 2y1(t) + y2(t)− y3(t) , y′2(t) = y2(t) + y3(t) , y′3(t) = y1(t) + y3(t)]

• Define vector

→y__(t) =


y1(t)
y2(t)
y3(t)


• Convert system into a vector equation
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→y__
′
(t) =


2 1 −1
0 1 1
1 0 1

 · →y__(t) +


0
0
0


• System to solve

→y__
′
(t) =


2 1 −1
0 1 1
1 0 1

 · →y__(t)

• Define the coefficient matrix

A =


2 1 −1
0 1 1
1 0 1


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

2,


1
1
1


 ,

1− I,


−I
I
1


 ,

1 + I,


I
−I
1





• Consider eigenpair2,


1
1
1




• Solution to homogeneous system from eigenpair

→y__1 = e2t ·


1
1
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored
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1− I,


−I
I
1




• Solution from eigenpair

e(1−I)t ·


−I
I
1


• Use Euler identity to write solution in terms of sin and cos

et · (cos (t)− I sin (t)) ·


−I
I
1


• Simplify expression

et ·


−I(cos (t)− I sin (t))
I(cos (t)− I sin (t))
cos (t)− I sin (t)


• Both real and imaginary parts are solutions to the homogeneous system →y__2(t) = et ·


− sin (t)
sin (t)
cos (t)

 ,
→y__3(t) = et ·


− cos (t)
cos (t)
− sin (t)




• General solution to the system of ODEs
→y__ = c1

→y__1 + c2
→y__2(t) + c3

→y__3(t)
• Substitute solutions into the general solution

→y__ = c1e2t ·


1
1
1

+ c2et ·


− sin (t)
sin (t)
cos (t)

+ c3et ·


− cos (t)
cos (t)
− sin (t)


• Substitute in vector of dependent variables
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y1(t)
y2(t)
y3(t)

 =


c1e2t − c2et sin (t)− c3et cos (t)
c1e2t + c2et sin (t) + c3et cos (t)
c1e2t + c2et cos (t)− c3et sin (t)


• Solution to the system of ODEs

{y1(t) = c1e2t − c2et sin (t)− c3et cos (t) , y2(t) = c1e2t + c2et sin (t) + c3et cos (t) , y3(t) = c1e2t + c2et cos (t)− c3et sin (t)}

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 70� �
dsolve([diff(y__1(t),t)=2*y__1(t)+1*y__2(t)-1*y__3(t),diff(y__2(t),t)=0*y__1(t)+1*y__2(t)+1*y__3(t),diff(y__3(t),t)=1*y__1(t)+0*y__2(t)+1*y__3(t)],singsol=all)� �

y1(t) = c1e2t + c2et cos (t)− c3et sin (t)
y2(t) = c1e2t − c2et cos (t) + c3et sin (t)
y3(t) = c1e2t + c2et sin (t) + c3et cos (t)

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 129� �
DSolve[{y1'[t]==2*y1[t]+1*y2[t]-1*y3[t],y2'[t]==0*y1[t]+1*y2[t]+1*y3[t],y3'[t]==1*y1[t]+0*y2[t]+1*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → 1
2e

t
(
−2c3 sin(t) + c2

(
et + sin(t)− cos(t)

)
+ c1

(
et + sin(t) + cos(t)

))
y2(t) → 1

2e
t
(
(c1 + c2)et + (c2 − c1) cos(t)− (c1 + c2 − 2c3) sin(t)

)
y3(t) → 1

2e
t
(
(c1 + c2)et − (c1 + c2 − 2c3) cos(t) + (c1 − c2) sin(t)

)

8587



23.8 problem section 10.6, problem 8
23.8.1 Solution using Matrix exponential method . . . . . . . . . . . . 8588
23.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 8589
23.8.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8597

Internal problem ID [1643]
Internal file name [OUTPUT/1644_Sunday_June_05_2022_02_25_41_AM_22734179/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench.
Brooks/Cole 2001
Section: Chapter 10 Linear system of Differential equations. Section 10.6, constant coeffi-
cient homogeneous system III. Page 566
Problem number: section 10.6, problem 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

y′1(t) = −3y1(t) + y2(t)− 3y3(t)
y′2(t) = 4y1(t)− y2(t) + 2y3(t)
y′3(t) = 4y1(t)− 2y2(t) + 3y3(t)

23.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−3 1 −3
4 −1 2
4 −2 3




y1(t)
y2(t)
y3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


e−t cos (2t)− e−t sin (2t) − e−t cos(2t)

2 + et
2

e−t cos(2t)
2 − e−t sin (2t)− et

2

2 e−t sin (2t) et
2 + e−t cos(2t)

2 − e−t sin(2t)
2

e−t cos(2t)
2 + 3 e−t sin(2t)

2 − et
2

2 e−t sin (2t) e−t cos(2t)
2 − e−t sin(2t)

2 − et
2

et
2 + e−t cos(2t)

2 + 3 e−t sin(2t)
2



=


e−t(cos (2t)− sin (2t)) − e−t cos(2t)

2 + et
2

(cos(2t)−2 sin(2t))e−t

2 − et
2

2 e−t sin (2t) e−t(cos(2t)−sin(2t))
2 + et

2
(cos(2t)+3 sin(2t))e−t

2 − et
2

2 e−t sin (2t) e−t(cos(2t)−sin(2t))
2 − et

2
(cos(2t)+3 sin(2t))e−t

2 + et
2


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e−t(cos (2t)− sin (2t)) − e−t cos(2t)

2 + et
2

(cos(2t)−2 sin(2t))e−t

2 − et
2

2 e−t sin (2t) e−t(cos(2t)−sin(2t))
2 + et

2
(cos(2t)+3 sin(2t))e−t

2 − et
2

2 e−t sin (2t) e−t(cos(2t)−sin(2t))
2 − et

2
(cos(2t)+3 sin(2t))e−t

2 + et
2




c1

c2

c3



=


e−t(cos (2t)− sin (2t)) c1 +

(
− e−t cos(2t)

2 + et
2

)
c2 +

(
(cos(2t)−2 sin(2t))e−t

2 − et
2

)
c3

2 e−t sin (2t) c1 +
(

e−t(cos(2t)−sin(2t))
2 + et

2

)
c2 +

(
(cos(2t)+3 sin(2t))e−t

2 − et
2

)
c3

2 e−t sin (2t) c1 +
(

e−t(cos(2t)−sin(2t))
2 − et

2

)
c2 +

(
(cos(2t)+3 sin(2t))e−t

2 + et
2

)
c3



=


((2c1−c2+c3) cos(2t)−2 sin(2t)(c1+c3))e−t

2 + (c2−c3)et
2

((4c1−c2+3c3) sin(2t)+cos(2t)(c2+c3))e−t

2 + (c2−c3)et
2

((4c1−c2+3c3) sin(2t)+cos(2t)(c2+c3))e−t

2 − (c2−c3)et
2


Since no forcing function is given, then the final solution is ~xh(t) above.

23.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
y′1(t)
y′2(t)
y′3(t)

 =


−3 1 −3
4 −1 2
4 −2 3




y1(t)
y2(t)
y3(t)
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The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




−3 1 −3
4 −1 2
4 −2 3

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




−3− λ 1 −3
4 −1− λ 2
4 −2 3− λ


 = 0

Which gives the characteristic equation

λ3 + λ2 + 3λ− 5 = 0

The roots of the above are the eigenvalues.

λ1 = 1
λ2 = −1 + 2i
λ3 = −1− 2i

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1− 2i 1 complex eigenvalue

1 1 real eigenvalue

−1 + 2i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 1
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−3 1 −3
4 −1 2
4 −2 3

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−4 1 −3
4 −2 2
4 −2 2




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−4 1 −3 0
4 −2 2 0
4 −2 2 0



R2 = R2 +R1 =⇒


−4 1 −3 0
0 −1 −1 0
4 −2 2 0



R3 = R3 +R1 =⇒


−4 1 −3 0
0 −1 −1 0
0 −1 −1 0



R3 = R3 −R2 =⇒


−4 1 −3 0
0 −1 −1 0
0 0 0 0


Therefore the system in Echelon form is

−4 1 −3
0 −1 −1
0 0 0




v1

v2

v3

 =


0
0
0
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The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −t, v2 = −t}

Hence the solution is 
−t

−t

t

 =


−t

−t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

−t

t

 = t


−1
−1
1


Let t = 1 the eigenvector becomes

−t

−t

t

 =


−1
−1
1


Considering the eigenvalue λ2 = −1− 2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−3 1 −3
4 −1 2
4 −2 3

− (−1− 2i)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−2 + 2i 1 −3
4 2i 2
4 −2 4 + 2i




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−2 + 2i 1 −3 0
4 2i 2 0
4 −2 4 + 2i 0
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R2 = R2 + (1 + i)R1 =⇒


−2 + 2i 1 −3 0

0 1 + 3i −1− 3i 0
4 −2 4 + 2i 0



R3 = R3 + (1 + i)R1 =⇒


−2 + 2i 1 −3 0

0 1 + 3i −1− 3i 0
0 −1 + i 1− i 0



R3 = R3 +
(
−1
5 − 2i

5

)
R2 =⇒


−2 + 2i 1 −3 0

0 1 + 3i −1− 3i 0
0 0 0 0


Therefore the system in Echelon form is

−2 + 2i 1 −3
0 1 + 3i −1− 3i
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 =

(
−1

2 −
i
2

)
t, v2 = t

}
Hence the solution is 

(
−1

2 −
I
2

)
t

t

t

 =


(
−1

2 −
i
2

)
t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

(
−1

2 −
I
2

)
t

t

t

 = t


−1

2 −
i
2

1
1


Let t = 1 the eigenvector becomes

(
−1

2 −
I
2

)
t

t

t

 =


−1

2 −
i
2

1
1
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Which is normalized to 
(
−1

2 −
I
2

)
t

t

t

 =


−1− i

2
2


Considering the eigenvalue λ3 = −1 + 2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−3 1 −3
4 −1 2
4 −2 3

− (−1 + 2i)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−2− 2i 1 −3
4 −2i 2
4 −2 4− 2i




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−2− 2i 1 −3 0
4 −2i 2 0
4 −2 4− 2i 0



R2 = R2 + (1− i)R1 =⇒


−2− 2i 1 −3 0

0 1− 3i −1 + 3i 0
4 −2 4− 2i 0



R3 = R3 + (1− i)R1 =⇒


−2− 2i 1 −3 0

0 1− 3i −1 + 3i 0
0 −1− i 1 + i 0



R3 = R3 +
(
−1
5 + 2i

5

)
R2 =⇒


−2− 2i 1 −3 0

0 1− 3i −1 + 3i 0
0 0 0 0
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Therefore the system in Echelon form is
−2− 2i 1 −3

0 1− 3i −1 + 3i
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 =

(
−1

2 +
i
2

)
t, v2 = t

}
Hence the solution is 

(
−1

2 +
I
2

)
t

t

t

 =


(
−1

2 +
i
2

)
t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

(
−1

2 +
I
2

)
t

t

t

 = t


−1

2 +
i
2

1
1


Let t = 1 the eigenvector becomes

(
−1

2 +
I
2

)
t

t

t

 =


−1

2 +
i
2

1
1


Which is normalized to 

(
−1

2 +
I
2

)
t

t

t

 =


−1 + i

2
2


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

1 1 1 No


−1
−1
1



−1 + 2i 1 1 No


−1

2 +
i
2

1
1



−1− 2i 1 1 No


−1

2 −
i
2

1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
t

=


−1
−1
1

 et

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
y1(t)
y2(t)
y3(t)

 = c1


−et

−et

et

+ c2


(
−1

2 +
i
2

)
e(−1+2i)t

e(−1+2i)t

e(−1+2i)t

+ c3


(
−1

2 −
i
2

)
e(−1−2i)t

e(−1−2i)t

e(−1−2i)t
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Which becomes
y1(t)
y2(t)
y3(t)

 =


−c1et +

(
−1

2 +
i
2

)
c2e(−1+2i)t +

(
−1

2 −
i
2

)
c3e(−1−2i)t

−c1et + c2e(−1+2i)t + c3e(−1−2i)t

c1et + c2e(−1+2i)t + c3e(−1−2i)t


23.8.3 Maple step by step solution

Let’s solve
[y′1(t) = −3y1(t) + y2(t)− 3y3(t) , y′2(t) = 4y1(t)− y2(t) + 2y3(t) , y′3(t) = 4y1(t)− 2y2(t) + 3y3(t)]

• Define vector

→y__(t) =


y1(t)
y2(t)
y3(t)


• Convert system into a vector equation

→y__
′
(t) =


−3 1 −3
4 −1 2
4 −2 3

 · →y__(t) +


0
0
0


• System to solve

→y__
′
(t) =


−3 1 −3
4 −1 2
4 −2 3

 · →y__(t)

• Define the coefficient matrix

A =


−3 1 −3
4 −1 2
4 −2 3


• Rewrite the system as

→y__
′
(t) = A · →y__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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1,


−1
−1
1


 ,

−1− 2 I,


−1

2 −
I
2

1
1


 ,

−1 + 2 I,


−1

2 +
I
2

1
1





• Consider eigenpair1,


−1
−1
1




• Solution to homogeneous system from eigenpair

→y__1 = et ·


−1
−1
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−1− 2 I,


−1

2 −
I
2

1
1




• Solution from eigenpair

e(−1−2 I)t ·


−1

2 −
I
2

1
1


• Use Euler identity to write solution in terms of sin and cos

e−t · (cos (2t)− I sin (2t)) ·


−1

2 −
I
2

1
1


• Simplify expression

e−t ·


(
−1

2 −
I
2

)
(cos (2t)− I sin (2t))

cos (2t)− I sin (2t)
cos (2t)− I sin (2t)
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• Both real and imaginary parts are solutions to the homogeneous system →y__2(t) = e−t ·


− sin(2t)

2 − cos(2t)
2

cos (2t)
cos (2t)

 ,
→y__3(t) = e−t ·


− cos(2t)

2 + sin(2t)
2

− sin (2t)
− sin (2t)




• General solution to the system of ODEs
→y__ = c1

→y__1 + c2
→y__2(t) + c3

→y__3(t)
• Substitute solutions into the general solution

→y__ = c1et ·


−1
−1
1

+ c2e−t ·


− sin(2t)

2 − cos(2t)
2

cos (2t)
cos (2t)

+ c3e−t ·


− cos(2t)

2 + sin(2t)
2

− sin (2t)
− sin (2t)


• Substitute in vector of dependent variables

y1(t)
y2(t)
y3(t)

 =


((−c2−c3) cos(2t)−sin(2t)(c2−c3))e−t

2 − c1et

−c1et + c2e−t cos (2t)− c3e−t sin (2t)
c1et + c2e−t cos (2t)− c3e−t sin (2t)


• Solution to the system of ODEs{

y1(t) = ((−c2−c3) cos(2t)−sin(2t)(c2−c3))e−t

2 − c1et, y2(t) = −c1et + c2e−t cos (2t)− c3e−t sin (2t) , y3(t) = c1et + c2e−t cos (2t)− c3e−t sin (2t)
}

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 133� �
dsolve([diff(y__1(t),t)=-3*y__1(t)+1*y__2(t)-3*y__3(t),diff(y__2(t),t)=4*y__1(t)-1*y__2(t)+2*y__3(t),diff(y__3(t),t)=4*y__1(t)-2*y__2(t)+3*y__3(t)],singsol=all)� �

y1(t) = c1et + c2e−t sin (2t) + c3e−t cos (2t)
y2(t) = c1et − c2e−t sin (2t)− c2e−t cos (2t)− c3e−t cos (2t) + c3e−t sin (2t)
y3(t) = −c1et − c2e−t sin (2t)− c2e−t cos (2t)− c3e−t cos (2t) + c3e−t sin (2t)
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3 Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 163� �
DSolve[{y1'[t]==-3*y1[t]+1*y2[t]-3*y3[t],y2'[t]==4*y1[t]-1*y2[t]+2*y3[t],y3'[t]==4*y1[t]-2*y2[t]+3*y3[t]},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions -> True]� �

y1(t) → 1
2e

−t
(
(c2 − c3)e2t + (2c1 − c2 + c3) cos(2t)− 2(c1 + c3) sin(2t)

)
y2(t) → 1

2e
−t
(
(c2 − c3)e2t + (c2 + c3) cos(2t) + (4c1 − c2 + 3c3) sin(2t)

)
y3(t) → 1

2e
−t
(
(c3 − c2)e2t + (c2 + c3) cos(2t) + (4c1 − c2 + 3c3) sin(2t)

)
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